

GHT CONSULTING SCIENTISTS

Komati Power Station DRAFT HYDROCENSUS REPORT

FEBRUARY 2009

For

KOMATI POWER STATION

By

GHT CONSULTING SCIENTISTS

PROJECT TEAM

L.J. van Niekerk Adrie van Wyk M. Smit

Current Phase: Phase 39 Report no.:

Project no.: 149-17-mon.537 RVN 537.3/907

Start Date: Nov 2008 Start Date: Dec 2008 Report Date: February 2009

GHT CONSULTING SCIENTISTS

Geo-Hydro Technologies OFS (Pty)Ltd. Trading as GHT Consulting • Reg. no. 94/05593/07 • VAT no. 493 017 5890

PO Box 32998 Fichardt Park 9317
http://www.ghtglobal.com
E-Mail: ghts@ghtglobal.com
Tet: +27 (0) 51 444 0002
Fax: +27 (0) 51 444 0088
Cell: +27 (0) 82 652 2992 +27 (0) 82 656 6996

25 February 2009

Our ref.: RVN 537.3/907

The Manager Chemical Services Komati Power Station Private Bag Blinkpan 2250

FOR ATTENTION: Me. Venessa Naidoo

Dear Madam

It is our pleasure in enclosing two copies of the report RVN 537.3/907 "KOMATI POWER STATION – HYDROCENSUS REPORT - FEBRUARY 2009".

We trust that the report will fulfil the expectations of the Power Station and we will supply any additional information if required.

Yours sincerely,

report

Louis J van Niekerk (Pr.Sci.Nat.)

Copies: Electronic copy to Komati Power Station

Although Geo-Hydro Technologies (Pty) Ltd. exercises due care and diligence in rendering services and preparing documents, Geo-Hydro Technologies (Pty) Ltd. accepts no liability, and the client, by receiving this document, indemnifies Geo-Hydro Technologies (Pty) Ltd. and its directors, managers, agents and employees against all action, claims, demands, losses, liabilities, costs, damages and expenses arising from or in connection with services rendered, directly or indirectly by Geo-Hydro Technologies (Pty) Ltd. and by the use of the information contained in this document.

This document contains confidential and proprietary information of Geo-Hydro Technologies (Pty) Ltd. and is protected by copyright in favour of Geo-Hydro Technologies (Pty) Ltd. and may not be reproduced, or used without the written consent of Geo-Hydro Technologies (Pty) Ltd., which has been obtained beforehand. This document is prepared exclusively for ESKOM Komati Power Station and is subject to all confidentiality, copyright and trade secret rules, intellectual property law and practices of SOUTH AFRICA.

TBBLE OF CONTENTS

1 IN	VTRODUCTION	3
1.1	General	3
1.2	DATE AND NUMBER OF THE MONITORING EVENTS	3
1.3	APPROACH TO STUDY	3
2 SU	UMMARY OF THE HYDROCENSUS INFORMATION	4
2.1	Hydrocensus Sites	4
2.2	Equipment	4
2.3	MONITORING BOREHOLES	4
2.4	GROUNDWATER USE	4
2.5	STATIC WATER LEVELS	4
2.6	SAMPLING SITES	4
	6.1 Groundwater	4
2.0	6.2 Surface water	13
2.7	GROUNDWATER AND SURFACE WATER QUALITY	16
	7.1 Groundwater Quality	17
2.1	7.2 Surface water Quality	19
3 G	EOPHYSICAL INVESTIGATIONS	21
3.1	GEOPHYSICAL SURVEY WEST OF THE ASH DAM	21
3.2	GEOPHYSICAL SURVEY SOUTH OF THE ASH DAM	21
3.3	GEOPHYSICAL SURVEY EAST OF THE ASH DAM	21
4 H	YDRAULIC TESTING OF BOREHOLES	22
4.1	FACTORS CONTROLLING WATER IN ROCKS	22
4.2	RESULTS OF THE PERMEABILITY TESTS	22
5 IN	IPACT OF CONTAMINATION	27
5.1	INTRODUCTION	27
5.2	RISK ASSESSMENT	27
5.3	DISCUSSION	28
5	3.1 Groundwater sites	28
5	3.2 Surface water sites	28

APPENDIX A: LOCALITY MAPS

Map 1: Hydrocen	sus Groundwater sites
-----------------	-----------------------

Map 2: Surface Water Sites

Map 3: Equipped Boreholes

Map 4: Unequipped Boreholes

Map 5: Groundwater monitoring boreholes

Map 6: Groundwater Domestic and Agricultural Use

Map 7: Water Levels Measured

Map 8: Sampled sites

Map 9: Surface Water Sites with Available Chemistry

Map 10: Topography

Map 11: Groundwater Level Contour Map (mamsl)

Map 12: EC Contour Map

Map 13:SO4 Contour Map

Map 14: pH Contour Map

Map 15: Geophysical traverses

APPENDIX B: HYDROCENSUS GROUNDWATER AND SURFACE WATER INFORMATION

APPENDIX C1: GEOPHYSICAL DATA

APPENDIX C2: GEOPHYSICAL GRAPHS

APPENDIX D1: GROUNDWATER SITES PHOTOS

APPENDIX D2: SURFACE WATER SITES PHOTOS

1 INTRODUCTION

1.1 General

Geo-Hydro Technologies (GHT) was commissioned to conduct a Hydrocensus on the area around Komati Power Station in order to establish the use of groundwater in the region.

1.2 Date and number of the monitoring events

This investigation reports on a Hydrocensus conducted between 2 December and 3 December over the area around Komati Power Station.

1.3 Approach to study

This report investigates the groundwater use as well as the general state of equipment installed at the sites. Sites were visited and the following data were recorded at each site: Refer to Table 1 for a summary of the data stipulated below.

- Site coordinates;
- A photograph of the site;
- Casing heights;
- Type of equipment;
- Pipe diameter;
- State of installed equipment (wording condition or not);
- Water usage (Agricultural or Domestic);
- Measuring of a static water level;
- Collecting a sample for chemical analyses;
- Farm detail;
- Farm owner and detail and;
- Farmer detail.

The collected data was entered into a Hydrobase Database with an assigned "Site ID" as well as a designated "Number on Map" for future reference.

