TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROJECT INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EXECUTIVE SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS / ACRONYMS</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>GLOSSARY OF TERMS</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1</td>
<td>Project background</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2</td>
<td>Summary of the Environmental Authorisation process for the proposed NPS</td>
<td>1-3</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Original application for a single Nuclear Power Station</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Scoping Phase</td>
<td>1-5</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Impact assessment process</td>
<td>1-7</td>
</tr>
<tr>
<td>1.3</td>
<td>Scope of the Environmental Impact Report (EIR)</td>
<td>1-7</td>
</tr>
<tr>
<td>1.4</td>
<td>Way forward</td>
<td>1-9</td>
</tr>
<tr>
<td>2</td>
<td>DETAILS OF THE APPLICANT, THE ENVIRONMENTAL ASSESSMENT PRACTITIONER AND THE DECISION-MAKING AUTHORITY</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>Details of Applicant</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3</td>
<td>Details of the Environmental Assessment Practitioner</td>
<td>2-1</td>
</tr>
<tr>
<td>2.4</td>
<td>Details of Competent / Relevant Authority</td>
<td>2-2</td>
</tr>
<tr>
<td>3</td>
<td>PROJECT DESCRIPTION</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>3-1</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.2</td>
<td>Principles of nuclear electricity generation</td>
<td>3-1</td>
</tr>
<tr>
<td>3.3</td>
<td>Nuclear terminology</td>
<td>3-2</td>
</tr>
<tr>
<td>3.4</td>
<td>History of Nuclear Power Plants</td>
<td>3-2</td>
</tr>
<tr>
<td>3.5</td>
<td>Nuclear technology for the proposed power station (Nuclear-1)</td>
<td>3-3</td>
</tr>
<tr>
<td>3.6</td>
<td>Operation of a typical Nuclear Power Station</td>
<td>3-4</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Cooling circuits</td>
<td>3-4</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Reaction pressure vessel</td>
<td>3-5</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Reactor core and fuel</td>
<td>3-6</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Pressuriser</td>
<td>3-7</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Steam generator</td>
<td>3-7</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Turbine</td>
<td>3-7</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Condenser</td>
<td>3-7</td>
</tr>
<tr>
<td>3.6.8</td>
<td>Electricity generation</td>
<td>3-8</td>
</tr>
<tr>
<td>3.7</td>
<td>Timeframes for construction</td>
<td>3-8</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Facilities and activities required for construction to commence</td>
<td>3-8</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Access roads</td>
<td>3-8</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Security fencing around the property</td>
<td>3-9</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Delineation of the Owner Controlled Boundary</td>
<td>3-9</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Power supply to the site</td>
<td>3-9</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Site offices</td>
<td>3-9</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Groundwater monitoring</td>
<td>3-9</td>
</tr>
<tr>
<td>3.7.8</td>
<td>Development of townships for construction workers and vendor</td>
<td>3-10</td>
</tr>
<tr>
<td>3.8</td>
<td>Construction of the terrace and Nuclear Plant</td>
<td>3-10</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Dewatering</td>
<td>3-10</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Excavations</td>
<td>3-10</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Buildings</td>
<td>3-10</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Permanent terrace road and lay down storage area</td>
<td>3-10</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Installation of plant</td>
<td>3-11</td>
</tr>
<tr>
<td>3.9</td>
<td>Associated infrastructure</td>
<td>3-11</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Helipad</td>
<td>3-12</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Meteorological station</td>
<td>3-12</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Back up power supply</td>
<td>3-12</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Visitors centre</td>
<td>3-12</td>
</tr>
<tr>
<td>3.9.5</td>
<td>Water requirements</td>
<td>3-13</td>
</tr>
<tr>
<td>3.9.6</td>
<td>Sewage treatment plant</td>
<td>3-13</td>
</tr>
<tr>
<td>3.9.7</td>
<td>Permanent and temporary roads</td>
<td>3-14</td>
</tr>
<tr>
<td>3.9.8</td>
<td>Desalinisation plant</td>
<td>3-14</td>
</tr>
<tr>
<td>3.9.9</td>
<td>Demineralisation plant</td>
<td>3-14</td>
</tr>
<tr>
<td>3.9.10</td>
<td>Chlorination Plant</td>
<td>3-15</td>
</tr>
</tbody>
</table>
3.10 Marine works
3.10.1 Intake tunnels
3.10.2 Outfall tunnels
3.11 High voltage yard
3.12 Materials required for construction
3.12.1 Duynefontein
3.12.2 Bantamsklip
3.12.3 Thyspunt
3.13 Operational inputs and outputs
3.14 Construction waste
3.14.1 General construction waste
3.14.2 Non-radioactive hazardous construction waste
3.15 Operational waste
3.15.1 General operational waste
3.15.2 Non-radioactive, hazardous operational waste
3.15.3 Radioactive, hazardous operational waste
3.16 Transportation of solid radioactive waste
3.17 Gaseous emissions
3.18 Operational liquid effluent
3.18.1 Non-radioactive effluent
3.18.2 Radioactive effluent
3.19 Safety
3.19.1 General safety considerations
3.19.2 Nuclear emergency planning zones
3.19.3 Security zones
3.19.4 Occupational Exposure
3.19.5 Public exposure
3.20 Human resources
3.20.1 Construction personnel
3.20.2 Operational personnel
3.20.3 Accommodation
3.20.4 Transport
3.21 Decommissioning of the proposed NPS
3.21.1 Decommissioning strategies
3.21.2 Factors influencing the choice of decommissioning strategy
3.21.3 Preparation of a decommissioning plan for Nuclear-1

4 NEED AND DESIRABILITY FOR THE PROJECT

4.1 Introduction
<table>
<thead>
<tr>
<th>4.2</th>
<th>Balancing Electricity Supply and Demand</th>
<th>4-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Energy demand</td>
<td>4-3</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Energy supply</td>
<td>4-5</td>
</tr>
<tr>
<td>4.3</td>
<td>The proposed PWR Nuclear Power Station</td>
<td>4-8</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Pressurised Water Reactor (PWR) Technology</td>
<td>4-9</td>
</tr>
</tbody>
</table>

5 PROJECT ALTERNATIVES 5-1

5.1 Introduction 5-1

5.2 Location of the NPS 5-1
5.2.1	The outcome of the NSIP undertaken during the 1980s	5-2
5.2.2	The outcome of the Scoping Phase of the EIA process	5-2
5.2.3	DEA’s response to the proposed exclusion of Brazil and Schulpfontein	5-3
5.2.4	Sites identified for detailed assessment in the EIA Phase	5-4

5.3 Forms of power generation 5-6

5.4 Nuclear plant types 5-7

5.5 Layout of the nuclear plant 5-14

5.6 Modes of transport for the construction phase (Bantamsklip only) 5-18

5.7 Utilisation of abstracted groundwater 5-18

5.8 Fresh Water Supply 5-18

5.9 Management of brine 5-19

5.10 Intake of Sea Water 5-19

5.11 Outlet of water and chemical effluent 5-19

5.12 Management of spoil material 5-19

5.13 Access Routes to the Proposed Sites 5-20
5.2.5	Duynefontein	5-20
5.2.6	Bantamsklip	5-20
5.2.7	Thyspunt	5-20

5.14 Accommodation 5-23
5.2.8	Site Variations	5-24
5.2.9	Construction phase accommodation	5-24
5.2.10	Operational Phase Accommodation	5-25

5.15 No-Go (No development) alternative 5-25

6 PLANNING AND LEGISLATIVE CONTEXT 6-1

6.1 Introduction 6-1
6.2 The constitutional law dimension and supporting framework legislation regulating just administrative action, and access to information

6.2.1 The Constitution (1996)

6.3 Policy and planning context

6.3.1 The Nuclear Non-Proliferation Treaty and domestic implementation arrangements

6.3.2 Nuclear Energy Policy for the Republic of South Africa

6.3.3 White Paper on the Energy Policy of the Republic of South Africa

6.3.4 Radioactive Waste Management Policy and Strategy

6.3.5 Nuclear Governance

6.3.6 Integrated Energy Plan

6.3.7 National Integrated Resource Plan

6.3.8 Eskom's Integrated Strategic Electricity Planning

6.3.9 Energy Efficiency Strategy of the Republic of South Africa

6.3.11 National Response to South Africa’s Electricity Shortage

6.3.12 National Nuclear Disaster Management Plan

6.3.13 National Spatial Biodiversity Assessment (NSBA)

6.3.14 National Biodiversity Strategy Action Plan (NBSAP)

6.3.15 Draft National Strategy for Sustainable Development

6.3.16 Integrated Development Plans (IDP)

6.4 Legislative Context

6.4.2 The National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004)

6.4.4 The Water Services Act, 1997 (Act No. 108 of 1997)

6.4.5 The National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004)

6.4.6 National Environmental Management: Protected Areas Act, 2003 (Act No. 57 of 2003) (NEMPAA)

6.4.7 Sea-Shore Act, 1935 (Act No. 21 of 1935)

6.4.8 The Maritime Zones Act, 1994 (Act No. 15 of 1994)

6.4.9 National Environmental Management: Coastal Management Act, 2008 (Act No. 24 of 2008)

6.4.11 The Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983)

6.4.12 National Heritage Resources Act, 1999 (Act No. 25 of 1999)

6.4.14 Transportation of Dangerous Goods and Substances
6.4.15 Non-Proliferation of Weapons of Mass Destruction Act, 1993 (Act No. 87 of 1993) 6-45
6.4.16 The National Key Points Act 6-45
6.4.17 Nuclear Energy Act, 1999 (Act No. 46 of 1999) 6-46
6.4.18 National Nuclear Regulator Act, 1999 (Act No. 47 of 1999) 6-47
6.4.19 Regulations on the development surrounding any nuclear installation to ensure the effective implementation of any Nuclear Emergency Plan 6-50
6.4.20 Electricity Act, 1987 (Act No. 41 of 1987) 6-51
6.4.21 Electricity Regulation Act, 2006 (Act No. 4 of 2006) 6-51
6.4.23 The Mineral and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002) 6-52
6.4.24 Petroleum Products Act, 1977 (Act No. 120 of 1977) 6-53
6.4.26 Municipal Finance Management Act, 2003 (Act No. 56 of 2003) 6-54
6.4.27 The Land Use Planning Ordinance, 1985 (Ordinance No. 15 of 1985) 6-54
6.4.28 The Western Cape Provincial Spatial Development Framework (WCPSDF) 6-55

