

WATER • ENVIRONMENTAL • EARTH SCIENCES • GIS

63 Wessel Road Rivonia 2128 PO Box 2597 Rivonia 2128 South Africa

Telephone: +27 (0)11 803 5726 Facsimile: +27 (0)11 803 5745 Web: www.gcs-sa.biz

SiVEST ENVIRONMENTAL DIVISION Grootvlei Power Station Hydrogeological Investigation

Report

Version - 1

September 11

SiVEST Environmental Division GCS Project Number: 11-247

Grootvlei Power Station Hydrogeological Investigation

September 11

SiVEST Environmental Division 11-247

DOCUMENT ISSUE STATUS

Report Issue	Final			
GCS Reference Number	11-247	11-247		
Client Reference	10937			
Title	Grootvlei Power Station Hydrogeological Investigation			
	Name	Signature	Date	
Author	Claudia Brites	OBites	September 2011	
Document Reviewer	Kobus Troskie	Frankie	September 2011	
Document Authorisation	Kobus Troskie	Frankie	September 2011	

I. EXECUTIVE SUMMARY

GCS was appointed by SiVEST Environmental Division to conduct a baseline hydrogeological investigation for the installation of a bulk fuel storage oil tank of approximately 500m³ at the Grootvlei Power Station. The study performed forms part of the Basic Assessment process.

The scope of work for the study included a desktop study to obtain all relevant geological and hydrogeological data, a site visit to inspect the two proposed sites, a hydrocensus of existing monitoring boreholes on site, sampling of three boreholes and a risk assessment.

Grootvlei Power Station is a coal fired burning power station which is located near the town of Balfour in Mpumalanga Province. The elevation of the site ranges from 1540 to 1568 mamsl (metres above mean sea level) with the topography of the site sloping in a south westerly direction.

Two non perennial rivers are located approximately 460m and 950m to the north east and south east of the proposed tank installation area. The river and dam are located downgradient of the site and are considered sensitive surface water receptors.

The site is underlain by the Ecca Group of the Karoo Supergroup consisting of shale, sandstone and coal of the Vryheid Formation. No structural components such as faults, dykes or lineaments are present in close proximity to the site which may alter the groundwater flow paths. The associated aquifer is an integranular and fractured aquifer.

During the site visit, a hydrocensus was conducted on the site whereby data was collected from five boreholes which form part of the monitoring programme. This included water levels, borehole depth and field parameters. The groundwater flow directions were determined using the static water level data. The groundwater flow contours indicates that the predominant flow direction is from the west to east across the site.

During the hydrocensus, three of these boreholes were sampled for TPH (Total Petroleum Hydrocarbon) analysis in order to determine the total amount of hydrocarbons compounds present within the groundwater on site. TPH methods generate a single number that represents the combined concentrations of all petroleum hydrocarbons in a sample, which are measurable by a particular method. From the analysis it is evident that no hydrocarbon compounds were detected in any of the three boreholes sampled as all measured concentrations were below 1mg/l.

A risk assessment methodology was incorporated in order to identify and quantify the risk that the proposed activity poses on the groundwater environment on the site. Firstly, the associated risks were identified and the significance of the impact was taken into consideration by determining the extent and severity of the impact. The impact was determined using the nature, scale and duration of effects on the environment for the operational phase of the project. Due to the close proximity of the two sites to each other, both sites will have very similar geological and hydrogeological conditions, similar topography and are associated with the same sensitive receptors and therefore the impacts determined apply for both of the alternative sites.

The proposed installation of the bulk fuel storage oil tank may result in negative impacts on the groundwater present on site. The impacts and rating have been summarised in the tableTable 7-3 below with a comparison made between pre- and post-mitigation phases. The most significant impact will be a negative effect on the groundwater quality if a spillage was to occur. The impact rating calculated before any mitigation measures are in place was 22, which results in a low negative impact. The rating calculated after mitigation measures have been included was 6, also resulting in a low negative impact.

Environmental parameter	Issues	Rating prior to mitigation	Rating	Rating post mitigation	Rating
Groundwater system	Fuel spillages	-22	Low Negative Impact	-6	Low Negative Impact

The mitigation measures includes bunding of the area surrounding the above ground fuel storage tank in order to prevent migration of any fuel spillages on site. It is therefore recommended that the necessary mitigation measures are enforced including the bunding of the areas surrounding the fuel storage tank for safety purposes to act as a barrier to prevent migration of spillages. It is recommended that the volume of the bunded area is 110% of the capacity of the fuel tank. In the event of a spillage, it is recommended that monitoring takes place at the boreholes in close proximity to the spillage area as well as selected boreholes downgradient of the spillage, both on site and off site. A contractor may be required for removal of the fuel spillage which is to be treated off site.

CONTENTS PAGE

1	Intr	oduction	. 1
	1.1	Terms of Reference	
2	Sco	be of Work	. 1
3	Met	hodology	. 1
	3.1	Desktop Study	. 1
	3.2	Site Visit and Hydrocensus	
	3.3	Groundwater Sampling	. 2
4	Site	Description	. 3
	4.1	Locality	
	4.2	Geology and Hydrogeology	
5	Ava	ilable Hydrogeological Site Specific Data	. 6
	5.1	Groundwater Monitoring	. 6
	5.2	Hydrocensus	. 6
6	Fiel	d Investigation	
	6.1	Site Visit and Hydrocensus	. 6
	6.2	Groundwater Sampling	11
7	Imp	act Assessment	
	7.1	Determination of Significance of Impacts	
	7.2	Impact Rating System	
	7.3	Rating System Used To Classify Impacts	
	7.4	Impact Summary	
8	Con	clusion and Recommendations	20
9	Refe	erences	22

LIST OF FIGURES

Figure 4-1: Locality Map	. 4
Figure 4-2: Geological Map	
Figure 6-1: Localities of Hydrocensus Boreholes	
Figure 6-2: Groundwater Flow Directions	

LIST OF TABLES

Table 6-1: Hydrocensus Data	8
Table 6-2: Field Parameters of Hydrocensus and Site Boreholes	. 12
Table 6-3: Chemistry Analysis of the Boreholes Sampled	. 12
Table 7-1: Rating System	. 13
Table 7-2: Rating of Impacts on the Groundwater System	. 17
Table 7-3: Comparison of Summarised Impacts on Environmental Parameters	. 19

LIST OF APPENDICES

Appendix A	23
Appendix B	

1 INTRODUCTION

1.1 Terms of Reference

GCS (Pty) Ltd was appointed by SiVEST Environmental Division to conduct for the baseline hydrogeological investigation for the proposed installation of a bulk fuel storage oil tank of approximately 500m³ at the Grootvlei Power Station. Grootvlei Power Station is a coal fired burning power station which is located near the town of Balfour in Mpumalanga Province. The study performed forms part of the Basic Assessment process.

2 SCOPE OF WORK

The scope of work for the study included the following:

- Desktop study;
- A site visit;
- Hydrocensus of existing monitoring boreholes on site;
- Data compilation;
- Groundwater sampling and chemical analyses;
- Compilation of a short baseline report.
- Report and risk assessment.

3 METHODOLOGY

3.1 Desktop Study

GCS assessed all available geological and hydrogeological data prior to the start of the fieldwork. All of the existing groundwater data (including monitoring data, hydrocensus data and water levels) were reviewed and assessed during the desktop study.