SUMMARY OF THE HYDROCENSUS INFORMATION 2

2.1 Hydrocensus Sites

There are at least thirty seven boreholes that exist around Komati Power Station and nine boreholes in the Power Station (refer to Appendix A – Map 1). There are twenty one surface water sites that have been identified as part of the surface water monitoring system at Komati Power Station (refer to Appendix A – Map 2).

2.2 Equipment

The general condition of installed equipment that was encountered during the investigation was found to be good.

A variety of equipment is installed in various boreholes that were inspected (refer to Appendix A – Map 3). A total of five boreholes are equipped with windmill but none are in a working condition. Three sites were recorded having hand pumps installed. A few sites (four) have mono pumps installed with all four of these pumps in use and in working condition. Submersible pumps were found at sixteen sites with fourteen of the pumps in a working condition.

A total of six boreholes (were recorded without any equipment installed (refer to Appendix A – Map 4).

2.3 Monitoring boreholes

There are seven boreholes installed at the Ashing Area, one in the Coal Stockyard Area and one at the Power Station Area (Refer to Appendix A – Map 5). The groundwater monitoring network at Komati Power Station comprises of a total of nine boreholes installed around the Power Station Area, the Ashing area and the Coal Stockyard Area. The monitoring boreholes have no pizometers installed, but the boreholes are sampled at specific depths.

2.4 Groundwater use

Twenty four boreholes are in use with equipment in working condition. Nineteen of these boreholes are being used for domestic purposes only. A total of seven boreholes are being used for both agricultural and domestic purposes (refer to Appendix A – Map 6).

2.5 Static Water Levels

Limited access to boreholes because of installed equipment resulted in water levels that were measured at only nineteen boreholes during the hydrocensus (refer to Appendix A - Map 7). Two boreholes were dry. There is only one set of data available for the water levels of the monitoring boreholes at the Power Station. Groundwater contours with groundwater elevations in meters above mean sea level (mamsl) can be seen in (refer to Appendix A – Map 11).

2.6 Sampling sites

2.6.1 Groundwater

Groundwater samples were collected from thirty-six boreholes for analyses (refer to Appendix A -Map 8). Historical data exist for nine boreholes of Komati Power Station. Historical chemical analyses are available for the nine monitoring boreholes of Komati Power Station. Refer to Photo 1 to 46 for all the groundwater sites sampled.

Table 1.Groundwater sites – Hydrocensus information.

Site ID	Site Tipe	X	Y	WL	Elevation (mamsl)	Sample Depth	Borehole Depth	Casing Diameter (mm)	Casing Hight (m)	Pipe Diameter (mm)	Use (Agricultural, Domestic, Monitoring)	Status (G In Use, U Unused)	Equipment	Condition	Photo Nr.
AB01	Borehole	29.46623	26.10865	1.71	1648	15	35.5	170	0.34	~	M	G	None	No Equipment	1
AB02	Borehole	29.46762	26.09937	2.56	1625	6	32.5	170	0.81	~	М	G	None	No Equipment	2
AB03	Borehole	29.46824	26.09800	1.93	1620	19	7.5	170	0.34	~	М	G	None	No Equipment	3
AB04	Borehole	29.46748	26.09403	1.54	1616	8.5	38.0	170	0.28	~	М	G	None	No Equipment	4
AB05	Borehole	29.46447	26.09088	1.05	1600	20	8.5	170	0.37	~	М	G	None	No Equipment	5
AB06	Borehole	26.47720	26.09450	1.30	1620	~	~	~	~	~	~	~	None	No Equipment	6
AB07	Borehole	29.47692	26.09034	2.96	1612	15	37.0	170	0.28	~	М	G	None	No Equipment	7
CB08	Borehole	29.47383	26.08835	3.62	1606	13	35.5	170	0.20	~	М	G	None	No Equipment	8
PB09	Borehole	29.47118	26.08552	1.59	1600	31	36.5	170	0.95	~	М	G	None	No Equipment	9
BB10	Borehole	29.42091	26.04868	~	1624	~	~	~	~	30	D	G	Submersible	Good working condition	10
BB11	Borehole	29.45898	26.06239	~	1627	Pumped	~	170	0.04	~	D	G	Hand pump	Good working condition	11
BB12	Borehole	29.46227	26.06161	~	1626	Тар	~	170	0.03	40	D	G	Submersible	Broken	12
BB13	Borehole	29.48487	26.05461	16.20	1646	Тар	27.2	120	0.03	40	D	G	Submersible	Good working condition	13
BB14	Borehole	29.48488	26.05460	11.80	1644	Тар	~	~	~	60	D	G	Submersible	Good working condition	14
BB15	Borehole	29.49044	26.05852	~	1631	Dam	~	170	0.04	50	D	G	Submersible	Good working condition	15
BB16	Borehole	29.50683	26.07076	~	1645	Pumped	~	170	0.04	~	D	G	Hand pump	Good working condition	16
BB17	Borehole	29.49821	26.07593	24.00	1647	Тар	66.0	~	Ground level	60	D	G	Prospect hole	Good working condition	17
BB18	Borehole	29.49866	26.07736	Dry	1650	~	85.0	~	~	~	~	Ŭ	None	Dry hole	18
BB19	Borehole	29.49865	26.07737	~	1649	Pumped	~	170	0.01	~	D	G	Hand pump	Good working condition	19
BB20	Borehole	29.48213	26.08393	14.10	1633	Тар	26.1	170	0.01	50	D	G	Submersible	Good working condition	20
BB20 BB21	Borehole	29.45835	26.37589	2.20	1674	15	26.8	150	0.02	~	~	U	None	No Equipment	20
BB22	Borehole	29.47907	26.10586	~	1646	Tap	~	~	~	50	D	G	Submersible	Good working condition	22
BB22 BB23	Borehole	29.47905	26.10632	4.50	1647	~	11.0	170	0.02	40	D	U	Submersible	Broken	23
BB24	Borehole	29.47125	26.11574	15.00	1702	Tap	~	150	0.02	50	D	G	Submersible	Good working condition	23
BB25	Borehole	29.47125	26.11574	20.50	1662	Krip/Dam	26.5	180	0.03	50	AD	G	Submersible	Good working condition	25
BB26	Borehole	29.46985	26.46188	Dry	1679	~	6.1	100	~	~	~	U	None	Dry hole	26
BB27	Borehole	29.47912	26.11710	32.00	1661	Tap	42.0	150	0.04	50	AD	G	Submersible	Good working condition	27
BB28	Borehole	29.50721	26.11221	~	1661	Тар	~	200	0.04	50	D	G	Mono pump	Good working condition	28
BB29	Borehole	29.49529	26.12859	13.00	1631	Тар	~	170	0.04	50	AD	G	Submersible	Good working condition	20
BB30	Borehole	29.50947	26.13509	8.50	1617	16	40.0	170	0.03	~	~	U	None	No Equipment	30
BB30 BB31	Borehole	29.50947	26.13509	~	1624	Tap	~	~	0.04 ~	~	D	G	Mono pump	Good working condition	31
BB31 BB32	Borehole	29.50901	26.14317	~ 5.00	1624	12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ 150	~ 0.04	~ ~	D	U	None	No Equipment	31
BB32 BB33	Borehole	29.53378	26.14317	2.00	1656	6	~ 8.0	160	0.04	~	~	U	None	No Equipment	33
BB34	Borehole	29.53578	26.14244	~	1656	Dam	8.0 ~	100	0.05	~ ~	~ AD	G		Good working condition	33
										~ 50			Mono pump	•	34
BB35 BB36	Borehole Borehole	29.49518 29.49503	26.15330 26.16079	3.00 18.00	1603 1628	Tap Dam	15.0 32.0	150 150	0.02 0.02	50 50	AD AD	G G	Submersible Submersible	Works only in dry season Good working condition	35 36
														Ũ	
BB37	Borehole	29.51189	26.17976	3.50	1614	Tap ~	12.0 ~	150 150	0.02 0.03	50 50	D ~	G U	Submersible Windmill	Good working condition	37 38
BB38	Borehole	29.48366	26.17902	~	1631							-		Not in use for a long time	
BB39	Borehole	29.48336	26.17877	~	1626	Dam	~	~	~	~	D D	G G	Mono pump	Good working condition	39
BB40	Borehole	29.48339	26.17864	3.00	1634	Tap	9.0	150	0.03	40	D	-	Submersible	Good working condition	40
BB41	Borehole	29.47363	26.16277	~	1583	~	~	150	0.03	40	~	U	Windmill	Not in use for a long time	41
BB42	Borehole	29.47537	26.16495	~	1591	~	~	150	Ground level	40	~	U	Windmill	Not in use for a long time	42
BB43	Borehole	29.42195	26.12209	8.00	1621	Dam	15.0	150	0.05	40	D	G	Submersible	Good working condition	43
BB44	Borehole	29.42193	26.12198	5.00	1642	5.10	5.5	160	0.01	30	AD	G	Submersible	Good working condition	44
BB45	Borehole	29.41625	26.11591	~	1612	~	~	~	~	~	~	U	Windmill	Not in use for a long time	45
BB46	Borehole	29.42719	26.11853	~	1627	~	~	~	~	~	~	U	Windmill	Not in use for a long time	46