6.5 Consistency with National Environmental Management Act (NEMA) Principles 6-57

6.6 Conclusion 6-64

7 EIA METHODOLOGY 7-1

7.1 Public Participation Process 7-3
7.2 Objectives of public participation in an EIA 7-3
7.3 Public participation during the Scoping Phase 7-4
7.3.1 Identification of Interested and Affected Parties 7-4
7.3.2 Registration of I&APs 7-5
7.3.3 Announcement of opportunity to become involved 7-5
7.3.4 Obtaining comment – Scoping Phase 7-12
7.3.5 Issues and Response Report 7-12
7.3.6 Draft Scoping Report availability and Public Review 7-13
7.4 Summary of issues raised 7-19
7.5 Public Participation during the Impact Assessment Phase 7-20
7.5.1 Public review of the Draft EIR and EMP 7-20
7.5.2 Announcing opportunity to comment on the findings of the EIA 7-20
7.5.3 Public meetings 7-20
7.5.4 Distribution of reports for public comment 7-21
7.5.5 Final EIR and accompanying reports 7-22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.6</td>
<td>Notification of authority decision</td>
<td>7-22</td>
</tr>
<tr>
<td>7.6</td>
<td>Impact Assessment</td>
<td>7-22</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Introduction</td>
<td>7-22</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Plan of Study for EIA</td>
<td>7-23</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Specialist Studies</td>
<td>7-23</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Specialist Reviews</td>
<td>7-26</td>
</tr>
<tr>
<td>7.7</td>
<td>Impact Assessment Methodology</td>
<td>7-28</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Impact Assessment Rating Criteria</td>
<td>7-28</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Determination of preferred alternatives</td>
<td>7-33</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Public review of the Draft EIR and EMP</td>
<td>7-33</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Authority review</td>
<td>7-33</td>
</tr>
<tr>
<td>7.7.5</td>
<td>Authorisation</td>
<td>7-34</td>
</tr>
<tr>
<td>8</td>
<td>DESCRIPTION OF THE EXISTING ENVIRONMENT</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1</td>
<td>Physical environment: Duynefontein</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Geology</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Seismological risk</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Geotechnical suitability</td>
<td>8-4</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Dune geomorphology</td>
<td>8-4</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Hydrology</td>
<td>8-4</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Geohydrology</td>
<td>8-5</td>
</tr>
<tr>
<td>8.1.7</td>
<td>Freshwater supply</td>
<td>8-7</td>
</tr>
<tr>
<td>8.1.8</td>
<td>Oceanography</td>
<td>8-7</td>
</tr>
<tr>
<td>8.2</td>
<td>Physical environment: Bantamsklip</td>
<td>8-10</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Geology</td>
<td>8-10</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Seismological risk</td>
<td>8-10</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Geotechnical suitability</td>
<td>8-13</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Dune geomorphology</td>
<td>8-13</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Hydrology</td>
<td>8-13</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Geo-hydrology</td>
<td>8-14</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Freshwater supply</td>
<td>8-15</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Oceanography</td>
<td>8-15</td>
</tr>
<tr>
<td>8.3</td>
<td>Physical environment: Thyspunt</td>
<td>8-18</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Geology</td>
<td>8-18</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Seismological risk</td>
<td>8-18</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Geotechnical suitability</td>
<td>8-18</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Dune geomorphology</td>
<td>8-21</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Hydrology</td>
<td>8-22</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Geo-hydrology</td>
<td>8-24</td>
</tr>
<tr>
<td>8.3.7</td>
<td>Freshwater supply</td>
<td>8-24</td>
</tr>
</tbody>
</table>
8.9 Socio-economic environment – Thyspunt 8-130
8.9.1 Economic environment 8-130
8.9.2 Demographic statistics 8-134
8.9.3 Visual character 8-134
8.9.4 Heritage resources and archaeology 8-137
8.9.5 Agricultural practices 8-143
8.9.6 Tourism industry 8-152
8.9.7 Noise 8-155
8.9.8 Transport 8-155

9 ENVIRONMENTAL IMPACT ANALYSIS 9-1

9.1 Introduction 9-1

9.2 Assumptions and limitations 9-2
9.2.1 Limitations 9-2
9.2.2 Assumptions 9-3

9.3 Geotechnical suitability of the sites 9-4
9.3.1 Duynefontein 9-4
9.3.2 Bantamsklip 9-4
9.3.3 Thyspunt 9-4
9.3.4 Conclusion 9-5

9.4 Seismic suitability of the sites 9-8
9.4.1 Objectives 9-8
9.4.2 Methodology 9-9
9.4.3 Duynefontein 9-10
9.4.4 Bantamsklip 9-11
9.4.5 Thyspunt 9-11
9.4.6 Cumulative impacts 9-12
9.4.7 Conclusion 9-12
9.4.8 Recommendations 9-13

9.5 Geological suitability of the sites 9-17
9.5.1 Duynefontein, Bantamsklip and Thyspunt 9-17
9.5.2 Conclusion 9-19

9.6 Hydrological suitability of the sites 9-21
9.6.1 Duynefontein 9-21
9.6.2 Bantamsklip 9-21
9.6.3 Thyspunt 9-22
9.6.4 Mitigation 9-22
9.6.5 Conclusions 9-23