All available data on the National Groundwater Archive (NGA) boreholes was collected from the Department of Water Affairs (DWA). A study of the topographical maps, satellite images and geological maps was also included during the desk study.

All relevant public domain information was assessed including previous reports provided by the client. The following data sources will be used during the study:

- Topographic 1:50 000 maps;
- Geological 1:250 000 map;
- The groundwater resources of the Republic of South Africa, sheets 1 and 2 (Vegter 1995);

- GRDM, Groundwater Resource Directed Measures, GRDM Training Manual;
- The National Groundwater Archive (NGA) and
- Previous consultant reports in the area.

3.2 Site Visit and Hydrocensus

GCS conducted a site visit in order to become familiarised with the two (2) proposed site alternatives for the installation of the 500m³ bulk fuel storage oil tank. Furthermore a survey of boreholes in close proximity to the proposed site alternatives were conducted at the Grootvlei Power Station. The following data was recorded where available:

- Groundwater levels;
- Borehole depths;
- Water quality; and
- Usage.

This data was used to indicate the location of the monitoring boreholes relative to the two proposed sites as well as to determine the groundwater flow gradients and groundwater level contours using the static groundwater level in this area.

3.3 Groundwater Sampling

The methodology in the collection and preservation of groundwater sample is important for the reliability of the analysis. A sample was collected and preserved to ensure a correct version of the on-site conditions at the site area. This work is undertaken in accordance to the following publications:

SABS ISO 5667-11:1993 Guidance on sampling of groundwaterSABS ISO 5667-1:1980 Guidance on the design of sampling programsSABS ISO 5667-2:1991 Guidance on sampling techniquesSABS ISO 5667-3:1994 Guidance on the preservation and handling of samples

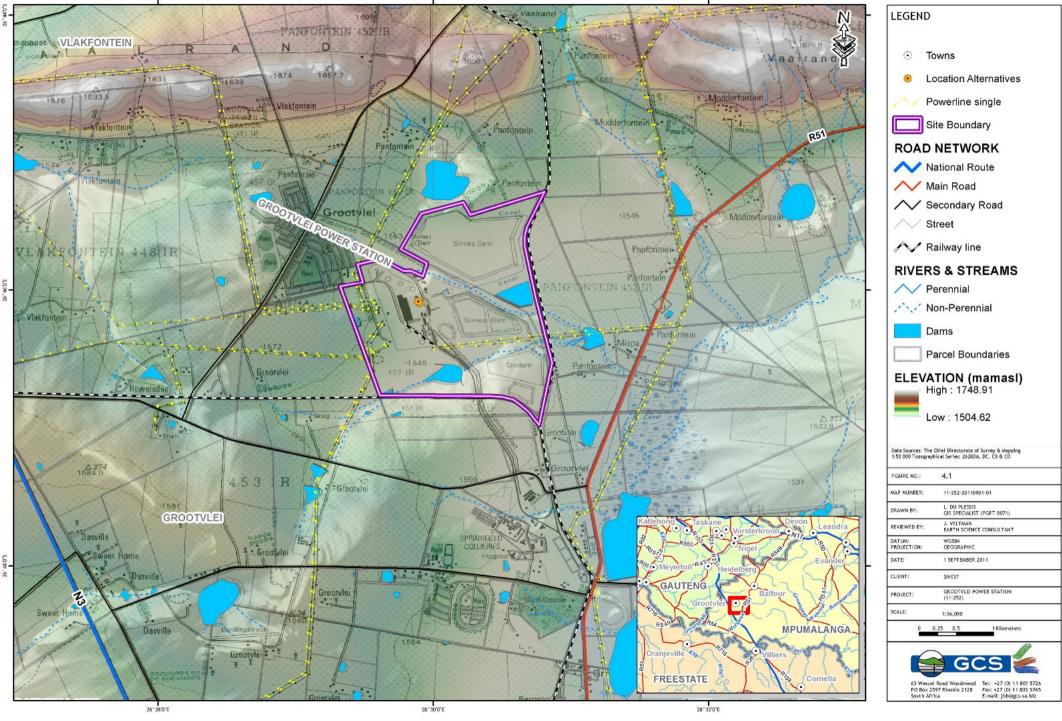
The samples were submitted to an accredited laboratory services for analysis according to South African Drinking Standards. Laboratory analyses included Total Petroleum Hydrocarbons (TPH) using the IR method (Infrared Spectroscopy).

4 SITE DESCRIPTION

4.1 Locality

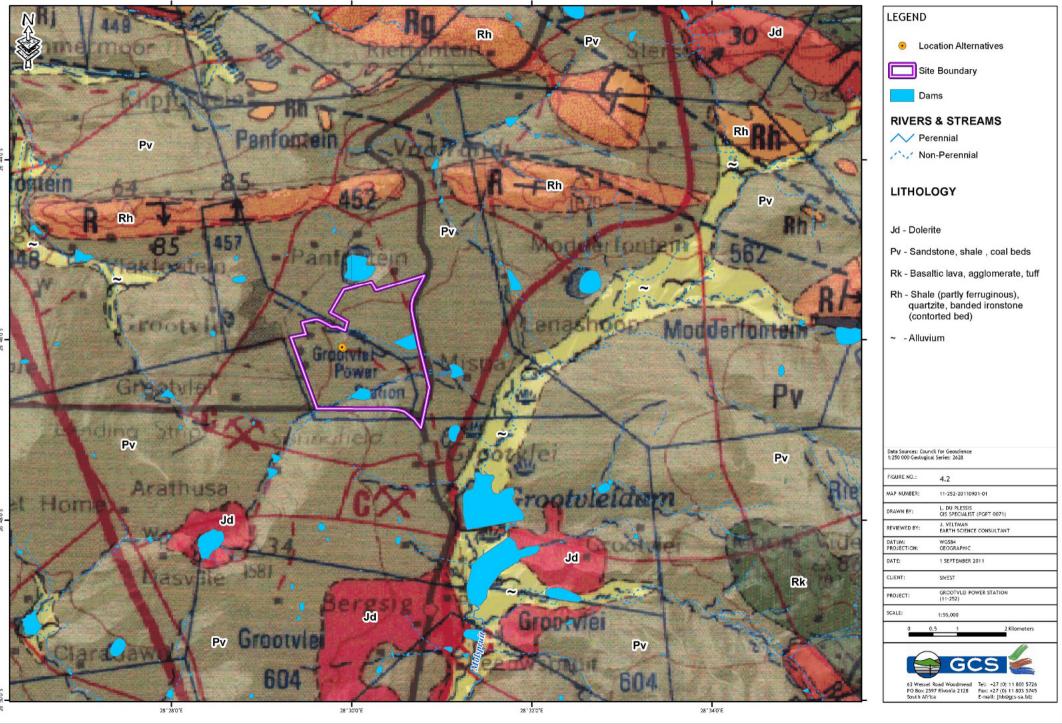
The site is located in the suburb of Grootvlei in the Mpumalanga Province. The approximate elevation of the site ranges from 1540 to 1568 mamsl (metres above mean sea level). The elevation of the proposed area for the tank installation is approximately 1559mamsl. The topography of the site slopes in a south westerly direction.

