ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH AND BRINE FROM THE CAMDEN POWER STATION

Report No.: JW164/11/D116 - REV 6

September 2014

59 Bevan Road PO Box 1434 Rivonia 2128 South Africa tel: 0027 11 519 0200 www.jaws.co.za email: post@jaws.co.za

ARL	Acceptable Risk Level. (ARL = 0.1 x LC ₅₀)
ARLP	South African Acid Rain Leach Procedure
ASLP	Australian Standard Leaching Procedure
DEA	Department of Environmental Affairs
DWA	Department of Water Affairs
DWAF	Department of Water Affairs and Forestry
G:L:B⁺	General waste landfill receiving more than 500 tonnes of waste per day with a barrier system containing a leachate detection and collection layer
H:H	Hazardous waste disposal facility suitable for the disposal of all Hazard Group 1, 2, 3, 4 and general wastes. Comply with the most conservative design as indicated in the DWAF's Minimum Requirements
H:h	Hazardous waste disposal facility suitable for the disposal of all Hazard Group 3 and 4 wastes, and general wastes. Comply with the second most conservative design as indicated in the DWAF's Minimum Requirements
LC	Leach concentration in mg/ <i>l</i>
LCT	Leach concentration threshold in mg/ ℓ
LC ₅₀	The concentration at which 50% of test organisms will die after a certain exposure time
mg/kg	Milligram per kilogram
mg/ℓ	Milligram per litre
RO	Reverse osmosis
тс	Total concentration in mg/kg
тст	Total concentration threshold
TCLP	Toxic characteristic leach procedure
TDS	Total dissolved salts
µS/cm	Micro Siemens per centimetre

Acronyms and abbreviations used in this document:

DOCUMENT APPROVAL RECORD

Report No.: JW164/11/D116 - REV

ACTION	FUNCTION	NAME	DATE	SIGNATURE
Prepared	Project Manager	M van Zyl	20 February 2014	Mran H
Reviewed	Environmental Scientist	T. Hopkins	24 February 2014	etteptius
Approved	Director	J Glendinning	25 February 2014	John
Revised	Project Manager	M van Zyl	17 September 2014	Mranff

RECORD OF REVISIONS AND ISSUES REGISTER

Date	Revision	Description	Issued to	Issue Format	No. Copies
21/10/2011	А	Draft for internal review	J Glendinning	Electronic	1
25/10/2011	00	Draft for Client Review K Kruger		Electronic	1
07/11/2011	01	Draft for Client Review	K Kruger	Electronic	1
10/11/2011	02	Draft for Client Review	K Kruger	Electronic Hard copies	1 2
27/09/2011	03	Final	Willem Howell	Electronic	1
24/02/2014	04	Draft for internal review	T. Hopkins	Electronic	NA
25/02/2014	05	Final	M Warren	Electronic	NA
17/09/2014	05	Final	Tania Oosthuizen	Electronic	NA

ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH AND BRINE FROM THE CAMDEN POWER STATION

REPORT NO: JW164/11/D116 - REV 6

CONTE	ENTS	<u>PAGE</u>
1.		1
1.1	Background	1
1.2	Objectives	1
2.	DEA WASTE CLASSIFICATION SYSTEM	2
3.	TESTS CONDUCTED	4
4.	CAMDEN POWER STATION ASH AND REVERSE OSMOSIS E	BRINE
4.1	Wet Ash Classification	6
4.2	RO Plant Brine Classification	6
5.	DISCUSSION AND CONCLUSIONS	13
6.	RECOMMENDATIONS	15
7.	REFERENCES	16

List of Tables

Table 2-1:	Organic limits for wastes to be classified as Type 4 wastes
Table 4-1:	Corrected concentrations for dusting ash sample based on % contribution of ash carrier water and ash content
Table 4-2:	De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Dusting sample)
Table 4-3:	Corrected concentrations for ashing sample based on % contribution of ash carrier water and ash content
Table 4-4:	De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Ashing sample)
Table 4-5:	Ash Seepage Water Concentrations versus LCT and TCT values
Table 4-6:	Concentrations of Constituents of the RO Plant Brine versus LCT and TCT values
Table 5-1:	Waste Type and Recommended Class of Landfill Required 14

List of Photo's & Figures

Photo 1:	Four samples used in the classification of the Camden Power Station Ash	i, Ash
	Carrier Water and Ash Disposal Facility Seepage Water (Leachate)	5
Figure 5-1:	Class C landfill barrier system (DEA, 2013b)	14
Figure 5-2:	H:H Lagoon barrier system (DWAF, 1998b)	15

APPENDICES

Appendix A

SGS SOUTH AFRICA: LABORATORY CERTIFICATES

Appendix B

CHEMICAL ANALYSES CONDUCTED ON THE REVERSE OSMOSIS BRINE

Engineering & Environmental Consultants 59 Bevan Road PO Box 1434 Rivonia 2128 South Africa tel: 0027 11 519 0200 www.jaws.co.za email: post@jaws.co.za

ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH AND BRINE FROM THE CAMDEN POWER STATION

REPORT NO: JW164/11/D116 - REV 6

1. INTRODUCTION

1.1 Background

Zitholele Consulting (Pty) Ltd is currently in the process of conducting an Environmental Impact Assessment (EIA) and Waste Licence Application for a new wet ash disposal facility at the Camden Power Station. The new ash disposal site will be approximately 100 hectares in size with a further 25 hectares for associated infrastructure. The power station also operates a Reverse Osmosis (RO) plant in order to reduce the positive water balance. This plant generates a brine and the brine is currently co-disposed with the wet ash on the existing ash disposal facility.

The classification of the ash from the wet-ash deposition process at Camden Power Station is required for input into both the EIA and Waste Licence Application Report. In addition, the ash classification is required to determine its environmental risk profile and hence the barrier design criteria applicable to the new ash disposal facility. Classification of the brine is also required in order to establish its risk profile.

The ash was originally classified in terms of both the Department of Water Affairs and Forestry's (DWAF's) "Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste" of 1998 (DWAF, 1998a) and the Department of Environmental Affairs' draft "National Environmental Management: Waste Act (Act 59 of 2008). Draft Standard for Assessment of Waste for Landfill Disposal" (DEA, 2011). The outcome of this classification is dealt with in Jones & Wagener's report no JW164/11/D116 - REV 3 dated September 2012.

In January 2014 J&W was requested by Zitholele Consulting to update the classifications based on the DEA's "National Norms and Standards for the Assessment of Waste for Landfill Disposal (National Norms and Standards) (DEA, 2013a). The National Norms and Standards were promulgated in August 2013 and replaced the Minimum Requirements waste classification system.

1.2 Objectives

The objective was to reclassify the Camden Power Station's wet ash and RO plant brine in terms of the DEA's Norms and Standards of 2013. The analytical results of the tests performed in 2012 on the wet ash were used for this classification. The original classification of the brine was based on theoretical values provided, but for this revised classification, chemical analyses were made available for some of the constituents listed in the National Norms and Standards.

JONES & WAGENER (PTY) LTD REG NO. 1993/002655/07 VAT No. 4410136685

DIRECTORS: GR Wardle (Chairman) Preng MSc(Eng) FSAICE D Brink (CEO) Preng Beng(Hons) FSAICE JP van der Berg Preng PhD Meng FSAICE JE Glendinning PrSdiNat MSc(Env Geochem) MSAIEG

A Costhuizer (Alternate) Preig Eng(Hons) MSAICE TECHNICAL DIRECTORS: DK Warde (Chairman) Preig Eng(Hons) MSAICE TECHNICAL DIRECTORS: PW Day Preig Deng HonFSAICE PG Gage Preig Ceng BSc(Eng) GDE MSAICE Alstructe JR Shamrock Preig MSAICE MIWMSA NJ Vermeulen Preig PhD Meng MSAICE HR Aschenborn Preig BEng(Hons) MSAICE M van Zyl PrsciNat BSc(Hons) MIWMSA MW Palmer Preig MSc(Eng) MSAICE TG Ie Roux Preig MEng MSAICE AJ Bain Preig BEng MSAICE Msust Preig PhD MSAICE M Theron Preig PhD Meng MSAICE ASSOCIATES: BR Antrobus PrsciNat BSc(Hons) MSAIEG PJJ Smit Beng(Hons) AMSAICE A Puchner PrsciNat MSc(Geol) MSAIEG IMAEG M van Biljon PrsciNat MSc(Hoydrogeology)

ASSOCIATES: BR Antrobus Pr5ciNat B5c(Hons) MSAIEG PJJ Smit BEng(Hons) AMSAICE R Puchner Pr5ciNat M5c(Geol) MSAIEG IMAEG M van Biljon Pr5ciNat M5c(Hydrogeology) JS Mizza PEng BEng(Hons) MSAIEG MWMSA RA Nortje PEng MSAIEG PJJ Smit BEng(Hons) AMSAICE R Puchner Pr5ciNat M5c(Geol) MSAIEG IMAEG M van Biljon Pr5ciNat M5c(Hydrogeology) JS Mizza PEng BEng(Hons) MSAICE MWMSA RA Nortje PEng M5c(Eng) MSAICE MWMSA GB Simpson PEng MEng MSAIAE MSAICE C Cilliers PEng Beng(Hons) MSAICE NW Nxumalo PEng B5c(Eng) MSAICE FINANCIAL MANAGER: HC Neveling BCom MBL

2. DEA WASTE CLASSIFICATION SYSTEM

The new waste classification system, which replaced the Department of Water Affairs' Minimum Requirements classification system on 23 August 2013, focuses on the long term storage (in excess of 90 days) and disposal of waste on land or in waste disposal facilities. The system is based on the Australian State of Victoria's waste classification system for disposal, which uses the Australian Standard Leaching Procedure (ASLP) to determine the leachable concentrations (LCs) of pollutants (DEA, 2013a).

For waste to be disposed of with putrescible organic matter, an acetic acid leach solution is used. This leach solution is very similar to the US EPA TCLP leach solution used in the now outdated Minimum Requirements, except that the pH is 5.0, instead of pH 4.93. In cases where a waste has a high pH, and following an acid neutralisation capacity test, a pH 2.9 leach solution must be used.

In cases where non-organic waste, such as the power station ash, is to be co-disposed with other non-organic waste, a basic 0.10 M sodium tetraborate decahydrate (borax) solution of pH 9.2 \pm 0.10 should be used in addition to the acetic acid leach (DEA, 2012a). The objective of the sodium tetraborate test is to identify contaminants that are leached above the various leachable concentration thresholds (LCTs) trigger values at a high pH¹.

For non-putrescible inorganic waste to be disposed of without any other wastes (monodisposal scenario), reagent water (distilled water) is used as a leach agent.

In addition to the above, the TCs of the constituents of concern need to be determined and compared to specified total concentration threshold (TCT) values (DEA, 2013a)².

The number of potentially hazardous substances in the new classification system has been significantly reduced from that listed in the old Minimum Requirements of 1998 and brought in line with the potentially hazardous substances being used in other parts of the world to classify waste for disposal purposes. However, if a generator is aware of a hazardous substance other than those listed by the DEA, they are obliged to indicate and analyse for this.

Once the analytical results are known, the waste is classified in line with the following approach:

- Wastes with <u>any</u> element or chemical substance concentration above the LCT3 or TCT2 values (LC > LCT3 or TC > TCT2) are Type 0 Wastes. Type 0 wastes (extremely hazardous waste), require treatment/stabilisation before disposal;
- Wastes with <u>any</u> element or chemical substance concentration above the LCT2 but below LCT3 values, or above the TCT1 but below TCT2 values (LCT2 < LC ≤ LCT3 or TCT1 < TC ≤ TCT2), are Type 1 Wastes (highly hazardous waste, which must be

¹ LCT1 limits have, where possible, been derived from the lowest value of the standard for human health effects listed for drinking water (LCTO) in South Africa (DWAF, SANS) by multiplying with a Dilution Attenuation Factor (DAF) of 50 as proposed by the Australian State of Victoria, "Industrial Waste Resource Guidelines: Solid Industrial Waste Hazard Categorisation and Management", June 2009 (www.epa.vic.gov.aus). If no standard was available in South Africa then the limits given by the WHO or other appropriate drinking water standard, such as those published in the California Regulations have been used.

