#### ESKOM

#### NUCLEAR SITES SITE SAFETY REPORTS

#### NUMERICAL MODELLING OF COASTAL PROCESSES

#### BANTAMSKLIP

#### Report No. 1010/3/101 REV 03

### **APPENDICES**

| APPENDIX A:        | Reference list of DHI applications of the MIKE model to power plants and marine      |
|--------------------|--------------------------------------------------------------------------------------|
|                    | outfalls                                                                             |
| <b>APPENDIX B:</b> | Report on calibration of wave hindcast data by Fugro Oceanor                         |
| <b>APPENDIX C:</b> | Council for Geoscience Report: A Probabilistic Tsunami Hazard Assessment for Coastal |
|                    | South Africa from Distant Tsunamogenic areas                                         |
| <b>APPENDIX D:</b> | Council for Geoscience Report: Potential Sources of Tsunami Along the South African  |
|                    | Coast                                                                                |
| ADDENIDIVE.        | Dete Demonstration October and the Maximum and the Lance U. Table also is a          |

#### APPENDIX E: Data Reports on Oceanographic Measurements by Lwandle Technologies

### **APPENDIX A:**

### Reference list of DHI applications of the MIKE model to power plants and marine outfalls



### POWER, DESALINATION AND INDUSTRIAL PLANTS

#### Hydraulic and Environmental Investigations by DHI

#### **Project** Client Year Korea Power Engineering Co, Inc, 2003-04 Shin-Kori Nuclear Power Plant #3&4, Korea ROK. De-Korea velopment and optimisation of cooling water intake and discharge systems. Establishment of alternative discharge systems concepts followed by an analysis and ranking of alternatives. The analyses focused on hydraulic and constructability aspects, such as for example intake of fish and sediments, diffusion and recirculation characteristics, pressure losses through system, wave and current impact forces on diffusor heads, scour protection and occurrence of surges in the overall system during operational and non-operational conditions. The analyses were carried out by physical scale model tests in combination with numerical modelling. Korea Power Engineering Co, Inc, 2003-04 Shin-Wolsong Nuclear Power Plant #1&2, Korea ROK. Korea Development and optimisation of cooling water intake and discharge systems. Establishment of alternative discharge systems concepts followed by an analysis and ranking of alternatives. The analyses focused on hydraulic and constructability aspects, such as for example intake of fish and sediments, diffusion and recirculation characteristics, pressure losses through system, wave and current impact forces on diffusor heads, scour protection and occurrence of surges in the overall system during operational and non-operational conditions. The analyses were carried out by physical scale model tests in combination with numerical modelling. 2003 Benghazi North Combined Cycle Power Plant, Libya. Daewoo Engineering and Construction The work included marine survey works of topographical and Co Ltd, Korea for General Electricity Company of Libya (GECOL) bathymetrical survey, seawater and seabed sediment sampling, oceanographic and meteorological observations and marine soil investigations. The results of the marine survey works were used for a numerical study for recommendation

of suitable layout of intake/outfall configuration and for assessment of the potential of cooling water recirculation.



| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client                                                   | Year |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|
| <b>Kashagan Field, Caspian Sea</b> . The work included an assessment of the thermal and chemical impact of the Caspian Sea environment associated with an effluent discharge from an artificial D-block Island, planned for construction in 2003 as part of the development of Kashagan Field. Numerical recirculation study, assessment of the risk on the marine ecosystem of main chemicals, assessment of chemical additive's dosing plans and development of outline monitoring plans for controlling the dosage of inhibitors.                                                                                                                                                                   | Agip Kazakhstan North Caspian<br>Operating Company N. V. | 2003 |
| Shin-Kori Nuclear Power Plant #1&2, Korea ROK.<br>Development and optimisation of cooling water dicharge<br>system. Establishment of alternative discharge systems<br>concepts followed by an analysis and ranking of alternatives.<br>The analyses focused on hydraulic and constructability<br>aspects, such as for example diffusion and recirculation<br>characteristics, pressure losses through system, wave and<br>current impact forces on diffusor heads, scour protection and<br>occurrence of surges in the overall system during operational<br>and non-operational conditions. The analyses were carried<br>out by physical scale model tests in combination with<br>numerical modelling. | Korea Power Engineering Co, Inc,<br>Korea                | 2002 |
| <b>UAE, Fujairah Desalination and Power Plant</b> . Conduct of 2D/3D mathematical modelling of discharge of brine (excess salinity) and heat to study potential recirculation and environmental impact associated with alternative discharge schemes and recommendation of most feasible scheme.                                                                                                                                                                                                                                                                                                                                                                                                       | Fichtner GmbH & Co., UAE Offsets<br>Group, Abu Dhabi     | 2001 |
| <b>Gulf Power Plant, Sirte, Libya, G.S.P.L.A.J.</b> Technical feasibility analysis of alternative cooling water intake locations and systems for 1,400 MW thermal power plant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General Electricity Company of Libya (GECOL)             | 2001 |
| Zawiya Combined Cycle Power Plant, Libya,<br>G.S.P.L.A.J. Marine hydraulic investigations for and<br>conceptual design of cooling water intake and outfall<br>structures. The investigations comprised establishment of<br>design hydrographic conditions, thermal recirculation by<br>numerical model assessment of littoral transport conditions<br>and conceptual layout of intake and outlet structures and their<br>relative locations.                                                                                                                                                                                                                                                           | General Electricity Company of Libya<br>(GECOL)          | 2001 |
| Seawater Intake at Seraya-2, Singapore. Physical modelling of intake and pump station aiming at optimising the intake structure in order to obtain good flow approach to the pumps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frederic R Harris BV, The Hague,<br>The Netherlands      | 2000 |



| Project                                                                                                                                                                                                                                                                                                                  | Client                                                                                                                                       | Year |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>Power plant cooling water recirculation study,</b><br><b>Bangladesh</b> . 2D (MIKE 21) and 3D (MIKE 3) modelling of<br>cooling water discharge with a view to recommend most<br>feasible cooling water scheme in regards recirculation.<br>Assessment of design current and flood levels for power plant<br>platform. | AES Meghnaghat Combined Cycle<br>Power Plant, Bangladesh                                                                                     | 2000 |
| <b>Tampa Bay, Florida, USA</b> . Study of near-field impact of a new desalination plant to be integrated with an existing power plant. The plant, when completed, will be the largest desal facility in the western hemisphere; and the largest in the world located in an estuary environment.                          | S & W Water, USA.                                                                                                                            | 2000 |
| Shoaiba Power Plant, Stage 1, Saudi Arabia (Red Sea coast). Hydraulic model tests (stability and wave tranquillity) for optimisation of detailed design of the discharge channel and jetty structures. <i>)</i>                                                                                                          | Saudi Archirodon Ltd. (SARCO),<br>Jeddah, Saudi Arabia                                                                                       | 1999 |
| Meghnaghat Power Station, Meghna River, Bangladesh.<br>Study of near-field cooling water dilution, carried out in<br>association with Surface Water Modelling Centre, Dhaka.                                                                                                                                             | ESG International, Canada,<br>representing AES Corporation, USA                                                                              | 1999 |
| Haripur Combined Cycle Power Plant, Shitalakhya<br>River, Bangladesh. Study of design water level,<br>sedimentation, scour, bank protection stability, and<br>recirculation, carried out in association with Surface Water<br>Modelling Centre, Dhaka.                                                                   | Hyundai Engineering & Construction<br>Co., Republic of Korea                                                                                 | 1999 |
| Aluminium Bahrain. Heat and salt recirculation study and environmental impact assessment for a desalination plant built as a part of a coke calcining plant.                                                                                                                                                             | Aluminium Bahrain BSC (c)                                                                                                                    | 1998 |
| Meghnaghat Power Station, Meghna River, Bangladesh.<br>Study of hydraulic design conditions, recirculation, stability<br>of bank protection and effects of dredging, carried out in<br>association with Surface Water Modelling Centre, Dhaka.                                                                           | Mott Ewbank Preece (now: Mott<br>MacDonald), UK, representing<br>Bangladesh Power Development<br>Board, funded by Asian Development<br>Bank. | 1997 |
| <b>King George and Queen Elizabeth Docks, Hull, UK</b> .<br>3D modelling of heat and salinity budgets (considering a<br>33 percent evaporation loss) as a part of a feasibility study of<br>utilising the docks for abstraction and disposal of cooling<br>water for a new power plant.                                  | ABP Research, UK, representing<br>Energy Power Group, UK                                                                                     | 1997 |
| Hamburg Harbour, Germany. Numerical modelling of excess temperatures and recirculation for a cooling water discharge by linked 1D and 2D models of the Elbe River.                                                                                                                                                       | Deutsche Shell AG, Germany                                                                                                                   | 1997 |
| <b>Juncker's Industries, Boiler 8, Denmark</b> . Assessment of compliance with environmental standards, and prediction of mixing zone and impact area.                                                                                                                                                                   | Juncker's Industries, Denmark                                                                                                                | 1997 |
| <b>Ruwais General Utilities Plant, Abu Dhabi</b> . Analysis of marine data, identification of normal and adverse design periods, and recirculation analysis by 2D and 3D modelling                                                                                                                                       | UAE.Fluor Mideast Ltd. (USA),<br>representing Abu Dhabi National Oil                                                                         | 1996 |



| Project                                                                                                                                                                                                                                                                        | Client                                                                                      | Year    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------|
| for an 81m <sup>3</sup> /s cooling water discharge.                                                                                                                                                                                                                            | Company                                                                                     |         |
| <b>Asnæs Power Plant, Denmark</b> . Impact study of using a new bitumen-based fuel, Orimulsion: Surface drift of bitumen, impact on beaches, and entrainment into the cooling water system.                                                                                    | SK Energy, Denmark                                                                          | 1995    |
| Amagerværket Power Plant, Denmark. Design of real-<br>time marine monitoring system for the approach channel.                                                                                                                                                                  | Copenhagen Harbour Authority,<br>Denmark                                                    | 1995    |
| <b>Avedøre Power Station Unit 2, Denmark</b> . Hydraulic basis for EIA; modelling of entrainment of organisms, recirculation, and excess temperatures.                                                                                                                         | Elkraft A.m.b.A., Denmark                                                                   | 1995    |
| KONTEK power transmission project, Denmark. A ma-<br>rine power transmission link between Denmark and Ger-<br>many, using seawater as one conductor. Hydraulic basis for<br>environmental feasibility and EIA, near-field chlorine con-<br>centrations, and marine monitoring. | SEAS, Denmark                                                                               | 1994-97 |
| <b>Sonelgaz Power Station, Port d'Alger, Algeria</b> . Investigation of the intake temperature for a modified intake necessitated by a planned extension of the harbour.                                                                                                       | Portconsult (Denmark)                                                                       | 1994    |
| <b>Al Khobar Power and Desalination Plant, Saudi Arabia</b> .<br>Hydraulic investigations for the Phase III extension. 3D<br>modelling of recirculation.                                                                                                                       | LG Mouchel & Partners (UK) on be-<br>half of Hitachi Zosen (Japan)                          | 1994    |
| <b>Lumut Power Station, Malaysia</b> . Investigation of intake temperature and sediment entrainment for an extension of the intake structure.                                                                                                                                  | HYDEC, Malaysia, on behalf of Lu-<br>mut Power Station                                      | 1994    |
| <b>Neka Power Plant, Iran</b> . Hydraulic concept study for design modifications of cooling water intake and sedimentation basin.                                                                                                                                              | Water Research Center Co., Teheran,<br>Iran                                                 | 1993    |
| <b>Gdansk Northern Harbour, Gdansk, Poland</b> . Investiga-<br>tion of environmentally sustainable and economically feasi-<br>ble management options for disposal of coal fly ash.                                                                                             | Zespol Elektrocieplowni, Poland,<br>ECII, and the Danish Environmental<br>Protection Agency | 1993    |
| <b>Central Termica de Santurce (Santurce Power Plant),</b><br><b>Bilbao, Spain</b> . Identification of feasible relocation of the<br>cooling water intake and outfall after the extension of Port of<br>Bilbao. 2D and 3D modelling of dispersion and recirculation.           | Iberdrola S.A., Spain, represented by HIDTMA SL, Spain                                      | 1992-96 |
| <b>Yenshui-Kang Power Plant, Taiwan, ROC</b> . Hydraulic investigations. Conceptual design of the marine cooling water system, recirculation analysis, and compliance with national environmental standards.                                                                   | Taiwan Power Corporation                                                                    | 1992-94 |
| <b>Morocco Nuclear Power Plant</b> . 2D and 3D modelling of cooling water recirculation.                                                                                                                                                                                       | Le Laboratoire Public d'Essais et d'Etudes, Morocco                                         | 1992    |
| <b>Køge Bay, Denmark</b> . Study of fly ash disposal on reclaimed land. Leachate dispersal, navigational impact, coastal morphology                                                                                                                                            | Elkraft A.m.b. A, Denmark                                                                   | 1992    |

phology.



| Project                                                                                                                                                                           | Client                                                                                     | Year    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------|
| <b>Sellafield Nuclear Power Plant, UK</b> . Mathematical model-<br>ling of wave climate, tide, recirculation, and sediment trans-<br>port with 2D and 3D models.                  | British Nuclear Fuels PLC, Warring-<br>ton, England                                        | 1992    |
| Kelang Power Station, Malaysia. Recirculation study based on numerical modelling.                                                                                                 | HYDEC, Malaysia                                                                            | 1992    |
| Jeddah Power and Desalination Plant, Saudi Arabia.<br>Numerical 2D and 3D modelling of cooling water and brine<br>dispersal, recirculation, and interaction with adjacent plants. | Fichtner Consulting Engineers, Ger-<br>many                                                | 1992    |
| <b>Masinloc Thermal Power Plant, Philippines</b> . Numerical modelling of excess temperatures and solutes, model transfer and training.                                           | National Power Corporation, Philip-<br>pines, financed by Asian Development<br>Bank        | 1991-93 |
| <b>Morocco Nuclear Power Plant, Morocco</b> . Storm surge study, and mathematical, Morocco modelling of far-field excess temperatures.                                            | Le Laboratoire Public d'Essais et<br>d'Etudes, Morocco                                     | 1991    |
| <b>Petacalco Power Plant, Mexico</b> . Numerical modelling of leachate dispersal of fly ash.                                                                                      | Comision Federal de Electricidad,<br>Mexico                                                | 1991    |
| <b>Jubail Power and Desalination Plant, Saudi Arabia</b> . Fea-<br>sibility study and conceptual design of seawater system.                                                       | Saline Water Conversion Corporation,<br>Saudi Arabia                                       | 1991    |
| <b>Ría del Ferrol, Spain</b> . Study of dispersal of coal dust in the marine environment.                                                                                         | Empresa Nacional de Electricidad,<br>Spain, represented by Rambøll &<br>Hannemann, Denmark | 1991    |
| Barranco de Tirajana and Granadilla Power Plants, Gran<br>Canaria and Tenerife, Spain. Specialist services during<br>initial planning.                                            | HIDTMA S.A., Spain, representing<br>Unión Eléctrica de Canarias S.A.,<br>Spain             | 1991    |
| Hsinta Power Plant, Taiwan, ROC. Physical and mathe-<br>matical modelling of cooling water dispersal, conceptual<br>design of outfall channel.                                    | Taiwan Power Co.                                                                           | 1990    |
| <b>Taichung Thermal Power Plant, Taiwan, ROC</b> . Thermal diffusion, sedimentation, and coastal erosion study.                                                                   | Taiwan Power Co.                                                                           | 1988-89 |
| <b>Stigsnæsværket Power Plant, Denmark</b> . Field survey, mathematical modelling, coastal hydraulics.                                                                            | Elkraft, Denmark                                                                           | 1988-89 |
| Masnedøværket Power Plant, Denmark. Field survey, mathematical modelling.                                                                                                         | Elkraft A.m.b.A., Denmark                                                                  | 1988    |
| Asnæsværket, Denmark. Study of hydraulic performance and environmental effects of a submerged intake.                                                                             | Elkraft A.m.b.A, Denmark                                                                   | 1988    |
| Hsinta Power Plant, Taiwan, ROC. Mathematical model-<br>ling of sediment transport and excess temperatures.                                                                       | Sinotech Consulting Engineers, Tai-<br>wan, ROC                                            | 1987-89 |
| <b>Baseline study of cooling water dispersal</b> for seven Danish coal-fired power plants.                                                                                        | Elkraft A.m.b.A., Denmark                                                                  | 1986-87 |



| Project                                                                                                                                    | Client                                                                                    | Year              |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------|
| <b>Morocco Nuclear Power Plant, Morocco</b> . Tsunami hind-<br>casts, and mathematical modelling of near-field excess tem-<br>peratures.   | Le Laboratoire Public d'Essais et<br>d'Etudes, Morocco                                    | 1986-87           |
| <b>Asnæsværket, Denmark</b> . Environmental monitoring of cooling water dispersal and excess temperature distribution.                     | Elektricitetsselskabet Isefjordsværket,<br>Denmark                                        | 1986              |
| <b>Fynsværket, Denmark</b> . Study of cooling water system, recirculation, and environmental impact. Field survey, numerical modelling.    | Elkraft A.m.b.A., Denmark                                                                 | 1986              |
| <b>Skærbækværket, Denmark</b> . Study of recirculation, excess temperature distribution, and environmental impact.                         | Skærbækværket, Denmark                                                                    | 1986              |
| Neka Power Plant, Iran. Study of intake basin.                                                                                             | Consortium Mazandaran (NEKA),<br>Iran                                                     | 1985-86           |
| <b>Al Taweelah Power and Desalination Plant, Abu Dhabi</b> .<br>Physical and mathematical modelling of excess temperatures and sediments.  | Water and Electricity Dept., Abu<br>Dhabi                                                 | 1985-86           |
| <b>Taichung Thermal Power Plant, Taiwan ROC</b> . Physical and mathematical modelling of cooling water dispersal.                          | Taiwan Power Co.                                                                          | 1985              |
| <b>Misurata Power and Desalination Plant, Libya</b> . Surge study, environmental study. Field survey, physical and mathematical modelling. | Hyundai Engineering and Construc-<br>tion Co., Republic of Korea                          | 1983-84           |
| <b>Barsebäckverket, Sweden</b> . Evaluation of sedimentation in the intake basin of a nuclear power plant.                                 | Sydsvenska Kraftaktiebolaget,<br>Sweden                                                   | 1983              |
| Angra Nuclear Power Plant, Brazil. Wave study, dimensioning of marine structures.                                                          | Nuclebràs Engenharia S.A., Brazil                                                         | 1982              |
| Al Wusail, Ras Laffan, Al Qatar. Field survey, mathemati-<br>cal modelling, and site evaluation.                                           | Fichtner Consulting Engineers,<br>Federal Republic of Germany                             | 1982              |
| Enstedværket Power Plant, Denmark. Field survey, mathematical modelling, environmental hydraulics.                                         | Sønderjyllands Højspændingsværk,<br>Denmark                                               | 1981, 1985-<br>86 |
| <b>Carboneras Power Station, Spain</b> . Field survey, mathematical modelling, siltation and cooling water study.                          | PUCARSA S.A., Spain                                                                       | 1981-82           |
| <b>Kifunga Hydropower Plant, Tanzania</b> . Specialist services during feasibility stage.                                                  | Greenland Technical Organization, financed by DANIDA                                      | 1981              |
| <b>Mecca Taif Power and Desalination Plant, Saudi Arabia</b> .<br>Field survey, mathematical modelling, location analysis.                 | Fichtner Consulting Engineers,<br>Federal Republic of Germany                             | 1981              |
| <b>Ras Tanajib Power and Desalination Plant, Saudi Arabia</b> .<br>Field survey, mathematical modelling.                                   | Aramco Overseas Co., Holland                                                              | 1981              |
| <b>Garden Island, Port Jackson, Australia</b> . Numerical modelling of jet dilution and recirculation in a harbour basin.                  | Lawson and Treloar/Dept. of Con-<br>struction and Housing, Common-<br>wealth of Australia | 1980              |



| Project                                                                                                                                                                      | Client                                                                          | Year              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|
| <b>Al Khobar Power and Desalination Plant, Saudi Arabia</b> .<br>Field survey, physical and mathematical modelling, long-<br>term monitoring of marine environmental impact. | Hyundai Engineering and Construc-<br>tion Co., Republic of Korea                | 1979-83           |
| Vendsysselværket Power Plant, Denmark. Field survey, mathematical modelling.                                                                                                 | I/S Nordkraft, Denmark                                                          | 1979-81           |
| <b>Vestkraft Power Plant, Denmark</b> . Field survey, mathematical modelling, environmental hydraulics.                                                                      | I/S Vestkraft, Denmark                                                          | 1979-80           |
| <b>Amagerværket Power Plant, Denmark</b> . Field survey, mathematical modelling, environmental hydraulics.                                                                   | Elkraft, Denmark                                                                | 1979-80,<br>1985  |
| <b>Ruwais Utility Intake, Abu Dhabi</b> . Field survey, study of waves and sedimentation in cooling water intake channel.                                                    | Fichtner Consulting Engineers,<br>Federal Republic of Germany                   | 1979              |
| <b>Stevns Nuclear Power Plant, Denmark</b> . Field survey, mathematical modelling, environmental hydraulics.                                                                 | Elkraft, Denmark                                                                | 1978-79           |
| Ghazlan Power Plant, Saudi Arabia. Field survey, mathe-<br>matical modelling.                                                                                                | Aramco Overseas Co., Holland                                                    | 1978              |
| <b>H. C. Ørstedsværket Power Plant, Denmark</b> . Field survey, mathematical modelling, environmental hydraulics.                                                            | Københavns Belysningsvæsen,<br>Denmark                                          | 1978              |
| <b>St. Lucie Power Plant, USA</b> . Review of cooling water dilution.                                                                                                        | Florida Power and Light, USA                                                    | 1978              |
| Maracaibo Power Plant, Venezuela. Site investigation, cooling water study.                                                                                                   | Inelectra S.A., Venezuela                                                       | 1978              |
| <b>Avedøreværket, Denmark</b> . Field survey, coastal and environmental impact, as part of feasibility analysis and detailed design of a power plant in Copenhagen.          | Kraftimport I/S and Elkraft A.m.b.A,<br>Denmark                                 | 1977, 1981-<br>84 |
| <b>South Dade Power Plant, Florida</b> . Hurricane study, hydraulic design basis.                                                                                            | Brown & Root, Inc., Texas, USA, on<br>behalf of Florida Power and Light,<br>USA | 1997              |
| <b>Stigsnæs Power Plant, Denmark</b> . Hydraulic concept evaluation of a deepwater cooling water intake.                                                                     | SEAS, Denmark                                                                   | 1977              |
| <b>Kilroot Power Station, Northern Ireland</b> . Wave study, physical model tests.                                                                                           | Christiani and Nielsen, Denmark                                                 | 1975              |
| <b>Prai Power Station, Malaysia</b> . Field investigations, recirculation study.                                                                                             | MINCO Ltd., Malaysia                                                            | 1975              |
| <b>Gylling Næs Nuclear Power Plant, Denmark</b> . Study of recirculation, environmental, and coastal hydraulic aspects.                                                      | Elsam, Denmark                                                                  | 1974-77           |
| <b>Barsebäckverket, Sweden</b> . Hydrographic monitoring during dredging operations for a nuclear power plant.                                                               | Sydsvenska Kraftaktiebolaget,<br>Sweden                                         | 1972              |



#### Project

**Barsebäckverket, Sweden**. Hydraulic concept evaluation of intake and other marine structures, mapping of excess temperature distribution and cooling water plume dilution, and hydraulic model tests for design of cooling water intake and sedimentation basin for a nuclear power plant.

Client

Year

| Sydsvenska Kraftaktiebolaget, | 1969-70 |
|-------------------------------|---------|
| Sweden                        |         |

### **APPENDIX B:**

### Report on calibration of wave hindcast data by Fugro Oceanor



**PRDW South Africa** 

### Calibration of Wave Spectra in 3 Positions off South Africa

Fugro OCEANOR Reference No: C55162 / rev 0 2008-03-10

Fugro OCEANOR AS Pir-Senteret, N-7462 Trondheim Norway Tel: + 47 7354 5200, Fax: + 47 7354 5201, e-mail: oceanor@oceanor.com



|     | Calibration of Wave Spectra in 3 positions off South Africa: C55162 / rev 0 |            |                       |               |
|-----|-----------------------------------------------------------------------------|------------|-----------------------|---------------|
| Rev | Date                                                                        | Originator | Checked &<br>Approved | Issue Purpose |
|     | 2008-03-10                                                                  | G. Mørk    | S. F. Barstow         | FINAL         |

| Rev 0 – 2008-03-10 | Originator | Checked & Approved |
|--------------------|------------|--------------------|
| Signed:            |            |                    |

This report is not to be used for contractual or engineering purposes unless the above is signed where indicated by both the originator of the report and the checker/approver and the report is designated 'FINAL'.



### TABLE OF CONTENTS

| SUMMA | גיץ                          | 1 |
|-------|------------------------------|---|
| 1.    | Introduction                 | 2 |
| 2.    | Data Sources                 |   |
|       | 2.1 WAM data                 |   |
|       | 2.2 Satellite altimeter data | 3 |
| 3.    | Calibration and validation   | 5 |



### SUMMARY

Time series of 15 years of wave spectra from the ECMWF WAM model for three positions off South Africa have been calibrated against available satellite altimeter data. The calibration procedure is described, and a comparison between calibrated wave heights and altimeter ground truth is given. Plots of time series of wave parameters derived from the spectra are presented.

All the calibrated data (wave spectra and time series of overall wave parameters) have been supplied to the client as text files.



### 1. Introduction

The purpose of the present report is to document the validation and calibration of time series of wave spectra for three locations off South Africa, at positions

| S 34.0°, E 18.0° | W of Cape Town       |
|------------------|----------------------|
| S 35.0°, E 19.0° | WSW of Cape Agulhas  |
| S 35.0°, E 24.5° | SW of Port Elisabeth |

The time series span the period from 1990-11 to 2007-10 (inclusive). However, the two year period 1991-06 to 1993-05 are left out of the series, so that a total of 15 years of data is supplied in each point. A discussion on the data quality is given, and plots of some wave parameters are presented.

### 2. Data Sources

Two types of data have been used: Model data and satellite altimeter data.

### 2.1 WAM data

The basic source of data is the directional wave spectra data from the WAM ("WAve Model") model run at the European Centre for Medium Range Weather Forecast (ECMWF). We have used 15 (effective) year series of spectra from WAM, merged from two types of WAM data:

- *ERA-40* ("Ecmwf ReAnalysis 40 year") is a WAM hindcast series. In principle, this series should be as homogeneous as possible, because the same version of the wave model is used throughout the 40 years. However, in order to provide as accurate data as possible, satellite altimeter, SAR and scatterometer data have been assimilated into the model according to its availability (from 1991). This affects the homogeneity, with data after 1993 being more accurate. Unfortunately, ECMWF assimilated faulty altimeter data into the simulations for the period 1991-12 / 1993-05, and the quality of this 18-month period is therefore significantly lower than the rest of the series. (In 2007, ECMWF finished a rerun of the analysis for this period with corrected altimeter data. However, the new corrected hindcast is not yet released, as of December 2007.) To avoid the low-quality part of the hindcast, we have left out a full two year of the series. We have thus used ERA-40 data for the period 1990-11-01 / 1998-06-28, leaving out the gap from 1991-06 to 1993-05 (inclusive).
- The other type of WAM data comes from the operational model. As the operational model is steadily modified, the accuracy of these data has steadily become even better. In a study in the central North Sea we compared the operational WAM data against a long series from a buoy, and were able to demonstrate that there was a steadily decreasing scatter index and increasing correlation coefficient of the WAM wave heights relative to buoy data. We have used operational WAM data for the period 1998-06-29 / 2007-10-31.

#### **FUGRO** Calibration of Wave Spectra in 3 Positions off South Africa



The quality of the basic ECMWF data is due, first, to the fact that ECMWF has attracted some of the best European wave and atmospheric modellers. Secondly, the assimilation of over 20 different satellite-borne sensors into the model suite in recent years is unique and undoubtedly the main reason for the high level of accuracy attained on a global basis. This is particularly important in areas with sparse data, such as the Southern Ocean from which much of Chilean swell energy derives.

As part of the calibration procedure, the spectra were integrated to derive the following wave parameters:

- Significant wave height Hm0
- Mean wave direction MDir
- Peak direction at the peak period ThTp
- Peak period Tp
- Mean (energy) wave period Tm-10
- Mean wave period Tm01
- Mean wave period Tm02 (zero up-crossing period)

The spectral resolution (i.e. number of frequencies and number of directions) changes throughout the time series as shown in the table below:

| Model type and spectral resolution |            |            |             |            |
|------------------------------------|------------|------------|-------------|------------|
| Data type                          | Start date | End date   | Frequencies | Directions |
| ERA-40                             | 1990-11-01 | 1998-06-28 | 25          | 12         |
| Operational                        | 1998-06-29 | 2000-11-20 | 25          | 12         |
| Operational                        | 2000-11-20 | 2007-10-31 | 30          | 24         |

The delivered spectra have a temporal resolution of 6 hours, starting on 1990-11-01 T00, and ending on 2007-10-31 T18. As mentioned above, there is a gap in the series between 1991-05-31 T18 and 1993-06-01 T00. The ERA-40 data are given on a 1.5° grid, whereas the operational data are given on a 0.5° grid.

#### 2.2 Satellite altimeter data

As of December 2007, data are available from the following satellite missions:

- TOPEX (from the US/French TOPEX/Poseidon mission). This satellite has been the most successful altimeter mission, delivering high quality data from September 1992 until late 2005. In August September 2002 the satellite was moved to a new orbit, midway between its old ground tracks. (We have referred to these separate phases as TPX 1 and TPX 2, respectively, before and after its orbit change.)
- The *JASON* satellite was launched into the old TOPEX orbit when TOPEX was moved, and may be considered as a "Topex Follow-On". It has been delivering data from September 2002.

#### **FUGRO** Calibration of Wave Spectra in 3 Positions off South Africa



- *GEOSAT* was operative between 1986 and 1989, and is thus not relevant in the present project. Later on, *GFO* ("Geosat Follow-On") was launched into the same orbit, and delivered data from January 2000.
- *EnviSat* from the European Space Agency (ESA) has been delivering data from October 2002.

The altimeter data (wave height and wind speed) from all the missions have been calibrated against a number of offshore buoys (mainly US, Canadian and Indian), and can be considered to have similar accuracy to buoy measurements.

We have used altimeter data from TOPEX (both TPX 1 and TPX 2), JASON, GFO and EnviSat for calibration of the wave spectra. Figure 1 shows a map of the area, with (approximate) satellite ground tracks and positions of the extracted altimeter data.

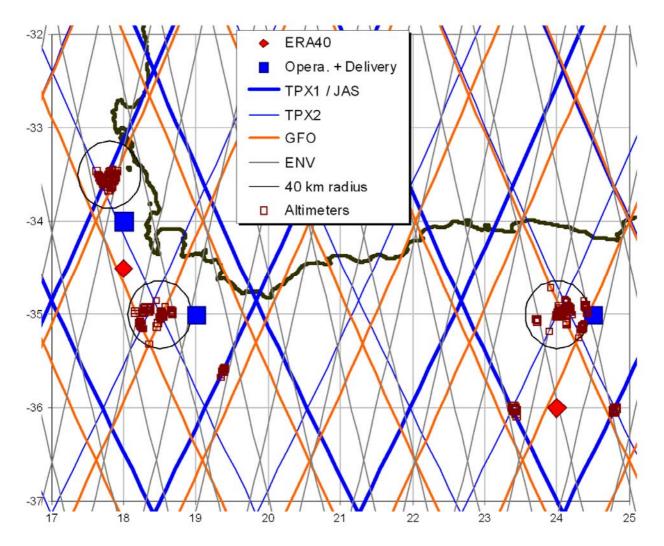



Figure 1 Map of the area with satellite tracks, positions of altimeter data and model data.



### 3. Calibration and validation

We used the altimeter data from all the available missions as the "ground truth" for calibrating the WAM data. Satellite altimeter data are extracted around the point in question. In practical terms, this means that each time the satellite passes (once every 10 - 35 days, depending on satellite), altimeter data are extracted for a location as close to the requested position as possible. Figure 1 shows the positions of the extracted altimeter data, as well as (approximate) ground tracks for the satellites.

The overall wave height is then matched and validated against the altimeter data, and a regression line is fit to the data. We have used QQ-regression lines (Quantile-Quantile graphs) to match the distributions as close to each other as possible. (This amounts to sorting each of the data series, plotting the sorted data against each other, and fitting a standard linear y-on-x regression line to the QQ-graph.) The linear regression lines are used to adjust the wave heights deduced from the spectra. The deduced wave periods are not adjusted and are left as is. Comparisons elsewhere show that this is a good assumption (apart from the period with faulty altimeter data referred to above).

Data from ERA-40 and the Operational data were validated and calibrated separately, as they may have different bias. As none of the requested positions lies on the 1.5° grid, spectral data from ERA-40 has to be obtained from a nearby position. In addition, only TPX1 can be used to calibrate ERA-40, because only TPX1 operated in the ERA-40 data period.

| Target point     | Source point ERA-40 | Source point Operational |
|------------------|---------------------|--------------------------|
| S 34.0°, E 18.0° | S 34.5°, E 18.0°    | same as target           |
| S 35.0°, E 19.0° | S 34.5°, E 18.0°    | same as target           |
| S 35.0°, E 24.5° | S 36.0°, E 24.0°    | same as target           |

Note that, for the two westernmost target points, the ERA-40 data are taken from the *same* source point. However, the source data are adjusted differently, to "tune" them to the altimeter data relevant for the different target points. This means that, for these two positions (and up to 1998-06-28), the calibrated data will have the same directions and wave periods, but have different wave heights.

When satellite data were extracted to be used as ground truth, the positions were chosen primarily to be as close as possible to the target point. However, the water depth was also taken into account, to extract data, as far as possible, at approximately the same depth as the target point.

The different target positions are calibrated as follows (see Figure 1):



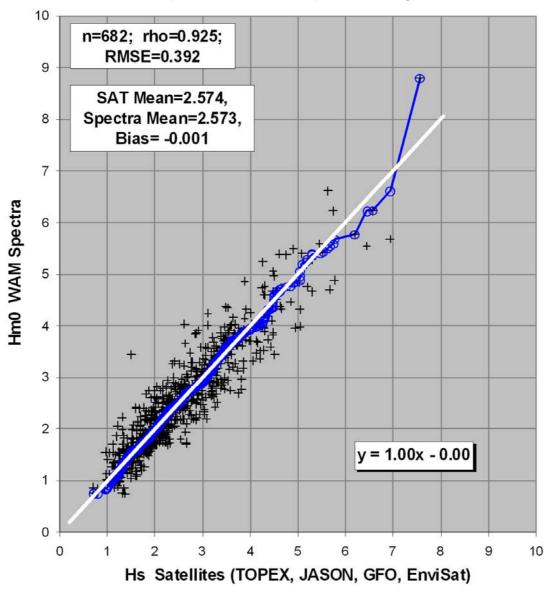
| Target point                               | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S 34.0°, E 18.0°<br>W of Cape Town         | Altimeter data from TPX1, JASON, TPX2, GFO and EnviSat are<br>extracted NW of the target position, and at approximately the<br>same depth. Both the ERA-40 and the operational data are<br>calibrated by means of altimeter data around this position.                                                                                                                                                                                                                                                                                                                               |
| S 35.0°, E 19.0°<br>WSW of Cape<br>Agulhas | Altimeter data from TPX2, GFO and EnviSat are extracted just W of the target position, and used to calibrate the operational data.<br>Altimeter data from TPX1 and JASON are extracted on the track SE of the target, at approximately the same depth. These data are used to calibrate the ERA-40 data.                                                                                                                                                                                                                                                                             |
| S 35.0°, E 24.5°<br>SW of Port Elisabeth   | Altimeter data from TPX2, GFO and EnviSat are extracted just W of the target position, and used to calibrate the operational data. The ERA-40 data are calibrated in two steps: (1) Altimeter data from TPX1 and JASON are extracted at latitude S 36°, and used to estimate non-biased data <i>at this latitude</i> . (2) The GFO satellite is used to estimate the difference between wave heights at latitudes S 36° and S 35°. The calibrated non-biased data from S 36° are then adjusted for the horizontal gradient to give non-biased data representative of latitude S 35°. |

Figure 2 to Figure 6 show scatter plots of calibrated Hm0 versus altimeter measurements. A QQ-graph is shown on each figure, together with a corresponding white regression line and its formula. Boxes on the figures also give the number of points n, the correlation coefficient (rho), the root mean square error (RMSE) and mean values of the altimeter and model data. The RMSE has been estimated as

RMSE = 
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{1,i} - x_{2,i})^2}$$

where point no *i* in the scatter plot has coordinates  $(x_{1,i}, x_{2,i})$ . Although it is not given on the figures, one useful goodness-of-fit parameter may be estimated as the so-called Scatter Index = RMSE/Mean.

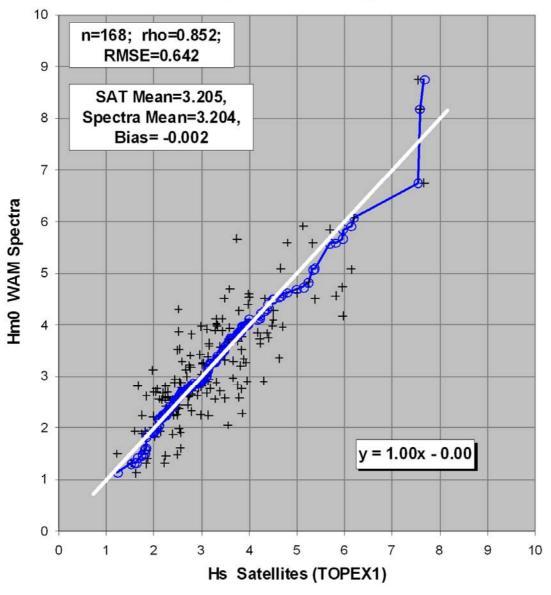
A summary of the some statistical parameters is given below: (Note that the regression line in Figure 5 should not be y = x, because the calibrated model data is representative of latitude S 35°, whereas the altimeter data are for S 36°.)