A non perennial river is located approximately 460m to the north east of the proposed tank installation area as indicated on Figure 4-1. This river flows in a south easterly direction and flows into a dam further downstream outside of the Power Station boundary. Another non perennial river and dam are located 950m to the south east of the site on the property. The river and dam are located downgradient of the site and are considered sensitive surface water receptors.


4.2 Geology and Hydrogeology

According the map sheet East Rand 2628, 1:250 000 (Council for Geoscience, 1986 2nd edition) the site is underlain by Ecca Group of the Karoo Supergroup as indicated in Figure 4-2. The lithology is comprised of shale, sandstone and coal of the Vryheid Formation. No structural components such as faults, dykes or lineaments are present in this area which would alter the groundwater flow paths.

The 1: 500 000 general hydrogeological map for Johannesburg (2526), indicates the aquifer underlying the site is an integranular and fractured aquifer. Groundwater generally occurs within the fractures and joints developed along the bedding planes, between the contact zones of different lithologies and associated with faults and shear zones (H. C. Barnard, 2007). Groundwater is stored in and transmitted through both the fractured and intregranular aquifer. The intergranular pore spaces may serve as primary storage and the fractures serve as the transport function.


No NGA (National Groundwater Archive) boreholes were identified within a 2km radius of the site.

GROOTVLEI POWER STATION: LOCALITY

50,82,92

GROOTVLEI POWER STATION: GEOLOGY

5 AVAILABLE HYDROGEOLOGICAL SITE SPECIFIC DATA

Previous hydrogeological investigations have been conducted at the Grootvlei Power Station and surrounding areas. This includes groundwater and surface water monitoring conducted on a quarterly basis as well as a hydrocensus conducted surrounding the area.

5.1 Groundwater Monitoring

The groundwater monitoring system has been in place since 1988 and is conducted on a quarterly basis which includes monitoring boreholes on site, hydrocensus boreholes and surface water monitoring points. All details regarding the boreholes and other monitoring points are available in the monitoring report - Groundwater Monitoring Report for Grootvlei Power Station, April 2011 (Dr D. Vermeulen).

5.2 Hydrocensus

A hydrocensus was conducted within a 5km radius of the site by the Institute of Groundwater Studies (IGS) in July 2009, in order to identify groundwater users within this zone that may be impacted on by the activities of the Power Station. A comparison was made between the upstream and downstream water qualities. A total of 19 boreholes were identified, other than those sampled as part of the monitoring routine (Vermeulen, Vermaak, 2009). Groundwater levels measurements and groundwater samples were obtained from all boreholes. The chemistry analysis indicated localized areas of marginal impact of power station infrastructure (Vermeulen, Vermaak, 2009).

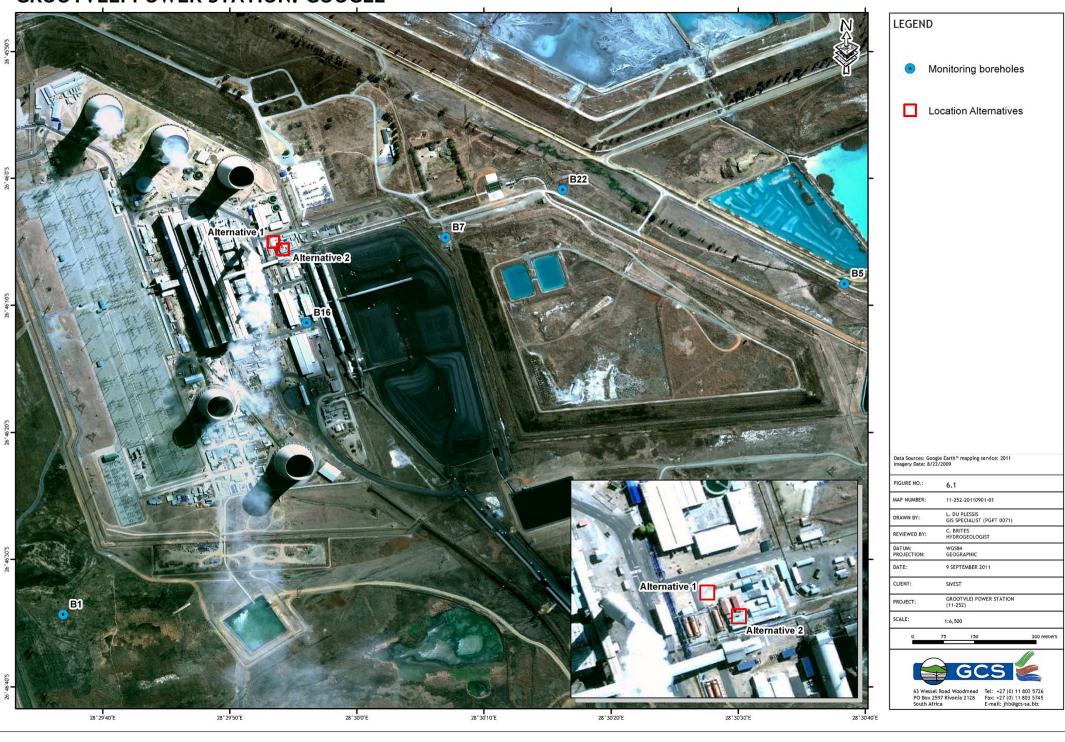
6 FIELD INVESTIGATION

6.1 Site Visit and Hydrocensus

A site visit was conducted on the 8th September 2011 in order to visit the two sites for the installation of the proposed 500m³ bulk fuel storage tank (refer to Appendix A for the Photo Log). The two alternative sites are referred to as Alternative 1 and Alternative 2 and are located within the area of the northern fuel storage plant area. Currently there are a total of three (3) bulk fuel storage tanks in this area, each with the capacity of 500m³. The southern fuel storage plant area also consists of three (3) bulk fuel storage tanks. Each fuel tank is bunded for safety purposes to act as a barrier to contain spillages.

During the site hydrocensus conducted on the site, the boreholes closest to the proposed tank installation area were investigated. A total of 22 boreholes are monitored on site on a

quarterly basis. Data was obtained from 5 boreholes on site during the site walkover. This includes one baseline borehole and four other boreholes monitoring various areas at the Power Station.


During the visit, details including water levels and coordinates were obtained. The results of the hydrocensus are listed in Table 6-1. The positions of the boreholes are illustrated on Figure 6-1.

The groundwater flow directions were determined using the static water level data. The data was contoured, incorporating the elevations in order to determine the groundwater flow directions across the site. The groundwater flow contours have been depicted in Figure 6-2 and indicates that the predominant flow direction is from west to east across the site.