LCT2 limits were derived by multiplying the LCT1 value with a factor of 2, and the LCT3 limits have been derived by multiplying the LCT2 value with a factor of 4. The factors applied represents a conservative assessment of the decrease in risk achieved by the increase in environmental protection provided by more comprehensive liner designs in higher classes of landfill and landfill operating requirements.

² TCT1 limits were derived from the land remediation values for commercial/industrial land determined by the Department of Environmental Affairs' "Framework for the Management of Contaminated Land". The TCT2 limits were derived by multiplying TCT1 by a factor of 4, as used by the Environmental Protection Agency, Australian State of Victoria

disposed of on a Class A landfill constructed with the most conservative barrier system);

- Wastes with <u>any</u> element or chemical substance concentration above the LCT1 but below the LCT2 values and <u>all</u> concentrations below the TCT1 values (LCT1 < LC ≤ LCT2 and TC ≤ TCT1) are Type 2 Wastes (moderate hazardous waste, which must be disposed of on a Class B landfill);
- Wastes with any element or chemical substance concentration above the LCT0 but below LCT1 values and all concentrations below the TCT1 values (LCT0 < LC ≤ LCT1 and TC ≤ TCT1) are Type 3 Wastes (low hazardous waste, which must be disposed of on a Class C landfill);
- Wastes with all elements and chemical substance concentration levels for metal ions and inorganic anions below the LCT0 and TCT0 values (LC ≤ LCT0 and TC ≤ TCT0), as well as below the limits for organics and pesticides as in Table 2-1, are Type 4 Wastes (near inert wastes, which must be disposed of on sites with some base preparation, but no formal barrier system):

Chemical Substances in Waste	Total Concentration (mg/kg)							
Organic constituents								
Total organic carbon (TOC)	30 000 (3%)							
Benzene, toluene, ethyl benzene and xylenes (BTEX)	6							
Polychlorinated Biphenyls (PCBs)	1							
Mineral Oil (C10 to C40)	500							
Pesti	cides							
Aldrin + Dieldrin	0.05							
DDT + DDD + DDE	0.05							
2,4-D	0.05							
Chlordane	0.05							
Heptachlor	0.05							

Table 2-1: Organic limits for wastes to be classified as Type 4 wastes.

- Wastes with all element or chemical substance leachable concentration levels for metal ions and inorganic anions below or equal to the LCT0 limits are considered to be Type 3 waste, irrespective of the total concentration of elements or chemical substances in the waste, provided that:
 - All chemical substance concentration levels are below the total concentration limits for organics and pesticides in the **Table 2-1**;
 - The inherent physical and chemical character of the waste is stable and will not change over time; and,
 - The waste is disposed of to landfill without any other waste.

• Wastes with the TC of an element or chemical substance above the TCT2 limit, and where the concentration cannot be reduced to below the TCT2 limit, but the LC for the particular element or chemical substance is below the LCT3 limit, the waste is considered to be Type 1 Waste.

3. <u>TESTS CONDUCTED</u>

Camden Power Station supplied representative samples of dry ash, wet ash (2 samples) and ash disposal site leachate (seepage water) – see **Photo 1**. The samples were then sent to the SGS Laboratory in Randburg for various leach analyses, total concentration (TC) determination and quantitative x-ray diffraction (XRD) analysis to determine the mineralogy.

The SGS laboratory subjected the dry ash to a Minimum Requirements' Acid Rain Leach Procedure (ARLP). The ARLP leach procedure was used in the 1998 Minimum Requirements waste classification system where a waste is mono-disposed or stored or where it is co-disposed with other inorganic waste types not containing any decomposable compounds.

The dry ash sample was also subjected to a total extraction procedure in order to determine the TCs of the various elements.

In addition, the dry ash sample was subjected to a XRD analysis to determine the mineralogy.

Following the new DEA classification system for the mono storage and disposal of a waste, solids were firstly separated from the liquid fraction and the percentage solids determined. The solids fractions were then subjected to a deionised (DI) (South African Standard Leach Procedure) water leach test, where after the leach solution was analysed for various metals and other inorganic constituents. The water fractions of the two wet ash samples were also analysed for the various metals and inorganic constituents listed in the National Norms and Standards. The organic components listed in the National Norms and Standards were not analysed for as it is highly unlikely that organics will occur in the wet ash at concentrations above the LCT0 and TCT0 values of the National Norms and Standards.

The two wet ash samples provided were termed dusting ash, that is the fine ash-water mixture used to develop the outer walls of the current ash disposal facility and ashing ash, the coarse ash-water mixture. The coarse ash is deposited in the middle of the ash disposal facility. It is noted that the brine from the reverse osmosis plant is co-disposed with the wet ash.

A sample of leachate collected at the toe of the ash disposal facility (seepage water) was also analysed for various inorganic constituents.

The certificates of the results of the various tests conducted on the ash and leachate are included in **Appendix A**.

Although a sample of brine from the reverse osmosis (RO) plant was requested for analyses at the time, the plant was not operative on the day that the wet ash samples were collected. Theoretical values for the various constituents of concern were provided by Eskom Camden Power Station and these values were used in the initial classification. However, for this classification, Mrs I. Hodgson of the Camden Power Station provided some analyses performed on the RO plant brine to J&W on 20 February 2014 and also determined the conductivity of the brine on 20 February 2014 – see **Appendix B**. The conductivity of the brine was verbally reported as 3 309 μ S/cm (330.9 mS/m). For the classification of the brine, the 70% water recovery rate results were used, which provides

a more concentrated brine, therefore the more conservative scenario was used for the classification.

For the classification if the wet ash in terms of the DEA's National Norms and Standards the analytical results from the ARLP were ignored. Only the results obtained from the DI water leach and the TCs were used for the classification of the wet ash.

Four samples used in the classification of the Camden Power Station Ash, Ash Carrier Water and Ash Disposal Facility Seepage Water (Leachate)

5

4. <u>CAMDEN POWER STATION ASH AND REVERSE OSMOSIS BRINE</u> <u>CLASSIIFICATION</u>

4.1 Wet Ash Classification

In order to determine the classification of the wet dusting ash (fine ash) and wet ashing ash (coarse ash) (both containing brine from the reverse osmosis plant), the percentage contributions of the concentrations of the constituents in the liquid fractions and the leach concentrations were calculated based on the percentage liquids to solids – see **Table 4-1** and **Table 4-3**. The corrected concentrations were then used for the classification – see **Table 4-2** and **Table 4-4**. Based on the corrected concentrations, both the dusting and ashing ash is classified as Type 3 wastes.

In addition, the concentrations of the listed constituents were also determined on the ash seepage water collected at the base of the existing ash disposal facility. Based on these concentrations, the ash is also classified as a Type 3 waste. It is noted that the TDS of the seepage water (764 mg/ ℓ) is lower than the average TDS of the dusting and ashing ash (1 424 mg/ ℓ).

Type 3 wastes should be disposed of on waste disposal facilities with a Class C landfill barrier system.

4.2 RO Plant Brine Classification

Based on the theoretical and actual concentrations provided for the RO plant brine, the brine is classified as a Type 3 liquid waste – see **Table 4-6.** The brine is classified as a Type 3 waste due to the concentrations of TDS, chloride, sulphate, fluoride, lead, total chromium and molybdenum being above their respective LCT0 values. Note that actual values were available for some of the constituents, but those marked red in **Table 4-6** are theoretical values supplied by Eskom.

			DUSTING S	AMPLE			
Percentage solids	48.30%						
Г			WATER LEACH: DUS	STING SAMPLE			
		Solid Phase			Water Phase		Leach Concent
Element/Compound	mg/ℓ	Contribution Factor	Corrected concentration in mg/&	mg/e	Contribution Factor	Corrected concentration in mg/e	mg/ℓ
As, Arsenic	0.0015	0.483	0.0007245	0.0015	0.517	0.0007755	0.0015
B, Boron	0.2	0.483	0.0966	0.11	0.517	0.05687	0.15347
Ba, Barium	0.84	0.483	0.40572	1.3	0.517	0.6721	1.07782
Cd, Cadmium	0.001	0.483	0.000483	0.001	0.517	0.000517	0.001
Co, Cobalt	0.001	0.483	0.000483	0.001	0.517	0.000517	0.001
Cr, Chromium - total	0.11	0.483	0.05313	0.15	0.517	0.07755	0.13068
Cr VI, Chromium VI	0.11	0.483	0.05313	0.15	0.517	0.07755	0.13068
Cu, Copper	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
Hg, Mercury	0.0003	0.483	0.0001449	0.00005	0.517	0.00002585	0.0001707
Mn, Manganese	0.0015	0.483	0.0007245	0.0015	0.517	0.0007755	0.0015
Mo, Molydenum	0.067	0.483	0.032361	0.19	0.517	0.09823	0.130591
Ni, Nickel	0.0035	0.483	0.0016905	0.0035	0.517	0.0018095	0.0035
Pb, Lead	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
Sb, Antimony	0.0035	0.483	0.0016905		0.517	0	0.001690
Se, Selenium	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
V, Vanadium	0.045	0.483	0.021735	0.0021	0.517	0.0010857	0.022820
Zn, Zinc	0.005	0.483	0.002415	0.005	0.517	0.002585	0.005
TDS, Total dissolved salts	272	0.483	131.376	1992	0.517	1029.864	1161.24
Cl, Chloride	2.1	0.483	1.0143	120	0.517	62.04	63.0543
SO ₄ , Sulphate	13	0.483	6.279	210	0.517	108.57	114.849
NO ₃ , Nitrate	1.5	0.483	0.7245	0.64	0.517	0.33088	1.05538
F, Fluoride	0.3	0.483	0.1449	0.73	0.517	0.37741	0.52231
Note: In order to calcuate t	the % contibution	of each phase, values les	ss than (<) the limit of ren	ort (I OR) were div	vided by 2		

 Table 4-1:
 Corrected concentrations for dusting ash sample based on % contribution of ash carrier water and fine ash (dusting ash) content

	Camden Power Station Ash: Dusting Ash															
Chemical Species	Deionised Water Leach (LC)	Total Concentration (TC)	Limit of Report for LC		LCT0	ТСТО		LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
	mg/ℓ	mg/kg	mg/ℓ	-	mg/£	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	0.0015	13	0.0030		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	0.15	NA	0.220	-	0.50	150		25	15 000		50	15 000		200	60 000	
Ва	1.1	716	0.030		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	0.0010	<0.020	0.0020		0.003	7.5		0.15	260		0.30	260		1.2	1 040	
Со	0.0010	16	0.0020	Τ	0.50	50	Тт	25	5 000] _T	50	5 000	т	200	20 000	
Cr	0.13	113	0.040	Y	0.10	46 000	Y	5.0	800 000	Ý	10	800 000	Y	40		Y
Cr(VI)	0.13	NA	0.010	Р	0.050	6.5	Р	2.5	500	Р	5.0	500	Р	20	2 000	Р
Cu	0.0020	59	0.0040	E	2.0	16	E	100	19 500	E	200	19 500	E	800	78 000	E
Hg	0.00017	<3.0	0.00010	4	0.006	0.93	3	0.30	160	2	0.6	160	1	2.4	640	0
Mn	0.0015	488	0.060		0.50	1 000		25	25 000	_	50	25 000		200	100 000	-
Мо	0.13	5.2	0.020	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	W
Ni	0.0035	51	0.0070	A	0.070	91	A	3.5	10 600	A	7.0	10 600	A	28	42 400	A
Pb	0.0020	41	0.0040	T	0.010	20	T	0.50	1 900	T	1.0	1 900	ъ Т	4.0	7 600	S T
Sb	0.0017	0.89	0.0070	E	0.02	10	E	1.00	75	E	2.00	75	E	8.00	300	E
Se	0.0020	<2.0	0.0040		0.010	10		0.50	50		1.0	50		4.0	200	
V	0.023	68	0.0030		0.20	150		10	2 680		20	2 680		80	10 720	
Zn	0.0050	314	0.080		5.0	240		250	160 000		500	160 000		2 000	640 000	
TDS	1 161		21		1 000			12 500			25 -000	N/A		100 000	N/A	
Chloride	63		0.50		300			15 000			30 000	N/A		120 000	N/A	
Sulphate as SO ₄	115		0.40		250			12 500			25 000	N/A		100 000	N/A	
NO₃ as N	1.1		0.40		11			550			1 100	N/A		4 400	N/A	
Fluoride	0.52	NA	0.30		1.5	100		75	10 000		150	10 000		600	40 000	
NA	Not analysed															
N/A	Not available															
	LC ≤ LCT0 <u>and</u> TC ≤	≤ TCT0: Type 4 wastes	_													
	LCT0 < LV ≤ LCT1 3 Wastes	and_TC ≤ TCT1: Type	_													
	LCT1< LC ≤ LCT2 <u>a</u> Waste	<u>nd </u> TC ≤ TCT1: Type 2														
	LCT2< LC ≤ LCT3 <u>c</u> Type 1 Wastes	$\frac{1}{1000} \text{ TCT1} < \text{TC} \le \text{TCT2}:$														
	LC > LCT3 <u>or</u> TC > 1	ГСТ2: Туре 0														