9.7 Suitability of the sites in terms of freshwater supply 9-27
9.7.1 Duynefontein 9-27
<table>
<thead>
<tr>
<th>Section</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7.2</td>
<td>Bantamsklip</td>
<td>9-27</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Thyspunt</td>
<td>9-28</td>
</tr>
<tr>
<td>9.7.4</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>9.7.5</td>
<td>Mitigation</td>
<td>9-28</td>
</tr>
<tr>
<td>9.7.6</td>
<td>Conclusion</td>
<td>9-29</td>
</tr>
<tr>
<td>9.8</td>
<td>Impacts on flora and ecosystem functioning</td>
<td>9-32</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Duynefontein</td>
<td>9-32</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Bantamsklip</td>
<td>9-34</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Thyspunt</td>
<td>9-35</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Conclusion</td>
<td>9-37</td>
</tr>
<tr>
<td>9.9</td>
<td>Impacts on dune geomorphology</td>
<td>9-49</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Duynefontein</td>
<td>9-49</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Bantamsklip</td>
<td>9-50</td>
</tr>
<tr>
<td>9.9.3</td>
<td>Thyspunt</td>
<td>9-50</td>
</tr>
<tr>
<td>9.9.4</td>
<td>Conclusion</td>
<td>9-53</td>
</tr>
<tr>
<td>9.10</td>
<td>Impacts on wetlands</td>
<td>9-67</td>
</tr>
<tr>
<td>9.10.1</td>
<td>Duynefontein</td>
<td>9-67</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Bantamsklip</td>
<td>9-67</td>
</tr>
<tr>
<td>9.10.3</td>
<td>Thyspunt</td>
<td>9-68</td>
</tr>
<tr>
<td>9.10.4</td>
<td>Mitigation</td>
<td>9-69</td>
</tr>
<tr>
<td>9.10.5</td>
<td>Conclusion</td>
<td>9-71</td>
</tr>
<tr>
<td>9.11</td>
<td>Impacts on terrestrial vertebrate fauna</td>
<td>9-83</td>
</tr>
<tr>
<td>9.11.1</td>
<td>Duynefontein</td>
<td>9-83</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Bantamsklip</td>
<td>9-86</td>
</tr>
<tr>
<td>9.11.3</td>
<td>Thyspunt</td>
<td>9-88</td>
</tr>
<tr>
<td>9.11.4</td>
<td>Impact on decommissioning</td>
<td>9-90</td>
</tr>
<tr>
<td>9.11.5</td>
<td>Mitigation</td>
<td>9-91</td>
</tr>
<tr>
<td>9.11.6</td>
<td>Conclusions</td>
<td>9-93</td>
</tr>
<tr>
<td>9.12</td>
<td>Impacts on invertebrate fauna</td>
<td>9-105</td>
</tr>
<tr>
<td>9.12.1</td>
<td>Construction impacts</td>
<td>9-105</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Operational impacts</td>
<td>9-107</td>
</tr>
<tr>
<td>9.12.3</td>
<td>Decommissioning impacts</td>
<td>9-108</td>
</tr>
<tr>
<td>9.12.4</td>
<td>Cumulative impacts</td>
<td>9-109</td>
</tr>
<tr>
<td>9.12.5</td>
<td>Impacts of climate change</td>
<td>9-110</td>
</tr>
<tr>
<td>9.12.6</td>
<td>Positive contribution to conservation by protection of owner-controlled property and prevention of further development within an exclusion zone</td>
<td>9-110</td>
</tr>
<tr>
<td>9.12.7</td>
<td>Conclusion</td>
<td>9-111</td>
</tr>
<tr>
<td>9.13</td>
<td>Impacts on air quality</td>
<td>9-122</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>9.13.1</td>
<td>Construction impacts</td>
<td>9-122</td>
</tr>
<tr>
<td>9.13.2</td>
<td>Operational impacts</td>
<td>9-122</td>
</tr>
<tr>
<td>9.13.3</td>
<td>Impacts during decommissioning</td>
<td>9-123</td>
</tr>
<tr>
<td>9.13.4</td>
<td>Duynefontein</td>
<td>9-124</td>
</tr>
<tr>
<td>9.13.5</td>
<td>Bantamsklip</td>
<td>9-124</td>
</tr>
<tr>
<td>9.13.6</td>
<td>Thyspunt</td>
<td>9-125</td>
</tr>
<tr>
<td>9.13.7</td>
<td>Mitigation</td>
<td>9-125</td>
</tr>
<tr>
<td>9.13.8</td>
<td>Conclusion</td>
<td>9-126</td>
</tr>
<tr>
<td>9.14</td>
<td>Impacts on oceanographic conditions</td>
<td>9-138</td>
</tr>
<tr>
<td>9.14.2</td>
<td>Bantamsklip</td>
<td>9-139</td>
</tr>
<tr>
<td>9.14.3</td>
<td>Thyspunt</td>
<td>9-141</td>
</tr>
<tr>
<td>9.14.4</td>
<td>Mitigation</td>
<td>9-142</td>
</tr>
<tr>
<td>9.14.5</td>
<td>Conclusion</td>
<td>9-143</td>
</tr>
<tr>
<td>9.15</td>
<td>Impacts on marine ecology</td>
<td>9-148</td>
</tr>
<tr>
<td>9.15.1</td>
<td>Duynefontein</td>
<td>9-148</td>
</tr>
<tr>
<td>9.15.2</td>
<td>Bantamsklip</td>
<td>9-149</td>
</tr>
<tr>
<td>9.15.3</td>
<td>Thyspunt</td>
<td>9-150</td>
</tr>
<tr>
<td>9.15.4</td>
<td>The no-go alternative</td>
<td>9-150</td>
</tr>
<tr>
<td>9.15.5</td>
<td>Mitigation</td>
<td>9-150</td>
</tr>
<tr>
<td>9.15.6</td>
<td>Conclusion</td>
<td>9-152</td>
</tr>
<tr>
<td>9.16</td>
<td>Impacts on heritage resources</td>
<td>9-155</td>
</tr>
<tr>
<td>9.16.1</td>
<td>Duynefontein</td>
<td>9-156</td>
</tr>
<tr>
<td>9.16.2</td>
<td>Bantamsklip</td>
<td>9-156</td>
</tr>
<tr>
<td>9.16.3</td>
<td>Thyspunt</td>
<td>9-156</td>
</tr>
<tr>
<td>9.16.4</td>
<td>Cumulative impacts</td>
<td>9-156</td>
</tr>
<tr>
<td>9.16.5</td>
<td>Impacts of the no-go alternative</td>
<td>9-157</td>
</tr>
<tr>
<td>9.16.6</td>
<td>Mitigation</td>
<td>9-157</td>
</tr>
<tr>
<td>9.16.7</td>
<td>Conclusion</td>
<td>9-157</td>
</tr>
<tr>
<td>9.17</td>
<td>Noise impacts</td>
<td>9-161</td>
</tr>
<tr>
<td>9.17.1</td>
<td>Duynefontein</td>
<td>9-161</td>
</tr>
<tr>
<td>9.17.2</td>
<td>Bantamsklip</td>
<td>9-162</td>
</tr>
<tr>
<td>9.17.3</td>
<td>Thyspunt</td>
<td>9-163</td>
</tr>
<tr>
<td>9.17.4</td>
<td>Mitigation</td>
<td>9-164</td>
</tr>
<tr>
<td>9.17.5</td>
<td>Conclusion</td>
<td>9-164</td>
</tr>
<tr>
<td>9.18</td>
<td>Impacts on tourism</td>
<td>9-168</td>
</tr>
<tr>
<td>9.18.1</td>
<td>Duynefontein</td>
<td>9-168</td>
</tr>
<tr>
<td>9.18.2</td>
<td>Bantamsklip</td>
<td>9-169</td>
</tr>
<tr>
<td>9.18.3</td>
<td>Thyspunt</td>
<td>9-171</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>9.18.4</td>
<td>Mitigation</td>
<td>9-172</td>
</tr>
<tr>
<td>9.18.5</td>
<td>Conclusion</td>
<td>9-172</td>
</tr>
<tr>
<td>9.19</td>
<td>Impacts on agriculture</td>
<td>9-177</td>
</tr>
<tr>
<td>9.19.1</td>
<td>Duynefontein</td>
<td>9-179</td>
</tr>
<tr>
<td>9.19.2</td>
<td>Bantamsklip</td>
<td>9-179</td>
</tr>
<tr>
<td>9.19.3</td>
<td>Thyspunt</td>
<td>9-179</td>
</tr>
<tr>
<td>9.19.4</td>
<td>Mitigation</td>
<td>9-180</td>
</tr>
<tr>
<td>9.19.5</td>
<td>Conclusions</td>
<td>9-180</td>
</tr>
<tr>
<td>9.20</td>
<td>Economic impacts</td>
<td>9-184</td>
</tr>
<tr>
<td>9.20.1</td>
<td>Cost-effectiveness comparison of the three sites</td>
<td>9-184</td>
</tr>
<tr>
<td>9.20.2</td>
<td>Macro-economic analysis</td>
<td>9-186</td>
</tr>
<tr>
<td>9.20.3</td>
<td>No-go alternative</td>
<td>9-188</td>
</tr>
<tr>
<td>9.20.4</td>
<td>Conclusion</td>
<td>9-188</td>
</tr>
<tr>
<td>9.21</td>
<td>Impacts on emergency response</td>
<td>9-192</td>
</tr>
<tr>
<td>9.21.1</td>
<td>Duynefontein</td>
<td>9-192</td>
</tr>
<tr>
<td>9.21.2</td>
<td>Bantamsklip</td>
<td>9-193</td>
</tr>
<tr>
<td>9.21.3</td>
<td>Thyspunt</td>
<td>9-194</td>
</tr>
<tr>
<td>9.21.4</td>
<td>Conclusion</td>
<td>9-195</td>
</tr>
<tr>
<td>9.22</td>
<td>Visual impacts</td>
<td>9-199</td>
</tr>
<tr>
<td>9.22.1</td>
<td>Duynefontein</td>
<td>9-201</td>
</tr>
<tr>
<td>9.22.2</td>
<td>Bantamsklip</td>
<td>9-201</td>
</tr>
<tr>
<td>9.22.3</td>
<td>Thyspunt</td>
<td>9-201</td>
</tr>
<tr>
<td>9.22.4</td>
<td>Cumulative impacts of wind farm sites</td>
<td>9-202</td>
</tr>
<tr>
<td>9.22.5</td>
<td>The no-go option</td>
<td>9-203</td>
</tr>
<tr>
<td>9.22.6</td>
<td>Impacts on lighthouses</td>
<td>9-204</td>
</tr>
<tr>
<td>9.22.7</td>
<td>Mitigation</td>
<td>9-204</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>9-206</td>
</tr>
<tr>
<td>9.23</td>
<td>Social impacts</td>
<td>9-216</td>
</tr>
<tr>
<td>9.23.1</td>
<td>Generic social impacts</td>
<td>9-216</td>
</tr>
<tr>
<td>9.23.2</td>
<td>Duynefontein</td>
<td>9-219</td>
</tr>
<tr>
<td>9.23.3</td>
<td>Bantamsklip</td>
<td>9-219</td>
</tr>
<tr>
<td>9.23.4</td>
<td>Thyspunt</td>
<td>9-219</td>
</tr>
<tr>
<td>9.23.5</td>
<td>Conclusion</td>
<td>9-220</td>
</tr>
<tr>
<td>9.24</td>
<td>Suitability of transport systems</td>
<td>9-225</td>
</tr>
<tr>
<td>9.24.1</td>
<td>Duynefontein</td>
<td>9-226</td>
</tr>
<tr>
<td>9.24.2</td>
<td>Bantamsklip</td>
<td>9-227</td>
</tr>
<tr>
<td>9.24.3</td>
<td>Bantamsklip</td>
<td>9-229</td>
</tr>
<tr>
<td>9.24.4</td>
<td>Conclusion</td>
<td>9-231</td>
</tr>
<tr>
<td>9.25</td>
<td>Risks to human health</td>
<td>9-236</td>
</tr>
<tr>
<td>9.25.1</td>
<td>Construction phase</td>
<td>9-236</td>
</tr>
<tr>
<td>Section</td>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>9.25.2</td>
<td>Operational phase</td>
<td>9-236</td>
</tr>
<tr>
<td>9.25.3</td>
<td>Decommissioning</td>
<td>9-236</td>
</tr>
<tr>
<td>9.25.4</td>
<td>The no-go scenario</td>
<td>9-236</td>
</tr>
<tr>
<td>9.25.5</td>
<td>Impact Assessment</td>
<td>9-237</td>
</tr>
<tr>
<td>9.25.6</td>
<td>Mitigation</td>
<td>9-237</td>
</tr>
<tr>
<td>9.25.7</td>
<td>Conclusion</td>
<td>9-238</td>
</tr>
<tr>
<td>9.26</td>
<td>Impacts of waste</td>
<td>9-239</td>
</tr>
<tr>
<td>9.26.1</td>
<td>Impacts of construction phase waste</td>
<td>9-239</td>
</tr>
<tr>
<td>9.26.2</td>
<td>Impacts of non-radioactive construction waste</td>
<td>9-239</td>
</tr>
<tr>
<td>9.26.3</td>
<td>Management of General and Hazardous, non-radioactive,</td>
<td>9-239</td>
</tr>
<tr>
<td></td>
<td>construction waste</td>
<td></td>
</tr>
<tr>
<td>9.26.4</td>
<td>Management of radioactive (nuclear) waste</td>
<td>9-240</td>
</tr>
<tr>
<td>9.26.6</td>
<td>(b) Management of High-Level Radioactive Waste</td>
<td>9-240</td>
</tr>
<tr>
<td>9.26.7</td>
<td>Mitigation</td>
<td>9-241</td>
</tr>
<tr>
<td>9.26.8</td>
<td>Conclusion</td>
<td>9-241</td>
</tr>
<tr>
<td>9.27</td>
<td>Transmission integration factors</td>
<td>9-244</td>
</tr>
<tr>
<td>9.28</td>
<td>Evaluation of alternatives</td>
<td>9-246</td>
</tr>
<tr>
<td>9.28.1</td>
<td>Selection of the preferred site</td>
<td>9-246</td>
</tr>
<tr>
<td>9.28.2</td>
<td>Access roads to the Thyspunt site</td>
<td>9-261</td>
</tr>
<tr>
<td>9.28.3</td>
<td>Forms of power generation</td>
<td>9-267</td>
</tr>
<tr>
<td>9.28.4</td>
<td>Modes of transport (Bantamsklip site only)</td>
<td>9-268</td>
</tr>
<tr>
<td>9.28.5</td>
<td>Fresh water supply</td>
<td>9-268</td>
</tr>
<tr>
<td>9.28.6</td>
<td>Utilisation of abstracted groundwater</td>
<td>9-270</td>
</tr>
<tr>
<td>9.28.7</td>
<td>Disposal of brine</td>
<td>9-270</td>
</tr>
<tr>
<td>9.28.8</td>
<td>Intake of seawater</td>
<td>9-271</td>
</tr>
<tr>
<td>9.28.9</td>
<td>Outlet of water and chemical effluent</td>
<td>9-271</td>
</tr>
<tr>
<td>9.28.10</td>
<td>Management of spoil material</td>
<td>9-272</td>
</tr>
<tr>
<td>9.28.11</td>
<td>Nuclear plant types</td>
<td>9-273</td>
</tr>
<tr>
<td>9.28.12</td>
<td>‘No go’ (No development alternative)</td>
<td>9-273</td>
</tr>
<tr>
<td>9.28.13</td>
<td>Position of the nuclear power station on the sites</td>
<td>9-274</td>
</tr>
</tbody>
</table>