#### **FUGRO** Calibration of Wave Spectra in 3 Positions off South Africa

| Target point     | Model               | Correlation | RMSE (m) | Scatter Index   |
|------------------|---------------------|-------------|----------|-----------------|
|                  |                     |             |          | (RMSE / Mean x) |
| S 34.0°, E 18.0° | ERA40 + Operational | 0.925       | 0.392    | 15.2%           |
| S 35.0°, E 19.0° | ERA40               | 0.852       | 0.642    | 20.0%           |
| S 35.0°, E 19.0° | Operational         | 0.936       | 0.395    | 13.3%           |
| S 35.0°, E 24.5° | ERA40               | 0.909       | 0.633    | 18.8%           |
| S 35.0°, E 24.5° | Operational         | 0.856       | 0.737    | 22.7%           |

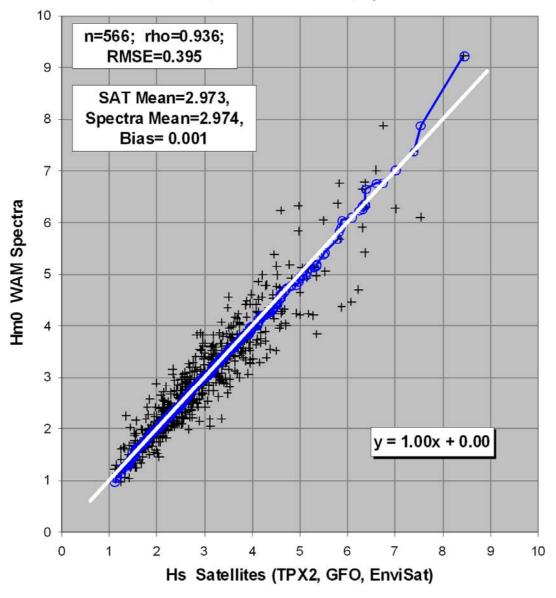
Figure 7 to Figure 12 present time series plots of wave parameters deduced from the calibrated spectra. (The thick orange lines are the monthly means.) For each target position, there are two figures: One with significant wave height Hm0, mean direction MDir and peak direction at peak wave period ThTp. The second figure displays wave periods: Peak period Tp, mean period Tm-10 (= energy period) and mean period Tm02 (= Tz, zero up-crossing period). Note that the last wave period is the one most sensitive to the high-frequency part of the spectrum.






E 18.0, S 34.0. Calibrated, ERA40 + Operational

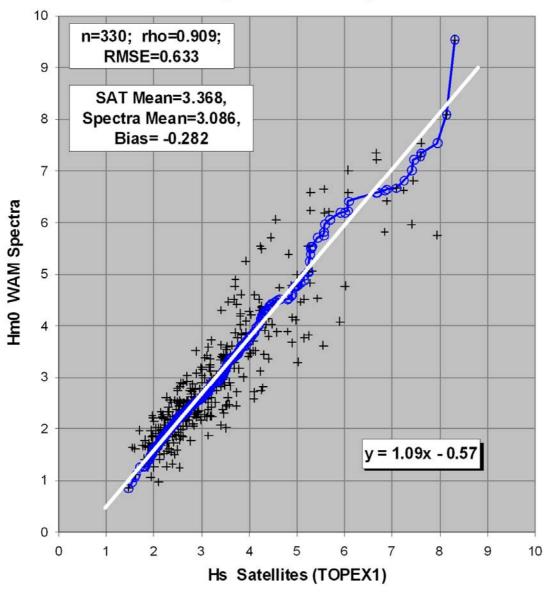
Figure 2 S 34.0°, E 18.0°, ERA-40 + Operational. Validation of calibrated Hm0 versus altimeter data. Black crosses are actual data, blue line is QQ-graph, with white regression line.






E 19.0, S 35.0. Calibrated, ERA40

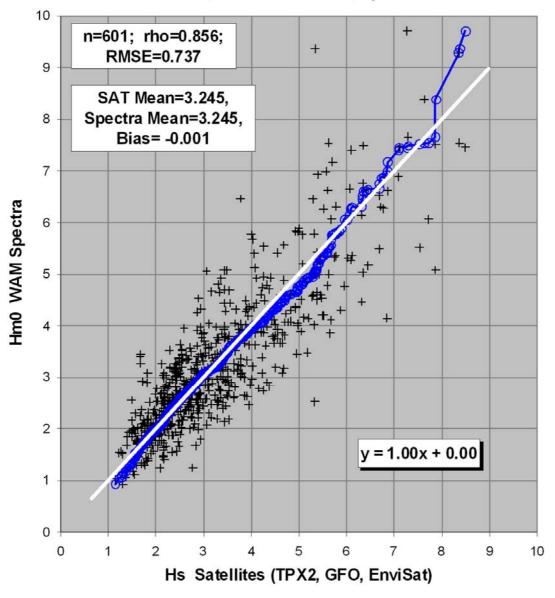
Figure 3 S 35.0°, E 19.0°, ERA-40. Validation of calibrated Hm0 versus altimeter data. Black crosses are actual data, blue line is QQ-graph, with white regression line.






E 19.0, S 35.0. Calibrated, Operational

Figure 4 S 35.0°, E 19.0°, Operational. Validation of calibrated Hm0 versus altimeter data. Black crosses are actual data, blue line is QQ-graph, with white regression line.






E 24.5, S 35.0. Calibrated, ERA40

Figure 5 S 35.0°, E 24.5°, ERA-40. Validation of calibrated Hm0 versus altimeter data. Black crosses are actual data, blue line is QQ-graph, with white regression line. (Note: Altimeter data applies to S 36°, spectra data to S 35°.)





E 24.5, S 35.0. Calibrated, Operational

Figure 6 S 35.0°, E 24.5°, Operational. Validation of calibrated Hm0 versus altimeter data. Black crosses are actual data, blue line is QQ-graph, with white regression line.



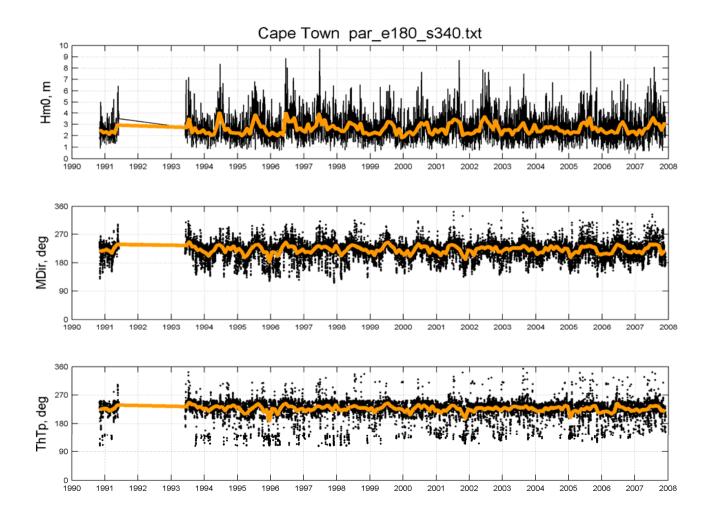



Figure 7 Time series of significant wave height and directions. S 34.0°, E 18.0°.



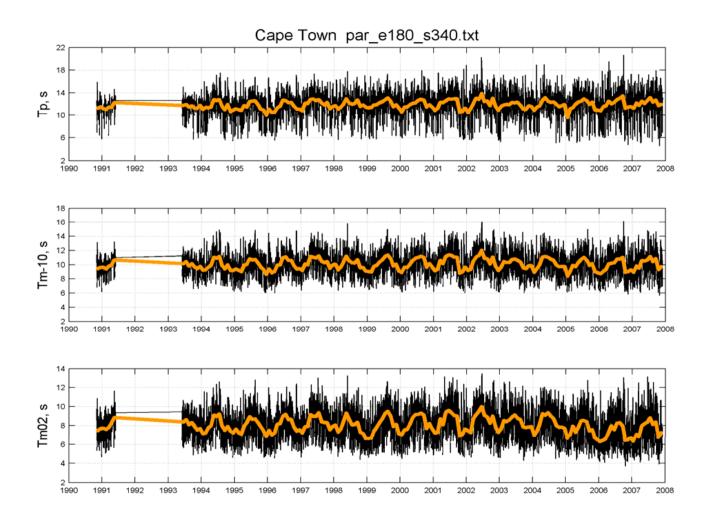



Figure 8 Time series of wave periods. S 34.0°, E 18.0°.



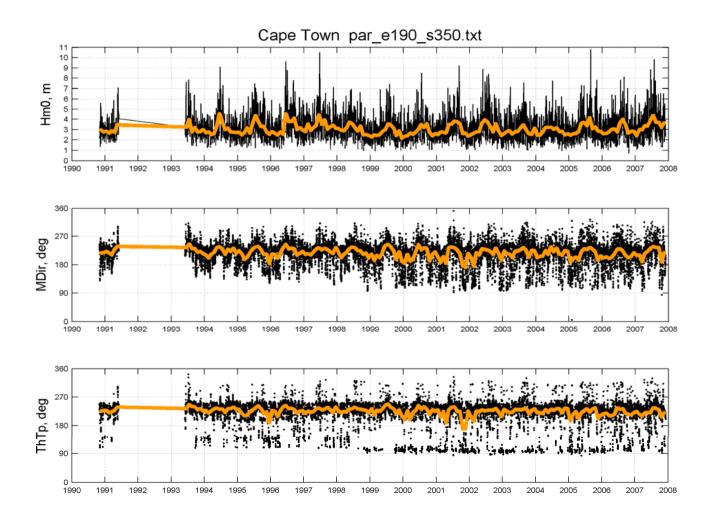



Figure 9 Time series of significant wave height and directions. S 35.0°, E 19.0°.



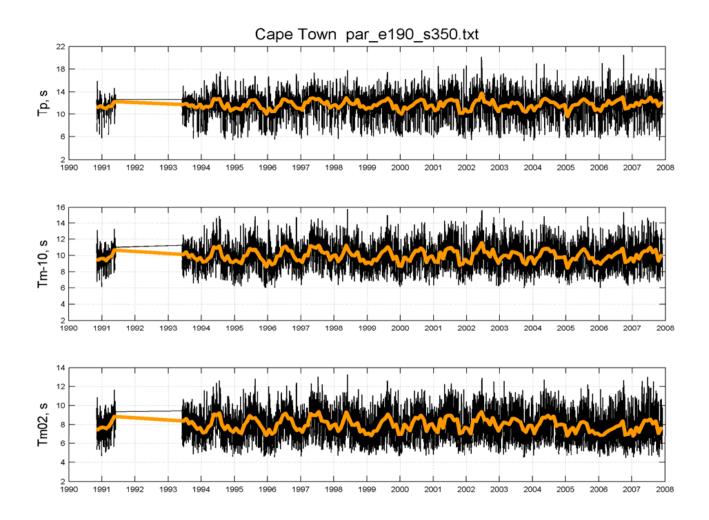



Figure 10 Time series of wave periods. S 35.0°, E 19.0°.



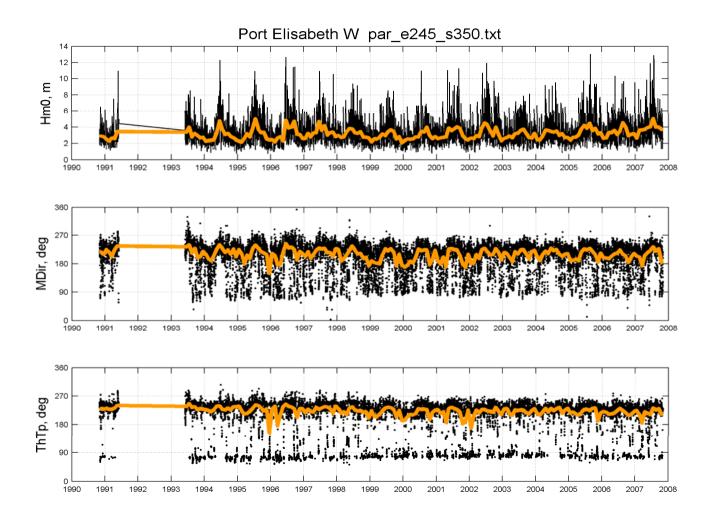



Figure 11 Time series of significant wave height and directions. S 35.0°, E 24.5°.



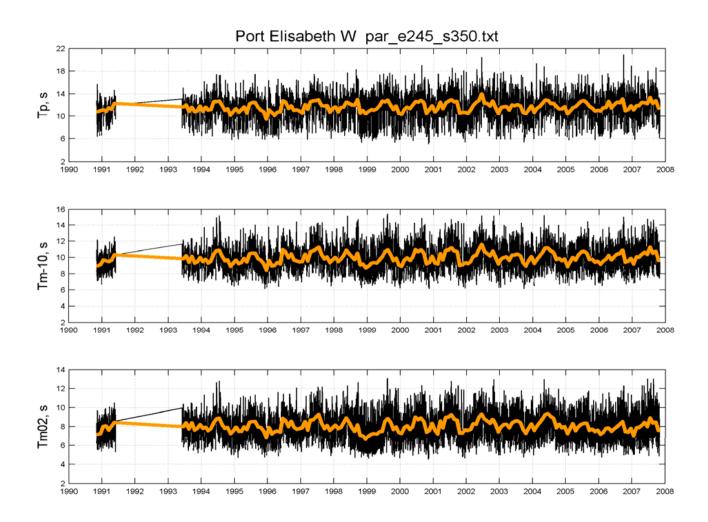



Figure 12 Time series of wave periods. S 35.0°, E 24.5°.

### **APPENDIX C:**

Council for Geoscience Report: A Probabilistic Tsunami Hazard Assessment for Coastal South Africa from Distant Tsunamogenic areas

### Revision 2

# A Probabilistic Tsunami Hazard Assessment for Coastal South Africa from Distant Tsunamogenic areas

By

A. Kijko, V. Midzi, J. Ramperthap and M. Singh

**Report No. 2008 – 0156** 

CONFIDENTIAL

© Council for Geoscience

# **DOCUMENT APPROVAL SHEET**

|          | COUNCIL FOR GEOSCIENCE<br>(Seismology Unit)    | REFERENCE:<br>CGS REPORT  |
|----------|------------------------------------------------|---------------------------|
|          |                                                | 2008-0156                 |
|          |                                                |                           |
|          |                                                | REVISION                  |
|          |                                                | 2                         |
| COPY No. | A Probabilistic Tsunami Hazard Assessment for  | DATE OF RELEASE:          |
|          | Coastal South Africa from Distant Tsunamogenic | 13 <sup>th</sup> May 2008 |
|          | areas                                          |                           |
|          | Draft '2'                                      |                           |
|          |                                                | RESTRICTED                |

| AUTHORS          |             |                   |                    |
|------------------|-------------|-------------------|--------------------|
|                  |             |                   |                    |
|                  |             |                   |                    |
| DR. A. KIJKO     | DR V. MIDZI | MR. J. RAMPERTHAP | M. SINGH           |
| ACCEPTED BY:     |             |                   | AUTHORISED BY:     |
|                  |             |                   |                    |
| M. R. GROBBELAAR |             |                   | DR. A. CICHOWICZ I |

| REVISION | DESCRIPTION OF REVISION | DATE | MINOR<br>REVISIONS<br>APPROVAL |
|----------|-------------------------|------|--------------------------------|
|          |                         |      |                                |
|          |                         |      |                                |

## **CONFIDENTIALITY NOTICE**

All information contained in this document and its appendices is privileged and confidential and is under no circumstances to be made known to any person or institution without the prior written approval of the Director: Council for Geoscience.

## TABLE OF CONTENTS

| CONFIDENTIALITY NOTICE                                                                | I      |
|---------------------------------------------------------------------------------------|--------|
| DEFINITION OF TERMS, SYMBOLS AND ABBREVIATIONS                                        | IV     |
| LIST OF TABLES                                                                        | VII    |
| LIST OF FIGURES                                                                       | . VIII |
| 1. INTRODUCTION                                                                       | 9      |
| 2. THE AREA-SPECIFIC HAZARD                                                           |        |
| 2.1. Karachi Area                                                                     | -      |
| 2.1.1. The Area-Specific Hazard Parameters                                            | 10     |
| 2.1.2. Earthquake Magnitude Exceedance Probabilities and Mean Return Periods          |        |
| 2.1.3. Plots of Earthquake Magnitude Exceedance Probabilities and Mean Return Periods |        |
| 2.2. South Sandwich Area                                                              | 12     |
| 2.2.1. The Area-Specific Hazard Parameters                                            | 12     |
| 2.2.2. Earthquake Magnitude Exceedance Probabilities and Mean Return Periods          | 12     |
| 2.2.3. Plots of Earthquake Magnitude Exceedance Probabilities and Mean Return Periods | 12     |
| 2.3. Sumatra Area                                                                     | 14     |
| 2.3.1. The Area-Specific Hazard Parameters                                            | 14     |
| 2.3.2. Earthquake Magnitude Exceedance Probabilities and Mean Return Periods          | 14     |
| 2.3.3. Plots of Earthquake Magnitude Exceedance Probabilities and Mean Return Periods | 14     |
| 3. SURFACE FAULT DISPLACEMENT                                                         | 16     |
| 4. CONCLUSION                                                                         | 17     |
| 4. REFERENCES                                                                         | 18     |
| APPENDIX A:                                                                           | 20     |
| OUTLINE OF THE PARAMETRIC-HISTORIC PROCEDURE FOR PROBABILISTIC                        |        |
| SEISMIC HAZARD ASSESSMENT                                                             | 20     |
| APPENDIX B:                                                                           | 25     |
| Introduction                                                                          | 25     |
| The Deductive and Historic Procedures                                                 | 25     |
| The Parametric-Historic Procedure                                                     | 27     |
| Input Data                                                                            | 27     |
| Statistical Preliminaries                                                             | 28     |
| Estimation of the Area-Specific Hazard                                                | 29     |
| Estimation of the Maximum Regional Earthquake Magnitude $m_{ m max}$                  | 35     |
| References                                                                            | 37     |
| APPENDIX C: AREA-SPECIFIC HAZARD INFORMATION FILE: CALCUTTA AREA                      | 41     |
| APPENDIX D: AREA-SPECIFIC HAZARD INFORMATION FILE: KARACHI AREA                       | 45     |

| APPENDIX E: AREA-SPECIFIC HAZARD INFORMATION FILE: SOUTH SANDWICH |    |
|-------------------------------------------------------------------|----|
| AREA                                                              | 48 |
| APPENDIX F: AREA-SPECIFIC HAZARD INFORMATION FILE: SUMATRA AREA   | 51 |

## Definition of Terms, Symbols and Abbreviations

| Acceleration                                           | The rate of change of particle velocity per unit time. Commonly expressed as a fraction or percentage of the acceleration due to gravity (g), where $g = 9.81 \text{ m/s}^2$ .                                                                                                                                                                                                                                |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceleration Response Spectra (ARS)                    | Spectral acceleration is the movement experienced by a structure during an earthquake.                                                                                                                                                                                                                                                                                                                        |
| Annual Probability of Exceedance                       | The probability that a given level of seismic hazard (typically<br>some measure of ground motions, e.g., seismic magnitude or<br>intensity), or seismic risk (typically economic loss or casualties)                                                                                                                                                                                                          |
| Area-specific mean seismic activity rate $(\lambda_A)$ | Mean rate of seismicity for the whole selection area in the vicinity of the site for which the PSHA is performed.                                                                                                                                                                                                                                                                                             |
| Attenuation                                            | A decrease in seismic-signal amplitude as waves propagate<br>from the seismic source. Attenuation is caused by geometric<br>spreading of seismic-wave energy and by the absorption and<br>scattering of seismic energy in different earth materials.                                                                                                                                                          |
| Attenuation law<br>(relationship)                      | A mathematical expression that relates a ground motion<br>parameter, such as the peak ground acceleration, to the source<br>and propagation path parameters of an earthquake such as the<br>magnitude, source-to-site distance, fault type, etc. Its<br>coefficients are usually derived from statistical analysis of<br>earthquake records. It is a common engineering term for a<br>ground motion relation. |
| <i>b</i> -value ( <i>b</i> )                           | A coefficient in the frequency-magnitude relation,<br>log $N(m) = a - bm$ , obtained by Gutenberg and Richter (1941;<br>1949), where <i>m</i> is the earthquake magnitude and $N(m)$ is the<br>number of earthquakes with magnitude greater than or equal to<br><i>m</i> . Estimated <i>b</i> -values for most seismic zones fall between 0,6<br>and 1,1.                                                     |
| Capable fault                                          | A mapped fault that is deemed a possible site for a future<br>earthquake with magnitude greater than some specified<br>threshold.                                                                                                                                                                                                                                                                             |
| Catalogue                                              | A chronological listing of earthquakes. Early catalogues were<br>purely descriptive, i.e., they gave the date of each earthquake<br>and some description of its effects. Modern catalogues are<br>usually quantitative, i.e., earthquakes are listed as a set of<br>numerical parameters describing origin time, hypocenter<br>location, magnitude, focal mechanism, moment tensor, etc.                      |
| CGS                                                    | Council for Geoscience                                                                                                                                                                                                                                                                                                                                                                                        |
| Power Plant ping                                       | In vibration analysis, a term that indicates the mechanism for<br>the dissipation of the energy of motion. Viscous Power Plant<br>ping, which is proportional to the velocity of motion and is<br>described by linear equations, is used to define different levels<br>of response spectra and is commonly used to approximate the<br>energy dissipation in the lower levels of earthquake response.          |
| Design Earthquake                                      | The postulated earthquake (commonly including a specification<br>of the ground motion at a site) that is used for evaluating the<br>earthquake resistance of a particular structure.                                                                                                                                                                                                                          |
| Elastic design spectrum (or spectra)                   | The specification of the required strength or capacity of the<br>structure plotted as a function of the natural period or frequency<br>of the structure and of the Power Plant ping appropriate to<br>earthquake response at the required level. Design spectra are<br>often composed of straight line segments (Newmark and Hall,                                                                            |

|                                   | 1982) and/or simple curves, for example, as in most building codes, but they can also be constructed from statistics of response spectra of a suite of ground motions appropriate to the design earthquake(s). To be implemented, the requirements of a design spectrum are associated with allowable levels of stresses, ductilities, displacements or other measures of response.                                 |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Earthquake                        | Ground shaking and radiated seismic energy caused most<br>commonly by sudden slip on a fault, volcanic or magmatic<br>activity, or other sudden stress changes in the Earth.                                                                                                                                                                                                                                        |
| Epicenter                         | The epicenter is the point on the earth's surface vertically above<br>the hypocenter (or focus).                                                                                                                                                                                                                                                                                                                    |
| Epicentral distance ( $\Delta$ )  | Distance from the site to the epicenter of an earthquake.                                                                                                                                                                                                                                                                                                                                                           |
| Fault                             | A fracture or fracture zone in the Earth along which the two<br>sides have been displaced relative to one another parallel to the<br>fracture. The accumulated displacement may range from a<br>fraction of a meter to many kilometres. The type of fault is<br>specified according to the direction of this slip. Sudden<br>movement along a fault produces earthquakes. Slow movement<br>produces aseismic creep. |
| Focal depth ( <i>h</i> )          | Focal depth is the vertical distance between the hypocentre and epicentre.                                                                                                                                                                                                                                                                                                                                          |
| Frequency                         | The number of cycles of a periodic motion (such as the ground<br>shaking up and down or back and forth during an earthquake)<br>per unit time; the reciprocal of period. Hertz (Hz), the unit of<br>frequency, is equal to the number of cycles per second.                                                                                                                                                         |
| Ground motion                     | The movement of the earth's surface from earthquakes or<br>explosions. Ground motion is produced by waves that are<br>generated by sudden slip on a fault or sudden pressure at the<br>explosive source and travel through the earth and along its<br>surface.                                                                                                                                                      |
| Ground motion parameter           | A parameter characterizing ground motion, such as peak<br>acceleration, peak velocity, and peak displacement (peak<br>parameters) or ordinates of response spectra and Fourier spectra<br>(spectral parameters).                                                                                                                                                                                                    |
| Heterogeneity                     | A medium is heterogeneous when its physical properties change<br>along the space coordinates. A critical parameter affecting<br>seismic phenomena is the scale of heterogeneities as compared<br>with the seismic wavelengths. For a relatively large wavelength,<br>for example, an intrinsically isotropic medium with oriented<br>heterogeneities may behave as a homogeneous anisotropic<br>medium.             |
| Hypocenter                        | The hypocenter is the point within the earth where an<br>earthquake rupture starts. The epicenter is the point directly<br>above it at the surface of the Earth. Also commonly termed the<br>focus.                                                                                                                                                                                                                 |
| Hypocentral distance ( <i>r</i> ) | Distance from the site to the hypocenter of an earthquake.                                                                                                                                                                                                                                                                                                                                                          |
| Induced earthquake                | An earthquake that results from changes in crustal stress and/or<br>strength due to man-made sources (e.g., underground mining<br>and filling of a high Power Plant), or natural sources (e.g., the<br>fault slip of a major earthquake). As defined less rigorously,<br>"induced" is used interchangeably with "triggered" and applies<br>to any earthquake associated with a stress change, large or<br>small.    |

| Local Magnitude ( <i>M</i> <sub>L</sub> )                | A magnitude scale introduced by Richter (1935) for earthquakes<br>in southern California. $M_L$ was originally defined as the<br>logarithm of the maximum amplitude of seismic waves on a<br>seismogram written by the Wood-Anderson seismograph<br>(Anderson and Wood, 1925) at a distance of 100 km from the<br>epicenter. In practice, measurements are reduced to the standard<br>distance of 100 km by a calibrating function established<br>empirically. Because Wood-Anderson seismographs have been<br>out of use since the 1970s, $M_L$ is now computed with a<br>simulated Wood-Anderson records or by some more practical<br>methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Magnitude                                                | In seismology, a quantity intended to measure the size of<br>earthquake and is independent of the place of observation.<br>Richter magnitude or local magnitude $(M_L)$ was originally<br>defined in Richter (1935) as the logarithm of the maximum<br>amplitude in micrometers of seismic waves in a seismogram<br>written by a standard Wood-Anderson seismograph at a distance<br>of 100 km from the epicenter. Empirical tables were constructed<br>to reduce measurements to the standard distance of 100 km, and<br>the zero of the scale was fixed arbitrarily to fit the smallest<br>earthquake then recorded. The concept was extended later to<br>construct magnitude scales based on other data, resulting in<br>many types of magnitudes, such as body-wave magnitude $(M_w)$ . In<br>some cases, magnitudes are estimated from seismic intensity<br>data, tsunami data, or duration of coda waves. The word<br>"magnitude" or the symbol $M$ , without a subscript, is sometimes<br>used when the specific type of magnitude is clear form the<br>context, or is not really important. |
| Maximum Regional Earthquake Magnitude $(m_{\text{max}})$ | Upper limit of magnitude for a given seismogenic zone or entire region. Also referred to as the maximum credible earthquake (MCE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Operating Basis Event (OBE)                              | Event with an average return period in the order of 145 years i.e. 50 % probability of exceedance in 100 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Oscillator                                               | In earthquake engineering, an oscillator is an idealized damped<br>mass-spring system used as a model of the response of a<br>structure to earthquake ground motion. A seismograph is also an<br>oscillator of this type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Parameter of the distribution of $\ln(PGA)$ ( <i>p</i> ) | $\gamma = \beta l c_2$ , where $\beta = b \ln(10)$ [see " <b><i>b</i>-value</b> "], and $c_2$ is a coefficient related to the attenuation relationship.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Peak Ground Acceleration (PGA)                           | The maximum acceleration amplitude measured (or expected) of an earthquake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Probabilistic Seismic Hazard Analysis (PSHA)             | Available information on earthquake sources in a given region<br>is combined with theoretical and empirical relations among<br>earthquake magnitude, distance from the source and local site<br>conditions to evaluate the exceedance probability of a certain<br>ground motion parameter, such as the peak acceleration, at a<br>given site during a prescribed period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Response spectrum                                        | The response of the structure to a specified acceleration time<br>series of a set of single-degree-of-freedom oscillators with<br>chosen levels of viscous damping, plotted as a function of the<br>undamped natural period or undamped natural frequency of the<br>system. The response spectrum is used for the prediction of the<br>earthquake response of buildings or other structures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Seismic Hazard                                           | Any physical phenomena associated with an earthquake (e.g., ground motion, ground failure, liquefaction, and tsunami) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                                | their effects on land use, man-made structure and socio-<br>economic systems that have the potential to produce a loss. It is<br>also used without regard to a loss to indicate the probable level<br>of ground shaking occurring at a given point within a certain<br>period of time. |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seismic Wave                                   | A general term for waves generated by earthquakes or<br>explosions. There are many types of seismic waves. The<br>principle ones are body waves, surface waves, and coda waves.                                                                                                        |
| Seismic zone                                   | An area of seismicity probably sharing a common cause.                                                                                                                                                                                                                                 |
| Seismogenic                                    | Capable of generating earthquakes.                                                                                                                                                                                                                                                     |
| Site-specific mean activity rate $(\lambda_S)$ | Mean activity rate of the selected ground motion parameter experienced at the site.                                                                                                                                                                                                    |
| Strong ground motion                           | A ground motion having the potential to cause significant risk to<br>a structure's architectural or structural components, or to its<br>contents. One common practical designation of strong ground<br>motion is a peak ground acceleration of 0.05g or larger.                        |

## **List of Tables**

## **List of Figures**

| <i>Figure 1. The annual probability of exceeding the specified magnitude . The red curve shows the mean probability, while the two blue curves indicate the mean probability plus and minus the</i>                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| standard deviation11                                                                                                                                                                                                                    |
| Figure 2. The mean return periods for earthquakes of magnitude 5 to 8,4 units . The red curve shows the mean return period, while the two blue curves indicate the mean return periods plus and minus the standard deviation            |
| <i>Figure 3. The annual probability of exceeding the specified magnitude. The red curve shows the mean probability, while the two blue curves indicate the mean probability plus and minus the standard deviation.</i>                  |
| <i>Figure 4. The mean return periods for earthquakes of magnitude 5,5 to 7,6 units .The red curve shows the mean return period, while the two blue curves indicate the mean return periods plus and minus the standard deviation.</i>   |
| <i>Figure 5. The annual probability of exceeding the specified magnitude . The red curve shows the mean probability, while the two blue curves indicate the mean probability plus and minus the standard deviation.</i>                 |
| <i>Figure 6. The mean return periods for earthquakes of magnitude 5,5 to 9,2 units .The red curve shows the mean return 33period, while the two blue curves indicate the mean return periods plus and minus the standard deviation.</i> |
|                                                                                                                                                                                                                                         |

## 1. Introduction

The Council for Geoscience (CGS) was requested to provide probabilistic seismic hazard analyses (PSHA) for the areas of Calcutta, Karachi, South Sandwich and Sumatra. It is assumed that these are tsunamogenic areas, which can produce tsunami generating earthquakes that can affect coastal areas of South Africa. The objective of the PSHA is to obtain long-term probabilities of the occurrence of ground motion of a specified size in a given time interval. Several mutations of are known. The Parametric-Historic PSHA procedure is applied in this work as described by Kijko and Graham (1998; 1999), Kijko (2004), (Appendix A).

The results are given in terms of mean return periods and probabilities of being exceeded, for specified earthquake magnitudes. Appendices C, D, E and F show the results of the calculations for each of the areas. These contain details of the computations, input data and respective hazard parameters.

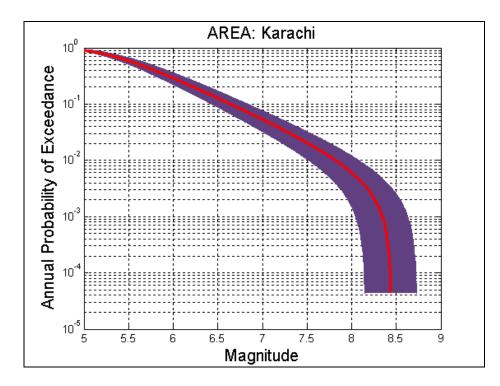
## 2. The Area-Specific Hazard

The area-specific parameters that have to be determined, i.e. the mean seismic activity rate ( $\lambda_A$ ), the Gutenberg-Richter parameter (*b*) and the maximum possible earthquake magnitude ( $m_{max}$ ), are obtained by application of the K-S-B procedure (Kijko and Graham, 1998; Kijko, 2004), described in Appendix B. The activity rate ( $\lambda_A$ ) is the expected number of earthquakes of a given magnitude and stronger that will occur per unit time (e.g. per year). The Gutenberg – Richter *b*-value gives the slope of the frequency–magnitude curve and defines the ratio between the number of large and small earthquake occurrences. The maximum possible regional characteristic earthquake magnitude ( $m_{max}$ ), is the upper limit of magnitude for a given seismogenic source zone or entire region. The characteristic seismic hazard is expressed in terms of the probability of occurrence of an earthquake of a particular magnitude and its associated mean return period.

## 2.1. Karachi Area

## 2.1.1. The Area-Specific Hazard Parameters

The calculations are based on a catalogue spanning approximately 570 years (Appendix D), we obtained a maximum credible earthquake magnitude,  $\dot{m}_{max} = 8.44 \pm 0.29$ , the Gutenberg-Richter parameter  $\dot{b} = 0.90 \pm 0.07$ , and a mean area-characteristic seismic activity rate,  $\dot{\lambda}_A = 2.52 \pm 0.46$  per year (for  $m_{min} = 5.0$ ).


#### 2.1.2. Earthquake Magnitude Exceedance Probabilities and Mean Return Periods

The input parameters and the results of the PSHA are given in Appendix D. The range of expected magnitudes is specified from 5 to 8.4. For each magnitude, the calculated activity rate, return period, and probabilities of exceedance in 1, 50, 100 and 1 000 years are listed (Appendix D). For instance, a magnitude 6.0 earthquake is expected to occur once every 2.85 years in the area.

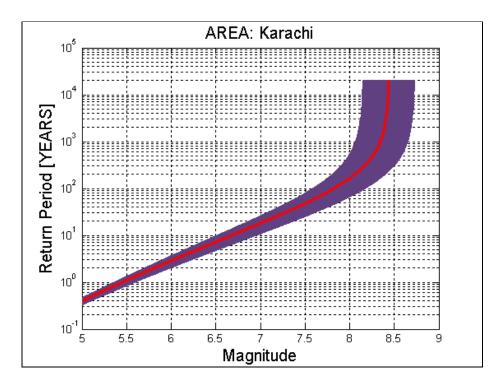

# 2.1.3. Plots of Earthquake Magnitude Exceedance Probabilities and Mean Return Periods

Figure 1 shows the probability for a given magnitude to be exceeded in one year. As an example, the probability for a magnitude equal to or greater than 6.0 to occur in one year is approximately 0.29 (29 %).

Figure 2 shows the mean return period of earthquakes with magnitudes in the range 5 to 8.4 units. Thus one can expect a magnitude 8 event to occur approximately every 162 years.



*Figure 1. The annual probability of exceeding the specified magnitude. The red curve shows the mean probability, while the two blue curves indicate the mean probability plus and minus the standard deviation.* 

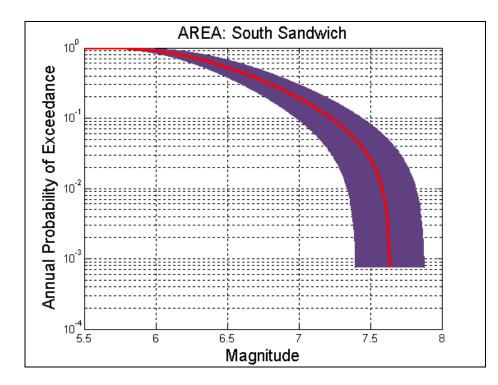


*Figure 2. The mean return periods for earthquakes of magnitude 5 to 8.4 units .The red curve shows the mean return period, while the two blue curves indicate the mean return periods plus and minus the standard deviation.* 

### 2.2. South Sandwich Area

## 2.2.1. The Area-Specific Hazard Parameters

The calculations are based on a catalogue spanning approximately 32 years (Appendix E). We obtained for the area, a maximum credible earthquake magnitude,  $\hat{m}_{max} = 7.64 \pm 0.24$ , the Gutenberg-Richter parameter  $\hat{b} = 1.07 \pm 0.09$ , and a mean area-characteristic seismic activity rate for the area  $\hat{\lambda}_A = 8.42 \pm 2.14$  per year (for  $m_{min} = 5.5$ ).


#### 2.2.2. Earthquake Magnitude Exceedance Probabilities and Mean Return Periods

The input parameters and results of the PSHA are given in Appendix E. The range of expected magnitudes is specified from 5.5 to 7.6. For each magnitude the calculated activity rate, return period, and probabilities of exceedance in 1, 50, 100 and 1 000 years are listed in Appendix E. For instance, a magnitude 6.5 earthquake is expected to occur once every 1.3 years in the area.

# 2.2.3. Plots of Earthquake Magnitude Exceedance Probabilities and Mean Return Periods

Figure 3 shows the probability for a given magnitude to be exceeded in one year. As an example, the probability for a magnitude equal to or greater than 6.5 to occur in one year is approximately 0.53 (53 %).

Figure 4 shows the mean return period of earthquakes with magnitudes in the range 5.5 to 7.6 units. For instance, one can expect a magnitude 7 event to reoccur approximately every 4.64 years.



*Figure 3. The annual probability of exceeding the specified magnitude. The red curve shows the mean probability, while the two blue curves indicate the mean probability plus and minus the standard deviation.* 

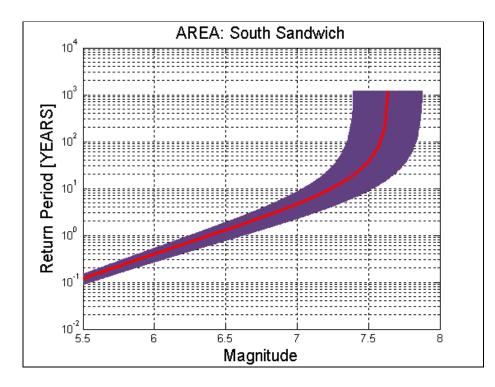
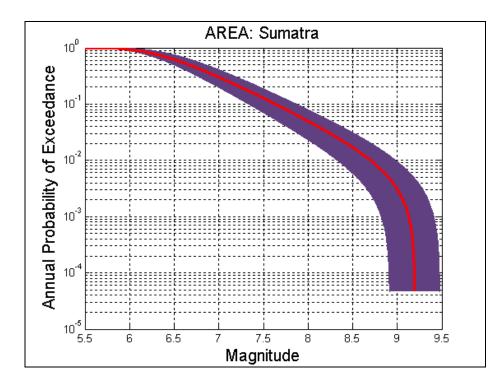



Figure 4. The mean return periods for earthquakes of magnitude 5.5 to 7.6 units .The red curve shows the mean return period, while the two blue curves indicate the mean return periods plus and minus the standard deviation.

## 2.3. Sumatra Area

## 2.3.1. The Area-Specific Hazard Parameters

Based on a catalogue spanning approximately 32 years (Appendix F), we obtain for the area, a maximum credible earthquake magnitude,  $\hat{m}_{max} = 9.20$ , the Gutenberg-Richter parameter  $\hat{b} = 1.03 \pm 0.09$ , and a mean area-characteristic seismic activity rate,  $\hat{\lambda}_A = 9.18 \pm 2.12$  per year (for  $m_{min} = 5.5$ ).


#### 2.3.2. Earthquake Magnitude Exceedance Probabilities and Mean Return Periods

The input parameters and the results of the PSHA are given in Appendix F. The range of expected magnitudes is specified from 5.5 to 9.2. For each magnitude, the calculated activity rate, return period, and probabilities of exceedance in 1, 50, 100 and 1 000 years are listed in Appendix F. For instance, a magnitude 7.0 earthquake is expected to occur once every 2.73 years.