Table 4-2: De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Dusting sample)

	ASHING SAMPLE (Wet)									
Percentage solids	6.37%									
WATER LEACH: ASHING SAMPLE										
	Solid Phase Water Phase I									
Element/Compound	Element/Compound mg/& Co		Corrected concentration in mg/୧	mg/ℓ	Contribution Factor	Corrected concentration in mg/୧	mg/ℓ			
As, Arsenic	0.012	0.064	0.00076	0.0015	0.9363	0.0014	0.0022			
B, Boron	0.39	0.064	0.025	1.1	0.9363	1.03	1.1			
Ba, Barium	0.059	0.064	0.0038	0.34	0.9363	0.32	0.32			
Cd, Cadmium	0.0024	0.064	0.00015	0.0010	0.9363	0.00094	0.0011			
Co, Cobalt	0.0027	0.064	0.00017	0.0010	0.9363	0.00094	0.0011			
Cr, Chromium - total	0.0075	0.064	0.00048	0.029	0.9363	0.027	0.028			
Cr VI, Chromium VI	0.0050	0.064	0.00032	0.030	0.9363	0.028	0.028			
Cu, Copper	0.0020	0.064	0.00013	0.0020	0.9363	0.0019	0.0020			
Hg, Mercury	0.00015	0.064	0.000096	0.0012	0.9363	0.0011	0.0011			
Mn, Manganese	0.0097	0.064	0.00062	0.0015	0.9363	0.0014	0.0020			
Mo, Molydenum	0.012	0.064	0.00076	0.18	0.9363	0.17	0.17			
Ni, Nickel	0.0035	0.064	0.00022	0.0035	0.9363	0.0033	0.0035			
Pb, Lead	0.0020	0.064	0.00013	0.0020	0.9363	0.0019	0.0020			
Sb, Antimony	0.0035	0.064	0.00022		0.9363	0	0.00022			
Se, Selenium	0.0020	0.064	0.00013	0.0094	0.9363	0.0088	0.0089			
V, Vanadium	0.022	0.064	0.0014	0.020	0.9363	0.019	0.020			
Zn, Zinc	0.0050	0.064	0.00032	0.0050	0.9363	0.0047	0.0050			
TDS, Total dissolved solids	64	0.064	4.1	856	0.9363	801	806			
Cl, Chloride	1.7	0.064	0.11	97	0.9363	91	91			
SO ₄ , Sulphate	19	0.064	1.2	380	0.9363	356	357			
NO ₃ , Nitrate	0.28	0.064	0.018	3.2	0.9363	3.0	3.0			
F, Fluoride	0.025	0.064	0.0016	0.74	0.9363	0.69	0.69			
Note: In order to calcuate	the % contibution	of each phase, values les	ss than (<) the limit of report	t (LOR) were divid	led by 2					

Table 4-3: Corrected concentrations for ashing sample based on % contribution of ash carrier water and ashing (coarse) ash content

Table 4-4:	De-io	nised Water Le	each Test Res	ults of	Camder	Power Sta	tion A	sh (TC Dry	Ash, LC Ash	ing sa	mple)	
	Camden Pov	ver Station Ash: A	shing Sample									
Chemical Species	Deionised Water Leach (LC)	Total Concentration (TC)	Limit of Report for LC		LCT0	ТСТО		LCT1	TCT1		LCT2	TCT1
	mg/ℓ	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg
As	0.0022	13	0.0030		0.010	5.8		0.50	500		1.0	500
В	1.1	NA	0.220		0.50	150		25	15 000		50	15 000
Ва	0.32	716	0.030		0.70	62.5		35	6 250		70	6 250
Cd	0.0011	<0.020	0.0020		0.003	7.5		0.15	260		0.30	260
Со	0.0011	16	0.0020	_ _	0.50	50		25	5 000	т	50	5 000
Cr	0.028	113	0.040	Y	0.10	46 000	Y	5.0	800 000	Y	10	800 000
Cr(VI)	0.028	NA	0.010	Р	0.050	6.5	Р	2.5	500	Р	5.0	500
Cu	0.0020	59	0.0040	E	2.0	16	E	100	19 500	E	200	19 500
Hg	0.0011	<3.0	0.00010	4	0.006	0.93	3	0.30	160	2	0.60	160
Mn	0.0020	488	0.060		0.50	1 000		25	25 000		50	25 000
Мо	0.17	5.2	0.020	W	0.070	40	W	3.5	1 000	W	7.0	1 000
Ni	0.0035	51	0.0070	A	0.070	91	A	3.5	10 600	A	7.0	10 600
Pb	0.0020	41	0.0040	т Т	0.010	20	T S	0.50	1 900	T	1.0	1 900
Sb	0.00022	0.89	0.0070	Ē	0.020	10	Ē	1.00	75	E	2.00	75
Se	0.0089	<2.0	0.0040		0.010	10		0.50	50		1.0	50
V	0.020	68	0.0030		0.20	150		10	2 680		20	2 680
Zn	0.0050	314	0.080		5.0	240		250	160 000		500	160 000
TDS	806		21		1 100			12 500			25 000	
Chloride	91		0.50		300			15 000			30 000	
Sulphate as SO ₄	357		0.40		250			12 500			25 000	
NO₃ as N	3.0		0.40		11			550			1 100	
Fluoride	0.69	NA	0.30		0 1.5	100		75	10 000		150	10 000
NA	Not analysed			•				·	•	•		
N/A	Not available]									
	LC ≤ LCT0 <u>and</u> wastes	TC ≤ TCT0: Type 4										

LCT0 < LV ≤ LCT1 <u>and</u> TC ≤ TCT1: Type 3 Wastes

LCT1< LC ≤ LCT2 <u>and</u> TC ≤ TCT1: Type 2 Waste

LCT2< LC \leq LCT3 <u>or</u> TCT1 < TC \leq TCT2: Type 1 Wastes

LC > LCT3 <u>or</u> TC > TCT2: Type 0

LCT3	TCT2	
mg/ℓ	mg/kg	
	2 000	
	60 000	
	25 000	
	1 040	
	20 000	т
		Y
	2 000	Р
	78 000	E
	640	0
	100 000	Ŭ
	4 000	W
	42 400	A
	7 600	S T
	300	Ē
	200	
	10 720	
	640 000	
00		
00		
00		
	40 000	

4.0 200 280 1.2 200

40

20

800 2.40

200

28

28

4.0 8.00

4 400 600

Т

Υ

Ρ Е

1

W

А

S T

Е

 Table 4-5:
 Ash Seepage Water Concentrations versus LCT and TCT values

	Camden Pow	er Station Ash: Se	epage Water													
Chemical Species	Seepage water (LC)	Total Concentration (TC)	Limit of Report for LC		LCT0	ТСТО		LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
	mg/ £	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	0.0049	NA	0.0030		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	2.50	NA	0.220		0.50	150		25	15 000		50	15 000		200	60 000	
Ва	0.063	NA	0.030		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	<0.002	NA	0.0020		0.003	7.5		0.15	260		0.30	260		1.2	1 040	
Со	<0.002	NA	0.0020	Т	0.50	50	т	25	5 000	Т	50	5 000	т	200	20 000	т
Cr	0.0051	NA	0.0030	Ŷ	0.10	46000	Ŷ	5.0	800 000	Ŷ	10	800 000	Ŷ	40		Ŷ
Cr(VI)	<0.01	NA	0.010	P	0.050	6.5	P	2.5	500	Р	5.0	500	Р	20	2 000	P
Cu	<0.004	NA	0.0040	E	2.0	16	E	100	19 500	E	200	19 500	E	800	78 000	E
Hg	0.00042	NA	0.00010	4	0.006	0.93	3	0.3	160	2	0.6	160	1	2.4	640	0
Mn	<0.003	NA	0.0030		0.50	1 000		25	25 000	_	50	25 000		200	100 000	_
Мо	0.19	NA	0.020	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	W
Ni	<0.007	NA	0.0070	A S	0.070	91	A S	3.5	10 600	A S	7.0	10 600	A S	28	42 400	A S
Pb	<0.004	NA	0.0040	T	0.010	20	T	0.50	1 900	T	1.0	1 900	T	4.0	7 600	T
Sb	NA	NA	0.0070	E	0.02	10	Е	1.00	75	E	2.0	75	E	8.00	300	E
Se	0.0047	NA	0.0040		0.010	10		0.50	50		1.0	50		4.0	200	_
V	<0.001	NA	0.001		0.20	150		10	2 680		20	2 680		80	10 720	_
Zn	<0.01	NA	0.01		5.0	240		250	160 000		500	160 000		2 000	640 000	
TDS	764		21		1 000	-		12 500	_		25 000	N/A		100 000	N/A	
Chloride	160		0.50	_	300	-		15 000	-		30 000	N/A		120 000	N/A	
Sulphate as SO4	450		0.40		250			12 500			25 000	N/A		100 000	N/A	
NO ₃ as N	<0.1		0.10		11			550			1 100	N/A		4 400	N/A	
Fluoride	<0.05	NA	0.30		1.5	100		75	10 000		150	10 000		600	40 000	
NA	Not analysed															
N/A	Not available		-													
	LC ≤ LCT0 <u>and</u> TC ≤	STCT0: Type 4 wastes	-													
	LCT0 < LV ≤ LCT1 3 Wastes	and_TC ≤ TCT1: Type														
	LCT1< LC ≤ LCT2 <u>a</u> Wastes	<u>nd </u> TC ≤ TCT1: Type 2														
	LCT2< LC ≤ LCT3 <u>o</u> Type 1 Wastes	<u>r</u> TCT1 < TC ≤ TCT2 :														
	LC > LCT3 <u>or</u> TC > 1	TCT2: Type 0 Wastes														

Table 4-6: Concentrations of Constituents of the RO Plant Brine versus LCT and TCT values