10

CONCLUSIONS AND RECOMMENDATIONS

9-ENVIRONMENTAL IMPACT STATEMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Need for the project</td>
<td>10-1</td>
</tr>
<tr>
<td>10.2</td>
<td>Key technical considerations</td>
<td>10-1</td>
</tr>
<tr>
<td>10.3</td>
<td>Key environmental considerations and potential impacts</td>
<td>10-2</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Geology and geological risk</td>
<td>10-2</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Seismological risk</td>
<td>10-2</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Geotechnical suitability</td>
<td>10-2</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Hydrological conditions</td>
<td>10-3</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Freshwater supply</td>
<td>10-3</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Impacts on dune geomorphology</td>
<td>10-3</td>
</tr>
<tr>
<td>10.3.7</td>
<td>Air quality impacts</td>
<td>10-3</td>
</tr>
<tr>
<td>10.1</td>
<td>Impact on flora</td>
<td>10-4</td>
</tr>
<tr>
<td>10.3.8</td>
<td>Impact on wetlands</td>
<td>10-4</td>
</tr>
<tr>
<td>10.3.9</td>
<td>Terrestrial vertebrate impacts</td>
<td>10-4</td>
</tr>
<tr>
<td>10.3.10</td>
<td>Terrestrial invertebrate impacts</td>
<td>10-5</td>
</tr>
<tr>
<td>10.3.11</td>
<td>Impacts on marine biology</td>
<td>10-5</td>
</tr>
<tr>
<td>10.3.12</td>
<td>Oceanographic impacts</td>
<td>10-5</td>
</tr>
<tr>
<td>10.3.13</td>
<td>Economic impacts</td>
<td>10-5</td>
</tr>
<tr>
<td>10.3.14</td>
<td>Social impacts</td>
<td>10-6</td>
</tr>
<tr>
<td>10.3.15</td>
<td>Visual impacts</td>
<td>10-6</td>
</tr>
<tr>
<td>10.3.16</td>
<td>Heritage impacts</td>
<td>10-6</td>
</tr>
<tr>
<td>10.3.17</td>
<td>Agricultural impacts</td>
<td>10-6</td>
</tr>
<tr>
<td>10.3.18</td>
<td>Tourism impacts</td>
<td>10-7</td>
</tr>
<tr>
<td>10.3.19</td>
<td>Noise impacts</td>
<td>10-7</td>
</tr>
<tr>
<td>10.3.20</td>
<td>Impact on transportation systems</td>
<td>10-7</td>
</tr>
<tr>
<td>10.4</td>
<td>Assessment of alternatives</td>
<td>10-8</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusions and recommendations</td>
<td>10-8</td>
</tr>
<tr>
<td>10.6</td>
<td>Way forward</td>
<td>10-13</td>
</tr>
<tr>
<td>11</td>
<td>REFERENCES</td>
<td>11-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>EIA Process as prescribed by the NEMA EIA Regulations ((R) refers to Regulation numbers)</td>
<td>1-3</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Key features of a Pressurised Water Reactor</td>
<td>3-4</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Simplified diagrammatic depiction of a Pressurised Water Reactor (PWR) (Ragheb, 2008)</td>
<td>3-5</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>Simplified diagrammatic depiction of an NPS</td>
<td>3-6</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>Schematic depiction of the desalination and demineralisation plants</td>
<td>3-15</td>
</tr>
<tr>
<td>Figure 3-5</td>
<td>Low Level (steel) and Intermediate Level (concrete) Radioactive Waste drums at Vaalputs.</td>
<td>3-23</td>
</tr>
<tr>
<td>Figure 3-6</td>
<td>Disposal of Low Level Radioactive Waste steel drums at Vaalputs, showing the process of placement of the drums</td>
<td>3-23</td>
</tr>
<tr>
<td>Figure 3-7</td>
<td>High level waste stored on site at Koeberg NPS</td>
<td>3-24</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Total energy production in South Africa, categorised by fuel, since 1971 (http://www.iea.org/statist/index.htm accessed on 8 October 2009)</td>
<td>4-1</td>
</tr>
<tr>
<td>Figure 4-2</td>
<td>Energy supply in South Africa from 2000 to 2008 (Eskom unpublished)</td>
<td>4-2</td>
</tr>
<tr>
<td>Figure 4-3</td>
<td>Projected electricity requirements for South Africa to 2025 (Eskom, 2008)</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 4-4</td>
<td>Capacity requirement 2009 – 2020 (Eskom, 2009)</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 4-5</td>
<td>Net reserve margin (Eskom, 2008)</td>
<td>4-5</td>
</tr>
<tr>
<td>Figure 4-6</td>
<td>Daily electricity demand patterns (Eskom, 2009)</td>
<td>4-6</td>
</tr>
<tr>
<td>Figure 4-7</td>
<td>Comparison of life-cycle greenhouse gas emissions of different electricity generation systems (Dones et al. 2003)</td>
<td>4-8</td>
</tr>
<tr>
<td>Figure 5-1</td>
<td>Three sites deemed suitable for further consideration in the EIA Phase of the EIA process</td>
<td>5-4</td>
</tr>
<tr>
<td>Figure 5-2</td>
<td>View of Duynefontein looking east towards the coast, with the existing Koeberg NPS visible in the left background</td>
<td>5-5</td>
</tr>
<tr>
<td>Figure 5-3</td>
<td>View of the eastern portion of Bantamsklip</td>
<td>5-5</td>
</tr>
<tr>
<td>Figure 5-4</td>
<td>View of the coastal portion of Thyspunt looking east</td>
<td>5-6</td>
</tr>
<tr>
<td>Figure 5-5</td>
<td>Nuclear-1 EIA corridor at Duynefontein</td>
<td>5-15</td>
</tr>
<tr>
<td>Figure 5-6</td>
<td>Nuclear-1 EIA corridor at Bantamsklip</td>
<td>5-16</td>
</tr>
<tr>
<td>Figure 5-7</td>
<td>Nuclear-1 EIA corridor at Thyspunt</td>
<td>5-17</td>
</tr>
<tr>
<td>Figure 5-8</td>
<td>Alternative routes to Thyspunt (Not to scale)</td>
<td>5-22</td>
</tr>
<tr>
<td>Figure 6-1</td>
<td>Final energy demand – target outcome to 2015 (DME, 2005)</td>
<td>6-17</td>
</tr>
<tr>
<td>Figure 6-2</td>
<td>Capacity expansion programme (Source: DME, 2008)</td>
<td>6-19</td>
</tr>
<tr>
<td>Figure 7-1</td>
<td>Flowchart of the Scoping and EIA process, indicating the current stage in the process</td>
<td>7-2</td>
</tr>
<tr>
<td>Figure 7-2</td>
<td>On site Notice at Duynefontein</td>
<td>7-7</td>
</tr>
<tr>
<td>Figure 7-3</td>
<td>On site Notice at Bantamsklip</td>
<td>7-8</td>
</tr>
</tbody>
</table>
Figure 7-4: On site Notice at Brazil, Northern Cape 7-8
Figure 7-5: On site Notice at Schulpfontein, Northern Cape 7-9
Figure 7-6: On Site Notice at Thyspunt site, Eastern Cape 7-9
Figure 7-7: Article in The Mercury, 29 May 2007 7-10
Figure 7-8: Article in The Herald, 6 March 2008 7-11
Figure 7-9: Public Meeting at Duynefontein 7-16
Figure 7-10: Public Meeting at Gansbaai, Southern Cape 7-16
Figure 7-11: Public Open Day at Pearly Beach 7-17
Figure 7-12: Discussion session with Hondeklipbaai residents at a Public Open Day 7-17
Figure 8-1: Geological map of Duynefontein and environs 8-2
Figure 8-2: Legend for the Duynefontein geological map 8-3
Figure 8-3: Atlantis corridor dunefield in relation to the Duynefontein site 8-5
Figure 8-4: Dune varieties in the Atlantis corridor dunefield at Duynefontein 8-6
Figure 8-5: Profile locations and bathymetry for Bantamsklip 8-9
Figure 8-6: Geological map of Bantamsklip and environs 8-11
Figure 8-7: Legend for the Bantamsklip geological map 8-12
Figure 8-8: Dune varieties at Bantamsklip 8-14
Figure 8-9: Profile locations and bathymetry for Bantamsklip 8-17
Figure 8-10: Geological map of Thyspunt and environs 8-20
Figure 8-11: Legend for the Thyspunt geological map 8-21
Figure 8-12: Illustration of the St. Francis headland bypass dunefield system 8-23
Figure 8-13: Profile locations and bathymetry for Thyspunt 8-26
Figure 8-14: Land use in the vicinity of the Duynefontein site 8-28
Figure 8-15: Population density in the vicinity of the Duynefontein site 8-29
Figure 8-16: Shaded relief profile of the Duynefontein study area 8-30
Figure 8-17: Period, day- and night-time wind roses for Duynefontein 8-31
Figure 8-18: Recorded monthly mean sulfur dioxide levels in Table View. The red line indicates the linear trend 8-34
Figure 8-19: Recorded monthly mean PM10 particulate matter levels in Table View. The red line indicates the linear trend 8-34
Figure 8-20: Recorded monthly nitrogen dioxide levels in Table View. The red line indicates the linear trend 8-35
Figure 8-21: Predicted maximum annual inhalation and immersion radiation dose (µSv) for Koeberg 8-36
Figure 8-22: Broad plant communities of the Duynefontein site 8-37
Figure 8-23: A view of the affected environment at the Duynefontein site, looking south towards Koeberg Nuclear Power Station 8-37
Figure 8-24: Duynefontein wetlands map 8-39
Figure 8-25: The Blouberg Dwarf Burrowing Skink Scelotes montispectus, a recently described and potentially threatened species found at Duynefontein (Photo: M. Burger) 8-40
Figure 8-26: Duynefontein faunal sensitivity map 8-42
Figure 8-27: An undescribed Tetramorium ant species found at Duynefontein 8-43
Figure 8-28: Land use in the vicinity of the Bantamsklip site 8-47
Figure 8-29: Population density in the vicinity of the Bantamsklip site 8-47
Figure 8-30: Shaded relief profile of the Bantamsklip study area 8-48
Figure 8-31: Comparison of wind roses between Hermanus and at Bantamsklip 8-49
Figure 8-32: Plant communities of Bantamsklip 8-51
Figure 8-33: View of eastern portion of Bantamsklip 8-51
Figure 8-34: Wetland communities at Bantamsklip 8-53
Figure 8-35: The Critically Endangered Micro Frog found on Hagelkraal on the northern portion of the site (unaffected by the NPS footprint) 8-55
Figure 8-36: Faunal sensitivity map for Bantamsklip 8-57
Figure 8-37: A possibly undescribed Spiroctenus trapdoor spider found on Bantamsklip, with burrows shown on the right 8-59
Figure 8-38: Areas of highest density of the undescribed Spiroctenus spider at Bantamsklip 8-59
Figure 8-39: A pocket beach at Bantamsklip 8-60
Figure 8-40: Land use in the vicinity of the Thyspunt site 8-63
Figure 8-41: Population density in the vicinity of the Thyspunt site 8-63
Figure 8-42: Shaded relief profile of the Thyspunt site 8-64
Figure 8-43: Comparison of wind roses between Cape St. Francis and onsite, Bantamsklip data 8-65
Figure 8-44: Botanical communities of Thyspunt 8-67
Figure 8-45: Wetlands at Thyspunt 8-69
Figure 8-46: Elandsberg dwarf chameleon found at Langefontein wetland 8-71
Figure 8-47: Location of tern roost and otter sightings 8-73
Figure 8-48: Faunal sensitivity map for Thyspunt 8-74
Figure 8-49: Sandy and rocky shores at Thyspunt 8-76
Figure 8-50: Commercial Fishing, Blaauwberg Beach-Bok Point, 1998-2007 (Tons) 8-78
Figure 8-51: Population Distribution within 5km radii of Duynefontein 8-81
Figure 8-52: Duynefontein diagrammatic site section 8-83
Figure 8-53: Duynefontein Nuclear Power Station viewshe analysis 8-84
Figure 8-54: Duynefontein Nuclear Power Station: Location of EIA corridor 8-85
Figure 8-55: Heritage features at the Duynefontein site 8-91
Figure 8-56: Land use map - Duynefontein 8-93
Figure 8-57: Types of farming - Duynefontein 8-95
Figure 8-58: Duynefontein site location and sphere of impact 8-97
Figure 8-59: Distance to nearest noise-sensitive land uses at Duynefontein 8-98
Figure 8-60: Duynefontein transport network 8-101
Figure 8-61: Commercial fishing, Quoin Point-Danger Point, 1998-2007 (Tons) 8-103
Figure 8-62: Population Distribution within 5km distance radii of Bantamsklip 8-107
Figure 8-63: Bantamsklip Nuclear Power Station location of proposed EIA corridor 8-110
Figure 8-64: Heritage features at Bantamsklip 8-116
Figure 8-65: View looking eastwards over the Bantamsklip study area. The immediate fore-dune contains concentrations of shell middens forming an almost continuous ribbon along the coast. 8-117
Figure 8-66: Vernacular cottage at Groot Hagelkraal farm complex. This is a typical Cape "langhuis" built from south coast limestone. 8-117
Figure 8-67: Farm house at Groot Hagelkraal farm complex. Although recently renovated, the building contains mid-late 19th century fabric. 8-118
Figure 8-68: Flower sorting in the Bantamsklip region 8-119
Figure 8-69: Fynbos flower picking area – The Springs Farm 8-119
Figure 8-70: Land use map - Bantamsklip 8-120
Figure 8-71: Types of farming - Bantamsklip 8-122
Figure 8-72: Bantamsklip site location and sphere of impact 8-124
Figure 8-73: Distance to nearest noise-sensitive land uses at Bantamsklip 8-126
Figure 8-74: The location of the owner-controlled area with respect to the outer property boundary and the other farms in the Bantamsklip area 8-128
Figure 8-75: Transport networks at Bantamsklip 8-129
Figure 8-76: Commercial fishing, Seal Point-Slang River, 1998-2007 (Kg) 8-131
Figure 8-77: Population Distribution within 5km distance radii of Thyspunt 8-135
Figure 8-78: Typical house placement east of site 8-136
Figure 8-79: Holiday home on beach east of site 8-137
Figure 8-80: Middens and decorated ceramics at Thyspunt 8-145
Figure 8-81: Tidal fish traps and built structures at Thyspunt 8-146
Figure 8-82: Borrow pit area 8-147
Figure 8-83: Woodlands dairy 8-147
Figure 8-84: Land use map - Thyspunt 8-149
Figure 8-85: Extensive silage production on most farms 8-150
Figure 8-86: Silage bales 8-150
Figure 8-87: Types of farming - Thyspunt 8-151
Figure 8-88: Thyspunt site location and sphere of impact 8-154
Figure 8-89: Distance to nearest noise-sensitive land uses at Thyspunt 8-155
Figure 8-90: Thyspunt transport network 8-157
Figure 9-1: Proposed position of the northern access road and the recommended (more eastern) position 52
Figure 9-2: Predicted maximum hourly average nitrogen dioxide concentration from backup generators at Duynefontein 127
Figure 9-3: Predicted maximum hourly average nitrogen dioxide concentration from backup generators at Bantamsklip 127
Figure 9-4: Predicted maximum hourly average nitrogen dioxide concentration from backup generators at Thyspunt 128
Figure 9-5: Predicted maximum daily average inhalable particle (PM10) concentration levels (µg/m³) during construction at Duynefontein (Unmitigated)