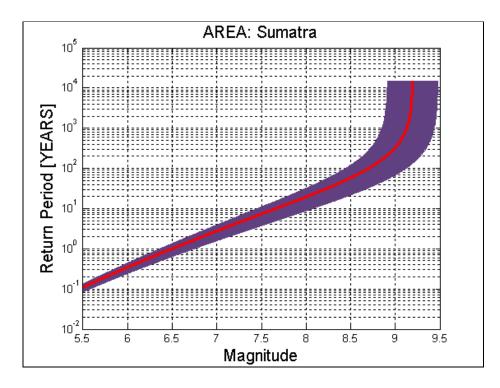

# 2.3.3. Plots of Earthquake Magnitude Exceedance Probabilities and Mean Return Periods

Figure 5 shows the probability for a given magnitude to be exceeded in one year. As an example, the probability for a magnitude equal to or greater than 7.0 to occur in one year is approximately 0.3 (30 %).

Figure 6 shows the mean return period of earthquakes with magnitudes in the range 5.5 to 9.2 units. For instance, one can expect a magnitude 8 event to occur after approximately every 19.3 years.



*Figure 5. The annual probability of exceeding the specified magnitude . The red curve shows the mean probability, while the two blue curves indicate the mean probability plus and minus the standard deviation.* 



*Figure 6. The mean return periods for earthquakes of magnitude 5,5 to 9,2 units .The red curve shows the mean return 33period, while the two blue curves indicate the mean return periods plus and minus the standard deviation.* 

## 3. Surface Fault Displacement

Relations used for the mean displacement, fault length and fault width (Table 1) were obtained from Papazachos *et al.*, (2004), which were determined for dip-slip faults from regions of lithospheric subduction. These were selected because regions (Karachi, South Sandwich and Sumatra) under discussion fall in regions of subduction. The relations are valid for a magnitude range of  $6.7 \le M \le 9.2$ .

**Table 1:** Moment magnitude and corresponding fault parameters obtained using equations 1, 2 and3.

| Region         | M <sub>max</sub> | Mean Displacement<br>(m) | Fault Length<br>(km) | Fault Width<br>(km) | Location                                   |
|----------------|------------------|--------------------------|----------------------|---------------------|--------------------------------------------|
| Karachi        | 8.44             | 4.18                     | 283.1                | 96.92               | 24.5 <sup>0</sup> N<br>63.0 <sup>0</sup> E |
| South Sandwich | 7.64             | 1.29                     | 102.8                | 54.75               | 55.1 <sup>0</sup> S<br>27.3 <sup>0</sup> W |
| Sumatra        | 9.20             | 12.82                    | 741.3                | 166.72              | 03.3 <sup>0</sup> N<br>95.8 <sup>0</sup> E |

Since we are considering worst case scenarios, the largest expected magnitude values ( $M_{max}$ ), as estimated in this report, were used for all the areas.

Log(u) = 0.64M - 2.78 (1)

Where u is the mean displacement and M is moment magnitude.

$$Log(L) = 0.55M - 2.19$$
 (2)

Where L is the fault length and M is moment magnitude.

Log(w) = 0.31M - 0.63 (3)

Where w is the fault width and M is the moment magnitude.

**Table 2.** Fault plane parameters for Sumatra (McCloskey *et al.*, 2008; Singh, 2006), Karachi (Engdahl and Villasenor, 2002; Byrne *et al.*, 1992) and South Sandwich (USGS, 2006) subduction regions

| Region         | <b>Dip angle</b> (degrees) | <b>Depth</b><br>(km) |
|----------------|----------------------------|----------------------|
| Karachi        | 7 (2 – 27)                 | 25 - 27              |
| South Sandwich | 50                         | <50                  |
| Sumatra        | 8 - 15                     | 25 - 30              |

The dip angles and fault plane depths given in Table 2 are based on available information on past tsunami – generating earthquakes as well as from projects to predict future tsunamis (e.g. McCloskey *et al.*, 2008).

## 4. Conclusion

The information used in determining the relations used to calculate mean displacement, fault length and fault width was obtained from aftershock distribution and fault modelling. Therefore, there are no direct measurements of fault displacement. It is beyond the scope of this work to give actual locations of predicted earthquake origins as the earthquakes can occur anywhere along the plate boundaries in the areas discussed. Thus we gave locations of either the northernmost point of the boundary or previous location of a large earthquake that caused a tsunami (Sumatra region). It is also recommended that different strike angles be used in the tsunami wave modelling to determine the fault strike that produces the worst case in combination with other parameters.

It is important to note that not all earthquakes of quoted magnitudes in the areas discussed generate tsunamis. Rather, only a small fraction of them do. Thus, the calculated activity rates need to be corrected by multiplying by the fraction, estimated to be approximately 1%. Certainly more investigations are required to determine a realistic fraction. Therefore, this study should be treated as a very preliminary one.

## 4. References

- Anderson J. A. and Wood H. O., (1925). Description and Theory of the Torsion Seismometer *Bul. Seismol. Ssoc. Am.*, **15**, 1-72.
- Byrne, D., Sykes, L. R. and Davis, D. M., (1992). Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone, *J. Geophys. Res.*, **97** (B1), 449 478.
- Engdahl, E. R. & Villasenor, A. (2002). Global seismicity: 1900-1999. In *International Handbook* of *Earthquakes and Engineering Seismology*. Elsevier Science Ltd.
- Gutenberg, B. and Richter, C. F., (1941). Seismicity of the Earth, *Geol. Soc. Amer. Spec. Pap.*, **34**, 1-131.
- Gutenberg, B., Richter, C.F., (1949). Seismicity of the Earth and Associated Phenomena. Princeton University Press, Princeton.
- Kijko, A. (2004). Estimation of the maximum earthquake magnitude  $m_{\text{max.}}$  *Pure Appl. Geophys*, **161**, 1-27.
- Kijko, A. and Graham, G. (1998). "Parametric-Historic" procedure for probabilistic seismic hazard analysis. Part I: Assessment of maximum regional magnitude  $m_{max}$ , *Pure Appl. Geophys*, **152**, 413-442
- Kijko, A. and Graham, G. (1999). "Parametric-Historic" procedure for probabilistic seismic hazard analysis. Part II. Assessment of seismic hazard at specified site, *Pure Appl. Geophys.* 154, 1-22.
- McCloskey, J., Antonioli, A., Piatanesi, A., Sieh, K., Steacy, S., Nalbant, S., Cocco, M., Giunchi, C., Huang, J. and Dunlop, P., (2008). Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra, *Ear. Pl. Sci. Let.*, 265, 61 81.
- Newmark, N.M., and Hall, W.J., (1982), *Earthquake Spectra and Design*, Earthquake Engineering Research Institute, Berkeley, Calif., pp. 29-37.
- Papazachos, B. C., Scordilis, E. M., Panagiotopoulos, D. G., Papazochos, C. B. and Karakaisis G.
  F. (2004). Global relations between seismic fault parameters and moment magnitude of earthquakes, *Bull. Geol. Soc. Greece*, XXXVI, 1482 1489.
- Richter, C. F. (1935). An instrumental earthquake magnitude scale. *Bul. Seismol. Soc. Am.*, **25**, 1 32.
- Singh, S. (2006). Seismic investigation of the Great Sumatra Andaman earthquake, *First Break*, **24**, 37 40.

USGS, (2006).M7.0 South Sandwich Islands, Scotia Sea, Earthquake of 20 August 2006, Earthquake summary map.

## **Appendix A:**

# **Outline of the Parametric-Historic Procedure for Probabilistic Seismic Hazard Assessment**

The aim of this outline is to provide the reader with key elements of the Parametric-Historic probabilistic seismic hazard analysis procedure. In addition, in all calculations, uncertainty of the employed seismicity models has been incorporated, by incorporation of the Bayesian formalism.

The objective of seismic hazard assessment is to obtain long-term probabilities of the occurrence of seismic events of a specified size in a given time interval.

In this report, the seismic hazard was assessed in terms of PGA using the Parametric-Historic procedure described in Kijko and Graham (1998, 1999). Seismic hazard analysis was done on the basis of the whole seismological record available for area, including historical observations as well as the instrumental data recorded during the past decades, covering a period of almost two millennia. The maximum possible PGA value for the site was obtained by applying the (floating) earthquake procedure, assuming the occurrence of the strongest possible earthquake at very close distance from the site. The probabilities of exceedance of the maximum possible PGA values were also calculated to illustrate the uncertainty of maximum PGA estimation.

The method used to estimate the level of seismic hazard in terms of PGA has been described in detail in Kijko and Graham (1998, 1999), and Kijko (2004).

The statistical techniques that can be used for the evaluation of the maximum regional earthquake magnitude,  $m_{\text{max}}$  is described in papers Kijko and Graham (1998) and Kijko (2004). The work by Kijko and Graham (1999) delineates a methodology for probabilistic seismic hazard assessment at a given site.

Site-specific analyses of seismic hazard require a knowledge of the attenuation of the selected ground-motion parameter *a*, usually PGA, as a function of distance. According to the adopted methodology, the attenuation law of PGA is assumed to be of the type,

$$\ln(a) = c_1 + c_2 \cdot m + \phi(r) + \varepsilon, \tag{1}$$

where  $c_1$  and  $c_2$  denote empirical coefficients, *m* is the earthquake magnitude,  $\phi(r)$  is a function of earthquake distance and  $\varepsilon$  is a normally distributed random error.

To express seismic hazard in terms of PGA, the aim would be to calculate the conditional probability that an earthquake of random magnitude, occurring at a random distance from the site, will cause a PGA value equal to, or greater than, the chosen threshold value,  $a_{\min}$ , at the site. We accept the standard assumption (e.g., Page, 1968) that the random earthquake magnitude, *m*, in the range of  $m_{\min} \le m \le m_{\max}$ , is distributed according to the doubly truncated Gutenberg-Richter relation

$$\log N(m) = a - b \cdot m, \tag{2}$$

where N(m) is the number of earthquakes with magnitude *m*, and stronger, and *a* and *b* are parameters. (See Figure 1).

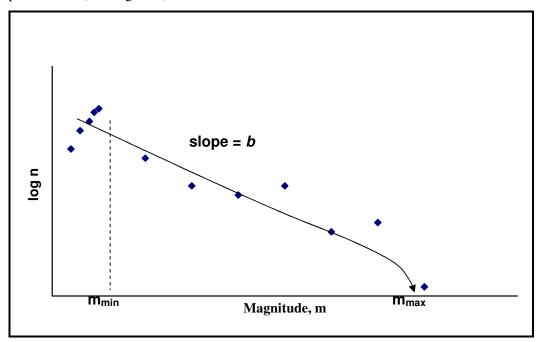



Figure 1. Schematic illustration of the doubly truncated frequency-magnitude Gutenberg-Richter relation. The slope of the curve is described by parameter b, known as b-value of the Gutenber-Richter. Value  $m_{min}$  is the minimum earthquake magnitude corresponding to acceleration  $a_{min}$ , which is the minimum value of PGA of engineering interest and  $m_{max}$  is the regional characteristic, maximum credible earthquake magnitude.

Acceptance of the classical frequency-magnitude Gutenberg-Richter relation (2) is equivalent to the assumption that the cumulative distribution function (CDF) of earthquake magnitude is of the form

$$F_{M}(m) = \frac{\exp(-\beta m_{\min}) - \exp(-\beta m)}{\exp(-\beta m_{\min}) - \exp(-\beta m_{\max})}.$$
(3)

In Figure B1 and equation (3),  $m_{\min}$  is the minimum earthquake magnitude corresponding to acceleration  $a_{\min}$ , which is the minimum value of PGA of engineering interest at the site,  $m_{max}$  is the maximum credible (maximum possible) earthquake magnitude and  $\beta = b \ln 10$ , where b is the parameter of the Gutenberg-Richter magnitude-frequency relation (2).

It can be shown (Kijko and Graham, 1999) that choosing equation (1) as a model for attenuation of PGA and equation (2) as a distribution of earthquake magnitude, is equivalent to the assumption that

$$\log N(x) = c - d \cdot x,\tag{4}$$

where N(x) is the number of earthquakes recorded at the site, with PGA, *a*, equal to or exceeding  $x = \ln(a)$ , *c* and *d* are parameters and  $d=b/c_2$ , where  $c_2$  is the coefficient related to the attenuation formula (1). Equation (4) schematically is illustrated in Figure B2.

From equation (4) it follows that CDF of the logarithm of PGA *a*, denoted as *x*, is of the form,

$$F_X(x) = \frac{\exp(-\gamma x_{\min}) - \exp(-\gamma x)}{\exp(-\gamma x_{\min}) - \exp(-\gamma x_{\max})},$$
(5)

where,  $x_{\min} = \ln(a_{\min})$ ,  $x_{\max} = \ln(a_{\max})$ ,  $a_{\max}$  is the maximum possible PGA at the site,  $\gamma = \beta/c_2$  and  $\beta$  is the parameter of the Gutenberg Richter distribution of earthquake magnitude. It can be seen from formula (5) that the logarithm of the PGA at a given site follows the same type of distribution as the earthquake magnitude, i.e. doubly truncated negative exponential – the form of the Gutenberg-Richter distribution. The two distributions differ only in the value of their parameters. If the parameter of the magnitude distribution is equal to  $\beta$ , the parameter of the distribution of  $x = \ln(\text{PGA})$  is equal to  $\beta/c_2$ .

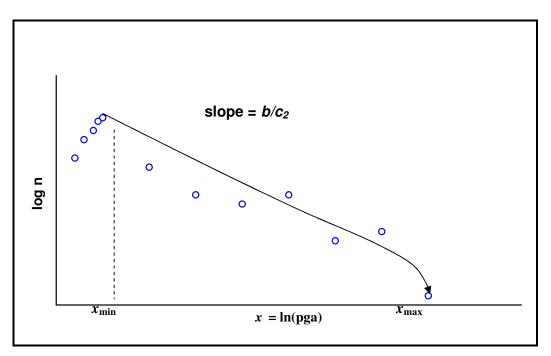



Figure 2 Schematic illustration of the distribution of the PGA. If earthquake magnitude follow a doubly truncated Gutenberg-Richter relation, the logarithm of the PGA at a given site follows the same type of distribution as the earthquake magnitude (2), i.e. doubly truncated negative exponential – the form of the Gutenberg-Richter distribution in equation (2). The two distributions differ only in the value of their parameters. If the parameter of the magnitude distribution is equal to b, the parameter of the distribution of  $x = \ln(PGA)$  is equal to b/c2.

One should note that CDF (3) was derived under the condition that the no matter how diverse the spatial distribution of seismicity within the area surrounding the specified site is, the earthquake magnitude distribution described by parameters  $m_{\text{max}}$  and  $\beta$  remain the same.

Probabilistic seismic hazard, H(a), is defined as the probability of a given value of PGA *a* (equal to, or greater than, the chosen threshold value,  $a_{\min}$ ) being exceeded at least once at the site during a specified time interval *t*. Such a probability can be written as

$$H(x \mid t) = 1 - \exp\{-\lambda_{s}t[1 - F_{x}(x)]\}$$
(6)

where  $\lambda$  is the site-specific activity rate of earthquakes that cause a PGA value, a, at the site, exceeding the threshold value  $a_{\min}$ . Clearly, a hazard curve so defined is doubly truncated: from below, by  $x_{\min} = \ln(a_{\min})$ , and from above, by  $x_{max} = \ln(a_{max})$ . The distribution in equation (4) was derived under the assumption that the earthquakes that cause a PGA value a,  $a \ge a_{\min}$ , at the site, follow the Poisson process with mean activity rate  $\lambda(x) = \lambda [1 - F_X(x)]$ , with  $x = \ln(a)$ .

The maximum likelihood method is used to estimate the site-characteristic seismic hazard parameters  $\lambda$  and  $\gamma$ .

For a given value of  $x_{max}$  (or equivalently, the maximum possible PGA at the site), the maximum likelihood procedure leads to the determination of the parameters  $\lambda$  and  $\gamma$ . However, this procedure for the estimation of unknown hazard parameters is used only when the *b* parameter of the Gutenberg-Richter frequency-magnitude relationship is not known. When the *b* value is known, parameter  $\gamma$  is calculated as  $\beta/c_2$  and the maximum likelihood search reduces to the estimation of the site-specific mean seismic activity rate  $\lambda$ .

### **REFERENCES TO PSHA METHODOLOGY OUTLINE**

- KIJKO, A. and G. GRAHAM (1998): Parametric-historic procedure for probabilistic seismic hazard analysis. Part I: Estimation of maximum regional magnitude  $m_{max}$ , *Pageoph*, **152**, 413-442.
- KIJKO, A. and G. GRAHAM (1999): "Parametric-historic" procedure for probabilistic seismic hazard analysis. Part II: Assessment of seismic hazard at specified site, *Pageoph*, **154**, 1-22.
- KIJKO, A. (2004). Estimation of the maximum earthquake magnitude  $m_{\text{max}}$ . *Pageoph*, **161**, 1655-1681.
- PAGE, R. (1968). Aftershocks and microaftershocks of the great Alaska earthquake. *Bull. Seismol. Soc. Am.*, **58**, 1131-1168.

## Appendix B: K-S\_Bayesian\_Methodology\_2007-11-25

## K-S Hazard Area Methodology

#### Introduction

Following McGuire (1993), the existing procedures of probabilistic seismic hazard analysis (PSHA) fall into two main categories: deductive and historic. The Parametric-Historic Procedure is a combination of the deductive and historic procedures. Both these procedures along with their weak and strong points will be discussed first before introducing the Parametric-Historic Procedure.

### **The Deductive and Historic Procedures**

The theoretical basis for the deductive method is provided by Cornell (1968). The approach permits the incorporation of geological and geophysical information to supplement the seismic event catalogues. Application of this procedure includes several steps. The initial step requires the definition of potential seismic sources, usually associated with geological or tectonic features (e.g. faults), and the delineation of potentially active regions (seismogenic source zones) over which all the available information is averaged. This is followed by determining the seismicity parameters for each seismogenic source zone. Use is made of the most common assumptions in engineering seismology that earthquake occurrences follow a Poisson process and that earthquake magnitudes follow a Gutenberg-Richter doubly-truncated distribution. Following this assumption the parameters obtained for each seismogenic source zone are: the mean seismic activity rate,  $\lambda$  (which is a parameter of the Poisson distribution), the level of completeness of the earthquake catalogue,  $m_{\min}$ , the maximum regional earthquake magnitude,  $m_{\max}$ , and the Gutenberg-Richter parameter, b. To assess the above parameters a seismic event catalogue containing origin times, size of seismic events and spatial locations is needed. With the selection of the ground-motion relation the distribution function for a required ground motion parameter can be calculated. The final step requires the integration of individual contributions from each seismogenic zone into a site-specific distribution.

Probably the strongest point of any deductive-type procedure of PSHA is its ability to account for all sorts of deviations from the "standard" model, i.e. it accounts for phenomena such as migration of seismicity, and seismic "gaps". This is possible because the procedure is parametric by nature. Unfortunately, the deductive procedure also has significantly weak points. The major disadvantage stems from the requirement of specifying seismogenic source zones. Often tectonic provinces or specific active faults have not been identified and mapped and the causes of seismicity are not well understood. In addition, with the Cornell-based seismic hazard assessment procedure, knowledge of the model parameters is required for each zone and these cannot always be determined reliably for areas that are small or have incomplete seismic histories.

The second category of PSHA consists of the so-called historic methods (Veneziano et al., 1984), which, in their original form, are non-parametric. These methods require, as input data, information about past seismicity only, and do not require specification of seismogenic zones. Based on spatial and temporal distribution of seismicity, the empirical distribution of the required seismic hazard parameter is estimated. By normalizing this distribution for the duration of the seismic event catalogue, one obtains an annual rate of the exceedance of the required hazard parameter.

The major advantage of this method is that a specification of seismogenic source zones is not needed. Furthermore, the approach does not require designation of the model used. By its nature, the historic method works well in areas of frequent occurrence of strong seismic events, when the record of past (historic) seismicity is "reasonably" complete. At the same time, the non-parametric historic approach has significant weak points. Its primary disadvantage is a rather poor reliability in estimating small probabilities for areas of low seismicity. The procedure is not recommended for an area where the seismic event catalogues are incomplete. In addition, in its present form, the procedure is not capable of making use of any additional geophysical or geological information to supplement the pure seismological data.

A procedure that accepts the varying quality of different parts of the catalogue and at the same time does not require specification of seismic source zones would be an ideal tool for analyzing and assessing seismic hazard. Bearing in mind both the weak and strong points of the above two approaches, the authors have developed an alternative procedure (Kijko and Graham, 1998, 1999), which, following the scheme of McGuire, could be classified as a parametric-historic approach. The approach combines the best of the deductive and non-parametric historic procedures and, in many cases, is free from the basic disadvantages characteristic of each of these procedures.

#### **The Parametric-Historic Procedure**

The applied PSHA procedure consists of two steps. The first step is applicable to the area in the vicinity of the site, for which the seismic hazard assessment is required. This is followed by a site-specific hazard assessment based on a selected ground motion parameter. The assessment in terms of peak ground acceleration (PGA) and acceleration response spectra (ARS) is described.

The maximum regional magnitude,  $m_{max}$ , is of paramount importance in this approach, therefore a statistical technique that can be used for evaluating this important parameter is presented.

#### **Input Data**

The lack or incompleteness of data in earthquake catalogues is a frequent issue in a statistical analysis of seismic hazard. Contributing factors include the historical and socio – economic context, demographic variations and alterations in the seismic network. Generally, the degree of completeness is a monotonically increasing function of time, i.e. the more recent portion of the catalogue has a lower level of completeness. The methodology makes provision for the earthquake catalogue to contain three types of data: firstly, very strong prehistoric seismic events (paleo-earthquakes), which usually occurred over the last thousands of years. Secondly, the macro-seismic observations of some of the strongest seismic events that occurred over a period of the last few hundred years, and finally, complete recent data for a relatively short period of time. The complete part of the catalogue can be divided into several sub-catalogues, each of which is complete for events above a given threshold magnitude  $m_{min}^{(i)}$ , and occurring in a certain period of time  $T_i$  where i = 1, ..., s and s is the number of complete sub-catalogues. The approach permits 'gaps' ( $T_g$ ) when records were missing or the seismic networks were out of operation. Uncertainty in earthquake magnitude is also taken into account in that an assumption is made that the observed magnitude is true magnitude subjected to a random error that follows a Gaussian distribution having zero mean and a known standard deviation. Figure 1 depicts the typical scenario confronted when conducting seismic hazard assessments.

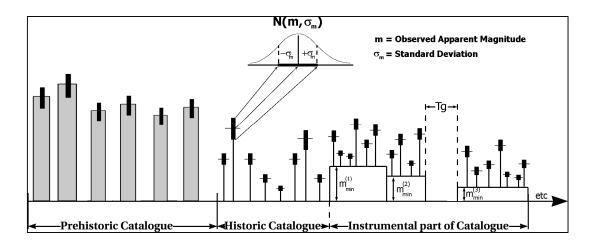



Figure 1 . Illustration of data which can be used by the seismic hazard assessment code developed at CGS.

## **Statistical Preliminaries**

Basic statistical distributions and quantities utilised in the development of the methodology are briefly described in what follows.

The Poisson distribution is used to model the number of occurrences of a given earthquake magnitude or a given amplitude of a selected ground motion parameter being exceeded within a specified time interval.

$$p(n|\lambda,t) = P(N=n|\lambda,t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} \quad n=0,1,2,\dots$$
(1)

Note that  $\lambda$  here refers to the mean of the distribution, and describes the mean activity rate (mean number of occurrences).

The gamma distribution, given its flexibility, is used to model the distribution of various parameters in our approach and is given by,

$$f(x) = (x)^{q-1} \frac{p^q}{\Gamma(q)} e^{-px}, \qquad x > 0 , \qquad (2)$$

where  $\Gamma(q)$  is the gamma function defined as,

$$\Gamma(q) = \int_{0}^{\infty} y^{q-1} e^{-y} dy, \quad q > 0,$$
(3)

The parameters p and q are related to the mean  $\mu$ , and variance  $\sigma^2$ , of the distribution according to,

$$\mu_x = \frac{q}{p} , \qquad (4)$$

$$\sigma_x^2 = \frac{q}{p^2},\tag{5}$$

The coefficient of variation expresses the uncertainty related to a given parameter, and is given by,

$$COV_x = \frac{\sigma_x}{\mu_x},\tag{6}$$

thus describing the variation of a parameter relative to it's mean value, with a higher value indicating a greater dispersion of the parameter.

### **Estimation of the Area-Specific Hazard**

The standard assumption adopted is that the distribution of earthquakes with respect to their size obeys the classical Gutenberg-Richter relation,

$$\log N(m) = a - b \cdot (m - m_{\min}) , \qquad (7)$$

where N(m) is the number of earthquakes of  $m \ge m_{\min}$ , occurring within a specified period of time, and a and b are parameters.

Epstein and Lomnitz (1966) found that equation (7) implied a singly truncated exponential distribution of the form,

$$F_{M}(m) = P(M \le m) = 1 - e^{-\beta(m - m_{\min})},$$
(8)

where  $\beta = b \ln(10)$ .

The earthquake occurrences over time in the given area are assumed to satisfy a Poisson process (1) having an unknown mean seismic activity rate  $\lambda_{A}$ .

The disregard of temporal variations of the parameters  $\lambda_{a}$  and b can lead to biased estimates of seismic hazard. An explicit assumption behind most hazard assessment procedures is that parameters  $\lambda_{A}$  and b and remain constant in time. However, examination of most earthquake catalogues indicates that there are temporal changes of the mean seismic activity rate  $\lambda_{A}$  as well as of the parameter b. For some seismic areas, the b-value has been reported to change (decrease/increase) its value before large earthquakes. Usually, such changes are explained by the state of stress; the higher the stress, the lower the *b*-value. Other theories connect the b-value with the homogeneity of the rock: the more heterogeneous the rock, the higher the *b*-value. Finally, some scientists connect the fluctuation of the *b*-value with the seismicity pattern and believe that the b-value is controlled by the buckling of the stratum. Whatever the mechanism, the phenomenon of b-value fluctuation is indubitable and well-known. A wide range of international opinions concerning changes of patterns in seismicity, together with an extensive reference list, are found in a monograph by Simpson and Richards (1981) and in a special two issue of the Pure and Applied Geophysics, (Seismicity Patterns ..., 1999; Microscopic and Macroscopic ..., 2000). Treating both parameters  $\lambda_A$  and b as random variables modelled by respective gamma distributions allows us to appropriately account for the statistical uncertainty in these important parameters. In practice, the adoption of the gamma distribution does not really introduce much limitation, since the gamma distribution can fit a large variety of shapes. Combining the Poisson distribution (1) together with the gamma distribution (2) with parameters  $p_{\lambda}$  and  $q_{\lambda}$ , we obtain the probability related to a certain number of earthquakes, n, per unit time t, for randomly varying seismicity,

$$P(n|t) = \int_{0}^{\infty} p(n|\lambda_{A}, t) f(\lambda_{A}) d\lambda_{A}$$
  
$$= \frac{\Gamma(n+q_{\lambda})}{n!\Gamma(q_{\lambda})} \left(\frac{p_{\lambda}}{t+p_{\lambda}}\right)^{q_{\lambda}} \left(\frac{t}{t+p_{\lambda}}\right)^{n}, \qquad (9)$$

where  $p_{\lambda} = \overline{\lambda}_{A} / \sigma_{\lambda}^{2}$ ,  $q_{\lambda} = \overline{\lambda}_{A}^{2} / \sigma_{\lambda}^{2}$  and  $\Gamma(\cdot)$  is the Gamma function (3).  $\overline{\lambda}_{A}$  denotes the mean of the distribution of  $\lambda_{A}$ .

Similarly, combining the exponential distribution (8) with the gamma distribution for  $\beta$  with parameters  $p_{\beta}$  and  $q_{\beta}$ , and normalising (e.g. Campbell 1982) upon introducing an upper limit  $m_{\text{max}}$  for the distribution of earthquake magnitudes, we obtain the CDF of earthquake magnitudes,

$$F_M(m|m_{\min}) = C_\beta \left[ 1 - \left( \frac{p_\beta}{p_\beta + m - m_{\min}} \right)^{q_\beta} \right], \tag{10}$$

where  $p_{\beta} = \overline{\beta} / \sigma_{\beta}^{2}$  and  $q_{\beta} = \overline{\beta}^{2} / \sigma_{\beta}^{2}$ . The symbol  $\overline{\beta}$  denotes the mean value of parameter  $\beta$ ,  $\sigma_{\beta}$  denotes the standard deviation of  $\beta$  and the normalizing coefficient  $C_{\beta}$  is given by,

$$C_{\beta} = \left[1 - \left(\frac{p_{\beta}}{p_{\beta} + m - m_{\min}}\right)^{q_{\beta}}\right]^{-1}, \qquad (11)$$

Noting that  $q_{\lambda} = \overline{\lambda}_{A} \cdot p_{\lambda}$  and  $q_{\beta} = \overline{\beta} \cdot p_{\beta}$ , equations (9) and (10) may alternatively be written respectively as,

$$P(n|t) = \frac{\Gamma(n+q_{\lambda})}{n!\Gamma(q_{\lambda})} \left(\frac{q_{\lambda}}{\overline{\lambda}_{A}t+q_{\lambda}}\right)^{q_{\lambda}} \left(\frac{\overline{\lambda}_{A}t}{\overline{\lambda}_{A}t+q_{\lambda}}\right)^{n}, \qquad (12)$$

and

$$F_{M}(m|m_{\min}) = C_{\beta} \left[ 1 - \left( \frac{q_{\beta}}{q_{\beta} + \beta(m - m_{\min})} \right)^{q_{\beta}} \right],$$
(13)

with

$$C_{\beta} = \left[1 - \left(\frac{q_{\beta}}{q_{\beta} + \beta(m_{\max} - m_{\min})}\right)^{q_{\beta}}\right]^{-1}, \qquad (14)$$

Note that  $q_{\beta} = (COV_{\beta}^{-1})^2$  and  $q_{\lambda} = (COV_{\lambda}^{-1})^2$ . Upon specification of the *COV*, the parameters  $\overline{\lambda}_{\alpha}$  and  $\overline{\beta}$ , referred to as hyper-parameters of the respective distributions are estimated on the basis of observed data by applying the maximum likelihood procedure.

#### Extreme Magnitude Distribution as Applied to Prehistoric (Paleo) and Historic Events

Let us build the likelihood function of desired seismicity parameters  $\theta = (\overline{\lambda}_A, \overline{\beta})$ , based on the prehistoric (paleo) and historic parts of the catalogue, containing the strongest events only. In this section we will only discuss the details of the likelihood function based on historic earthquakes, since except for a few details, the likelihood function based on prehistoric events is built in a similar manner.

By the Theorem of the Total Probability (see e.g. Cramér, 1961), the probability that in time interval t either no earthquake occurs, or all occurring earthquakes have magnitude not exceeding m, may be expressed as (Epstein and Lomnitz, 1966; Gan and Tung, 1983; Gibowicz and Kijko, 1994)

$$F_{M}^{\max}(m|m_{0},t) = \sum_{i=0}^{\infty} P(i|t) [F_{M}(m|m_{0})]^{i}, \qquad (15)$$

Relation (15) can be expressed in a much more simpler form (e.g. Campbell, 1982), which, in our notation, may be written as

$$F_{M}^{\max}(m \mid m_{0}, t) = \left[\frac{q_{\lambda}}{q_{\lambda} + \overline{\lambda}_{0} t \left[1 - F_{M}(m \mid m_{0})\right]}\right]^{q_{\lambda}},$$
(16)

In relations (15) and (16),  $m_0$  is the threshold magnitude for the prehistoric or historic part of the catalogue ( $m_0 \ge m_{\min}$ ). Magnitude  $m_{\min}$  plays the role of the 'total' threshold magnitude and has a rather formal character. The only restriction on the choice of its value is that  $m_{\min}$  may not exceed the threshold magnitude of any part, prehistoric, historic or complete, of the catalogue.

It follows from relation (16) that the probability density function (PDF) of the largest earthquake magnitudes m within a period t is,

$$f_{M}^{\max}(m \mid m_{0}, t) = \frac{\overline{\lambda}_{0} t q_{\lambda} f_{M}(m \mid m_{0}) F_{M}^{\max}(m \mid m_{0}, t)}{q_{\lambda} + \overline{\lambda}_{0} t [1 - F_{M}(m \mid m_{0})]} , \qquad (17)$$

 $\overline{\lambda}_0$  represents the mean of the distribution of the mean activity rate for earthquakes with magnitudes not less than  $m_0$ , and is given by,

$$\overline{\lambda}_0 = \overline{\lambda}_A \left[ 1 - F_M \left( m \mid m_0 \right) \right] \,, \tag{18}$$

where  $\overline{\lambda}_A$ , as defined above, is mean of the distribution of the mean activity rate corresponding to magnitude value  $m_{\min}$ .  $f_M(m|m_0)$  is the PDF of earthquake magnitudes. Based on (13) and the definition of the probability density function, it takes the following form:

$$f_M(m) = C_\beta \,\overline{\beta} \left( \frac{q_\beta}{q_\beta + \overline{\beta}(m - m_0)} \right)^{q_\beta + 1},\tag{19}$$

After introducing the PDF (17) of the largest earthquake magnitude m within a period t, the likelihood function of unknown parameters  $\theta$ , becomes:

$$L_0(\boldsymbol{\theta} \mid \boldsymbol{m}_0, \boldsymbol{t}_0, \boldsymbol{cov}) = \prod_{i=1}^{n_0} f_M^{\max}(\boldsymbol{m}_{0i} \mid \boldsymbol{m}_0, \boldsymbol{t}_i) , \qquad (20)$$

In order to build the likelihood function (20), three kinds of input data are required:  $\boldsymbol{m}_0$ ,  $\boldsymbol{t}$ , and  $\boldsymbol{cov}$ , where  $\boldsymbol{m}_0$  is vector of the largest magnitudes,  $\boldsymbol{t}$  denotes vector of the time intervals within which the largest events occurred and vector  $\boldsymbol{cov} = (\operatorname{cov}_{\lambda}, \operatorname{cov}_{\beta})$ , consists of the coefficients of variation (amount of dispersion (/ uncertainty) relative to the mean) of the unknown parameters  $\boldsymbol{\theta} = (\overline{\lambda}_{\lambda}, \overline{\beta})$ .

#### Combination of Extreme and Complete Seismic Catalogues with Different Levels of Completeness

Let us assume that the third, complete part of the catalogue, can be divided into *s* subcatalogues (Figure 1). Each of them has a span  $T_i$  and is complete starting from the known magnitude  $m_{\min}^{(i)}$ . For each sub-catalogue *i*,  $m_i$  is used to denote  $n_i$  earthquake magnitudes  $m_{ij}$ , where  $m_{ij} \ge m_{\min}^{(i)}$ , i = 1, ..., s, and  $j = 1, ..., n_i$ . Let  $L_i(\theta | \mathbf{m}_i)$  denote the likelihood function of the unknown  $\theta = (\overline{\lambda}_A, \overline{\beta})$ , based on the *i*-th complete sub-catalogue. If the size of seismic events is independent of their number, the likelihood function  $L_i(\theta | \mathbf{m}_i)$  is the product of two functions,  $L_i(\overline{\lambda}_A | \mathbf{m}_i)$  and  $L_i(\overline{\beta} | \mathbf{m}_i)$ .

The assumption that the number of earthquakes per unit time is distributed according to (12), means that  $L_i(\bar{\lambda}_A | \boldsymbol{m}_i)$  has the following form:

$$L_i(\overline{\lambda}_A | \boldsymbol{m}_i) = const \cdot \left(\overline{\lambda}_A^{(i)} t + q_\lambda\right)^{-q_\lambda} \left(\frac{\overline{\lambda}_A^{(i)} t}{\overline{\lambda}_A^{(i)} t + q_\lambda}\right)^{n_i}, \qquad (21)$$

where *const* does not depend on  $\overline{\lambda}_A$  and  $\overline{\lambda}_A^{(i)}$  is the mean activity rate corresponding to the threshold magnitude  $m_{\min}^{(i)}$  and is given by,

$$\overline{\lambda}_{A}^{i} = \overline{\lambda}_{A} \left[ 1 - F_{M} \left( m_{\min}^{(i)} \mid m_{\min} \right) \right], \qquad (22)$$

Following the definition of the likelihood function based on a set of independent observations, and (19),  $L_i(\beta | \mathbf{m}_i)$  takes the form,

$$L_{i}\left(\overline{\beta}|\boldsymbol{m}_{i}\right) = \left[C_{\beta} \ \overline{\beta}\right]^{n_{i}} \prod_{j=1}^{n_{i}} \left[1 + \frac{\overline{\beta}}{q_{\beta}}\left(m_{ij} - m_{\min}^{(i)}\right)\right]^{-\left(q_{\beta}+1\right)}, \tag{23}$$

Relations (21) and (23) define the likelihood function of the unknown parameters  $\theta = (\overline{\lambda}_{A}, \overline{\beta})$  for each complete sub-catalogue.

Finally,  $L(\theta)$ , the joint likelihood function based on all data, i.e. the likelihood function based on the whole catalogue, is calculated as the product of the likelihood functions based on prehistoric, historic and complete data.

The maximum-likelihood estimates of the required hazard parameters  $\theta = (\overline{\lambda}_A, \overline{\beta})$ , are given by the value of  $\theta$  which, for a given maximum regional magnitude  $m_{\text{max}}$ , maximizes the likelihood function  $L(\theta)$ . The maximum of the likelihood function is obtained by solving the system of two equations  $\frac{\partial \ell}{\partial \overline{\lambda}_A} = 0$  and  $\frac{\partial \ell}{\partial \overline{\beta}} = 0$ , where  $\ell = \ln[L(\theta)]$ .

A variance-covariance matrix,  $D(\theta)$ , of the estimated hazard parameters,  $\hat{\overline{\lambda}}_{A}$  and  $\hat{\overline{\beta}}$ , is calculated according to the formula (Edwards, 1972):

$$D(\theta) = -\begin{bmatrix} \frac{\partial^2 \ell}{\partial \overline{\lambda}_A^2} & \frac{\partial^2 \ell}{\partial \overline{\lambda}_A \partial \overline{\beta}} \\ \frac{\partial^2 \ell}{\partial \overline{\beta} \partial \overline{\lambda}_A} & \frac{\partial^2 \ell}{\partial \overline{\beta}^2} \end{bmatrix}^{-1}, \qquad (24)$$

where derivatives are calculated at the point  $\overline{\lambda}_{A} = \hat{\overline{\lambda}}_{A}$  and  $\overline{\beta} = \hat{\overline{\beta}}$ .

## Estimation of the Maximum Regional Earthquake Magnitude $m_{\rm max}$

Suppose that in the area of concern, within a specified time interval T, there are n main seismic events with magnitudes  $m_1, \ldots, m_n$ . Each magnitude  $m_i \ge m_{\min}$  ( $i=1, \ldots, n$ ), where  $m_{\min}$  is a known threshold of completeness (i.e. all events having magnitude greater than or equal to  $m_{\min}$  are recorded). It is further assumed that the seismic event magnitudes are independent, identically distributed, random variables with CDF described by equation (13).

