

SITE SELECTION STUDY FOR THE PROPOSED NEW TRANSMISSION SUBSTATION NEAR MAKOPANE IN THE NORTHERN REGION

GEOTECHNICAL REPORT

PRELIMINARY GEOTECHNICAL INVESTIGATION FOR THE SELECTION OF A SITE FOR THE PROPOSED NEW BURUTHO 400/132kV SUBSTATION

May 2010

CONTENTS

1.0	INTR	ODUCTION
2.0	THE	NATURE OF THE PROJECT
3.0	OBJE	ECTIVES OF INVESTIGATION
4.0	DESK	X STUDY
	4.1	Maps Consulted
	4.2	Aerial Photographic Interpretation
	4.3	Review of Desk Study and Selection of Sites
	4.4	Seismic Zoning
5.0	LOCA	ALITY OF STUDY AREAS INITIALLY SELECTED
6.0	REGI	ONAL ENVIRONMENT
	6.1	Geography
	6.2	Geology
	6.3	Water Table
7.0	THE	INVESTIGATION
	7.1	Topographical Survey
	7.2	Geometric Design
	7.3	Exploratory Work
	7.4	Laboratory Testing
8.0	GEO'	TECHNICAL EVALUATION
	8.1	Soil Profile
	8.2	Water Table
	8.3	Topography - Preliminary Substation Positioning and Geometry
		(Earthworks)
	8.4	Flood-Line Studies
9.0	CON	CLUSIONS AND RECOMMENDATIONS

APPENDICES

- A Flood Line Studies
- B Test Pit Profiles
- C Laboratory Test Results
- D Contour Plans and Preliminary Geometric Designs for Proposed Sites

TITLE : GEOTECHNICAL REPORT

PRELIMINARY GEOTECHNICAL INVESTIGATION FOR THE SELECTION OF A SITE FOR THE PROPOSED NEW BURUTHO 400/132kV SUBSTATION

Specialist Consultant Geotechnical Investigations Transmission Technology PREPARED BY :

CLIENT: Land and Rights

Transmission

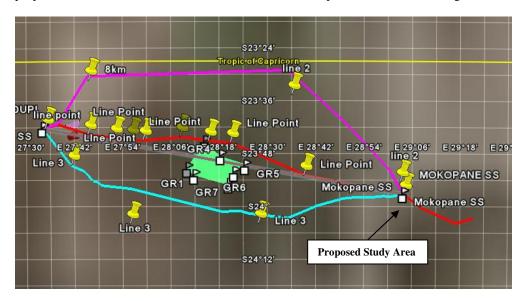
PROJECT TEAM:: F A Grové

: F A Grove
P Greybe
D Angove
Tinny Makaringe (survey)
Tyris Plant Hire
Soillab

REPORT NO: GR03-08

DATE : May 2010

Approved:


F A Grové

Senior Specialist Consultant Geotechnical Investigations

1.0 INTRODUCTION

Eskom plans to construct a new 400/132 kV Substation near Makopane in the Northern Region.

It was requested by Transmission System Planning to carry out a site selection study for the proposed new Burutho, 400/132kV Substation, near Makopane in the Northern Region.

PROPOSED STUDY AREA FOR THE NEW BURUTHO 400/132kV SUBSTATION

(Previously referred to Makopane Substation)

Figure-I

A Site for the planned development is required in the area near Makopane. The **first phase** of this investigation included extensive desk studies, where a total number of three most suitable study areas were identified for the substation. For the selection of these study areas during the desk studies, factors such as the geology, topography, farming activities, mining activities, Eskom installations and power line servitude routes were considered.

Information collected during this investigation is **suitable for site selection purposes**, and once the final design is required, a **Detailed Geotechnical Investigation** will be required to provide design parameters and confirm findings of this investigation.

2.0 THE NATURE OF THE PROJECT

The project comprises the construction of a new Substation in the Mashashane area, approximately 35km to the north of Mokopane town in the Limpopo Province.

The development would include the installation of typical equipment such as:

- Electrical transformers
- Circuit breakers or line termination structures
- High-voltage switchgear
- Low voltage switchgear
- Surge & lightning protection equipment
- Control and metering equipment
- Access roads and buildings

3.0 OBJECTIVES OF THE INVESTIGATION

The objectives of this investigation were defined as follows:

- Conduct intensive desk studies of the area to identify a total number of three most suitable sites for the proposed new substation
- Obtain geotechnical information during a Preliminary Geotechnical Investigation of selected sites to confirm findings of the desk study for suitability evaluation of sites

4.0 DESK STUDY

41 Maps Consulted

An attempt was made to collect as much information as possible of the study area demarcated by Transmission System Planning, for the proposed new substation during the desk study. For this purpose the following maps were consulted:

- i) Topographical Maps 2328DD LIMBURG; 2329CC MASHASANE
- ii) Ortho Photos Covering the area
- iii) Geological Map Geological Map 2328 Pietersburg
- iv) Mining Mineral Map of the Bushveld Complex South Africa
 With Special reference to Platinum and Chrome Simplified Geology,
 Selected Mines and Mineral Deposits South Africa, Lesotho and
 Swaziland

4.2 Aerial Photographic Interpretation

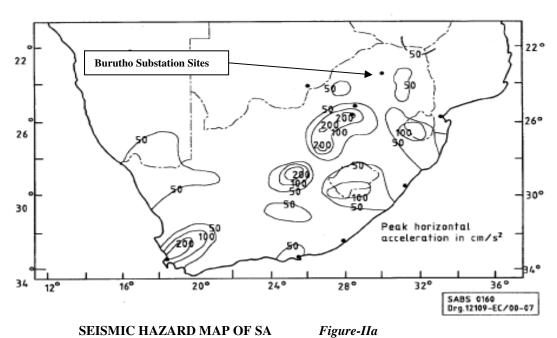
In principle the following features are being studied, information being obtained and interpreted when studying aerial photographs for geotechnical purposes:

- Reflection of the action of nature in creating the existing conditions
- Grouping of materials according to certain patterns
- Definition of various boundaries and linear features of significance
- Field checking by visual inspection

Stereo-interpretation has a great advantage over interpretation of a single photograph, because it is better able to identify topographical and erosion features, grey tones, and textures have greater requisite clarity contrasts. Basically, two aspects of the air photo image are revealed in the stereo-model of a given area, and these are surface form and grey tone, which could be subdivided as:

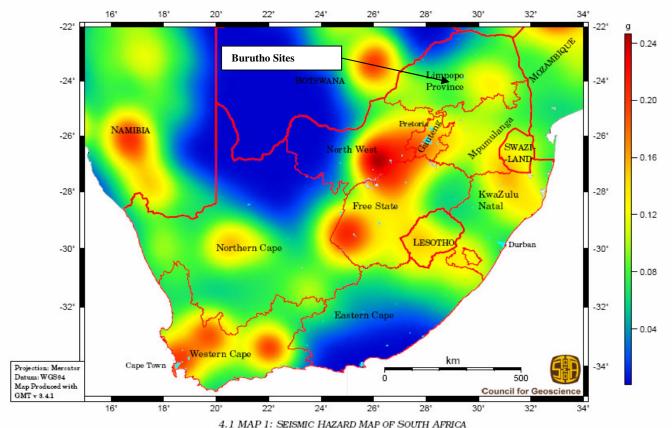
- a) Elements of Surface Form
 - Topographic form
 - Drainage form
 - Erosion form
- b) Elements of Grey tone and Texture of:
 - vegetation
 - due to land use
 - soil and rock material

Geotechnical information obtained in this way was correlated with Geological Map data.


4.3 Review of Desk Study and Selection of Sites

The size of the substation platform is $338m \times 354,2m$. For the purpose of flexibility site areas selected are of the order of $700m\times700m$. The region is known for its platinum and chrome mining activities. It has been confirmed by the EIA studies that

the sites selected for this study are not located in future mining fields. It should be noticed that the load centre area is limited in site options due to extreme topographical constraints.