Figure 9-6: Predicted maximum daily average particle fallout rates (mg/m²/day) during construction at Duynefontein (Unmitigated)

Figure 9-7: Predicted maximum daily PM10 concentration levels (µg/m³) during construction at Bantamsklip (Unmitigated)

Figure 9-8: Predicted maximum daily average particle fallout rates (mg/m²/day) during construction at Bantamsklip (Unmitigated)

Figure 9-9: Predicted maximum daily average PM10 concentration levels (µg/m³) during construction at Thyspunt with Road Option A and the envelope of the NPS on the east or west of the corridor (Unmitigated)

Figure 9-10: Predicted maximum daily average particle fallout rates (mg/m²/day) during construction at Thyspunt with Road Option A and the envelope of the NPS on the east or west of the corridor (Unmitigated)

Figure 9-11: Predicted maximum daily average PM10 concentration levels (µg/m³) during construction at Thyspunt with Road Option B and the envelope of the NPS on the east or west of the corridor (Unmitigated)

Figure 9-12: Predicted maximum daily average PM10 concentration levels during construction at Thyspunt with Road Option C and the envelope of the NPS on the east or west of the corridor (Unmitigated)

Figure 9-13: Predicted maximum cumulative annual inhalation and external radiation dose (µSv) for Duynefontein using 30 year equilibrium for deposition

Figure 9-14: Predicted maximum cumulative annual inhalation and external radiation dose (µSv) for Bantamsklip using 30 year equilibrium for deposition

Figure 9-15: Predicted maximum cumulative annual inhalation and external radiation dose (µSv) for Thyspunt using 30 year equilibrium for deposition

Figure 9-16: Duynefontein viewshed analysis

Figure 9-17: Duynefontein visibility intensity zones

Figure 9-18: Bantamsklip viewshed analysis

Figure 9-19: Bantamsklip visibility intensity zones

Figure 9-20: Thyspunt viewshed analysis

Figure 9-21: Duynefontein visibility intensity zones

Figure 9-22: Proposed wind farm sites in proximity to Thyspunt (From BCK 2010)

Figure 9-23: Graphic representation of an SPMT

Figure 9-24: A SPMT utilising the entire width of a road
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Estimated timeframes for the proposed Nuclear Power Station</td>
<td>3-11</td>
</tr>
<tr>
<td>3-2</td>
<td>Nuclear Power Station and associated infrastructure requirements</td>
<td>3-11</td>
</tr>
<tr>
<td>3-3</td>
<td>Estimated water consumption during site establishment, earthworks and construction phases</td>
<td>3-13</td>
</tr>
<tr>
<td>3-4</td>
<td>Reservoirs required on site</td>
<td>3-13</td>
</tr>
<tr>
<td>3-5</td>
<td>Material required for construction of key elements of the NPS*</td>
<td>3-13</td>
</tr>
<tr>
<td>3-6</td>
<td>Inputs and outputs related to the operational phase under normal operating conditions</td>
<td>3-16</td>
</tr>
<tr>
<td>3-7</td>
<td>Typical waste types during construction of a nuclear power station for a similar plant (Pöyry Energy Oy and Lithuanian Energy Institute 2008)</td>
<td>3-18</td>
</tr>
<tr>
<td>3-8</td>
<td>Categories of Radioactive Waste (NNR 2001)</td>
<td>3-20</td>
</tr>
<tr>
<td>3-9</td>
<td>Maximum inhalation and external effective dose predicted in the 40 km by 40 km study area for all three NPS sites</td>
<td>3-22</td>
</tr>
<tr>
<td>3-10</td>
<td>Maximum quantities of chemical effluent discharged from demineralisation and desalination plants in the EPR unit</td>
<td>3-25</td>
</tr>
<tr>
<td>3-11</td>
<td>Accommodation requirements per NPS site</td>
<td>3-26</td>
</tr>
<tr>
<td>3-12</td>
<td>Minimum land requirements (hectares) required for accommodation</td>
<td>3-31</td>
</tr>
<tr>
<td>6-1</td>
<td>Key responsibilities of various role-players with respect to nuclear emergency management</td>
<td>4-7</td>
</tr>
<tr>
<td>6-2</td>
<td>Activities requiring Basic Assessment</td>
<td>6-32</td>
</tr>
<tr>
<td>6-3</td>
<td>Activities requiring Scoping and EIA</td>
<td>6-34</td>
</tr>
<tr>
<td>6-4</td>
<td>Consistency of the NPS with the NEMA principles</td>
<td>6-57</td>
</tr>
<tr>
<td>7-1</td>
<td>Paid newspaper advertisements for project announcement</td>
<td>7-5</td>
</tr>
<tr>
<td>7-2a</td>
<td>Distribution of BIDs at public libraries during the Scoping Phase</td>
<td>7-6</td>
</tr>
<tr>
<td>7-2b</td>
<td>Distribution of BIDs at additional public venues during the Scoping Phase</td>
<td>7-7</td>
</tr>
<tr>
<td>7-3a</td>
<td>Public Meetings held during the Scoping Phase</td>
<td>7-13</td>
</tr>
<tr>
<td>7-3b</td>
<td>Meetings - Key Stakeholder Workshops</td>
<td>7-14</td>
</tr>
<tr>
<td>7-3c</td>
<td>Meetings - Focus Group Meetings</td>
<td>7-14</td>
</tr>
<tr>
<td>7-3d</td>
<td>Public Meetings and Public Open Days</td>
<td>7-15</td>
</tr>
<tr>
<td>7-3e</td>
<td>Key stakeholder and Authorities Feedback Meetings</td>
<td>7-15</td>
</tr>
<tr>
<td>7-4</td>
<td>Availability of the Draft and Final Scoping Reports</td>
<td>7-18</td>
</tr>
<tr>
<td>7-5</td>
<td>Summary of issues raised</td>
<td>7-19</td>
</tr>
<tr>
<td>7-6</td>
<td>Public meetings to be held during the EIA phase</td>
<td>7-21</td>
</tr>
<tr>
<td>7-7</td>
<td>Venues where the Draft EIA Report will be available for public review</td>
<td>7-21</td>
</tr>
</tbody>
</table>
Table 7-8: EIA specialist team members and their fields of expertise 7-24
Table 7-9: Peer review team 7-26
Table 7-10: Impact assessment criteria and rating scales 7-29
Table 8-1: Means and extremes of dry-bulb temperature at the Duynefontein site measured at 10 m above ground level (1980 to 2007) 8-33
Table 8-2: Dry-bulb temperature observations at Bantamsklip (January 2008 to September 2009) 8-49
Table 8-3: Means and extremes of temperature for Cape St. Francis for the period 2004 to 2007 8-66
Table 8-4: Civil Structures in a 20 km radius around Duynefontein 8-79
Table 8-5: Farming practices (number of farms) 8-94
Table 8-6: Quantitative representation of tourism industry in the Duynefontein area 8-96
Table 8-7: Civil structures in the 20 km radius of Bantamsklip 8-105
Table 8-8: Population: Overberg District Municipality (2001) 8-106
Table 8-9: Farming practices (number of farms) 121
Table 8-10: Quantitative representation of tourism industry in the Bantamsklip area 8-125
Table 8-11: Civil structures within 30 km of the Thyspunt site 8-133
Table 8-12: Farming practices (number of farms) 8-148
Table 8-13: Approximate visitor expenditure during the billabong pro 8-152
Table 8-14: Quantitative representation of tourism industry in the thyspunt area 8-153
Table 9-1: Geotechnical suitability at Duynefontein 9-6
Table 9-2: Geotechnical suitability at Bantamsklip 9-6
Table 9-3: Geotechnical suitability at Thyspunt 9-7
Table 9-4: Summary of the current seismic hazard status on Duynefontein, Bantamsklip and Thyspunt 9-14
Table 9-5: Seismic suitability of all sites 9-16
Table 9-6: Impacts on flora at Duynefontein: nuclear power station and spoil 9-39
Table 9-7: Impacts on flora at Duynefontein: powerlines and access roads 9-40
Table 9-8: Impacts on flora at Bantamsklip 9-41
Table 9-9: Impacts on flora at Thyspunt: nuclear power station and spoil 9-43
Table 9-10: Impacts on flora at Thyspunt: Powerlines 9-44
Table 9-11: Impacts on flora at Thyspunt: High Voltage Yard 9-45
Table 9-12: Impacts on flora at Thyspunt: Eastern Access Road 9-46
Table 9-13: Impacts on flora at Thyspunt: Western Access Road 9-47
Table 9-14: Impacts on flora at Thyspunt: Northern Access Road 9-48
Table 9-15: Impacts on dune geomorphology at Duynefontein 9-54
Table 9-16: Impacts on dune geomorphology at Bantamsklip 9-58
Table 9-17: Impacts on dune geomorphology at Thyspunt 9-61
| Table 9-18: | Assessment of impact on wetlands at Duynefontein | 9-73 |
| Table 9-19: | Assessment of impacts on wetlands at Bantamsklip | 9-74 |
| Table 9-20: | Assessment of impacts on wetlands at Thyspunt | 9-76 |
| Table 9-21: | Assessment of impacts on terrestrial vertebrate fauna at Duynefontein | 9-94 |
| Table 9-22: | Assessment of impacts on terrestrial vertebrate fauna at Bantamsklip (coastal portion only) | 9-97 |
| Table 9-23: | Assessment of on-site impacts on terrestrial vertebrate fauna at Thyspunt (coastal portion only) | 9-101 |
| Table 9-24: | Assessment of impacts on invertebrate fauna at Duynefontein | 9-113 |
| Table 9-25: | Assessment of impacts on invertebrate fauna at Bantamsklip | 9-116 |
| Table 9-26: | Assessment of impacts on invertebrate fauna at Thyspunt | 9-119 |
| Table 9-27: | Maximum inhalation and external effective dose predicted in 9-the 40 km by 40 km study area for a 4000 MWe nuclear power station | 9-123 |
| Table 9-28: | Assessment of air quality impacts at Duynefontein | 9-135 |
| Table 9-29: | Significance rating for air quality impacts at Bantamsklip | 9-136 |
| Table 9-30: | Significance rating for air quality impacts at Thyspunt | 9-137 |
| Table 9-31: | Recommended elevation of nuclear power station sites | 9-143 |
| Table 9-32: | Assessment of impacts on the oceanographic environment at Duynefontein | 9-145 |
| Table 9-33: | Assessment of impacts on the oceanographic environment at Bantamsklip | 9-146 |
| Table 9-34: | Assessment of impacts on the oceanographic environment at Thyspunt | 9-147 |
| Table 9-35: | Assessment of the marine environment at Duynefontein | 9-153 |
| Table 9-36: | Assessment of the marine environment at Bantamsklip | 9-153 |
| Table 9-37: | Assessment of the marine environment at Thyspunt | 9-154 |
| Table 9-38: | Significance rating for heritage impacts at Duynefontein | 9-158 |
| Table 9-39: | Significance rating for heritage impacts at Bantamsklip | 9-159 |
| Table 9-40: | Significance rating for heritage impacts at Thyspunt | 9-160 |
| Table 9-41: | Significance rating for noise impacts at Duynefontein | 9-166 |
| Table 9-42: | Significance rating for noise impacts at Bantamsklip | 9-166 |
| Table 9-43: | Significance rating for noise impacts at Thyspunt | 9-167 |
| Table 9-44: | Indicative tourism impacts in terms of bed nights | 9-173 |
| Table 9-45: | Summary of Tourism Impacts for the Duynefontein site | 9-174 |
| Table 9-46: | Summary of Tourism Impacts for the Bantamsklip site | 9-175 |
| Table 9-47: | Summary of Tourism Impacts for the Thyspunt site | 9-176 |
| Table 9-48: | Maximum Inhalation and External Effective Dose of 9-radionuclides | 178 |
| Table 9-49: | Estimated economic impact on the markets for agricultural produce | 9-180 |
| Table 9-50: | Significance rating for agricultural impacts at Duynefontein | 9-182 |
| Table 9-51: | Significance rating for agricultural impacts at Bantamsklip | 9-182 |
| Table 9-52: | Significance rating for agricultural impacts at Thyspunt | 9-183 |
LIST OF APPENDICES

