

# **AQUA EARTH Consulting**

(Consulting and Contracting Environmental Hydrogeologists)

259 Kent Avenue, Ferndale Randburg. Tel: +011787 5994; Fax: 0115076612; Email: aquaearth@aquaearth.co.za

# **REPORT:**

# **ESKOM KUSILE POWER STATION**

Baseline Hydrogeological investigation for the proposed railway route between the existing Pretoria-Witbank railway at Kusile Power station

**CLIENT:** 

Jacqui Hex Zitholele Consulting (Pty) Ltd Thandanani Park, Matuka Close, Halfway Gardens, Midrand

AUTHOR: T P MOTHOA (Geotechnician)

> A J L Lombaard (Hydrogeologist)

DATE: SEPTEMBER 2009

<u>www.aquaearth.co.za</u>

KUSILE POWER STATION – Baseline Hydrogeological Report

# **Table of Contents**

| 1 | INT                                                                                                   | RODUCTION                                                                                                                                                                                                                                                                                           | 5                                                                                       |
|---|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|   | 1.1                                                                                                   | Scope of work                                                                                                                                                                                                                                                                                       | 5                                                                                       |
|   | 1.2                                                                                                   | Background Information to the Project                                                                                                                                                                                                                                                               |                                                                                         |
|   |                                                                                                       | <b>°</b>                                                                                                                                                                                                                                                                                            |                                                                                         |
| 2 | GEN                                                                                                   | IERAL DESCRIPTION OF THE STUDY AREA                                                                                                                                                                                                                                                                 | 6                                                                                       |
|   | 2.1                                                                                                   | Locality                                                                                                                                                                                                                                                                                            | 6                                                                                       |
|   | 2.2                                                                                                   | Regional Topography                                                                                                                                                                                                                                                                                 |                                                                                         |
|   | 2.3                                                                                                   | Regional Geology                                                                                                                                                                                                                                                                                    |                                                                                         |
|   | 2.4                                                                                                   | Hydrogeology:                                                                                                                                                                                                                                                                                       |                                                                                         |
|   | 2.5                                                                                                   | Groundwater users                                                                                                                                                                                                                                                                                   |                                                                                         |
|   |                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                         |
| 3 | ME                                                                                                    | HODOLOGY                                                                                                                                                                                                                                                                                            | . 12                                                                                    |
| - | 3.1                                                                                                   | Sample Localities                                                                                                                                                                                                                                                                                   |                                                                                         |
|   | 3.2                                                                                                   | Sampling method                                                                                                                                                                                                                                                                                     |                                                                                         |
|   | 3.3                                                                                                   | Water level measurement                                                                                                                                                                                                                                                                             |                                                                                         |
|   | 0.0                                                                                                   |                                                                                                                                                                                                                                                                                                     | 10                                                                                      |
| 4 | CUF                                                                                                   | RENT GROUNDWATER QUALITY                                                                                                                                                                                                                                                                            | 16                                                                                      |
| • | 4.1                                                                                                   | Chemistry results compared to the DWA standards of drinking                                                                                                                                                                                                                                         |                                                                                         |
|   | water                                                                                                 | · · ·                                                                                                                                                                                                                                                                                               |                                                                                         |
|   | 4.2                                                                                                   | Trillinear (Piper) Diagrams                                                                                                                                                                                                                                                                         | 18                                                                                      |
|   | 4.3                                                                                                   | Expanded Durov Diagram                                                                                                                                                                                                                                                                              |                                                                                         |
|   | 4.5                                                                                                   |                                                                                                                                                                                                                                                                                                     |                                                                                         |
|   |                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                         |
| 5 | IMP                                                                                                   | ACT ASSESSMENT METHODOLOGY                                                                                                                                                                                                                                                                          | . 20                                                                                    |
| 5 |                                                                                                       | ACT ASSESSMENT METHODOLOGY                                                                                                                                                                                                                                                                          |                                                                                         |
| 5 | 5.1                                                                                                   | Significance Assessment                                                                                                                                                                                                                                                                             | 20                                                                                      |
| 5 | 5.1<br>5.2                                                                                            | Significance Assessment<br>Spatial Scale                                                                                                                                                                                                                                                            | 20<br>21                                                                                |
| 5 | 5.1<br>5.2<br>5.3                                                                                     | Significance Assessment<br>Spatial Scale<br>Duration Scale                                                                                                                                                                                                                                          | 20<br>21<br>22                                                                          |
| 5 | 5.1<br>5.2<br>5.3<br>5.4                                                                              | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability                                                                                                                                                                                                                 | 20<br>21<br>22<br>22                                                                    |
| 5 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5                                                                       | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty                                                                                                                                                                                          | 20<br>21<br>22<br>22<br>23                                                              |
| 5 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6                                                                | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts                                                                                                                                                   | 20<br>21<br>22<br>22<br>23<br>23                                                        |
| 5 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7                                                         | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts                                                                                                                             | 20<br>21<br>22<br>23<br>23<br>23<br>24                                                  |
| 5 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6                                                                | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts                                                                                                                                                   | 20<br>21<br>22<br>23<br>23<br>23<br>24                                                  |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8                                                  | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts<br>Notation of Impacts                                                                                                      | 20<br>21<br>22<br>23<br>23<br>23<br>24<br>25                                            |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8                                                  | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts<br>Notation of Impacts                                                                                                      | 20<br>21<br>22<br>23<br>23<br>23<br>24<br>25                                            |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1                                    | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts<br>Notation of Impacts<br>ACT ASSESSMENT<br>Initial Impact                                                                  | 20<br>21<br>22<br>23<br>23<br>23<br>23<br>24<br>25<br>.25                               |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1<br>6.2                             | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts<br>Notation of Impacts<br>ACT ASSESSMENT<br>Initial Impact                                                                  | .20<br>.21<br>.22<br>.23<br>.23<br>.23<br>.23<br>.25<br>.25<br>.25<br>.25               |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1<br>6.2<br>6.3                      | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts<br>Notation of Impacts<br>ACT ASSESSMENT<br>Initial Impact<br>Additional Impact                                             | .20<br>.21<br>.22<br>.23<br>.23<br>.23<br>.23<br>.24<br>.25<br>.25<br>.25<br>.26<br>.26 |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1<br>6.2<br>6.3<br>6.4               | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts<br>Notation of Impacts<br>ACT ASSESSMENT<br>Initial Impact<br>Additional Impact<br>Cumulative Impact<br>Mitigation Measures | 20<br>21<br>22<br>23<br>23<br>23<br>23<br>24<br>25<br>25<br>25<br>26<br>26<br>26        |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1<br>6.2<br>6.3                      | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts<br>Notation of Impacts<br>ACT ASSESSMENT<br>Initial Impact<br>Additional Impact                                             | 20<br>21<br>22<br>23<br>23<br>23<br>23<br>24<br>25<br>25<br>25<br>26<br>26<br>26        |
| 6 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5        | Significance Assessment                                                                                                                                                                                                                                                                             | 20<br>21<br>22<br>23<br>23<br>23<br>24<br>25<br>25<br>25<br>26<br>26<br>26<br>27        |
| - | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5        | Significance Assessment<br>Spatial Scale<br>Duration Scale<br>Degree of Probability<br>Degree of Certainty<br>Quantitative Description of Impacts<br>Cumulative Impacts<br>Notation of Impacts<br>ACT ASSESSMENT<br>Initial Impact<br>Additional Impact<br>Cumulative Impact<br>Mitigation Measures | 20<br>21<br>22<br>23<br>23<br>23<br>24<br>25<br>25<br>25<br>26<br>26<br>26<br>27        |
| 6 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>CON | Significance Assessment                                                                                                                                                                                                                                                                             | 20<br>21<br>22<br>23<br>23<br>23<br>24<br>25<br>25<br>26<br>26<br>26<br>27<br>28        |
| 6 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>IMP<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>CON | Significance Assessment                                                                                                                                                                                                                                                                             | 20<br>21<br>22<br>23<br>23<br>23<br>24<br>25<br>25<br>26<br>26<br>26<br>27<br>28        |

2

# List of Tables

| Table 3-4: General borehole information                                                                           |
|-------------------------------------------------------------------------------------------------------------------|
| Table 4-1: Chemistry results of samples in the study area compared to the DWA         standard for drinking water |
| Table 6-1: Quantitative rating and equivalent descriptors for the impact assessment criteria                      |
| Table 6-2: Description of the significance rating scale       21                                                  |
| Table 6-3 : Description of the significance rating scale       22                                                 |
| Table 6-4: Description of the temporal rating scale                                                               |
| Table 6-5 : Description of the degree of probability of an impact occurring                                       |
| Table 6-6 : Description of the degree of certainty rating scale                                                   |
| Table 6-7 : Example of Rating Scale                                                                               |
| Table 6-8 : Impact Risk Classes                                                                                   |
| Table 7-1: Impact Rating Matrix for Groundwater         27                                                        |

# List of Figures

| Figure 2-1: Locality map of the study area6                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2-2: 3-D Topographical map illustrating the alternative railway corridors and general surface water flow directions7        |
| Figure 2-3: Basic Geological map of the study area9                                                                                |
| Figure 2-4: 3-D Geological map of the study area – presenting the major lithological<br>unit present in the area10                 |
| Figure 2-5: 3-D Soil type map11                                                                                                    |
| Figure 3-4: Location of boreholes sampled as part of the Kusile station construction<br>site and of the proposed railway corridors |
| Figure 4-1: Piper diagram of the groundwater chemistry of the hydrocensus boreholes                                                |
| Figure 4-2: Expanded durov diagram of the groundwater chemistry of the sampled boreholes                                           |

### **1** INTRODUCTION

Aqua Earth Consulting was appointed by Zitholele Consulting (Pty) Ltd on behalf of Eskom to conduct a *baseline* hydrogeological study and impact assessment for the proposed railway and associated infrastructure from the existing Pretoria-Witbank railway to the Kusile Power Station. The objective of the study is to describe the general study area, the site specific environment, and the potential impacts as a result of the proposed railway project with respect to the hydrogeological environment and to provide mitigation measures where possible impacts are identified.

### 1.1 Scope of work

# The scope of work included the following:

- Review of existing and available geological and hydrogeological information;
- Conduct a borehole hydrocensus in the area,
- Describe the topography, geology and hydrological setting of the study area;
- Characterise the groundwater regime in a regional geological and geohydrological context, based on existing information and information obtained from the hydrocensus;
- Describe the aquifer parameters;
- Determine the pre-project groundwater quality;
- Assess the impact of the proposed development on the environment;
- Determine the preferred railway corridor from a groundwater perspective
- Provide mitigation measures to minimise negative impacts;
- Provide a groundwater level contour map of the area; and
- Compile a report based on the findings and recommendations of the study.