4.4 Seismic Zoning

The South African loading code, SANS 10160-1969 (Figure-IIa and IIb) , shows that the proposed sites for this study are situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is between 50cm/sec^2 and 100cm/sec^2 . Figure-IIb also show the zones where detailed seismic design (Zone-I) and compliance with minimum requirements (Zone-II) are specified by the code. The proposed Burutho sites fall outside of these Zones.

22° 22° **Burutho Substation Sites** 26° 26° 30° 30° ZONE I ZONE II 34° 34° 20° 289 36° 16° 12° SABS 0160 Drg.12108-EC/00-07

SEISMIC HAZARD ZONES OF SA Figure-IIb

4.1 MAP 1: SEISMIC HAZARD MAP OF SOUTH AFRICA (INCLUDING THE KINGDOMS OF LESOTHO AND SWAZILAND)

Peak ground acceleration (g) with a 10 % probability of being exceeded in a 50 year period

Figure-III

More recent data produced by the Council of Geoscience place the sites within the zone where the minimum seismic event, with a 10% probability of being exceeded in a 50 year period, falls in the range of 0,07g to 0,10g (Figure-III). This data however, still needs to be verified.

5.0 LOCALITY OF SITES INITIALLY SELECTED

Figure-IV

It should be noted that options for suitable sites are limited in the Study Area due to extreme topographical constraints, which entails hillocks, water ways, perennial and non-perennial water streams and no road infrastructure.

For this reason, considering costs to develop **Site-A**, **Site-A** was rejected at an early stage due to extreme access and topographical difficulties and related costs. It was obvious to have geotechnical studies carried out for only Site-B and Site-C.

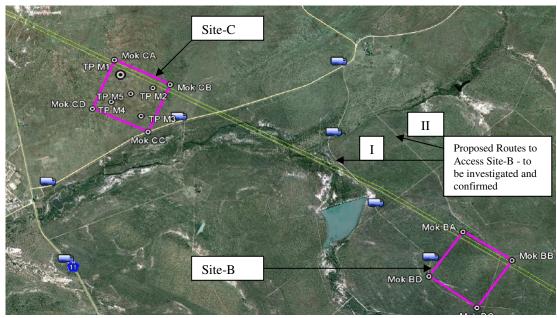


Figure-V

POSITIONING OF SITE-B AND SITE-C SHOWING ACCESS TO SITES FROM THE N11

Site-C can easily be accessed from the N11 as indicated in *Figure-V*. To access **Site-B** will require a further investigation to obtain approval for road servitude options as indicated (**Option-I and Option-II).** Both these route options should be topographically surveyed and be evaluated in terms of flood lines and construction costs.

The identification and evaluation of the preferred access route does not form part of this preliminary Geotechnical Investigation.

Site-B and Site-C are located on the farms Noord Braband 774 LR and Zuid Holland 773 LR respectively. Site coordinates are:

Site-B S 23° 53' 42" E 28° 58` 30.4 " Site-C S 23° 52' 21.8" E 28° 55` 34 "

6.0 REGIONAL ENVIRONMENT

6.1 Geography

6.1.1 Topography and Drainage

Waving topography with the presence of hillocks, hills and water ways forms features of the region. The two sites selected for final evaluation purposes are located within a 6 km radius. **Site-B** is located on a high, well drained and has no risk of flooding. **Site-C** is partly located within the 1:50 year flood line, and subject to a risk of being flooded. Access to Site-B is problematic since a road servitude needs to be located without a risk of flooding. This access road will cross a non-perennial water way which will require careful design.

The slope traversing Site-B in a north to south direction away from the hillock is $\pm 2.5\%$ and Site-C is located on a gentle, south western slope, of $\pm 2.0\%$.

6.1.2 Flood –line

Flood line studies carried out indicate Site-C to have a risk of being flooded with a 1:50 year flood. Site-B has no risk of flooding.(See Appendix-A)

6.1.3 Climate

N-Value

The "Weinert N-Value", that describes the climatic environment, is approximately 4 for the area. Where "N" is more than "5", disintegration is the prominent form of weathering, and where "N" is less than "5", decomposition affects those rocks whose minerals are liable to change chemically under atmospheric conditions.

Rainfall

The average annual rainfall of the study areas is 505.3mm

. Vegetation

Both sites are covered with typical indigenous bush of the area, re grass, bush and trees.

6.2 Geology

The regional geology comprises Gneiss, Migmatite and Leucogranite. The solid geology of the sites investigated is masked by transported silty sands at shallow depths. The solid geology is considered decomposed to highly weathered at shallow depths, Gneiss. (Geological Map 2328 Pietersburg)

6.3 Water Table

No evidence of a shallow water table was observed on any of the sites.

7.0 THE INVESTIGATION

7.1 Topographical Survey

Topographical surveys of sites were carried out to enable preliminary geometric designs. This forms an important part of the geotechnical evaluation of sites, since ground elevations will be altered, due to the cut to fill operations during construction of the platform.

7.2 Geometric Design

Preliminary geometric designs were carried out for all three sites, at positions considering the optimisation of the topography and existing and future power line routes. These designs expose valuable information in terms of construction costs.

7.3 Exploratory Work

Test pits were excavated randomly to maximum reach or refusal, to confirm findings of the desk study, in terms of geotechnical properties.

Figure-VI

SITE-B TEST PIT POSITIONING

The average soil profile was found uniformly present over the sites, with discrepancies regarding the material occurrences and physical properties with depth.

Figure-VII

SITE-C TEST PIT POSITIONING

The exception was that the profile of Site-B was found less weathered with depth than Site-C, with rock outcropping in places.

7.4 Laboratory Testing

Laboratory tests on soil samples were primarily conducted to determine Geotechnical properties of the soil, confirming findings during profiling.

The following tests were carried out:

- Grading (Mechanical and Hydrometer)
- Atterberg Limits

- Moisture Content
- Electrical Conductivity

8.0 GEOTECHNICAL EVALUATION

8.1 Soil Profile

TABLE - I GEOTECHNICAL PROPERTIES

The soil profiles of both sites investigated (**Site-B & Site-C**) are similar, with shallowly weathered rock near surface. However the difference in topography will have a remarkable influence on the cost of the construction of the substation platform on each site.

TP/											INSIT	U PRO	PERT	ES			SOI	L CHEMI	STRY							SOIL	
BH NO	DEPTH (m)	1	ERB JMIT	rs	GM	PI OF WS	-2 μm %		Soil Prof Hor	% -425	% MC	Gra- vel	Sand	Silt	Clay	Per meab lity	рН	ducti-	Lange lier Index	Insitu BDD			0	CLASIFC Pra	TI t		
		LL	PΙ	LS					izon							em/s				kg/m3	kg/m3	98	93	95	100		
-M2	0-0,2	20	6	3	0.96	<4	8	L	Α			11	53	29			-	0.0456								A4(3)	C
-M2	0.8-1.3	20	6	3	1.8	<4	1	L	С			26	59	14	- 1			0.0275								A 1-b(0)	S
-M3).1-0.40	19	8	4	1.96	<5	4	L	A			57	23	17	- 4			0.0322								A 2-4(0)	c
-M3	0,4-1.40	SP	SP	0.5	2.08	NP	4	L	В			55	31	14	(0.668								A1-b(0)	S
-MB4	0 -0.3	NΡ	NP	0	1.1	NP	0	L	A			12	57	7	1			0.0208								A4(3)	S
-MB4	0.3-0.8	SP	SP	0.5	1.1	SP	0	L	В			77	20	3	(0.019								A 1-a(0)	C
-MB4	0.8-1.1	NP	NP	0	2.19	NP	0	L	В			56	37	7	0			0.0187								A1-a(0)	S
		_																									
		ᆫ					Ш										Щ.						Ш				_
		ᆫ	ш														_										_
		ᆫ															╙										_
		ᆫ	ш				\perp										╙					_	ш		_		ـــــ
		_															—										_
		┖					\perp		\vdash					_			┺					_					ㅡ
	J		\vdash	-		_	\vdash		_			_	_	<u> </u>			₩			<u> </u>	—	_	ш		_		╙
			ш				\vdash		\vdash			_		_			╙			_	_		ш		_		_
																											느

Laboratory testing confirmed geotechnical properties and findings during profiling of test pits.