Appendix A: Site photographs
Appendix B: Authority correspondence
Appendix B1 - Application Form
Appendix B2 - Correspondence: Scoping Phase
Appendix B3 - Correspondence: EIA Phase
Appendix B4 - Co-operative Governance Agreement and Associated Documents
Appendix B5 - Letters Distributed to Interested and Affected Parties (I&APs)
Appendix B6 - End-Use Documents
Appendix C: Technical envelope for the proposed nuclear power station as identified by Eskom
Appendix D: Public participation documentation (Scoping Phase Appendices D1 to D8 on CD)
Appendix D1 - Advertisements and Site Notices
Appendix D2 - Letters Distributed to Interested and Affected Parties (I&APs)
Appendix D3 - Background Information Document (BID) and Comment Sheets
Appendix D4 - Key Stakeholder Workshops
Appendix D5 - Focus Group Meetings
Appendix D6 - Public Meetings
Appendix D7 - List of Registered Interested and Affected Parties (Database)
Appendix D8 - Issues and Response Report
Appendix E: Technical Specialist Curricula Vitae and Specialist Reports
Appendix E1 - Specialist team Curricula Vitae
 - Environmental Impact Assessment Practitioner
 - Peer, Legal, Nuclear Reviewers and Public participation consultants
 - Technical specialists
Appendix E2 - Dune Geomorphology Assessment
Appendix E3 - Geology and Geologic Risk Assessment
Appendix E4 - Seismological Risk Assessment
Appendix E5 - Geotechnical Suitability Assessment
Appendix E6 - Hydrological Assessment
Appendix E7 - Geohydrological Assessment
Appendix E8 - Freshwater Supply
Appendix E9 - Position of the 1:100 Floodline
Appendix E10 - Air Quality and Climate Assessment
Appendix E11 - Floral Assessment
Appendix E12 - Freshwater Ecology Assessment
Appendix E13 - Vertebrate Faunal Assessment
Appendix E14 - Invertebrate Faunal Assessment
Appendix E15 - Marine Biology Assessment
Appendix E16 - Oceanography Assessment
Appendix E17 - Economic Assessment
Appendix E18 - Social Impact Assessment
Appendix E19 - Visual Assessment
Appendix E20 - Heritage Assessment
Appendix E21 - Agricultural Assessment
Appendix E22 - Tourism Assessment
Appendix E23 - Noise Assessment
Appendix E24 - Human Health Risk Assessment
Appendix E25 - Transportation Assessment
Appendix E26 - Emergency Response
Appendix E27 - Site Access Control
Appendix E28 - Eskom Grid Planning Report: Comparison between Thyspunt, Bantamsklip and Koeberg Sites (October 2008)