Photo 1.

Photo 3.

Photo 5.

Photo 7. AB07

Photo 2. AB02

- 7 -

Photo 4. AB04

AB06 Photo 6.

Photo 8. CB08

Photo 9.

Photo 10. BB10

Photo 12. BB12

Photo 14. BB14

Photo 11. BB11

Photo 15. BB15

Photo 18. BB18

Photo 20. BB20

Photo 22. BB22

Photo 17. BB17

Photo 19. BB19

Photo 21. BB21

Photo 23. BB23

Photo 26. BB26

Photo 28. BB28

Photo 30. BB30

Photo 25. BB25

Photo 27. BB27

Photo 29. BB29

Photo 31. BB31

Photo 32. BB32

Photo 34. BB34

Photo 36.

Photo 38. BB38

Photo 33. BB33

Photo 35. BB35

Photo 37. BB37

Photo 39. BB39

Photo 40. BB40

Photo 42. BB42

Photo 44. BB44

Photo 41. BB41

Photo 43. BB43

Photo 45. BB45

Photo 46. *BB*46

2.6.2 Surface water

There are twenty surface water sites that form part of the surface water monitoring network of Komati Power Station (refer to Appendix A – Map 9). Fourteen of these sites are canals or pans being actively monitored as part of surface monitoring sites, whereas six sites are being actively monitored as part of the river water monitoring network. Three sites were dry during the time of monitoring. Historical analyses are available for most of these sites. Refer to Photo 47 to 68 for the surface water sites.

Site ID	Site Tipe	X	Y	Sampled	WL	Photo Nr.
AC01	Canal	29.46700	-26.10879	No	Dry	47
AC02	Canal	29.47275	-26.09593	Yes	Low	48
AC03	Canal	29.47941	-26.09947	Yes	Low	49
AC04	Canal	29.48020	-26.09685	No	Low	50
AC05	Canal	29.47773	-26.09571	Yes	Low	51
PC06	Canal	29.47688	-26.09036	No	Dry	52
PC07	Canal	29.47073	-26.08812	No	Dry	53
PC08	Canal	29.46644	-26.09138	Yes	Low	54
AP02	Pan	29.46850	-26.09545	Yes	Mod Full	55
AP03	Pan	29.47757	-26.09300	Yes	Very High	56
PP04	Pan	29.48138	-26.09848	No	Mod Full	57
PP05	Pan	29.47373	-26.08900	No	Low	58
PP06	Pan	29.46883	-26.08691	Yes	High	59
PE01	Pan	29.46624	-26.08742	Yes	Mod Full	60
KR01	River	29.46539	-26.09248	Yes	Low	61
KR02	River	29.46345	-26.08958	Yes	Low	62
GR03	River	29.48235	-26.09474	Yes	Low	63
GR04	River	29.47134	-26.08493	Yes	Low	64
BR05	River	29.44499	26.08252	Yes	Low	65-66
BR06	River	29.48671	26.07354	Yes	Low	67-68

Table 2.Surface water sites – Hydrocensus information.

Photo 47. AC01.

Photo 48. AC02.

Photo 49. AC03.

Photo 51. AC05.

Photo 53. PC07.

Photo 55. AP02.

Photo 52. PC06.

Photo 54. PC08.

Photo 56. AP03.

Photo 57. PP04.

Photo 59. PP06.

Photo 61. KR01.

Photo 63. GR03.