#### **1.2 Background Information to the Project**

The following information was available for study:

- Kusile Power Station surface and groundwater monitoring report May 2009 Zitholele Consulting
- Kusile Power Station surface and groundwater monitoring report June 2009 Zitholele Consulting

- Kusile Power Station surface and groundwater monitoring report July 2009 Zitholele Consulting
- Kusile Power Station surface and groundwater monitoring report August 2009

   Zitholele Consulting
- 1: 50 000 Topographical Map of Bronkhorstspruit (toposheet 2528DD),
- 1: 250 000 Geological Map of Pretoria (toposheet 2528),
- 1: 250 000 Land Type Series Map (toposheet 2528)
- 1: 500 000 Hydrogeological Map of Johannesburg (toposheet 2526), and
- Borehole data from Department of Water Affairs (DWA).

# 2 GENERAL DESCRIPTION OF THE STUDY AREA

# 2.1 Locality

The study area is located approximately 15 km east of Bronkhorstspruit on the N4 freeway between Witbank and Bronkhorstspruit. The study area includes three farms which are located south of the N4 Pretoria – Witbank Freeway; namely; Onverwacht, Kortfontein and Klipfontein (Refer to figure 2-1).

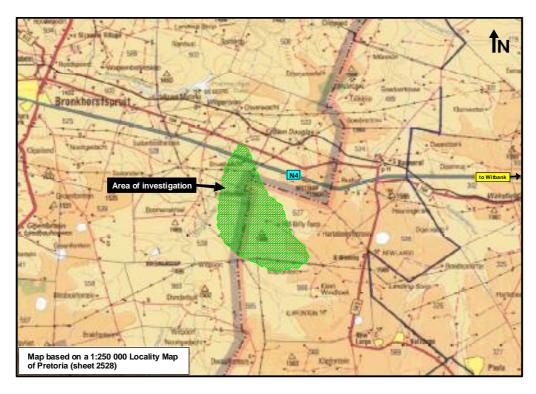



Figure 2-1: Locality map of the study area

KUSILE POWER STATION – Baseline Hydrogeological Report

### 2.2 Regional Topography

The topography of the region is gently undulating to moderately undulating landscape of the Highveld plateau. Some small scattered wetlands and pans occur in the area, rocky outcrops and ridges also form part of significant landscape features in the area. The altitude ranges between 1 360 – 1 600 metres above mean sea level (mamsl).

With regards to ridges, all the corridors avoid the ridges found on site, but it should be noted that in various places the corridors do come quite close to ridges.

Surface and groundwater generally flows westwards into the Wilgerivier which in turn flows in a north-northwest direction into the Bronkhorstspruit (refer to figure 2-2).

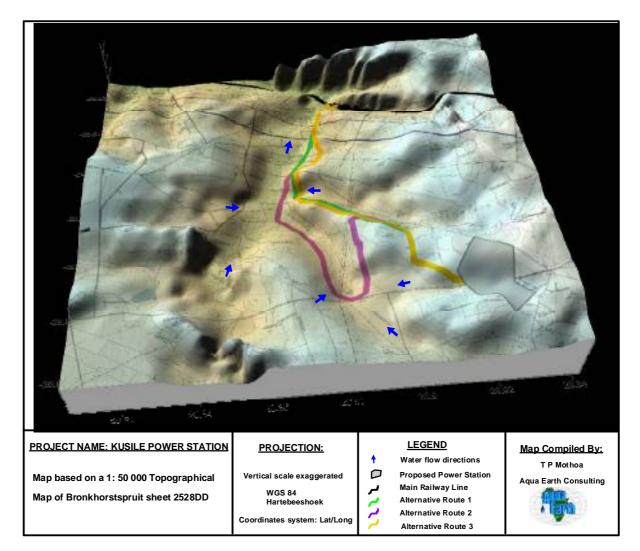



Figure 2-2: 3-D Topographical map illustrating the alternative railway corridors and general surface water flow directions

KUSILE POWER STATION – Baseline Hydrogeological Report

7

# 2.3 Regional Geology

According to the information obtained from a 1:250 000 Geological Map of Pretoria (toposheet 2528), the area under investigation, as illustrated in figure 2-3 and figure 2-4, is underlain mainly by the following Groups and Formations:

- Dwyka Formation of the Karoo Supergroup (Pd) This formation consists mainly of tillites and shale.
- Wilgerivier Formation (**Mw**) of the Waterberg Group This formation consists of sandstone and conglomerate.
- Silverton Formation (Vsi) of the Pretoria Group This formation consists mainly of hornfels, carbonaceous and calcareous shale, limestone and quartzite

Early bushveld diabase intrusions **(di)** are also encountered in the study area, mainly in the form of dykes and sills although no specific evidence of these intrusions could be found on site, the presence might be masked by the coverage of both shales and tillites.

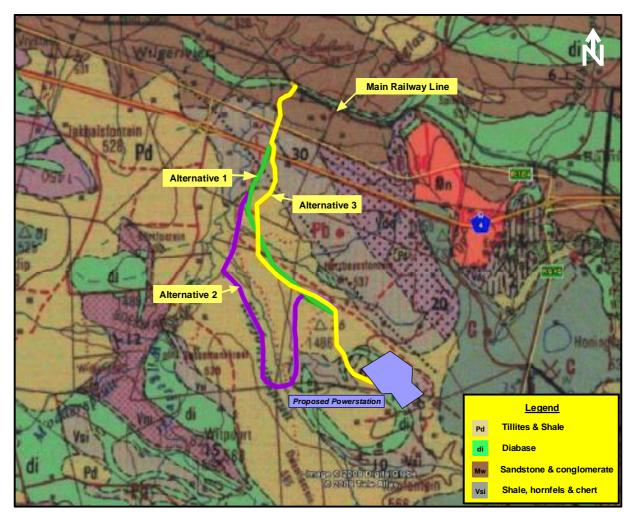



Figure 2-3: Basic Geological map of the study area

The majority of the study area, as indicated in figure 2-5, is covered by the dystrophic or mesotrophic red soils, although in some areas the distribution is somewhat limited.

# Aqua Earth Consulting cc

#### September 2009

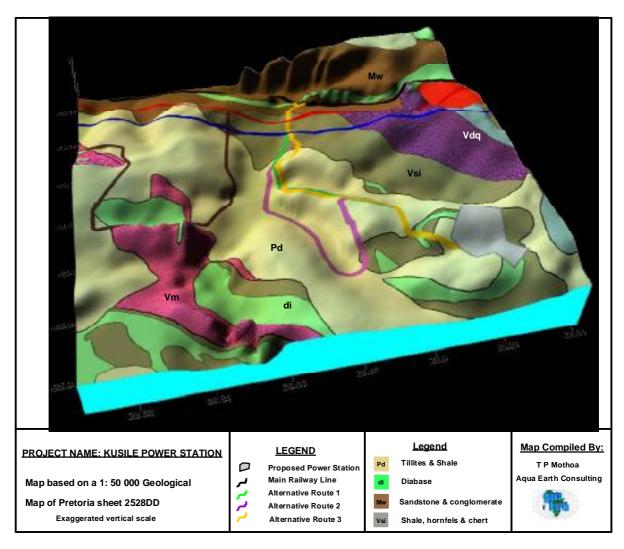



Figure 2-4: 3-D Geological map of the study area – presenting the major lithological unit present in the area.

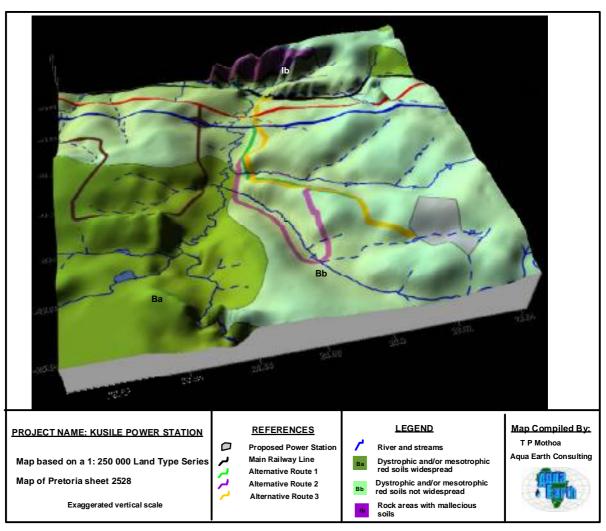



Figure 2-5: 3-D Soil type map

# 2.4 Hydrogeology:

According to the information obtained from the hydrogeological map of Johannesburg, toposheet 2526, groundwater in the study area occurs mainly within the Dwyka or Silverton Formations of the Karoo Supergroup. The Dwyka tillites are known to have a low permeability. In most cases groundwater in this formation occurs within the weathered zone and sometimes in the contact zone between the Dwyka formation and other formations.

The yield potential is classed as low on the basis that 76 % of boreholes on record produce less than 2 l/s. There is no information regarding the depth of groundwater level for this unit (formation).

The Silverton Formation, which comprises mainly of shales, has a larger groundwater yield potential than that of the overlying Dwyka Formation. Groundwater occurrence in this formation favours weathered shale, brecciated or jointed zones and especially the contact zone between the intrusive diabase sheets and the shale.

The groundwater yield potential is classed as good on the basis that 40 % of boreholes on record produce more than 2 l/s and 22 % produce more than 5 l/s. The groundwater rest level occurs between 10 and 30 mbgl (meters below ground level).

#### 2.5 Groundwater users

The primary groundwater users in the Kusile railway study area are mostly farmers, utilising groundwater for domestic (human consumption and irrigation) and livestock use. Table 3-4 depict the borehole positions and pump installation details as well owner details, where possible, of boreholes identified during the hydrocensus phase of this study.

#### 3 METHODOLOGY

The field investigation was undertaken between the 29 and 30 September 2009. The field activities involved: locating, surveying (determining coordinates), sampling, taking water level measurements and acquiring borehole information of privately owned boreholes in the Kusile Railway study area.

Boreholes samples were collected by means of using the existing pumping equipment and where no equipment was installed, water samples were collected using a hand held bailer. Samples were stored in cooler boxes and delivered to the laboratory the following day.

#### 3.1 Sample Localities

Sampling points were located by means of 1: 50 000 topographical map, aerial photos and information (properties and affected farm owners) provided by Zitholele Consulting.

Information on the positions of sampled boreholes in relation with the proposed railway corridors is provided in Table 3-4 and Figure 3-4 respectively.

### 3.2 Sampling method

A total of nine samples; six from farm boreholes and two from the nearby stream and/or river; were collected in the field. Six of the hydrocensus boreholes sampled are equipped with submersible pumps and one borehole was equipped with a windpump. These boreholes were sampled at the pump outlet, allowing the pump to run for at least 10 minutes, before collecting a sample. Surface samples were collected from the nearest streams or rivers. The field Ph, EC and TDS were measured by means of a Hanna handheld pH, EC and TDS instrument.