8.2 Geology Influences on Construction

It is believed that the combination of ground conditions and topography of **Site-B** and **C** will have **a great affect** on conventional construction methods. Both sites are shallowly underlain by **SOFT ROCK.** However, the steeper sloping of the **topography of Site-B** will have a vast influence on the difference in construction costs of the platform. In addition the construction of an access road of at least 5km is required to access Site-B.

8.2 Water Table

No evidence of a shallow perched water table was found during the field investigation.

8.3 Topography - Preliminary Substation Positioning and Geometry (Earthworks Volumes)

An attempt was made to optimise the positioning of the substation platform on both sites, considering topography and power line locality (*See Appendix-D*)

Topographical features and present soil information of each site were taken into account during this exercise. The following volumes for earthworks were obtained during this exercise for each site:

<u>Site</u>	Strip m ³	Cut m ³	Fill m ³	Special Measures
Site-A	15 570	168 370	151 135	Construction of Access Road ± 10km
Site-B	13 655	42635	33 305	Borrow material required to Construct the Substation Platform + 5km Access Road
Site-C	13 165	14 555	11 455	None – Access Road 600m

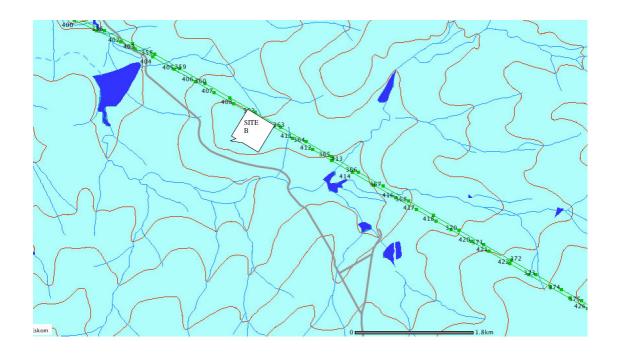
From the preliminary quantities it is clear that **Site-C will be the most cost effective** site to develop, ignoring the risk of flooding and the costs to develop **Site-A** is abnormally high. Considering all costs to develop sites and risks involved **Site-B** would be the most suitable site to develop.

Attached to this report are preliminary geometric designs, indicating optimised platform positioning for each site (**Appendix-D**). Combining the geometry of the topography with the ground conditions of each site (**only Site-B & Site-C**) it is clear that a vast quantity of rock will be excavated from **Site-B**, during a cut to fill operation. This will result in the need to import borrow material to replace unsuitable rock from cut. It is estimated with information at hand that a minimum of 15 000m³ of rock from cut will be unsuitable for the construction of the fill.

8.4 Flood Line Studies

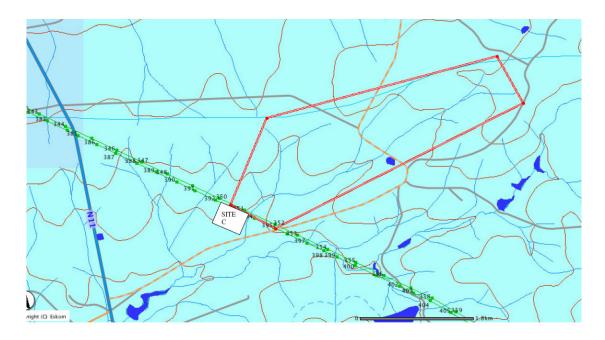
Flood line studies have revealed that Site-A and Site-B have no risk of flooding but Site-C has an apparent risk of being flooded during a 1:50 year flood.

9.0 CONCLUSIONS AND RECOMMENDATIONS


Considering the results of all the studies carried out during this investigation it is clear that Site-C is the most cost effective site to develop, not considering the risk of flooding. Though Site-B will be more costly site to develop it has no risk of being flooded.

9.0 REFERENCES

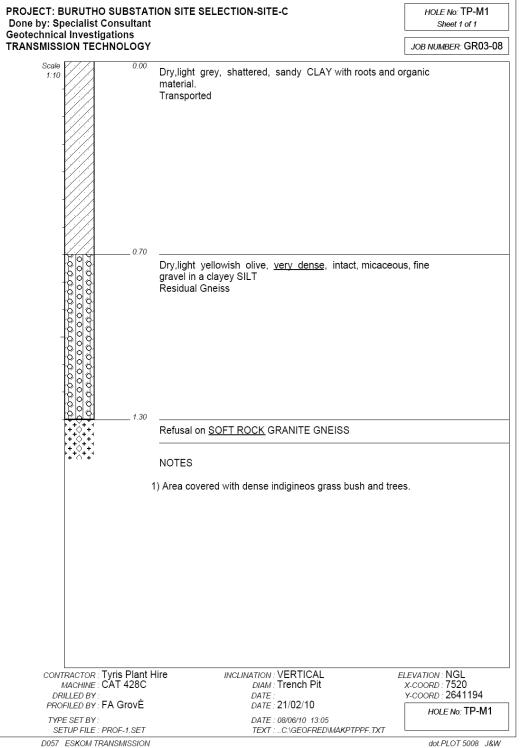
9.1 Jennings Brink & Williams (1973). Revised Guide to Soil Profiling for Civil Engineering purposes in South Africa. The civil Engineer in S.A. Jan. 1973.