Table 6-1: Hydrocensus Data

	Co-ordinate	es (Cape Lo29)		Water				
Borehole name	х	Y	Depth (m)	level (mbch)	Casing height (m)	Water level (mbgl)	Comments	Area Monitored
B16	-49806.519	-2961927.299	31	4.78	0.04	4.74	-	Petrol and diesel tank
B1	-50332.825	-2962636.317	27	2.12	0.17	1.95	-	Baseline monitoring point
B7	-49504.975	-2961718.911	34	2.55	0.32	2.23	Brownish	Waste treatment plant
B22	-49250.805	-2961602.682	31	2.47	0.69	1.78	Brownish with suspended solids	Oil separator
B5	-48637.251	-2961827.456	44	2.12	1.07	1.05	-	Ash water return dam

GROOTVLEI POWER STATION: GOOGLE

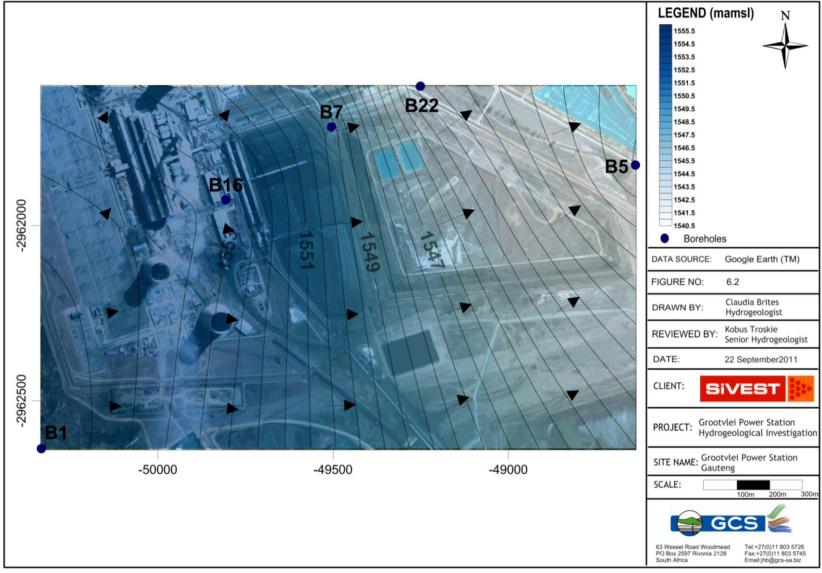


Figure 6-2: Groundwater Flow Directions

6.2 Groundwater Sampling

Three groundwater samples were taken from the hydrocensus boreholes identified during the field investigation to determine the baseline groundwater quality before the installation of the bulk fuel storage tank. The samples were delivered to a South African National Standards (SANS) accredited laboratory, M&L laboratory services based in Johannesburg, South Africa.

The methodology in the collection and preservation of water samples is important for the reliability of the analysis. The samples taken were preserved to ensure a correct version of the on-site conditions at the development area.

Laboratory analyses included TPH (Total Petroleum Hydrocarbons) using the IR method. Analysis was carried out in accordance with methods prescribed by and obtained from the South African Bureau of Standards, in terms of the Standards Act, Act 30 of 1982.

The hydrochemical sampling will be carried out in accordance to the following publications:

- SABS ISO 5667-11:1993 Guidance on sampling of groundwater
- SABS ISO 5667-1:1980 Guidance on the design of sampling programs
- SABS ISO 5667-2:1991 Guidance on sampling techniques
- SABS ISO 5667-3:1994 Guidance on the preservation and handling of samples

Field observations for each sampling point, consisting of the following information, were recorded on field data sheets:

- Date of sampling;
- Coordinates of each borehole;
- General status of the borehole (locked, vandalised, etc.) and depth of water level;
- In-situ measurements for each sampling point, namely pH, electrical conductivity, total dissolved solids and temperature;
- General characteristics of the water samples such as colour, turbidity and smell as well as visual observations of the sample site.

The field parameters measured in the three site boreholes and one hydrocensus borehole sampled are tabulated below in Table 6-2 and includes pH, temperature, electrical conductivity (EC) and TDS (total dissolved solids).

Borehole	рН	EC (µS/cm)	TDS (ppm)	Temperature (°C)
B16	8.94	281	145	20.2
B7	9.29	293	153	19.4
B22	7.68	431	215	18.3

Table 6-2: Field Parameters of Hydrocensus and Site Boreholes

Table 6-3 below contains the laboratory analysis for TPH. TPH methods generate a single number that represents the combined concentrations of all petroleum hydrocarbons in a sample, which are measurable by a particular method. A TPH analysis was conducted in order to determine the total amount of hydrocarbons compounds present within the groundwater on site. The laboratory certificate of analysis is presented in Appendix B. From the analysis it is evident that no hydrocarbon compounds were detected in any of the three boreholes sampled.

Table 6-3: Chemistry Analysis of the Boreholes Sampled

Borehole	Total Petroleum Hydrocarbon (mg/l)
B16	<1
B7	<1
B22	<1

7 IMPACT ASSESSMENT

The following risk assessment methodology was incorporated in order to identify and quantify the risk that the proposed activity poses on the groundwater environment on the site. Firstly, the associated risks were identified and the significance of the impact was taken into consideration by determining the extent and severity of the impact. The impact was determined using the nature, scale and duration of effects on the environment for the operational phase of the project as the risks discussed only apply to the operational phase.

7.1 Determination of Significance of Impacts

Significance is determined through a synthesis of impact characteristics which include context and intensity of an impact. Context refers to the geographical scale i.e. site, local, national or global whereas Intensity is defined by the severity of the impact e.g. the magnitude of deviation from background conditions, the size of the area affected, the

duration of the impact and the overall probability of occurrence. Significance is calculated as shown in Table 7-2.

Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. The total number of points scored for each impact indicates the level of significance of the impact.

7.2 Impact Rating System

Impact assessment must take account of the nature, scale and duration of effects on the environment whether such effects are positive (beneficial) or negative (detrimental). Each issue / impact is also assessed according to the operational project stage.

Where necessary, the proposal for mitigation or optimisation of an impact should be detailed. A brief discussion of the impact and the rationale behind the assessment of its significance has also been included.

7.3 Rating System Used To Classify Impacts

The rating system is applied to the potential impact on the receiving environment and includes an objective evaluation of the mitigation of the impact. Impacts have been consolidated into one rating. In assessing the significance of each issue the following criteria (including an allocated point system) is used:

Table	7-1:	Rating	System

NATURE

A brief description of the impact of environmental parameter being assessed in the context of the project. This criterion includes a brief written statement of the environmental aspect being impacted upon by a particular action or activity.

	GI	EOGRAPHICAL EXTENT			
This	is defined as the area over which	ch the impact will be expressed. Typically, the severity and			
sign	ificance of an impact have different	scales and as such bracketing ranges are often required. This			
is of	ten useful during the detailed asses	sment of a project in terms of further defining the determined.			
1	Site	The impact will only affect the site			
2	Local/district	Will affect the local area or district			
3	Province/region	Will affect the entire province or region			
4	International and National	Will affect the entire country			
		PROBABILITY			
This	describes the chance of occurrenc	e of an impact			
	The chance of the impact occurring is extremely low				
1	Unlikely	(Less than a 25% chance of occurrence).			
	-				