	Camden Po	wer Station Ash: Recovery Rate	Brine: 70%													
Chemical Species	Brine from RO Plant(LC)	Total Concentration (TC)	Limit of Report for LC		LCT0	TCT0		LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
	mg/ℓ	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	N/A	NA	N/A		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	N/A	NA	N/A		0.50	150		25	15 000		50	15 000	1	200	60 000	-
Ва	0.0250	NA	N/A		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	<0.0050	NA	N/A		0.003	7.5		0.15	260		0.30	260		1.2	1 040	
Со	<0.0050	NA	N/A] _	0.50	50	Т	25	5 000	Т	50	5 000] _	200	20 000] _
Cr	0.10	NA	N/A	Ŷ	0.10	46 000	Ý	5.0	800 000	Ý	10	800 000	Ý	40		Y
Cr(VI)	N/A	NA	N/A	Р	0.050	6.5	Р	2.5	500	Р	5.0	500	Р	20	2 000	Р
Cu	<0.0050	NA	N/A	E	2.0	16	E	100	19 500	E	200	19 500	E	800	78 000	E
Hg	0.0040	NA	N/A	4	0.006	0.93	3	0.03	160	2	0.6	160	1	2.4	640	0
Mn	<0.005	NA	N/A		0.50	1 000		25	25 000		50	25 000		200	100 000	
Мо	0.10	NA	N/A	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	W
Ni	<0.0050	NA	N/A	A	0.070	91	A	3.5	10 600	A	7.0	10 600	A	28	42 400	A
Pb	0.27	NA	N/A	T	0.010	20	T	0.50	1 900	Т	1.0	1 900	T	4.0	7 600	Т
Sb	N/A	NA	N/A	E	0.02	10	E	1.00	75	E	2.00	75	E	8.00	300	E
Se	N/A	NA	N/A		0.010	10		0.50	50		1.0	50		4.0	200	
V	0.10	NA	N/A		0.20	150		10	2 680		20	2 680		80	10 720	
Zn	<0.0050	NA	N/A		5.0	240		250	160 000		500	160 000		2 000	640 000	
TDS	2 150*		N/A		1 000			12 500			25 000	N/A		100 000	N/A	
Chloride	380		N/A		300			15 000			30 000	N/A		120 000	N/A	
Sulphate as SO ₄	2 080		N/A		250			12 500			25 000	N/A		100 000	N/A	
NO ₃ as N	3.32		N/A		11			550			1 100	N/A		4 400	N/A	
Fluoride	3.47	NA	N/A		1.5	100		75	10 000		150	10 000		600	40 000	
NA	Not analysed															
N/A	Not available															
	Values in red are the	oretical	_													
*	Calculated TDS a recovery rate using conversion factor of	t 60% clean water g a µS/cm to mg/ℓ 0.65														
	LC ≤ LCT0 <u>and</u> TC ≤	TCT0: Type 4 wastes														
	LCT0 < LV ≤ LCT1 3 Wastes	and_TC ≤ TCT1: Type														
	LCT1< LC ≤ LCT2 <u>a</u> Waste	nd_TC ≤ TCT1: Type 2														
	LCT2< LC ≤ LCT3 <u>o</u> Type 1 Wastes	<u>r</u> TCT1 < TC ≤ TCT2:														
	LC > LCT3 <u>or</u> TC > 1	СТ2: Туре 0														

5. DISCUSSION AND CONCLUSIONS

In terms of the DEA's National Norms and Standards, the Camden wet ash was subjected to a TC extract and a DI water leach. Two samples were used in the assessment, namely dusting ash (fine ash) and ashing ash (course) ash. In addition, the water leaching from the base of the existing ash disposal facility was also analysed and compared to the respective LCT values. The seepage water was therefore also classified in terms of the National Norms and Standards, as it is seen as the actual risk posed by the ash disposal facility to the receiving environment.

The DI water leach scenario is applicable in the case that ash is mono-disposed or stored in the environment at a permanent storage facility, i.e., the waste is stored for longer than 90 days. Based on the DI water leach results, and taking the concentrations of the water fractions of the wet ash samples into account, both the dusting and ashing ash samples are classified as Type 3 wastes requiring disposal on a landfill with a Class C barrier system – see **Figure 5-1**.

This barrier system is considered appropriate for the wet ash disposal facility provided the drainage layer on top of the barrier system contains drainage pipes of adequate size, spacing and strength to ensure atmospheric pressure within the drainage application for the service life of the ash disposal facility (DEA, 2013b). However, in the case of the wet ash, the DWA may require that a lagoon barrier design as per the DWAF's Minimum Requirements be installed – see **Figure 5-2**. In addition, it should be noted that the National Norms and Standards require that the disposal of liquid waste must be phased out over a period of six years from the date that the National Norms and Standards were promulgated. If the authorities insist on this approach, it may have significant cost implications for the Camden Power Station. Therefore it is recommended that agreement be reached with the authorities on the long term management scenario of the ash disposal facility prior to the barrier system being designed.

The RO plant brine is also classified as a Type 3 waste. In the case that the brine is codisposed with the ash on the new ash disposal facility, a Class C landfill barrier is considered appropriate for the wet ash and brine disposal facility. As with the wet ash only disposal scenario, it is a requirement that liquid waste should be disposed of in hazardous lagoon facilities, but provided the drainage layer on top of the Class C barrier system contains drainage pipes of adequate size, spacing and strength to ensure atmospheric pressure within the drainage application for the service life of the ash disposal facility, the co-disposal scenario is considered appropriate. It has been shown that ash has significant capacity to adsorb salts, which is also the case at Camden. The TDS of the ashing water (average of the dusting and ashing ash values is 1 424 mg/ ℓ) has a significantly higher TDS value than that of the seepage water (764 mg/ ℓ) – see **Table 4-1**, **Table 4-3** and **Table 4-5**. The co-disposal of the brine with the wet ash may therefore be regarded as treatment of the RO plant brine.

In the case that the RO plant brine is mono-disposal, the barrier design will have to comply with the performance specifications of that of a hazardous waste lagoon.

It is important to note that the disposal of brines or wastes with a high salt content (TDS > 5%) and a leachable concentration for TDS of more than 100 000 mg/ ℓ needs to be phased out within eight (8) years from the date of promulgation of the National Norms and Standards (DEA, 2013b). However, the brine from the RO plant at Camden has a TDS of only 2 150 mg/ ℓ (0.215%). Therefore the requirement of phasing out the disposal of the Camden RO brine is not applicable as the TDS is lower than 5%.

Table 5-1 below summarises the classification of the wet ash and RO plant brine and also indicates the recommended barrier systems for the various disposal scenarios.

Waste Type and Recommended Class of Landfill Required

Waste	Type of Waste	Disposal Scenario	Class of Landfill	Recommended Barrier System
Ash + Ash Carrier Water	Type 3: Low Risk Waste	Mono-disposal	Class C	Class C ⁽¹⁾
Brine from RO Plant	Type 3: Low Risk Waste	Mono-disposal	H:H Lagoon	H:H Lagoon
Ash + Ash Carrier Water + RO Plant Brine	Type 3: Low Risk Waste	Co-disposal	Class C	Class C ⁽¹⁾
(4). Dravidad tha drains	and lower on ten of th	a harriar avatam aar	toino droinono n	inco of oderwate

(1): Provided the drainage layer on top of the barrier system contains drainage pipes of adequate size, spacing and strength to ensure atmospheric pressure within the drainage application for the service life of the ash disposal facility

Waste body 300 mm thick finger drain of geotextile covered aggregate 100 mm Protection layer of silty sand or a geotextile of equivalent performance 1,5 mm thick HDPE geomembrane

300 mm clay liner (of 2 X 150 mm thick layers)

Under drainage and monitoring system in base preparation layer

In situ soil

Figure 5-1: Class C landfill barrier system (DEA, 2013b)

Hazardous Waste Lagoons

15

Figure 5-2: H:H Lagoon barrier system (DWAF, 1998b)

6. **RECOMMENDATIONS**

The following recommendations are made:

- The intended barrier design of the new wet ash disposal facility for Camden Power Station should be presented, discussed and agreed upon with the Department of Water Affairs prior to the design being developed;
- A Class 3 barrier design, which is the recommended barrier system by J&W, for the new wet ash disposal facility should incorporate a drainage layer on top of the barrier system containing drainage pipes of adequate size, spacing and strength to ensure atmospheric pressure within the drainage application for the service life of the ash disposal facility as per the DEA National Norms and Standards or as agreed with the Department of Water Affairs.
- If the RO brine is to be mono disposed, the barrier system for the disposal facility must comply with the performance requirements of a Hazardous Lagoon as specified in the Department of Water Affairs' Minimum Requirements of 1998 due to the head of water on the barrier system.
- If Eskom decides to co-dispose the RO plant brine with the wet ash, it should be • motivated that the co-disposal is considered treatment of the brine. The brine from the Camden RO plant does not qualify as a brine in terms of the specification given in the National Norm and Standards.

7. **REFERENCES**

- Department of Water Affairs and Forestry, 1998a. Minimum Requirements for the i. Handling, Classification and Disposal of Hazardous Waste, Second Edition. Department of Water Affairs, Pretoria.
- Department of Water Affairs and Forestry, 1998b. Minimum Requirements for ii. Waste Disposal by Landfill, Second Edition. Department of Water Affairs, Pretoria.
- Department of Environmental Affairs and Tourism, 2008. Waste delisting iii. procedure, April 2008. Department of Environmental Affairs and Tourism, Pretoria.
- iv. Department of Environmental Affairs, 2013a. National norms and standards for the assessment of waste for landfill disposal. R635 of 23 August 2013, Government Gazette 36784 of 23 August 2013, Government Printer, Pretoria.
- Department of Environmental Affairs, 2013b. National norms and standards for ν. disposal of waste to landfill. R636 of 23 August 2013, Government Gazette 36784 of 23 August 2013, Government Printer, Pretoria.
- vi. Legge, K., 2011. Verbal communication. Department of Water Affairs.
- Hodgskin, I., 2011. Verbal communication. Eskom, Camden Power Station. viii.

Manth

Marius van Zyl **Project Manager**

John Glendinning **Project Director**

17 September 2014

Document source: C:\Alljobs\D116 Camden Ash Classification\Report\Final\D116 00 REP Rev6 LAP MvZ JG CamdenAshClassification Zitholele 17092014.docx Document template: Report Clean tem Rev1 Jan10.dotx

Tolmay Hopkins Reviewer

ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH AND BRINE FROM THE CAMDEN POWER STATION

Report: JW164/11/D116 - REV 6

Appendix A

SGS SOUTH AFRICA: LABORATORY CERTIFICATES

TEST REPORT SGS South Africa (Pty) Ltd. 58 Melville Street Booysens Johannesburg

Sarah Newton SGS Environmental Services 259 Kent Avenue Randburg

MINERALOGICAL REPORT No: MIN 0911/192

Work Requested By:	Sarah Newton
On Behalf Of:	SGS Environmental
Date issued:	05 October 2011
Investigator:	O.D Mosinyi

Analysis of Sample 1881-001 by XRD

<u>O.D. Mosinyi</u>

Mineralogist

L.L. Coetzee

Manager: Mineralogy

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u> Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and/or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorised alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

1. INTRODUCTION

Sarah Newton, on behalf of SGS Environmental Services, submitted one sample for X-ray diffraction mineralogical examination. The sample was labelled 1881-001, a dry ash sample.

2. METHODOLOGY

The sample was pulverized and analysed by X-ray diffraction utilising a Panalytical X'pert Pro Diffractometer employing Co-K α radiation. Data interpretation was by means of Panalytical Highscore Plus analytical software, in conjunction with the PDF2 database. The XRD analysis was used to identify and quantify the crystalline phases present in the sample.

3. RESULTS

3.1 X-ray Diffraction Analyses

The crystalline phases that were detected by XRD are listed below in Table 1, and the diffractogram for the sample is shown in figure 1. There were four crystalline phases that were detected by XRD. These were mullite which made up 45.2%, of the sample, and quartz which also accounted for 45.2% of the sample, calcite accounted for 6.5% of the sample and lastly magnetite accounted for 3.1% of the sample.

Mineral	Approx. Formula	01881-001 Mass %
Mullite	Al ₆ Si ₂ O ₁₃	45.2
Quartz	SiO ₂	45.2
Calcite	CaCO ₃	6.5
Magnetite	Fe ₃ O ₄	3.1

Table 1: Crystalline phases as determined by X-ray Diffraction

Figure 1: X-ray Diffractogram showing the composition of the sample 1881-001. The diffractogram in red shows the measured pattern, while the blue shows the calculated pattern obtained as part of the Rietveld refinement. The lower red pattern shows the difference between the measured and calculated pattern.