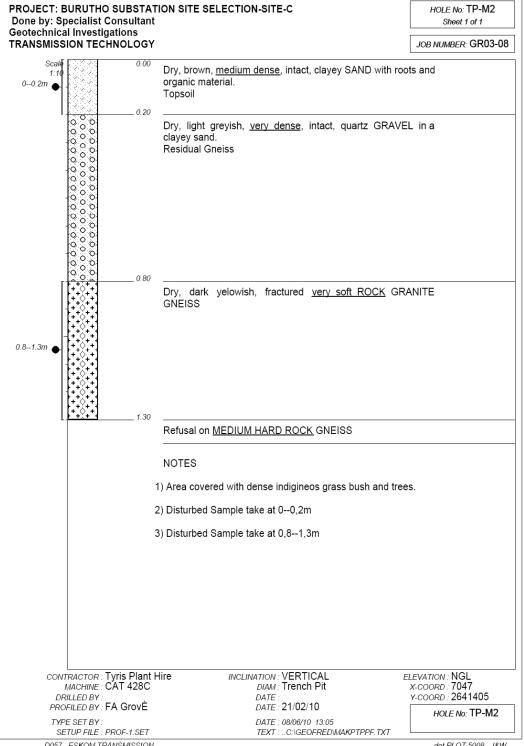

APPENDIX-A

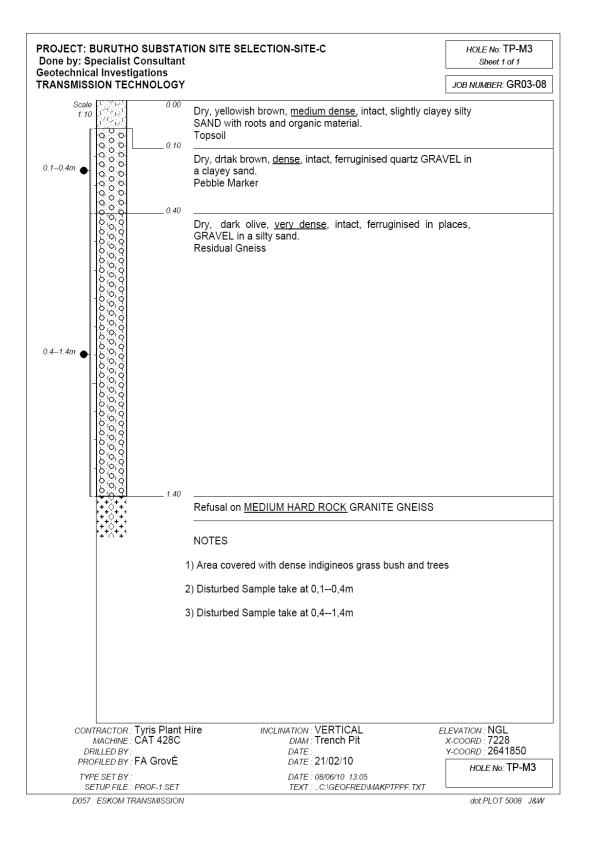
Flood line Studies
Burotho Sites

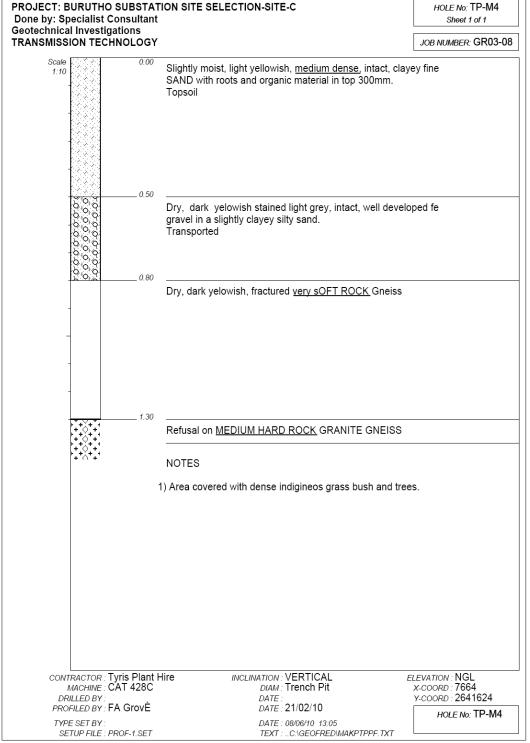
MOKOPANE SITE-B

SITE B IS SITUATED CLOSE TO A RIDGE AND THEREFORE HAS A VERY SMALL CATCHMENT WHICH DELIVERS A MAXIMUM FLOW OF 7.10 CUBIC METERS PER SECOND IN A 1:50 FLOOD. THE NEAREST WATER COURSE IS 120 METERS AWAY FROM THE SITE AND THE EXPECTED WIDTH A FLOW IS ONLY 27.5 METERS WHICH MEANS THAT THIS SITE HAS NO DANGER OF FLOODING UNDER A 1:50 YEAR FLOOD.

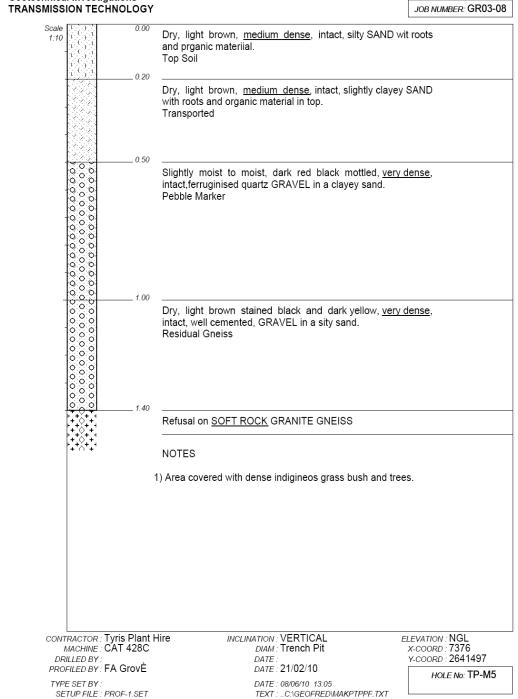


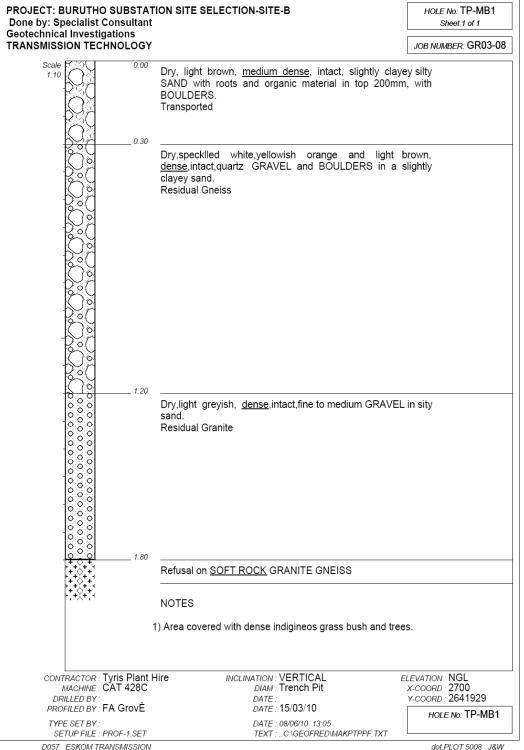

MOKOPANE SITE-C


SITE C IS SITUATED CLOSE TO A TRIBITURY WHICH HAS A CATCHMENT OF 4.73 SQUARE KILOMETERS WHICH DELIVERS A MAXIMUM FLOW OF 42.3 CUBIC METERS PER SECOND IN A 1:50 FLOOD. THE NEAREST WATER COURSE IS 20.4 METERS AWAY FROM THE SITE AND THE EXPECTED WIDTH A FLOW IS 51.5 METERS WHICH MEANS THAT THIS SITE HAS AN APPARENT POSSIBILITY OF FLOODING UNDER A 1:50 YEAR FLOOD.


APPENDIX - B SOIL PROFILES

PROJECT: BURUTHO SUBSTATIO	N SITE SELECTION-SITE-C	LEGEND Sheet 1 of 1
Geotechnical Investigations TRANSMISSION TECHNOLOGY		JOB NUMBER: GR03-08
$\mathcal{O}_{\mathcal{A}}^{\mathcal{A}}$	BOULDERS	{SA01}
000	GRAVEL	{SA02}
	SAND	{SA04}
	SANDY	{SA05}
	SILT	{SA06}
	SILTY	{SA07}
	CLAY	{SA08}
	CLAYEY	{SA09}
 	GRANITE	{SA17}{SA44}
Name 🔸	DISTURBED SAMPLE	{SA38}
CONTRACTOR: MACHINE: DRILLED BY: PROFILED BY: TYPE SET BY: SETUP FILE: PROF-1.SET	INCLINATION: DIAM: DATE: DATE: DATE: DATE:08/06/10 13:05 TEXT:C:GEOFREDWAKPTPPF.TXT	ELEVATION: X-COORD: Y-COORD: LEGEND SUMMARY OF SYMBOLS

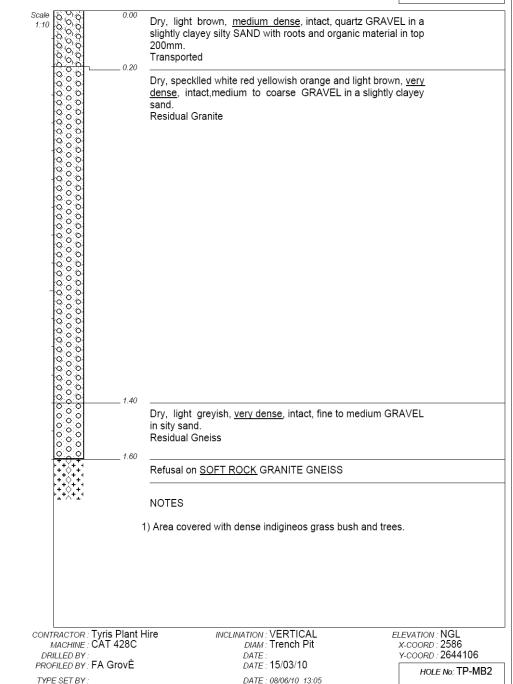




PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-C Done by: Specialist Consultant Geotechnical Investigations