Five water samples (selected based on their spatial distribution) were submitted to an accredited laboratory, in this case UIS laboratory in Pretoria, for analysis.

#### 3.3 Water level measurement

Hydrocensus boreholes sampled were predominantly equipped with submersible or windpumps and measurement of water levels were severely restricted. The sampled boreholes were predominantly equipped with submersible or wind pumps as indicated in table 3-1. As a result most of the boreholes were sealed, which made the measurement of static water levels. In addition to sealed boreholes, farmers were reluctant to allow the field team to lift their pumps to fit the down the hole instruments (e.g. water level meter), in order to take water level measurements.

A recommendation is put forward in this regard.

Extensive water level data does exist for the Kusile Power Station. Monitoring boreholes information provided in monitoring reports compiled by Zitholele Consulting were available for assessment during this study.

Being in similar hydrogeological environments, these levels could provide a fair reflection of what water levels to expect in the newly affected area, and although not ideal does provide some insight as to the depth to groundwater in the area. A recommendation with regards to the measurement of water levels is put forward.

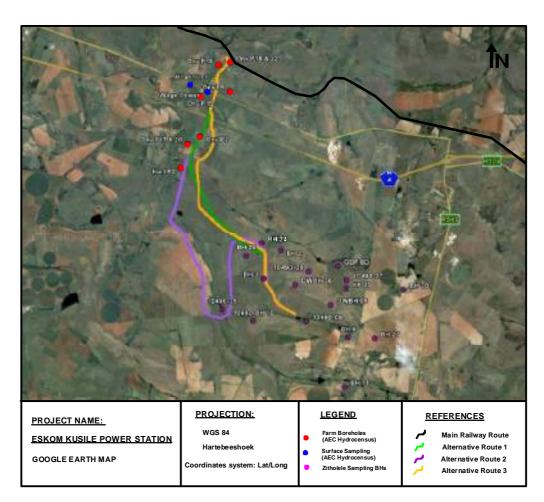



Figure 3-4: Location of boreholes sampled as part of the Kusile station construction site and of the proposed railway corridors

Aqua Earth Consulting cc

September 2009

| rmation  |
|----------|
| info     |
| orehole  |
| neral b  |
| 3-4: Gel |
| Table :  |

| 0N (  |                  | Type         | Topographic      |                         | Owner                       | Date       | Coord                           | Coordinates       | Borehole    | Hq       | Field      | Field       |         |
|-------|------------------|--------------|------------------|-------------------------|-----------------------------|------------|---------------------------------|-------------------|-------------|----------|------------|-------------|---------|
| əldsT | Roreho<br>Boreho | of<br>sample | Map<br>reference | Site Name               | Name                        | Sampled    | Latitude<br>South               | Longitude<br>East | Equipment   | I blsi'i | EC<br>mS/m | TDS<br>mg/l | Usage   |
| 1     | BH 1             | BS           | 2528DD           | Onverwacht P 15         | Mr Buks H <del>er</del> man | 29/09/2009 | -25.84847                       | 28.87527          | Submersible | 7.23     | 18.24      | 130         | DW/LS   |
| ¢     | вн 1             | а<br>а       | 7578DD           | Ommentuorht D J         | Mr Pieter Van<br>Vinsen     | 70/D0/2000 | 75 96771                        | 18 87577          | Suhmersihle |          |            |             |         |
| 4 60  | BH3              | R R          | 2528DD           | Onverwacht P5,6,9 & 16  | Dr Paul Meulenbeld          | 30/09/2009 | -25.84696                       | 28.88706          | Windput     |          |            |             | DW/LS   |
| 4     | BH 4             | BS           | 2528DD           | Onverwacht P18 & 22     | Mr Thami Sondiyazi          | 30/09/2009 | -25.83665                       | 28.88256          | Submersible | •        | •          |             | DV//LS  |
| S     | BH 5             | BS           | 2528DD           | Onverwacht P 16         | Mr Les Adams                | 29/09/2009 | -25.83753                       | 28.88256          | Submersible | 6.19     | 13.18      | 92.8        | DW//LS  |
| 9     | BH 6             | BS           | 2528DD           | Onverwacht P 17 & 20    | Mr Manie Venter             | 29/09/2009 | -25.86531                       | 28.87047          | Submersible | •        | •          | •           | DV///LS |
| 5     | BH 7             | BS           | 2528DD           | Onverwacht P 1 & 45     | Mr Moses Kgosana            | 29/09/2009 | -25.86001                       | 28.87527          | •           | •        | •          | •           | -       |
| 8     | BH 8             | BS           | 2528DD           | Kortfontein P 2         | Mr Johan Kotze              | 29/09/2009 | -25.87368                       | 28.86790          | Submersible | •        | •          |             | DW//S   |
| 6     | BH 9             | BS           | 2528DD           | Onverwacht              | •                           | 30/09/2009 | -25.84157                       | 28.88772          | •           |          | •          |             |         |
| 10    | BH 10            | BS           | 2528DD           | Onverwacht              | •                           | 29/09/2009 | -25.87251                       | 28.86896          | •           | •        | •          |             | '       |
| 11    | Wilgerivier<br>1 | SS           | 2528DD           | Wilge Stream            | -                           | 30/09/2009 | -25.84714                       | 28.87827          | A/A         | 7.74     | 43         | 275         | ,       |
| 12    | Wilgerivier<br>2 | SS           | 2528DD           | Wilgenvier              | ·                           | 30/09/2009 | -25.87150                       | 28.87150          | N/A         | 7.77     | 23.3       | 163         | ,       |
|       |                  | Sampled      | p                | * BS - Boreho           | ehole Sample                | * DW - D   | * DW - Domestic/ Drinking Water | king Water        |             |          |            |             |         |
|       | 4                | Not Sampled  | led              | * SS - Surface Sampling | Sampling                    | 42         | * LS - Livestocks               | ks                |             |          |            |             |         |
|       |                  |              |                  |                         |                             |            |                                 |                   |             |          |            |             |         |

### 4 CURRENT GROUNDWATER QUALITY

This section illustrates the results of the water quality analysis. These results were interpreted by Aqua Earth in order to form an understanding of the chemical characteristics of the groundwater, i.e. major species distribution. The results of the analyses were also studied in order to evaluate the groundwater in terms of quality compared to drinking water standards set by the Department of Water Affairs (DWA).

### 4.1 Chemistry results compared to the DWA standards of drinking water

The results presented in table 4-1 illustrate the chemical character of the borehole samples collected during the hydrocensus. These results indicate that groundwater quality in this area is generally of good quality. The inorganic water quality results of these boreholes indicate that water from BH 4 and BH 8 falls into class 4 category; this can be attributed to the elevated Fluoride content. Water from BH 2 and BH 3 falls into a class 1 category while BH 6 falls into a Class 2 category due to elevated iron content.

Class 0 to 1 water is described as good quality water while class 4 is described as water quality not suitable for drinking purposes. Detailed description of these classes is provided in table 4-1 below.

Table 4-1: Chemistry results of samples in the study area compared to the DWA standard for drinking water

| PROJECT<br>NAME: |      |      |                |       |       | Ŭ       | ESKOM KUSILE PROJECT | JECT                                                                  |                         |             |
|------------------|------|------|----------------|-------|-------|---------|----------------------|-----------------------------------------------------------------------|-------------------------|-------------|
| Standards        |      | Wat  | Water Sampl    | oles  |       |         | Department of Wate   | Department of Water Affairs and Forestry Standards for drinking water | ards for drinking water |             |
| Borehole No.     |      | Farr | Farm Boreholes | oles  |       |         |                      | Class of Water                                                        |                         |             |
| Constituent      | BH 2 | BH 3 | BH 4           | BH 6  | BH 8  | Class 0 | Class 1              | Class 2                                                               | Class 3                 | Class 4     |
| mg/L             |      |      |                |       |       | Good    |                      |                                                                       | ſ                       | Bad         |
| TDS              | 76   | 94   | 156            | 158   | 256   | < 450   | 450 - 1000           | 1000 - 2400                                                           | 2400 - 3400             | > 3400      |
| EC (mS/m)        | 11.6 | 16   | 23             | 22    | 41    | < 70    | 70-150               | 150 - 370                                                             | 370 - 520               | > 520       |
| Nitrate (as N)   | 1.55 | 0.75 |                | 0.45  | 0.06  | < 6     | 6 - 10               | 10 - 20                                                               | 20 - 40                 | > 40        |
| Fluoride         | 0.06 | 0.03 | 5.64           | 0.46  | 12.85 | < 0.7   | 0.7 - 1              | 1 - 1.5                                                               | 1.5 - 3.5               | < 3.5       |
| Sulphate         | 0.9  | 1.39 | 2.6            | 27.75 | 2.83  | < 200   | 200 - 400            | 400 - 600                                                             | 600 - 1000              | > 1000      |
| Magnesium        | 3.96 | 3.93 | 0.19           | 11.4  | 0.01  | < 70    | 70 - 100             | 100 - 200                                                             | 200-400                 | > 400       |
| Sodium           | 15.5 | 1.93 | 46.9           | 20.4  | 99.1  | < 100   | 100 - 200            | 200 - 400                                                             | 400 - 1000              | > 1000      |
| Chloride         | 1.66 | 5.33 | 25.81          | 4.44  | 52.18 | < 100   | 100 - 200            | 200 - 600                                                             | 600 - 1200              | > 1200      |
| Hq               | 6.7  | 7.72 | 8.38           | 7.29  | 9.56  | 5-9.5   | 4.5 - 5 or 9.5 - 10  | 4 - 4.5 or 10 - 10.5                                                  | 3 - 4 or 10.5 - 11      | < 3 or > 11 |
| Potassium        | 0.39 | 1.28 | 0.51           | 1.43  | 0.19  | < 25    | 25-50                | 50 - 100                                                              | 100-500                 | > 500       |
| Calcium          | 4.57 | 25.5 | 8.54           | 17    | 1.06  | < 80    | 60 - 150             | 150 - 300                                                             | > 300                   |             |
| Zinc             | ı    | •    | •              |       | •     | < 3     | 3-5                  | 5 - 10                                                                | 10 - 20                 | > 20        |
| Arsenic          | ı    | •    | •              | •     | •     | < .01   | .0105                | 0.05 - 0.2                                                            | 0.2 - 2                 | >2          |
| Cadmium          | -    | -    | -              |       | -     | < .003  | .003005              | .00502                                                                | .0205                   | > .05       |
| Iron             | 0.65 | 0.16 | 0.01           | 1.87  | 0.08  | < .01   | 0.5 - 1              | 1-5                                                                   | 5 - 10                  | > 10        |
| AI               | 1.49 | 0.01 | 0.01           | 0     | 0.08  |         |                      | Not Specified                                                         |                         |             |
| Mn               | 0    | 0    | 0              | 0.05  | 0     |         |                      | Not Specified                                                         |                         |             |
| Si               | 9.8  | 4.84 | 8.35           | 12.7  | 8.15  |         |                      | Not Specified                                                         |                         |             |
| N03              | ı    | ı    | '              | ,     | '     |         |                      | Not Specified                                                         |                         |             |
|                  |      |      |                |       |       |         |                      |                                                                       |                         |             |

KUSILE POWER STATION –Baseline Hydrogeological Report

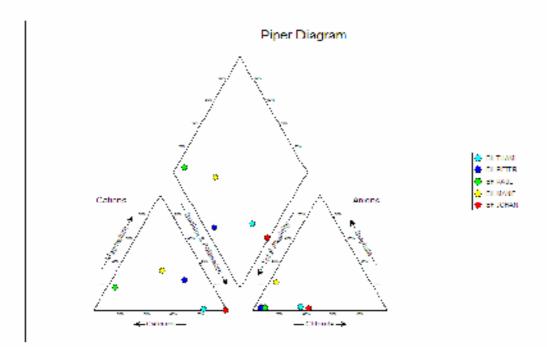

#### 4.2 Trillinear (Piper) Diagrams

Table 4-1 provides a piper diagram which is commonly developed to evaluate groundwater quality and chemical composition.