Photo 58. PP05.

Photo 60. PE01.

Photo 62. KR02.

Photo 64. GR04.

Photo 67. BR06.

Photo 68. BR06.

2.7 Groundwater and Surface water quality

Data Tables

Inorganic chemical analyses have been performed on water samples obtained during the Hydrocensus at Komati Power Station. The results of the chemical analyses of the current monitoring phase are given in table format in this section.

Water Quality Tables

In these tables the water samples from each monitoring site are colour-coded according to the "South Africa Water Quality Guidelines, Volume 1: Domestic Use, DWA&F, First Edition 1993" and the "South Africa Water Quality Guidelines, Volume 1: Domestic Use, DWA&F, Second Edition 1996", as well as according to the publication "Quality of Domestic Water Supplies, DWA&F, Second Edition 1998". A description of the various classes is given in Table 3 while the health and aesthetic effects associated with the use of water from the different classes are described in Table 4.

Table 3.Classification system used to evaluate water quality classes.

Class 0	- Ideal water quality - Suitable for lifetime use.
Class 1	- Good water quality - Suitable for use, rare instances of negative effects.
Class 2	- Marginal water quality - Conditionally acceptable. Negative effects may occur in some sensitive groups
Class 3	- Poor water quality - Unsuitable for use without treatment. Chronic effects may occur.
Class 4	- Dangerous water quality - Totally unsuitable for use. Acute effects may occur.

South Africa Water Qual	ity Guidelines, Volume 1: Domestic Use, DWA&F, First Edition 1993 & Second Edition 1996
NR	Target water quality range No rick

- Target water quality range - No risk.

IR LR

HR

- Good water quality - Insignificant risk. Suitable for use, rare instances of negative effects.

- Marginal water quality - Allowable low risk. Negative effects may occur in some sensitive groups

- Poor water quality - Unsuitable for use without treatment. Chronic effects may occur.

Table 4.Health and aesthetic effects associated with the water quality classes.

CLASS	DESCRIPTION	EFFECTS
		Drinking Health: No effects, suitable for many generations.
		Drinking Aesthetic: Water is pleasing.
CLASS 0	Ideal water quality	Food preparation: No effects.
	water quality	Bathing: No effects.
		Laundry: No effects.
		Drinking Health: Suitable for lifetime use. Rare instances of sub-clinical effects.
	~ .	Drinking Aesthetic: Some aesthetic effects may be apparent.
CLASS 1	Good water quality	Food Preparation: Suitable for lifetime use
		Bathing: Minor effects on bathing or on bath fixtures.
		Laundry: Minor effects on laundry or on fixtures.
		Drinking Health: May be used without health effects by the majority of individuals of all ages, but may cause effects in
		some individuals in sensitive groups. Some effects possible after lifetime use. Drinking Aesthetic: Poor taste and appearance are noticeable.
CLASS 2	Marginal	Food preparation: May be used without health or aesthetic effects by the majority of individuals.
	water quality	Bathing: Slight effects on bathing or on bath fixtures.
		Laundry: Slight effects on laundry or on fixtures. Drinking Health: Poses a risk of chronic health effects, especially in babies, children and the elderly.
CLASS 3	Poor	Drinking Aesthetic: Bad taste and appearance may lead to rejection of the water.
CLASS 5	water quality	Food preparation: Poses a risk of chronic health effects, especially in children and the elderly.
		Bathing: Significant effects on bathing or on bath fixtures.
		Laundry: Significant effects on laundry or on fixtures.
		Drinking Health: Severe acute health effects, even with short-term use.
CT A SS A	Unacceptable	Drinking Aesthetic: Taste and appearance will lead to rejection of the water.
CLASS 4	water quality	Food preparation: Severe acute health effects, even with short-term use.
		Bathing: Serious effects on bathing or on bath fixtures.
		Laundry: Serious effects on laundry or on fixtures.

2.7.1 Groundwater Quality

Contour maps of the EC values, SO_4 concentrations and the pH can be seen in Appendix A – Map 12, 13 and 14. It should be note that these contours were interpolated from chemical analyses of fairly sparse distribution of boreholes over the area under investigation.