HOLE No: TP-M5 Sheet 1 of 1

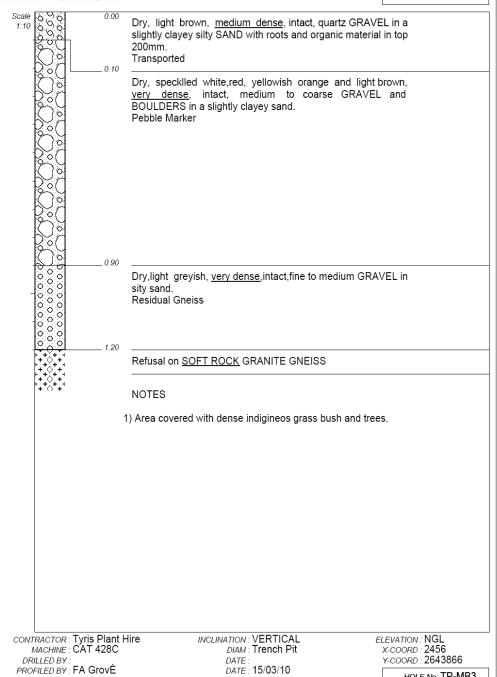
JOB NUMBER: GR03-08



PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-B

Done by: Specialist Consultant Geotechnical Investigations TRANSMISSION TECHNOLOGY HOLE No: TP-MB2 Sheet 1 of 1

JOB NUMBER: GR03-08


TEXT: ...C:\GEOFRED\MAKPTPPF.TXT

PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-B

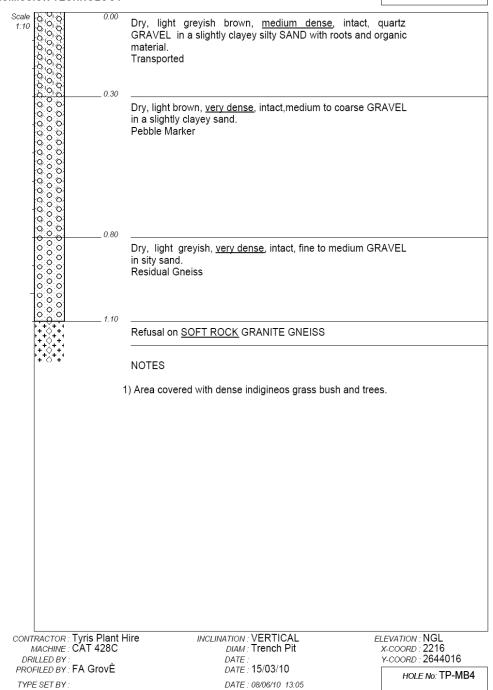
Done by: Specialist Consultant Geotechnical Investigations TRANSMISSION TECHNOLOGY

HOLE No: TP-MB3 Sheet 1 of 1

JOB NUMBER: GR03-08

DATE: 08/06/10 13:05

TEXT: ..C:\GEOFRED\MAKPTPPF.TXT


TYPE SET BY

HOLE No. TP-MB3

PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-B Done by: Specialist Consultant Geotechnical Investigations TRANSMISSION TECHNOLOGY

HOLE No: TP-MB4 Sheet 1 of 1

JOB NUMBER: GR03-08

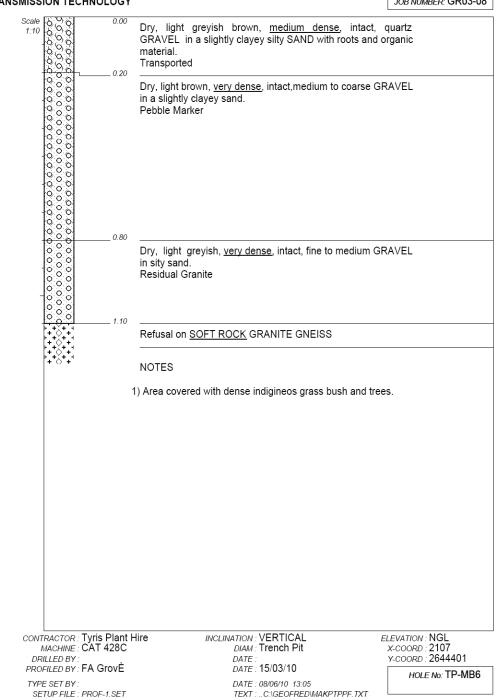
TEXT: ..C:\GEOFRED\MAKPTPPF.TXT

PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-B Done by: Specialist Consultant

Geotechnical Investigations TRANSMISSION TECHNOLOGY HOLE No: TP-MB5 Sheet 1 of 1

DATE: 08/06/10 13:05 TEXT: ..C:\GEOFRED\MAKPTPPF.TXT

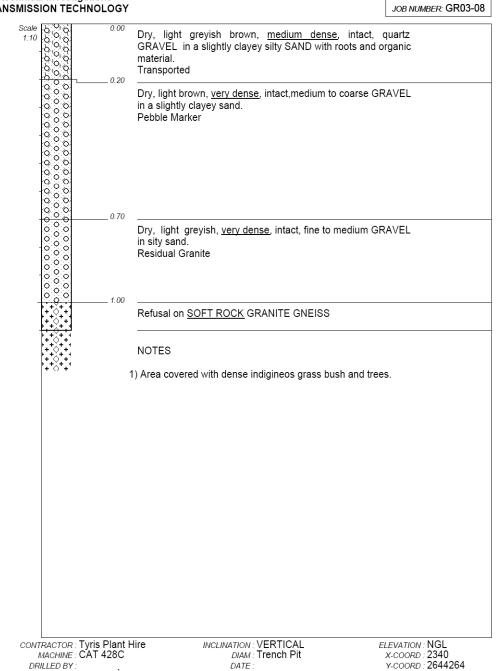
TYPE SET BY:


HOLE No: TP-MB5

PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-B

Done by: Specialist Consultant Geotechnical Investigations TRANSMISSION TECHNOLOGY

HOLE No: TP-MB6 Sheet 1 of 1


JOB NUMBER: GR03-08

PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-B

Done by: Specialist Consultant Geotechnical Investigations TRANSMISSION TECHNOLOGY

HOLE No: TP-MB7 Sheet 1 of 1

DATE: 15/03/10

DATE: 08/06/10 13:05

TEXT: ..C:\GEOFRED\MAKPTPPF.TXT

PROFILED BY : FA GrovÈ

TYPE SET BY

HOLE No: TP-MB7

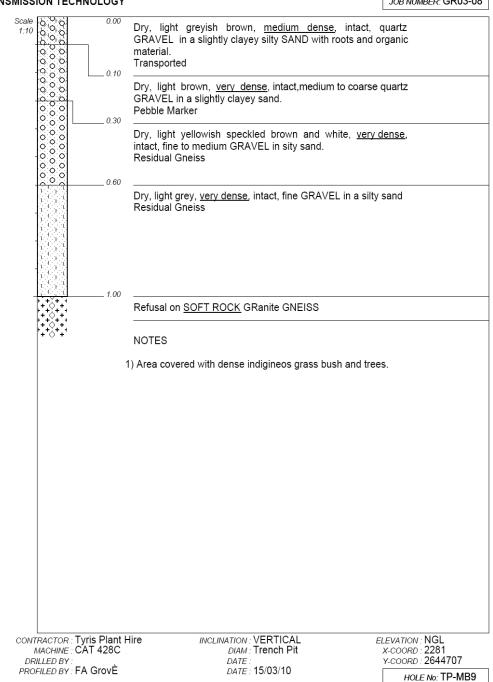
PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-B HOLE No: TP-MB8 Done by: Specialist Consultant Sheet 1 of 1 Geotechnical Investigations TRANSMISSION TECHNOLOGY JOB NUMBER: GR03-08 Scale Dry, light greyish brown, $\underline{\text{medium dense}}$, intact, quartz GRAVEL in a slightly clayey silty SAND with roots and organic material. Transported 0.20 Dry, light brown, very dense, intact, medium to coarse GRAVEL in a slightly clayey sand. Residual Granite Refusal on HARD ROCK GNEISS NOTES 1) Area covered with dense indigineos grass bush and trees. 2) Trees100mm to 300mm