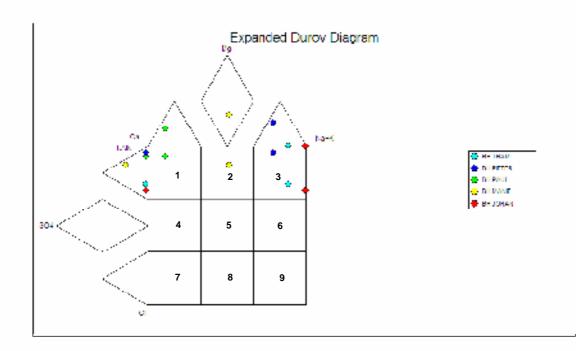
Groundwater is described according to the following classifications:

- Recent groundwater having a high calcium or Magnesium bicarbonate (Ca/MgHCO<sub>3</sub>) content;
- A dynamic regime containing sodium bicarbonate (NaHCO<sub>3</sub>) ground water;
- Stagnant groundwater conditions characterised by calcium or magnesium chloride (Ca/MgCl<sub>2</sub>) and calcium or magnesium sulphate (Ca/MgSO<sub>4</sub>) groundwater; and
- Old or mature groundwater enriched in Na+ and Cl-.

Based on these classifications; groundwater from BH 2, BH 4 and BH8 can be classed as dynamic regime water while BH 3 and BH 6 can be classed as recent water. Dynamic water (often indicates ion exchanged water) contains NaHCO<sub>3</sub> while recent water (or recently recharged) has a high Ca/MgHCO<sub>3</sub> content.



# Figure 4-1: Piper diagram of the groundwater chemistry of the hydrocensus boreholes


KUSILE POWER STATION – Baseline Hydrogeological Report

### 4.3 Expanded Durov Diagram

In this section the expanded durov diagram is used to classify the groundwater in terms of the water quality (refer to figure 4-2). Water types are classified in terms of the major cations and anions. This diagram can be divided into nine fields each of which describes a particular water type.

The groundwater chemistry of the hydrocensus boreholes plot in the following fields:

- Field 1 and 2: Calcium or Magnesium Bicarbonate present in the water.
   Fresh unpolluted water plots in this field. This water has high Ca/Mg(HCO3)<sub>2</sub>.
   The natural geology below the water table could also be the reason for these high chemical elements in groundwater.
- **Field 3:** Sodium Bicarbonate water which often indicates ion exchanged water.



# Figure 4-2: Expanded durov diagram of the groundwater chemistry of the sampled boreholes

### 5 IMPACT ASSESSMENT METHODOLOGY

The impacts are ranked according to the methodology described below. Where possible, mitigation measures are provided to manage impacts. In order to ensure uniformity, a standard impact assessment methodology was utilised so that a wide range of impacts can be compared with each other. The impact assessment methodology makes provision for the assessment of impacts against the following criteria:

- Significance;
- Spatial scale;
- Temporal scale;
- Probability; and
- Degree of certainty.

A combined quantitative and qualitative methodology was used to describe impacts for each of the aforementioned assessment criteria. A summary of each of the qualitative descriptors along with the equivalent quantitative rating scale for each of the aforementioned criteria is given in Table 5-1.

# Table 5-1: Quantitative rating and equivalent descriptors for the impactassessment criteria

| Rating | Significance     | Extent Scale                    | Temporal Scale |
|--------|------------------|---------------------------------|----------------|
| 1      | <u>VERY LOW</u>  | Isolated sites / proposed site  | Incidental     |
| 2      | LOW              | Study area                      | Short-term     |
| 3      | MODERATE         | Local                           | Medium-term    |
| 4      | HIGH             | Regional / Provincial Long-tern |                |
| 5      | <u>VERY HIGH</u> | <u>Global / National</u>        | Permanent      |

A more detailed description of each of the assessment criteria is given in the following sections.

# 5.1 Significance Assessment

Significance rating (importance) of the associated impacts embraces the notion of extent and magnitude, but does not always clearly define these since their importance in the rating scale is very relative. For example, the magnitude (i.e. the size) of area affected by atmospheric pollution may be extremely large (1 000 km<sup>2</sup>) but the significance of this effect is dependent on the concentration or level of pollution. If the concentration is great, the significance of the impact would be HIGH or VERY HIGH, but if it is diluted it would be VERY LOW or LOW. Similarly, if 60 ha

of a grassland type are destroyed the impact would be VERY HIGH if only 100 ha of that grassland type were known. The impact would be VERY LOW if the grassland type was common. A more detailed description of the impact significance rating scale is given in Table 5-2 below.

| Table 5-2: Descri | ption of the | significance | rating scale |
|-------------------|--------------|--------------|--------------|
|                   |              | 0.9          | . anng obaio |

|   | Rating    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Very high | Of the highest order possible within the bounds of impacts which<br>could occur. In the case of adverse impacts: there is no possible<br>mitigation and/or remedial activity which could offset the impact.<br>In the case of beneficial impacts, there is no real alternative to<br>achieving this benefit.                                                                                                                                                                                                                                                                                   |
| 4 | High      | Impact is of substantial order within the bounds of impacts, which<br>could occur. In the case of adverse impacts: mitigation and/or<br>remedial activity is feasible but difficult, expensive, time-<br>consuming or some combination of these. In the case of<br>beneficial impacts, other means of achieving this benefit are<br>feasible but they are more difficult, expensive, time-consuming or<br>some combination of these.                                                                                                                                                           |
| 3 | Moderate  | Impact is real but not substantial in relation to other impacts,<br>which might take effect within the bounds of those which could<br>occur. In the case of adverse impacts: mitigation and/or remedial<br>activity are both feasible and fairly easily possible. In the case of<br>beneficial impacts: other means of achieving this benefit are<br>about equal in time, cost, effort, etc.                                                                                                                                                                                                   |
| 2 | Low       | Impact is of a low order and therefore likely to have little real<br>effect. In the case of adverse impacts: mitigation and/or remedial<br>activity is either easily achieved or little will be required, or both.<br>In the case of beneficial impacts, alternative means for achieving<br>this benefit are likely to be easier, cheaper, more effective, less<br>time consuming, or some combination of these.                                                                                                                                                                               |
| 1 | Very low  | Impact is negligible within the bounds of impacts which could<br>occur. In the case of adverse impacts, almost no mitigation<br>and/or remedial activity are needed, and any minor steps which<br>might be needed are easy, cheap, and simple. In the case of<br>beneficial impacts, alternative means are almost all likely to be<br>better, in one or a number of ways, than this means of achieving<br>the benefit. Three additional categories must also be used where<br>relevant. They are in addition to the category represented on the<br>scale, and if used, will replace the scale. |
| 0 | No impact | There is no impact at all - not even a very low impact on a party or system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# 5.2 Spatial Scale

The spatial scale refers to the extent of the impact i.e. will the impact be felt at the local, regional, or global scale. The spatial assessment scale is described in more detail in Table 5-3.

|   | Rating                            | Description                                                                                                                                            |
|---|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Global/National                   | The maximum extent of any impact.                                                                                                                      |
| 4 | Regional/Provincial               | The spatial scale is moderate within the bounds of impacts possible, and will be felt at a regional scale (District Municipality to Provincial Level). |
| 3 | Local                             | The impact will affect an area up to 5 km from the proposed study area.                                                                                |
| 2 | Study Area                        | The impact will affect an area not exceeding the study area.                                                                                           |
| 1 | Isolated Sites /<br>proposed site | The impact will affect an area no bigger than the power line alignments.                                                                               |

# Table 5-3 : Description of the significance rating scale

### 5.3 Duration Scale

In order to accurately describe the impact it is necessary to understand the duration and persistence of an impact in the environment. The temporal scale is rated according to criteria set out in Table 5-4.

|   | Rating      | Description                                                       |  |
|---|-------------|-------------------------------------------------------------------|--|
| 1 | Incidental  | The impact will be limited to isolated incidences that are        |  |
|   |             | expected to occur very sporadically.                              |  |
| 2 | Short-term  | The environmental impact identified will operate for the duration |  |
|   |             | of the construction phase or a period of less than 5 years,       |  |
|   |             | whichever is the greater.                                         |  |
| 3 | Medium term | The environmental impact identified will operate for the duration |  |
|   |             | of life of plant.                                                 |  |
| 4 | Long term   | The environmental impact identified will operate beyond the life  |  |
|   |             | of operation.                                                     |  |
| 5 | Permanent   | The environmental impact will be permanent.                       |  |

### Table 5-4: Description of the temporal rating scale

#### 5.4 Degree of Probability

Probability or likelihood of an impact occurring will be described as shown in Table 5-5 below.

| Table 5-5 : Descri | ption of the dearee | of probability | of an impact | occurrina  |
|--------------------|---------------------|----------------|--------------|------------|
|                    |                     |                | er an inpaet | eee an ing |

| Rating | Description                         |
|--------|-------------------------------------|
| 1      | Practically impossible              |
| 2      | Unlikely                            |
| 3      | Could happen                        |
| 4      | Very Likely                         |
| 5      | It's going to happen / has occurred |

# 5.5 Degree of Certainty

As with all studies it is not possible to be 100% certain of all facts, and for this reason a standard "degree of certainty" scale is used as discussed in Table 5-5. The level of detail for specialist studies is determined according to the degree of certainty required for decision-making. The impacts are discussed in terms of affected parties or environmental components.