- 18 -

		pН	EC	Na	Ca	Mg	К	Cl	SO ₄	T.Alk	F	NO ₂ -N	NO ₃ -N	PO ₄	В
No.	Date	r	mS/m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	_ mg/L	mg/L	mg/L	mg/L
AB01	20081203	7.1	348	362	242	236	30.5	299	1188	684	0.00	0.00	0.00	0	0.00
AB02	20081203	7.1	251	90	281	211	44.9	45	1545	294	0.00	0.00	0.00	0	0.00
AB03	20081203	6.6	74	43	42	25	7.3	41	203	121	0.19	0.00	0.00	0	0.01
AB05	20081202	7.2	257	374	121	76	7.2	234	879	327	0.00	0.00	2.35	0	0.00
AB07	20081203	6.9	227	145	178	178	10.3	59	1308	158	0.00	0.00	0.00	0	0.00
CB08	20081203	6.7	107	122	43	27	3.6	68	261	226	0.87	0.00	0.00	0	0.00
PB09	20081203	7.5	69	28	64	20	3.5	15	132	212	0.90	0.00	0.47	0	0.00
BB10	20090219	7.8	52	19	33	12	4.7	21	8	210	0.40	0.00	3.84	0	0.07
BB11	20090219	7.4	75	63	29	18	7.6	91	86	177	0.42	0.00	0.00	0	0.06
BB12	20090219	7.9	70	34	61	19	3.8	32	61	282	0.56	0.00	0.00	0	0.05
BB13	20090219	7.7	51	22	37	12	3.3	20	10	249	0.58	0.00	0.00	0	0.07
BB14	20090219	7.8	109	31	84	56	3.7	114	103	310	0.00	0.00	41.67	0	0.05
BB15	20090219	7.7	98	35	77	48	2.7	62	92	366	0.00	0.00	37.48	0	0.05
BB16	20090219	7.3	67	23	53	17	2.8	82	14	149	0.00	0.00	70.68	0	0.05
BB17	20090219	7.8	51	15	42	16	3.7	16	7	257	0.37	0.00	0.69	0	0.05
BB19	20090219	7.4	31	13	14	8	2.5	12	1	116	0.20	0.00	34.67	0	0.07
BB20	20090219	7.9	53	17	35	14	5.0	15	9	194	0.00	0.00	1.39	0	0.05
BB20 BB21	20090219	7.4	35	10	19	14	3.4	10	5	144	0.00	0.00	31.14	0	0.00
BB22	20090219	7.4	48	10	31	10	4.2	10	32	177	0.22	0.00	8.29	0	0.05
BB22 BB24	20090219	7.6	40 59	16	40	14	15.4	26	32 7	271	0.24	0.00	14.94	0	0.00
BB25	20090219	7.4	54	35	21	10	12.2	44	8	240	0.35	0.00	0.83	0	0.09
BB27	20090219	7.2	43	13	22	9	9.7	14	2	163	0.35	0.18	0.59	2	0.07
BB28	20090219	7.6	43	10	23	12	4.2	14	1	133	0.22	0.00	68.23	0	0.05
BB29	20090219	7.6	42	14	24	13	3.2	16	11	144	0.25	0.00	0.16	0	0.06
BB30	20090219	7.4	80	55	42	23	3.5	112	11	249	0.55	0.00	0.51	0	0.09
BB31	20090219	7.9	55	26	36	17	3.2	28	19	238	0.27	0.00	0.00	0	0.07
BB32	20090219	6.5	57	19	23	20	8.2	44	70	135	0.00	0.00	87.89	0	0.05
BB33	20090219	6.7	56	19	23	19	10.0	38	94	103	0.00	0.00	49.70	0	0.05
BB34	20090219	7.3	34	17	16	6	4.0	9	8	142	0.30	0.00	10.23	0	0.06
BB35	20090219	7.5	87 80	28	63	23	7.2	134	19 20	131	0.00	0.00	161.82	0	0.06
BB36	20090219	7.5 7.9	80 50	28 14	52 41	21 10	7.2 2.2	129 10	20 20	116	0.00	3.06 0.00	119.18 1.32	0	0.06 0.06
BB37 BB39	20090219 20090219	7.9 8.4	50 32	14 9	41 17	10	2.2	10	20 6	177 175	0.70	0.00	0.00	0 0	0.06
BB39 BB40	20090219	0.4 7.4	32	8	17	10	3.3	13	4	175	0.21	0.00	61.48	0	0.06
BB40 BB43	20090219	6.8	12	。 6	3	2	3.5 3.5	5	4	51	0.23	0.00	01.48	2	0.00
вв43 BB44	20090219	6.4	12	9	6	2	4.1	20	4	86	0.18	0.00	0.00	0	0.07
DD44	20090219	U.	10	,	0	2	7.1	20	1	00	0.14	0.00	0.00	U	0.07

Table 5.Water quality – Groundwater sites.

The Ashing Area

- AB01 (monitoring borehole at domestic waste site), AB02 (monitoring borehole east of new ash dams) and AB07 (monitoring borehole below seepage recovery dam) is classified as dangerous due to the concentrations of Mg and SO₄ and is classed as Class 4 water quality totally unsuitable for human use. Acute effects may occur.
- AB05 (monitoring borehole at dam) can be classified as poor due to the concentrations of SO₄.
- AB03 (monitoring borehole east of old ash dams), AC03 (dirty water canal on eastern side of ash dam), AC05 (north of ash dam where road crosses over pipelines) and AP03 (seepage recovery dam previously labelled D26) can be classified as good water quality.

Power Station and Coal Stockyard Area

The groundwater from the Power Station and Coal Stockyard area are classified as ideal to good. It can be summarised as follows:

• CB08 (monitoring borehole below station north of Coal Stockyard.), PB09 (monitoring borehole at Lake Fin) and PC08 (first bridge south of Power Station where road crosses Komati Spruit) can be classified as good water quality.

Hydrocensus groundwater sites (Background boreholes)

The groundwater around the Power Station Area is classified as ideal to dangerous. It can be summarised as follows:

- Boreholes BB24 and BB34 are classified as marginal due to the concentrations of NO₃ and are classed as Class 2 water quality unsuitable for use without treatment. Acute effects may occur in babies.
- Boreholes BB15, BB19 and BB21 are classified as poor due to the concentrations of NO₃ and are classed as Class 3 water quality unsuitable for use without treatment. Acute effects may occur in babies.
- Boreholes BB14, BB16, BB28, BB32, BB33, BB35, BB36 and BB40 are classified as dangerous due to the concentrations of NO₃ and are classed as Class 4 water quality totally unsuitable for human use. Acute effects may occur in babies.

The high concentrations of NO_3 in the groundwater might be attributed to agricultural activity in the area.

2.7.2 Surface water Quality

No.	Date	pН	EC	Na	Ca	Mg	K	Cl	SO ₄	T.Alk	F	NO ₂ -N	NO ₃ -N	PO ₄	В
110.	Date		mS/m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
AC02	20081203	3.1	233	143	306	35	25.1	66	1318	0	0.79	0.00	0.00	0	0.59
AC03	20081203	6.8	83	73	38	14	11.9	51	148	203	0.48	0.00	0.00	0	0.14
AC04	20081203	7.4	137	87	133	48	10.8	42	478	285	0.79	0.00	0.00	0	0.09
AC05	20081203	7.3	107	99	78	12	16.4	49	387	121	0.40	0.00	2.68	0	0.26
PC08	20081202	7.0	92	25	89	39	3.4	29	263	205	0.44	0.00	0.00	0	0.03
AP02	20081203	7.3	131	112	104	27	15.5	50	523	215	0.87	0.00	1.34	0	0.24
AP03	20081203	7.1	114	100	86	17	16.6	52	392	142	0.62	0.00	0.00	0	0.00
PP06	20081203	7.5	66	56	32	13	5.9	21	171	142	0.50	0.00	3.80	0	0.14
PE01	20081202	6.6	61	37	21	9	7.4	47	63	147	0.19	30.35	0.77	2	0.15
KR03	20081203	7.2	151	133	122	40	23.2	55	646	224	0.86	0.00	0.00	0	0.42
KR04	20081203	7.5	79	51	50	18	9.3	30	244	135	0.48	0.00	0.00	0	0.21
GR03	20081203	7.5	40	15	22	12	2.8	13	40	147	0.31	0.00	0.00	0	0.11
GR04	20081203	7.1	118	50	118	46	5.0	18	240	481	0.00	0.00	0.00	0	0.16
BR06	20090219	7.4	54	25	23	19	3.8	37	41	166	0.47	0.00	20.80	0	0.08
BR07	20090219	7.4	86	58	53	25	6.1	31	274	173	0.60	0.00	3.54	2	0.14

Table 6.Water quality - Surface water sites

<u>The Ashing Area</u>

The surface waters from the sites of the Ashing Area can be classified as good to poor water quality due to high concentrations of mainly Mg and Ca. It can be summarised as follows:

- AC02 (north-western side of ash dam) is classified as dangerous due to the concentrations of Ca and SO₄ and is classed as Class 4 water quality totally unsuitable for human use. Acute effects may occur.
- AP02 (clean water dam where Komati Spruit originates west of ash dam) and AC04 (northeastern corner of ash dam where road crosses over pipelines) can be classifies as marginal due to the concentrations SO₄.