	Dessible	The impact may occur (Between a 25% to 50% chance
2	Possible	of occurrence).
0	Drahahla	The impact will likely occur (Between a 50% to 75%
3	Probable	chance of occurrence).
4	Definite	Impact will certainly occur (Greater than a 75% chance of
4	Definite	occurrence).
T 1 ' -		REVERSIBILITY
		impact on an environmental parameter can be successfully
rever	sed upon completion of the propose	
4		The impact is reversible with implementation of minor
1	Completely reversible	mitigation measures
2	Doutly reversible	The impact is partly reversible but more intense
2	Partly reversible	mitigation measures are required.
2	Derek reversible	The impact is unlikely to be reversed even with intense
3	Barely reversible	mitigation measures.
4	Irreversible	The impact is irreversible and no mitigation measures
4	Ineversible	exist.
Thia		ABLE LOSS OF RESOURCES
	-	ources will be irreplaceably lost as a result of a proposed
activi	-	The import will not requit in the loss of environments
1	No loss of resource.	The impact will not result in the loss of any resources.
2	Marginal loss of resource	The impact will result in marginal loss of resources.
3	Significant loss of resources	The impact will result in significant loss of resources.
4	Complete loss of resources	The impact is result in a complete loss of all resources.
		DURATION
		cts on the environmental parameter. Duration indicates the
lifetim	ne of the impact as a result of the pro	
		The impact and its effects will either disappear with
		mitigation or will be mitigated through natural process in
		a span shorter than the construction phase $(0 - 1 \text{ years})$,
		or the impact and its effects will last for the period of a
		relatively short construction period and a limited recovery
		time after construction, thereafter it will be entirely
1	Short term	negated (0 – 2 years).
		The impact and its effects will continue or last for some
		time after the construction phase but will be mitigated by
_		direct human action or by natural processes thereafter (2
2	Medium term	– 10 years).
		The impact and its effects will continue or last for the
		entire operational life of the development, but will be
		mitigated by direct human action or by natural processes
3	Long term	thereafter (10 – 50 years).

1		The only class of impact that will be non-transitory.			
		Mitigation either by man or natural process will not occur			
		in such a way or such a time span that the impact can be			
4	Permanent	considered transient (Indefinite).			
-					
	CUN				
This d	escribes the cumulative effect of th	e impacts on the environmental parameter. A cumulative			
		y not be significant but may become significant if added to			
		ng from other similar or diverse activities as a result of the			
	activity in question.				
		The impact would result in negligible to no cumulative			
1	Negligible Cumulative Impact	effects			
		The impact would result in insignificant cumulative			
2	Low Cumulative Impact	effects			
3	Medium Cumulative impact	The impact would result in minor cumulative effects			
4	High Cumulative Impact	The impact would result in significant cumulative effects			
		NSITY / MAGNITUDE			
Descr	ibes the severity of an impact				
		Impact affects the quality, use and integrity of the			
1	Low	system/component in a way that is barely perceptible.			
		Impact alters the quality, use and integrity of the			
		system/component but system/ component still continues to function in a moderately modified way and maintains			
2	Medium	general integrity (some impact on integrity).			
2		Impact affects the continued viability of the			
		system/component and the quality, use, integrity and			
		functionality of the system or component is severely			
		impaired and may temporarily cease. High costs of			
3	High	rehabilitation and remediation.			
	-	Impact affects the continued viability of the			
		system/component and the quality, use, integrity and			
		functionality of the system or component permanently			
		ceases and is irreversibly impaired (system collapse).			
		Rehabilitation and remediation often impossible. If			
		possible rehabilitation and remediation often unfeasible			
		due to extremely high costs of rehabilitation and			
4	Very high	remediation.			
	SIGNIFICANCE				

Significance is determined through a synthesis of impact characteristics. Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. This describes the significance of the impact on the environmental parameter. The calculation of the significance of an impact uses the following formula:

(Extent + probability + reversibility + irreplaceability + duration + cumulative effect) x magnitude/intensity.

The summation of the different criteria will produce a non weighted value. By multiplying this value with the magnitude/intensity, the resultant value acquires a weighted characteristic which can be measured and assigned a significance rating.

Points	Impact Significance Rating	Description
6 to 28	Negative Low impact	The anticipated impact will have negligible negative effects and will require little to no mitigation.
6 to 28	Positive Low impact	The anticipated impact will have minor positive effects.
29 to 50	Negative Medium impact	The anticipated impact will have moderate negative effects and will require moderate mitigation measures.
29 to 50	Positive Medium impact	The anticipated impact will have moderate positive effects.
51 to 73	Negative High impact	The anticipated impact will have significant effects and will require significant mitigation measures to achieve an acceptable level of impact.
51 to 73	Positive High impact	The anticipated impact will have significant positive effects.
74 to 96	Negative Very high impact	The anticipated impact will have highly significant effects and are unlikely to be able to be mitigated adequately. These impacts could be considered "fatal flaws".
74 to 96	Positive Very high impact	The anticipated impact will have highly significant positive effects.

Table 7-2 below details the impacts associated with the proposed installation of the bulk fuel storage oil tank at the Grootvlei Power Station. The impacts determined apply for both of the alternative sites as there is little difference in terms of aquifer vulnerability between the two different sites. Due to the close proximity of the two sites to each other, both sites will have very similar geological and hydrogeological conditions, similar topography and are associated with the same sensitive receptors.

Table 7-2: Rating of Impacts on the Groundwater System				
	The proposed installation of the bulk fuel storage oil tank			
	may result in negative impacts on the groundwater			
Environmental Parameter	present on site. The most significant impact will be a			
	negative effect on the groundwater quality if a spillage			
	was to occur.			
	In terms of spillages on site, the impact on the			
	groundwater system on site will be a negative impact.			
	This is dependent on the nature of the spillage and extent			
	of fuel released. Sensitive receptors (a dam and river) are			
	located 460m to the north east, downgradient of the site.			
Issue/Impact/Environmental	These receptors would be at risk in terms of			
Effect/Nature	contamination if spillages were to occur. The shallow			
	groundwater levels on site will result in reduced travel			
	times for contaminants to reach the groundwater level			
	and therefore reduced biodegradation will take place			
	before the contaminant reaches the water level.			
	It terms of spillages emanating from the bulk storage fuel			
	tank, the area that will be impacted (post-mitigation) will			
	only be the site, if the area is bunded. If the area is not			
Extent	bunded, spillages may not be confined to the site			
Extent	boundary based on the presence of the shallow			
	groundwater levels acting as a transport medium as well			
	as the sensitive receptors located downgradient of the			
	storage tank and therefore the pre-mitigation impact will			
	affect the local area or district area			
	The chances of the impact occurring is highly dependent			
	on the management practices in place. Spillages are			
Probability	likely to occur when refilling the tanks. If the mitigation			
	measures are in place, minimal impacts will be evident,			
	which is not the case if no mitigation measures are in			
	place.			
	The reversibility of the effects of a spillage depends on			
	the degree of the spillage. A relatively small spillage may			
	not affect the groundwater on and off site and may only			
Deversibility	affect the soils. In this case, soil remediation may be			
Reversibility	necessary. If the area is bunded, these will be minimal			
	effects as the spillage will be contained and will not enter			
	the natural environment. A spillage occurring in a nun-			
	bunded area may enter the groundwater system and			
	,			