ANALYTICAL REPORT

CLIENT DETAILS	******	LABORATORY DETAILS		****
Contact Client Address	Marius Van Zyl Jones & Wagener (Pty) Ltd P.O. Box 1434	Laboratory Address	SGS South Africa (Pty) Limited 259 Kent Avenue Ferndale, 2194	
	Rivonia 2128	Telephone	+27 (0)11 781 5689	
Telephone Facsimile Email Project Order Number Samples	011 519 0200 011 519 0201 vanzyl@jaws.co.za 11521199 Di66/MVZ/19829 1	Laboratory Manager SGS Reference Report Number Date Received Date Reported	Mark Baird (acting) JB11-01871 R0 0000001521 2011/09/12 11:49:42AM 2011/09/30 09:33:06AM	

COMMENTS ----

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

Filter cake samples not dried prior to testing.

Sample(s) leached using ARLP leachate. Results reported on leachate.

SIGNATORIES -

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

259 Kent Avenue, Ferndale Randburg, 2194, South Africa

t +27 (0)11 781 5689 www.za.sgs.com

ANALYTICAL REPORT

Dusting Ash

Sample Name

0.0010

0.010

mg/l

mg/l

0.38

<0.010

JB11-01871 R0

Ci Sample Number JB11-01871.001

Report number 0000 Client reference: 1152

0000001521 **11521199**

Parameter	Units	LOR	
Acid Rain Leaching Procedure (ARLP) Method:			
Final pH*	•	-	7.9
Conductivity - Water Method: ME-ANA-AN-007			
Conductivity	mS/m	2.0	120
Total Dissolved Solids (TDS) in water Method: ME-AN	A-AN-011		
Total Dissolved Solids	mg/l	21.0	528
Anions by Ion Chromatography Method: ME-ANA-AN-	AN014		
Fluoride	mg/i	0.050	<0.050
Chloride	mg/i	0.050	2.5
Nitrate	mg/i	0.10	15
Sulphate	mg/i	0,050	180
Hexavalent Chromium by UV-VIS Method: ME-ANA-AI	V-018		
Hexavalent Chromium*	mg/l	0.010	0.40
Ammonia as N by LIV Method: APHA4500 NH3			
Ammonia*	mg/l	0.050	<0.050
ICP-OES Metals in Water (Dissolved) Method: ME-AN	A-AN-027		
Silver	mg/l	0.0020	<0.0020
Aluminium	mg/l	0.020	0.069
Boron	mg/l	0.0050	2.3
Barium	mg/i	0.0020	0.21
Beryllium	mg/l	0.00010	<0.00010
Calcium	mg/l	0.50	200
Iron	mg/l	0.050	<0.050
Potassium	ma/l	0.20	1.4
Lithium	ma/i	0.0050	0.073
Magnesium	ma/i	0.010	45
Sodium	ma/l	0.50	5.4
Silicon	mg/l	1.0	11
Strontium	ma/l	0.0010	2.6
Titanium	mg/i	0.0050	0.023

ICP-MS Metals (Dissolved) Method: ME-ANA-AN-026

Zinc

Arsenic	mg/l	0.0030	0.080
Bismuth	mg/l	0.0010	<0.0010
Cadmium	mg/l	0.0020	<0.0020
Cobait	mg/l	0.0020	<0.0020
Chromium	mg/l	0.0030	0.40
Copper	mg/l	0.0040	<0.0040
Mercury	mg/l	0.00010	0.0020
Manganese	mg/l	0.0030	0.049
Molybdenum	mg/i	0.0070	0.14
Nickel	mg/l	0.0070	0.014
Lead	mg/i	0.0040	<0.0040
Antimony	mg/i	0.0070	0.013
Selenium	mg/i	0.0040	0.026
Tin	mg/l	0.0070	<0.0070
(1) A the second s second second sec second second sec	and the second	e	

Vanadium

METHOD SUMMARY

JB11-01871 R0

Report number 00 Client reference: 11

0000001521 11521199

METHOD ----- METHODOLOGY SUMMARY

FOOTNOTES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
 This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- 1 Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Environmental Services Randburg is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAILS		
Contact	Marius Van Zyl	Laboratory	SGS South Africa (Pty) Limited	
Client	Jones & Wagener (Pty) Ltd	Address	259 Kent Avenue	
Address	P.O. Box 1434		Femdale, 2194	
	Rivonia 2128	Telephone	+27 (0)11 781 5689	
Telephone	011 519 0200			
Facsimile	011 519 0201	Laboratory Manager	Mark Baird (acting)	
Email	vanzyl@jaws.co.za	SGS Reference	JB11-01869 R0	
Project	11521195	Benef himber	0000001519	
Order Number	DI66/MVZ/19829		2011/02/12 10:20:46414	
Samples	3	Date Received	2011/09/12 10:00:48AW	
Sample matrix	WATER	Date Reported	2011/09/30 09:26:12AM	

- COMMENTS -----

- SIGNATORIES -

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

Samples filtered prior to analysis.

Gladness Radebe Technical Supervisor/Technical Signatory

Sarah Newton Technical Consultant/Technical Signatory

SGS South Africa (Pty) Limited Environmental Services 259 Kent Avenue, Ferndale Randburg, 2194, South Africa

t +27 (0)11 781 5689 www.za.sgs.com

Member of the SGS Group

ANALYTICAL REPORT

JB11-01869 R0

0000001519 **11521195**

					Report number
					Client reference
	Sa	mple Number Sample Name	JB11-01869.001 Seepage Water	JB11-01869.002 Ashing Water	JB11-01869.003 Dusting Water
Parameter	Units	LOR			
pH in water Method: ME-ANA-AN-016			····· · · · · · · · · · · · · · · · ·		
Н		0.10	8.4	11.4	12.2
Conductivity - Water Method: ME-ANA-AN-007					
Conductivity	mS/m	2.0	160	190	740
Total Dissolved Solids (TDS) in water Method: Mi	E-ANA-AN-011				
Total Dissolved Solids	mg/l	21.0	764	856	1992
Galana tasian Abramatananah. Statini Str 2016					
knons by ion Unromatography – Method: ME-ANA Ruoride	MONANO	0,050	<0.050	() 7 4	6.73
Chlorida	mg/l	0.050	160	97	120
Vitrate	mg/l	0,10	<0.10	3.2	0,64
Sulphate	- mg/l	0.050	450	380	210
Ammonia as N by UV Method: APHA4500_NH3					
Ammonia*	mg/l	0.050	<0.050	<0.050	0.066
fexavalent Chromium by UV-VIS Method: ME-AN	A-AN-018				
exavalent Chromium*	maß	0.010	<0.010	0.030	
CP-OES Metals in Water (Dissolved) Method: ME	E-ANA-AN-027				
Silver	mg/l	0.0020	0.0037	0.0041	0.026
luminium	mg/l	0.020	<0.020	1.2	0.19
Boron	mg/l	0.0050	2.5	1.1	0.11
3arium	mg/l	0.0020	0.063	0.34	1.3
Beryllium	mg/l	0.00010	-1.30551E-	-2.85557E-	-6.56818E-
Calcium	mg/ī	0.50	110	190	760
	mg/i	0.050	<0.050	<0.050	<0.050
Potassium	mg/i	0.20	39	27	68
Angenetum Angenetum	mg/i	0.0050	0.61	0.85	3.B
nagrasium Sodium	mg/i	0.010	6.7	0.072	<0.010
Silicon	ngn Maa	1.0	17	76	£10
Strontlum	ന്നം	0.0010	3.9	3.6	39
litanium	mg/l	0.0050	<0.0050	<0.0050	0.0098
/anadium	mg/l	0.0010	<0.0010	0.020	0.0021
linc	mg/l	0.010	<0.010	<0.010	<0.010
CP-MS Metals (Dissolved) Method: ME-ANA-AN-	026				
Arsenic	ma/t	0.0030	0.0049	<0.0030	<0.0030
Bismuth	ma/i	0.0010	<0.0010	<0.0010	<0.0010
Cadmium	mg/l	0.0020	<0.0020	<0.0020	<0.0020
Cobalt	mg/l	0.0020	<0.0020	<0.0020	<0.0020
Chromium	mg/i	0.0030	0.0051	0.029	0.15
Copper	mg/l	0.0040	<0.0040	<0.0040	<0.0040
Viercury	mg/l	0.00010	0.00042	0.0012	<0.00010
Manganese	mg/l	0.0030	<0.0030	<0.0030	<0.0030
Aolybdenum	mg/l	0.0070	0.19	0.18	0.19
lickel	mg/l	0.0070	<0.0070	<0.0070	<0.0070
Lead	mg/i	0.0040	<0.0040	<0.0040	<0.0040

0.0040

0.0070

mg/i

mg/l

0.0047

<0.0070

0.0094

<0.0070

<0.0040

<0.0070

Selenium

Tin

METHOD -

METHOD SUMMARY

JB11-01869 R0

Report number Client reference:

0000001519 **1152119**5

METHODOLOGY SUMMARY

FOOTNOTES IS Insufficient sample for analysis. QFH QC result is above the upper tolerance LNR Sample listed, but not received. QC result is below the lower tolerance QFL This analysis is not covered by the scope of The sample was not analysed for this analyte accreditation. ۸ Performed by outside laboratory. LOR Limit of Reporting Raised or Lowered Limit of Reporting 11 Samples analysed as received. Unless otherwise indicated, samples were received in Solid samples expressed on a dry weight basis. containers fit for purpose. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. SGS Environmental Services Randburg is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za. anas T0107

SGS

Sarah Newton

SGS Environmental Services SA P.O. Box 82582 Southdale 2135

TEST REPORT

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Product Code	SOLIDS
Status	Final
Received	14/09/11
Reported	10/10/11
Generaliza	2
sampies	2
First Sample	1881 - 001
Last Sample	WASTE ROCK
Pages	10

Notes	
Technical Signatory Name:	Signature:
Technical Signatory Name:	Signature:
Technical Signatory Name:	Signature:
On behalf of: SGS South Africa	

The results in the following analytical report pertain to this laboratory for preparation and/or analysis as requested by SGS Environmental Services SA.

The analytical results reported herein refer to the samples as received and are based on a dry basis where applicable.