Power Station and Coal Stockyard Area

The waters from the Power Station and Coal Stockyard area are classified as ideal to good. It can be summarised as follows:

• PP06 (station drain holding dam at north-western corner of Power Station) can be classified as water with an ideal quality.

<u>Sewage Plant Area</u>

• PE01 (sewage PSE outlet) at the sewage plant can be classified as poor due to the concentrations of NO₂.

<u>Komati Spruit Area</u>

• KR01 (second bridge south of Power Station where road crosses Komati Spruit) can be classified as poor due to the concentrations of SO₄.

Geluk Spruit Area

• The waters from the Geluk Spruit can be classified as ideal to good.

Hydrocensus surface water sites (Background rivers)

• Site BR06 can be classified as poor due to the concentration of NO₃ and are classed as Class 3 water quality unsuitable for use without treatment. Acute effects may occur in babies.

The high concentrations of NO3 in the surface water might be attributed to agricultural activity in the area.

3 GEOPHYSICAL INVESTIGATIONS

The geophysical survey was conducted at the western, southern and eastern boundary of the Ash Dam. The purpose of the geophysical investigations was to detect and delineate geological features that may be associated with preferential pathways for groundwater migration and contaminant transport. Intrusive magmatic bodies are often associated with baked zones that are usually highly fractured and weathered. Such zones could form preferential pathways along which rapid groundwater flow and contaminant transport can take place. The magnetic method was used during the geophysical survey since this method is often very successful in detecting intrusive magmatic bodies such as dolerite/diabase sills or dykes.

Magnetic data were recorded on 9 traverses. The location of the traverses is as follow:

- Three traverses were recorded west of the site.
- One traverse was recorded south of the site and
- Five traverses east of the site, (Refer to the locality maps in Appendix A Map 15).

The lengths of the traverses ranged from a few metres to 720 m and the total length of all the traverses was approximately 3.5 km. Data on the traverses were recorded using station spacing of 10 metres, depending on the variability of the data and the detail required. The magnetic profiles are presented in Appendix C and Appendix C2.

3.1 Geophysical Survey West of the Ash Dam

Data were recorded on three traverses on the western boundary of the Ash Dam. All three of the traverses have an approximate south/north strike (Traverses 1, 2 and 3).

The anomalies recorded on Traverse 1 and 2 generally had low amplitudes (40 nT) and were observed at only single stations. Most of these anomalies might be due to the presence of metal objects such as poles, pipes and fences. No magnetic anomalies of any significance were recorded on these two traverses.

An anomaly was recorded on Traverse 3 indicating the possible presence of a dolerite sill with a dip in a northwest southeast direction.

3.2 Geophysical Survey South of the Ash Dam

Data was recorded on one traverses south of the Ash Dam with an approximate west/east strike (Traverses 4). No magnetic anomalies of any significance were recorded on traverse 4.

3.3 Geophysical Survey East of the Ash Dam

Data were recorded on five traverses east of the Ash Dam. Four traverses with an approximate southwest/northeast strike (Traverse 5, 6, 7 and 8) and one with a southeast/northwest strike (Traverse 9).

Anomalies were recorded on two of the traverses namely, Traverses 5 and 9. These anomalies are due to the presence of power lines. No magnetic anomalies of any significance were recorded on the other traverses on the eastern side of the Ash Dam.

4 HYDRAULIC TESTING OF BOREHOLES

4.1 Factors Controlling Water in Rocks

Permeability of the Aquifer

Permeability is the intrinsic capacity of a rock to transmit fluids. Materials that do not allow water to pass through them are classified as impermeable. Sands and gravel, which have large pore spaces, are highly permeable; clays, on the other hand, are practically impermeable because pore spaces are extremely small and the water contained in them is virtually stationary.

During the execution of permeability tests, also known as "slug tests", a certain volume of water is either added, or removed from, the column water inside the borehole. The rate at which the recovery towards the original rest water level takes place after the addition/removal, is measured. A displacement in the order of 10 cm - 50 cm is considered to be sufficient to enable the investigator to obtain useful results from the exercise. The transmissivity (*T*) and/or hydraulic conductivity (*K*) are determined from these measurements. It must, however, be kept in mind that the values obtained from the slug test represent only the aquifer properties in the immediate vicinity around the borehole, since disturbances in the equilibrium conditions are only experienced over small distances from the borehole.

Hydraulic Conductivity (K)

Hydraulic conductivity is defined as the volume of water that will move through a porous medium in unit time under a unit hydraulic gradient through a unit area measured at a right angle to the direction of flow. Hydraulic conductivity has units of Length/Time.

Transmissivity (KD or T)

Transmissivity is the product of the average hydraulic conductivity (K) and the saturated thickness of the aquifer (D). Consequently, transmissivity is the rate of flow under a unit hydraulic gradient through a cross-section of unit width over the whole saturated thickness of the aquifer. Transmissivity has the units of Length²/Time.

Storativity (S)

The storativity of a saturated confined aquifer of thickness (D) is the volume of water released from storage per unit surface area of the aquifer per unit decline in the component of hydraulic head normal to that surface. In a vertical column of unit area extending through the confined aquifer, the storativity S equals the volume of water released from the aquifer when the piezometric surface drops over a unit distance. As storativity involves a volume of water per volume of aquifer, it is a dimensionless quantity.