Appendix F: Draft Environmental Management Plan and Annexures A – C
Appendix G: EIA Legislative Requirements Checklist
LIST OF ABBREVIATIONS / ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>µSv</td>
<td>Micro Sieverts</td>
</tr>
<tr>
<td>AADQ</td>
<td>Annual Authorized Discharged Quantities</td>
</tr>
<tr>
<td>ABI</td>
<td>Agulhas Biodiversity Initiative</td>
</tr>
<tr>
<td>ACER</td>
<td>ACER (Arica) Environmental Consultants (Pty) Ltd</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immuno Deficiency Syndrome</td>
</tr>
<tr>
<td>AP1000</td>
<td>Advanced Passive, form of an advanced pressurised water reactor</td>
</tr>
<tr>
<td>APPA</td>
<td>Atmospheric Pollution Prevention Act, 1965 (Act No. 45 of 1965)</td>
</tr>
<tr>
<td>ARC</td>
<td>Agricultural Resource Centre</td>
</tr>
<tr>
<td>Arcus GIBB</td>
<td>Arcus GIBB (Pty) Ltd</td>
</tr>
<tr>
<td>AsgiSA</td>
<td>Accelerated and shared Growth Initiative for South Africa</td>
</tr>
<tr>
<td>ALARA</td>
<td>As Low As Reasonably Achievable</td>
</tr>
<tr>
<td>B&B</td>
<td>Bed and Breakfast</td>
</tr>
<tr>
<td>BID</td>
<td>Background Information Document</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practise</td>
</tr>
<tr>
<td>BWR</td>
<td>Boiling Water Reactor</td>
</tr>
<tr>
<td>CAPE</td>
<td>Cape Action Plan for People and the Environment</td>
</tr>
<tr>
<td>CCGT</td>
<td>Combined Cycle Gas Turbine</td>
</tr>
<tr>
<td>CDC</td>
<td>Coega Development Corporation</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>ECO</td>
<td>Environmental Control Officer</td>
</tr>
<tr>
<td>CFR</td>
<td>Cape Floristic Region</td>
</tr>
<tr>
<td>CGS</td>
<td>Council for Geoscience</td>
</tr>
<tr>
<td>CIGS</td>
<td>Copper-Indium-Gallium-diSelenide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CSIR</td>
<td>Council for Science and Industrial Research</td>
</tr>
<tr>
<td>CSP</td>
<td>Concentrating Solar Power</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation / Curriculum vitae</td>
</tr>
<tr>
<td>dB(A)</td>
<td>decibel</td>
</tr>
<tr>
<td>DBA</td>
<td>Design Basis Accidents</td>
</tr>
<tr>
<td>De Beers</td>
<td>De Beers Consolidated Mines</td>
</tr>
<tr>
<td>DEA&DP</td>
<td>Department of Environmental Affairs and Development Planning (Provincial Government Western Cape)</td>
</tr>
<tr>
<td>DEA</td>
<td>Department of Environmental Affairs (National Government)</td>
</tr>
<tr>
<td>DEAT</td>
<td>Department of Environmental Affairs and Tourism (Now DEA)</td>
</tr>
<tr>
<td>DEDEA</td>
<td>Department of Economic Development and Environmental Affairs (Provincial Government Eastern Cape)</td>
</tr>
<tr>
<td>DMA</td>
<td>Disaster Management Act</td>
</tr>
<tr>
<td>DME</td>
<td>Department of Minerals and Energy (National Government)</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy (National Government)</td>
</tr>
<tr>
<td>DOL</td>
<td>Department of Labour (National Government)</td>
</tr>
<tr>
<td>DPW</td>
<td>Department of Public Works (National Government)</td>
</tr>
<tr>
<td>DSR</td>
<td>Draft Scoping Report</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>DTEC</td>
<td>Department of Tourism, Environment and Conservation (Provincial Government Northern Cape)</td>
</tr>
<tr>
<td>DWA</td>
<td>Department of Water Affairs (National Government)</td>
</tr>
<tr>
<td>DWAF</td>
<td>Department of Water Affairs and Forestry (Now DWA)</td>
</tr>
<tr>
<td>EAP</td>
<td>Environmental Assessment Practitioner</td>
</tr>
<tr>
<td>ECO</td>
<td>Environmental Control Officer</td>
</tr>
<tr>
<td>ECT B</td>
<td>Eastern Cape Tourism Board</td>
</tr>
<tr>
<td>EDG</td>
<td>Emergency Diesel Generator</td>
</tr>
<tr>
<td>EEU</td>
<td>Environmental Evaluation Unit</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>ELA</td>
<td>Earthlife Africa</td>
</tr>
<tr>
<td>ELC</td>
<td>Environmental Liaison Committee</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromagnetic Frequencies</td>
</tr>
<tr>
<td>EMP</td>
<td>Environmental Management Plan</td>
</tr>
<tr>
<td>EN</td>
<td>Endangered</td>
</tr>
<tr>
<td>EPR</td>
<td>European Pressurised Reactor also known as Evolutionary Power Reactor</td>
</tr>
<tr>
<td>EPSOC</td>
<td>Emergency Planning Steering and Oversight Committees</td>
</tr>
<tr>
<td>EPZ</td>
<td>Emergency Planning Zone</td>
</tr>
<tr>
<td>Eskom</td>
<td>Eskom Holdings Limited</td>
</tr>
<tr>
<td>EUR</td>
<td>European Utility Requirements</td>
</tr>
<tr>
<td>FBC</td>
<td>Fluidised Bed Combustion</td>
</tr>
<tr>
<td>FGM</td>
<td>Focus Group Meeting</td>
</tr>
<tr>
<td>FOB</td>
<td>Fish on Board</td>
</tr>
<tr>
<td>FSR</td>
<td>Final Scoping Report</td>
</tr>
<tr>
<td>GCR</td>
<td>Gas Cooled Reactor</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gas</td>
</tr>
<tr>
<td>GW</td>
<td>Gigawatt</td>
</tr>
<tr>
<td>GWh</td>
<td>Gigawatt hours</td>
</tr>
<tr>
<td>H2O</td>
<td>Dihydrogen oxide (water)</td>
</tr>
<tr>
<td>Ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>HBD</td>
<td>Headland Bypass Dune</td>
</tr>
<tr>
<td>HEU</td>
<td>High-Enriched Uranium</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immuno-deficiency Virus</td>
</tr>
<tr>
<td>HLW</td>
<td>High Level Waste</td>
</tr>
<tr>
<td>HPa</td>
<td>Hectopascal</td>
</tr>
<tr>
<td>HRSG</td>
<td>Heat Recovery Steam Generator</td>
</tr>
<tr>
<td>HSE</td>
<td>Health, Safety and Environment</td>
</tr>
<tr>
<td>HV</td>
<td>High Voltage</td>
</tr>
<tr>
<td>I&APs</td>
<td>Interested and affected parties</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>ICM</td>
<td>Integrated Coastal Management</td>
</tr>
<tr>
<td>IDP</td>
<td>Integrated Development Plan</td>
</tr>
<tr>
<td>IDZ</td>
<td>Industrial Development Zone</td>
</tr>
<tr>
<td>IEP</td>
<td>Integrated Energy Plan</td>
</tr>
<tr>
<td>IGCC</td>
<td>Integrated Gasification Combined Cycle</td>
</tr>
<tr>
<td>IIS</td>
<td>Integrated Investment Strategy</td>
</tr>
<tr>
<td>ILW</td>
<td>Intermediate Level Waste</td>
</tr>
</tbody>
</table>
GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advection</td>
<td>The horizontal transport of air or atmospheric properties. Commonly used with temperatures, i.e., "warm air advection".</td>
</tr>
<tr>
<td>Advection fog</td>
<td>A type of fog caused by the horizontal movement of moist air over a cold surface and the consequent cooling of that air to below its dew point.</td>
</tr>
<tr>
<td>Aeolian</td>
<td>Transported and deposited by wind. A rock formed by the solidification of Aeolian sediment is known as an aeolianite.</td>
</tr>
<tr>
<td>Alternatives</td>
<td>Different means of meeting the general purpose and requirements of the activity, which may include alternatives to – location, type, design, technology of operational aspects of the activity.</td>
</tr>
<tr>
<td>Annulus</td>
<td>The distance between two objects.</td>
</tr>
<tr>
<td>Anomaly</td>
<td>Any departure from the norm, which may indicate the presence of mineralization in the underlying bedrock in geological terms.</td>
</tr>
<tr>
<td>Aquifer</td>
<td>A geological formation capable of yielding economic quantities of water.</td>
</tr>
<tr>
<td>Barchanoid</td>
<td>As of dunes. Immature mobile transverse dunes, unvegetated.</td>
</tr>
<tr>
<td>Bioregion</td>
<td>An area constituting a natural ecological community with characteristic flora, fauna, and environmental conditions and bounded by natural rather than artificial borders.</td>
</tr>
<tr>
<td>Borehole</td>
<td>A borehole is a deep and narrow shaft in the ground used for extraction of fluid or gas reserves below the earth's surface.</td>
</tr>
<tr>
<td>Brittle-ductile</td>
<td>Transitional conditions between brittle and ductile or plastic flow.</td>
</tr>
<tr>
<td>Cenozoic</td>
<td>Last 65 million years; an era of geologic time from the beginning of the Tertiary period (65 million years ago) to the present. Its name is from Greek and means "new life."</td>
</tr>
<tr>
<td>Chlorophyll a</td>
<td>The pigment that makes plants and algae green. Measurement of chlorophyll a is used to determine the quantity of algae in the water.</td>
</tr>
<tr>
<td>Coastal current</td>
<td>Any more or less permanent or continuous directed movement of ocean water that flows in one of the Earth's oceans.</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>The final period of the Mesozoic era, spanning the time between 145 and 65 million years ago.</td>
</tr>
<tr>
<td>Critically Endangered</td>
<td>The status of a species that has satisfied the International Union for the Conservation of Nature and Natural Resources (IUCN), also known as the World Conservation Union, criteria that indicate that it faces an extremely high risk of extinction in the wild.</td>
</tr>
<tr>
<td>Crustaceans</td>
<td>A class of articulated animals, having the skin of the body generally more or less hardened by the deposition of calcareous matter, breathing by means of gills. (Examples, Crab, Lobster, Shrimp, etc.).</td>
</tr>
<tr>
<td>Cultivated (of land or fields)</td>
<td>No longer in the natural state; developed by human care and for human use.</td>
</tr>
<tr>
<td>dBA</td>
<td>Environmental noise measurements are measured in terms of dBA. The A weighting aims to correspond to the frequency sensitivity of the human ear.</td>
</tr>
<tr>
<td>Desalination</td>
<td>A process that converts seawater or brackish water to fresh water.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Diffuse attenuation coefficient</td>
<td>Measure of how far the sun's radiance penetrates the ocean at a wavelength of 490 nano metres (nm).</td>
</tr>
<tr>
<td>Dispatchable Resource</td>
<td>A resource whose electrical output is available at short notice and can be controlled or regulated to match the electrical energy requirements of the electric system, and is not affected by phenomena such as the time of day or weather conditions. Nuclear power and coal power are both dispatchable.</td>
</tr>
<tr>
<td>Dorbank</td>
<td>A hard subsurface soil horizon forms in arid/semi-arid climates, through cementation by silica, often in association with calcium carbonate or iron oxides. It is often reddish-brown in colour, as has been found at Brazil and Schulpfontein.</td>
</tr>
<tr>
<td>Dune field</td>
<td>Descriptive of an area with numerous low hills or banks of drifted (wind-borne) sand.</td>
</tr>
<tr>
<td>Dyke</td>
<td>A discordant intrusive body that is substantially longer than it is wide. Dikes are often steeply inclined or nearly vertical. A dyke is a tabular (sheet-like) igneous intrusion that cuts the surrounding strata at an angle.</td>
</tr>
<tr>
<td>Ecotone</td>
<td>A geographic boundary or transition zone between two different groups of plant or animal distributions containing characteristic species of each.</td>
</tr>
<tr>
<td>Embayment</td>
<td>An indentation of a shoreline, larger than a cove (small inlet) but smaller than a gulf (arm of a sea or ocean partly enclosed by land).</td>
</tr>
<tr>
<td>Endangered</td>
<td>The status of a species that has satisfied the IUCN criteria that indicate that it faces as a very high risk of extinction in the wild.</td>
</tr>
<tr>
<td>Endemic</td>
<td>In biology and ecology, endemic means exclusively native to the biota of a specific place.</td>
</tr>
<tr>
<td>Environment</td>
<td>The surroundings within which humans exist and include biophysical, social and economic aspects.</td>
</tr>
<tr>
<td>Environmental Impact Assessment</td>
<td>An Environmental Assessment is required when an activity(ies) triggers a regulation(s) listed in Government Notices R 386 and R 387 in Government Gazette 28753 dated 21 April 2006. Depending on the activity(ies) either a Basic Assessment (for activities listed in R 386) or a Scoping and Environment Impact Assessment (for activities listed in R 387) is undertaken. The construction of the proposed nuclear power station triggers regulations requiring a Scoping and Environmental Impact Assessment.</td>
</tr>
<tr>
<td>Environmental Impact</td>
<td>A positive or negative change to the environment that results from the effect of a construction activity. The impact may be a direct or indirect consequence of a construction activity.</td>
</tr>
<tr>
<td>Ephemeral</td>
<td>Short lived. Living or lasting only for a day, as certain plants or insects do.</td>
</tr>
<tr>
<td>Fault</td>
<td>A fault is a fracture or fracture zone, along which movement has taken place. Sudden movement along a fault produces earthquakes. Slow movement produces a seismic creep. A fault is a tectonic structure along which differential slippage of the adjacent earth materials has occurred parallel to the fracture plane. It is distinct from other types of ground disruptions such as landslides, fissures and craters. A fault may have gouge or breccia between its two walls and includes any associated monoclinic flexure or other similar geologic structural...</td>
</tr>
<tr>