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 2 of 10

TEST REPORT

	WtRec	Al	Ba	Ca	Cr	Cu
Scheme	WGH79	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	s i s	%	ppm	%	ppm	ррш
Detection Limit	0.01	0.01	5	0.01	1	0.5
1881 - 001	34.50	10.5	716	3.50	113	59.4
WASTE ROCK	•	0.28	94	0.03	22	14.6
GEOSTATS		4.34	36	1.13	1750	3880
LKSD-3SA		5.67	638	1.49	•	•
OREAS 100A		5.58	417	1.05	39	183
OREAS 101A		5.78	180	1.23	39	•
BLANK		<0.01	<5	<0.01	<1	<0.5
1881 - 001		10.8	777	3.63	119	62.4

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<hr/>

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 WWW.sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 3 of 10

TEST REPORT

	Fc	К	Li	Mg	Mn	Na
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	%	%	ppm	%	ррт	%
Detection Limit	0.01	0.01	1	0.01	5	0.01
1881 - 001	6.86	0.50	181	0.82	488	0.12
WASTE ROCK	0.72	0.08	<1	<0.01	128	0.02
GEOSTATS	4.75	3.41	9	0.52	5230	1.60
LKSD-3SA	4.01	2.02	27	1.14	1410	1.97
OREAS 100A	4.21	3.79	20	0.85	579	0.14
OREAS 101A	10.4	2.26	44	1.24	1020	0.08
BLANK	<0.01	<0.01	<1	<0.01	<5	<0.01
1881 - 001	7.03	0.52	188	0.86	508	0.12

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<http://www.sgs.com/terms_and_conditions.htm>.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein."Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 WWW.Sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 4 of 10

TEST REPORT

	P	S	Sr	Ti	V	Zn
5cheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	ppm	%	ppm	%	ppm	ррт
Detection Limit	50	0.01	0.5	0.01	1	1
1881 - 001	1130	0.20	1010	0.71	68	314
WASTE ROCK	210	0.04	<0.5	0.01	3	39
GEOSTATS	460	0.96	43.7	0.21	45	5230
LKSD-3SA	1110	-	237	-	•	•
OREAS 100A	510	0.06	22.5	-	-	41
OREAS 101A	-	0.13	10.0	-	•	101
BLANK	<50	<0.01	<0.5	<0.01	<1	5
1881 - 001	1190	0.22	1050	0.74	77	336

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<u><htp://www.sqs.com/terms_and_conditions.htm></u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein."Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."</u>

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 WWW.595.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 5 of 10

TEST REPORT

	Zr	Ag	As	Be	Bi	Cd
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	ppm	ppm	ppm	ppm	ррш	ppm
Detection Limit	0.5	0.02	1	0.1	0.04	0.02
1881 - 001	254	<0.02	13	5.6	1.24	<0.02
WASTE ROCK	54.2	<0.02	2	0.1	0.31	<0.02
GEOSTATS	68.2	48.0	13	•	•	-
LKSD-3SA	-	2.87	27	1.8		•
OREAS 100A	121	•	-			-
OREAS 101A	91.0	•	-	•	-	•
BLANK	<0.5	<0.02	<1	<0.1	<0.04	<0.02
1881 - 001	275					
1881 - 001		<0.02	13	5.8	1.25	<0.02

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<hr/>

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 WWW.sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 6 of 10

TEST REPORT

	Co	Мо	Ni	Pb	Sb	Sc
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	ppm	ppm	ppm	ррт	ppm	ppm
Detection Limit	0.1	0.05	0.5	0.5	0.05	2
1881 - 001	16.4	5.18	51.3	41.4	0.89	<2
WASTE ROCK	1.6	3.71	5.3	7.6	0.17	<2
GEOSTATS	2070	-	4030	1.21%	11.3	•
LKSD-3SA	29.0	-	46.7	29.3	1.36	•
OREAS 100A	16.4	20.7	-	13.4	•	-
OREAS 101A	47.0	20.5	-	21.3	•	-
BLANK	<0.1	<0.05	<0.5	<0.5	0.09	<2
1881 - 001	16.6	5.22	52.0	41.7	0.90	<2

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

*This document is issued by the Company under its General Conditions of Service accessible at

<u>chttp://www.sqs.com/terms_and_conditions.htm></u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein."Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."

SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone: +27 (11) 6803466

 Fax: +27 (11) 4333654

 Email: South.Africa@sgs.com

 Internet: www.sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 7 of 10

TEST REPORT

	Sn	Hg	Si
Scheme	ICM40B	IMS12B	ICP90A
Units	ppm	ppm	%
Detection Limit	0.3	3	0.1
1881 - 001	4.4	<3	19.2
WASTE ROCK	0.5	<3	20.8
GEOSTATS	•		
LKSD-3SA	-		
OREAS 100A	•		
OREAS 101A	•		
BLANK	<0.3		
BLANK		<3	
SARM5			-
BLANK			<0.1
1881 - 001			19.9
BCS176/2			1.27
1881 - 001		<3	
CCU-1C		30	
GXR-1		4	
1881 - 001	4.4		

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<hr/>

SGS South Africa (Pty) Ltd Reg No 1949/032643/07 58 Melville Street Booysens 2091 Phone: +27 (11) 6803466 +27 (11) 4333654 Fax: Email: South.Africa@sgs.com Internet: www.sgs.com

Lab Ref LA117646 Client Ref JB11 - 01881 Project DEFAULT Reported 10/10/11 Status Final Page Page 8 of 10

APPENDIX A - METHODS

METHOD NUMBER	METHOD DESCRIPTION	SCHEME CODE
ME-ZA-[MINANA]-[BYZ(FAS)]AN-001	Au by Lead Fusion followed by Atomic Absorption analysis or Gravimetric analysis	FAALA01, FAALA01D, FAGLA01, FAGLA02, FAGLA03, FAGLA04, FAGLA05
ME-ZA-[MINANA]-[BYZ(FAS)]AN-002	Au, Pt, Pd by Lead Fusion followed by	FAI313
ME-ZA-[MINANA]-[BYZ(FAS)]AN-003	Pt, Pd, Rh, Ru, Ir by Nickel Sulphide, ICP-OES finish	FAI363
ME-ZA-[MINANA]-[BYZ(XRF)]AN-001	Major Element Oxides by Borate fusion XRF	XRF79V, XRF79C
ME-ZA-[MINANA]-[BYZ(XRF)]AN-002	Base Metals by Potassium Pyrosulphate Fusion XRF	XRF77R
ME-ZA-[MINANA]-[BYZ(AAS)]AN-001	Acid Soluble Cu and Ni by Acid digestion and analysis by AAS	AAS13C
ME-ZA-[MINANA]-[BYZ(LEC)]AN-001	Total Sulphur and Carbon by Leco Combustion Infrared Detection	CSALA01, CSALA06
ME-ZA-[MINANA]-[BYZ(ICM)]AN-001	Total & Dissolved metals by ICP-OES & ICP-MS	ICP84T & IMS84T
ME-ZA-[MINANA]-[BYZ(XRF)]AN-003	Uranium Oxide, pressed powder analysis using XRF spectrometer	XRF75G
ME-ZA-[MINANA]-[BYZ(FAS)]AN-005	Rh by Pd fusion by ICP-OES finish	FA1353
ME-ZA-[MINANA]-[BYZ(WET)]AN-001	Chloride by Potentiometric titration	CLA27V

TEST REPORT

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at <htp://www.sos.com/terms_and_conditions.htm>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein." Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."

SGS South Africa (Pty) Ltd

Reg No 1949/032643/07 58 Melville Street Booysens 2091 Phone: +27 (11) 6803466 Fax: +27 (11) 4333654 Email: South.Africa@sgs.com Internet: www.sgs.com

SCHEME CODE

LA117646 Lab Ref JB11 - 01881 Client Ref DEFAULT Project 10/10/11 Reported Final Status Page 9 of 10 Page

TEST REPORT

METHOD DESCRIPTION

Silver (Ag) by Fire Assault groupstie fisish	
Trace elements by pressed pellet YPE	PAGLAUZ
Nabe clements by pressed perior, ATE	CRA09V
Elemental sulphile (S ²) by cravimetric finish	
Annones subpat (SOI) by Disper	CLASIV
Autobus supplate (SO4) by Dionex	CRAAN
Carbonate (CO3) by LECO	CSATTV
Granbita carbon by LECO	CSAUZV
	CSATOV
organic cambon by ECCO	ICENET
Conductivity (EC) determination	ISEOOV
Conductivity (CC) determination	100040
Among by (NH3) by spectroquant	CLASIV
Aminona (PO/) by concentric analysis	
Chemical Oxyaen Demand (COD) by spectroquant	
Suspended solids (TSS)	
Total dissolved solids (TDS), aravimetric finish (180 °C)/Electrometric, conductivity meter	
Alkalinity by titration	
Chloride (Cl) by titration (solutions)	
Chloride (Cl) by titration (solides)	
Flundle (F) by ISE (solutions)	
Fluoride (F) by ISE (solition)	
Acid Base Accounting (ABA)	CLA41V
Net acid expertision (NaC) test (incl. S species)	CLA43V
Short term leach testing (ARLP, TCLP, SPLP, etc)	CLA40V
Deionised water (D) leach (2 hours 1 (S = 10)	Leach
Cvanide (CN) species - Free, WAD & Total	CLA25V
Thiocvanate (SCN) by IC	CLA31V
Metals by AAS (solutions)	AAS84T
Gold (Au) in CN solutions by AAS	SOL 81T
Silver (Ag) by acid digestion, AAS	AAS14E
Arsenic (As) by Aqua Regia digestion, AAS	AAS11C
Multi Acid digestion, AAS finish	AAS40D
Acid soluble Cu, Co by Sulphuric Acid leach, AAS	AAS72C
Aqua Regia digestion, ICP-OES finish	ICP13E
Multi Acid digestion, ICP-OES finish	ICP40D
Sodium Peroxide fusion, ICP-OES finish	ICP91B

- not analysed | -- element not determined | I.S. Insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<htp://www.sgs.com/terms_and_conditions.htm>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law, ."

SGS South Africa (Pty) Ltd Reg No 1949/032643/07 58 Melville Street Booysens 2091 Phone: +27 (11) 6803466 +27 (11) 4333654 Fax: Email: South.Africa@sgs.com Internet: www.sgs.com

LA117646 Lab Ref JB11 - 01881 Client Ref Project DEFAULT Reported 10/10/11 Status Final Page Page 10 of 10

TEST REPORT

METHOD DESCRIPTION	SCHEME CODE
Semi quantative ICP-OES +ICP-MS scan, Aqua Regia digestion	ICM12B
As, Hg, Se, Te by Aqua Regia digestion, ICP-MS finish	IMS12Q
Multi Acid digestion, semi quantative scan, ICP-OES + ICP-MS	ICM40B
Multi acid digestion, ICP-MS	IMS40B
Rare Earth Elements (REE) by Na2O2 fusion, ICP-MS	IMS90A
Free acid titration	CLA15F
Chloride (CI) by manual titration (Metallurgical)	CLA26V
As 3+ by titration	CLA32V
As 5+ by calculation	CLA32V
Lime (CaO) by titration	CLA07C
Lime (CaO), calculation after AAS analysis	CLA07C
Ferrous (Fe2+) iron by titration (solids)	CLA34V
Ferrous (Fe2+) iron by titration (solutions)	CLA34V
Ferric (Fe3+) iron by diff (incl. Fe total, Fe2+) - solids	CLA34V
Ferric (Fe3+) iron by diff (incl. Fe total, Fe2+) - solutions	CLA35V
Iron (Fe) by titration (solids)	CLA35V
Tin (Sn) by titration (solids)	CON14V
Zinc (Zn) by EDTA titration (solids)	CON12V
Hexavalent chromium (Cr6+) in solutions	CLA21V
Manganese (Mn) by back titration	CON15V
Vanadium (V) by titration	CON16V
Chrome (Cr) by back titration	CON10B
Relative Density/Specific Gravity (by Le Chatelier flask)	PHY04V
Bulk density	PHY21V
Relative Density/Specific Gravity (by Helium pyncometer)	PHY03V
Grain density	PHY20V
Moisture (105 °C)	PHY08D
Ash/LOI (1050 °C)	PHY01K

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at <u><htp://www.sqs.com/terms_and_conditions.htm></u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein."Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its

intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Marius Van Zyl	Laboratory	SGS South Africa (Pty) Limited
lient	Jones & Wagener (Pty) Ltd	Address	259 Kent Avenue
ddress	P.O. Box 1434		Ferndale, 2194
	Rivonia 2128	Telephone	+27 (0)11 781 5689
elephone	011 519 0200		
acsimile	011 519 0201	Laboratory Manager	Mark Baird (acting)
nail	vanzyl@jaws.co.za	SGS Reference	JB11-01881 R0
roject	(Not specified)	Boost Number	000001593
rder Number	DI66/MVZ/19829	Report Number	
amples	1	Date Received	2011/09/13 12:15:20PM
ample matrix	SOIL	Date Reported	2011/10/10 11:32:03AM

COMMENTS ----

Whilst SGS laboratories conform to ISO/IEC 17025 standards, results of analysis in this report fall outside of the current scope of accreditation.

Testing subcontracted to SGS Booysens.

Mineralogy results contained in their report, MIN 0911/192, appended.

SIGNATORIES .