CONTRACTOR: Tyris Plant Hire MACHINE: CAT 428C DRILLED BY PROFILED BY : FA GrovÈ

TYPE SET BY : SETUP FILE : PROF-1.SET

INCLINATION: VERTICAL DIAM: Trench Pit DATE DATE: 15/03/10

DATE: 08/06/10 13:05 TEXT: ..C:\GEOFRED\MAKPTPPF.TXT


ELEVATION: NGL X-COORD: 2340 Y-COORD: 2644264

HOLE No: TP-MB8

PROJECT: BURUTHO SUBSTATION SITE SELECTION-SITE-B

Done by: Specialist Consultant Geotechnical Investigations TRANSMISSION TECHNOLOGY HOLE No: TP-MB9 Sheet 1 of 1

JOB NUMBER: GR03-08

DATE: 08/06/10 13:05

TEXT: ..C:\GEOFRED\MAKPTPPF.TXT

TYPE SET BY

APPENDIX - C Laboratory Test Results

CLIENT ESKOM TRANSMISSION

PROJECT BUROTHO (MAKOPANE) SUBSTATION

PROJECT NO. : S10-0401 DATE 2010-04-01

CONDUCTIVITY

Soillab No	Sample Position	Sample Depth (m)	Electrical Conductivity S/m
S10-0401-01	TP-M2	0-0.2	0.0456
S10-0401-02	TP-M2	0.8-1.3	0.0257
S10-0401-03	TP-M3	0.1-0.4	0.0311
S10-0401-04	TP-M3	0.4-1.4	0.0668
S10-0401-05	TP-MB4	0-0.3	0.0208
S10-0401-06	TP-MB4	0.3-0.8	0.0190
S10-0401-07	TP-MB4	0.8-1.1	0.0187

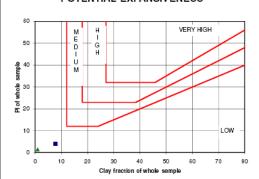
0401-01.doc

Sample No.	44362	44363
Soillab sample no.	S10-0401-01	S10-0401-02
Depth (m)	0-0.2	0.8-1.3
Position	TP-M2	TP-M2
Material	DARK BROWN	DARK OLIVE
Description	QUARTZ	DOLERITE
	SLTY	GRAVELLY
	SAND	SAND
Moisture (%)	4.2	3.4
SG		

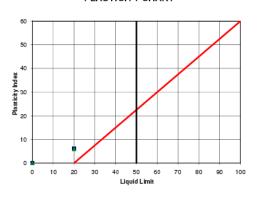
SCREEN ANALYSIS (% PASSING) (TMH 1 A1(a) & A5)

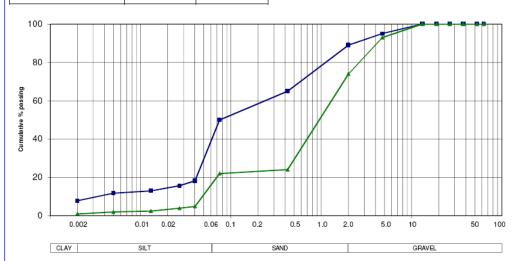
63.0 mm	100	100
53.0 mm	100	100
37.5 mm	100	100
26.5 mm	100	100
19.0 mm	100	100
13.2 mm	100	100
4.75 mm	95	93
2.00 mm	89	74
0.425 mm	65	24
0.075 mm	50	22

HYDROMETER ANALYSIS (% PASSING) (TMH 1 A6)


% Sand % Gravel	53	59 26
% Silt	29	14
% Clay	8	1
0.002 111111	6	1
0.005 mm 0.002 mm	12 8	2
0.013 mm	13	2
0.027 mm	16	4
0.040 mm	18	5

ATTERBERG LIMITS (TMH 1 A2 - A4)


Liquid Limit	20	20
Plasticity Index	6	6
Linear Shrinkage (%)	3.0	3.0
Grading Modulus	0.96	1.80
Classification	A-4 (3)	A-1-b (0)
Unified Classification	CL-ML	SC & SM
Chart Reference		 + .


PROJECT: BUROTHO (MAKOPANE) SUBSTATION JOB No. : \$10-0401 DATE : 2010-04-22

POTENTIAL EXPANSIVENESS

PLASTICITY CHART

(PTY) LTD Reg No 1971/000112/07 230 Albertus Street La Montagne 0184 Tel (012) 481-3999

P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

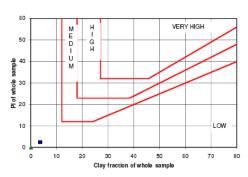
Sample No.	44364	44365
Soillab sample no.	S10-0401-03	S10-0401-04
Depth (m)	0.1-0.4	0.4-1.4
Position	TP-M3	TP-M3
Material	DARK BROWN	DARK BROWN
Description	QUARTZ	RHYOLITE
	SANDY	SANDY
	GRAVEL	GRAVEL
Moisture (%)	3.0	6.6
SG		

SCREEN ANALYSIS (% PASSING) (TMH 1 A1(a) & A5)

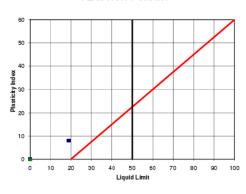
63.0 mm	100	100
53.0 mm	100	100
37.5 mm	100	100
26.5 mm	100	100
19.0 mm	100	100
13.2 mm	94	92
4.75 mm	57	63
2.00 mm	43	45
0.425 mm	31	25
0.075 mm	28	22

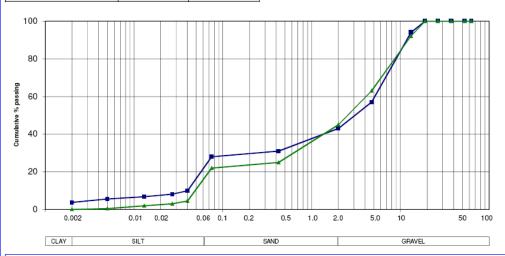
HYDROMETER ANALYSIS (% PASSING) (TMH 1 A6)

0.040 mm	10	5
0.027 mm	8	3
0.013 mm	7	2
0.005 mm	6	1
0.002 mm	4	0
% Clay	4	0
% Silt	17	14
% Sand	23	31


ATTERBERG LIMITS (TMH 1 A2 - A4)

% Gravel


Liquid Limit	19	
Plasticity Index	8	SP
Linear Shrinkage (%)	4.0	0.5
Grading Modulus	1.98	2.08
Classification	A-2-4 (0)	A-1-b (0)
Unified Classification	GC	SM
Chart Reference		+ -


PROJECT: BUROTHO (MAKOPANE) SUBSTATION JOB No. : \$10-0401 DATE : 2010-04-22

POTENTIAL EXPANSIVENESS

PLASTICITY CHART

SOILLAB

Reg No 1971/000112/07

230 Albertus Street La Montagne 0184 Tel (012) 481-3999

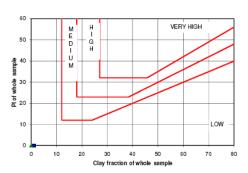
P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