| Rating     | Description                                                        |
|------------|--------------------------------------------------------------------|
| Definite   | More than 90% sure of a particular fact.                           |
| Probable   | Between 70 and 90% sure of a particular fact, or of the likelihood |
|            | of that impact occurring.                                          |
| Possible   | Between 40 and 70% sure of a particular fact or of the likelihood  |
|            | of an impact occurring.                                            |
| Unsure     | Less than 40% sure of a particular fact or the likelihood of an    |
|            | impact occurring.                                                  |
| Can't know | The consultant believes an assessment is not possible even with    |
|            | additional research.                                               |
| Don't know | The consultant cannot, or is unwilling, to make an assessment      |
|            | given available information.                                       |

Table 5-6 : Description of the degree of certainty rating scale

# 5.6 Quantitative Description of Impacts

To allow for impacts to be described in a quantitative manner in addition to the qualitative description given above, a rating scale of between 1 and 5 was used for each of the assessment criteria. Thus the total value of the impact is described as the function of significance, spatial and temporal scale as described below:

 $\begin{array}{l} \textit{Impact Risk} = (\underline{\text{SIGNIFICANCE} + Spatial + \text{Temporal}}) \ \text{X} \ \underline{\text{Probability}} \\ \textbf{3} \qquad \textbf{5} \end{array}$ 

An example of how this rating scale is applied is shown below:

# Table 5-7 : Example of Rating Scale

| Impact        | Significance | Spatial<br>Scale | Temporal<br>Scale | Probability         | Rating |
|---------------|--------------|------------------|-------------------|---------------------|--------|
|               | LOW          | Local            | Medium-term       | <u>Could Happen</u> |        |
| Impact to air | 2            | 3                | 3                 | 3                   | 1.6    |

Note: The significance, spatial and temporal scales are added to give a total of 8, that is divided by 3 to give a criteria rating of 2,67. The probability (3) is divided by 5 to give a probability rating of 0,6. The criteria rating of 2,67 is then multiplied by the probability rating (0,6) to give the final rating of 1,6.

The impact risk is classified according to five classes as described in the table below.

# Table 5-8 : Impact Risk Classes

KUSILE POWER STATION –Baseline Hydrogeological Report

| Rating    | Impact Class | Description |
|-----------|--------------|-------------|
| 0.1 – 1.0 | 1            | Very Low    |
| 1.1 – 2.0 | 2            | Low         |
| 2.1 - 3.0 | 3            | Moderate    |
| 3.1 – 4.0 | 4            | High        |
| 4.1 - 5.0 | 5            | Very High   |

Therefore with reference to the example used for air quality above, an impact rating of 1.6 will fall in the Impact Class 2, which will be considered to be a low impact.

# 5.7 Cumulative Impacts

It is a requirement that the impact assessments take cognisance of cumulative impacts. In fulfilment of this requirement the impact assessment will take cognisance of any existing impact sustained by the operations, any mitigation measures already in place, any additional impact to environment through continued and proposed future activities, and the residual impact after mitigation measures. It is important to note that cumulative impacts at the national or provincial level will not be considered in this assessment, as the total quantification of external companies on resources is not possible at the project level due to the lack of information and research documenting the effects of existing activities. Such cumulative impacts that may occur across industry boundaries can also only be effectively addressed at Provincial and National Government levels.

Using the criteria as described above an example of how the cumulative impact assessment will be done is shown below:

| Impact                                  | Significance | Spatial<br>Scale | Temporal<br>Scale | Probability | Rating |
|-----------------------------------------|--------------|------------------|-------------------|-------------|--------|
| Initial / Existing Impact (I-<br>IA)    | 2            | 2                | 2                 | <u>1</u>    | 0.4    |
| Additional Impact (A-IA)                | 1            | 2                | 1                 | <u>1</u>    | 0.3    |
| Cumulative Impact (C-IA)                | 3            | 4                | <u>2</u>          | <u>1</u>    | 0.6    |
| Residual Impact after mitigation (R-IA) | 2            | 1                | 2                 | <u>1</u>    | 0.3    |

As indicated in the example above the Additional Impact Assessment (A-IA) is the amount that the impact assessment for each criterion will increase. Thus if the initial impact will not increase, as shown for temporal scale in the example above the A-IA will be 0, however, where the impact will increase by two orders of magnitude from 2 to 4 as in the spatial scale the A-IA is 2. The Cumulative Impact Assessment (C-IA) is thus the sum of the Initial Impact Assessment (I-IA) and the A-IA for each of the assessment criteria.

24

In both cases the I-IA and A-IA are assessed without taking into account any form of mitigation measures. As such the C-IA is also a worst case scenario assessment where no mitigation measures have been implemented. Thus a Residual Impact Assessment (R-IA) is also made which takes into account the C-IA with mitigation measures. The latter is the most probable case scenario, and for the purpose of this report is considered to be the final state Impact Assessment.

# 5.8 Notation of Impacts

In order to make the report easier to read the following notation format is used to highlight the various components of the assessment:

- Significance or magnitude- IN CAPITALS
- Temporal Scale in underline
- Probability *in italics and underlined*.
- Degree of certainty in bold
- Spatial Extent Scale in italics

# 6 IMPACT ASSESSMENT

The impact assessment was undertaken for the construction, operational and decommissioning phases of the project. Due to the close proximity of the corridor alternatives and the regional setting, the potential groundwater impact will be the same for all three alternatives and hence only one impact assessment was undertaken.

The railway line will constitute a single railway line with a single overhead line and an access road. According to the design team at Kwezi V3 the impact footprint for such a railway corridor would be approximitaly 50 m depending on the cut/fill required.

# 6.1 Initial Impact

Currently the groundwater of the study area is relatively undisturbed with isolated areas of impact. Current impacts include the construction site of the Kusile Power Station, where major terracing and fill operations are underway. Other potential impacts include mining operations upstream of the study area.

### 6.2 Additional Impact

The additional impact will be the impact of the railway line on groundwater excluding any mitigation measures. During the construction phase two possible causes for groundwater contamination exist, namely: (1) spillage or leakage of hydrocarbons from heavy vehicles and / or generators on site and (2) contamination from pit latrines infiltration. This impact is rated as **Moderate**. The impact to groundwater during the operational phase could result from the spillage of lime from the railway wagons. This impact is rated as **Moderate**.

### 6.3 Cumulative Impact

The construction cumulative impact of the railway line in combination with the activities already present on site will be a MODERATE negative impact over the *study area* that will remain for the <u>long term</u>. This impact <u>will definitely</u> occur. This results in a rating of **Moderate**.

During the operational phase there will be a MODERATE impact to groundwater. During the decommissioning and closure, the impacts will be the same as assessed for the construction phase, but the end result would be a positive impact.

### 6.4 Mitigation Measures

The following mitigation measures are proposed to mitigate the impact on groundwater.

- If generators are used they should be placed in a bunded area to capture all potential spillages;
- No pit latrines should be allowed;
- Rail wagons should be covered to prevent any spillages of lime during operations
- Monitoring of groundwater resources along the chosen railway route should be considered once the final route has been determined. If existing boreholes are situated close to the chosen route, these holes could be tested to determine hydraulic parameters and the holes used as part of the monitoring network and protocol of the existing power station. If the final route indicates that there are no observation holes along the chosen route (mainly route 2), additional borehole should be drilled and constructed under supervision of a hydrogeologist to serve as a monitoring point along the railway line.

# 6.5 Residual Impact

The mitigation measures proposed above will reduce the impact rating to

groundwater to a **low** impact.

### Table 6-1: Impact Rating Matrix for Groundwater

| Construction phase               |              |            |             |              |                |
|----------------------------------|--------------|------------|-------------|--------------|----------------|
| Impact Type                      | Significance | Spatial    | Temporal    | Probability  | Rating         |
| Initial                          | Moderate     | Local      | Short Term  | Has occurred | 2.6 - Moderate |
| Additional                       | Moderate     | Local      | Short Term  | Could happen | 1.6 – Low      |
| Cumulative                       | Moderate     | Local      | Short Term  | Could happen | 1.6 -Low       |
| Residual                         | Low          | Local      | Short Term  | Unlikely     | 0.9 – Very Low |
| Operational Phase                |              |            |             |              |                |
| Impact Type                      | Significance | Spatial    | Temporal    | Probability  | Rating         |
| Additional                       | Moderate     | Local      | Medium Term | Could happen | 1.2 – Low      |
| Cumulative                       | Moderate     | Local      | Medium Term | Could happen | 1.2 – Low      |
| Residual                         | Low          | Local      | Medium Term | Unlikely     | 0.4 – Very Low |
| Closure and Rehabilitation Phase |              |            |             |              |                |
| Impact Type                      | Significance | Spatial    | Temporal    | Probability  | Rating         |
| Residual                         | Moderate     | Study area | Long Term   | Has occurred | 3 - Moderate   |

#### 7 CONCLUSIONS AND RECOMMENDATIONS

# Based on the results during this baseline assessment, the following conclusions can be made:

- The Kusile railway study area is underlain by geological formations of the Karoo and Transvaal Supergroup. The main outcrops in this area consist of the Dwyka tillites and Silverton shale Formations whilst the shales are in some instances intruded by early Bushveld diabase.
- Available hydraulic parameters indicate low permeability for these formations and it is expected that fractures or joints in the aquifer will be the main conduits for groundwater flow and pollutant transport. Fractures occur mainly along fault zones and lithological contact planes. This study was however a baseline study with no drilling and testing of observation boreholes took place, no hydraulic parameters were determined by means of borehole tests. A recommendation is put forward in this regard.
- Water levels obtained from boreholes at the power station construction site, sampled by Zitholele Consulting, lie in the range of 3.5 to 23mbgl.
- Groundwater in the study area is generally of good quality, although elevated concentrations of Fluoride (falling in Class 4 and unsuitable for human consumption) was measured in two boreholes, and elevated Iron concentrations was measured in one borehole(falling in class2 making unsuitable for consumption in sensitive groups).
- From a hydrogeological point of view the construction of a railway line will have limited to no impact on groundwater quality unless accidental spills and leakages of certain hazardous and harmful materials occur.
- In a case where spillages might occur, swift action, including immediate containment and rapid cleanup of any spill/incident will minimise any impacts to surface and groundwater sources. The specific nature of spills and or incident should however be analysed by a Hydrogeologist and remedial action implemented based on the severity and extend of the incident.

# Based on this baseline assessment and conclusions reached, the following recommendations are put forward for consideration and early implementation:

- The existing monitoring network at the Kusile power station should be extended to include monitoring positions along the chosen railway route; this could be either at existing, private boreholes, or at designated newly drilled observation boreholes. The final decision on which option to choose should be determined once the final railway route has been chosen.
- Borehole tests should be carried out on selected existing boreholes to determine aquifer parameters, and assist in the determination of the aquifer lateral extend. This will also confirm the sensitivity of groundwater resources to any possible impacts from both the railway construction and the railway operation.
- All boreholes should be surveyed to determine actual collar heights in meters above mean sea level. All groundwater levels and groundwater contours should then be reported in terms of groundwater elevations, making for a much more accurate presentation of groundwater levels and flow patterns.