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

ANALYTICAL REPORT

MIN 0911/192

JB11-01881 R0

Report number Client reference: 0000001593 Di66/MVZ/19829

	Sample Number Sample Name Sample Matrix	JB11-01881.001 Dry Ash Soll		
Units	s LOR			

SUB_	SGS	Booysens	Method;	SUB	BOOY
------	-----	----------	---------	-----	------

XRD scan No unit -

SUB_Mineralogy Method: SUB

Parameter

Aluminium % 0.010 11 Arsenic ppm 1.0 13 Barlum ppm 5.0 720 Beryllium ppm 0.10 5.6 Bismuth ppm 0.040 1.2 Calcium % 0.010 3.5 Cadmium ppm 0.220 <0.020 Chromium ppm 0.10 16 Copper ppm 0.10 16 Copper ppm 0.50 59 Iron % 0.010 6.9 Mercury ppm 3.0 <3.0 Potassium % 0.010 0.50 Lifhum % 0.010 0.82 Manganese ppm 5.0 490 Molybdenum ppm 0.50 5.1 Nickel ppm 0.50 5.1 Phosphorus ppm 0.50 41 Lead ppm 0.50 41 </th <th>Silver</th> <th>ppm</th> <th>0.020</th> <th><0.020</th>	Silver	ppm	0.020	<0.020
Arsenic ppm 1.0 13 Barium ppm 5.0 720 Beryllium ppm 0.10 5.6 Bismuth ppm 0.040 1.2 Calcium % 0.010 3.5 Cadmium ppm 0.020 <0.020	Aluminium	%	0.010	11
Barium ppm 5.0 720 Beryllium ppm 0.10 5.6 Bismuth ppm 0.040 1.2 Calcium % 0.010 3.5 Cadium % 0.010 3.5 Cadium ppm 0.020 <0.020	Arsenic	ppm	1.0	13
Beryllium ppm 0.10 5.6 Bismuth ppm 0.040 1.2 Calcium % 0.010 3.5 Cadmium ppm 0.020 <0.020	Barium	ppm	5.0	720
Bismuth ppm 0.040 1.2 Calcium % 0.010 3.5 Cadmium ppm 0.020 <0.020	Beryllium	ppm	0.10	5.6
Calcium % 0.010 3.5 Cadmium ppm 0.020 <0.020	Bismuth	ppm	0.040	1.2
Cadmium ppm 0.020 <0.020 Chromium ppm 1.0 110 Cobalt ppm 0.10 16 Copper ppm 0.50 59 Iron % 0.010 6.9 Mercury ppm 3.0 <3.0	Calcium	%	0.010	3.5
Chromium ppm 1.0 110 Coball ppm 0.10 16 Copper ppm 0.50 59 Iron % 0.010 6.9 Mercury ppm 3.0 <3.0	Cadmium	ppm	0.020	<0.020
Cobalt ppm 0.10 16 Copper ppm 0.50 59 Iron % 0.010 6.9 Mercury ppm 3.0 <3.0	Chromium	ppm	1.0	110
Copper ppm 0.50 59 Iron % 0.010 6.9 Mercury ppm 3.0 <3.0	Cobalt	ppm	0,10	16
Iron % 0.010 6.9 Mercury ppm 3.0 <3.0	Copper	ppm	0.50	59
Mercury ppm 3.0 <3.0 Potassium % 0.010 0.50 Lithium ppm 1.0 180 Magnesium % 0.010 0.82 Manganese ppm 5.0 490 Molybdenum ppm 0.050 5.2 Sodium % 0.010 0.12 Nickel ppm 0.50 51 Phosphorus ppm 50 1100 Lead ppm 0.50 641 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Selenium pprn 0.050 0.89 Stennium pprn 0.30 4.4 Strontium pprn 0.50 1000 Titanium % 0.010 0.71 Vanadium pprn 1.0 68 Zinc pprn 1.0 310	Iron	%	0.010	6.9
Potassium % 0.010 0.50 Lithium ppm 1.0 180 Magnesium % 0.010 0.82 Manganese ppm 5.0 490 Molybdenum ppm 0.050 5.2 Sodium % 0.010 0.12 Nickel ppm 0.50 51 Phosphorus ppm 50 1100 Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Selenium ppm 0.050 0.89 Stennium ppm 0.010 19 Tin ppm 0.30 4.4 Strontium ppm 0.50 1000 Titanium % 0.010 0.71 Vanadium ppm 1.0 68 Zinc ppm 0.50 250	Mercury	ppm	3.0	<3.0
Lithium ppm 1.0 180 Magnesium % 0.010 0.82 Manganese ppm 5.0 490 Molybdenum ppm 0.050 5.2 Sodium % 0.010 0.12 Nickel ppm 0.50 51 Phosphorus ppm 50 1100 Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Selenium ppm 2.0 <2.0	Potassium	%	0.010	0.50
Magnesium % 0.010 0.82 Manganese ppm 5.0 490 Molybdenum ppm 0.050 5.2 Sodium % 0.010 0.12 Nickel ppm 0.50 51 Phosphorus ppm 50 1100 Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.69 Selenium ppm 2.0 <2.0	Lithium	ppm	1.0	180
Manganese ppm 5.0 490 Molybdenum ppm 0.050 5.2 Sodium % 0.010 0.12 Nickel ppm 0.50 51 Phosphorus ppm 50 1100 Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.69 Selenium ppm 2.0 <2.0	Magnesium	%	0.010	0.82
Molybdenum ppm 0.050 5.2 Sodium % 0.010 0.12 Nickel ppm 0.50 51 Phosphorus ppm 50 1100 Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Setenium ppm 2.0 <2.0	Manganese	ppm	5.0	490
Sodium % 0.010 0.12 Nickel ppm 0.50 51 Phosphorus ppm 50 1100 Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Setenium ppm 2.0 <2.0	Molybdenum	ppm	0.050	5.2
Nickel ppm 0.50 51 Phosphorus ppm 50 1100 Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Selenium ppm 2.0 <2.0	Sodium	%	0.010	0.12
Phosphorus ppm 50 1100 Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Setenium ppm 2.0 <2.0	Nickel	ppm	0.50	51
Lead ppm 0.50 41 Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Setenium ppm 2.0 <2.0	Phosphorus	ppm	50	1100
Sulphur % 0.010 0.20 Antimony ppm 0.050 0.89 Selenium ppm 2.0 <2.0	Lead	ppm	0.50	41
Antimony ppm 0.050 0.89 Selenium ppm 2.0 <2.0	Sulphur	%	0.010	0.20
Selenium ppm 2.0 <2.0 Silicon % 0.10 19 Tin ppm 0.30 4.4 Strontium ppm 0.50 1000 Titanium % 0.010 0.71 Vanadium ppm 1.0 68 Zinc ppm 1.0 310 Zirconium ppm 0.50 250	Antimony	ppm	0.050	0.89
Silicon % 0.10 19 Tin ppm 0.30 4.4 Strontium ppm 0.50 1000 Titanium % 0.010 0.71 Vanadium ppm 1.0 68 Zinc ppm 1.0 310 Zirconium ppm 0.50 250	Selenium	ppm	2.0	<2.0
Tin ppm 0.30 4.4 Strontlium ppm 0.50 1000 Titanium % 0.010 0.71 Vanadium ppm 1.0 68 Zinc ppm 1.0 310 Zirconium ppm 0.50 250	Silicon	%	0.10	19
Stronlium ppm 0.50 1000 Titanium % 0.010 0.71 Vanadium ppm 1.0 68 Zinc ppm 1.0 310 Zirconium ppm 0.50 250	Tin	ppm	0.30	4.4
Titanium % 0.010 0.71 Vanadium ppm 1.0 68 Zinc ppm 1.0 310 Zirconium ppm 0.50 250	Stronlium	ppm	0.50	1000
Vanadium ppm 1.0 68 Zinc ppm 1.0 310 Zirconium ppm 0.50 250	Titanium	%	0.010	0.71
Zinc ppm 1.0 310 Zirconium ppm 0.50 250	Vanadium	ppm	1.0	68
Zirconium ppm 0.50 250	Zinc	ppm	1.0	310
	Zirconium	ppm	0.50	250

METHOD SUMMARY

JB11-01881 R0

Report number Client reference:

0000001593 DI66/MVZ/19829

METHOD _____ METHODOLOGY SUMMARY

FOOTNOTES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
 This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- 11 Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm.

*

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the

sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

ANALYTICAL REPORT (Amended)

CLIENT DETAILS		LABORATORY DETAILS	
Contact Client Address	Marius Van Zyl Jones & Wagener (Pty) Ltd P.O. Box 1434 Bironia	Laboratory Address	SGS South Africa (Pty) Limited 259 Kent Avenue Ferndale, 2194
Telephone	011 519 0200	Telephone	+27 (0)11 781 5689
Facsimile Email Project	011 519 0201 vanzyl@jaws.co.za 11521198	Laboratory Manager SGS Reference Report Number	Mark Baird (acting) JB11-01870 R0 0000001540
Order Number Samples Sample matrix	D166/MVZ/19829 2 SOIL	Date Received Date Reported	2011/09/12 11:20:06AM 2011/10/03 11:26:35AM

COMMENTS ----

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

This report/certificate is a re-issued copy and replaces the originally issued document dated 2011-09-30. The reason for re-issue is that percent solids results were omitted from the original report.

Filter cake samples not dried prior to testing.

Sample(s) leached using deionised water. Results reported on leachate.

SIGNATORIES

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

ANALYTICAL REPORT

JB11-01870 R0

Report number Client reference:

0000001540 11521198

	Sa	mple Number Sample Name Sample Matrix	JB11-01870.001 Ashing Ash Ash sample	JB11-01870.002 Dusting Ash Ash sample
Parameter	Units	LOR		
Moisture Method:				
Solids content*	%	0.050	6.37	48.3
South African Standard Leach Procedure Method: AS	4439.3			
Final pH	•••••	•	10.9	11.8
Conductivity - Water Method: ME-ANA-AN-007				
Conductivity	mS/m	2.0	24	160
Total Dissolved Solids (TDS) in water Method: ME-AN	IA-AN-011			
Total Dissolved Solids	mg/i	21.0	64	272
Anions by Ion Chromatography Method: ME-ANA-AN	-AN014			
Fluoride	mg/i	0.050	<0.050	0.30
Chloride	mg/l	0.050	1.7	2.1
Nitrate	mg/l	0.10	0,28	1.5
Sulphate	mg/l	0.050	19	13
Hexavalent Chromium by UV-VIS Method: ME-ANA-A	N-018			
Hexavalent Chromium*	mg/l	0.010	<0.010	0.11
Ammonia as N by UV Method: APHA4500_NH3				
Ammonia*	mg/l	0.050	<0.050	<0.050
100.050 Matrix in Mater (Discoluted) - Mathed MC AN	A ANI 007			
Alterniniten	mg/l	0.0020	<0.0020	<0.0020
Aunternum	mg/i	0.020	1.6	4.4
Doroni Dorium	mg/l	0.0000	0.39	0.20
	ng/i	0.0020	0.009	U.04
Calcium	mg/l	0.00010	<0.00010	<0.00010
	mg/l	0.50	20 <0.050	130
Potessium	mgil	0.050	<0.050	<0.050
Polassium Libium	mg/i	0.20	0.45	1.0
	rng/l	0.0050	0.011	0.068
Magressum Codium	mg/l	0.010	0.46	0.018
	mg/l	0.50	3.5	5.0
Silicon	mg/i	1.0	7.1	4.3
Strongum Titesium	mg/i	0.0010	0.41	2.1
Filarium Manadium	mg/i	0.0050	<0.0050	<0.0050
	mg/i	0.0010	0.022	0.045
2.nc	mg/	0.010	<0.U10	<0.010
ICP-MS Metals (Dissolved) Method: ME-ANA-AN-026				
Arsenic	mg/l	0.0030	0.012	<0.0030
Bismuth Condention	mg/i	0.0010	0.0020	<0.0010
Cadmium	mg/l	0.0020	0.0024	<0.0020
	mg/l	0.0020	0.0027	<0.0020
Unromium	mg/l	0.0030	0.0075	0.11
Lopper	mg/l	0.0040	<0.0040	<0.0040
Mercury	mg/l	0.00010	0.00015	0.00030
Manganese	mg/l	0.0030	0.0097	<0.0030
Molypdenum	mg/l	0.0070	0.012	0.067

0.0070

mg/l

<0.0070

<0.0070

Nickel

ANALYTICAL REPORT

JB11-01870 R0

Report number Client reference:

0000001540 11521198

Sampla Number	1211-01870-001	1011_01870 002
oguihis tentines	3511-01010.001	3011-010/0.00X
Sample Name	Ashing Ash	Dusting Ash
Sample Matrix	Ash sample	Ash sampie

Parameter	Units	LOR		
ICP-MS Metals (Dissolved)	Method: ME-ANA-AN-026 (continued)			
Lead	mg/l	0.0040	<0.0040	<0.0040
Antimony	mg/l	0.0070	<0.0070	<0.0070
Selenium	mg/l	0.0040	<0.0040	<0.0040
Tin	mg/l	0.0070	<0.0070	<0.0070
		••••••		*** *** *** *** *** *** *** *** *** ***

METHOD SUMMARY

JB11-01870 R0

Report number 0 Client reference: 1

0000001540 11521198

METHOD _____ METHODOLOGY SUMMARY

FOOTNOTES ...

