The Palmiet Pumped Storage Scheme
Summary description of civil works

<table>
<thead>
<tr>
<th>Section of works</th>
<th>Brief description</th>
<th>Principal dimensions or quantities</th>
<th>Methods of construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headworks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| - Tower | Control and access tower in upper Rockview reservoir with emergency stoplogs and maintenance gate to the inlet/outlet bellmouth at bottom, leading to headrace | - Excavation 6 000m3
- 70m high prestressed tower
- 11m x 14m elliptical section comprising wet and dry wells
- 50m bellmouth tapering from 2 x 14m x 7m rectangular to 6.2m dia | Excavation: As for headrace (below)
Tower: Climbing shutter
Bellmouth: Conventional RC construction |
| | | | |
| - Access bridge | Vehicular access from Rockview Dam crest to permit gate loads | - 4 x 20m deck spans
- Piers up to 50m high | Deck: Precast beams and launch girder
Piers: Conventional climb |
| **Headeace** | | | |
| | Trapezoidal section cut-and-cover trench to accept welded in situ steel liner later encased in concrete | - 500m long
- Depth variable 8m to 22m
- Excavation 35 000m3
- Steel liner dia 6.2m
- Gradient 1:225 | Conventional surface drill and blast and rock support techniques
Conventional RC encasement followed by void grouting |
| **Surge tank** | Circular tank in open excavation off-line but connected to the end of the headrace by a 60° Y-piece | - Excavation 32m wide, depth 22m
- Tank 21m ID, 78m high, prestressed | Excavation: As for headrace (above)
Conventional climbing shutter to prestressed structure |
| **Inclined shaft** | Underground circular inclined shaft and bends connecting headrace/surge tank to pressure | - 125m long inclined
- Excavation dia 7.8m
- Steel liner dia 6.2m | Raise-bore to pressure tunnel, D&B widen, muck out through pressure tunnel |
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Dimensions/Details</th>
<th>Design/Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure tunnel</td>
<td>Underground horseshoe section tunnel with steel liner as headrace.</td>
<td>- 500m long
- Excavation dia 7.8m
- Steel liner dia 6.2m
- Gradient 1:10</td>
<td>Conventional drill, blast and support:
1. Pantafort – drilling (two-boom jumbo)
2. Heading and bench (hardness of rock and short length precluded TBM excavation)
Concrete and grouting as for inclined shaft</td>
</tr>
<tr>
<td>Penstock and bifurcation</td>
<td>Similar to headrace, with bifurcation at lower end.</td>
<td>- 560m long
- Depth variable 8m to 18m
- Excavation 45,000 m³ including bifurcation
- Steel liner dia 5.4m
- Gradient 1:15</td>
<td>As for headrace (above)</td>
</tr>
<tr>
<td>Penstock shafts</td>
<td>Twin circular inclined shafts and bends connecting bifurcation to base of machine shafts, via a horizontal section in each.</td>
<td>- About 92m long inclined
- Gradient 1:1
- 4.7m dia excavation for liner 3.9m dia
- 37m long horizontal excavation tapering to 3.4m dia for liner tapering to 2.6m dia</td>
<td>As for inclined shaft, except raise-bores and mucking were done to the horizontal drives from machine shafts</td>
</tr>
</tbody>
</table>
| Machine shafts and services shaft, drainage and services galleries | Twin vertical shafts to accept pump turbines, motor generators and ancillaries. Services shaft and galleries located between two main shafts. Base of main shafts to accept draft-tubes to tailrace | - Main shafts
 - Excavated dia 26m
 - Concrete lined dia 23m incorporating lift-shafts
 - Depth 70m
 - Concrete embedment and support framework to pump turbines and motor generators with access floors and galleries at shaft base, 30m high and 23m dia
 - Ancillaries
 - Services shaft 6m dia
 - Galleries about 6m dia horseshoe sections 34m long | Excavation
 1. Spiral D&B excavation by segments
2. Drilling by crawler rigs
3. Mucking by crane to surface loader and trucks
4. Rock support by bolts, anchors and mesh-reinforced shotcrete to designed parameters
Concrete machine-embedment with RC operation temperature controlled
Concrete wall lining by climbing shutter |
| Tailrace shafts | Two asymmetrical inclined shafts and bends connecting draft-tubes to lower Kogelberg Dam and tailworks control structure, lined with reinforced concrete | - 93m and 68m long
- Gradient 1:1.9 and 1:0.9
- 6.0m dia excavated
- 5.0m dia lined | As for inclined shaft, but no raise bore possible to 1:1.9 gradient where full-face D&B was used.
Concreting to collapsible steel shutter specials to bends |
| Tail works
- Tower | Twin control and access towers in lower Kogelberg reservoir surmounted by common control house for maintenance gates to twin intake/outlet bellmouths at bottom, leading to tailrace shafts | - Excavation 36 000m³
- 7m square tower sections
- 33m high towers
- 28m x 7m x 12m high control house | Excavation: As for headrace (above) but rock support as for machine shafts
Bellmouth: Conventional RC construction |
| - Access bridge | Vehicular access from power station platform to permit gate loads | - 1 x 11.5m span
- 1 x 20.0m span
- Single pier 9m high | Deck: Precast beams
Pier: Climbing shutter |
|-----------------|---|----------------------------------|
| Tailworks | Widened river channel and reinforced concrete training wall anchored to rock with mass concrete coffer-dam across tailrace excavation | Channel 80m long, 10m wide
120m long, 6m high training wall
25m long, 6m high coffer-dam | Conventional excavation, rock support and RC construction |
| - River diversion | | | |
| Power Station | Reinforced concrete rectangular layout two-tier structure surrounding the machine shafts with crane beam to carry 360t traveling crane. Superstructure in structural steel and cladding | 11m x 30m x 16m high RC structure
10m high steelwork over whole building | All conventional RC structural/building work and finishes with usual services. Trenches and box-outs as are common in power station works |
| - Main building | | | |
| - Annexes | Two RC annexes on either side of the main building:
- a two-tier administration annexe
- a three-tier switchgear annexe | 12m x 73m x 9m high
30m x 92m x 16m high | |
| - Ancillaries | All conventional civil engineering and building work, details too various to mention (switchyard, roads, stormwater and sewerage, security fences, retaining walls and minor buildings). | | |

Produced by: Generation Communication
HY 0004 Revision 5 (November 2017)

For more information on Eskom related topics see the Eskom website (www.eskom.co.za). Select “About electricity” and “Facts and Figures”
Fig 2: Vertical alignment: SVE's review report

Fig 3: Final vertical and horizontal alignment