# 8 **REFERENCES**

- Department of Minerals and Energy and Council for Geosciences, "1: 50 000 Topographical Map of Bronkhorstspruit toposheet 2528DD"
- Department of Minerals and Energy, "1: 250 000 Geological map of Pretoria, toposheet 2528"
- Department of agricultural and environmental affairs, "1: 250 000 Soil type map of Pretoria toposheet 2528"
- Department of Water Affairs, "1: 500 000 Hydrogeological map of Johannesburg toposheet 2526"

APPENDIX A

WATER ANALYSIS CERTIFICATES



JIS Analytical Services (Pty) Ltd • Reg. No. 2000/027788/07 • VAT No. 4920202969 13 Esdoring Nook • Highveld Technopark • Centurion PO Box 8286 • Centurion • 0046 Tel. +27 12 665 4291 • Fax. +27 12 665 4294 info@uis-as.co.za • http://www.uis-as.co.za

Aqua Earth Consulting (Pty) Ltd PO Box 1747 Northriding 2162 South Africa Peter Mothoa Tel : +27117875994 Fax : +27115076612 E-Mail : aquaearth@aquaearth.co.za

| ANALYSIS CERTIFICATE |  |  |  |  |
|----------------------|--|--|--|--|
| Date 2009/10/14      |  |  |  |  |
| Request No 1708      |  |  |  |  |
| Contract No          |  |  |  |  |
| Order/Ref No 09/024  |  |  |  |  |

| SAMPLE ID : | 112577           | SAMPLE MATRIX : | Water      |
|-------------|------------------|-----------------|------------|
| SAMPLE NO.: | JOHAN/3/30/09/09 | DATE RECEIVED : | 2009-09-30 |
|             | - Z A PI         |                 |            |

| METHOD : pH            |                                          |
|------------------------|------------------------------------------|
| METHOD NO.: UIS-EA-T00 | (Accredited) DATE COMPLETED : 2009-10-14 |
| PARAMETER              | VALUE UNIT                               |
| рН                     | 9.56                                     |
| pH Temperature         | 17.4 Deg C                               |
|                        |                                          |

| METHOD : E       | lectrical Conductivity  |                                    |
|------------------|-------------------------|------------------------------------|
| METHOD NO.: U    | IS-EA-T001 (Accredited) | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER        |                         | VALUE UNIT                         |
| Total Conductivi | lty                     | 41 mS/m                            |
| TC Temperature   |                         | 17.4 Deg C                         |

| METHOD : Calculated Total Dissolved  | Solids from EC                     |
|--------------------------------------|------------------------------------|
| METHOD NO.: UIS-CP-T001              | DATE COMPLETED : 2009-10-14        |
| PARAMETER                            | VALUE UNIT                         |
| TDS by EC * 6.5                      | 267 mg/l                           |
| TDS by EC * 7                        | 287 mg/l                           |
|                                      |                                    |
|                                      |                                    |
|                                      |                                    |
| METHOD : Total Dissolved Solids      |                                    |
| METHOD NO.: UIS-EA-T005 (Accredited) | <b>DATE COMPLETED :</b> 2009-10-14 |
|                                      |                                    |
| PARAMETER                            | VALUE UNIT                         |
| Total Dissolved Solids               | 256 mg/l                           |

analysis (a'nælisis) n. separation of something into its elements or components (pl. -yses (1si:z)) - chemical Page 1



List of Directors available from the registered office

| SAMPLE I | D :         | 112577                                     | SAMPLE MATRIX : | Water      |
|----------|-------------|--------------------------------------------|-----------------|------------|
| SAMPLE N | ю <b>.:</b> | JOHAN/3/30/09/09                           | DATE RECEIVED : | 2009-09-30 |
|          |             |                                            |                 |            |
| METHOD   | :           | Calculated Total Dissolved Solids by Summa | tion            |            |

| METHOD NO.: UIS-CP-T003 | <b>DATE COMPLETED :</b> 2009-10-14 |
|-------------------------|------------------------------------|
| PARAMETER               | VALUE UNIT                         |
| TDS by Summation        | 253 mg/l                           |

| METHOD :       | P and Total (M) Alkalinity |                                    |
|----------------|----------------------------|------------------------------------|
| METHOD NO.:    | UIS-EA-T002 (Accredited)   | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER      |                            | VALUE UNIT                         |
| P Alkalinity   |                            | 23.2 mg/l CaCO3                    |
| Total (M) Alka | alinity                    | 105 mg/l CaCO3                     |

| METHOD : | Disolved | Cations | in | Water | by | ICP-OES |
|----------|----------|---------|----|-------|----|---------|
|----------|----------|---------|----|-------|----|---------|

| METHOD NO.: UIS-TEA-T001 | <b>DATE COMPLETED :</b> 2009-10-14 |
|--------------------------|------------------------------------|
| PARAMETER                | VALUE UNIT                         |
| Al                       | 0.08 mg/l                          |
| Ca                       | 1.06 mg/l                          |
| Fe                       | 0.08 mg/l                          |
| К                        | 0.19 mg/l                          |
| Mg                       | <0.05 mg/l                         |
| Mn                       | <0.05 mg/l                         |
| Na                       | 99.1 mg/l                          |
| Si                       | 8.15 mg/l                          |
|                          |                                    |

| METHOD :     | Anions by Ion Chromatography |                                    |  |
|--------------|------------------------------|------------------------------------|--|
| METHOD NO .: | UIS-EA-T008 (Accredited)     | <b>DATE COMPLETED :</b> 2009-10-14 |  |
| PARAMETER    |                              | VALUE UNIT                         |  |
| F            |                              | 12.9 mg/l                          |  |
| Cl           |                              | 52.2 mg/l                          |  |
| NO 3         |                              | <0.3 mg/l                          |  |
| NO3 as N     |                              | <0.3 mg/l                          |  |
| PO4          |                              | <0.8 mg/l                          |  |
| SO4          |                              | 2.83 mg/l                          |  |

| METHOD :      | Ion Balance Error |                                    |  |
|---------------|-------------------|------------------------------------|--|
| METHOD NO .:  | UIS-CP-T002       | <b>DATE COMPLETED :</b> 2009-10-14 |  |
| PARAMETER     |                   | VALUE UNIT                         |  |
| Sum of Cation | S                 | 4.38 me/l                          |  |
| Sum of Anions |                   | 4.92 me/l                          |  |
| Ion Balance E | rror              | -5.84 %                            |  |
|               |                   |                                    |  |

| SAMPLE ID :  | 112577            | SAMPLE MATRIX :  | Water      |
|--------------|-------------------|------------------|------------|
| SAMPLE NO.:  | JOHAN/3/30/09/09  | DATE RECEIVED :  | 2009-09-30 |
|              |                   |                  |            |
| METHOD :     | Ion Balance Error |                  |            |
| METHOD NO .: | UIS-CP-T002       | DATE COMPLETED : | 2009-10-14 |
| PARAMETER    |                   | VALUE UNIT       |            |

AUTHORISED SIGNATURE



JIS Analytical Services (Pty) Ltd • Reg. No. 2000/027788/07 • VAT No. 4920202969 13 Esdoring Nook • Highveld Technopark • Centurion PO Box 8286 • Centurion • 0046 Tel. +27 12 665 4291 • Fax. +27 12 665 4294 info@uis-as.co.za • http://www.uis-as.co.za

Aqua Earth Consulting (Pty) Ltd PO Box 1747 Northriding 2162 South Africa Peter Mothoa Tel : +27117875994 Fax : +27115076612 E-Mail : aquaearth@aquaearth.co.za

| ANALYSIS CERTIFICATE |            |
|----------------------|------------|
| Date                 | 2009/10/14 |
| Request No           | 1708       |
| Contract No          |            |
| Order/Ref No         | 09/024     |

| SAMPLE ID : | 112576           | SAMPLE MATRIX : | Water      |
|-------------|------------------|-----------------|------------|
| SAMPLE NO.: | MANIE/2/30/09/09 | DATE RECEIVED : | 2009-09-30 |
|             |                  |                 |            |

| METHOD :       | рН          |                                         |                  |                                       |
|----------------|-------------|-----------------------------------------|------------------|---------------------------------------|
| METHOD NO .:   | UIS-EA-T003 | (Accredited)                            | DATE COMPLETED : | 2009-10-14                            |
| PARAMETER      |             | 2 · · · · · · · · · · · · · · · · · · · | VALUE UNIT       | · · · · · · · · · · · · · · · · · · · |
| рH             |             |                                         | 7.29             |                                       |
| pH Temperature | 2           |                                         | 17.4 Deg C       |                                       |
|                |             |                                         |                  |                                       |

| METHOD : Electr    | ical Conductivity  |                |              |
|--------------------|--------------------|----------------|--------------|
| METHOD NO.: UIS-EA | -T001 (Accredited) | DATE COMPLETED | : 2009-10-14 |
| PARAMETER          |                    | VALUE UNIT     |              |
| Total Conductivity |                    | 22 mS/m        |              |
| TC Temperature     |                    | 17.4 Deg C     |              |

| METHOD : Calculated Total Dissolved Solids | from EC                            |
|--------------------------------------------|------------------------------------|
| METHOD NO.: UIS-CP-T001                    | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER                                  | VALUE UNIT                         |
| TDS by EC * 6.5                            | 143 mg/l                           |
| TDS by EC * 7                              | 154 mg/l                           |
|                                            |                                    |
|                                            |                                    |
|                                            |                                    |
| METHOD : Total Dissolved Solids            |                                    |
|                                            |                                    |
| METHOD NO.: UIS-EA-T005 (Accredited)       | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER                                  | VALUE UNIT                         |
|                                            |                                    |

Total Dissolved Solids

| DATE | CC | MPLETED | : | 2009-10-3 |
|------|----|---------|---|-----------|
| VAL  | UE | UNIT    |   |           |
| 1    | 58 | mg/l    |   |           |
|      |    |         |   |           |

analysis (a'nælisis) n. separation of something into its elements or components (pl. -yses (isi:z)) - chemical Page 1