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
 This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- 11 Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Environmental Services Randburg is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za.

ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH AND BRINE FROM THE CAMDEN POWER STATION

Report: JW164/11/D116 - REV

Appendix B

CHEMICAL ANALYSES CONDUCTED ON THE REVERSE OSMOSIS BRINE

Attention

Address

Telephone

Fax

Client Name

Central Water Laboratory

Final Task Report

Irma Hodgskin

Piet Retief Road

017 827 8115

017 827 8007

Camden Power Station

Report Reference

WL2012-010199

Date	2012/06/25	
Tel. No.	+27 11 629 5596	
Fax. No.	+27 11 629 5528	

Report Title WMC

TEST RESULTS FOR THE ANALYSIS OF WATER

Number of Samples5Description of SamplesACCEPTABLEDate Registered12-June-2012Date Reported25-June-2012Task Comments:Comments

Approved By :

Cody Makhuba Snr Technician 011 629 5596

Date :

Tests marked "Not SANAS accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Opinions and interpretations expressed herein are outside the scope of SANAS accredition,

PLEASE NOTE: The test results relate only to the specified samples tested as identified in this report.

This test report shall not be reproduced except in full, without written approval of ESKOM holdings (Cleveland) Chemical Technologies.

Lower Germiston Road Cleveland 2022 Private Bag 40175 Cleveland 2022 SA Tel +27 11 629 5596 Fax +27 11 629 5528 www.eskom.co.za Eskom Holdings Reg No 2002/015527/06

Eskom Central Water Laboratory Test Results

Sample ID 3860564	WMC-2012-06-12/91	WL2012-010199
Brine		
water sample		
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	26.7
Aluminium as Al	mg/l	0.67
Barium as Ba	mg/l	0.30
Calcium as Ca	mg/l	480
Chloride as Cl	mg/l	330.00
Iron as Fe	mg/l	<0.005
Flouride as F	mg/l	3.64
Magnesium as Mg	mg/l	0.73
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	420
Nitrate as N	mg/l	3.14
pH @ 25 °C		6.54
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	18
Sulphate as SO4	mg/l	2100
Strontium as Sr	mg/l	13

Sample ID 3860565	WMC-2012-06-12/92	WL2012-010199
Raw Feed		
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	132
Aluminium as Al	mg/l	0.94
Barium as Ba	mg/l	0.18
Calcium as Ca	mg/l	180
Chloride as Cl	mg/l	130.00
Iron as Fe	mg/l	<0.005
Flouride as F	mg/l	1.47
Magnesium as Mg	mg/l	0.18
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	170
Nitrate as N	mg/l	1.35
pH @ 25 °C		10.52
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	8.8
Sulphate as SO4	mg/l	610
Strontium as Sr	mg/l	4.8

Eskom Central Water Laboratory Test Results

Sample ID 3860566	WMC-2012-06-12/93	WL2012-010199
Maddox Out		
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	13.6
Aluminium as Al	mg/l	0.21
Barium as Ba	mg/l	0.10
Calcium as Ca	mg/l	180
Chloride as Cl	mg/l	130.00
Iron as Fe	mg/l	0.02
Flouride as F	mg/l	1.48
Magnesium as Mg	mg/l	0.24
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	160
Nitrate as N	mg/l	1.36
pH @ 25 °C		5.97
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	7.2
Sulphate as SO4	mg/l	730
Strontium as Sr	mg/l	4.8

Sample ID 3860567	WMC-2012-06-12/94	WL2012-010199
Gac Out		
water sample		
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	15.1
Aluminium as Al	mg/l	0.25
Barium as Ba	mg/l	0.14
Calcium as Ca	mg/l	180
Chloride as Cl	mg/l	130.00
Iron as Fe	mg/l	<0.005
Flouride as F	mg/l	1.46
Magnesium as Mg	mg/l	0.25
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	160
Nitrate as N	mg/l	1.35
pH @ 25 ℃		5.81
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	7.4
Sulphate as SO4	mg/l	730
Strontium as Sr	mg/l	4.7

Sample ID 3860568	WMC-2012-06-12/95	WL2012-010199
Pertmate Product		
water sample		
Component	Unit	Value
Alkalinity Total	mg/l CaCO3	3.7
Aluminium as Al	mg/l	0.04
Barium as Ba	mg/l	<0.005
Calcium as Ca	mg/l	1.9
Chloride as Cl	mg/l	5.28
Iron as Fe	mg/l	<0.005
Flouride as F	mg/l	0.08
Magnesium as Mg	mg/l	<0.005
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	6.9
Nitrate as N	mg/l	0.27
pH @ 25 °C		5.75
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	0.16
Sulphate as SO4	mg/l	5.59
Strontium as Sr	mg/l	0.05

The analyses were performed using the following methods:

Alkalinity Total	ESKOM METHOD NO 304	Accredited
Aluminium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Barium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Calcium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Chloride IC (mg/l)	ESKOM METHOD NO 307	Accredited
Flouride IC (mg/l)	ESKOM METHOD NO 307	Not Accredited
Iron ICP (mg/I)	ESKOM METHOD NO 412	Accredited
Magnesium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Manganese ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Nitrate as N IC (mg/l)	ESKOM METHOD NO 307	Accredited
Ortho Phosphate as PO4(mg/l)	ESKOM METHOD NO 72	Not Accredited
рН @ 25 ℃	ESKOM METHOD NO 300A	Accredited
Silica as SiO2 ICP (mg/l)	ESKOM METHOD NO 417	Not Accredited
Sodium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Strontium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Sulphate IC (mg/l)	ESKOM METHOD NO 307	Accredited

Eskom Central Water Lab Disclaimer

The acceptance of an item for test and issue of a certificate of analysis are to the requirements laid down in Eskom Holding, R&S ISO 17025.

- If published or reproduced by the customer a test report shall be reproduced in full, ie the reproduction shall contain the printed as well as the typed parts of the report, nothing exempted. In special circumstance an abridged form of the report or certain parts of the report may be published or reproduced, provided that the abridged form or partial version of the report is approved in writing by the responsible Manager before publication or issue.
- 2. A certificate of analysis related only to an item submitted for the actual test. It furnishes or implies no guarentee whatsoever in respect of a similar item that has not been tested.
- 3. While every endeavour will be made to ensure that a test is representative and accurately performed, and that the report is accurate and the quoted results and conclusions drawn from the test, its officers shall in no way be liable for any error made in carrying out the test or for erronous statement, whether in fact or opinion, contained in a report persuant to a test.
- 4. With the exception of all microbiological analyses, unless otherwise stated, sampling is not carried out by the laboratory.
- 5. All water samples are preserved according to procedure P511 unless otherwise stated.
- 6. Unless otherwise specified all analyses on water samples give the dissolved constituents.

End of the Report

Attention

Address

Telephone

Fax

Client Name

Central Water Laboratory

Final Task Report

Irma Hodgskin

Piet Retief Road

017 827 8115

017 827 8007

Camden Power Station

Report Reference

WL2012-010221

Date	2012/07/09
Tel. No.	+27 11 629 5596
Fax. No.	+27 11 629 5528

Report Title WMC

TEST RESULTS FOR THE ANALYSIS OF WATER

Number of Samples 1

Description of Samples	Acceptable
Date Registered	29-June-2012
Date Reported	09-July-2012

Task Comments:

Approved By :

Cody Makhuba Snr Technician 011 629 5596

Date :

Tests marked "Not SANAS accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Opinions and interpretations expressed herein are outside the scope of SANAS accredition,

PLEASE NOTE: The test results relate only to the specified samples tested as identified in this report.

This test report shall not be reproduced except in full, without written approval of ESKOM holdings (Cleveland) Chemical Technologies.

Lower Germiston Road Cleveland 2022 Private Bag 40175 Cleveland 2022 SA Tel +27 11 629 5596 Fax +27 11 629 5528 www.eskom.co.za Eskom Holdings Reg No 2002/015527/06

Sample ID 3906049	WMC-2012-06-29/13	WL2012-010221
ROBRINE		
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	29.1
Aluminium as Al	mg/l	0.07
Barium as Ba	mg/l	0.25
Calcium as Ca	mg/l	640
Chloride as Cl	mg/l	380.00
Iron as Fe	mg/l	0.01
Flouride as F	mg/l	3.47
Magnesium as Mg	mg/l	0.60
Manganese as Mn	mg/l	<0.005
Sodium as Na	mg/l	570
Nitrate as N	mg/l	3.32
pH @ 25 °C		7.12
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	22
Sulphate as SO4	mg/l	2080
Strontium as Sr	mg/l	15

The analyses were performed using the following methods:

Alkalinity Total	ESKOM METHOD NO 304	Accredited
Aluminium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Barium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Calcium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Chloride IC (mg/l)	ESKOM METHOD NO 307	Accredited
Flouride IC (mg/l)	ESKOM METHOD NO 307	Not Accredited
Iron ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Magnesium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Manganese ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Nitrate as N IC (mg/l)	ESKOM METHOD NO 307	Accredited
Ortho Phosphate as PO4(mg/l)	ESKOM METHOD NO 72	Not Accredited
рН @ 25 ℃	ESKOM METHOD NO 300A	Accredited
Silica as SiO2 ICP (mg/l)	ESKOM METHOD NO 417	Not Accredited
Sodium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Strontium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Sulphate IC (mg/l)	ESKOM METHOD NO 307	Accredited

Eskom Central Water Lab Disclaimer

The acceptance of an item for test and issue of a certificate of analysis are to the requirements laid down in Eskom Holding, R&S ISO 17025.

- If published or reproduced by the customer a test report shall be reproduced in full, ie the reproduction shall contain the printed as well as the typed parts of the report, nothing exempted. In special circumstance an abridged form of the report or certain parts of the report may be published or reproduced, provided that the abridged form or partial version of the report is approved in writing by the responsible Manager before publication or issue.
- 2. A certificate of analysis related only to an item submitted for the actual test. It furnishes or implies no guarentee whatsoever in respect of a similar item that has not been tested.
- 3. While every endeavour will be made to ensure that a test is representative and accurately performed, and that the report is accurate and the quoted results and conclusions drawn from the test, its officers shall in no way be liable for any error made in carrying out the test or for erronous statement, whether in fact or opinion, contained in a report persuant to a test.
- 4. With the exception of all microbiological analyses, unless otherwise stated, sampling is not carried out by the laboratory.
- 5. All water samples are preserved according to procedure P511 unless otherwise stated.
- 6. Unless otherwise specified all analyses on water samples give the dissolved constituents.

End of the Report