Sample No.	44366	44367		
Soillab sample no.	S10-0401-05	S10-0401-06		
Depth (m)	0-0.3	0.3-0.8		
Position	TP-MB4	TP-MB4		
Material	DARK BROWN	DARK BROWN		
Description	QUARTZ	QUARTZ		
	SLTY	SANDY		
	SAND	GRAVEL		
Moisture (%)	1.1	1.0		
SG				

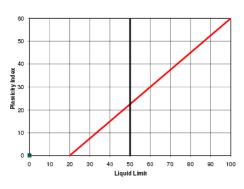
SCREEN ANALYSIS (% PASSING) (TMH 1 A1(a) & A5)

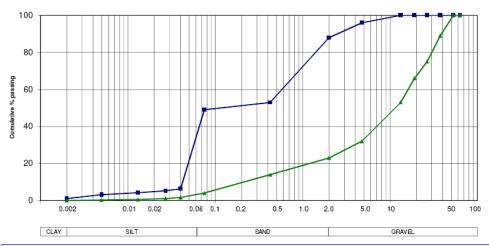
63.0 mm	100	100
53.0 mm	100	100
37.5 mm	100	89
26.5 mm	100	75
19.0 mm	100	66
13.2 mm	100	53
4.75 mm	96	32
2.00 mm	88	23
0.425 mm	53	14
0.075 mm	49	4

HYDROMETER ANALYSIS (% PASSING) (TMH 1 A6)


,	, ,	
0.040 mm	6	2
0.027 mm	5	1
0.013 mm	4	1
0.005 mm	3	0
0.002 mm	1	0
	<u>'</u>	
% Clay	1	0
% Silt	30	3
% Sand	57	20
% Gravel	12	77

ATTERBERG LIMITS (TMH 1 A2 - A4)


Liquid Limit		
Plasticity Index	NP	SP
Linear Shrinkage (%)	0.0	0.5
Grading Modulus	1.10	2.59
Classification	A-4 (3)	A-1-a (0)
Unified Classification	SM	GP
Chart Reference		


PROJECT: BUROTHO (MAKOPANE) SUBSTATION JOB No.: \$10-0401 DATE : 2010-04-22

POTENTIAL EXPANSIVENESS

PLASTICITY CHART

(PTY) LTD

230 Albertus Street La Montagne 0184 Tel (012) 481-3999

P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

Sample No.	44368	
Soillab sample no.	S10-0401-07	
Depth (m)	0.8-1.1	
Position	TP-MB4	
Material	DARK BROWN	
Description	QUARTZ	
	SANDY	
	GRAVEL	
Moisture (%)	1.0	
SG		
		-

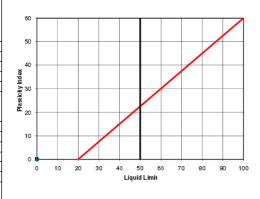
SCREEN ANALYSIS (% PASSING) (TMH 1 A1(a) & A5)

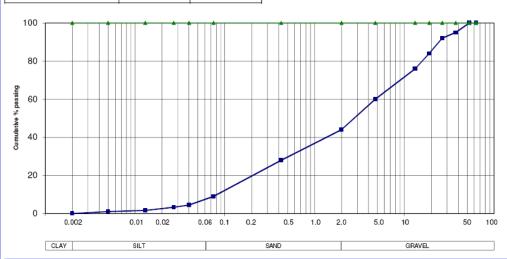
63.0 mm	100
53.0 mm	100
37.5 mm	95
26.5 mm	92
19.0 mm	84
13.2 mm	76
4.75 mm	60
2.00 mm	44
0.425 mm	28
0.075 mm	9

HYDROMETER ANALYSIS (% PASSING) (TMH 1 A6)

l	0.040 mm	4	
l	0.027 mm	3	
l	0.013 mm	2	
l	0.005 mm	1	
l	0.002 mm	0	
l			
l	% Clay	0	
l	% Silt	7	
l	% Sand	37	
l	% Gravel	56	

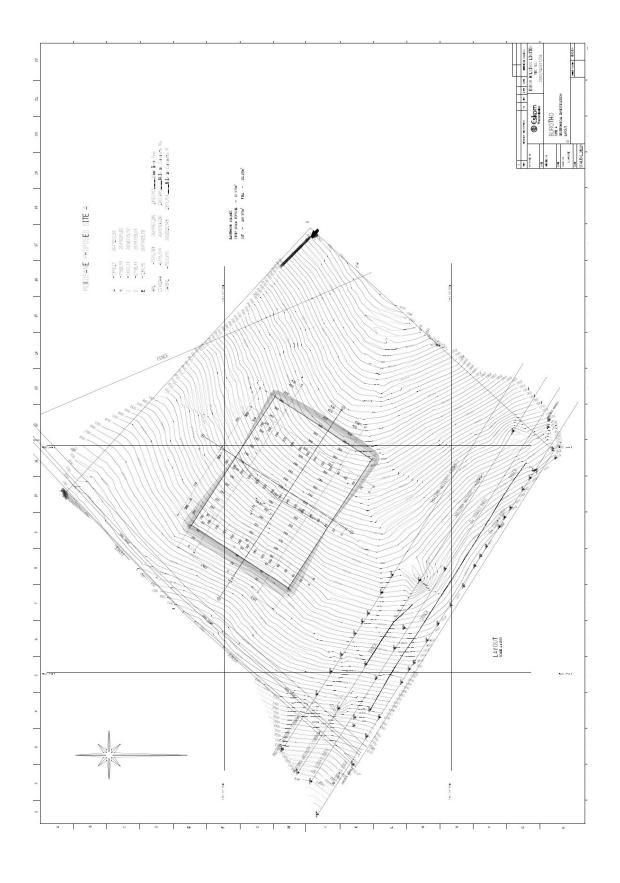
ATTERBERG LIMITS (TMH 1 A2 - A4)

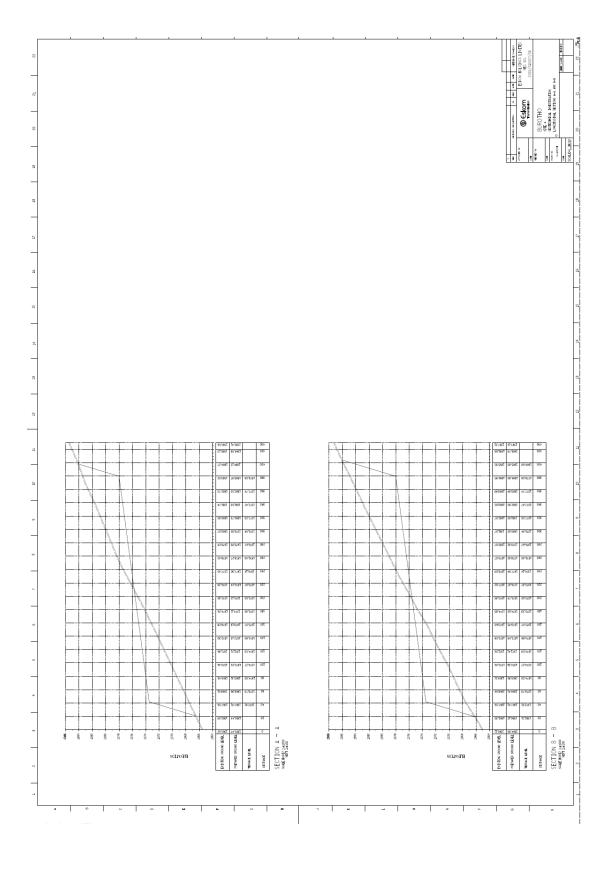

Liquid Limit		
Plasticity Index	NP	
Linear Shrinkage (%)	0.0	
Grading Modulus	2.19	
Classification	A-1-a (0)	
Unified Classification	SW & SC	
Chart Reference		 .