Table 7-2: Rating of Impacts on the Groundwater System

impact on the sensitive receptors. In this case, active treatment might be necessary to remove the contamination followed by monitoring. Active treatment is extremely expensive and sometimes it is impossible to obtain baseline conditions and to remediate to initial site conditions Irreplaceable loss of resources If the area is bunded, it is not likely that any resources will be lost if spillages occur. In the case where the area is not bunded, the impact will result in marginal loss of resources as the groundwater quality may be negatively affected. Duration The duration of the negative impacts associated with spillages are not likely to last for a period longer than 2 – 10 years, based on the assumption that measures will be taken to remove the contamination and remediate if necessary. With mitigation measures the duration time will be shorter. Cumulative effect The cumulative effect of the proposed activity and impacts are considered negligible as only one effect has been identified which is the occurrence of spillages. Intensity/magnitude The ability to atter the functionality or quality of a system permanently or temporarily is considered low if the area is bunded (post-mitigation) due to the minimal effects and medium for pre-mitigation if the area is not bunded as there is a possibility of contamination entering the natural environment. Significance Rating Pre-mitigation and 6 for post-mitigation. This indicates that the risk is reduced when the relevant mitigation measures are in place. Extent 2 1 Probability 2 1 Irreplaceable loss			
Irreplaceable loss of resources be lost if spillages occur. In the case where the area is not bunded, the impact will result in marginal loss of resources as the groundwater quality may be negatively affected. Duration The duration of the negative impacts associated with spillages are not likely to last for a period longer than 2 – 10 years, based on the assumption that measures will be taken to remove the contamination and remediate if necessary. With mitigation measures the duration time will be shorter. Cumulative effect The cumulative effect of the proposed activity and impacts are considered negligible as only one effect has been identified which is the occurrence of spillages. Intensity/magnitude The significance rating was calculated for both pre- and medium for pre-mitigation in entering the natural environment. Significance Rating Pre-mitigation impact rating vas calculated for both pre- and post-mitigation and 6 for post-mitigation. This indicates that the risk is reduced when the relevant mitigation measures are in place. Probability 2 1 Probability 2 1 Irreplaceable loss 2 1		treatment might be n contamination followed by is extremely expensive and obtain baseline conditions	necessary to remove the monitoring. Active treatment sometimes it is impossible to
Durationspillages are not likely to last for a period longer than 2 – 10 years, based on the assumption that measures will be taken to remove the contamination and remediate if necessary. With mitigation measures the duration time will be shorter.Cumulative effectThe cumulative effect of the proposed activity and impacts are considered negligible as only one effect has been identified which is the occurrence of spillages.Intensity/magnitudeThe ability to alter the functionality or quality of a system permanently or temporarily is considered low if the area is bunded (post-mitigation) due to the minimal effects and medium for pre-mitigation if the area is not bunded as there is a possibility of contamination entering the natural environment.Significance RatingThe significance rating was calculated for both pre- and post-mitigation scenarios. A rating of 22 was calculated for pre-mitigation scenarios. A rating of 22 was calculated for pre-mitigation impact ratingExtent21Pre-mitigation impact ratingPost mitigation impact ratingExtent21Irreplaceable loss21Duration21	Irreplaceable loss of resources	rreplaceable loss of resources bunded, the impact will result in marginal los resources as the groundwater quality may be negative.	
Cumulative effectimpacts are considered negligible as only one effect has been identified which is the occurrence of spillages.Intensity/magnitudeThe ability to alter the functionality or quality of a system permanently or temporarily is considered low if the area is bunded (post-mitigation) due to the minimal effects and medium for pre-mitigation if the area is not bunded as there is a possibility of contamination entering the natural environment.Significance RatingThe significance rating was calculated for both pre- and post-mitigation scenarios. A rating of 22 was calculated for pre-mitigation and 6 for post-mitigation. This indicates that the risk is reduced when the relevant mitigation measures are in place.Extent21Probability21Reversibility21Irreplaceable loss21Duration21	Duration Duration Spillages are not like 10 years, based or taken to remove necessary. With n		st for a period longer than 2 – sumption that measures will be ntamination and remediate if
Intensity/magnitudepermanently or temporarily is considered low if the area is bunded (post-mitigation) due to the minimal effects and medium for pre-mitigation if the area is not bunded as there is a possibility of contamination entering the natural environment.Significance RatingThe significance rating was calculated for both pre- and post-mitigation scenarios. A rating of 22 was calculated for pre-mitigation and 6 for post-mitigation. This indicates that the risk is reduced when the relevant mitigation measures are in place.Extent21Probability21Probability21Irreplaceable loss21Duration21	Cumulative effect	impacts are considered negligible as only one effect has	
Significance Ratingpost-mitigation scenarios. A rating of 22 was calculated for pre-mitigation and 6 for post-mitigation. This indicates that the risk is reduced when the relevant mitigation measures are in place.Pre-mitigation impact ratingPost mitigation impact ratingExtent21Probability21Reversibility21Irreplaceable loss21Duration21	Intensity/magnitude	permanently or temporarily bunded (post-mitigation) du medium for pre-mitigation there is a possibility of cont	is considered low if the area is ue to the minimal effects and if the area is not bunded as
Extent2Post mitigation impact ratingExtent21Probability21Reversibility21Irreplaceable loss21Duration21	Significance Rating	post-mitigation scenarios. J for pre-mitigation and 6 for that the risk is reduced	A rating of 22 was calculated post-mitigation. This indicates
Probability21Reversibility21Irreplaceable loss21Duration21		- ·	Post mitigation impact rating
Reversibility21Irreplaceable loss21Duration21	Extent	2	1
Irreplaceable loss21Duration21	Probability	2	1
Duration 2 1	Reversibility	2	1
	Irreplaceable loss	2	1
Cumulative effect 1 1	Duration	2	1
	Cumulative effect	1	1

Intensity/magnitude	2	1	
Significance rating	-22 (low negative)	-6 (low negative)	
	Although both the impact	ratings for pre-mitigation and	
	post-mitigation results in th	e same rating (both are rated	
	as a low negative rating) the	here will be differences in the	
	impacts for the scenario wh	ere the area is bunded or not.	
	If the area is bunded, it will contain a spillage and prevent		
	contamination of the enviror	nment. A spillage within a non-	
	bunded area will results ir	n the possible migration of a	
Mitigation measures	spillage which may result ir	n contamination of the soil and	
	groundwater both on the site and the surrounding areas.		
	It is recommended that the	volume of the bunded area is	
	110% of the capacity of th	e fuel tank. In the event of a	
	spillage, it is recommended that monitoring takes place at		
	the boreholes in close pro	ximity to the spillage area as	
	well as selected boreholes	downgradient of the spillage,	
	both on site and off site.		

7.4 Impact Summary

The proposed installation of the bulk fuel storage oil tank may result in negative impacts on the groundwater present on site. The impacts and rating have been summarized in Table 7-3 below with a comparison made between pre- and post-mitigation phases. The most significant impact will be a negative effect on the groundwater quality if a spillage was to occur. The impact rating calculated before any mitigation measures are in place was 22, which results in a low negative impact. The rating calculated after mitigation measures have been included was 6, also resulting in a low negative impact. The mitigation measures includes bunding of the area surrounding the above ground fuel storage tank in order to prevent migration of any fuel spillages on site as well as collection in a sump which is then removed and treated off site.

Environmental		Rating prior		Rating post	
parameter	Issues	to mitigation	Rating	mitigation	Rating
Groundwater system	Fuel spillages	-22	Low Negative Impact	-6	Low Negative Impact

Table 7-3: Comparison of	Summarised Impacts on	Environmental Parameters

8 CONCLUSION AND RECOMMENDATIONS

GCS conducted a site visit in order to become familiarised with the two (2) proposed site alternatives for the installation of the 500m³ bulk fuel storage oil tank. Based on the outcome of the hydrocensus, the groundwater flow gradients were determined using the data collected. The groundwater flows from west to east across the site with shallow groundwater levels present ranging from 1.05 to 4.74mbgl. The nearest groundwater user is located approximately 2.1km downgradient, from the two alternative site area. Several other groundwater users are also located in this area.