<td>Nuclear-1 EIA Version 1.0 / February 2010</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Draft Environmental Impact Report</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fission</td>
<td>The splitting of an atom into at least two other atoms and the release of a relatively large amount of energy.</td>
</tr>
<tr>
<td>Geomorphology</td>
<td>Geomorphology is the study of landforms, including their origin and evolution, and the processes that shape them.</td>
</tr>
<tr>
<td>Gneiss</td>
<td>Rock formed by regional metamorphism in which bands or lenticles of granular minerals alternate with bands or lenticles characterised by minerals having flaky or elongate prismatic shapes.</td>
</tr>
<tr>
<td>Grabens</td>
<td>A depressed block of land bordered by parallel faults.</td>
</tr>
<tr>
<td>Greenhouse gases</td>
<td>Gases that increase the temperature of the earth’s surface as defined by the United Nations Framework Convention on Climate Change, which include inter alia chlorofluorocarbons, carbon dioxide, methane and nitrous oxide.</td>
</tr>
<tr>
<td>Groundwater flow</td>
<td>The movement of water through openings and pore spaces in rocks below the water table i.e. in the saturated zone. Groundwater naturally drains from higher lying areas to low lying areas such as rivers, lakes and the oceans. The rate of flow depends on the slope of the water table and the transmissivity of the geological formations.</td>
</tr>
<tr>
<td>Hazardous substance</td>
<td>Any substance that is of risk to health and safety, property or the environment. Hazardous substances have been classified under the SABS Code 0288: 'The Identification and Classification of Dangerous Goods and Substances'.</td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>Any inorganic or organic element or compound that because of its toxicological, physical, chemical or persisting properties, may exercise detrimental acute or chronic impacts on human health or development. Hazardous wastes are classified in accordance with the ‘Minimum Requirement for the Handling, Classification and Disposal of Hazardous Waste’ published by the Department of Water Affairs and Forestry (1998).</td>
</tr>
<tr>
<td>Heavy water</td>
<td>Water containing a significantly greater proportion of heavy hydrogen (deuterium) atoms to ordinary hydrogen atoms than is found in ordinary (light) water. Heavy water is used to lower the energy of neutrons in a reactor.</td>
</tr>
<tr>
<td>Hectopascal</td>
<td>Unit of pressure used in meteorology. One hectopascal equals 100 Pascals (1 hPa = 100 Pa).</td>
</tr>
<tr>
<td>Heritage site</td>
<td>A site that contains either archaeological artefacts, graves, buildings older than 60 years, meteorological or geological fossils etc.</td>
</tr>
<tr>
<td>High level waste</td>
<td>Radioactive waste that will either be the spent fuel itself (if declared as a waste and intended to be disposed of as such), or the principal waste emanating from the reprocessing of spent fuel. While only 3-4 % of the volume of spent fuel is high-level waste, it holds 95 % of the radioactivity. It contains the highly radioactive fission products and some heavy elements with long-lived radioactivity.</td>
</tr>
<tr>
<td>Hummocking</td>
<td>Refers to lumpy terrain; or land that has an irregular shape; or a fertile, wooded area that is at a slightly higher elevation (less than 3 m or so) than nearby marshes.</td>
</tr>
<tr>
<td>Hydroperiod</td>
<td>The length of time (and seasonality) that water is present over the surface of the wetland.</td>
</tr>
<tr>
<td>Intergranular aquifer</td>
<td>Groundwater contained in intergranular interstices of sedimentary and weathered formations.</td>
</tr>
<tr>
<td>Intermediate level waste</td>
<td>Contains higher amounts of radioactivity and may require special containment. It typically comprises resins, chemical</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Sludges and reactor components, as well as contaminated materials from reactor decommissioning.</td>
<td></td>
</tr>
<tr>
<td>Invertebrate</td>
<td>Animals without backbones or internal bony skeletons. All animals except for the phylum Chordata (vertebrates) fall into this category, including insects, crustaceans, worms, corals, and mollusks.</td>
</tr>
<tr>
<td>Irreplaceable</td>
<td>Impossible to replace.</td>
</tr>
<tr>
<td>Light water</td>
<td>Ordinary water composed of two hydrogen atoms and one oxygen atom.</td>
</tr>
<tr>
<td>Liquefaction</td>
<td>The process by which sediment that is very wet starts to behave like a liquid. Liquefaction occurs because of the increased pore pressure and reduced effective stress between solid particles generated by the presence of liquid. It is often caused by severe shaking, especially that associated with earthquakes.</td>
</tr>
<tr>
<td>Load Shedding</td>
<td>An intentionally engineered electrical power outage caused by insufficient available resources to meet the prevailing demand for electricity.</td>
</tr>
<tr>
<td>Low level waste</td>
<td>It comprises paper, rags, tools, clothing, and filters etc., which contain small amounts of mostly short-lived radioactivity. LLW is not dangerous to handle, but needs to be disposed of more sensitively than normal waste.</td>
</tr>
<tr>
<td>Mesozoic</td>
<td>Period from 65 –150 million years ago.</td>
</tr>
<tr>
<td>Neoproterozoic</td>
<td>The Neoproterozoic is the geological era from 1000 Ma to 542 Ma (million years ago).</td>
</tr>
<tr>
<td>Near Threatened</td>
<td>The status of a species that does not satisfy the IUCN criteria for Vulnerable, Endangered or Critically Endangered, but is close to qualifying, or is likely to qualify for a threatened category in the near future.</td>
</tr>
<tr>
<td>Power outage</td>
<td>Equipment failure resulting when the supply of power fails.</td>
</tr>
<tr>
<td>Palaeontology</td>
<td>The study of prehistoric life forms on Earth through the examination of plant and animal fossils.</td>
</tr>
<tr>
<td>Palaeoseismic evidence</td>
<td>Refers to earthquakes recorded geologically, most of them unknown from human descriptions or seismograms. Geologic records of past earthquakes can include faulted layers of sediment and rock, injections of liquefied sand, landslides, abruptly raised or lowered shorelines, and tsunami deposits.</td>
</tr>
<tr>
<td>Palaeoseismology</td>
<td>The study of prehistoric earthquakes, especially their location, timing and size.</td>
</tr>
<tr>
<td>Parabolic (as of dunes)</td>
<td>Parallel dunes with trailing edges in opposite direction to the wind direction. Can be vegetated or unvegetated.</td>
</tr>
<tr>
<td>Peak ground acceleration</td>
<td>A measure of earthquake acceleration. Unlike the Richter magnitude scale Richter magnitude scale, it is not a measure of the total size of the earthquake, but rather how hard the earth shakes in a given geographic area.</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>A geologic period usually thought of as the Ice Age, which began about 1.6 million years ago and ended with the melting of the large continental glaciers creating the modern climatic pattern about 11,500 years ago.</td>
</tr>
<tr>
<td>Pliocene</td>
<td>A geological epoch that began five million years ago and ended 1.8 million years ago; a period of geologic time seven to two million years ago.</td>
</tr>
<tr>
<td>Pollution</td>
<td>The introduction into the environment of any substance by the action of man that is, or results in, significant harmful effects to man or the environment.</td>
</tr>
<tr>
<td>Prenatal</td>
<td>Existing or occurring before birth.</td>
</tr>
<tr>
<td>Pressurized Water Reactor (Nuclear technology type)</td>
<td>Is moderated and cooled with light water that is not boiled in the reactor. The turbine is driven by steam from the</td>
</tr>
<tr>
<td>Quaternary</td>
<td>The youngest of the geological periods, extending from the end of the Tertiary (qv) 1.6 million years ago up to the present. It is divided into the Pleistocene, and the Holocene, which is the last 10,000 years.</td>
</tr>
<tr>
<td>Radiation (nuclear)</td>
<td>Energy that is released by radioactive atoms such as uranium. This type of radiation is called ionizing radiation as it contains sufficient energy to remove electrons from within the material they penetrate, it is this ability that makes this type of radiation harmful to life.</td>
</tr>
<tr>
<td>Radioactive waste</td>
<td>Radioactive material in gaseous, liquid or solid form, for which no further use is envisaged and which has the radioactivity in excess of background or exemption levels.</td>
</tr>
<tr>
<td>Radionuclide</td>
<td>Any species of an atom that is radioactive.</td>
</tr>
<tr>
<td>Relictual</td>
<td>Ancient surviving species, typically restricted to moist, cold habitats, but occasionally arid-adapted.</td>
</tr>
<tr>
<td>Renewable resources</td>
<td>A natural resource qualifies as a renewable resource if it is replenished by natural processes at a rate comparable to its rate of consumption by humans or other users. Resources such as solar radiation, tides, and winds are perpetual resources that are in no danger of being used in excess of their long-term availability.</td>
</tr>
<tr>
<td>Rift</td>
<td>A long, narrow crack in the entire thickness of the Earth's crust, which is bounded by normal faults on either side or forms as the crust is pulled apart.</td>
</tr>
<tr>
<td>Sea level</td>
<td>The level of the ocean's surface. Sea level at a particular location changes regularly with the tides and irregularly due to conditions such as wind and currents. Other factors that contribute to such fluctuation include water temperature and salinity, air pressure, seasonal changes, the amount of stream runoff, and the amount of water that is stored as ice or snow.</td>
</tr>
<tr>
<td>Sea state</td>
<td>A scale that categorizes the force of progressively higher seas by wave height. This scale is mathematically correlated to the Pierson-Moskowitz scale and the relationship of wind to waves.</td>
</tr>
<tr>
<td>Seismic hazard</td>
<td>The physical effects such as ground shaking, faulting, land sliding, and liquefaction that underlie the earthquake's potential danger.</td>
</tr>
<tr>
<td>Seismicity</td>
<td>Earthquake activity.</td>
</tr>
<tr>
<td>Seismotectonic region</td>
<td>A region within which the active geologic and seismic processes are considered to be relatively uniform.</td>
</tr>
<tr>
<td>Spent Fuel</td>
<td>Nuclear fuel elements that are discharged from a nuclear reactor after they have been used to produce power. Spent fuel is thermally hot and highly radioactive.</td>
</tr>
<tr>
<td>Stone Age</td>
<td>The earliest technological period in human culture when tools were made of stone, wood, bone, or antlers. Metal was unknown. The dates of the Stone Age vary considerably from one region to another.</td>
</tr>
<tr>
<td>Stratification</td>
<td>The existence or formation of distinct layers in a body of water identified by differences in thermal or salinity characteristics (e.g. densities) or by oxygen or nutrient content.</td>
</tr>
<tr>
<td>Taxon</td>
<td>A means of referring to a set of animals or plants of related classification. Plural form of taxon is taxa.</td>
</tr>
<tr>
<td>Tertiary</td>
<td>Period from 65 -1.6 million years ago; The first period of the Cenozoic era (after the Mesozoic era and before the Quaternary period), spanning the time between 65 and 1.8 million years ago.</td>
</tr>
<tr>
<td>Threatened</td>
<td>Term used in its formal sense to denote one of the three categories of threat, as defined by the IUCN, viz., Critically Endangered, Endangered and Vulnerable.</td>
</tr>
<tr>
<td>Transpressional</td>
<td>Refers to a specific form of geological shearing. Geological shears relate to the structure of the geology, rocks and faults.</td>
</tr>
<tr>
<td>Uranium</td>
<td>A naturally radioactive and very dense element. Natural uranium contains 0.7 % of the isotope Uranium-235, needed for fission. Uranium enriched to 3-5 % in the isotope Uranium-235, is the principal nuclear fuel material used in today's nuclear power reactors.</td>
</tr>
<tr>
<td>Vertebrate</td>
<td>An animal with a backbone; includes mammals, birds, reptiles, amphibians, and fishes.</td>
</tr>
<tr>
<td>Volatile organic compounds (VOCs)</td>
<td>Organic chemicals all contain the element carbon (C); organic chemicals are the basic chemicals found in living things and in products derived from living things such as coal, petroleum, and refined petroleum products.</td>
</tr>
<tr>
<td>Vulnerable</td>
<td>The status of a species that has satisfied the IUCN criteria that indicate that it faces as a high risk of extinction in the wild.</td>
</tr>
<tr>
<td>Wetland</td>
<td>Lands where saturation with water is the dominant factor determining the nature of soil development and the types of plant and animal communities living in the soil and on its surface.</td>
</tr>
</tbody>
</table>