From the condition that compares the largest observed magnitude  $m_{max}^{obs}$  and the maximum expected magnitude during a specified time interval T, we obtain the maximum regional magnitude  $m_{max}$  (Kijko and Graham, 1998; Kijko, 2004)

$$m_{\max} = m_{\max}^{obs} + \frac{\delta^{1/q} \exp[nr^{q}/(1-r^{q})]}{\overline{\beta}} [\Gamma(-1/q, \delta r^{q}) - \Gamma(-1/q, \delta)],$$
(25)

where  $\delta = nC_{\beta}$  and  $\Gamma(\cdot, \cdot)$  is the complementary incomplete gamma function. The approximate variance of the above estimator is equal to (Kijko, 2004)

$$\sigma_{m_{\max}}^{2} \cong \sigma_{M}^{2} + \left\{ \frac{\delta^{1/q} \exp\left[nr^{q}/(1-r^{q})\right]}{\overline{\beta}} \left[\Gamma\left(-1/q, \delta r^{q}\right) - \Gamma\left(-1/q, \delta\right)\right] \right\}^{2}, \quad (26)$$

where  $\sigma_{_M}$  is the standard error in determination of the largest observed magnitude  $m_{_{
m max}}^{_{obs}}$  .

## References

| Ambraseys, N.N. (1995)                        | The prediction of earthquake peak ground<br>acceleration in Europe, Earthquake Eng. Struct. Dyn.<br>24, 467-490.                                                                                                                           |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atkinson, G.M. and D.M. Boore (1997)          | Some comparisons between recent ground-motion relations, Seism. Res. Lett. 68, 24-40.                                                                                                                                                      |
| Bender, B. (1984)                             | <b>Incorporating acceleration variability into seismic</b><br><b>hazard analysis</b> , Bull. Seism. Soc. Am. <b>74</b> , 1451-1462.                                                                                                        |
| Bender, B. and D.M. Perkins (1993)            | Treatment of parameter uncertainty for a single seismic hazard map, Earthquake Spectra, 9, 165-194.                                                                                                                                        |
| Bender, B. (1984)                             | A two-state Poisson model for seismic hazard estimation, Bull. Seism. Soc. Am., 74, 1463-1468.                                                                                                                                             |
| Benjamin, J.R. and C.A. Cornell (1970)        | <b>Probability, Statistics and Decision for Civil</b><br><b>Engineers</b> , McGraw-Hill, New York.                                                                                                                                         |
| Benjamin, J.R. (1968)                         | <b>Probabilistic models for seismic forces design</b> , J. Struct. Div., ASCE <b>94</b> , 5T5, 1175-1196.                                                                                                                                  |
| Boore, D.M. and W.B. Joyner (1982)            | <b>The empirical prediction of ground motion</b> , Bull. Seism. Soc. Am. <b>72</b> , S43-S60.                                                                                                                                              |
| Campbell, K.W. (1977)                         | The use of seismotectonics in the Bayesian estimation<br>of seismic risk, School of Engineering and Applied<br>Science, University of California, Los Angeles, Report<br>UCLA - ENG – 7744                                                 |
| Campbell, K.W. (1982)                         | <b>Bayesian analysis of extreme earthquake occurrences.</b><br><b>Part I. Probabilistic hazard model</b> , Bull. Seism. Soc.<br>Am., <b>72</b> , 1689-1705                                                                                 |
| Campbell, K.W. (1983)                         | Bayesian analysis of extreme earthquake occurrences.<br>Part II. Application to the San Jacinto Fault zone of<br>southern California, Bull. Seism. Soc. Am., 73,<br>1099-1115.                                                             |
| Chou, I.H., W.J. Zimmer and J.T.P. Yao (1971) | <b>Likelihood of strong motion earthquakes</b> , Bureau of Engineering Research, University of New Mexico, Technical Report CE <b>27</b> (71).                                                                                             |
| Cornell, C.A. (1968)                          | Engineering seismic risk analysis, Bull. Seism. Soc.<br>Am. 58, 1583-1606.                                                                                                                                                                 |
| Cornell, C.A. (1971)                          | <b>Bayesian statistical decision theory and</b><br><b>reliability-based design</b> , Proceedings of the International<br>Conference on Structural Safety and Reliability, A.M.<br>Freudenthal, Editor, April 9-11, 1969, Washington, D.C., |

|                                               | Smithsonian Institute, 47-66.                                                                                                                                                             |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cosentino, P., V. Ficara, and D. Luzio (1977) | <b>Truncated exponential frequency-magnitude</b><br><b>relationship in the earthquake statistics</b> , Bull. Seism.<br>Am. <b>67</b> , 1615-1623.                                         |
| Cramér, H. (1961)                             | Mathematical Methods of Statistics, Princeton University Press. Princeton.                                                                                                                |
| Dong, W.M., A.B. Bao and H.C. Shah (1984 a)   | <b>Use of maximum entropy principle in earthquake</b><br><b>recurrence relationships</b> , Bull. Seism. Soc. Am., <b>74</b> ,<br>725-737.                                                 |
| Dong, W.M., H.C. Shah and A.B. Bao (1984 b)   | <b>Utilization of geophysical information in Bayesian</b><br><b>seismic hazard model</b> , Soil Dynamics and Earthquake<br>Engineering, <b>3</b> ,103-111.                                |
| Edwards, A.W.F. (1972)                        | <b>Likelihood</b> , Cambridge University Press, New York, p. 235.                                                                                                                         |
| Epstein, B. and C. Lomnitz (1966)             | A model for occurrence of large earthquakes, Nature, 211, 954-956.                                                                                                                        |
| Fukushima, Y. and T. Tanaka (1990)            | A new attenuation relation for peak horizontal<br>acceleration of strong earthquake ground motion in<br>Japan, Bull. Seism. Soc. Am. 80, 757-778.                                         |
| Gan, Z.J. and C.C. Tung (1983)                | <b>Extreme value distribution of earthquake magnitude</b> , Phys. Earth Planet. Inter. <b>32</b> , 325-330.                                                                               |
| Gibowicz, S.J. and A. Kijko (1994)            | An Introduction to Mining Seismology, Academic Press, San Diego.                                                                                                                          |
| Guttorp, P. and D. Hopkins (1986)             | On estimating varying <i>b</i> -values, Bull. Seism. Soc. Am., <b>76</b> , 889-895                                                                                                        |
| Johnson, N.L. (1957)                          | Uniqueness of a result of the theory of accident proneness, Biometrika, 44, 530-531.                                                                                                      |
| Kijko, A. (2004)                              | Estimation of the maximum earthquake magnitude $m_{\text{max.}}$ Pure Appl. Geophys, <b>161</b> , 1-27.                                                                                   |
| Kijko, A. and G. Graham (1998)                | "Parametric-Historic" procedure for probabilistic<br>seismic hazard analysis. Part I: Assessment of<br>maximum regional magnitude $m_{max}$ , Pure Appl.<br>Geophys, <b>152</b> , 413-442 |
| Kijko, A. and M.A. Sellevoll (1992)           | <b>Estimation of earthquake hazard parameters from incomplete data files, Part II, Incorporation of magnitude heterogeneity</b> , Bull. Seism. Soc. Am. <b>82</b> , 120-134               |
| Kijko, A. and G. Graham (1999)                | "Parametric-Historic" procedure for<br>probabilistic seismic hazard analysis. Part II.<br>Assessment of seismic hazard at specified site,                                                 |

|                                                       | Pure Appl. Geophys. <b>154</b> , 1-22.                                                                                                                                                                                                     |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kijko, A. and M.A. Sellevoll (1992)                   | <b>Estimation of earthquake hazard parameters from</b><br><b>incomplete data files. Part II. Incorporation of</b><br><b>magnitude heterogeneity</b> , Bull. Seism. Soc. Am. <b>82</b> ,<br>120-134.                                        |
| McGuire, R.M. (1993)                                  | <b>Computation of seismic hazard</b> , Ann. Di Geofisica, <b>36</b> , 181-200.                                                                                                                                                             |
| McGuire, R.K. (1977)                                  | Effects of uncertainty in seismicity on estimates of seismic hazard for the east coast of the United States, Bull. Sesm. Soc. Am., 67, 827-848.                                                                                            |
| McGuire, R.K. (1978)                                  | Seismic ground motion parameters, Proc. Am. Soc.<br>Civil Eng. J. Geotech. Eng. Div. <b>104</b> , 481-490.                                                                                                                                 |
|                                                       | Microscopic and Macroscopic Simulation: Towards<br>Predictive Modelling of the Earthquake Process,<br>Editors: P. Mora, M. Matsu'ura, R. Madariaga and J-B.<br>Minster, Pure and Applied Geophysics, <b>157</b> , pp. 1817-<br>2383, 2000. |
| Morgat, C.P. and H.C. Shah (1979)                     | <b>A Bayesian model for seismic hazard mapping</b> , Bull. Seism. Soc. Am., <b>69</b> , 1237-1251.                                                                                                                                         |
| Page, R. (1968)                                       | Aftershocks and microaftershocks, Bull. Seism. Soc. Am. 58, 1131-1168.                                                                                                                                                                     |
| Pisarenko, V.F. and A.A. Lyubushin, Jr. (1999)        | A Bayesian approach to Seismic Hazard Estimation:<br>Maximum Values of Magnitudes and Peak Ground<br>Accelerations, Earthquake Research in China, 13, 45-<br>57.                                                                           |
|                                                       | Seismicity Patterns, their Statistical Significance and<br>Physical Meaning, Editors: M. Wyss, K. Shimazaki and<br>A. Ito, Pure and Applied Geophysics, <b>155</b> , pp. 203-726,<br>1999.                                                 |
| Simpson, D.W. and P.G. Richards (1981)                | Earthquake Prediction, An International Review,<br>Maurice Ewing series IV, Eds: D. W. Simpson, and P.G.<br>Richards. American Geophysical Union, Washington,<br>D.C., 680 pp.                                                             |
| Stavrakasis, G.N. and G.A. Tselentis (1987)           | <b>Bayesian probabilistic prediction of strong</b><br>earthquakes in the main seismic zones of Greece,<br>Bull. Geof. Teor. Appl., <b>29</b> , 51-63.                                                                                      |
| Tinti, S. and F. Mulargia (1985)                      | Effects of magnitude uncertainties in the Gutenberg-<br>Richter frequency-magnitude law, Bull. Seism. Soc.<br>Am. <b>75</b> , 1681-1697.                                                                                                   |
| Toro, G.R., N.A. Abrahamson and J.F. Schneider (1997) | Model of strong ground motions from earthquakes in<br>Central and Eastern North America: best estimates<br>and uncertainties, Seism. Res. Lett. 68, 41-57.                                                                                 |

Veneziano, D., C.A. Cornell and T. O'Hara (1984)

**Historic method for seismic hazard analysis**, Elect. Power Res. Inst., Report, NP-3438, Palo Alto.

# **Appendix C: Area-Specific Hazard Information File: Calcutta Area**

\_\_\_\_\_ File : Calcutta\_ha2\_160408.doc Created on : 16-Apr-2008 10:49:19 SEISMIC HAZARD ASSESSMENT FOR SELECTED AREA FROM PRE-HISTORIC, HISTORIC, and INCOMPLETE DATA ORIGIN TIME OF PRE-HISTORIC EVENTS CAN BE UNCERTAIN FLOW OF SEISMIC EVENTS IS MODELED BY BAYESIAN-BASED EQUATIONS WHICH ACCOUNT UNCERTAINTY OF SEISMIC HAZARD MODEL HAZARD PARAMETERS BEATA AND LAMBDA ARE CALCULATED SIMULTANEOUSLY MAGNITUDE ERRORS ARE DISTRIBUTED NORMALLY RANGE OF MAGNITUDE INTEGRATION : < m\_min, m\_max > REGONAL MAXIMUM MAGNITUDE CAN BE ESTIMATED ACCORDING TO : (1) Gibowicz-Kijko (1994) (2) Gibowicz-Kijko-Bayes (3) Kijko-Sellevoll (1989) (4) Kijko-Sellevoll-Bayes (5) Tate-Pisarenko (6) Tate-Pisarenko-Bayes (7) Non-Parametric (Gaussian) procedure Theory of the HAZARD evaluation procedure is given in: "Estimation of earthquake hazard parameters from Incomplete data files", Part II. by A. Kijko and M.A. Sellevoll (1992) Bull. Seism. Soc. Am. vol.82, p.120-134. and "Parametric-Historic" procedure for probabilistic seismic hazard analysis. Part I. Assessment of maximum regional magnitude m\_max. by A. Kijko and G. Graham (1998), Pure App. Geophys, vol. 152, p.413-442. \_\_\_\_\_ PROGRAM NAME: HA2 (H = Hazard; A = Area)WRITTEN: 15 AUG 1999 by A.KijkoREVISION 1: 21 MAR 2005 by A.KijkoREVISION 2: 25 JUL 2005 by J.RamperthapREVISION 3: 15 AUG 2005 by J.RamperthapREVISION 4: 22 JUN 2006 by A.KijkoVERSION: 205 VERSION : 2.05 \_\_\_\_\_ For more information, contact A.Kijko or M.Bejaichund or J.Ramperthap, Council for Geoscience, Geological Survey of South Africa Private Bag X112, Pretoria 0001, South Africa. Phone : +(27) 12 8411201, 8411454 or 8411180 Fax : +(27) 12 8411224 E-mail : kijko@geoscience.org.za, mayshree@geoscience.org.za or jasonr@geoscience.org.za \_\_\_\_\_ NAME OF THE AREA: Calcutta HISTORIC DATA: \*\*\*\*\* NAME OF HISTORIC DATA FILE: e BEGINING OF HISTORIC DATA (Y-M-D) = 1755 1 1 END OF HISTORIC DATA (Y-M-D) = 2005 1 18

= 103

NUMBER OF HISTORIC EQ-s

"THRESHOLD" MAG. OF HISTORIC EQ-s = 5

| 517                                                                                                          | ANDA                                                                                                                                     | RD                                                                            | ERROF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OF                                                                                          | EQ-e | MA |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|----|
| 177<br>188<br>183<br>184<br>188<br>186<br>189<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>199 | L663336668071689126780345678901234567890123456789012345678901223456789012234567890122345678901223456777777777777777777777777777777777777 | 65084556462822258478911537321331353152180259762841235773279967163547285375510 | 4<br>29<br>21<br>23<br>30<br>12<br>53<br>27<br>23<br>12<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>53<br>27<br>4<br>6<br>27<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>27<br>12<br>2<br>2<br>2 | $6 \times 6 \times$ |      |    |

STANDARD ERROR OF EQ-e MAGNITUDE = 0.25

| 1980 | 7  | 29 | 66  |
|------|----|----|-----|
|      |    |    | 6.6 |
| 1981 | 4  | 25 | 5.7 |
| 1982 | 4  | 8  | 5.5 |
| 1983 | 8  | 30 | 5.6 |
| 1984 | 4  | 23 | 5.9 |
| 1985 | 1  | 7  | 5.6 |
| 1986 | 1  | 10 | 5.4 |
| 1987 | 5  | 18 | 5.9 |
| 1988 | 8  | 6  | 7.3 |
| 1989 | 4  | 15 | 6.2 |
| 1990 | 1  | 9  | 6.1 |
| 1991 | 1  | 5  | 7.3 |
| 1992 | 4  | 23 | 6.5 |
| 1993 | 3  | 20 | 6.2 |
| 1994 | 5  | 29 | 6.5 |
| 1995 | 7  | 11 | 7.1 |
| 1996 | 11 | 11 | 6.0 |
| 1997 | 11 | 21 | 6.1 |
| 1998 | 9  | 3  | 5.6 |
| 1999 | 4  | 5  | 5.6 |
| 2000 | 6  | 7  | 6.5 |
| 2001 | 4  | 12 | 5.6 |
| 2002 | 12 | 4  | 5.6 |
| 2003 | 9  | 21 | 6.9 |
| 2003 | 12 | 26 | 5.8 |
|      |    |    |     |
| 2005 | 1  | 18 | 5.0 |

LARGEST EQ IN HISTORIC CATALOG = 8.5

PROVISION FOR INDUCED SEISMICITY : NOT REQUIRED

\* \* \*

| TIME SPAN OF WHOLE CATALOG       | = 250.04 [Y]    |
|----------------------------------|-----------------|
| MAXIMUM MAGNITUDE IN THE CATALOG | = 8.5           |
| SD OF MAXIMUM OBSERVED MAGNITUDE | = 0.25          |
| MODEL UNCERTAINTY OF BETA        | = 25 [per cent] |
| MODEL UNCERTAINTY OF LAMBDA      | = 25 [per cent] |

CALCULATIONS ARE PERFORMED FOR MINIMUM MAGNITUDE Mmin = 5.00

PRIOR VALUE OF PARAMETER b = 1 SD OF PRIOR b-VALUE = 0.1

#### RESULTS \*\*\*\*\*\*\*\*

BETA = 1.98 +- 0.14 (b = 0.86 +- 0.06) LAMBDA = 4.301 +- 0.658 (for Mmin = 5.00) Mmax = 8.71 +- 0.33 (for Mmax obs. = 8.50 +- 0.25)

Maximum Regional Magnitude Mmax is calculated according to procedure by Kijko-Sellevoll-Bayes

| Mag | Lambda      | RP        | Prob    | (T = 1 50) | 100 1   | 000)    |
|-----|-------------|-----------|---------|------------|---------|---------|
|     |             |           |         |            |         |         |
| 5.0 | 4.3007e+000 | 2.33e-001 | 0.97783 | 1.00000    | 1.00000 | 1.00000 |
| 5.1 | 3.5294e+000 | 2.83e-001 | 0.95880 | 1.00000    | 1.00000 | 1.00000 |
| 5.2 | 2.9031e+000 | 3.44e-001 | 0.93060 | 1.00000    | 1.00000 | 1.00000 |
| 5.3 | 2.3933e+000 | 4.18e-001 | 0.89251 | 1.00000    | 1.00000 | 1.00000 |
| 5.4 | 1.9772e+000 | 5.06e-001 | 0.84498 | 1.00000    | 1.00000 | 1.00000 |
| 5.5 | 1.6368e+000 | 6.11e-001 | 0.78952 | 1.00000    | 1.00000 | 1.00000 |
| 5.6 | 1.3577e+000 | 7.37e-001 | 0.72833 | 1.00000    | 1.00000 | 1.00000 |
| 5.7 | 1.1283e+000 | 8.86e-001 | 0.66389 | 1.00000    | 1.00000 | 1.00000 |
| 5.8 | 9.3937e-001 | 1.06e+000 | 0.59861 | 1.00000    | 1.00000 | 1.00000 |
| 5.9 | 7.8341e-001 | 1.28e+000 | 0.53459 | 1.00000    | 1.00000 | 1.00000 |
| 6.0 | 6.5438e-001 | 1.53e+000 | 0.47342 | 1.00000    | 1.00000 | 1.00000 |
| 6.1 | 5.4742e-001 | 1.83e+000 | 0.41624 | 1.00000    | 1.00000 | 1.00000 |
| 6.2 | 4.5856e-001 | 2.18e+000 | 0.36372 | 1.00000    | 1.00000 | 1.00000 |
| 6.3 | 3.8460e-001 | 2.60e+000 | 0.31618 | 1.00000    | 1.00000 | 1.00000 |
| 6.4 | 3.2292e-001 | 3.10e+000 | 0.27364 | 0.99999    | 1.00000 | 1.00000 |
| 6.5 | 2.7138e-001 | 3.68e+000 | 0.23594 | 0.99995    | 1.00000 | 1.00000 |
| 6.6 | 2.2824e-001 | 4.38e+000 | 0.20278 | 0.99982    | 1.00000 | 1.00000 |
| 6.7 | 1.9205e-001 | 5.21e+000 | 0.17379 | 0.99946    | 1.00000 | 1.00000 |

| 8.5         3.3770e-003         2.96e+002         0.00337         0.15462         0.28408         0.95336           8.6         1.6400e-003         6.10e+002         0.00164         0.07853         0.15055         0.79013 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3770e-003<br>6400e-003 | 2.96e+002<br>6.10e+002 | 0.00337<br>0.00164 | 0.15462<br>0.07853 | 0.28408<br>0.15055 | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>0.99999<br>0.99995<br>0.99968<br>0.99915<br>0.99968<br>0.99817<br>0.99039<br>0.95330<br>0.79013<br>0.12884 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|------------------------|--------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|------------------------|--------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# **Appendix D: Area-Specific Hazard Information File: Karachi Area**

\_\_\_\_\_ File : Karachi\_ha2\_160408.doc Created on : 16-Apr-2008 11:01:43 \_\_\_\_\_ SEISMIC HAZARD ASSESSMENT FOR SELECTED AREA FROM PRE-HISTORIC, HISTORIC, and INCOMPLETE DATA ORIGIN TIME OF PRE-HISTORIC EVENTS CAN BE UNCERTAIN FLOW OF SEISMIC EVENTS IS MODELED BY BAYESIAN-BASED EQUATIONS WHICH ACCOUNT UNCERTAINTY OF SEISMIC HAZARD MODEL HAZARD PARAMETERS BEATA AND LAMBDA ARE CALCULATED SIMULTANEOUSLY MAGNITUDE ERRORS ARE DISTRIBUTED NORMALLY RANGE OF MAGNITUDE INTEGRATION : < m\_min, m\_max > REGONAL MAXIMUM MAGNITUDE CAN BE ESTIMATED ACCORDING TO : (1) Gibowicz-Kijko (1994) (2) Gibowicz-Kijko-Bayes (3) Kijko-Sellevoll (1989) (4) Kijko-Sellevoll-Bayes (5) Tate-Pisarenko (6) Tate-Pisarenko-Bayes (7) Non-Parametric (Gaussian) procedure Theory of the HAZARD evaluation procedure is given in: "Estimation of earthquake hazard parameters from Incomplete data files", Part II. by A. Kijko and M.A. Sellevoll (1992) Bull. Seism. Soc. Am. vol.82, p.120-134. and "Parametric-Historic" procedure for probabilistic seismic hazard analysis. Part I. Assessment of maximum regional magnitude m\_max. by A. Kijko and G. Graham (1998), Pure App. Geophys, vol. 152, p.413-442. \_\_\_\_\_ PROGRAM NAME : HA2 (H = Hazard; A = Area) InternationInternationInternationInternationWRITTEN: 15 AUG 1999 by A.KijkoREVISION 1: 21 MAR 2005 by A.KijkoREVISION 2: 25 JUL 2005 by J.RamperthapREVISION 3: 15 AUG 2005 by J.RamperthapREVISION 4: 22 JUN 2006 by A.Kijko VERSION : 2.05 ------\_\_\_\_\_ For more information, contact A.Kijko or M.Bejaichund or J.Ramperthap, Council for Geoscience, Geological Survey of South Africa Private Bag X112, Pretoria 0001, South Africa. Phone : +(27) 12 8411201, 8411454 or 8411180 : +(27) 12 8411224 Fax E-mail : kijko@geoscience.org.za, mayshree@geoscience.org.za or jasonr@geoscience.org.za \_\_\_\_\_ NAME OF THE AREA: Karachi HISTORIC DATA: NAME OF HISTORIC DATA FILE: e

BEGINING OF HISTORIC DATA (Y-M-D) = 1435 1 1 END OF HISTORIC DATA (Y-M-D) = 2005 1 15 NUMBER OF HISTORIC EQ-s = 55

"THRESHOLD" MAG. OF HISTORIC EQ-s = 5 STANDARD ERROR OF EQ-e MAGNITUDE = 0.25

1440 6 15 6.5

LARGEST EQ IN HISTORIC CATALOG = 8.3

PROVISION FOR INDUCED SEISMICITY : NOT REQUIRED

\* \* \*

| TIME SPAN OF WHOLE CATALOG       | = | 570.03 [Y]    |
|----------------------------------|---|---------------|
| MAXIMUM MAGNITUDE IN THE CATALOG | = | 8.3           |
| SD OF MAXIMUM OBSERVED MAGNITUDE | = | 0.25          |
| MODEL UNCERTAINTY OF BETA        | = | 25 [per cent] |
| MODEL UNCERTAINTY OF LAMBDA      | = | 25 [per cent] |

CALCULATIONS ARE PERFORMED FOR MINIMUM MAGNITUDE Mmin = 5.00

PRIOR VALUE OF PARAMETER b = 1 SD OF PRIOR b-VALUE = 0.1

#### RESULTS \*\*\*\*\*\*\*\*\*

BETA = 2.08 +- 0.16 (b = 0.90 +- 0.07) LAMEDA = 2.523 +- 0.456 (for Mmin = 5.00) Mmax = 8.44 +- 0.29 (for Mmax obs. = 8.30 +- 0.25)

Maximum Regional Magnitude Mmax is calculated according to procedure by Kijko-Sellevoll-Bayes

| Mag | Lambda      | RP        | Prob    | (T = 1 50 | 100 1   | (000    |
|-----|-------------|-----------|---------|-----------|---------|---------|
| 5.0 | 2.5234e+000 | 3.96e-001 | 0.90397 | 1.00000   | 1.00000 | 1.00000 |
| 5.1 | 2.0505e+000 | 4.88e-001 | 0.85476 | 1.00000   | 1.00000 | 1.00000 |
| 5.2 | 1.6705e+000 | 5.99e-001 | 0.79585 | 1.00000   | 1.00000 | 1.00000 |
| 5.3 | 1.3641e+000 | 7.33e-001 | 0.72993 | 1.00000   | 1.00000 | 1.00000 |
| 5.4 | 1.1166e+000 | 8.96e-001 | 0.66018 | 1.00000   | 1.00000 | 1.00000 |
| 5.5 | 9.1598e-001 | 1.09e+000 | 0.58964 | 1.00000   | 1.00000 | 1.00000 |
| 5.6 | 7.5301e-001 | 1.33e+000 | 0.52089 | 1.00000   | 1.00000 | 1.00000 |
| 5.7 | 6.2028e-001 | 1.61e+000 | 0.45587 | 1.00000   | 1.00000 | 1.00000 |
| 5.8 | 5.1192e-001 | 1.95e+000 | 0.39583 | 1.00000   | 1.00000 | 1.00000 |
| 5.9 | 4.2324e-001 | 2.36e+000 | 0.34147 | 1.00000   | 1.00000 | 1.00000 |
| 6.0 | 3.5050e-001 | 2.85e+000 | 0.29299 | 0.99999   | 1.00000 | 1.00000 |
| 6.1 | 2.9069e-001 | 3.44e+000 | 0.25030 | 0.99997   | 1.00000 | 1.00000 |
| 6.2 | 2.4141e-001 | 4.14e+000 | 0.21306 | 0.99988   | 1.00000 | 1.00000 |
| 6.3 | 2.0071e-001 | 4.98e+000 | 0.18083 | 0.99959   | 1.00000 | 1.00000 |
| 6.4 | 1.6703e-001 | 5.99e+000 | 0.15309 | 0.99879   | 0.99999 | 1.00000 |
| 6.5 | 1.3910e-001 | 7.19e+000 | 0.12933 | 0.99690   | 0.99996 | 1.00000 |
| 6.6 | 1.1588e-001 | 8.63e+000 | 0.10905 | 0.99288   | 0.99984 | 1.00000 |
| 6.7 | 9.6558e-002 | 1.04e+001 | 0.09178 | 0.98529   | 0.99948 | 1.00000 |
| 6.8 | 8.0435e-002 | 1.24e+001 | 0.07710 | 0.97234   | 0.99852 | 1.00000 |
| 6.9 | 6.6958e-002 | 1.49e+001 | 0.06463 | 0.95216   | 0.99628 | 1.00000 |
| 7.0 | 5.5672e-002 | 1.80e+001 | 0.05406 | 0.92318   | 0.99158 | 1.00000 |
| 7.1 | 4.6203e-002 | 2.16e+001 | 0.04509 | 0.88443   | 0.98273 | 1.00000 |
| 7.2 | 3.8245e-002 | 2.61e+001 | 0.03748 | 0.83574   | 0.96759 | 1.00000 |
| 7.3 | 3.1544e-002 | 3.17e+001 | 0.03102 | 0.77781   | 0.94381 | 1.00000 |
| 7.4 | 2.5893e-002 | 3.86e+001 | 0.02554 | 0.71203   | 0.90927 | 1.00000 |
| 7.5 | 2.1118e-002 | 4.74e+001 | 0.02088 | 0.64031   | 0.86243 | 1.00000 |
| 7.6 | 1.7078e-002 | 5.86e+001 | 0.01692 | 0.56477   | 0.80262 | 0.99999 |
| 7.7 | 1.3653e-002 | 7.32e+001 | 0.01355 | 0.48752   | 0.73022 | 0.99995 |
| 7.8 | 1.0746e-002 | 9.31e+001 | 0.01068 | 0.41048   | 0.64655 | 0.99973 |
| 7.9 | 8.2734e-003 | 1.21e+002 | 0.00824 | 0.33529   | 0.55365 | 0.99873 |
| 8.0 | 6.1681e-003 | 1.62e+002 | 0.00615 | 0.26322   | 0.45404 | 0.99458 |
| 8.1 | 4.3725e-003 | 2.29e+002 | 0.00436 | 0.19519   | 0.35039 | 0.97905 |
| 8.2 | 2.8389e-003 | 3.52e+002 | 0.00283 | 0.13179   | 0.24527 | 0.92671 |
| 8.3 | 1.5270e-003 | 6.55e+002 | 0.00153 | 0.07334   | 0.14099 | 0.76741 |
| 8.4 | 4.0332e-004 | 2.48e+003 | 0.00040 | 0.01995   | 0.03948 | 0.32855 |

# **Appendix E: Area-Specific Hazard Information File: South Sandwich Area**

\_\_\_\_\_ : South\_Sandwich\_ha2\_21042008.doc File Created on : 21-Apr-2008 08:53:00 \_\_\_\_\_ SEISMIC HAZARD ASSESSMENT FOR SELECTED AREA FROM PRE-HISTORIC, HISTORIC, and INCOMPLETE DATA ORIGIN TIME OF PRE-HISTORIC EVENTS CAN BE UNCERTAIN FLOW OF SEISMIC EVENTS IS MODELED BY BAYESIAN-BASED EQUATIONS WHICH ACCOUNT UNCERTAINTY OF SEISMIC HAZARD MODEL HAZARD PARAMETERS BEATA AND LAMBDA ARE CALCULATED SIMULTANEOUSLY MAGNITUDE ERRORS ARE DISTRIBUTED NORMALLY RANGE OF MAGNITUDE INTEGRATION : < m\_min, m\_max > REGONAL MAXIMUM MAGNITUDE CAN BE ESTIMATED ACCORDING TO : (1) Gibowicz-Kijko (1994) (2) Gibowicz-Kijko-Bayes (3) Kijko-Sellevoll (1989) (4) Kijko-Sellevoll-Bayes (5) Tate-Pisarenko (6) Tate-Pisarenko-Bayes (7) Non-Parametric (Gaussian) procedure Theory of the HAZARD evaluation procedure is given in: "Estimation of earthquake hazard parameters from Incomplete data files", Part II. by A. Kijko and M.A. Sellevoll (1992) Bull. Seism. Soc. Am. vol.82, p.120-134. and "Parametric-Historic" procedure for probabilistic seismic hazard analysis. Part I. Assessment of maximum regional magnitude m\_max. by A. Kijko and G. Graham (1998), Pure App. Geophys, vol. 152, p.413-442. PROGRAM NAME: HA2 (H = Hazard; A = Area)WRITTEN: 15 AUG 1999 by A.KijkoREVISION 1: 21 MAR 2005 by A.KijkoREVISION 2: 25 JUL 2005 by J.RamperthapREVISION 3: 15 AUG 2005 by J.RamperthapREVISION 4: 22 JUN 2006 by A.Kijko VERSION : 2.05 \_\_\_\_\_ For more information, contact A.Kijko or M.Bejaichund or J.Ramperthap, Council for Geoscience, Geological Survey of South Africa Private Bag X112, Pretoria 0001, South Africa. Phone : +(27) 12 8411201, 8411454 or 8411180 Fax : +(27) 12 8411224 E-mail : kijko@geoscience.org.za, mayshree@geoscience.org.za or jasonr@geoscience.org.za NAME OF THE AREA: South Sandwich HISTORIC DATA: \*\*\*\*\* NAME OF HISTORIC DATA FILE: e

BEGINING OF HISTORIC DATA (Y-M-D) = 1973 1 1

| END<br>NUMBE<br>"THRE<br>STAND | R OF<br>SHOL | 'HIS<br>D <b>'</b> M | TORIC<br>AG. C | C EQ-s<br>DF HIS | 5<br>Stor | IC I | EQ-s | = | 1 | 8 |
|--------------------------------|--------------|----------------------|----------------|------------------|-----------|------|------|---|---|---|
| 1973                           | 10           | 6                    | 7.5            |                  |           |      |      |   |   |   |
| 1974                           | 11           | 20                   |                |                  |           |      |      |   |   |   |
| 1975                           | 11           |                      | 6.2            |                  |           |      |      |   |   |   |
| 1977                           | 8            |                      | 7.1            |                  |           |      |      |   |   |   |
| 1982                           | 5            |                      | 6.7            |                  |           |      |      |   |   |   |
| 1983                           | 10           | 22                   | 7.0            |                  |           |      |      |   |   |   |
| 1985                           | 5            | 15                   | 6.5            |                  |           |      |      |   |   |   |
| 1986                           | 4            | 14                   | 6.3            |                  |           |      |      |   |   |   |
| 1987                           | 1            | 30                   | 7.0            |                  |           |      |      |   |   |   |
| 1988                           | 11           | 1                    | 6.1            |                  |           |      |      |   |   |   |
| 1990                           | 5            | 9                    | 6.5            |                  |           |      |      |   |   |   |
| 1991                           | 12           | 27                   | 7.2            |                  |           |      |      |   |   |   |
| 1992                           | 11           | 21                   | 6.6            |                  |           |      |      |   |   |   |
| 1993                           | 3            | 10                   | 6.7            |                  |           |      |      |   |   |   |
| 1994                           | 7            | 25                   | 6.6            |                  |           |      |      |   |   |   |
| 1995                           | 4            |                      | 6.5            |                  |           |      |      |   |   |   |
| 1996                           | 1            | 22                   | 6.2            |                  |           |      |      |   |   |   |
| 1997                           | 10           | 5                    | 6.3            |                  |           |      |      |   |   |   |
| 1998                           | 8            | 29                   | 6.0            |                  |           |      |      |   |   |   |
| 1999                           | 10           |                      | 6.6            |                  |           |      |      |   |   |   |
| 2000                           | 11           |                      | 6.8            |                  |           |      |      |   |   |   |
| 2001                           | 4            | 13                   | 6.2            |                  |           |      |      |   |   |   |
| 2002                           | 11           |                      | 6.6            |                  |           |      |      |   |   |   |
| 2003                           | 9            | 30                   |                |                  |           |      |      |   |   |   |
| 2004                           | 9            | 6                    | 6.9            |                  |           |      |      |   |   |   |
| 2005                           | 1            | 8                    | 6.0            |                  |           |      |      |   |   |   |

LARGEST EQ IN HISTORIC CATALOG = 7.5

PROVISION FOR INDUCED SEISMICITY : NOT REQUIRED \_\_\_\_\_

\*\*\*

| TIME SPAN OF WHOLE CATALOG       | = | 32.02 [Y]     |
|----------------------------------|---|---------------|
| MAXIMUM MAGNITUDE IN THE CATALOG | = | 7.5           |
| SD OF MAXIMUM OBSERVED MAGNITUDE | = | 0.2           |
| MODEL UNCERTAINTY OF BETA        | = | 25 [per cent] |
| MODEL UNCERTAINTY OF LAMBDA      | = | 25 [per cent] |

CALCULATIONS ARE PERFORMED FOR MINIMUM MAGNITUDE Mmin = 5.50

PRIOR VALUE OF PARAMETER b = 1 SD OF PRIOR b-VALUE = 0.1

# RESULTS \*\*\*\*\*\*\*

BETA = 2.47 +- 0.22 (b = 1.07 +- 0.09) LAMBDA = 8.415 +- 2.140 (for Mmin = 5.50) Mmax = 7.64 + -0.24 (for Mmax obs. = 7.50 + -0.20)

Maximum Regional Magnitude Mmax is calculated according to procedure by Kijko-Sellevoll-Bayes

| Mag                      | Lambda                                                   | RP                                               | Prob                                     | (T = 1 50)                               | 100 10                                   | 000)                                     |
|--------------------------|----------------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 5.5<br>5.6<br>5.7<br>5.8 | 8.4153e+000<br>6.5678e+000<br>5.1409e+000<br>4.0347e+000 | 1.19e-001<br>1.52e-001<br>1.95e-001<br>2.48e-001 | 0.99884<br>0.99593<br>0.98841<br>0.97262 | 1.00000<br>1.00000<br>1.00000<br>1.00000 | 1.00000<br>1.00000<br>1.00000<br>1.00000 | 1.00000<br>1.00000<br>1.00000<br>1.00000 |
| 5.9<br>6.0               | 3.1738e+000<br>2.5014e+000                               | 3.15e-001<br>4.00e-001                           | 0.94472<br>0.90213                       | 1.00000                                  | 1.00000<br>1.00000                       | 1.00000                                  |
| 6.1                      | 1.9743e+000                                              | 5.07e-001                                        | 0.84459                                  | 1.00000                                  | 1.00000                                  | 1.00000                                  |
| 6.2<br>6.3               | 1.5598e+000<br>1.2326e+000                               | 6.41e-001<br>8.11e-001                           | 0.77425<br>0.69500                       | 1.00000<br>1.00000                       | 1.00000<br>1.00000                       | 1.00000<br>1.00000                       |
| 6.4<br>6.5               | 9.7358e-001<br>7.6785e-001                               | 1.03e+000<br>1.30e+000                           | 0.61136                                  | 1.00000                                  | 1.00000                                  | 1.00000                                  |
| 6.6<br>6.7               | 6.0395e-001<br>4.7298e-001                               | 1.66e+000<br>2.11e+000                           | 0.44724<br>0.37257                       | 1.00000                                  | 1.00000                                  | 1.00000                                  |

| 6.8<br>6.9 | 3.6801e-001<br>2.8365e-001 | 2.72e+000<br>3.53e+000 | 0.30500 | 1.00000<br>0.99996 | 1.00000 | 1.00000 |
|------------|----------------------------|------------------------|---------|--------------------|---------|---------|
| 7.0        | 2.1566e-001                | 4.64e+000              | 0.19283 | 0.99974            | 1.00000 | 1.00000 |
| 7.1        | 1.6071e-001                | 6.22e+000              | 0.14778 | 0.99851            | 0.99999 | 1.00000 |
| 7.2        | 1.1619e-001                | 8.61e+000              | 0.10932 | 0.99296            | 0.99984 | 1.00000 |
| 7.3        | 8.0020e-002                | 1.25e+001              | 0.07672 | 0.97187            | 0.99848 | 1.00000 |
| 7.4        | 5.0565e-002                | 1.98e+001              | 0.04923 | 0.90438            | 0.98765 | 1.00000 |
| 7.5        | 2.6519e-002                | 3.77e+001              | 0.02615 | 0.72025            | 0.91403 | 1.00000 |
| 7.6        | 6.8404e-003                | 1.46e+002              | 0.00682 | 0.28710            | 0.48820 | 0.99664 |