During the hydrocensus, three groundwater samples were collected from boreholes B7, B16 and B22 in order to determine the baseline quality conditions before the installation of the bulk fuel storage tank. The samples were analysed for TPH (Total Petroleum Hydrocarbons) using the IR method. From the analysis it is evident that no hydrocarbon compounds were detected in any of the three boreholes sampled.

A risk assessment methodology was incorporated in order to identify and quantify the risk that the proposed activity poses on the groundwater environment on the site. Firstly, the associated risks were identified and the significance of the impact was taken into consideration by determining the extent and severity of the impact. The impact was determined using the nature, scale and duration of effects on the environment. Due to the close proximity of the two sites to each other, both sites will have very similar geological and hydrogeological conditions, similar topography and are associated with the same sensitive receptors and therefore the impacts determined apply for both of the alternative sites.

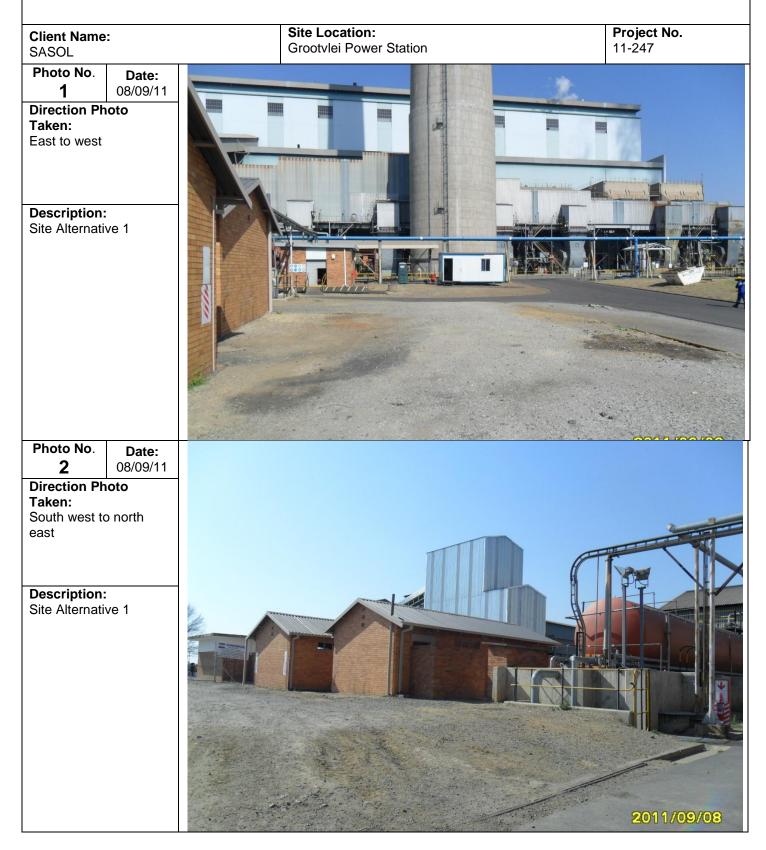
The proposed installation of the bulk fuel storage oil tank may result in negative impacts on the groundwater present on site. The most significant impact will be a negative effect on the groundwater quality if a spillage was to occur. The impact rating calculated before any mitigation measures are in place was 22, which results in a low negative impact. The rating calculated after mitigation measures have been included was 6, also resulting in a low negative impact. The mitigation measures includes bunding of the area surrounding the above ground fuel storage tank in order to prevent migration of any fuel spillages on site. It is therefore recommended that the necessary mitigation measures are enforced including the bunding of the areas surrounding the fuel storage tank for safety purposes to act as a barrier to prevent migration of spillages. It is recommended that the volume of the bunded area is 110% of the capacity of the fuel tank. In the event of a spillage, it is recommended that monitoring takes place at the boreholes in close proximity to the spillage area as well as selected boreholes downgradient of the spillage, both on site and off site. A contractor may be required for removal of the fuel spillage which is to be treated off site.

9 REFERENCES

Barnard, H. C.. (2007), An Explanation of the 1:500 000 General Hydrogeological Map - Johannesburg 2526, Department of Water Affairs and Forestry.

Google Earth (2007), http://earth.google.com/. Google

Vegter, J. R. (1995), Groundwater Resources of the Republic of South Africa. Water Research Commission, Department of Water Affairs and Forestry. Printpak Transvaal. South Africa


Vermeulen, D and Vermaak, K. (2009), Hydrocensus for Grootvlei Power Station. Institute of Groundwater Studies.

Vermeulen, D (2011), Groundwater Monitoring Report for Grootvlei Power Station, April 2011 Institute of Groundwater Studies.