4.2 **Results of the permeability Tests**

The Bouwer-Rice method was used to analyses the permeability tests performed on eight of the Power Station boreholes (refer to Appendix A – Map 1). The results of the tests are presented in Figure 1 to Figure 8 and Table 7.

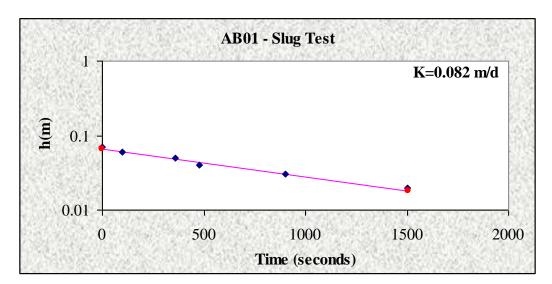


Figure 1. Results of the permeability test performed on AB01.

Figure 2. Results of the permeability test performed on AB02.

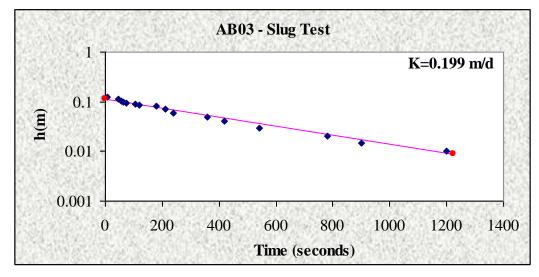


Figure 3. Results of the permeability test performed on AB03

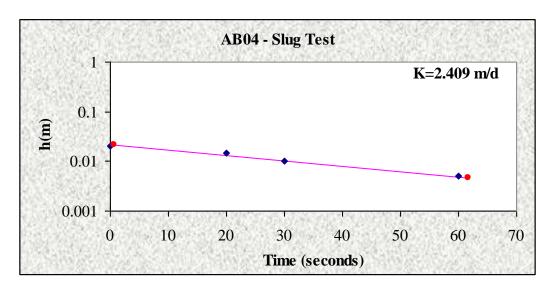


Figure 4. Results of the permeability test performed on AB04.

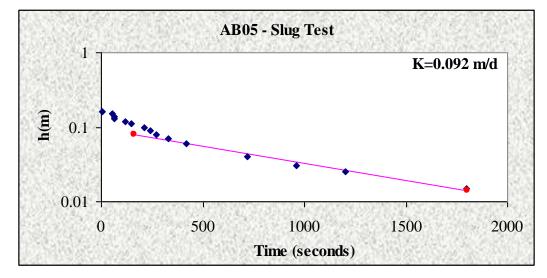


Figure 5. Results of the permeability test performed on AB05.

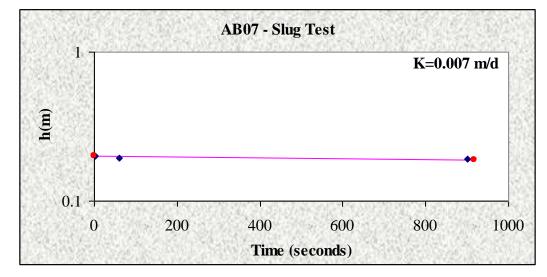


Figure 6. Results of the permeability test performed on AB07.

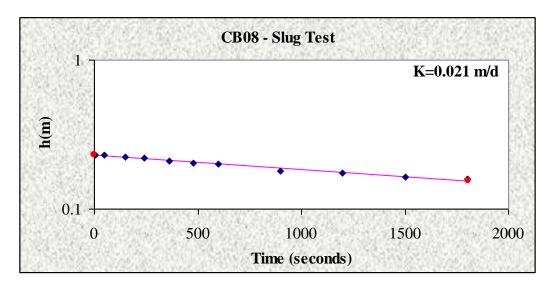


Figure 7. Results of the permeability test performed on CB08.

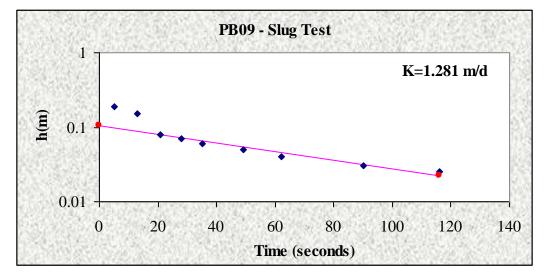


Figure 8. Results of the permeability test performed on PB09.

These observations suggest that the rocks on and in the vicinity of Komati Power Station generally have low permeabilities and hydraulic conductivities. The presence of preferential pathways, such as fractured zones, might be present in the region and may cause marked increases in the hydraulic conductivities. Migration of groundwater and/or contaminants can be expected to be high along such pathways. Permeability tests were not performed during this investigation on boreholes located on the neighbouring farms due to the presence of equipment in the boreholes.

The results of the permeability tests are implemented in the calculation of the flow velocities of the groundwater (which acts as the carrier of pollution [if any] in the geohydrological environment). The calculations are performed as follows:

$$v_s = \frac{K}{n} \frac{\Delta h}{\Delta l}$$

where v_s is Darcy's flow velocity, *K* is the hydraulic conductivity, $\Delta h/\Delta l$ is the hydraulic gradient, and *n* is the porosity, assumed to be 30% (0.3). The hydraulic gradient is assumed to equal the local topographic gradient of 0.03 (1:40). The results of the calculations are presented in Table 7.

No.	Hydraulic Conductivity K (m/d)	n Porosity	Hydraulic Gradient	Flow Velocity (m/y)
AB01	0.082	0.3	0.03	2.4942
AB02	0.025	0.3	0.03	0.7604
AB03	0.199	0.3	0.03	6.0529
AB04	2.409	0.3	0.03	73.2738
AB05	0.092	0.3	0.03	2.7983
AB07	0.007	0.3	0.03	0.2129
CB08	0.021	0.3	0.03	0.6388
PB09	1.281	0.3	0.03	38.9638
Average				1.6273

Table 7.Darcy's flow velocities for the two newly drilled boreholes

The flow velocities listed in Table 7 suggest that fluid/contaminant migration in the rock formations at Komati Power Station will be slow, except for AB04 which has a mush higher flow velocity. However, it must be remembered that the results obtained from permeability tests only represent the characteristics of the aquifer in the immediate vicinity of the boreholes tested. In the presence of preferential pathways these flow velocities may be much higher. The velocity will also be much lower as hydraulic gradient become less in the flat areas.