# **Appendix F: Area-Specific Hazard Information File: Sumatra Area**

\_\_\_\_\_ File : Sumatra\_ha2\_21042008.doc Created on : 21-Apr-2008 08:47:29 \_\_\_\_\_ SEISMIC HAZARD ASSESSMENT FOR SELECTED AREA FROM PRE-HISTORIC, HISTORIC, and INCOMPLETE DATA ORIGIN TIME OF PRE-HISTORIC EVENTS CAN BE UNCERTAIN FLOW OF SEISMIC EVENTS IS MODELED BY BAYESIAN-BASED EQUATIONS WHICH ACCOUNT UNCERTAINTY OF SEISMIC HAZARD MODEL HAZARD PARAMETERS BEATA AND LAMBDA ARE CALCULATED SIMULTANEOUSLY MAGNITUDE ERRORS ARE DISTRIBUTED NORMALLY RANGE OF MAGNITUDE INTEGRATION : < m\_min, m\_max > REGONAL MAXIMUM MAGNITUDE CAN BE ESTIMATED ACCORDING TO : (1) Gibowicz-Kijko (1994) (2) Gibowicz-Kijko-Bayes (3) Kijko-Sellevoll (1989) (4) Kijko-Sellevoll-Bayes (5) Tate-Pisarenko (6) Tate-Pisarenko-Bayes (7) Non-Parametric (Gaussian) procedure Theory of the HAZARD evaluation procedure is given in: "Estimation of earthquake hazard parameters from Incomplete data files", Part II. by A. Kijko and M.A. Sellevoll (1992) Bull. Seism. Soc. Am. vol.82, p.120-134. and "Parametric-Historic" procedure for probabilistic seismic hazard analysis. Part I. Assessment of maximum regional magnitude m\_max. by A. Kijko and G. Graham (1998), Pure App. Geophys, vol. 152, p.413-442. \_\_\_\_\_ PROGRAM NAME : HA2 (H = Hazard; A = Area) InternationInternationInternationInternationWRITTEN: 15 AUG 1999 by A.KijkoREVISION 1: 21 MAR 2005 by A.KijkoREVISION 2: 25 JUL 2005 by J.RamperthapREVISION 3: 15 AUG 2005 by J.RamperthapREVISION 4: 22 JUN 2006 by A.Kijko VERSION : 2.05 ------\_\_\_\_\_ For more information, contact A.Kijko or M.Bejaichund or J.Ramperthap, Council for Geoscience, Geological Survey of South Africa Private Bag X112, Pretoria 0001, South Africa. Phone : +(27) 12 8411201, 8411454 or 8411180 : +(27) 12 8411224 Fax E-mail : kijko@geoscience.org.za, mayshree@geoscience.org.za or jasonr@geoscience.org.za \_\_\_\_\_ NAME OF THE AREA: Sumatra HISTORIC DATA: NAME OF HISTORIC DATA FILE: e

| STANL                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     | EQ-s =                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                      | )ARD EF                                                                                                                                                                                                                                                                                                                                     | ROR O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⊦ EQ-e                                                                                                                                                                                       | MAGNII                                                                                                                                                                              | UDE =                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1973                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                             | 4 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 6 2                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1978                                                                                                                                                 | 5 2                                                                                                                                                                                                                                                                                                                                         | 23 0.<br>24 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 9 2                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1981                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             | 8 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1982                                                                                                                                                 | 1 2                                                                                                                                                                                                                                                                                                                                         | 20 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1983                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                           | 4 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1984                                                                                                                                                 | 11 1                                                                                                                                                                                                                                                                                                                                        | L7 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 12 2                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 6 1<br>4 2                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1987                                                                                                                                                 | 8 1                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 7 2                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 11 1                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                             | 2 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1993                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             | 4 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1994                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1995                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             | 8 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1996                                                                                                                                                 | 10 1                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1997                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             | L7 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 1998                                                                                                                                                 | 4<br>12 2                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 2000                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             | 4 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 2000                                                                                                                                                 | 2 1                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 2002                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 2003                                                                                                                                                 | 5 1                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 2004                                                                                                                                                 | 12 2                                                                                                                                                                                                                                                                                                                                        | 26 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| 2005                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                           | 1 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | -                                                                    |                                                                                                 |                                                                        |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              | * * *                                                                                                                                                                               |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | -                                                                    |                                                                                                 |                                                                        |
| TIME                                                                                                                                                 | SPAN (                                                                                                                                                                                                                                                                                                                                      | of who                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LE CATZ                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                      |                                                                                                 |                                                                        |
| MAXIN                                                                                                                                                | IUM MAG                                                                                                                                                                                                                                                                                                                                     | GNITUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E IN TH                                                                                                                                                                                      | ALOG<br>HE CATA                                                                                                                                                                     | LOG                                                                                                                                               | = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.09 [                                                                                                   |                                                                      |                                                                                                 |                                                                        |
| MAXIN                                                                                                                                                | IUM MAG                                                                                                                                                                                                                                                                                                                                     | GNITUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E IN TH                                                                                                                                                                                      | ALOG<br>HE CATA                                                                                                                                                                     |                                                                                                                                                   | = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.09 [                                                                                                   |                                                                      |                                                                                                 |                                                                        |
| MAXIN<br>SD OE<br>MODEI                                                                                                                              | IUM MAG<br>MAXIN<br>UNCER                                                                                                                                                                                                                                                                                                                   | GNITUD<br>4UM OB<br>RTAINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E IN TH<br>SERVED<br>Y OF BI                                                                                                                                                                 | ALOG<br>HE CATA<br>MAGNII<br>ETA                                                                                                                                                    | LOG<br>UDE                                                                                                                                        | = 3<br>= 9<br>= 0<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.09 [<br>).2<br>25 [per                                                                                  | Y]<br>cent                                                           |                                                                                                 |                                                                        |
| MAXIN<br>SD OE<br>MODEI                                                                                                                              | IUM MAG<br>MAXIN<br>UNCER                                                                                                                                                                                                                                                                                                                   | GNITUD<br>4UM OB<br>RTAINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E IN TH<br>SERVED                                                                                                                                                                            | ALOG<br>HE CATA<br>MAGNII<br>ETA                                                                                                                                                    | LOG<br>UDE                                                                                                                                        | = 3<br>= 9<br>= 0<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.09 [<br>.2                                                                                              | Y]<br>cent                                                           |                                                                                                 |                                                                        |
| MAXIN<br>SD OE<br>MODEI<br>MODEI                                                                                                                     | IUM MAC<br>MAXIN<br>UNCEN<br>UNCEN                                                                                                                                                                                                                                                                                                          | GNITUD<br>4UM OB<br>RTAINT<br>RTAINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E IN TI<br>SERVED<br>Y OF BI<br>Y OF LJ                                                                                                                                                      | ALOG<br>HE CATA<br>MAGNII<br>ETA<br>AMBDA                                                                                                                                           | LOG<br>UDE                                                                                                                                        | = 3<br>= 9<br>= 0<br>= 2<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.09 [<br>]<br>.2<br>5 [per<br>5 [per                                                                     | Y]<br>cent<br>cent                                                   |                                                                                                 | .50                                                                    |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF                                                                                                   | MUM MAG<br>MAXIN<br>UNCEN<br>UNCEN                                                                                                                                                                                                                                                                                                          | GNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E IN TI<br>SERVED<br>Y OF BI<br>Y OF Li<br>PERFOI<br>ARAMETI                                                                                                                                 | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC                                                                                                                                | LOG<br>UDE                                                                                                                                        | = 3<br>= 9<br>= 0<br>= 2<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.09 [<br>].2<br>55 [per<br>155 [per                                                                      | Y]<br>cent<br>cent                                                   | :]                                                                                              | .50                                                                    |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF                                                                                                   | MUM MAG<br>MAXIN<br>UNCER<br>JLATION                                                                                                                                                                                                                                                                                                        | GNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E IN TH<br>SERVED<br>Y OF BH<br>Y OF LA<br>PERFON<br>ARAMETH<br>LUE<br>RI                                                                                                                    | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC                                                                                                                                | LOG<br>UDE<br>PR MINIM                                                                                                                            | = 3<br>= 9<br>= 0<br>= 2<br>= 2<br>IUM M<br>= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.09 [<br>].2<br>55 [per<br>155 [per                                                                      | Y]<br>cent<br>cent                                                   | :]                                                                                              | .50                                                                    |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBE                                                                         | AUM MAG<br>MAXIN<br>UNCEL<br>UNCEL<br>UNCEL<br>ULATION<br>R VALUH<br>F PRIOF<br>= 2 .<br>DA = 9                                                                                                                                                                                                                                             | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P<br>R b-VA<br>.36 +-<br>.183 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF LZ<br>PERFOI<br>ARAMETH<br>LUE<br>RI<br>*****<br>0.20<br>- 2.110                                                                                        | ALOG<br>HE CATA<br>MACNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for                                                                               | LOG<br>UDE<br>R MINIM<br>**<br>.03 +-<br>Mmin =                                                                                                   | = 3<br>= 9<br>= 0<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 0<br>= 0<br>= 0<br>= 0<br>= 0<br>= 0<br>= 0<br>= 0<br>= 0<br>= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.09 [<br>.2<br>55 [per<br>55 [per<br>MAGNITU<br>.1                                                      | Y]<br>cent<br>cent                                                   | :]                                                                                              | .50                                                                    |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBE<br>Mmax                                                                 | AUM MAG<br>MAXIN<br>UNCEL<br>UNCEL<br>ULATION<br>R VALUE<br>PRIOF<br>PRIOF<br>= 2.<br>DA = 9.<br>= 9.                                                                                                                                                                                                                                       | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P<br>R b-VA<br>.36 +-<br>.183 +<br>.20 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF LJ<br>PERFOI<br>ARAMETH<br>LUE<br>RI<br>*****<br>0.20<br>- 2.110<br>for Mma                                                                             | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for<br>ax obs.                                                                    | LOG<br>UDE<br>R MINIM<br>**<br>.03 +-                                                                                                             | = 3<br>= 9<br>= 2<br>= 2<br>= 2<br>= 2<br>UUM M<br>= 1<br>= 0<br>0.09<br>5.50<br>+-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.09 [<br>).2<br>55 [per<br>15 [per<br>14GNITU<br>1                                                       | Y]<br>cent<br>cent                                                   | :]                                                                                              | .50                                                                    |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBI<br>Mmax<br>Maxin<br>accor                                               | MUM MAG<br>MAXIN<br>UNCEL<br>UNCEL<br>UNCEL<br>ULATION<br>R VALUE<br>PRIOF<br>PRIOF<br>= 2.<br>OA = 9<br>= 9.<br>num Reg                                                                                                                                                                                                                    | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>IS ARE<br>E OF P<br>R b-VA<br>.36 +-<br>.183 +<br>.20 (<br>gional<br>co pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF LJ<br>PERFOI<br>ARAMETH<br>LUE<br>RH<br>****<br>0.20<br>- 2.110<br>for Mma<br>Magnit<br>cedure                                                          | ALOG<br>HE CATA<br>MACNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for<br>ax obs.<br>tude Mm<br>by Kij                                               | LOG<br>UDE<br>R MINIM<br>**<br>Mmin =<br>= 9.00<br>ax is c<br>ko-Sell                                                                             | = 3<br>= 9<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.09 [<br>.2<br>5 [per<br>15 [per<br>MAGNITU<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | Y]<br>cent<br>DE Mm                                                  | :]<br>nin = 5.                                                                                  |                                                                        |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBI<br>Mmax<br>Maxin<br>accor                                               | AUM MAG<br>MAXIN<br>UNCEL<br>UNCEL<br>ULATION<br>R VALUE<br>PRIOF<br>PRIOF<br>= 2.<br>DA = 9.<br>= 9.<br>num Reg<br>cding t                                                                                                                                                                                                                 | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P<br>R b-VA<br>.36 +-<br>.183 +<br>.20 (<br>gional<br>co pro<br>asses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF LJ<br>PERFOI<br>ARAMETH<br>LUE<br>RH<br>****<br>0.20<br>- 2.110<br>for Mma<br>Magnit<br>cedure                                                          | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for<br>ax obs.<br>tude Mm<br>by Kij<br>by chc                                     | LOG<br>UDE<br>R MINIM<br>**<br>.03 +-<br>Mmin =<br>= 9.00<br>ax is c<br>ko-Sell<br>sen prc                                                        | = 3<br>= 0<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.09 [<br>).2<br>55 [per<br>55 [per<br>1AGNITU<br>0.1<br>0.20)<br>0.20)<br>1lated<br>1-Baye<br>1re was   | Y]<br>cent<br>DE Mr<br>s<br>UNSI                                     | :]<br>nin = 5.<br>JCCESFUI                                                                      | L                                                                      |
| MAXIN<br>SD OF<br>MODEL<br>MODEL<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBI<br>Mmax<br>Maxin<br>accor                                               | AUM MAG<br>MAXIN<br>UNCEL<br>UNCEL<br>ULATION<br>R VALUE<br>PRIOF<br>PRIOF<br>= 2.<br>DA = 9.<br>= 9.<br>num Reg<br>cding t                                                                                                                                                                                                                 | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>IS ARE<br>E OF P<br>R b-VA<br>.36 +-<br>.183 +<br>.20 (<br>gional<br>co pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF LJ<br>PERFOI<br>ARAMETH<br>LUE<br>RH<br>****<br>0.20<br>- 2.110<br>for Mma<br>Magnit<br>cedure                                                          | ALOG<br>HE CATA<br>MACNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for<br>ax obs.<br>tude Mm<br>by Kij                                               | LOG<br>UDE<br>R MINIM<br>**<br>.03 +-<br>Mmin =<br>= 9.00<br>ax is c<br>ko-Sell<br>sen prc                                                        | = 3<br>= 0<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.09 [<br>.2<br>5 [per<br>15 [per<br>MAGNITU<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | Y]<br>cent<br>DE Mr<br>s<br>UNSI                                     | :]<br>nin = 5.<br>JCCESFUI                                                                      |                                                                        |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBE<br>Mmax<br>Maxin<br>accor<br>Atten<br>ag                                | AUM MAG<br>MAXIN<br>UNCEL<br>UNCEL<br>ULATION<br>R VALUE<br>PRIOF<br>PRIOF<br>= 2.<br>DA = 9.<br>= 9.<br>num Reg<br>cding t                                                                                                                                                                                                                 | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P<br>R b-VA<br>.36 +-<br>.183 +<br>.20 (<br>gional<br>co pro<br>asses<br>mbda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF LJ<br>PERFOI<br>ARAMETH<br>LUE<br>RI<br>****<br>0.20<br>- 2.114<br>for Mma<br>Magnit<br>cedure<br>s Mmax<br>1.09                                        | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for<br>ax obs.<br>tude Mm<br>by Kij<br>by chc<br>RP<br>9e-001                     | LOG<br>UDE<br>R MINIM<br>**<br>.03 +-<br>Mmin =<br>= 9.00<br>tax is c<br>ko-Sell<br>sen prc<br>P<br>0.9999                                        | = 3 = -3 = -2 = -2 = -2 = -2 = -2 = -2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.09 [<br>).2<br>55 [per<br>55 [per<br>1AGNITU<br>0.1<br>0.20)<br>0.20)<br>1lated<br>1-Baye<br>1re was   | Y]<br>cent<br>DE Mm<br>s<br>UNSU<br>50                               | )<br>nin = 5.<br>JCCESFUI<br>100<br>1.00000                                                     | L<br>1000)<br>0 1.00000                                                |
| MAXIN<br>SD OE<br>MODEI<br>MODEI<br>CALCU<br>PRIOF<br>SD OE<br>BETA<br>LAMBE<br>Mmax<br>Maxin<br>accor<br>Atten<br>ag<br>.5                          | AUM MAG<br>MAXIN<br>UNCER<br>UNCER<br>UNCER<br>ULATION<br>R VALUA<br>P PRIOF<br>PRIOF<br>= 2.<br>() A = 9.<br>= 9.<br>num Rec<br>cding t<br>hapt to<br>Lar<br>9.183(<br>7.262)                                                                                                                                                              | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P<br>R b-VA<br>.36 +-<br>.183 +<br>.20 (<br>gional<br>co pro<br>asses<br>nbda<br>0e+000<br>5e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF L/<br>PERFOI<br>ARAMETH<br>LUE<br>RI<br>*****<br>0.20<br>- 2.111<br>for Mma<br>Magnit<br>cedure<br>s Mmax<br>1.00<br>1.33                               | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>********<br>(b = 1<br>6 (for<br>ax obs.<br>tude Mm<br>by Kij<br>by chc<br>RP<br>9e-001<br>8e-001          | LOG<br>UDE<br>R MINIM<br>**<br>.03 +-<br>Mmin =<br>= 9.00<br>wax is c<br>ko-Sell<br>sen prc<br>P<br>0.999<br>0.997                                | = 3 = 9 = 0 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.09 [<br>.2<br>5 [per<br>15 [per<br>14GNITU<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | Y]<br>cent<br>cent<br>DE Mr<br>s<br>uNSU<br>50<br>00<br>00           | <pre>:]<br/>nin = 5.<br/>JCCESFUI<br/>100<br/>1.00000<br/>1.00000</pre>                         | L<br>1000)<br>D 1.00000<br>D 1.00000                                   |
| MAXIN<br>SD OF<br>MODEL<br>MODEL<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBE<br>Mmax<br>Maxin<br>accor<br>Atten<br>ag<br>.5<br>.6<br>.7              | AUM MAG<br>MAXIN<br>UNCER<br>UNCER<br>ULATION<br>R VALUE<br>PRIOF<br>PRIOF<br>= 2.<br>DA = 9.<br>Aum Reg<br>rding t<br>hpt to<br>Lar<br>9.1833<br>7.2620<br>5.7625                                                                                                                                                                          | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P<br>R b-VA<br>.36 +-<br>.183 +<br>.20 (<br>gional<br>co pro<br>asses<br>mbda<br>0e+000<br>Se+000<br>Se+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF LJ<br>PERFOI<br>ARAMETH<br>LUE<br>RI<br>*****<br>0.20<br>- 2.110<br>for Mma<br>Magnit<br>cedure<br>s Mmax<br>1.00<br>1.33<br>1.74                       | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for<br>ax obs.<br>tude Mm<br>by Kij<br>by chc<br>RP<br>9e-001<br>8e-001<br>4e-001 | LOG<br>UDE<br>R MINIM<br>**<br>.03 +<br>Mmin =<br>= 9.00<br>ax is c<br>ko-Sell<br>sen prc<br>P<br>0.999<br>0.997<br>0.992                         | = 3 = 9 = 0 $= 2 = 2 = 2 = 2$ $= 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.09 [<br>.2<br>.5 [per<br>.5 [per<br>.4GNITU<br><br><br><br><br><br><br>                                | Y]<br>cent<br>DE Mr<br>s<br>UNSU<br>50<br>00<br>00                   | JCCESFUI<br>100<br>1.00000<br>1.00000<br>1.00000                                                | L<br>1000)<br>D 1.00000<br>D 1.00000<br>D 1.00000                      |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBI<br>Mmax<br>Maxin<br>accor<br>Atten<br>ag<br>.5<br>.6<br>.7<br>.8        | AUM MAG         MAXIN         MAXIN         UNCEL         PRIOF         PRIOF         PRIOF         apt to         Lar         9.1830         7.262         5.7625         4.5876 | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>NS ARE<br>E OF P<br>C OF P | E IN TH<br>SERVED<br>Y OF BJ<br>Y OF LJ<br>PERFON<br>ARAMETH<br>LUE<br>RI<br>*****<br>0.20<br>- 2.111<br>for Mma<br>Magnit<br>cedure<br>s Mmax<br>1.03<br>1.37<br>2.13                       | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for<br>ax obs.<br>tude Mm<br>by Kij<br>by chc<br>RP<br>9e-001<br>8e-001<br>8e-001 | LOG<br>UDE<br>R MINIM<br>**<br>.03 +<br>Mmin =<br>= 9.00<br>lax is c<br>ko-Sell<br>sen pro<br>0.992<br>0.992<br>0.992<br>0.992<br>0.982           | = 3 = - 3 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = 2 = - 2 = 2 = 2 = | 22.09 [<br>.2<br>.5 [per<br>.5 [per<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1           | Y]<br>cent<br>DE Mr<br>50<br>00<br>00<br>00<br>00                    | <pre>:]<br/>nin = 5.<br/>JCCESFUI<br/>100<br/>1.00000<br/>1.00000<br/>1.00000<br/>1.00000</pre> | 1000)<br>0 1.00000<br>0 1.00000<br>0 1.00000<br>0 1.00000              |
| MAXIN<br>SD OF<br>MODEI<br>MODEI<br>CALCU<br>PRIOF<br>SD OF<br>BETA<br>LAMBE<br>Mmax<br>Maxin<br>accor<br>Atten<br>lag<br>.5<br>.6<br>.7<br>.8<br>.9 | AUM MAG<br>MAXIN<br>UNCER<br>UNCER<br>ULATION<br>R VALUE<br>PRIOF<br>PRIOF<br>= 2.<br>DA = 9.<br>Aum Reg<br>rding t<br>hpt to<br>Lar<br>9.1833<br>7.2620<br>5.7625                                                                                                                                                                          | SNITUD<br>AUM OB<br>RTAINT<br>RTAINT<br>IS ARE<br>S OF P<br>C OF P | E IN TH<br>SERVED<br>Y OF BI<br>Y OF L<br>PERFON<br>ARAMETH<br>LUE<br>RI<br>*****<br>0.20<br>- 2.11<br>for Mma<br>Magnit<br>cedure<br>s Mmax<br>1.09<br>1.37<br>1.37<br>1.37<br>2.14<br>2.73 | ALOG<br>HE CATA<br>MAGNIT<br>ETA<br>AMBDA<br>RMED FC<br>ER b<br>ESULTS<br>*******<br>(b = 1<br>6 (for<br>ax obs.<br>tude Mm<br>by Kij<br>by chc<br>RP<br>9e-001<br>8e-001<br>4e-001 | LOG<br>UDE<br>R MINIM<br>**<br>.03 +-<br>Mmin =<br>= 9.00<br>tax is c<br>ko-Sell<br>sen prc<br>0.999<br>0.999<br>0.997<br>0.992<br>0.982<br>0.963 | = 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.09 [<br>.2<br>5 [per<br>5 [per<br>MAGNITU<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1  | Y]<br>cent<br>DE Mm<br>s<br>UNSU<br>50<br>00<br>00<br>00<br>00<br>00 | JCCESFUI<br>100<br>1.00000<br>1.00000<br>1.00000                                                | 1000)<br>0 1.00000<br>0 1.00000<br>0 1.00000<br>0 1.00000<br>0 1.00000 |

| 6.1 | 2.3568e+000 | 4.24e-001 | 0.88904 | 1.00000 | 1.00000 | 1.00000 |
|-----|-------------|-----------|---------|---------|---------|---------|
| 6.2 | 1.8983e+000 | 5.27e-001 | 0.83369 | 1.00000 | 1.00000 | 1.00000 |
| 6.3 | 1.5331e+000 | 6.52e-001 | 0.76871 | 1.00000 | 1.00000 | 1.00000 |
| 6.4 | 1.2414e+000 | 8.06e-001 | 0.69747 | 1.00000 | 1.00000 | 1.00000 |
| 6.5 | 1.0076e+000 | 9.92e-001 | 0.62360 | 1.00000 | 1.00000 | 1.00000 |
| 6.6 | 8.1969e-001 | 1.22e+000 | 0.55039 | 1.00000 | 1.00000 | 1.00000 |
| 6.7 | 6.6828e-001 | 1.50e+000 | 0.48040 | 1.00000 | 1.00000 | 1.00000 |
| 6.8 | 5.4595e-001 | 1.83e+000 | 0.41541 | 1.00000 | 1.00000 | 1.00000 |
| 6.9 | 4.4684e-001 | 2.24e+000 | 0.35642 | 1.00000 | 1.00000 | 1.00000 |
| 7.0 | 3.6634e-001 | 2.73e+000 | 0.30386 | 1.00000 | 1.00000 | 1.00000 |
| 7.1 | 3.0079e-001 | 3.32e+000 | 0.25769 | 0.99998 | 1.00000 | 1.00000 |
| 7.2 | 2.4728e-001 | 4.04e+000 | 0.21760 | 0.99989 | 1.00000 | 1.00000 |
| 7.3 | 2.0349e-001 | 4.91e+000 | 0.18308 | 0.99962 | 1.00000 | 1.00000 |
| 7.4 | 1.6758e-001 | 5.97e+000 | 0.15356 | 0.99882 | 0.99999 | 1.00000 |
| 7.5 | 1.3806e-001 | 7.24e+000 | 0.12844 | 0.99678 | 0.99995 | 1.00000 |
| 7.6 | 1.1374e-001 | 8.79e+000 | 0.10715 | 0.99230 | 0.99981 | 1.00000 |
| 7.7 | 9.3662e-002 | 1.07e+001 | 0.08916 | 0.98355 | 0.99937 | 1.00000 |
| 7.8 | 7.7046e-002 | 1.30e+001 | 0.07398 | 0.96831 | 0.99814 | 1.00000 |
| 7.9 | 6.3269e-002 | 1.58e+001 | 0.06119 | 0.94424 | 0.99516 | 1.00000 |
| 8.0 | 5.1822e-002 | 1.93e+001 | 0.05042 | 0.90942 | 0.98877 | 1.00000 |
| 8.1 | 4.2292e-002 | 2.36e+001 | 0.04136 | 0.86276 | 0.97654 | 1.00000 |
| 8.2 | 3.4342e-002 | 2.91e+001 | 0.03372 | 0.80428 | 0.95545 | 1.00000 |
| 8.3 | 2.7698e-002 | 3.61e+001 | 0.02729 | 0.73505 | 0.92227 | 1.00000 |
| 8.4 | 2.2135e-002 | 4.52e+001 | 0.02188 | 0.65704 | 0.87421 | 1.00000 |
| 8.5 | 1.7468e-002 | 5.72e+001 | 0.01731 | 0.57276 | 0.80946 | 0.99999 |
| 8.6 | 1.3546e-002 | 7.38e+001 | 0.01345 | 0.48489 | 0.72756 | 0.99995 |
| 8.7 | 1.0245e-002 | 9.76e+001 | 0.01019 | 0.39602 | 0.62954 | 0.99964 |
| 8.8 | 7.4605e-003 | 1.34e+002 | 0.00743 | 0.30840 | 0.51769 | 0.99781 |
| 8.9 | 5.1085e-003 | 1.96e+002 | 0.00509 | 0.22385 | 0.39520 | 0.98813 |
| 9.0 | 3.1184e-003 | 3.21e+002 | 0.00311 | 0.14373 | 0.26570 | 0.94210 |
| 9.1 | 1.4317e-003 | 6.98e+002 | 0.00143 | 0.06894 | 0.13284 | 0.74621 |
| 9.2 | 2.2204e-016 | 4.50e+015 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
|     |             |           |         |         |         |         |

# **APPENDIX D:**

# Council for Geoscience Report: Potential Sources of Tsunami Along the South African Coast

# POTENTIAL SOURCES OF TSUNAMI ALONG THE SOUTH AFRICAN COAST

By: D.L. Roberts

CGS Report Number: 2008 - 0220

© ESKOM NSIP

# CONFIDENTIAL

D. L. Roberts Council for Geoscience Western Cape Unit P.O. Box 572 Bellville 7535

Tel:021-948-4754Fax:021-948-8788E-mail:droberts@geoscience.org.zaWebsite:http://www.geoscience.org.za

|          | COUNCIL FOR GEOSCIENCE<br>(Western Cape Unit)                 | REFERENCE:<br>CGS REPORT<br>2008 - 0220 |
|----------|---------------------------------------------------------------|-----------------------------------------|
|          | NUCLEAR SITING INVESTIGATION PROGRAMME                        | REVISION<br>1                           |
| COPY No. | POTENTIAL SOURCES OF TSUNAMI ALONG THE<br>SOUTH AFRICAN COAST | DATE OF RELEASE:<br>19/09/2008          |
|          |                                                               | CONFIDENTIAL                            |

|                  |              |              | REVIEWED BY:   |
|------------------|--------------|--------------|----------------|
| DR. D.L. ROBERTS |              |              |                |
| ACCEPTED BY:     | ACCEPTED BY: | ACCEPTED BY: | AUTHORISED BY: |

| REVISION | DESCRIPTION OF REVISION                         | DATE                     | MINOR<br>REVISIONS<br>APPROVAL |
|----------|-------------------------------------------------|--------------------------|--------------------------------|
| 0<br>1   | Minor changes on request by Stephan Luger, PRDW | 09-09-2008<br>19-09-2008 |                                |

#### Index

- 1. Scope of the Study
- 2. Introduction
- 3. Coastal Seismicity
- 4. Potential Sources of Tsunamigenesis
- 4.1 Cosmic impact
- 4.2 Remote Submarine Seismicity
- 4.3 Submarine slides and slumps
- 4.3.1 Global events
- 4.3.2 South African submarine slumps
- 4.3.3 Tsunami risk from submarine slumps
- 4.3.4. Slump generated tsunami or meteotsunami?
- 4.4 Volcanic activity
- 4.5 Terrestrial landslides and rockfalls
- 5. Tsunami Prediction and Warning Time
- 6. Mitigation/Adaptation
- 7. Summary and Recommendations
- 8. References

#### Figures

Figure 1. Locality map showing

*Figure 2.* Global DEM showing potential sources of tsunami along the South African coast.

*Figure 3.* Dwarskersbos on the west coast (see Figure 1 for location), scene of a possible tsunami in 1969.

Figure 4. Tide gauge records for Cape Town, Saldanha and Port Nolloth

Figure 5. The residual values of expected/measured tidal data from the west coast.

Figure 6. An example of atmospheric gravity waves enhanced by sunglint conditions.

*Figure 7.* Five minute interval data from SAWS's automatic weather station at Port Nolloth showing atmospheric gravity waves.

*Figure 8.* Tide gauge records for Coega Harbour on the southeast coast for the 2004 Sumatran seismogenic tsunami.

*Figure 9.* DEM showing the disposition of steep hillslopes comprising highly fractured and jointed Palaeozoic quartzites, possible sources of tsunamigenic rockfalls.

*Figure 10.* Precipitous cliffs comprising highly fractured and jointed Palaeozoic quartzites at the entrance to Hout Bay.

Figure 11. Major late Holocene landslide into the estuary of the Knysna River.

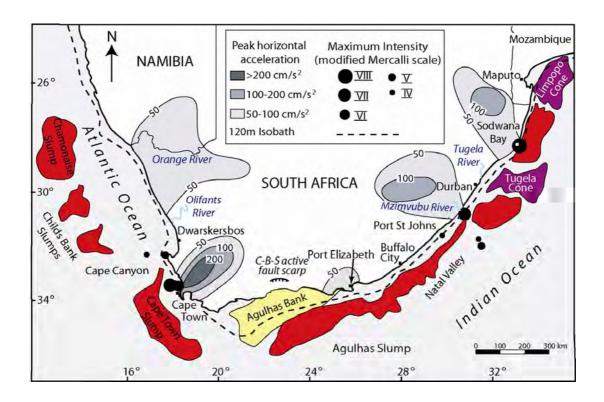
## 1. Scope of the Study

The Council for Geoscience was requested by Prestedge Retief Dresner Wijnberg (Pty) Ltd to provide a report on the potential sources of tsunami along the coastline of South Africa. Special focus is on the west and southern coasts where planned nuclear facilities are to be sited. Sources of significant tsunamigenic capacity on global as well as regional and local scales are considered. The study specifically addresses the following questions:

- What is the relative magnitude of the threat posed by the various sources of tsunami?
- What segments of the coastline are at highest risk?
- To what extent can tsunami be predicted?
- What is the warning period(s) for tsunami?
- What actions can be taken in mitigation/adaptation to the threat posed by tsunami?

## 2. Introduction

The catastrophic tsunami of 26th December 2004 was caused by the massive earthquake on the Sumatra-Andaman Subduction Zone with moment magnitude (Mw) ~9.3. In total about 160 000 people were killed and more than 1 million displaced in South Asia and East Africa, reaffirming the devastating character of these phenomena (Iwan, 2006; Synolakis et al., 2007). Over the past few decades, several other significant global to regional scale tsunami have been recorded (Geist, 1998; Iwan, 2006). None approached the severity of the Sumatra event, but nonetheless have served to further emphasise the threat.


Numerical modelling designed to predict the sources, frequency and amplitude of tsunami that could impinge on the southern African coastal belt has been undertaken (Hartnady, 2005; Hartnady and Okal, in press). South Africa also participates in the

Intergovernmental Coordination Group with respect to the Indian Ocean Tsunami Warning and Mitigation System (IOTWS) initiative (A. Kijko, pers. comm.). The chief focus of previous work in southern Africa has been the threat represented by remote submarine seismicity, volcanicity and submarine slumps along the east coast (Kijko, pers. comm.; Hartnady and Okal, in press). This study extends and supplements this work by a consideration of submarine slumps along the west and southern coasts, in addition to cosmic impacts and the tsunamigenic threat posed by major rockfalls and landslides. The relationship between the coastal seismic record and submarine slumps in particular is examined.

#### 3. Coastal Seismicity

Since earthquakes, whether directly or indirectly are the major trigger of tsunami (e.g. Salamon et al., 2007), it is appropriate to briefly review the seismic setting and history of events along the southern African coastline. The stable intraplate, trailing edge tectonoseismic model determined for the southern African coastline (Fig. 1) dictates general seismic quiescence (De Swardt, and Bennet, 1974; De Beer, 1983; Goedhart, 2007). However, in common with similar settings elsewhere a low frequency, low intensity background seismicity prevails (Fernandez and Shapiro, 1989; Theron, 1974). The current neotectonism is inherited from the complex early geodynamic history of southern Africa and modern seismicity tends to be concentrated along ancient lineaments of crustal weakness (De Beer, 1983; Hälbich, 1983; Partridge and Maud, 2000; Goedhardt, 2007).

Figure 1 summarises the modern and historic distribution of seismicity up to 1998 and prediction of future risk. A region of enhanced seismic activity centres around Cape Town, corresponding with the intense fracturing of the Cape Syntaxis northeast of this city, where faults are capable of at least Mw 6.3 events (Theron, 1974). Along the east coast two regions of notably enhanced seismic activity are apparent. In the south the zone of activity around the Mzimvubu River may be linked with the Mellville Thrust in the Namaqua-Natal tectonic province and shear zones of the Margate Terrain described by Thomas (1989). In the north around Sodwana Bay, the major Tugela Thrust Front is also spatially linked with modern seismicity (Fig. 1). In both instances, the onshore areas of enhanced seismicity coincide with offshore counterparts.



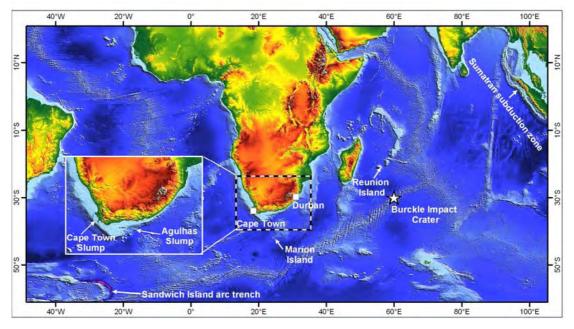
**Figure 1.** Locality map showing offshore slumps and historical seismicity, illustrated by the contours of 10% probability of exceeding peak horizontal ground acceleration within 50 years (data from Fernandez and Shapiro, 1989). Historical offshore earthquake magnitude and location is indicated by solid circles. The slumps occur further offshore along the west coast owing to the greater width of the continental shelf.

The historic and modern seismic record is currently being supplemented by deterministic palaeoseismic data (Goedhardt, 2007). Attention has focussed on the Ceres-Baviaanskloof-St. Croix fault system (C-B-S) that traverses the Cape Fold Belt for ~700 kilometres (Fig. 1), from Ceries in the west to Port Elizabeth in the east, before extending offshore to merge with the Agulhas-Falkland fracture zone (Goedhardt, 2007). West of Port Elizabeth, a scarp several metres high marks surface rupture along the C-B-S Fault recording a major early Holocene (~10 ka) seismic event of ~Mw7 (Hill, 1975; Goedhardt, 2007). Isostatic imbalances along the eastern segment of the fault may in the future give rise to large damaging earthquakes with accompanying surface rupture. Thus the entire southern coast is vulnerable to future seismicity (Goedhardt, 2007) and

the risk is probably higher than indicated by Fernandez and Shapiro (1989) as shown in Figure 1.

# 4. Potential Sources of Tsunamigenesis

## 4.1 Cosmic impact


The catastrophic tsunamigenic capability of cosmic impacts is well documented e.g. the K-T event on the Yucatan Peninsula, which caused a major end-Creataceous global extinction (Smit et al., 1992). The geographic range is indiscriminate, posing an equal threat around the globe. Impacts by meteorites asteroids and comets of various scales and ages ranging from billions of years in the case of the massive Vredefort Dome in South Africa, to as recently as the Tunguska event in Siberia in 1908 have been reported (Turco et al., 1982; Bisschof, 1999). Although cosmic impacts large enough to cause significant tsunami are relatively rare, the recent Tunguska event, caused by the atmospheric explosion of a comet or meteorite, felled an estimated 80 million trees over 2,150 km<sup>2</sup>. This served as a reminder that visitations from space constitute a major, potentially devastating threat (Turco et al., 1982).

New asteroids are identified and their orbital parameters quantified on an ongoing basis by NASA's Near-Earth Object NASA website Program (see at http://neo.jpl.nasa.gov/risk/). The maximum detected hazard is rated according to the Torino Impact Hazard Scale. According to this ten-point scale, a rating of zero indicates the event has "no likely consequences." A Torino Scale rating of 1 indicates an event that "merits careful monitoring" and higher ratings indicates progressively higher risk. The 'Sentry System' is a highly automated collision monitoring system that continually scans the current asteroid catalogue for possibilities of future impact with Earth over the next 100 years. Currently, no asteroids with a rating exceeding 0 (and therefore of significant tsunamigenic risk) are catalogued.