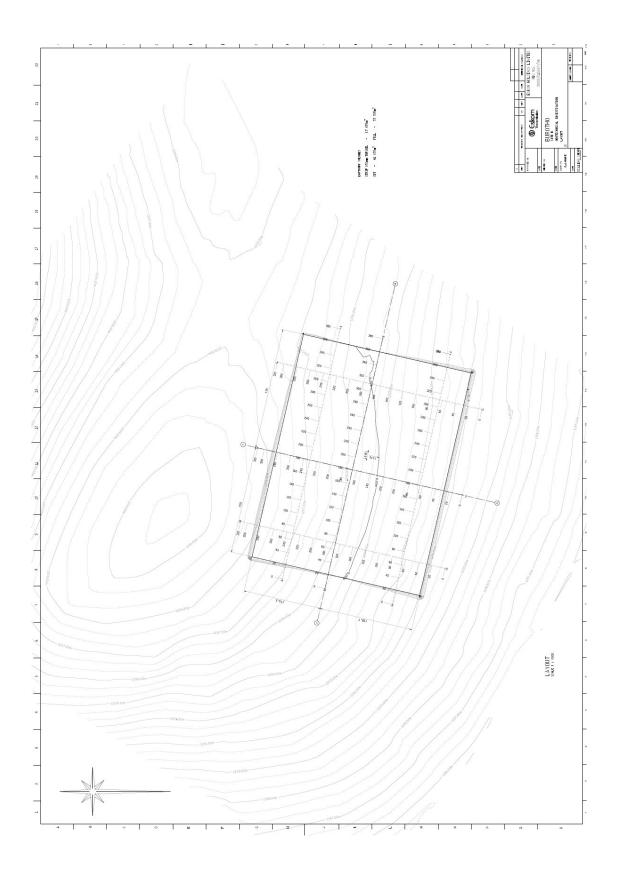

PROJECT: BUROTHO (MAKOPANE) SUBSTATION JOB No. : \$10-0401 DATE : 2010-04-22

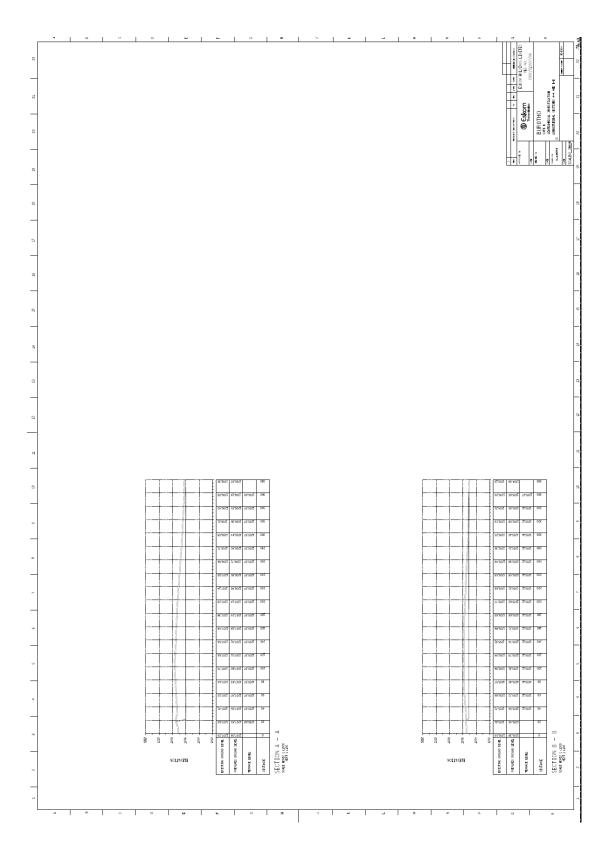
POTENTIAL EXPANSIVENESS

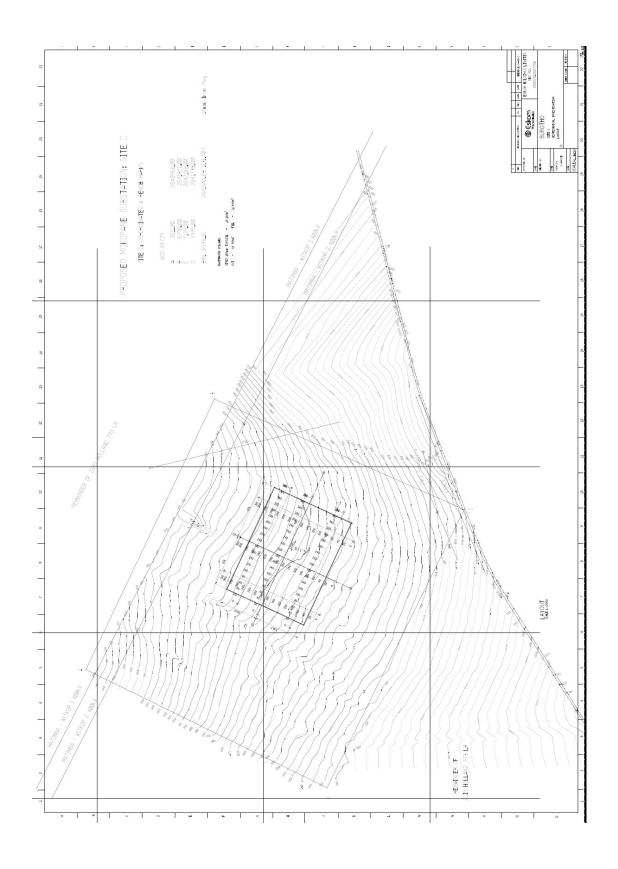
PLASTICITY CHART

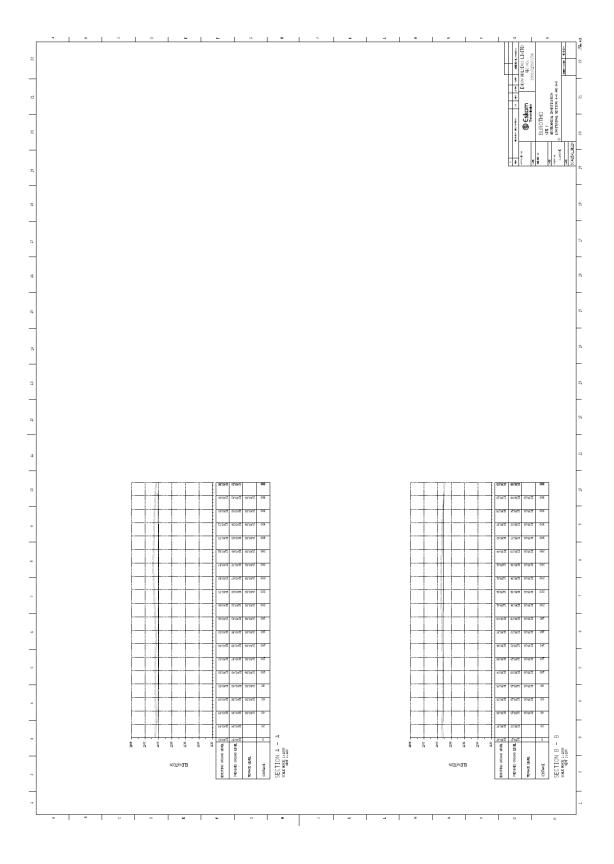

(PTY) LTD


Reg No 1971/000112/07


230 Albertus Street La Montagne 0184 Tel (012) 481-3999


P O Box 72928 Lynrwood Ridge 0040 Fax (012) 481-3812


APPENDIX - D Contour Plans, Preliminary Geometric Designs and Sections



22 23 25 25 25 25 25 25 25 25 25 25 25 25 25		E S S B	With With	N E - E			SIMPB	1720年 5070 1770年 0770 1770 17	004 004 005	© Cakon © C	
		S S S S		ON C - C		,	EE/4T(0)	1.17447 1.2747 1.17447		SECTION D = D The state of the	