List of Directors available from the registered office

| SAMPLE I | D : | 112576                                     | SAMPLE MATRIX : | Water      |
|----------|-----|--------------------------------------------|-----------------|------------|
| SAMPLE N | 0.: | MANIE/2/30/09/09                           | DATE RECEIVED : | 2009-09-30 |
|          |     |                                            |                 |            |
| METHOD   | :   | Calculated Total Dissolved Solids by Summa | tion            |            |

| METHOD NO .:  | UIS-CP-T003 | DATE CO | MPLETED : | 2009-10-14 |
|---------------|-------------|---------|-----------|------------|
| PARAMETER     |             | VALUE   | UNIT      |            |
| TDS by Summat | ion         | 170     | mg/l      |            |

| METHOD : Pa        | and Total (M) Alkalinity |                 |            |
|--------------------|--------------------------|-----------------|------------|
| METHOD NO.: UIS    | S-EA-T002 (Accredited) D | ATE COMPLETED : | 2009-10-14 |
| PARAMETER          |                          | VALUE UNIT      |            |
| P Alkalinity       |                          | <0.6 mg/l CaCO3 |            |
| Total (M) Alkalini | ity                      | 83.8 mg/l CaCO3 |            |

#### METHOD : Disolved Cations in Water by ICP-OES

| METHOD NO .: | UIS-TEA-T001 | DATE CO | OMPLETED : | 2009-10-14 |
|--------------|--------------|---------|------------|------------|
| PARAMETER    |              | VALUE   | UNIT       |            |
| Al           |              | <0.05   | mg/l       |            |
| Ca           |              | 17      | mg/l       |            |
| Fe           |              | 1.87    | mg/l       |            |
| K            |              | 1.43    | mg/l       |            |
| Mg           |              | 11.4    | mg/l       |            |
| Mn           |              | 0.05    | mg/l       |            |
| Na           |              | 20.4    | mg/l       |            |
| Si           |              | 12.7    | mg/l       |            |
|              |              |         |            |            |

| METHOD | : | Anions | by | Ion | Chromatography |
|--------|---|--------|----|-----|----------------|
|        |   |        |    |     |                |

| METHOD NO .: | UIS-EA-T008 (Accredited) | <b>DATE COMPLETED :</b> 2009-10-14 |  |
|--------------|--------------------------|------------------------------------|--|
| PARAMETER    |                          | VALUE UNIT                         |  |
| F            |                          | 0.46 mg/l                          |  |
| Cl           |                          | 4.44 mg/l                          |  |
| NO3          |                          | 1.98 mg/l                          |  |
| NO3 as N     |                          | 0.45 mg/l                          |  |
| PO4          |                          | <0.8 mg/l                          |  |
| SO4          |                          | 27.8 mg/l                          |  |

| METHOD :      | Ion Balance Error |                                    |
|---------------|-------------------|------------------------------------|
| METHOD NO .:  | UIS-CP-T002       | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER     |                   | VALUE UNIT                         |
| Sum of Catior | IS                | 2.78 me/l                          |
| Sum of Anions | 3                 | 3.06 me/l                          |
| Ion Balance H | Error             | -4.83 %                            |

| SAMPLE ID :  | 112576            | SAMPLE MATRIX :  | Water      |
|--------------|-------------------|------------------|------------|
| SAMPLE NO.:  | MANIE/2/30/09/09  | DATE RECEIVED :  | 2009-09-30 |
|              |                   |                  |            |
| METHOD :     | Ion Balance Error |                  |            |
| METHOD NO .: | UIS-CP-T002       | DATE COMPLETED : | 2009-10-14 |
| PARAMETER    |                   | VALUE UNIT       |            |

AUTHORISED SIGNATURE



JIS Analytical Services (Pty) Ltd • Reg. No. 2000/027788/07 • VAT No. 4920202969 13 Esdoring Nook • Highveld Technopark • Centurion PO Box 8286 • Centurion • 0046 Tel. +27 12 665 4291 • Fax. +27 12 665 4294 info@uis-as.co.za • http://www.uis-as.co.za

Aqua Earth Consulting (Pty) Ltd PO Box 1747 Northriding 2162 South Africa Peter Mothoa Tel : +27117875994 Fax : +27115076612 E-Mail : aquaearth@aquaearth.co.za

| ANALYSIS CERTIFICATE |            |  |  |  |
|----------------------|------------|--|--|--|
| Date                 | 2009/10/14 |  |  |  |
| Request No           | 1708       |  |  |  |
| Contract No          |            |  |  |  |
| Order/Ref No         | 09/024     |  |  |  |

| SAMPLE ID : | 112580          | SAMPLE MATRIX : | Water      |
|-------------|-----------------|-----------------|------------|
| SAMPLE NO.: | PAUL/8/30/09/09 | DATE RECEIVED : | 2009-09-30 |
|             |                 |                 |            |

| METHOD : pH            |                                          |
|------------------------|------------------------------------------|
| METHOD NO.: UIS-EA-T00 | (Accredited) DATE COMPLETED : 2009-10-14 |
| PARAMETER              | VALUE UNIT                               |
| рН                     | 7.72                                     |
| pH Temperature         | 17.7 Deg C                               |
|                        |                                          |

| METHOD : Electrical Conductivity     |                             |
|--------------------------------------|-----------------------------|
| METHOD NO.: UIS-EA-T001 (Accredited) | DATE COMPLETED : 2009-10-14 |
| PARAMETER                            | VALUE UNIT                  |
| Total Conductivity                   | 16 mS/m                     |
| TC Temperature                       | 17.7 Deg C                  |

| METHOD : Calculated Total Dissolved Solids f | rom EC                      |
|----------------------------------------------|-----------------------------|
| METHOD NO.: UIS-CP-T001                      | DATE COMPLETED : 2009-10-14 |
| PARAMETER                                    | VALUE UNIT                  |
| TDS by EC * 6.5                              | 104 mg/l                    |
| TDS by EC * 7                                | 112 mg/l                    |
|                                              |                             |
|                                              |                             |
|                                              |                             |
| METHOD : Total Dissolved Solids              |                             |
| METHOD NO.: UIS-EA-T005 (Accredited)         | DATE COMPLETED : 2009-10-14 |
| PARAMETER                                    | VALUE UNIT                  |
| Total Dissolved Solids                       | 94 mg/l                     |

analysis (ə'nælisis) *n*, separation of something into its elements or components (*pl.* -yses (isiz)) — chemical *n./a.*, the analysis of material samples to gain an understanding of their chemical composition and structur



List of Directors available from the registered office

Page 1

| SAMPLE I | D : | 112580                                     | SAMPLE MATRIX : | Water      |
|----------|-----|--------------------------------------------|-----------------|------------|
| SAMPLE N | 0.: | PAUL/8/30/09/09                            | DATE RECEIVED : | 2009-09-30 |
|          |     |                                            | -               |            |
| METHOD   | :   | Calculated Total Dissolved Solids by Summa | tion            |            |

| METHOD NO.: UIS-CP-T003 | DATE COM | PLETED : | 2009-10-14 |
|-------------------------|----------|----------|------------|
| PARAMETER               | VALUE U  | NIT      |            |
| TDS by Summation        | 101 m    | ng/l     |            |

| METHOD : P and Total (M) Alkalinity  |                                    |
|--------------------------------------|------------------------------------|
| METHOD NO.: UIS-EA-T002 (Accredited) | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER                            | VALUE UNIT                         |
| P Alkalinity                         | <0.6 mg/l CaCO3                    |
| Total (M) Alkalinity                 | 75.7 mg/l CaCO3                    |

#### METHOD : Disolved Cations in Water by ICP-OES

| METHOD NO .: | UIS-TEA-T001 | DATE CO | OMPLETED : | 2009-10-14 |
|--------------|--------------|---------|------------|------------|
| PARAMETER    |              | VALUE   | UNIT       |            |
| Al           |              | <0.05   | mg/l       |            |
| Ca           |              | 25.5    | mg/l       |            |
| Fe           |              | 0.16    | mg/l       |            |
| K            |              | 1.28    | mg/l       |            |
| Mg           |              | 3.93    | mg/l       |            |
| Mn           |              | <0.05   | mg/l       |            |
| Na           |              | 1.93    | mg/l       |            |
| Si           |              | 4.84    | mg/l       |            |
|              |              |         |            |            |

| METHOD | : | Anions | by | Ion | Chromatography |
|--------|---|--------|----|-----|----------------|
|--------|---|--------|----|-----|----------------|

| METHOD NO.: | UIS-EA-T008 (Accredited) | <b>DATE COMPLETED :</b> 2009-10-14 |
|-------------|--------------------------|------------------------------------|
| PARAMETER   |                          | VALUE UNIT                         |
| F           |                          | <0.1 mg/l                          |
| Cl          |                          | 5.33 mg/l                          |
| NO3         |                          | 3.34 mg/l                          |
| NO3 as N    |                          | 0.75 mg/l                          |
| PO4         |                          | <0.8 mg/l                          |
| SO4         |                          | 1.39 mg/l                          |

| METHOD :      | Ion Balance Error |                                    |
|---------------|-------------------|------------------------------------|
| METHOD NO .:  | UIS-CP-T002       | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER     |                   | VALUE UNIT                         |
| Sum of Cation | IS                | 1.72 me/l                          |
| Sum of Anions | 3                 | 1.84 me/l                          |
| Ion Balance H | Error             | -3.43 %                            |

| SAMPLE ID :  | 112580            | SAMPLE MATRIX :  | Water      |
|--------------|-------------------|------------------|------------|
| SAMPLE NO.:  | PAUL/8/30/09/09   | DATE RECEIVED :  | 2009-09-30 |
|              |                   |                  |            |
| METHOD :     | Ion Balance Error |                  |            |
| METHOD NO .: | UIS-CP-T002       | DATE COMPLETED : | 2009-10-14 |
| PARAMETER    |                   | VALUE UNIT       |            |

AUTHORISED SIGNATURE



JIS Analytical Services (Pty) Ltd • Reg. No. 2000/027788/07 • VAT No. 4920202969 13 Esdoring Nook • Highveld Technopark • Centurion PO Box 8286 • Centurion • 0046 Tel. +27 12 665 4291 • Fax. +27 12 665 4294 info@uis-as.co.za • http://www.uis-as.co.za