# 4.2 Remote Submarine Seismicity

This category of tsunamigenisis refers to waves generated by rapid displacement along submarine faults. Because of the quiescent trailing edge, intra-plate tectonic setting of

the subcontinent (see section 3), it would appear that teletsunami from remote sources (plate boundaries) pose the greatest threat (Synolakis et al., 2007). The earliest reported tsunami by remote submarine seismicity that impinged on South African shores was spawned by the ~Mw 9.5 earthquake off the Chilean coast on May 22, 1960 (the strongest ever recorded). The Chilean event was recorded globally, including Mossel Bay, South Africa and in the Atlantic Ocean at Luderitz, Namibia (Van Dorn, 1987). The most imminent threat to the southeastern South African seaboard is posed by major earthquakes (Mw > 9 2) along the fast-moving convergent plate-boundaries at the Sunda Trench between Indonesia and Burma, and the Makran Trench bordering Pakistan and Iran (Fig. 2). It has also been suggested that there is a particularly high probability that a large seismic event in the southern part of the Sumatra Subduction Zone off the Mentawai Islands may source a large teletsunami (McCloskey et al., 2006; Okal et al., 2007; Hartnady and Okal, in press).



*Figure 2.* Global DEM showing potential sources of tsunami along the South African coast. These include subsea seismogenic, volcanogenic, bolide impact and submarine slumps. The Cape Town and Agulhas slumps are apparent (inset).

The Sumatran Subduction Zone generated the tsunami of 26th December 2004, significant waves from which were recorded by South African tide gauges on the Indian Ocean coast, with a maximum of wave height of ~2.7 m at Port Elizabeth. Apparently, the actual wave height was even higher but the wave crest was truncated due to

instrumention factors (Rabinovich and Thomson, 2007). Lesser waves arrived at Richards Bay (1.5 m) ~100 km south of Sodwana Bay, Buffalo City (1.3 m) and 1.6 m at Mossel Bay 180 km west of Port Elizabeth (Fig. 1). Maximum wave heights on the Atlantic coast were much smaller, with 0.75 m at Cape Town, dwindling to 0.5 m at Port Nolloth, 80 km south of the Orange River (Fig. 1). These waves coincided with the calculated arrival time of the Sumatran tsunami (Rabinovich, and Thomson, 2007). Numerous anecdotal accounts of abnormal high tides on beaches and bores moving upstream in rivers were reported in the media. Anomalous drawdown of sea level was experienced at Port Elizabeth, resulting in the drowning of a person, the most distant fatality recorded from the Sumatran tsunami (Rabinovich, and Thomson, 2007).

The Sumatran event has emphatically demonstrated that seismogenic teletsunami from remote sources can impinge on the southern African coastline with telling effect. Although little damage was reported, had the largest amplitude wave arrival coincided with abnormal high tides (astronomical/storm surge), the resulting cumulative inundation could well have been significant. (Okal et al., 2007).

The recent tsunamigenic Bengkulu Earthquake (Mw 8.4) of 12 September 2007 generated an extended series of waves over the period 12-14 September 2007, reaching a maximum amplitude of ~0.4 m at Port Elizabeth. This tsunami was predictively modelled in real-time during its propagation across the Indian Ocean, (Hartnady and Okal, in press).

The intra-oceanic South Sandwich Island subduction zone (SSSZ) and associated forearc is situated in the southwestern Atlantic (Fig. 2). It represents the closest source of high-frequency, high-intensity subsea seismicity which could threaten the west coast of southern Africa. The SSSZ shows a high frequency of earthquakes greater than Mw 5. A large earthquake (~Mw 7.3) with an epicentre on the South Sandwich Fracture Zone occurred on 2 January 2006, ~400km southeast of the South Sandwich Islands (USGS, 2006).

This fault forms part of the boundary between the South American and Antarctic Plates. Since the major displacement was horizontal, no tsunami ensued and as yet no historical tsunami have been reported from this source (USGS, 2006). However, a multichannel seismic transect across the mid-forearc revealed a 1.2 km-high fault scarp associated with a 20 km wide tilted block, indicating large-scale gravitational collapse (Larter et al., 2003). This suggests possible past tsunamigenic capacity, but a tectonic environment of relatively low regional interplate stress may mitigate this propensity (Larter et al., 2003). The threat posed by seismicity in the intra-oceanic South Sandwich Island Arc and associated forearc subduction zone is uncertain and requires further assessment.

#### 4.3 Submarine slides and slumps

#### 4.3.1 Global events

Many reports have indicated that submarine slides and slumps can induce large and damaging tsunami on local to regional scales (Bugge et al., 1988; Bondevik et al. 1997; Tippin et al., 2003). It is instructive to briefly review an example from the literature of a tsunami produced by offshore slumping. The Storegga submarine slump off Norway is chosen here, as this should illuminate the threat posed by tsunamigenic offshore sediment slumping in the southern African context (Dingle et al. 1983).

The Storegga submarine slump situated in the North Sea off the passive Norwegian coast is one of the largest known Holocene examples (Brugge et al., 1988; Bondevik et al. 1997). Approximately 3500 km<sup>3</sup> of sediment was displaced, generating a tsunami that caused widespread inundations in Norway, the Faroe Islands, the Shetlands Islands and Scotland, dated to ~8100 calendar years BP. The maximum estimated runup exceeded 20 m, recorded in the Shetlands Islands (Bondevik et al., 1997). Seismicity was considered to have been the direct triggering mechanism of the slump.

#### 4.3.2 South African submarine slumps

Seismic profiles along the southern African continental shelf have revealed widespread episodic injections of allochthonous masses into the deep sedimentary basins, including submarine slides and slumps (Dingle 1971; 1977; Summerhayes et al., 1979). Various phases of slumping on massive scales including late Mesozoic (148 Ma-65 Ma), early to late Tertiary (65 Ma-1.8 Ma) and possibly Quaternary (1.8 Ma-present), have been

documented (Fig. 1) and have been largely instrumental in the morphogenesis of the continental margin (Dingle, 1977; Dingle, et al.1987; Ben-Avraham and Rogers, 1992; Niemi, et al., 2000;. Reznikov et al., 2005).

Sediment is readily transported across the steep and narrow eastern shelf to be deposited in the adjacent Natal Valley, via a complex variety of processes including the migration of large bedforms, slumping, debris flow, turbidity currents and slope wasting. Widespread canyon development aids the sediment transfer. In contrast; little sediment from the few perennial rivers crosses the broader west coast shelf and sedimentation into the deep ocean basin is dominated by submarine slides and slumping; canyon development is muted, with the exception of the Cape Canyon (Dingle, 1977; Dingle, et al.1987; Ben-Avraham and Rogers,1992; Niemi, et al., 2000;. Reznikov et al, 2005.). However, during relative sea level lowstands rivers deposit their load nearer the shelf break, enhancing instability and propensity to slope failure. The shoreline during the Last Glacial Maximum (LGM) was at 120 m below sea level (Rogers, 1982), indicated in Figure 1 as the 120 m isobath. This shows that rivers debouched closer to the regions of intense slumping on the southern and east coasts than on the west coast. Other possible triggers of offshore slumps include overpressured formations and erosion by geostrophic currents (Dingle, 1977; Dingle, et al.1987; Westall, 2006).

Along the coastal stretch from the Orange River in the northwest to Cape Agulhas in the southeast, Dingle (1980) and Dingle et al. (1987) identified four major foci of submarine slides and slumps (Fig. 1): the Chamaise Slump relating to the Orange River allochthonous sediment pile; the Childs Bank Slumps; the Cape Town Slump which is associated with the Cape Canyon; and the massive Agulhas Slump. In the latter, about 340, 000 km<sup>2</sup> of continental rise and slope have been affected by relatively recent (late Cenozoic: 25 Ma-present) slumping. Over large areas of the Chamais, Cape Town and Agulhas slumps, notable thicknesses of sediment ranging up to 750 m are were involved. Because of their proximity to populated areas, attention here is focussed on the Cape Town and Agulhas structures.

The elongate Cape Town slump is only ~120 km wide (Fig. 1), but extends for least 400 km off the southwestern extremity of southern Africa (Dingle, 1980). It is associated with the Cape Canyon (Fig. 1) whose origin may stem from the late Tertiary (45 Ma-1.8 Ma)

confluence of the Orange and Olifants Rivers, exiting near the present Olifants River Mouth. Typical cross sections of the Cape Town slump show an oversteepened continental slope with large rotated blocks up to 450 m thick and several kilometres in width at the foot. Extensive sediment fans have shifted the foot of the continental slope some 130 km basinwards (Dingle 1977, 1980).

The elongate Agulhas Slump on the southern coast is one of the largest in the world, extending for ~750 km (Fig. 1), with a displaced volume of ~20, 000 km<sup>3</sup> (Dingle, 1977, 1980). The structure is dammed on the western aspect by the Alguhas-Falkland fracture zone ridge and distally has spilled into the oceanic basin (Natal Valley). The Agulhas Slump is considered a geologically instantaneous feature, involving Mesozoic (148 Ma-65 Ma) and Cenozoic (65 Ma-present) strata (Dingle 1977, 1980).

According to Dingle (1977, 1980) the Agulhas and Cape Town slumps both involved Pliocene sediments and may therefore be Quaternary (1.8 Ma-present) in age (further supported by the 'fresh' appearance of slumped material, with little modification by subsequent erosion). Wigley and Compton (2006) suggested that the main slumping associated with the Cape Town structure dated to the late Quaternary (~120 ka-present). Slumps north of Luderitz off the Namibian coast were dated by radiocarbon to 50,000-25,000 years BP i.e. Late Pleistocene (~130 ka-10 ka) (Summerhayes et al., 1979). It appears likely, therefore, that much of the slumping along the west and southwest coasts relates to the latter part of the late Cenozoic (25 Ma-present).

In the offshore stretch from Port Elizabeth to Port St. Johns (Fig. 1) a relatively narrow belt of slumping is evident. In the latter region, a lineament with a right lateral offset of ~3 km plays a major role in the development of the slumping (Dingle et al., 1987). Some of these features may date from the Quaternary (1.8 Ma-present) (Dingle and Robson, 1985). Northwards from Port St. Johns extending up to Maputo, a series of large slumped areas and sediment cones related to major river mouths are developed. These formed in response to the large size and high sediment load of the east-flowing rivers along this humid subtropical coastal stretch.

#### 4.3.3 Tsunami risk from submarine slumping

As noted above, seismicity has been widely implicated in triggering of submarine slumping in the global context (Bugge et al., 1988 Bondevik et al. 1997; Tippin et al., 2003; Salomon et al., 2007) and probably locally (Dingle 1980; Summerhayes et al.,1979). Both onshore and offshore earthquakes may be involved with possible ancillary factors such as overpressure from gas hydrates, undercutting by ocean currents and fluvial deposition on the distal shelf during glacio-eustatic lowstands (Dingle 1977; 1980; Summerhayes et al., 1979; Wigley and Compton, 2006). The high rates of terrigenous sediment input and steepness of the sheared margin further augments predisposition for mass sediment mobilisation along the east coast (Hartnady, 2005).

The Cape Slump ranks among the largest along the west coast and coincides with the seismically most active region in South Africa, both on- and offshore (Fig. 1). Onshore earthquakes in this region which exceeded Mw 6 in magnitude took place in 1809 and 1969 (Theron 1974; Goedhart, 2007) and offshore seismicity is also evident (Fig. 1). Thus the confluence of several considerations elevate the vulnerability of the coastal segment around Cape Town to slump-generated tsunami, including: evidence for major (possibly Quaternary: 1.8 Ma-present) submarine slumping; evidence for possible recent slump-generated tsunamigenesis; the exceptional intensity and frequency of seismicity in the southern African context; the low relief coastal plain in some areas; and high population density. The Chamaise Slump off the Orange River is associated with moderate seismicity (Fig. 1) and taking cognisance of the low population density is a relatively low risk area.

As noted above, the Agulhas Slump on the southern coast is one of the largest in the world. Seismicity related to the adjacent Algulhas-Falkland fracture zone may have triggered this massive slope failure (Dingle 1977). Although the southern coast is not a focus of historical seismicity (Fig. 1), the C-B-S fault system that traverses the Cape Fold Belt along the southern coast has been seismogenic during the Holocene (Goedhart. 2007) and the eastern sector in particular could produce large future earthquakes, as noted previously (Hill, 1975; Goedhart, 2007). Dingle (1980) drew an analogy between the geometry and submarine setting of the Agulhas Slump and the Storrega Slump off Norway. The latter, with a displaced volume of only ~3500 km<sup>3</sup> produced a tsunami with

a runup exceeding 20 m (see section 3.3.1). The ~20, 000 km<sup>3</sup> displacement of the Agulhas Slump may likewise have generated a significant tsunami, even if slumping was not entirely instantaneous. Given the evidence for major seismic activity, allied with the low relief coastal plain and several populated centres, the southern coast represents a region of notable tsunami threat from submarine slumping.

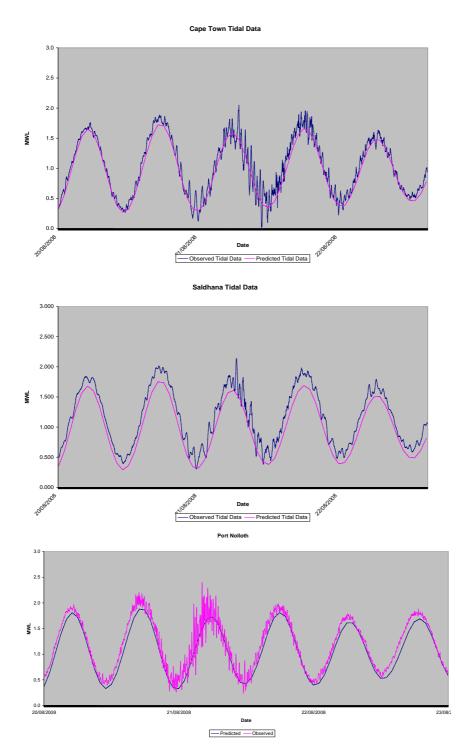
As noted above, along the east coast the high rates of terrigenous sediment input and steepness of the sheered margin increases the predisposition for mass sediment mobilisation (Dingle, 1977; Hartnady, 2005). The southern sector around Port Elizabeth where the C-B-S fault merges with the Algulhas-Falkland fracture zone (Goedhart, 2007) may be a focus of higher seismicity than indicated in Figure 1. The coastal strip from Buffalo City to Port St.Johns (Wild Coast) was reported to be at high risk of slump-generated tsunamigenesis (Hartnady, 2002; 2005), possibly exacerbated by the offshore seismicity southeast of the Mzimvubu River (Fig. 1). The seismic zones south and north of Durban may likewise constitute areas of higher risk in view of the prominent regions of slumped areas (Fig. 1). The Tugela Cone may also be susceptible in view of the proximity of seismicity. The east coast represents a region of notable tsunami threat from submarine slumping in view of: the evidence for: extensive late Cenozoic (25 Mapresent) slumping; modern seismic activity; steepness of the sheered margin; high sedimentation rates; intermittent low relief coastal plain allowing large inland runups; and several densely populated centres.

#### 4.3.4. Slump generated tsunami or meteotsunami?

Historical evidence for tsunami that may have been induced by offshore slumping along the South African coast is sparse. However, as pointed out previously this record is brief and small or localised events may have escaped notice.

A 'tsunami' centring on the west coast town of Dwarskersbos ~170 km north of Cape Town in the early hours of 26th August 1969, was reported in local South African newspapers, including *The Argus. Die Burger* (2005) provided a summary of eyewitness accounts of this event. The wave spilled over the ~2 m high beach ridge separating dwellings from the sea (Fig. 3), flooding houses and moving objects as large as motor vehicles. Eyewitness estimates of the tsunami amplitude was ~6 m, but this is probably an exaggeration. However, the reported runup which is less subjective and could be measured after the event was appreciable at ~100 m.




*Figure 3.* Dwarskersbos on the west coast (see Figure 1 for location), scene of a possible tsunami in 1969. Gravelly each ridge is 2-3 m in height-view looking northwards.

On 20/21 August 2008, a lengthy series of surges were observed by seemingly reliable witnesses in the harbours and estuaries of the west coast as reported in local newspapers such as the *Cape Times* and *Die Son* and summarised in SAWS (2008). The sea drew down well below MLW and then surged up again, each time rising well above MHW and in this aspect the event seemed similar to a tsunami. At Lamberts Bay, whirlpools were observed in the harbour and boats touched bottom, breaking anchor chains in some instances. A vehicle was swept away near the mouth of Berg River and at Sandy Point Harbour on the western side of St Helena Bay waterside buildings were flooded. At Hout Bay just south of Cape Town, the cruise launch *Circe* was reported to have been 'sucked out' of the mouth of the bay.

Tide gauge data from Walvis Bay in the north to Table Bay (Cape Town) in the south and at East London on the southeast coast were obtained from which the residual values of expected/measured tidal data are shown in (Figs 4 and 5). The most intense oscillations began in the earlier morning, ending around noon. Walvis Bay, situated furthest north showed little effect, but further south at Luderitz anomalies are evident, especially in the afternoon of 21/08/08. The earliest (before noon) and largest amplitude waves occurred at Port Nolloth. The waves varied in amplitude between 0.5 and 1.5m and the period from 60-15 minutes, and depending on location (Figs 4 and 5; SAWS, 2008); ~900 km coastline was affected. Data from east of Cape Point showed little or no effect and at East London on the southeast coast no anomalies can be seen.

An investigation of contemporaneous tide gauge records for the 1969 event at the Hydrographic Office at Silvermine, Cape Town also revealed aberrant tidal patterns from various sites along the sane stretch of the west coast (from Cape Town to Luderitz in Namibia, N. Flint, pers. com.). Thus the approximate magnitude and location of the 2008 event mirrors the Dwarskersbos 'tsunami' of 1969. For both the 1969 and 2008 events, no reports of large tsunami from remote sources could be found that may have produced a teletsunami along the west coast of southern Africa (USGS, 2008). Large conventional waves are known from the west coast, although the sea was reportedly calm at the time of both the 1969 and 2008 events. These considerations open the possibility that these events were localised tsunami, possibly triggered by an offshore sediment slump.

An alternative explanation of the west coast events is that they may represent atmospherically generated tsunami ('meteotsunami'). Atmospheric gravity waves exist by virtue of the stable density stratification of the atmosphere under gravity (Vibilic et al. 2006). Disturbances of a balanced state can result in excitation of atmospheric gravity waves with a variety of spatial and temporal scales. Gravity waves can transport energy and momentum from one region of the atmosphere to another and can initiate and modulate convection and subsequent hydrological processes. Gravity waves in the atmosphere can induce long wavelength oceanic oscillations, which when coastally trapped are referred to as 'edge waves' (Beer, 2007).



**Figure 4.** Tide gauge records for Cape Town, Saldanha and Port Nolloth. All show marked anomalies over the same tidal cycle with lesser anomalies in adjacent cycles. Records from South African Hydrographic Office.

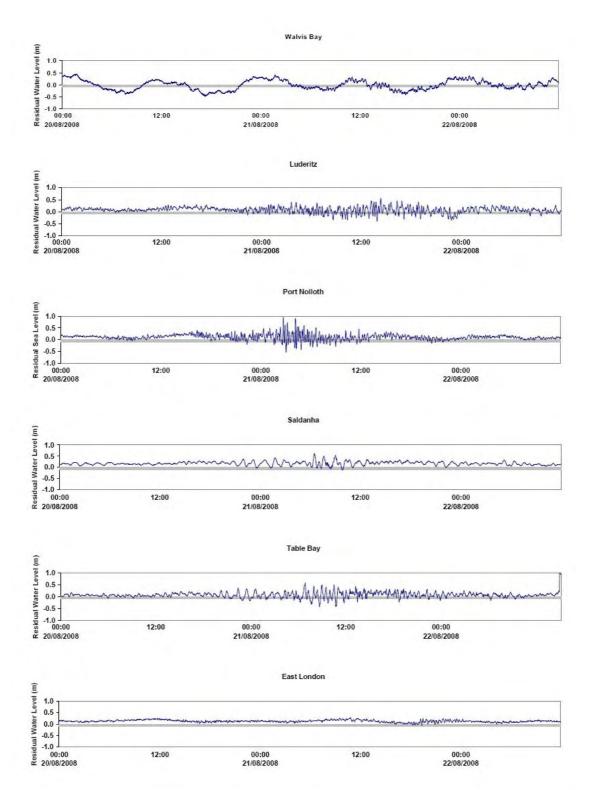
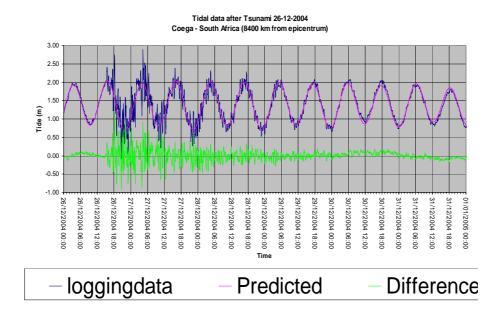




Figure 5. The residual values of expected/measured tidal data from the west coast.

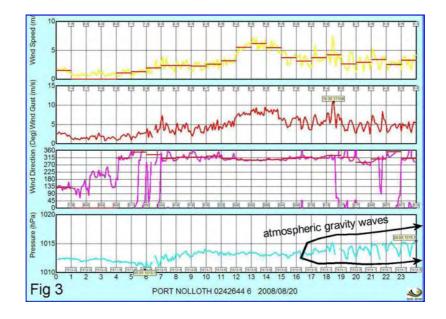


*Figure 6.* Tide gauge records for Coega Harbour on the southeast coast for the 2004 Sumatran seismogenic tsunami. Note the similarity in pattern, amplitude and duration of the event in relation to the 2008 west coast tsunami.

Meteotsunami may be modified and amplified by local topography, and can affect the coast in the same destructive manner as 'ordinary' tsunami waves, e.g. the magnitude 4 tsunami on the Sieberg-Ambrasey intensity scale estimated for the Middle Adriatic (Vibilic et al., 2006). There are several global localities where hazardous meteotsunamis occur regularly and have been given local names: 'rissaga' in the Balearic Islands, 'marubbio' in Sicily, 'milghuba' in Malta, and 'abiki' in Nagasaki Bay, Japan. Note that these mainly refer to relatively restricted marine environments rather than the open ocean.

Because of the cloud formations associated with them, atmospheric gravity waves may show up in satellite imagery as linear features (Fig. 6). Such features have previously been sighted in satellite imagery off the west coast of Africa (SAWS, 2008). Owing to the notable cloud cover, it was not possible to determine whether atmospheric gravity waves It is also noteworthy that rapid oscillations in air pressure were recorded at all west coast SAWS stations from the late afternoon on August 20<sup>th</sup> (e.g. Fig. 7), through until the following morning. The observation that both the 1969 and 2008 events fell within the month of August is a further suggestion of metorological control.

Meteotsunami can also produce patterns in tide gauge records closely analogous to conventional tsunami, with multiple waves impinging on the coast for a number of hours. In accord with their long wavelength, they may cause a drawdown in the sea level followed by a surge, again analogous to conventional tsunami and reported by eyewitnesses at Lamberts Bay and other west coast localities (SAWS, 2008). Tide gauge records for Coega (southeast coast) for the 2004 Sumatran tsunami (Fig. 7) show a striking similarity in pattern, amplitude and duration of the event with the 2008 event (Figs 4 and 5).


Port Nolloth experienced the largest amplitude waves and the arrival time was earlier than the sites to the south. If the assumption of a point source was made, this suggests that the source was in the general region off Port Nolloth. However, it could also be contended that the atmospheric gravity waves manifested more strongly in this area and generated a more intense oceanographic response. In the view of the present author, the coincidence of atmospheric anomalies off the west coast coinciding with the onset of the August 20/21 event is compelling evidence of a meteogenic origin.

Anecdotal evidence exists of tsunamigenesis by a marine slump off Port St. Johns. A newspaper article read by Dr J. R. V. Reddering of the Council for Geoscience in 19xxx reported that a fisherman observed an instantaneous depression in the sea surface about X km offshore and a wave propagating outward from the depression. A large, unstable mud delta has developed off the Mzimvubu River mouth at Port St. Johnsref, lending some credence to this report.

There is therefore some (albeit tenuous) evidence for recent tsunami possibly caused by offshore slumping along the South African coast. The tsunamigenenic capacity of palaeoslumps on the scale of those on the Agulhas Bank and elsewhere on the shelf is clearly apparent by analogy with Holocene events. Ongoing seismicity, both on- and offshore could trigger further events representing a significant but as yet unquantified threat to the southern African coast.



*Figure 7.* An example of atmospheric gravity waves enhanced by sunglint conditions (when sunlight is reflected off a calm sea surface directly into the satellite sensor - in this case the MODIS sensor on NASA's Aqua satellite). Taken from SAWS (2008).



*Figure 8.* Five minute interval data from SAWS's automatic weather station at Port Nolloth. Note the appearance of the relatively large oscillations in air pressure at ~ 5pm on the 20<sup>th</sup> August. These rapid changes in air pressure were recorded at all the west coast SAWS's, through until the following morning. Taken from SAWS (2008).

#### 4.4 Volcanic activity

Catastrophic explosive tsunamigenic volcanism is well documented in historical times such as Thera in the Aegean and Krakatoa in the Indian Ocean (e.g. Verbeek, 1984). Krakatau caused the first recorded global tsunami and ships as distant as South Africa were rocked by the waves (Pelinovsky et al., 2005).

Volcanic edifice mass failures and associated submarine landslides have the potential of generating destructive local waves in confined bodies of water and also in the open ocean (e.g. Ward and Day, 2001; Pararas-Carayannis, 2004). Modelling has suggested that flank collapse on Las Palma in the Canary Islands off North Africa could generate local waves with heights of 900-500 m and transoceanic tsunami with wave heights exceeding 20 m at localities as distant as Florida USA and the north coast of South America. According to Hartnady (2005), the islands Karthala and Reunion off the

southern African east coast represents the most imminent threat of tsunamigenic volcanism/edifice collapse to South Africa, whereas Marion Island fills this role in the southern Indian Ocean (Fig. 2).

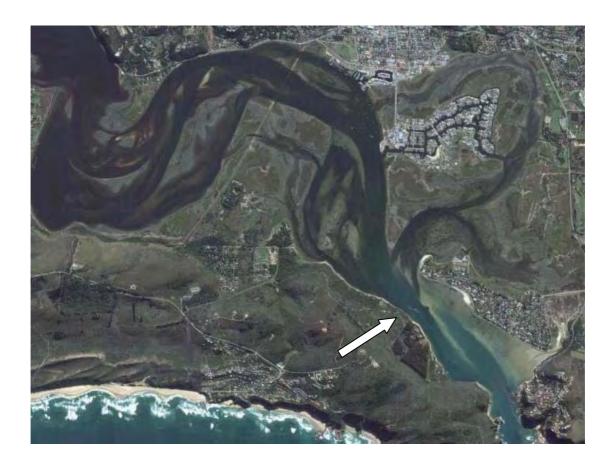

Reunion is highly active at the present time, evinced by the major eruption of 2004. Flank instability is evident around the Piton De La Fournaise volcano which shows extensive erosion, subsidence and an arcuate coastline suggestive of subsea slope failure (Pararas-Carayannis, 2004). Numerous potentially tsunamigenic flank failures and landslides that occurred during the Pleistocene and Holocene have been mapped on the seafloor (Oehler et al., 2007)

Marion Island, South Africa's only historically active volcano, lies south of the Indian Ocean Ridge, about 1700 km from Port Elizabeth (Fig. 2). The Island comprises coalesced basaltic shield volcanoes with basaltic and trachybasaltic lavas predominating. The highest peak reaches 1230 m with about 150 cinder cones forming subsidiary peaks. Whereas the earliest dated eruptions took place about 450,000 years ago, much of the island is covered by Holocene lava flows. The first historical eruption was in 1980 and produced explosive activity and lava flows from a 5 km-long fissure (Verwoerd and Langenegger, 1967; Verwoerd et al., 1981).

#### 4.5 Terrestrial landslides and rockfalls

This section refers to non-volcanogenic terrestrial landslides and rockfalls. The largest modern wave ever recorded occurred at Lutuya Bay, southeast Alaska in 1956 (Miller, 1960). An Mw 8.2 earthquake caused a massive slab of rock to collapse into the bay, giving rise to a wave with a run-up of over 500 m. This event presented poignant evidence of the threat posed by terrestrial landslides and rockfalls into restricted environments such as marine embayments. In the Cape Town environs and southern coasts of South Africa, the highly fractured and jointed quartzitic strata of the Palaeozoic Cape Supergroup form lofty and steep (near vertical) coastal cliffs on the seaward aspect, but with gentler slopes on the landward side (Figs 9 and 10). Relatively fresh scars on cliff faces illustrate large rockfalls in the recent past. At localities such as the town of Hout Bay situated in a marine embayment, potential large rockfalls from the 330 m high sheer cliffs of The Sentinel pose a significant threat to the low-lying areas in the

densely populated areas fringing the bay (Fig. 10). Quartzite blocks as large as 13x8x3 m litter the northern entrance to the bay.




**Figure 9.** DEM showing the disposition of steep hillslopes comprising highly fractured and jointed Palaeozoic quartzites, possible sources of tsunamigenic rockfalls. The town of Hout Bay is considered to be at greatest risk.



**Figure 10.** Precipitous cliffs comprising highly fractured and jointed Palaeozoic quartzites at the entrance to Hout Bay, posing a threat of tsunamigenic rockfalls to the town itself, with some dwellings and infrastructure at only 1.5 m asl.

The large town of Knysna on the South Coast is clustered around the Knysna River estuary. Tertiary (65-1.8 Ma) to Quaternary (1.8 Ma-present) dune systems flanking the estuary range to ~250 m in height. Satellite imagery and aerial photos show evidence of massive landslides within these aeolian deposits. A large landslide about 1.3 km in diameter which deposited an estimated 75 million m<sup>3</sup> of sediment into the estuary is evident on the western side of the estuary at Brenton On Sea (Fig. 11). The age of the event is uncertain, but a later Holocene age is suggested by a platform at 2.5-2 m asl eroded along the distal margin of the landslide, probably recording the Mid-Holocene high sea level widely reported along the South African coast (Miller et al., 1998). The landslide still partly obstructs an estuarine channel, underpinning a young age for the feature. Further landslides of this scale in this area could have serious consequences as residential areas such as Dassen Island are situated as low as 3m asl.



**Figure 11.** Major late Holocene landslide into the estuary of the Knysna River from hills comprising unstable coastal aeolianites. A repeat of an event of this order of magnitude would result in inundations of low-lying densely populated areas of the Knysna itself.

#### 5. Tsunami Prediction and warning time

Since seismicity on global or local scales is not predictable with any precision, it follows that tsunami generated directly or indirectly from earthquakes are not generally amenable to long term prediction either. Tsunami generated from remote submarine seismicity have predictable travel times based on known propagation velocities. Thus the arrival/warning time of known high potential sites such as the Sumatra/Anadaman subduction zone and South Sandwich Island Arc can readily be calculated and indeed this has been successfully done by computer modelling in the instance of the 2006 (Hartnady and Okal, In press).

Salomon et al. (2007) also modelled large magnitude onshore earthquakes in the northern Mediterranean region which showed that within five minutes of a strong earthquake, offshore slumps would produce a 4 to 6 m run-up that may inundate part of the Syrian, Lebanese, and Israeli coasts. The warning time for tsunami generated by local offshore slumps would be generally dependant on the width of the continental shelf at any point along the coastline. Thus along the west southern coast where the continental shelf is relatively wide, warning times would be notably longer than the east coast where the Agulhas/Falkland transform has greatly attenuated the shelf width (Fig. 2). The warning time at any point along the coast could be readily calculated from the known propagation rate of slump generated tsunami and the shelf width. The effects of the more detailed local topography of the shelf would also have to be taken account of. Satellite monitoring of oceanic wave patterns appears to be the only possible source of early warning in this instance.

The effects of tsunami generated by local landslides/rockfalls into restricted embayments would manifest quasi-contemporaneously with the event and warning time would effectively be zero. As noted in section 4.1, no cosmic impacts are currently anticipated in the foreseeable future. Even should ongoing monitoring alter this situation, the cosmic impact time and location could be calculated with some precision, as demonstrated with the Shoemaker-Levy comet impact on Jupiter in July 1994 Benner and McKinnon (1994). Possible tsunami generated from a marine impact could also be modelled.

#### 6. Mitigation/adaptation

Short of civil engineering interventions, there seems to be little that can be done in terms of mitigation/adaptation for existing coastal infrastructure in the event of a tsunami. Such interventions would generally be of an *ad hoc* character and would depend on the situation and nature of the contruction and the modelled maximum tsunami amplitude for that region. For planned coastal infrastructure, both civil engineering modifications and location of the planned structure in terms of its elevation above sea level and distance inland are possible mitigative/adaptative actions. Again the steps taken would depend on the modelled maximum tsunami amplitude/runup for the region in question.

#### 7. Summary and Recommendations

- This report provides a qualitative account of possible tsunamgenic sources that could threaten the South African coastline. To adequately assess the risk, a quantitative assessment of each source category is required.
- Offshore slump generated tsunami are considered the largest unknown risk factor. Holocene and recent historical records provide graphic evidence of their destructive capability on regional scales. Further research including all available stratigraphic/sedimentological/geomorphological data should be undertaken to better define the risk.
- Meteotsunami (edge waves) may well have been responsible for the 1969 and 2008 tsunami events along the southern African west coast. In depth research into the global frequency, locality and magnitude of meteotsunami should be undertaken to further quantify the risk. In particular, the atmospheric conditions along the west coast prior to the 1969 event should be compared with those of its 2008 counterpart.
- Worst case scenarios need to be defined. For instance, the potential impacts of the coincidence of maximum storm waves, storm surge, astronomical tides and meteotsunami should be modeled.
- Because of the relatively short history of tsunami records along the South African coast, the database should be extended by conducting an investigation of palaeotsunami in the stratigraphic record. No systematic work has yet been conducted along this coast. Areas of focus should be in the vicinity of planned nuclear facilities.

#### 8. References

Beer, 2007. Envrionmental Oceaography. CRC Press, 78 pp.

Ben-Avraham, Z., and Rogers, J., 1992. Deep-Ocean Basins and Submarine Rises Off the Continental Margin of South-Eastern Africa: New Geological Research Developments. South African Journal of Science 88, 534-539.

Benner, L.A and McKinnon, W.B., 1994. "Pre-Impact Orbital Evolution of P/Shoemaker-Levy 9". Abstracts of the 25th Lunar and Planetary Science Conference, Houston, TX, March 14–18, p 93.

Bisschof A.A., 1999. The Geology of the Vredefort Dome. ISBN 1-875061-60-6, Council for Geoscience.

Bondevik, S., Svendsen, J. I., Mangerud, J., 1997. Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology 44, 1115–1131.

Bugge, T., Belderson, R.H. & Kenyon, N.H. 1988: The Storegga slide. Philosophical Transactions of the Royal Society of London series A 325, 357-388.

De Beer, C.H., 1983. Geophysical studies in the southern Cape Province and models of the lithosphere in the Cape Fold Belt. In: Söhnge, A.P.G. and Hälbich, I.W. (Eds.), Geodynamics of the Cape Fold Belt, Special Publication Geological Society of South Africa 12: 75-64.

De Swardt, A.M.J., and Bennet, G. (1974). Structural and physiographic development of Natal since the late Jurassic. Transactions of the Geological Society of South Africa 77, 309-322.

*Die Burger*, Saturday, 19<sup>th</sup> March 2005, p 6.

Dingle, R.V., 1971. Tertiary sedimentary history of the continental shelf off southern Cape Province, South Africa. Transactions of the Geological Society of South Africa 74, 173-186.

Dingle, R.V., 1977. The anatomy of a large submarine slump on a sheared continental margin (SE Africa. Journal of the Geological Society of London 134; 293-310.

Dingle, R.V., 1980. Large allocthonous sediment masses and their role in the construction of the continental slope and rise off s

Dingle, R.V., Siesser, W.G., Newton, A.R., 1983. Mesozoic and Tertiary Geology of Southern Africa. Balkema, Rotterdam, 375pp.

R.V. Dingle and S. Robson, 1985. Slumps, canyons and related features on the continental margin off East London, SE Africa (SW Indian Ocean). Marine Geology 28, 89–106.

Dingle, R.V., Birch, G.F., Bremner, J.M., de Decker, R.H., du Plessis, A., Engelbrecht, J.C., Fincham, M.J., Fitton, T., Flemming, B.W., Gentle, R.I., Goodlad, S.W., Martin, A.K., Mills, E.G., Moir, G.J., Parker, R.J., Robson, S.H., Rogers, J., Salmon, D.A., Siesser, W.G., Simpson, E.S.W., Summerhayes, C.P., Westall, C.F., and Winter, A., 1987. Deep-sea sedimentary environments around southern Africa, South-East Atlantic and South-West Indian Oceans. Annals of the South African Museum 98, 1–27.

Fernadez LM and Shapira A, 1989. Maps of probabilities of earthquake occurrence in South Africa, Geological Survey, Pretoria.

Geist, E. L., 1998. Source characteristics of the July 17, 1998 Papua New Guinea tsunami: EOS, Transactions of the American Geophysical Union 79, p. 571.

Goedhart, M.L., 2007. Seismicity along the southern Cape Fold Belt, South Africa, association with geological structures, and early-Holocene reactivation of the Kango Fault. In: Catto, N.R., van Kolfschoten, T, and Rutter, N. (Eds), INQUA XVII 2007 Congress, Cairns, Australia. Quaternary International, 168, 142 -143.

Hälbich, I.W. 1983. A tectogenesis of the Cape Fold Belt, In: Söhnge, A.P.G. & Hälbich, I.W. (Eds.), Geodynamics of the Cape Fold Belt. Special Publication Geological Society of South Africa, 12, 165-176.

Hartnady, C.J.H., 2002. Earthquake hazard in Africa: perspectives on the Nubia-Somalia boundary. South African Journal of Science, 98, 425-428.

Hartnady, C.J.H, 2005. Tsunami potential on East African coast, western Indian Ocean island states. Disaster Reduction in Africa - ISDR Informs, Issue 5.

Hartnady, C.J.H and Okal E.A, In press. Mentawai tsunami effect at Port Elizabeth, South Africa on 12-14 Research Article/Letter for SA Journal of Science: 14 Dec 2007

Hill, R.S. 1975. The geology of the northern Algoa Basin, Port Elizabeth. Annals of the University of Stellenbosch, Series A1(1): 105-193.

Illenberger, W.K., 1996. The geomorphologic evolution of the Wilderness dune cordons, South Africa. Quaternary International 33, 11-20.

Iwan, W.D., 2006. Summary report of the Great Sumatra Earthquakes and Indian Ocean tsunamis of 26 December 2004 and 28 March 2005: Earthquake Engineering Research Institute, EERI Publication 2006-06.

Larter R.D., Vanneste L.E., Morris P. & Smythe D.K. 2003. Structure and tectonic evolution of the South Sandwich arc. (In Larter, R.D. & Leat, P.T., (Eds.) Intra-oceanic subduction systems: tectonic and magmatic processes. Geological Society Special Publication, 219. London.

McCloskey, J., Antonioli, A., Piantenesi, A., Steacy, S., Nalbant, S., Cianetti, S., Giunchi, C., Cocco, M., Sieh, K., 2006. Potential tsunamigenesis from the threatened Mentawai Islands earthquake on the Sunda Trench. Geophysical Research Abstracts 8, 08603.