5 IMPACT OF CONTAMINATION

5.1 Introduction

The Water Act (1998) is based on a number of principles one of which is that the quantity, quality and reliability of water required maintaining the ecological functions on which humans depend shall be reserved so that the human use of water does not individually or cumulatively compromise the long-term sustainability of aquatic and associated ecosystems. In this instance, drinking water guidelines (South African Domestic Water Supplies, 2001) and aquatic ecosystem guidelines (DWAF, 1996) were used as a basis to determine the potential impacts of a given contaminant on water quality.

Domestic water supplies are categorised according to classes (refer to Table 4), and it is with these classes that groundwater quality in the vicinity of the Komati Power Station has been compared (refer Table 8 and Table 9). Although most of the boreholes exceed the target water quality range documented in the aquatic ecosystem guidelines, it is difficult to quantify the associated impacts.

5.2 Risk Assessment

A risk can be defined broadly as the probability that an adverse event will occur in specified circumstances. Effective decision-making involves the management of risks, that is, the identification, evaluation, selection and implementation of actions to reduce risk. Risk assessment is a technique that provides such information to the manager, thereby facilitating the complex and integrated decisions required.

A health risk assessment is the process or method of determining if an activity (man-made or natural) will negatively impact human health. Once a contaminant is released into the groundwater, its resultant concentrations found in the human body is dependent upon the physical and chemical properties of both the contaminant and the groundwater. In addition, the concentrations found in a human are subject to the person's exposure to groundwater. Exposure is defined by the frequency, magnitude and duration of contact with the contaminant i.e.

- Frequency whether a person is exposed daily or just occasionally;
- Magnitude the amount of exposure. For example, occupational exposure will be greater than community exposure;
- Duration Whether a given exposure episode lasts for minutes, hours, days or years.

Once the contaminant is inside the body it may be further transformed via metabolism or detoxification, the ability to transform chemicals varying with the individual. For example, children, the elderly and those with chronic conditions, react differently to the same dose compared to average, healthy middle-aged adults. The impact of contaminants for the various scenarios must therefore be characterized in a health risk assessment. Unfortunately, however, there is insufficient data to allow a detailed health risk assessment to be performed, and thus a rapid, low to medium confidence was conducted in this instance.

Table 8.Summary of analyses for parameters included in water quality guidelines.Parameters included in water quality guidelines

Parameter	Class 4 sites	Information
pH		Alkali Burns. Tastes extremely soapy and burns eyes.
EC		Increasing risk of dehydration. Tastes extremely salty and bitter. Corrosive
Sodium		Definite health risk especially to babies placing strain on kidneys and the heart. Tastes extremely salty.
Calcium		Chronic health effects in sensitive groups only, with forming of kidney stones.
Magnesium		Tastes very bitter. Leads to Diarrhoea in all individuals.
Chloride		Dehydration in infants and leads to nausea and vomiting.
Sulphates	AB01, AB02, AB07	High chance of diarrhoea. Very bitter and salty taste. Extremely corrosive.
Fluoride		Increasing health risk and staining of teeth. Hardening of bones may occur which then becomes brittle and breaks under mild stress. Diarrhoea, nausea and vomiting.
Nitrate	BB14, BB16, BB28, BB32, BB33, BB35, BB36, BB40	Increasing acute health risk to babies.
Iron		Risk of iron poisoning, particularly in sensitive groups. Repulsive taste and appearance. Severe staining of clothes
Manganese		Increasing health risk to all individuals. Repulsive taste and appearance. Staining

Table 9.Summary of analyses for parameters not included in water quality guidelines.Parameters not included in water quality guidelines

Parameter	Class 4 sites	Information
Phosphates		
Boron		
Aluminium		Low-level exposure to aluminium from food, air, water, or contact with skin is not thought to harm your health. Aluminium, however, is not a necessary substance for our bodies and too much may be harmful. People who are exposed to high levels of aluminium in air may have respiratory problems including coughing and asthma from breathing dust. Aluminium has been linked to Alzheimer's disease because those patients have high levels of aluminium in their brains. We do not know whether aluminium causes the disease or whether the build-up of aluminium happens to people who already have the disease. Infants and adults who received large doses of aluminium as a treatment for another problem developed bone diseases, which suggest that aluminium may cause skeletal problems.
Lead		Lead can affect almost every organ and system in your body. The most sensitive is the central nervous system, particularly in children. Lead also damages kidneys and the immune system. The effects are the same whether it is breathed or swallowed. Exposure to lead is more dangerous for young and unborn children. Unborn children can be exposed to lead through their mothers. Harmful effects include premature births, smaller babies, and decreased mental ability in the infant, learning difficulties, and reduced growth in young children. These effects are more common after exposure to high levels of lead. In adults, lead may decrease reaction time, cause weakness in fingers, wrists, or ankles, and possibly affect the memory. Lead may cause anaemia, a disorder of the blood. It can cause abortion and damage the male reproductive system. Anticipated to be carcinogenic.

5.3 Discussion

As the large majority of the borehole sites were only sampled once, it should be stressed that the alarming concentrations of some elements from these sites may not be indicative of the overall risk.

It should also be remembered, however, that this assessment is based on low confidence calculations based on a few data sets.

5.3.1 Groundwater sites

The sulphate concentration of AB01, AB02 and AB07 poses a very high risk in sensitive groups and a high risk for the average healthy population. The sulphate concentration of AB05 poses a high risk to sensitive groups and a medium risk for the average healthy population.

The very high risk of nitrate concentrations in BB14, BB15, BB16, BB19, BB21, BB28, BB32, BB33, BB35, BB36 and BB40 that raises reasons for concern might be linked to agricultural activities in the region.

Refer to Appendix A, for the EC, PH and SO4 concentrations in the area under investigation.

5.3.2 Surface water sites

The high sulphate and calcium concentrations and very low pH measured at site AC02 poses a very high risk in sensitive groups and a high risk for the average healthy population.

Site KR03 is dominated by high sulphate concentrations with high risks. This is a clear indication of a river being polluted by runoff water.

Site BR03 is dominated by high nitrate concentrations with high risks. This is a clear indication of a river being polluted by runoff water.

Juckal

L.J. van Niekerk (Pr. Sci. Nat.)

25 February 2009

Date