Aqua Earth Consulting (Pty) Ltd PO Box 1747 Northriding 2162 South Africa Peter Mothoa Tel : +27117875994 Fax : +27115076612 E-Mail : aquaearth@aquaearth.co.za

| ANALYSIS CERTIFICATE |  |  |  |  |
|----------------------|--|--|--|--|
| Date 2009/10/14      |  |  |  |  |
| Request No 1708      |  |  |  |  |
| Contract No          |  |  |  |  |
| Order/Ref No 09/024  |  |  |  |  |

| SAMPLE ID : | 112578            | SAMPLE MATRIX : | Water      |
|-------------|-------------------|-----------------|------------|
| SAMPLE NO.: | PIETER/4/30/09/09 | DATE RECEIVED : | 2009-09-30 |
|             |                   |                 |            |

| METHOD : pH             |                                          |
|-------------------------|------------------------------------------|
| METHOD NO.: UIS-EA-T003 | (Accredited) DATE COMPLETED : 2009-10-14 |
| PARAMETER               | VALUE UNIT                               |
| рH                      | 6.7                                      |
| pH Temperature          | 17.4 Deg C                               |
|                         |                                          |

| METHOD : Electrical Conductivity     |                             |
|--------------------------------------|-----------------------------|
| METHOD NO.: UIS-EA-T001 (Accredited) | DATE COMPLETED : 2009-10-14 |
| PARAMETER                            | VALUE UNIT                  |
| Total Conductivity                   | 11.6 mS/m                   |
| TC Temperature                       | 17.4 Deg C                  |

| METHOD : Calculated Total Dissolved Solids | from EC                            |
|--------------------------------------------|------------------------------------|
| METHOD NO.: UIS-CP-T001                    | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER                                  | VALUE UNIT                         |
| TDS by EC * 6.5                            | 75.4 mg/l                          |
| TDS by EC * 7                              | 81.2 mg/l                          |
|                                            |                                    |
|                                            |                                    |
|                                            |                                    |
| METHOD : Total Dissolved Solids            |                                    |
| METHOD NO.: UIS-EA-T005 (Accredited)       | DATE COMPLETED : 2009-10-14        |
| PARAMETER                                  | VALUE UNIT                         |
| Total Dissolved Solids                     | 76 mg/l                            |

analysis (ə'nælisis) *n*. separation of something into its elements or components (*pl.* -yses (isiz)) — chemical *n./a.*, the analysis of material samples to gain an understanding of their chemical composition and structure



Page 1 List of Directors available from the registered office

LIST O

| SAMPLE ID : | 112578                                     | SAMPLE MATRIX :  | Water      |
|-------------|--------------------------------------------|------------------|------------|
| SAMPLE NO.: | PIETER/4/30/09/09                          | DATE RECEIVED :  | 2009-09-30 |
|             |                                            |                  |            |
| METHOD :    | Calculated Total Dissolved Solids by Summa | tion             |            |
| METHOD NO.: | UIS-CP-T003                                | DATE COMPLETED : | 2009-10-14 |

| METHOD NO.: UIS-CP-T003 | DATE COMPLETED : 2009 | -10-14 |
|-------------------------|-----------------------|--------|
| PARAMETER               | VALUE UNIT            |        |
| TDS by Summation        | 86.6 mg/l             |        |

| METHOD : P and Total (M) Alkalin:   | ity                         |
|-------------------------------------|-----------------------------|
| METHOD NO.: UIS-EA-T002 (Accredited | DATE COMPLETED : 2009-10-14 |
| PARAMETER                           | VALUE UNIT                  |
| P Alkalinity                        | <0.6 mg/l CaCO3             |
| Total (M) Alkalinity                | 43.6 mg/l CaCO3             |

| METHOD : | Disolved | Cations | in | Water | by | ICP-OES |
|----------|----------|---------|----|-------|----|---------|
|----------|----------|---------|----|-------|----|---------|

| METHOD NO.: UIS-TEA-T001 | <b>DATE COMPLETED :</b> 2009-10-14 |
|--------------------------|------------------------------------|
| PARAMETER                | VALUE UNIT                         |
| Al                       | 1.49 mg/l                          |
| Ca                       | 4.57 mg/l                          |
| Fe                       | 0.65 mg/l                          |
| K                        | 0.39 mg/l                          |
| Mg                       | 3.96 mg/l                          |
| Mn                       | <0.05 mg/l                         |
| Na                       | 15.5 mg/l                          |
| Si                       | 9.8 mg/l                           |
|                          |                                    |

| METHOD :<br>METHOD NO.: | Anions by Ion Chromatography<br>UIS-EA-T008 (Accredited) | <b>DATE COMPLETED :</b> 2009-10-14 |
|-------------------------|----------------------------------------------------------|------------------------------------|
| PARAMETER               |                                                          | VALUE UNIT                         |
| F                       |                                                          | <0.1 mg/l                          |
| Cl                      |                                                          | 1.66 mg/l                          |
| NO 3                    |                                                          | 6.87 mg/l                          |
| NO3 as N                |                                                          | 1.55 mg/l                          |
| PO4                     |                                                          | <0.8 mg/l                          |
| SO4                     |                                                          | 0.9 mg/l                           |

| METHOD :      | Ion Balance Error |                                    |   |
|---------------|-------------------|------------------------------------|---|
| METHOD NO .:  | UIS-CP-T002       | <b>DATE COMPLETED :</b> 2009-10-14 | _ |
| PARAMETER     |                   | VALUE UNIT                         | _ |
| Sum of Cation | S                 | 1.43 me/l                          |   |
| Sum of Anions |                   | 1.6 me/l                           |   |
| Ion Balance E | rror              | -5.87 %                            |   |
|               |                   |                                    |   |

| SAMPLE ID :  | 112578            | SAMPLE MATRIX :  | Water      |
|--------------|-------------------|------------------|------------|
| SAMPLE NO.:  | PIETER/4/30/09/09 | DATE RECEIVED :  | 2009-09-30 |
|              |                   |                  |            |
| METHOD :     | Ion Balance Error |                  |            |
| METHOD NO .: | UIS-CP-T002       | DATE COMPLETED : | 2009-10-14 |
| PARAMETER    |                   | VALUE UNIT       |            |

AUTHORISED SIGNATURE



JIS Analytical Services (Pty) Ltd • Reg. No. 2000/027788/07 • VAT No. 4920202969 13 Esdoring Nook • Highveld Technopark • Centurion PO Box 8286 • Centurion • 0046 Tel. +27 12 665 4291 • Fax. +27 12 665 4294 info@uis-as.co.za • http://www.uis-as.co.za

Aqua Earth Consulting (Pty) Ltd PO Box 1747 Northriding 2162 South Africa Peter Mothoa Tel : +27117875994 Fax : +27115076612 E-Mail : aquaearth@aquaearth.co.za

| ANALYSIS CERTIFICATE |        |  |
|----------------------|--------|--|
| Date 2009/10/14      |        |  |
| Request No           | 1708   |  |
| Contract No          |        |  |
| Order/Ref No         | 09/024 |  |

| SAMPLE ID : | 112579           | SAMPLE MATRIX : | Water      |
|-------------|------------------|-----------------|------------|
| SAMPLE NO.: | THAMI/7/30/09/09 | DATE RECEIVED : | 2009-09-30 |
|             |                  |                 |            |

| METHOD : pH       |                                                  |   |
|-------------------|--------------------------------------------------|---|
| METHOD NO.: UIS-E | EA-T003 (Accredited) DATE COMPLETED : 2009-10-14 |   |
| PARAMETER         | VALUE UNIT                                       | _ |
| рН                | 8.38                                             |   |
| pH Temperature    | 17.4 Deg C                                       |   |
|                   |                                                  |   |

| METHOD :       | Electrical Conductivity  |                                    |
|----------------|--------------------------|------------------------------------|
| METHOD NO .:   | UIS-EA-T001 (Accredited) | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER      |                          | VALUE UNIT                         |
| Total Conduct: | ivity                    | 23 mS/m                            |
| TC Temperature | 2                        | 17.4 Deg C                         |

| METHOD : Calculated Total Dissolved Solids fr | com EC                             |
|-----------------------------------------------|------------------------------------|
| METHOD NO.: UIS-CP-T001                       | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER                                     | VALUE UNIT                         |
| TDS by EC * 6.5                               | 150 mg/l                           |
| TDS by EC * 7                                 | 161 mg/l                           |
|                                               |                                    |
|                                               |                                    |
|                                               |                                    |
| METHOD : Total Dissolved Solids               |                                    |
| METHOD NO.: UIS-EA-T005 (Accredited)          | DATE COMPLETED : 2009-10-14        |
| PARAMETER                                     | VALUE UNIT                         |
| Total Dissolved Solids                        | 156 mg/l                           |

analysis (a'nælisis) n. separation of something into its elements or components (pl. -yses (1siz)) - chemical Page 1



List of Directors available from the registered office

| SAMPLE ID : | 112579                                     | SAMPLE MATRIX : | Water      |
|-------------|--------------------------------------------|-----------------|------------|
| SAMPLE NO.: | THAMI/7/30/09/09                           | DATE RECEIVED : | 2009-09-30 |
|             |                                            |                 |            |
| METHOD :    | Calculated Total Dissolved Solids by Summa | tion            |            |
| 10000       |                                            |                 | 0000 10 14 |

| METHOD NO.: UIS-CP-T003 | DATE COMPLETED : 2009-10-14 |
|-------------------------|-----------------------------|
| PARAMETER               | VALUE UNIT                  |
| TDS by Summation        | 152 mg/l                    |

| METHOD :       | P and Total (M | I) Alkalinity |         |            |            |
|----------------|----------------|---------------|---------|------------|------------|
| METHOD NO.:    | UIS-EA-T002 (A | ccredited)    | DATE CO | OMPLETED : | 2009-10-14 |
| PARAMETER      |                |               | VALUE   | UNIT       |            |
| P Alkalinity   |                |               | 0.8     | mg/l CaCO3 |            |
| Total (M) Alka | alinity        |               | 66      | mg/l CaCO3 |            |

| METHOD : | Disolved | Cations | in | Water | by | ICP-OES |
|----------|----------|---------|----|-------|----|---------|
|----------|----------|---------|----|-------|----|---------|

| METHOD NO.: UIS-TEA-T001 | <b>DATE COMPLETED :</b> 2009-10-14 |
|--------------------------|------------------------------------|
| PARAMETER                | VALUE UNIT                         |
| Al                       | <0.05 mg/l                         |
| Ca                       | 8.54 mg/l                          |
| Fe                       | <0.05 mg/l                         |
| К                        | 0.51 mg/l                          |
| Mg                       | 0.19 mg/l                          |
| Mn                       | <0.05 mg/l                         |
| Na                       | 46.9 mg/l                          |
| Si                       | 8.35 mg/l                          |
|                          |                                    |

| METHOD :     | Anions by Ion Chromatography |                                    |
|--------------|------------------------------|------------------------------------|
| METHOD NO .: | UIS-EA-T008 (Accredited)     | <b>DATE COMPLETED :</b> 2009-10-14 |
| PARAMETER    |                              | VALUE UNIT                         |
| F            |                              | 5.64 mg/l                          |
| Cl           |                              | 25.8 mg/l                          |
| NO3          |                              | <0.3 mg/l                          |
| PO4          |                              | <0.8 mg/l                          |
| SO4          |                              | 2.6 mg/l                           |

| METHOD :       | Ion Balance Error |                      |         |
|----------------|-------------------|----------------------|---------|
| METHOD NO .:   | UIS-CP-T002       | DATE COMPLETED : 200 | 9-10-14 |
| PARAMETER      | -                 | VALUE UNIT           |         |
| Sum of Cations | 3                 | 2.5 me/l             |         |
| Sum of Anions  |                   | 2.79 me/l            |         |
| Ion Balance En | rror              | -5.5 %               |         |

AUTHORISED SIGNATURE