Miller, D. J., 1960. Giant Waves in Lituya Bay, Alaska. Geological Survey Professional Paper 354-C, U.S. Government Printing Office, Washington.

Miller, D.E., Yates, R.J., Parkington, J.E. and Vogel, J.C. 1993. Radiocarbon-dated evidence relating to a mid-Holocene relative high sea level on the southwestern Cape coast, South Africa. South African Journal of Science 89, 35-44.

NASA at http://neo.jpl.nasa.gov/risk/. Retrieved on 30/06/08.

Niemi, T.M., Ben-Avraham, Z., Hartnady, C.J.H., and Reznikov, M., 2000. Post-Eocene Seismic Stratigraphy of the Deep-Ocean Basin Adjacent to the Southeast African Continental Margin: A Record of Geostrophic Bottom-Current Systems. Marine Geology 162, 237-258.

Oehler, J-F. Lénat, J-F. and Labazuy P., 2007. Growth and collapse of the Reunion Island volcanos. Bulletin of Volcanology online.

Okal, E.A., Hartnady, C.J.H. and Hartmann, S., 2007. Modelling the tsunami hazard to African Union states in the Western Indian Ocean from the Mentawai (Indonesia) source zone. Workshop on Natural and Human-Induced Hazards and Disasters in Africa, Kampala (July 21-22), Uganda., 5 pp.

Pararas-Carayannis, G., 2004. Tsunamigenic efficiency of volcanically, seismically and gravitationally induced island edifice mass failures and of aerial and submarine landslides. Abstract of poster presentation. 32nd International Geological Congress, Florence, Italy.

Partridge, T.C. and Maud, R.R. 2000. Macro-scale geomorphic evolution of southern Africa. Partridge, T. C. and Maud, R. R. (editors) The Cenozoic of southern Africa. Oxford Monographs on Geology and Geophysics 40, 3-18.

Pelinovsky, E., Choi, B.H., Stromkov, A., Didenkulova, I., and Kim, H.S., 2005. Analysis of tide-gauge records of the 1883 Krakatau tsunami. In Tsunamis: Case Studies and Recent Developments (K. Satake Ed.), Springer, Dordrecht, 57–77.

Reddering, J. S. V., 1981. The sedimentology of the Keurbooms Estuary. M.Sc. Tesis (unpublished), University of Port Elizabeth, 131 pp.

Rabinovich, A.B. and Thomson, R. E., 2007. The 26 December 2004 Sumatra Tsunami: Analysis of Tide Gauge Data from the World Ocean Part 1. Indian Ocean and South Africa. Pure and Applied Geophysics 164, 261–308

Reznikov, M., Ben-Avraham, Z., Hartnady, C., and Niemi, T.M., 2005. Structure of the Transkei Basin and Natal Valley, Southwest Indian Ocean, From Seismic Reflection and Potential Field Data. Tectonophysics 397, 127-141.

Rogers, J. 1982. Lithostratigraphy of Cenozoic sediments between Cape Town and Eland's Bay. Palaeoecology of Africa 15, 121-137.

Salamon, A., Rockwell, T., Ward, S. N., Guidoboni, E. and Comastri, A., 2007. Tsunami hazard evaluation of the eastern Mediterranean: historical analysis and selected modelling. Bulletin of the Seismological Society of America 97, 705-724.

Smit, J., Montanari, A., Swinburne, N. H. M., Alvarez, W., Hildebrand, A. R., Margolis, S. V., Claeys, Ph., Lowrie, W. and Asaro, F., 1992. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico, Geology, 20, 99-103.

South Africa Weather Services (SAWS): <u>www.weathersa.co.za</u>. Retrieved on 29/08/08.

Summerhayes, C.P., Bornhold, B.D. and Embley, R.W., 1979. Surficial slides and slumps on the continental slopes and rises of Southwest Africa: a reconnaissance study. Marine Geology 31, 265-277.

Theron, J.N., 1974. Die seismiese geskiedenis van die suidwestelike Kaapprovinsie. p. 9-26. In: Van Wyk, W.L. and Kent, L.E. (1974). Die aardbewing van 29 September 1969 in die suidwestelike Kaapprovinsie, Suid-Afrika. Seismologiese Reeks 4, Geological Survey, Department of Mines, South Africa. 48 pp.

Thomas, R. J., 1989. A tale of two tectonic terranes. South African Journal of Geology 93, 306-321.

Turco, R. P.; Toon, O. B.; Park, C.; Whitten, R. C.; Pollack, J. B.; Noerdlinger, P., 1982. An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall. Icarus, 50, 1-52.

USGS, 2006 online at <u>http://earthquake.usgs.gov/regional/world/world\_density.php</u>. Retrieved on 29/08/08

Van Dorn, W.G., 1984. Some tsunami characteristics deducible from tide records, J. Physical Oceanography, 14, 353–363.

Verbeek, R. D. M., 1984. "The Krakatoa eruption". Nature 30, 10-15.

Verwoerd W J, Langenegger O, 1967. Marion and Prince Edward Islands geological studies. Nature 213, 231-232.

Verwoerd W J, Russell S, Berruti A, 1981. Volcanic eruption reported on Marion Island. Earth Planet Science Letters 54, 153-156

Vilibic, S. Monserrat, A. B. Rabinovich Meteotsunamis, 2006. Atmospherically induced destructive ocean waves in the tsunami frequency band Geophysical Research Abstracts, 8, 1pp.

Ward, S. N. and Day, S., 2001. Cumbre Vieja Volcano-Potential Collapse and Tsunami at La Palma, Canary Islands. Geophysical Research Letters, 28, 3397-3400.

Westall F., 2006. Quaternary continental margin sedimentation off the southeast coast of South Africa. Geological Journal 22, 563 – 578.

Wigley R. A. and Compton. J. S., 2006. Late Cenozoic evolution of the outer continental shelf at the head of the Cape Canyon, South Africa. Marine geology, 226, 1-23.

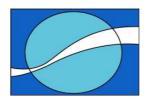
## **APPENDIX E:**

## Data Reports on Oceanographic Measurements by Lwandle Technologies (Pty) Ltd

#### Note:

This appendix contains the oceanographic data reports compiled by Lwandle Technologies after each service visit. The data contained in these data reports undergoes additional quality control procedures by PRDW, including combining the data from each service visit into a unified dataset. For this reason the data contained in these data reports should not be used for design purposes and only the quality controlled unified data described in the main report should be used.




# LWANDLE MOBILISATION REPORT

## BANTAMSKLIP: CURRENT, WAVE, TEMPERATURE, WATER LEVEL AND BIOFOULING MEASUREMENTS

# PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



# PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



27 February 2008

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



## COPYRIGHT

This document is the property of Lwandle Technologies (Pty) Ltd (Lwandle) and is protected by South African and International Copyright laws. You may not reproduce or distribute any part of this document to any 3<sup>rd</sup> party without the prior permission of Lwandle. All copyright, trademark and other proprietary rights in this proposal are reserved to Lwandle Technologies (Pty) Ltd and its licensors.



## TABLE OF CONTENTS

| 1. | PROJ   | ECT SUMMARY                              | 4  |
|----|--------|------------------------------------------|----|
| 2. | SITE L | LOCATION                                 | 4  |
| 3. | INSTR  | RUMENTATION                              | 5  |
| 4. | DESC   | RIPTION OF OPERATIONS                    | 7  |
| 5. | PROB   | LEMS ENCOUNTERED AND MITIGATION MEASURES | 10 |
| 6. | VARIC  | DUS INSTRUMENT SHEETS                    | 11 |
|    | 6.1    | ADCP DEPLOYMENT SHEETS                   | 11 |
|    | 6.2    | RBR LOGGER DEPLOYMENT SHEETS             | 13 |
|    | 6.3    | ADCP CONFIGURATION FILES                 | 16 |
|    | 6.4    | RBR AND T&C CALIBRATION CERTIFICATES     | 17 |
|    | 6.5    | TRDI ADCP CALIBRATION CERTIFICATES       | 19 |

LWANDLE TECHNOLOGIES (PTY) LTD



### 1. **PROJECT SUMMARY**

Lwandle Technologies (Lwandle) have been contracted by Prestedge Retief Dresner Wijnberg (PRDW) to collect oceanographic data as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites: Koeberg, Bantamsklip and Thyspunt. Measurements of current, wave, water level, temperature and biofouling are being made at two (2) locations at the Bantamsklip site in approximately 10m and 30m water depth. For these measurements the following instruments have been installed:

- CURRENTS AND WAVES: TRDI 600kHz Acoustic Doppler Current Profiler (ADCP) fitted with temperature sensor, high resolution pressure sensor and waves firmware have been deployed in gimballed, stainless steel, bottom mounted frames. One unit has been deployed in 10m and the other 30m water depth.
- TEMPERATURE AND SALINITY: One temperature & salinity (T&C) string has been deployed in 30m water depth. The string will measure temperature and salinity at two depths (near surface and near bottom). For these measurements a mooring fitted with 2 x RBR XR 420CT conductivity and temperature loggers has been installed. The mooring has been attached to the ADCP frame via a polypropylene groundline.
- WATER LEVELS: An RBR TGR-1050HT vented recording tide gauge has been installed on a suitable structure at a suitable location. Information on the height from the top of the tide gauge sensor to the logger box needs to be provided to the surveyors for levelling at a later stage.
- BIOFOULING: Six (6) 50cm<sup>2</sup> asbestos plates have been deployed, three (3) plates at 3m depth and three (3) plates at 8m depth. At intervals of 3, 6 and 12 months one plate from each depth will be recovered, photographed, the thickness of marine growth measured and the plates then preserved in formalin for subsequent bio-analysis.

This report provides information about the deployment site, equipment used, a description of operations, problems encountered, log of events and the various completed equipment deployment sheets.

## 2. SITE LOCATION

The instruments have been deployed at the locations given in Table1 (positions are given in degrees and decimalised minutes) below:

| Instrument             | Latitude    | Longitude  |
|------------------------|-------------|------------|
| Tide Gauge             | 3442.462 S  | 1932.080 E |
| 10m ADCP               | 3443.186 S  | 1933.637 E |
| Biofouling             | 34°43.190 S | 1933.686 E |
| 30m ADCP + T&C mooring | 34°42.625 S | 1930.696 E |

| Table 1 – | Measurement l | ocations |
|-----------|---------------|----------|
|-----------|---------------|----------|





Figure 1 - Map of the project area

## 3. INSTRUMENTATION

For the current and wave measurements, two TRD Instruments 600KHz ADCPs have mounted inside a bottom mounted stainless steel frame c/w gimball assembly.

The temperature and salinity loggers (T&C loggers) have been fastened onto a galvanized steel strop (10mm) via cable ties, hose clamps and duct tape, with five (5) 11" floats on top to keep the line vertical.

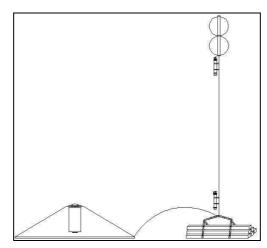



Figure 2- Temperature & salinity mooring attached to ADCP frame

The biofouling mooring line consisted of three (3) 11" floats for buoyancy, a 3m section of 12mm ski rope to which three (3) asbestos plates have been attached using cable ties, a 1m galvanized steel strop below this to which a 1.6m length of ski rope was attached, which held the bottom three plates.

An Edgetech acoustic release has been connected to the bottom of the mooring line, so that the biofouling mooring may be released separately from the ADCP and T&C mooring line. The detailed setup for the ADCP and T&C loggers can be found in the



deployment sheets in Section 6, and these are summarised in Table 2, Table 3 and Table 4 below.

| Parameter                   | Configuration          |
|-----------------------------|------------------------|
| ADCP model                  | 600KHz WH ADCP         |
| ADCP serial number          | 10100                  |
| Wave burst duration         | 41 min                 |
| Time between wave bursts    | 60 min                 |
| Number of bins              | 42                     |
| Bin size                    | 0.35 m                 |
| Sampling/ ensemble interval | 10 minutes             |
| Pings per ensemble          | 500                    |
| Edgetech Acoustic Release   | s/n 32380 release code |
|                             | 641722                 |

Table 2 – Instrument configuration for 10m Bantamsklip ADCP

#### Table 3 – Instrument configuration for 30m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10119                         |
| Wave burst duration         | 34 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 69                            |
| Bin size                    | 0.5 m                         |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 250                           |
| Edgetech Acoustic Release   | s/n 32383 release code 642016 |

## Table 4 – Instrument configuration for T&C mooring line

| Parameter                                  | Configuration                      |
|--------------------------------------------|------------------------------------|
| XR 420 Temperature and Conductivity Logger | s/n 12994 (7m) and s/n 12998 (28m) |
| Sampling and Averaging                     | 10min sampling and 1min averaging  |

### Table 5 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 1050 HT            | s/n 14005                               |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

#### Table 6 – Instrument configuration for Biofouling mooring line

| Parameter                    | Configuration                                             |
|------------------------------|-----------------------------------------------------------|
| Biofouling Plates            | 3 plates (50cmx50cm) at 3m and 3 plates (50cmx50cm) at 8m |
| Edgetech Acoustic<br>Release | s/n 32387 release code 642144                             |



## 4. DESCRIPTION OF OPERATIONS

Lwandle engineers were mobilised from Cape Town to Pearly Beach for the deployment of the oceanographic equipment. A summary of the sequence of events associated with the mobilisation trip is given in Table 7 below.

| Date                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28 January 2008<br>09h30 | Lwandle's engineers departed from Cape Town.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12h30                    | The engineers arrived at Pearly Beach accommodation and<br>then they setup the vehicle with the necessary gear for the<br>tide gauge deployment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13h30                    | The engineers met with the Dive Team. They then arranged<br>for a 4x4 vehicle for access to the site due to deep sand<br>roads. All the kit was transferred to the 4x4 vehicle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14h30                    | The engineers arrived at the proposed site for the tide gauge<br>which was situated in a sheltered embayment. It was<br>discovered that the proposed position was not suitable as it<br>was very shallow and too far from the rocks. The engineers<br>then scouted the next five (5) gullies towards the north in order<br>to find a suitable position. The new position was 1.87m deep<br>and located at 3442.462 S and 1933.080 E. The surv eyors<br>still need to level in the tide reference with a chart datum.                                                                                                                                                                                          |
| 16h00                    | The engineers carried the tide gauge, H-frame and railway<br>lines down to rocks. The frame was floated to position and<br>levered onto exposed rocks to attach railway lines. The<br>railway lines were then floated out. The railway lines were<br>attached to the frame with galvanized wire and cable ties. The<br>PVC pipe (stilling well with sensor inside) was attached to the<br>H - frame. The H -frame was secured in position. The data<br>cable was covered with hosing. Attached logger box to rocks<br>via 4 bolts that were steel cemented onto rocks. Attached wire<br>over box and cemented onto rocks. Tide gauge was set to<br>start recording at 18h00. The unit hit the water at 19h10. |
| 20h10                    | The engineers returned to the base camp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 29 January 2008 - 06h30  | Assembled the ADCP frames, CART pop-ups, T&C, biofouling strings and set up the instruments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 09h00                    | The engineers left the base camp and met the boat operator and divers at Gansbaai.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 09h30-11h00              | The assembly of ADCP frames and fitting of instruments was completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12h00                    | The vessel was launched and it reached the ADCP deployment location in approximately 50 minutes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13h00                    | The railway lines were attached to the T&C mooring line. Then<br>the 50m groundline was attached between ADCP frame and<br>T&C logger string.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13h10                    | The T&C logger string was lowered using the 50m groundline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Table 7 – Sequence of events



| Date                    | Description                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 13h20                   | The ADCP frame was lowered to 30m (CART s/n 32383) 3442.603 S and 1930.655 E.                                                                                                                                                                                                                                                                                                                                         |  |  |
| 13h30                   | The divers attached 3 x chain sections to the ADCP frame.<br>The 30m ADCP mooring was successfully deployed.                                                                                                                                                                                                                                                                                                          |  |  |
| 14h35                   | The vessel arrived at 10m site ( ~ 5kms away)                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 14h45                   | The Biofouling mooring was deployed (34°43.190 and 19°33.637).                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 15h00                   | The 10m ADCP (CART s/n 32380) was deployed (34 <sup>4</sup> 3.186 S and 19 <sup>3</sup> 3.637 E). The divers entered the water an d attached 4 sections of rig chain and photographed the mooring.                                                                                                                                                                                                                    |  |  |
| 16h30                   | The vessel arrived back at Kleinbaai Harbour.                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Ranging                 | 30m ADCP Ranging         1) 3442.575 / 1930.604 - 117m         2) 3442.585 / 1930.513 - 235m         3) 3442.607 / 1930.473 - 295m         10m ADCP Ranging         1) 3443.147 / 1933.575 - 113m         2) 3443.155 / 1933.653 - 56m         3) 3443.194 / 1933.696 - 77m         Biofouling ranging         1) 3443.159 / 1933.723 - 80m         2) 3443.180 / 1933.708 - 56m         3) 3443.170 / 1933.660 - 51m |  |  |
| 30 January 2008 - 08h30 | The engineers travelled to Gansbaai to purchase rock set cement and epoxy putty for tide gauge logger box.                                                                                                                                                                                                                                                                                                            |  |  |
| 10h30                   | The engineers arrived at the tide gauge site. The engineers checked the logger box and sensor frame (i.e. H-frame and stilling well) and it appeared to be fine. They then applied epoxy putty and rock fast cement to 4 x bolts on logger box.                                                                                                                                                                       |  |  |
| 11h30                   | The 4x4 vehicle was returned and the engineers proceeded back to Cape Town.                                                                                                                                                                                                                                                                                                                                           |  |  |
| 14h00                   | The engineers arrived back in Cape Town.                                                                                                                                                                                                                                                                                                                                                                              |  |  |





Figure 3- The tide gauge's logger box

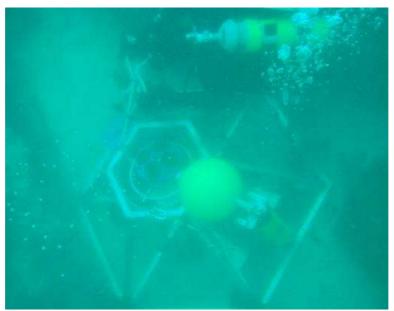



Figure 4- The ADCP in its frame





Figure 5-Stilling well protruding from the surface

## 5. PROBLEMS ENCOUNTERED AND MITIGATION MEASURES

A list of problems experienced and mitigation measures taken have provided in Table 8.

| Problem                                          | Mitigation measure(s)                   |
|--------------------------------------------------|-----------------------------------------|
| The access to Tide Gauge site is 4x4 track.      | Need to hire 4x4 from Cape Town for     |
|                                                  | service visit.                          |
| Poachers dive in vicinity of tide gauge – they   | Tried to camouflage instruments as best |
| may steal the instrument.                        | as possible.                            |
| Seimac beacons did not arrive in time for the    |                                         |
| initial installation and will be deployed at the |                                         |
| first service visit.                             |                                         |

## Table 8 – Problems and mitigation measures



### 6. VARIOUS INSTRUMENT SHEETS

## 6.1 ADCP DEPLOYMENT SHEETS

\_

| _ | LWANDLE TECHNOLOGIES (PTY) LTD           |
|---|------------------------------------------|
|   | QUALITY ASSURANCE DEPLOYMENT SHEET       |
| Г | LOGGING ADCP DEPLOYMENT / RECOVERY SHEET |

#### 1. <u>DEPLOYMENT</u>

| Instrument type and serial number                  |         |        |    | 600W17   | 1-100      |  |
|----------------------------------------------------|---------|--------|----|----------|------------|--|
| Check O-rings on both sides of the instrument      |         |        |    |          | ~          |  |
| Install a new battery and check the voltage        |         |        |    |          | - 45V      |  |
| Connect the battery and communications cable       |         |        |    |          |            |  |
| Inspect the transducer faces for cuts or scratches |         |        |    |          | NUW        |  |
| Seal the instrument                                |         |        |    |          | /          |  |
| Connect the instrument to a PC and run WinSC       |         |        |    |          |            |  |
| Click on "configure an ADCP for a new deployment"  |         |        |    |          |            |  |
| Set up the sampling parameters                     |         |        |    |          |            |  |
| Frequency of unit being used                       |         |        |    | 60       | ollz       |  |
| Depth range                                        |         |        |    | 10       | 310        |  |
| Number of bins (calculated automatically)          |         |        |    | L.       | 2          |  |
| Bin Size (calculated automatically)                |         |        |    | O        | 35         |  |
| Wave burst duration                                |         |        |    | 4        | ALL A      |  |
| Time between wave bursts                           |         |        |    | 60       | n no       |  |
| Pings per ensemble                                 |         |        |    | 50       | 00         |  |
| Ensemble interval                                  |         |        |    | 10       | Min        |  |
| Deployment duration                                |         |        |    |          | 5 days     |  |
| Transducer depth                                   |         |        |    |          | 10,00      |  |
| Any other commands                                 |         |        |    |          | /          |  |
| Magnetic variation                                 |         |        |    |          | 0          |  |
| Temperature                                        |         |        |    |          | 10°C       |  |
| Recorder size                                      |         |        |    | 10       | 216        |  |
| Consequences of the sampling parameters            |         |        |    |          | 0          |  |
| First and last bin range                           | 151     | 1.41 m |    | 15.76m   | Mar 35.28  |  |
| Battery usage                                      |         |        |    |          | 1320 77 WH |  |
| Standard deviation                                 |         |        |    |          | 1.08 cm 15 |  |
| Storage space required                             |         |        |    |          | 401.49 MB) |  |
| Set the ADCP clock                                 | Û       | GM     | r  |          | U          |  |
| Run pre-deployment tests                           |         |        |    |          | ~          |  |
| Name the ADCP deployment                           |         |        | B. | M K I    | BTKPI      |  |
| Deployment details                                 |         |        |    |          |            |  |
| Switch on date and time                            | $\odot$ | GM     | Т  | 29/01/08 | izhoe      |  |
| Deployment date and time                           |         |        |    | 21/01/   | 08 ishoo   |  |
| Deployment latitude\ northings                     |         |        |    | 3404     | 3,187      |  |
| Deployment longitude\ eastings                     |         |        |    | 14 3     | 3-635      |  |
| Site name                                          |         |        |    | Banterns | sklyp iom  |  |
| Site depth                                         |         |        |    | 11       | ~          |  |
| Deployment depth                                   |         |        | į١ | m        |            |  |



## LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

| nstrument type and serial number                   |                                        |         | 600kly                  | 13119     |  |
|----------------------------------------------------|----------------------------------------|---------|-------------------------|-----------|--|
| Check O-rings on both sides of the instrument      |                                        |         |                         | ~         |  |
| Install a new battery and check the voltage        |                                        |         |                         | 450       |  |
| Connect the battery and communications cable       |                                        |         |                         | -         |  |
| Inspect the transducer faces for cuts or scratched | 6                                      |         |                         | new       |  |
| Seal the instrument                                |                                        |         |                         | /         |  |
| Connect the instrument to a PC and run WinSC       |                                        |         |                         |           |  |
| Click on "configure an ADCP for a new deployme     | oť"                                    |         |                         | 1         |  |
| Set up the sampling parameters                     |                                        | 110.2   | 112                     |           |  |
| Frequency of unit being used                       |                                        |         | 600                     | kliz      |  |
| Depth range                                        |                                        |         | 30,                     |           |  |
| Number of bins (calculated automatically)          |                                        | 11      | 21                      |           |  |
| Bin Size (calculated automatically)                | -                                      |         | 0.5                     | ~         |  |
| Wave burst duration                                | 100                                    |         | 3 +0                    | 36 m.     |  |
| Time between wave bursts                           |                                        |         | \$ 250 60-              |           |  |
| Pings per ensemble                                 |                                        |         | 250                     |           |  |
| Ensemble interval                                  |                                        |         | it we have              |           |  |
| Deployment duration                                |                                        |         | 45 days                 |           |  |
| Transducer depth                                   |                                        |         | 30 m 0                  |           |  |
| Any other commands                                 |                                        |         | -                       | d         |  |
| Magnetic variation                                 |                                        |         | 0                       |           |  |
| Temperature                                        |                                        |         | 5°C                     |           |  |
| Recorder size                                      |                                        | <u></u> | 190                     | 3         |  |
| Consequences of the sampling parameters            |                                        | aux -   | v                       |           |  |
| First and last bin range                           | 124                                    | 160m    | 35.60                   | m-135.22  |  |
| Battery usage                                      |                                        |         | 22-34 E                 | 1350 WH   |  |
| Standard deviation                                 | 1998 - A.                              | - S253  |                         | 0 sicmis  |  |
| Storage space required                             |                                        |         |                         | 340 Merp  |  |
| Set the ADCP clock                                 | (LŤ)                                   | GMT     |                         | 0         |  |
| Run pre-deployment tests                           | -125                                   | are-98  |                         | -         |  |
| Name the ADCP deployment                           | 131 - TAA                              | 5       | BTKP                    | 0         |  |
| Deployment details                                 | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 0       | 100000                  |           |  |
| Switch on date and time                            | G                                      | GMT     |                         | 08 izhoo  |  |
| Deployment date and time                           | nd time (LŤ) GI                        |         | * 1 × 1 × 0 × 3 × 1 € 1 |           |  |
| Deployment latitude\ northings                     | -12779                                 | - VV    | 36-62                   | 603       |  |
| Deployment longitude\ eastings                     | 11                                     |         | 19 30.646               |           |  |
| Site name                                          |                                        | _       | Bontom                  | sthe 30 m |  |
| Site depth                                         |                                        |         | 2 30                    | 2.m1      |  |
| Deployment depth                                   |                                        |         | -                       | 0.00      |  |



#### 6.2 RBR LOGGER DEPLOYMENT SHEETS



## LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLOYM                                             | IENT |       | S      | witch      |
|-----------------------------------------------------|------|-------|--------|------------|
| Instrument type and serial number                   |      | 12420 |        | 12994      |
| Check O-rings on instrument                         |      |       |        | -          |
| Install a new battery and check the voltage         |      |       |        |            |
| Connect the battery and communications cable        |      |       |        | -          |
| Connect the instrument to a PC and run RBR software | )    |       |        |            |
| Click on "Setup"                                    |      |       |        |            |
| Set up the sampling parameters                      |      |       |        |            |
| Start of logging (date / time)                      |      | 29/01 | 10%    | 24/12/08   |
| End of logging (date / time)                        |      | 29/13 |        | 12 400     |
| Sampling period                                     | 1111 |       |        | 10 00.0    |
| Averaging period                                    |      |       |        | Lmin       |
| Deployment details                                  |      |       |        |            |
| Deployment date and time                            | Ē    |       | 29/01/ | 08 i3hio   |
| Deployment latitude\ northings                      |      |       | 54 42  | 2.625      |
| Deployment longitude\ eastings                      |      |       | 9030   | 0.696      |
| Site name                                           |      |       | Bantar | nsklip 30m |
| Site depth                                          |      |       | 30     |            |
| Deployment depth                                    |      |       | 30     | m Tn       |
| Acoustic release (1) serial number and release code |      |       |        | 1.4        |
| Acoustic release (2) serial number and release code |      |       | N      | 14         |
| Argos beacon serial number                          |      |       |        |            |



## LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | YMENT |    |         | BEM      |
|-----------------------------------------------------|-------|----|---------|----------|
| Instrument type and serial number                   |       |    | VR LZO  | 12495    |
| Check O-rings on instrument                         |       |    |         | -        |
| install a new battery and check the voltage         |       |    |         | ~ 12 hoo |
| Connect the battery and communications cable        |       |    |         | ~        |
| Connect the instrument to a PC and run RBR softwa   | are   |    |         |          |
| Click on "Setup"                                    |       |    |         |          |
| Set up the sampling parameters                      |       |    |         | •        |
| Start of logging (date / time)                      |       | 24 | 101/08  | 12 hoc   |
| End of logging (date / time)                        |       |    | 112/05  | 12 hoo   |
| Sampling period                                     |       |    |         | 10min    |
| Averaging period                                    |       |    |         | Lm. O    |
| Deployment details                                  |       |    |         | · · ·    |
| Deployment date and time                            | (ĹT)  |    | 24/01/  | 08 13410 |
| Deployment latitude\ northings                      |       |    | 3404    | 2.625    |
| Deployment longitude\ eastings                      |       |    | 19 . 30 | 0.696    |
| Site name                                           |       |    | Bunkern | ship som |
| Site depth                                          |       |    |         | ·~ '     |
| Deployment depth                                    |       |    |         | 50       |
| Acoustic release (1) serial number and release code |       |    |         |          |
| Acoustic release (2) serial number and release code |       |    |         |          |
| Argos beacon serial number                          |       |    |         | •        |





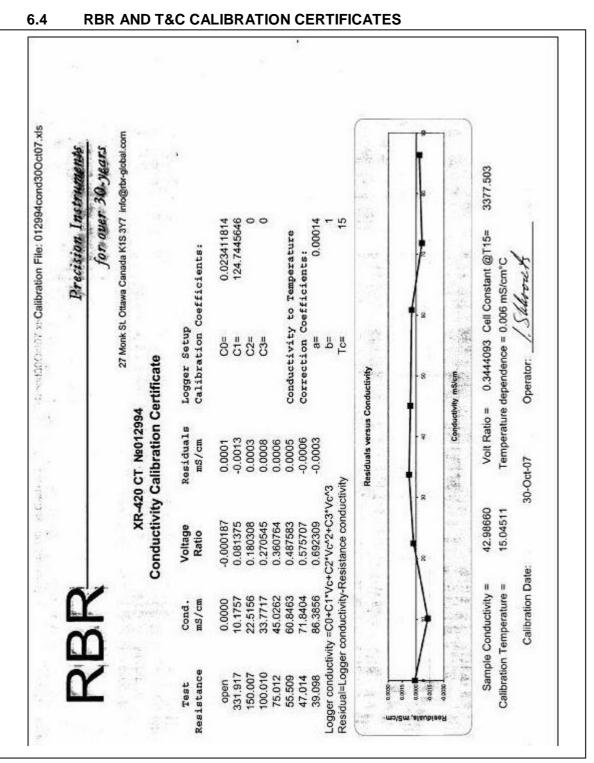
## LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### TGR1050HT TIDE GAUGE DEPLOYMENT / RECOVERY SHEET

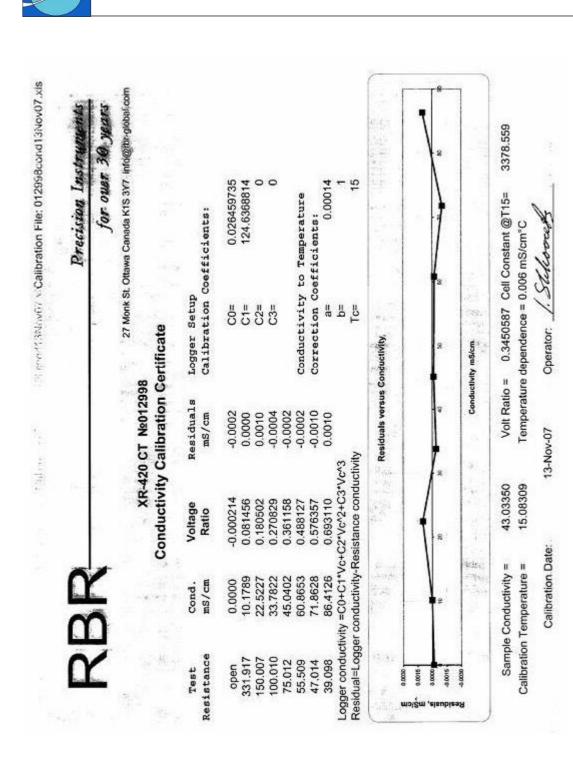
| DEPLOYMENT                                          |    |         |                |
|-----------------------------------------------------|----|---------|----------------|
| Instrument type and serial number                   |    |         |                |
| Check O-rings on instrument                         |    |         |                |
| Install a new battery and check the voltage         |    |         | -              |
| Connect the battery and communications cable        |    |         |                |
| Connect the instrument to a PC and run RBR software |    |         |                |
| Click on "Setup"                                    |    |         |                |
| Set up the sampling parameters                      |    |         |                |
| Sampling period                                     |    | 10      | Selic          |
| Averaging period                                    |    | 152     | C C ullz       |
| Expected deployment duration                        |    |         |                |
| Start of logging (date / time)                      | 2  | 01/08   | 18600          |
| End of logging (date / time)                        | e. | 8/12/08 | ishoo          |
| Memory usage                                        |    |         |                |
| Battery usage                                       |    |         |                |
| Deployment details                                  |    |         |                |
| Deployment date and time                            |    |         | log ighio      |
| Deployment latitude\ northings                      |    | 3404    | 2.462          |
| Deployment longitude\ eastings                      |    | 14 3    | 3.080          |
| Site name                                           |    | FIDE    | CAUCE          |
| Site depth                                          |    | 15      | <sup>1</sup> m |
| Deployment depth                                    |    |         | 7~             |
| Acoustic release (1) serial number and release code |    |         | N/A            |
| Acoustic release (2) serial number and release code |    |         | n/A            |
| Argos beacon serial number                          |    |         | /              |

Logger to sensor verhead distance zism


|                                              | RECOVERY           |     |  |
|----------------------------------------------|--------------------|-----|--|
| Instrument type and serial number            |                    |     |  |
| Deployment name                              |                    |     |  |
| Deployment date and time                     | LT                 | GMT |  |
| Deployment latitude\ northings               |                    |     |  |
| Deployment longitude\ eastings               |                    |     |  |
| Recovery information                         |                    |     |  |
| Recovery date and time                       | LT                 | GMT |  |
| Inspect the instrument for signs of flooding | 9                  |     |  |
| Switch off and download the instrument us    | ing Aquadopp softw | are |  |
| Switch off date and time                     | LT                 | GMT |  |
| Name of the data directory                   |                    |     |  |
| File size                                    |                    |     |  |

| Client name | 1 | TGR1050HT deployment / recovery sheet |
|-------------|---|---------------------------------------|




## 6.3 ADCP CONFIGURATION FILES

| R1           FR101           FR101           E80           S010           S011           S21111           E2111111           E2111111           E2111111           E2111111           E21111000000           #485           M01           M02           M03           M041000000           #485           M041000000           Standardstrange           Standard deviation           Powersy 1260           Standard deviation           Power 12600           Standard deviation           Power 12600           Standard deviation           Power 12600           Standard deviation           Power 12600      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                             |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Instrument<br>Frequency<br>Nater Profile<br>Sottom Track<br>High Res. Modes<br>High Res. Modes<br>High Res. Modes<br>Lowered ADCP<br>Lowered ADCP<br>Beam angle<br>Temperature hours<br>Battery packs<br>Automatic TP<br>Memory Size [MB]<br>Saved Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = Workhorse Ser<br>= 614400<br>= NO<br>= NO<br>= NO<br>= YES<br>= NO<br>= 20<br>= 10:00<br>= 3<br>= YES<br>= 10:00<br>= 10:00<br>= 10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ntine]                                                                                                                                                                                                                                      |    |
| Consequences general<br>First cell range<br>Last cell range<br>Standard deviation<br>Ensemble size<br>Storage required<br>Power usage<br>Storage required<br>Storage required<br>Storage required<br>Min Dir Wave Perod<br>Byttes / Wave Burst<br>Wave Nerdos ANC AAUTL<br>Waves Gauge feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ted by PlanADCF<br>= 1.41 m<br>= 15.76 m<br>= 36.69 m<br>= 1.08 cm/s<br>= 994 bytes<br>= 401.43 MB (42<br>= 1320.09 wh<br>= 2.9<br>= 4920<br>= 1.85 s<br>= 2.49 s<br>= 383840<br>DNS:<br>= has to be ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > version 2.04:<br>:0988320 bytes)<br>stalled in workhorse to use selected option                                                                                                                                                           | 1. |
| <pre>;30m AUC.p<br/>;30m AUC.p<br/>;20m A</pre> | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>12:00:00<br>t =<br>file =<br>ack =<br>Pinging =<br>ottom Mode=<br>e<br>pen =<br>thours =<br>thours =<br>thours =<br>ces generate<br>l range =<br>ces generate<br>range =<br>ces generate<br>size =<br>e<br>e<br>e<br>e<br>e<br>e<br>ces generate<br>ces gener | Workhorse Sentinel<br>614400<br>YES<br>NO<br>NO<br>NO<br>NO<br>20<br>5.60<br>1080.00<br>3<br>5ES<br>1000<br>1.<br>4<br>dby PlanADCP version 2.04:<br>1.60 m<br>38.22 m<br>0.86 cm<br>38.22 m<br>135.674320 bytes)<br>135.94 Wh<br>135.94 Wh |    |