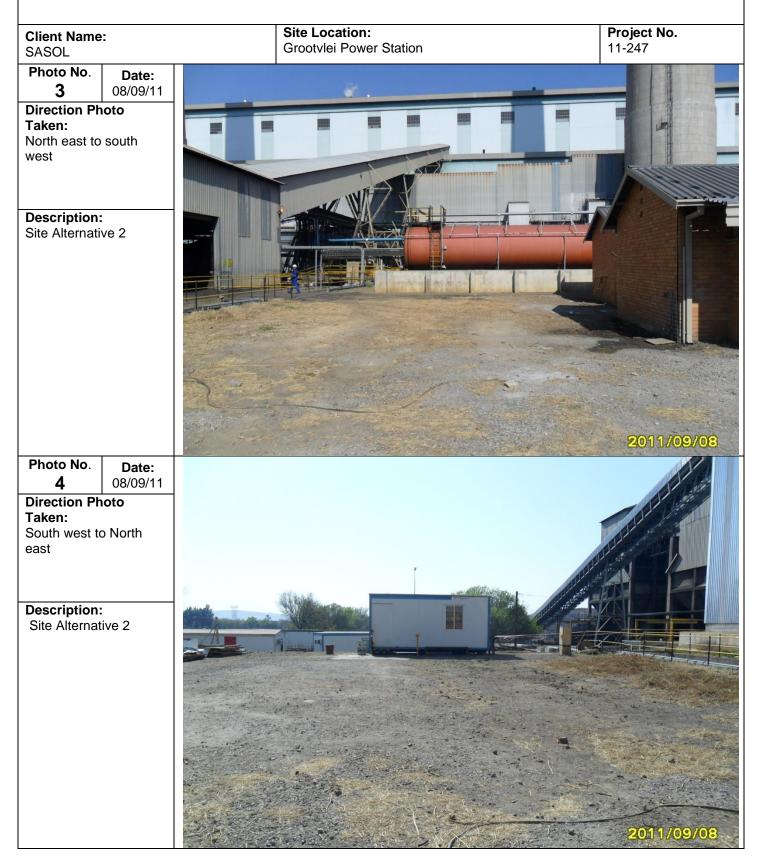
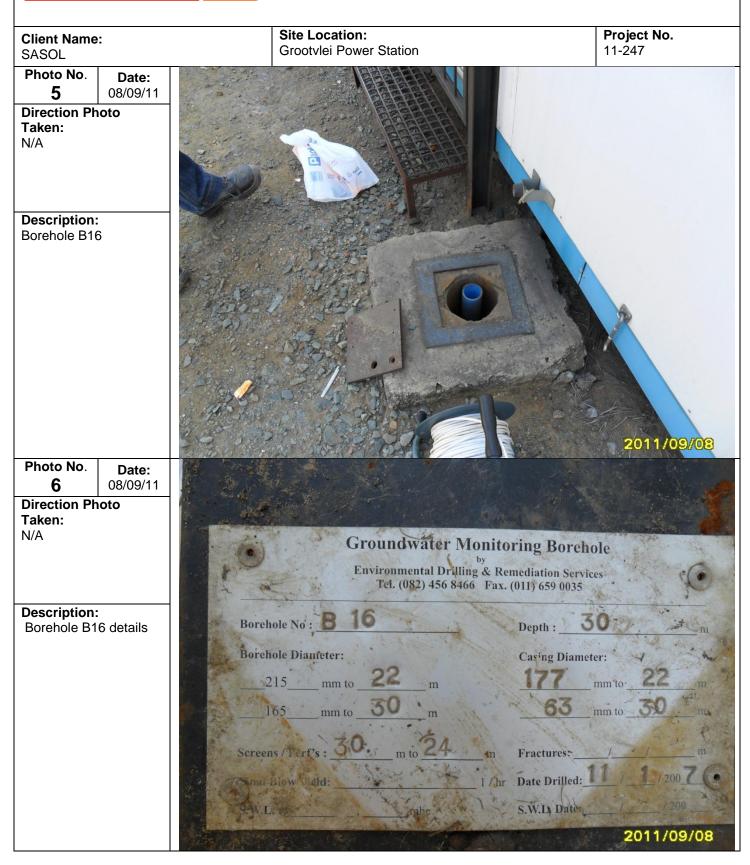
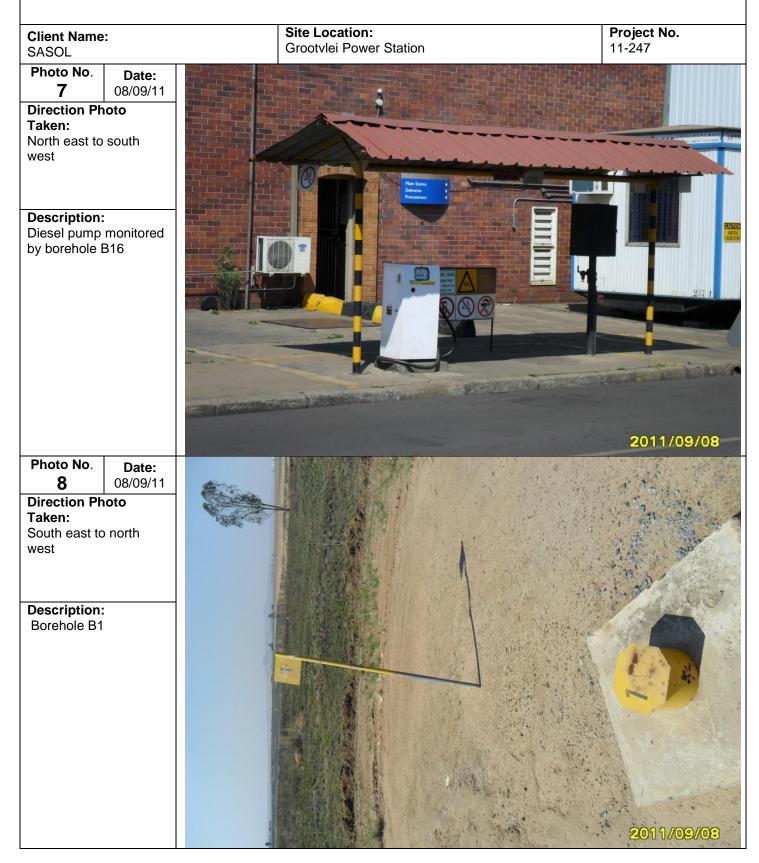
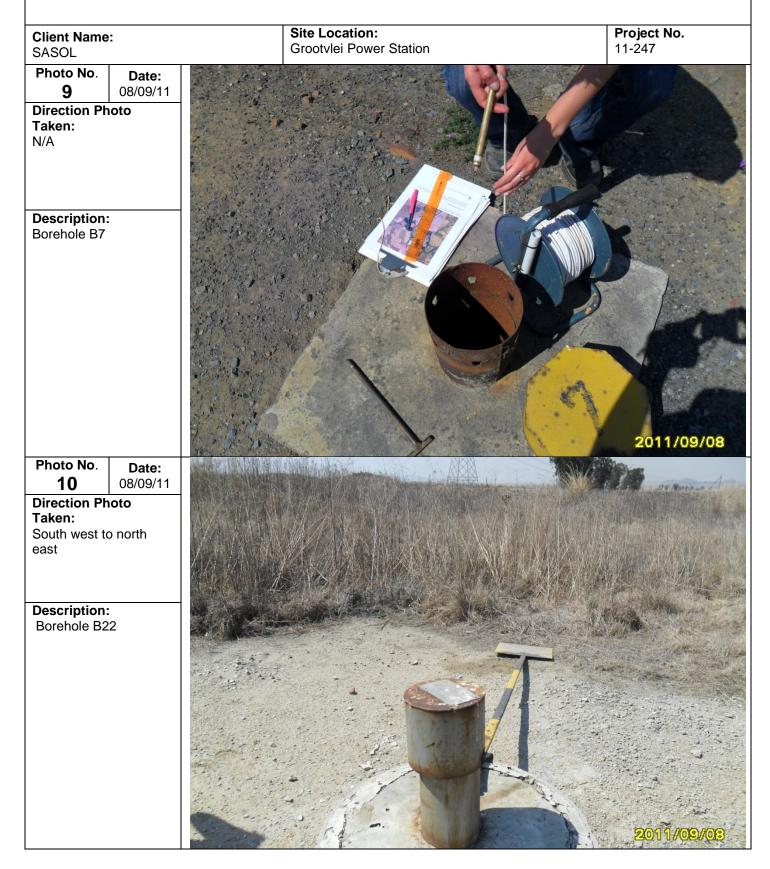

APPENDIX A

PHOTO LOG







APPENDIX B

LABORATORY RESULTS

P.O. Box 82124, Southdale, 2135, South Africa. TEL. (011) 496-2228 FAX (011) 496-2239

Ref No.	: 11/03107/L
Issued at	: Johannesburg
Date	: 27.09.2011
AA/ct	: Page 1 of 1

COMPANY NAME	:	GROUNDWATER CONSULTING SERVICES
ADDRESS	:	P.O. BOX 2597, RIVONIA, 2128
SUBJECT	:	ANALYSIS OF 3 SAMPLES OF WATER
MARKED	:	GROOTVLEI POWER STATION
INSTRUCTED BY	:	CLAUDIA BRITES
ORDER NO	:	11-491
RECEIVED ON	:	09.09.2011
LAB NO(S)	:	H00604- H00606
DATE ANALYSED	:	13.09.2011

Analysis on as received basis:

Test: TPH IR

Test Ref:: Based on EPA 418.1. (Using Florisil and Sodium Sulphate clean up for extract)

SAMPLE MARKS	TOTAL PETROLEUM HYDROCARBONS (mg/l)
B7	<1
B16	<1
B22	<1

1. All samples were analyzed and results reported by a subcontracted laboratory