LWANDLE TECHNOLOGIES (PTY) LTD





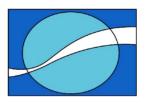
### 6.5 TRDI ADCP CALIBRATION CERTIFICATES

|                           | 4111-004-11      | A Teledyna     | e Technologi  | ies Company |               |
|---------------------------|------------------|----------------|---------------|-------------|---------------|
|                           | Workhor          | se Confi       | guratio       | on Summar   | Y             |
| Date                      | 11/30/2007       |                |               |             |               |
| Customer                  | PERTEC           |                |               |             |               |
| Sales Order or RMA No.    | 3018766          |                |               |             |               |
| * System Type             | Sentinel         |                |               |             |               |
| Part number               | WHSW600-I-UG92   | 2              |               |             |               |
| Frequency                 | 600 kHz          |                |               |             |               |
| Depth Rating (meters)     | 200              |                |               |             |               |
| SERIAL NUMBERS:<br>System | 10119            | REVISION:      |               |             |               |
| CPU PCA                   | 11019            | Rev.           | .J3           |             |               |
| PIO PCA                   | 6574             | Rev.           | F1            |             |               |
| DSP PCA                   | 14400            | Rev.           | G1            |             |               |
| RCV PCA                   | 14956            | Rev.           | E2            |             |               |
| AUX PCA                   |                  | Rev.           |               |             |               |
| FIRMWARE VERSION:         |                  |                |               |             |               |
| CPU                       | 16:30            |                |               |             |               |
| SENSORS INSTALLED:        |                  |                |               |             |               |
| Temperature 🗸             | Heading 🗸        | Pitch / I      | Roll 🗸        | Pressure 🗸  | Rating 200 me |
| FEATURES INSTALLED        |                  |                |               |             |               |
| ✓ Water Profile           |                  | High Rat       | e Pinging     |             |               |
| Bottom Track              |                  | Shallow        | Bottom Mod    | 6           |               |
| High Resolution V         | Vater Modes      | ✓ Wave Gu      | lage Acquisit | tion        |               |
| Lowered ADCP              |                  | River Su       | wey ADCP *    |             |               |
| * Includes Water Profile  | Bottom Track and | High Resolutio | n Water Mod   | es .        |               |
| COMMUNICATIONS:           |                  |                |               |             |               |
| Communication             | RS-232           |                |               |             |               |
| Baud Rate                 | 9600             |                |               |             |               |
| Parity                    | NONE             |                |               |             |               |
| Recorder Capacity         | 1150             | MB (installed  | Ð             |             | 裁             |
| Power Configuration       | 20-60 VDC        |                |               |             |               |
|                           | 5                | meters         |               |             |               |



|                                     | 8                  |                 |                       |            |           | 52.       |     |
|-------------------------------------|--------------------|-----------------|-----------------------|------------|-----------|-----------|-----|
|                                     |                    |                 |                       |            |           | *         |     |
| -                                   |                    |                 |                       |            |           |           |     |
|                                     |                    | TELED           | YNE                   |            |           |           |     |
|                                     |                    | RD INS          | <b>DYNE</b><br>STRUME | NTS        |           |           |     |
|                                     |                    |                 | e Technologi          |            |           |           |     |
|                                     | Workhor            | se Conf         | iguratio              | n Summa    | ry        |           |     |
| Date                                | 11/30/2007         |                 |                       |            |           |           |     |
| Customer                            | PERTEC             |                 |                       |            |           |           |     |
| <sup>4</sup> Sales Order or RMA No. | 3018766            |                 |                       |            |           |           |     |
| System Type                         | Sentinel           |                 |                       |            |           |           |     |
| Part number                         | WHSW600-I-UG9      | 2               |                       |            |           |           |     |
| Frequency                           | 600 kHz            |                 |                       |            |           |           |     |
| Depth Rating (meters)               | 200                |                 |                       |            |           |           |     |
| SERIAL NUMBERS:                     |                    | REVISION:       |                       |            |           |           |     |
| System                              | 10100              |                 |                       |            |           |           |     |
| CPU PCA                             | 10999              | Rev.            | J3                    |            |           |           |     |
| PIÓ PCA                             | 6590               | Rev.            | F1                    |            |           |           |     |
| DSP PCA                             | 14424              | Rev.            | G1                    |            |           |           |     |
| RCV PCA                             | 14927              | Rev.            | E2                    |            |           |           |     |
| AUX PCA                             |                    | Rev.            | C2 WARNAM             |            |           |           |     |
| FIRMWARE VERSION:                   |                    |                 |                       |            |           |           |     |
| CPU                                 | 16.30              |                 |                       |            |           |           |     |
| SENSORS INSTALLED:                  |                    |                 |                       |            |           |           |     |
| Temperature 🗸                       | Heading 🗸          | Pitch /         | Roll 🗸                | Pressure 🗸 | Rating 20 | 00 meters |     |
| FEATURES INSTALLED                  |                    |                 |                       |            |           |           |     |
| ✓ Water Profile                     |                    | High Ra         | te Pinging            |            |           |           |     |
| Bottom Track                        |                    | Shallow         | Bottom Mod            | e          |           |           |     |
| High Resolution V                   | Vater Modes        | ✔ Wave G        | uage Acquisit         | tion       |           |           |     |
| Lowered ADCP                        |                    | River Su        | Irvey ADCP *          |            |           |           |     |
| * Includes Water Profile            | , Bottom Track and | l High Resoluti | on Water Mod          | les        |           |           |     |
| COMMUNICATIONS:                     |                    |                 | 21                    |            |           |           |     |
| Communication                       | RS-232             |                 |                       |            |           |           |     |
| Baud Rate                           | 9600               |                 |                       |            |           |           |     |
| Parity                              | NONE               |                 |                       |            | *         |           |     |
| Recorder Capacity                   | 1150               | MB (installe    | d)                    |            |           |           |     |
| Power Configuration                 | 20-60 VDC          |                 |                       |            |           |           |     |
| Cable Length                        | 5                  | meters          |                       |            |           |           |     |
|                                     |                    |                 |                       |            |           |           |     |
|                                     |                    |                 |                       |            |           |           | 12. |




## LWANDLE DATA REPORT

## **BANTAMSKLIP SITE – DEPLOYMENT ONE**

### PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



## PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



17 June 2008

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



### TABLE OF CONTENTS

| 1. | EXECU  | TIVE SUMMARY4                              |  |  |
|----|--------|--------------------------------------------|--|--|
| 2. | INTRO  | DUCTION                                    |  |  |
|    | 2.1    | PROJECT DESCRIPTION                        |  |  |
|    | 2.2    | EQUIPMENT LIST                             |  |  |
|    | 2.3    | MEASUREMENT LOCATION                       |  |  |
| 3. | OPERA  | TIONS                                      |  |  |
|    | 3.1    | SUMMARY OF EVENTS                          |  |  |
|    | 3.2    | INSTRUMENT CONFIGURATIONS                  |  |  |
|    |        | 3.2.1 600kHz ADCP11                        |  |  |
|    |        | 3.2.2 RBR XR420 CT LOGGER 11               |  |  |
|    |        | 3.2.3 RBR TGR1050 HT TIDE GAUGE 12         |  |  |
|    |        | 3.2.4 Biofouling Mooring 12                |  |  |
|    | 3.3    | RECOVER AND REDEPLOYMENT METHODOLOGY 13    |  |  |
|    |        | 3.3.1 T&C mooring 13                       |  |  |
|    |        | 3.3.2 ADCP mooring                         |  |  |
|    |        | 3.3.3 Tidal Gauge 13                       |  |  |
|    |        | 3.3.4 Biofouling mooring 13                |  |  |
|    | 3.4    | MALFUNCTIONS AND LESSONS LEARNT            |  |  |
| 4. | DATA ( | QUALITY CONTROL                            |  |  |
|    | 4.1    | RBR-CT LOGGER 15                           |  |  |
|    | 4.2    | TIDE GAUGE 15                              |  |  |
|    | 4.3    | BIOFOULING                                 |  |  |
|    | 4.4    | SEDIMENTS AND WATER SAMPLE15               |  |  |
| 5. | DATA F | PRESENTATION                               |  |  |
|    | 5.1    | RBR-CT LOGGER16                            |  |  |
|    |        | 5.1.1 Temperature and Salinity Data        |  |  |
|    |        | 5.1.1.1 Time series plot                   |  |  |
|    |        | 5.1.1.2 Summary plot                       |  |  |
|    | 5.2    | TIDE GAUGE 16                              |  |  |
|    | 5.3    | SEDIMENTS, BIOFOULING AND WATER SAMPLES 19 |  |  |
| 6. | DISCUS | SION                                       |  |  |

# LWANDLE TECHNOLOGIES (PTY) LTD

| 7. | INSTRU | MENT PARTICULARS FOR SERVICE VISIT ONE | 23 |
|----|--------|----------------------------------------|----|
|    | 7.1    | ADCPS                                  | 23 |
|    | 7.2    | RBR-CT LOGGERS                         | 27 |
|    | 7.3    | TIDE GAUGE                             | 30 |
|    | 7.4    | ADCPS CONFIGURATION FILES              | 31 |
|    | 7.5    | TRDI ADCPS CALIBRATION CERTIFICATES    | 32 |
|    | 7.6    | RBR-CT CALIBRATION CERTIFICATES        | 34 |
| 8. | рното  | S TAKEN                                | 37 |
| 9. | REPOR  | TS FROM THE CSIR                       | 39 |



#### 1. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 1 are presented in this section together with an indication of the data return achieved.

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100             | 13.08 | 19.82 | 9.76  |
| Conductivity     | 100             | 40.47 | 47.90 | 35.45 |
| Salinity (psu)   | 100             | 34.41 | 35.15 | 32.20 |

#### Table 1 – Water temperature and salinity summary (surface)

#### Table 2 – Water temperature and salinity summary (surface)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100             | 10.48 | 16.84 | 9.47  |
| Conductivity     | 100             | 38.40 | 44.84 | 35.05 |
| Salinity (psu)   | 99.55           | 34.86 | 35.25 | 34.51 |



#### 2. INTRODUCTION

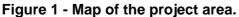
#### 2.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents tide, temperature and salinity data collected at Bantamsklip station for the period January  $29^{th}$  2008 - March  $26^{th}$  2008 (Period 1) as well as sediment, water and grab samples collected during Service Visit 1 (March  $25^{th} - 27^{th}$  2008).

#### 2.2 EQUIPMENT LIST

Lwandle provided the equipment as listed in Table 3 for the Bantamsklip site.


| Item                       | Operational (on site) | Spare (for whole project) |
|----------------------------|-----------------------|---------------------------|
| TRDI 600kHz ADCP           | 2                     | 1                         |
| RBR XR420 CT logger        | 2                     | 1                         |
| RBR TGR 1050 HT Tide Gauge | 1                     | 1                         |

#### Table 3 – List of equipment provided.

#### 2.3 MEASUREMENT LOCATION

The initial deployment location of the mooring is given in Table 4 and shown in Figure 1. Table 5 – Table 7 show the locations where water samples, grab samples and beach samples were taken respectively.





5



| Instrument               | Latitude (°S) | Longitude (°E) |
|--------------------------|---------------|----------------|
| Tide Gauge               | 34° 42.462'   | 19° 33.080'    |
| 10m ADCP                 | 34° 43.186'   | 19° 33.637'    |
| Biofouling               | 34° 43.190'   | 19° 33.686'    |
| 30m ADCP and T&C mooring | 34° 42.625'   | 19° 30.690'    |

#### Table 4 – Measurement locations

Table 5 – Locations where water samples were taken

| Station | n 26 Mar 2008 | Latitude (°S) | Longitude (°E) |
|---------|---------------|---------------|----------------|
| S1      | 30m ADCP 4m   | 34° 42.603'   | 19° 30.696'    |
| S2      | 30m ADCP 12m  | 34° 42.603'   | 19° 30.696'    |
| S3      | 30m ADCP 20m  | 34° 42.603'   | 19° 30.696'    |
| S4      | 30m ADCP 28m  | 34° 42.603'   | 19° 30.696'    |
| S5      | 10m ADCP 4m   | 34° 43.187'   | 19° 33.635'    |
| S6      | 10m ADCP 8m   | 34° 43.187'   | 19° 33.635'    |
| S7      |               | 34° 43.141'   | 19° 33.710'    |
| S8      |               | 34° 43.055'   | 19° 33.616'    |
| S9      |               | 34° 42.938'   | 19° 33.445'    |
| S10     |               | 34° 42.901'   | 19° 33.287'    |
| S11     |               | 34° 42.860'   | 19° 33.149'    |

#### Table 6 – Locations where grab samples were taken

| Station<br>26-27 Mar 2008 | Latitude (°S) | Longitude (°E) |
|---------------------------|---------------|----------------|
| S1                        | 34° 43.852'   | 19° 35.033'    |
| S2                        | 34° 44.107'   | 19° 35.007'    |
| S3                        | 34° 43.079'   | 19° 33.619'    |
| S4                        | Reef          |                |
| S5                        | Reef          |                |
| S6                        | Reef          |                |
| S7                        | Reef          |                |
| S8                        | Reef          |                |
| S9                        | Reef          |                |
| S10                       | Reef          |                |
| S11                       | Reef          |                |
| S12                       | Reef          |                |
| S13                       | Reef          |                |
| S14                       | Reef          |                |
| S15                       | 34° 41.869'   | 19° 32.011'    |
| S16                       | 34° 41.790'   | 19° 31.876'    |
| S17                       | Reef          |                |
| S18                       | Reef          |                |
| S19                       | 34° 40.904'   | 19° 31.079'    |
| S20                       | 34° 40.850'   | 19° 30.982'    |



| 25 Mar 2008 | High          | water          | Low           | water          |
|-------------|---------------|----------------|---------------|----------------|
| Station     | Latitude (°S) | Longitude (°E) | Latitude (°S) | Longitude (°E) |
| S1          | 34° 39.944'   | 19° 29.517'    | 34° 39.948'   | 19° 29.508'    |
| S2          | 34° 40.239'   | 19° 31.088'    | 34° 40.244'   | 19° 31.086'    |
| S3          | 34° 40.347'   | 19° 31.298'    | 34° 40.354'   | 19° 31.294'    |
| S4          | 34° 40.461'   | 19° 31.516'    | 34° 40.477'   | 19° 31.503'    |
| S5          | 34° 40.618'   | 19° 31.718'    | 34° 40.627'   | 19° 31.705'    |
| S6          | 34° 40.772'   | 19° 31.874'    | 34° 40.777'   | 19° 31.869'    |
| S7          | 34° 41.049'   | 19° 31.949'    | 34° 41.056'   | 19° 31.940'    |
| S8          | 34° 41.513'   | 19° 32.523'    | 34° 41.515'   | 19° 32.520'    |
| S9          | 34° 41.777'   | 19° 32.768'    | 34° 41.780'   | 19° 32.763'    |
| S10         | 34° 42.156'   | 19° 33.135'    | 34° 42.159'   | 19° 33.134'    |
| S11         | 34° 42.646'   | 19° 33.532'    | 34° 42.655'   | 19° 33.527'    |
| S12         | 34° 42.722'   | 19° 33.705'    | 34° 42.725'   | 19° 33.704'    |
| S13         | 34° 42.809'   | 19° 33.873'    | 34° 42.813'   | 19° 33.872'    |
| S14         | 34° 42.915'   | 19° 34.007'    | 34° 42.919'   | 19° 34.006'    |
| S15         | 34° 43.059'   | 19° 34.132'    | 34° 43.062'   | 19° 34.133'    |
| S16         | 34° 43.134'   | 19° 34.319'    | 34° 43.138'   | 19° 34.321'    |
| S17         | 34° 43.475'   | 19° 35.370'    | 34° 43.477'   | 19° 35.369'    |
| S18         | 34° 43.717'   | 19° 35.745'    | 34° 43.721'   | 19° 35.742'    |
| S19         | 34° 43.811'   | 19° 35.788'    | 34° 43.814'   | 19° 35.781'    |
| S20         | 34° 45.259'   | 19° 37.918'    | 34° 45.265'   | 19° 37.913'    |

| Table 7 – Locations where beach samples were taken |
|----------------------------------------------------|
|----------------------------------------------------|



#### 3. OPERATIONS

#### 3.1 SUMMARY OF EVENTS

A summary of events associated with the deployment of the moorings is given in Table 8. Service visit 1 was undertaken on March  $25^{th} - 27^{th}$  2008 and is detailed in Table 9.

| Date                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28 January 2008<br>09h30 | Lwandle's engineers departed from Cape Town.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12h30                    | The engineers arrived at Pearly Beach accommodation and<br>then they setup the vehicle with the necessary gear for the<br>tide gauge deployment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13h30                    | The engineers met with the Dive Team. They then arranged for a 4x4 vehicle for access to the site due to deep sand roads. All the kit was transferred to the 4x4 vehicle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14h30                    | The engineers arrived at the proposed site for the tide gauge<br>which was situated in a sheltered embayment. It was<br>discovered that the proposed position was not suitable as it<br>was very shallow and too far from the rocks. The engineers<br>then scouted the next five (5) gullies towards the north in order<br>to find a suitable position. The new position was 1.87m deep<br>and located at 34°42.462 S and 19°33.080 E. The surveyors<br>still need to level in the tide reference with a chart datum.                                                                                                                                                                                         |
| 16h00                    | The engineers carried the tide gauge, H-frame and railway<br>lines down to rocks. The frame was floated to position and<br>levered onto exposed rocks to attach railway lines. The<br>railway lines were then floated out. The railway lines were<br>attached to the frame with galvanized wire and cable ties. The<br>PVC pipe (stilling well with sensor inside) was attached to the<br>H - frame. The H -frame was secured in position. The data<br>cable was covered with hosing. Attached logger box to rocks<br>via 4 bolts that were steel cemented onto rocks. Attached wire<br>over box and cemented onto rocks. Tide gauge was set to<br>start recording at 18h00. The unit hit the water at 19h10. |
| 20h10                    | The engineers returned to the base camp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 29 January 2008<br>06h30 | Assembled the ADCP frames, CART pop-ups, T&C, biofouling strings and set up the instruments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 09h00                    | The engineers left the base camp and met the boat operator and divers at Gansbaai.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 09h30-11h00              | The assembly of ADCP frames and fitting of instruments was completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12h00                    | The vessel was launched and it reached the ADCP deployment location in approximately 50 minutes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13h00                    | The railway lines were attached to the T&C mooring line. Then<br>the 50m groundline was attached between ADCP frame and<br>T&C logger string.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13h10                    | The T&C logger string was lowered using the 50m groundline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13h20                    | The ADCP frame was lowered to 30m (CART s/n 32383) 34°42.603 S and 19°30.655 E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

 Table 8 – Summary of events for the mobilisation of the equipment



| Date                    | Description                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13h30                   | The divers attached 3 x chain sections to the ADCP frame.<br>The 30m ADCP mooring was successfully deployed.                                                                                                                                                                                                                                                            |
| 14h35                   | The vessel arrived at 10m site (~ 5kms away)                                                                                                                                                                                                                                                                                                                            |
| 14h45                   | The Biofouling mooring was deployed (34°43.190 and 19°33.637).                                                                                                                                                                                                                                                                                                          |
| 15h00                   | The 10m ADCP (CART s/n 32380) was deployed (34°43.186 S and 19°33.637 E). The divers entered the water and attached 4 sections of rig chain and photographed the mooring.                                                                                                                                                                                               |
| 16h30                   | The vessel arrived back at Kleinbaai Harbour.                                                                                                                                                                                                                                                                                                                           |
| Ranging                 | 30m ADCP Ranging<br>• 34°42.575 / 19°30.604 - 117m<br>• 34°42.585 / 19°30.513 - 235m<br>• 34°42.607 / 19°30.473 - 295m<br>10m ADCP Ranging<br>• 34°43.147 / 19°33.575 - 113m<br>• 34°43.155 / 19°33.653 - 56m<br>• 34°43.194 / 19°33.696 - 77m<br>Biofouling ranging<br>• 34°43.159 / 19°33.723 - 80m<br>• 34°43.180 / 19°33.708 - 56m<br>• 34°43.170 / 19°33.660 - 51m |
| 30 January 2008 - 08h30 | The engineers travelled to Gansbaai to purchase rock set cement and epoxy putty for tide gauge logger box.                                                                                                                                                                                                                                                              |
| 10h30                   | The engineers arrived at the tide gauge site. The engineers checked the logger box and sensor frame (i.e. H-frame and stilling well) and it appeared to be fine. They then applied epoxy putty and rock fast cement to 4 x bolts on logger box.                                                                                                                         |
| 11h30                   | The 4x4 vehicle was returned and the engineers proceeded back to Cape Town.                                                                                                                                                                                                                                                                                             |
| 14h00                   | The engineers arrived back in Cape Town.                                                                                                                                                                                                                                                                                                                                |

### Table 9 – Summary of events for Service Visit 1

| Date                   | Description                                                                                                                                                                               |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25 March 2008<br>08h30 | Lwandle's engineers departed from Cape Town.                                                                                                                                              |
| 11h00                  | The engineers arrived at Pearly Beach accommodation.                                                                                                                                      |
| 13h30                  | The engineers arrived at tide gauge site to download data.<br>There was tampering with the pressure sensor cable into the<br>logger box and water entered the plug. No data was recorded. |
| 14h30                  | The engineers started with the beach sampling.                                                                                                                                            |
| 19h30                  | The engineers completed half of the beach sampling.                                                                                                                                       |
| 20h10                  | The engineers returned to the base camp.                                                                                                                                                  |
| 26 March 2008 - 06h30  | The engineers met up with the divers at the Kleinbaai slipway.                                                                                                                            |
| 08h00                  | The vessel was launched and it reached the 30m ADCP deployment location in approximately 50 minutes.                                                                                      |



| Date                     | Description                                                                                                                                                                                                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09h15                    | The CART Pop-Up buoy was successfully released on the 30m mooring.                                                                                                                                                                                                                      |
| 12h00                    | All diving operations were put on hold due to fact that a MCM patrol vessel requested a permit to dive in the area.<br>Arrangements were made to have the fisheries inspector onboard to complete diving operations. The water sampling was completed, while waiting for the inspector. |
| 13h00                    | The divers released the T&C line and detached the weights from the mooring. The 30m ADCP mooring was successfully retrieved.                                                                                                                                                            |
| 14h00                    | The 10m ADCP mooring was successfully retrieved.                                                                                                                                                                                                                                        |
| 14h30                    | Started the sediment sampling using a Van Veen Grab. Half of the grab sampling was completed.                                                                                                                                                                                           |
| 17h30                    | The vessel arrived back at Kleinbaai harbour.                                                                                                                                                                                                                                           |
| 18h00                    | The vessel was offloaded and the instruments taken back for servicing.                                                                                                                                                                                                                  |
| 19h00                    | The instruments were cleaned up and setup to download the data. There was a problem on both the ADCP's. The units did initialize as per the setup procedure, but only recorded data for 5 hours, which was stored in multiple files                                                     |
| 21h00                    | The instruments were serviced and setup for deployment.                                                                                                                                                                                                                                 |
| 27 March 2008 –<br>08h00 | The vessel was launched and it reached the 30m ADCP deployment location in approximately 50 minutes.                                                                                                                                                                                    |
| 09h30                    | The 30m ADCP and RBR logger string was successfully deployed.                                                                                                                                                                                                                           |
| 11h00                    | The 10m ADCP was successfully deployed. A different unit was used – details in section 3.2.                                                                                                                                                                                             |
| 11h30                    | The engineers completed the last of the grab sediment sampling.                                                                                                                                                                                                                         |
| 12h30                    | The vessel arrived back at Kleinbaai harbour.                                                                                                                                                                                                                                           |
| 13h00                    | The vessel was offloaded and washed down.                                                                                                                                                                                                                                               |
| 15h00                    | The tide gauge logger box and pressure sensor was replaced.                                                                                                                                                                                                                             |
| 19h00                    | The engineers depart for Cape Town.                                                                                                                                                                                                                                                     |



#### 3.2 INSTRUMENT CONFIGURATIONS

The as deployed instrumentation configurations are given in this section and completed deployment / recovery sheets are given as an appendix (Section 7, page 23) to this report.

#### 3.2.1 600kHz ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10100                         |
| Wave burst duration         | 41 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 42                            |
| Bin size                    | 0.35 m                        |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 500                           |
| Edgetech Acoustic Release   | s/n 32380 release code 641722 |

Both ADCPs failed to record data. The reasons for this were uncertain at that point. As a result, it was decided that the 10m ADCP s/n 10100 would be replaced with a spare ADCP (s/n 10105) at service visit one.

Table 11 – Instrument configuration for 30m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10119                         |
| Wave burst duration         | 34 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 69                            |
| Bin size                    | 0.5 m                         |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 250                           |
| Edgetech Acoustic Release   | s/n 32383 release code 642016 |

#### 3.2.2 RBR XR420 CT LOGGER

#### Table 12 – Instrument configuration for T&C Mooring Line.

| Parameter                           | Configuration                               |
|-------------------------------------|---------------------------------------------|
| XR 420 Temperature and Conductivity | s/n 12994 (7m) and s/n 12998 (28m)          |
| Sampling and Averaging              | Sample at 1Hz for 1 minute every 10 minutes |



#### 3.2.3 RBR TGR1050 HT TIDE GAUGE

#### Table 13 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 1050 HT            | s/n 14005                               |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

#### 3.2.4 Biofouling Mooring

#### Table 14 – Instrument configuration for Biofouling Mooring Line.

| Parameter                 | Configuration                                             |
|---------------------------|-----------------------------------------------------------|
| Biofouling Plates         | 3 plates (50cmx50cm) at 3m and 3 plates (50cmx50cm) at 8m |
| Edgetech Acoustic Release | s/n 32387 release code 642144                             |



#### 3.3 RECOVER AND REDEPLOYMENT METHODOLOGY

#### 3.3.1 T&C mooring

The T&C mooring line was deployed by lowering the array down via a rope through the anchor weights. The mooring line is recovered using divers to undo a single shackle that connects the mooring line to the anchor weights. Divers reattach the line onto the weights, after the instruments have been serviced.

#### 3.3.2 ADCP mooring

The ADCP Frame is lowered to the bottom and moved into position by divers, who also attach chain sections that act as anchors. To retrieve the frame divers have to locate the mooring, take of the anchor chains and surface the frame using air lift bags that they attach.



Figure 2 – ADCP frame with 600KHz instrument.

#### 3.3.3 Tidal Gauge.

The Druck pressure sensor was installed inside a stilling well, which was attached to a permanent steel frame in 1.87m depth of water. The sensor cable was covered with garden hosing and laid out to the tide logger box which was cemented onto a nearby rocky outcrop.

#### 3.3.4 Biofouling mooring

The biofouling mooring line was deployed by lowering the array down via a rope through the anchor weights. Divers will locate the mooring line and retrieve a surface and bottom plate from the line at the required sampling periods. Recovery of the biofouling mooring was not scheduled for the first service visit.



#### 3.4 MALFUNCTIONS AND LESSONS LEARNT

A list of malfunctions experienced and consequent measures to be taken in future are provided in Table 15.

| Problem                                                                                                             | Mitigation measure(s)                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poachers dive in vicinity of tide gauge – they may steal the instrument.                                            | Tried to camouflage instruments as best<br>as possible. The equipment was<br>tampered with and the tide gauge was<br>replaced with the spare resulting in no<br>data for the first period. |
| Seimac beacons did not arrive in time for the initial installation and will be deployed at the first service visit. |                                                                                                                                                                                            |
| ADCP failure due to multiple file creation.                                                                         | Enter the RIO command in the setup file. The 10m ADCP (s/n 10100) was replaced with a spare unit (s/n 10105).                                                                              |



#### 4. DATA QUALITY CONTROL

There was no data return from the 2 ADCPs.

#### 4.1 RBR-CT LOGGER

The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.

- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.
- Salinity values less than 34.5psu were flagged for the bottom instrument.

#### 4.2 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- The data were visually examined and spikes flagged (indexes 142183, 143247, 143248 and 161389).
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is +0.73m.
- Finally the data was averaged over a 10-minute period.

#### 4.3 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Biofouling sample was not taken at Bantamsklip during service visit 1.

#### 4.4 SEDIMENTS AND WATER SAMPLE.

Sediments and water sample were collected and sent to the Council for Scientific and Industrial Research (CSIR) for analysis.





#### 5. DATA PRESENTATION

All data presented have been subject to the quality control procedures detailed in the previous section. Bad data have been excluded from all plots and calculations.

All plots in this section include a stamp that details the location, depth, time period and number of observations that the plot is based upon. Wherever possible, scaling of parameters has been kept constant throughout this section to facilitate comparison between plots and stations.

#### 5.1 RBR-CT LOGGER

#### 5.1.1 Temperature and Salinity Data

#### 5.1.1.1 <u>Time series plot</u>

Figure 3 and Figure 4 display time series plots for the surface and bottom loggers respectively. These consist of:

- The first panel is of the observed water temperature against time.
- The second panel is of the derived salinity against time.

#### 5.1.1.2 <u>Summary plot</u>

Figure 5 and Figure 6 display summary plots for the surface and bottom loggers respectively. These consist of:

- The left hand panel is a histogram of the water temperature. This reflects the percentage of observations that fall within each temperature interval. Included on the plot are basic statistics for the distribution.
- The right hand panel is a histogram of the water salinity.

#### 5.2 TIDE GAUGE

Figure 7 displays a time series plot of the tidal height.

- The first (upper) panel is of the observed height against time.
- The second panel is of the tidal height, calculated from the observed height, against time. The tidal calculation follows the method of Foreman and uses the observed height as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The third panel is of the residual height against time. The residual has been calculated as the observed height minus the tidal height.

Table 16 shows the tidal harmonics resulting from the analysis.



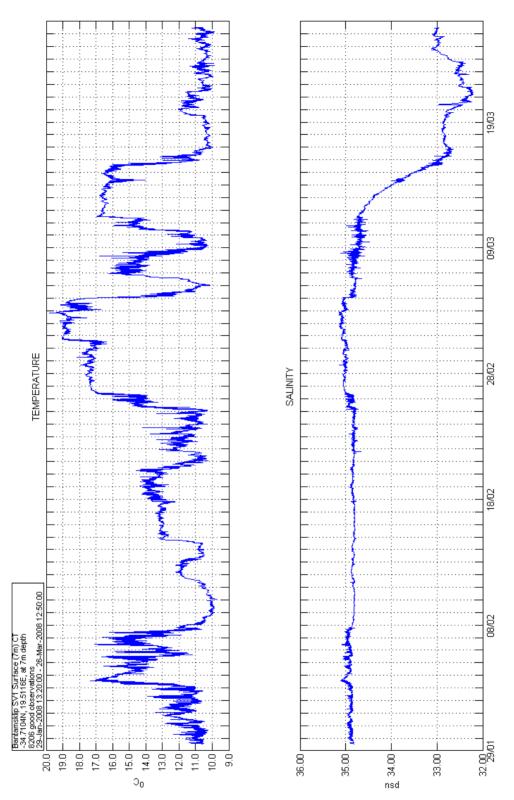



Figure 3: Time series of temperature and salinity from the surface RBR logger.



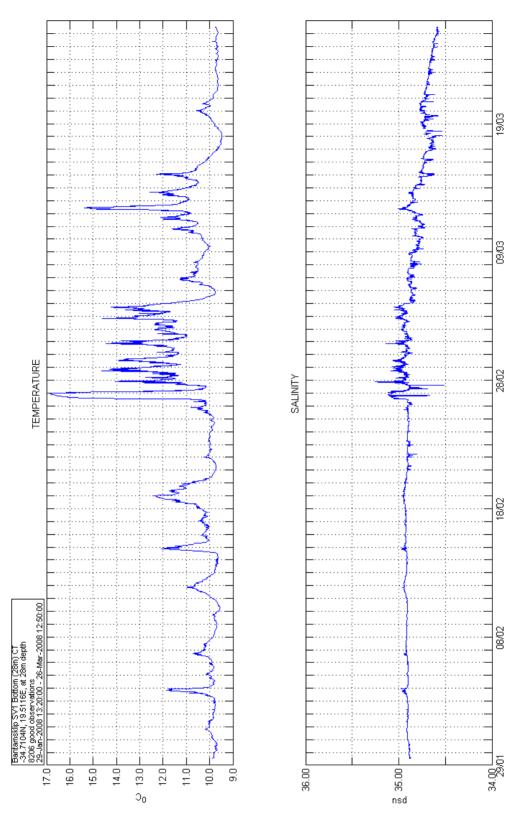
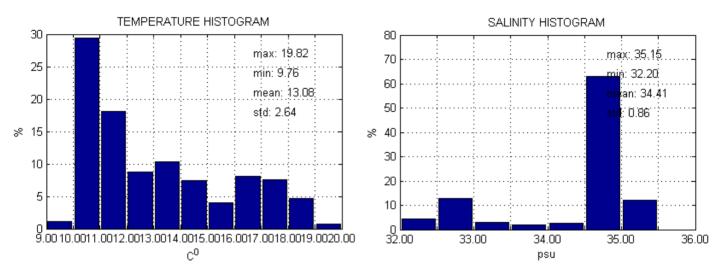




Figure 4: Time series of temperature and salinity from the bottom RBR logger.



#### Bantamsklip SV1 Surface (7m) CT -34.7104N, 19.5116E, at 7m depth 8206 good observations

29-Jan-2008 13:20:00 - 26-Mar-2008 12:50:00





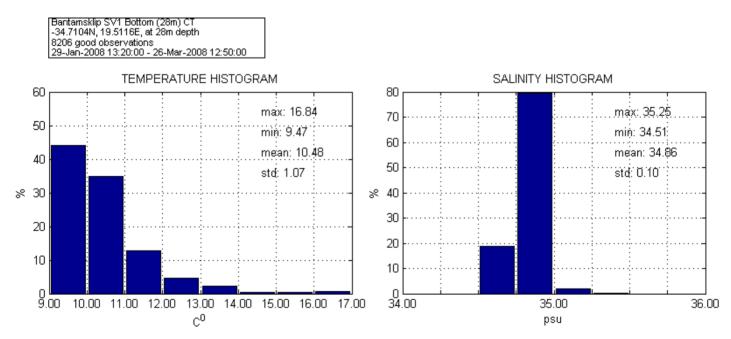



Figure 6: Summary histograms of temperature and salinity from the bottom RBR logger.

### 5.3 SEDIMENTS, BIOFOULING AND WATER SAMPLES.

Analysis of sediment and water samples were undertaken by the CSIR and results are presented as an appendage (Section 8, page 37).



# LWANDLE TECHNOLOGIES (PTY) LTD

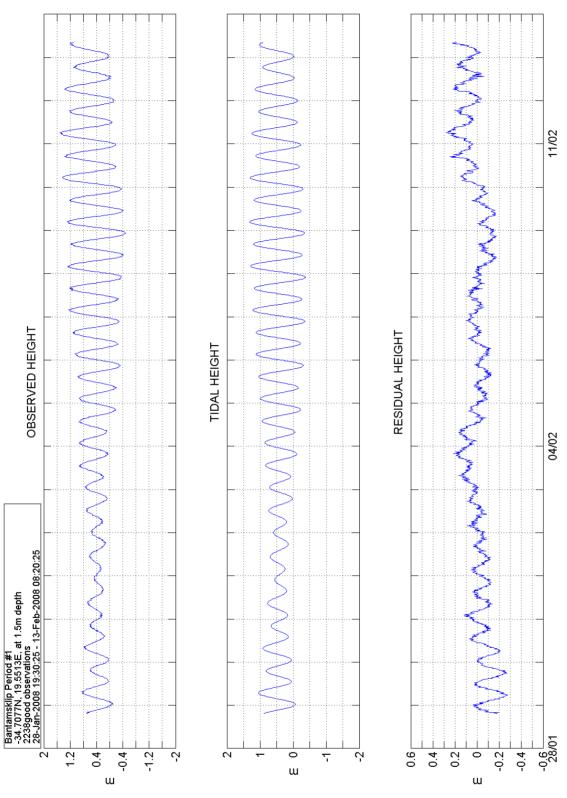



Figure 7: Tidal analysis.



#### Table 16: Tidal harmonics

| Bantamsklip Period #1<br>-34.7077N, 19.5513E, in 1.5m depth<br>2238 good observations |
|---------------------------------------------------------------------------------------|
|                                                                                       |
| 1-34.7077N. 19.5513E. In 1.5m depth                                                   |
| 2229 good obsonyctions                                                                |
|                                                                                       |
| 28-Jan-2008 19:30:25 - 13-Feb-2008 08:20:25                                           |
| 20 001 2000 13:00:20 101 00 2000 00:20:20                                             |
|                                                                                       |

HARMONIC COMPONENTS

| Component | Amplitude (m) | Phase (deg) |
|-----------|---------------|-------------|
| MSF       | 0.05          | 111.23      |
| 01        | 0.01          | 268.13      |
| K1        | 0.07          | 169.92      |
| M2        | 0.51          | 84.79       |
| S2        | 0.29          | 130.98      |
| M3        | 0.00          | 317.47      |
| SK3       | 0.00          | 180.96      |
| M4        | 0.01          | 134.60      |
| MS4       | 0.00          | 238.74      |
| S4        | 0.00          | 333.35      |
| 2MK5      | 0.00          | 170.71      |
| 2SK5      | 0.01          | 261.93      |
| M6        | 0.00          | 120.71      |
| 2MS6      | 0.00          | 290.08      |
| 2SM6      | 0.00          | 101.44      |
| 3МК7      | 0.00          | 34.20       |
| M8        | 0.00          | 245.03      |



#### 6. DISCUSSION

The first set of oceanographic data collected off the coast of Bantamsklip for the period between January 29<sup>th</sup> and March 26<sup>th</sup> 2008 has been presented in this report. The measurements taken fall within a larger dataset being compiled to assist a preliminary safety survey of multiple sites around the South African coast reports for Eskom.

At the Bantamsklip site, 2 600 kHz ADCP, 2 RBR-CT loggers and 1 RBR tide gauge have been deployed to measure currents, waves, water temperature and salinity and tidal record. The ADCP is fixed on a frame at ~10m and ~30m and the RBR loggers are moored at ~7m and ~28m below the surface. During recovery of the data, undertaken during March 25<sup>th</sup> – 27<sup>th</sup> 2008, it was found that only the 2 RBR-CT loggers and tide gauge functioned properly. The ADCPs recorded 5 hours of data in multiple files and then switched off. Sediments, water and beach samples were also collected during the service visit and analysis was undertaken at the CSIR.

In Figure 3 shows that salinity values started to drift after February 20<sup>th</sup> 2008, reaching a minimum of ~29.0 psu on February 29<sup>th</sup>. This indicates some degree of biofouling.

Only two weeks of tidal data were available, which was not sufficient for a complete tidal analysis. The stilling well came loose off its frame during the deployment period. The engineer downloaded the data recorded, as a backup, while servicing the instrument. However, during service visit 1, the logger box and pressure sensor cable were tampered with and no further data were recorded.



#### 7. INSTRUMENT PARTICULARS FOR SERVICE VISIT ONE

#### 7.1 ADCPS MOBILISATION AND RE-DEPLOYMENT SHEETS

LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

| Instrument type and serial number<br>Check O-rings on both sides of the instrument |                                                                                                                |                                            |          |            |          |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|------------|----------|
|                                                                                    |                                                                                                                |                                            | 600W 17  | 1-100      |          |
|                                                                                    |                                                                                                                |                                            |          | <i>~</i>   |          |
| Install a new battery and check the voltage                                        |                                                                                                                | and an |          | 1 45V      |          |
| Connect the battery and communications cable                                       |                                                                                                                |                                            |          |            |          |
| Inspect the transducer faces for cuts or scratches                                 |                                                                                                                |                                            |          | NEW        |          |
| Seal the instrument                                                                |                                                                                                                |                                            |          | /          |          |
| Connect the instrument to a PC and run WinSC                                       |                                                                                                                |                                            |          |            |          |
| Click on "configure an ADCP for a new deployment                                   | t"                                                                                                             |                                            |          |            |          |
| Set up the sampling parameters                                                     |                                                                                                                |                                            |          |            |          |
| Frequency of unit being used                                                       | and a second |                                            | 60       | ollz       |          |
| Depth range                                                                        |                                                                                                                |                                            |          | 0 m        |          |
| Number of bins (calculated automatically)                                          |                                                                                                                |                                            | 4        | 2          |          |
| Bin Size (calculated automatically)                                                |                                                                                                                |                                            | 0        | 35         |          |
| Wave burst duration                                                                |                                                                                                                |                                            | 4        | 1 min      |          |
| Time between wave bursts                                                           |                                                                                                                |                                            | 60       | 2 10       |          |
| Pings per ensemble                                                                 |                                                                                                                |                                            | 50       | 00         |          |
| Ensemble interval                                                                  |                                                                                                                |                                            | 10       | Min        |          |
| Deployment duration                                                                |                                                                                                                |                                            | 4        | 5 days     |          |
| Transducer depth                                                                   |                                                                                                                |                                            |          | 10,0 0     |          |
| Any other commands                                                                 |                                                                                                                |                                            |          | /          |          |
| Magnetic variation                                                                 |                                                                                                                |                                            |          | 0          |          |
| Temperature                                                                        |                                                                                                                |                                            |          | 10°C       |          |
| Recorder size                                                                      |                                                                                                                |                                            | ١        | y 6        |          |
| Consequences of the sampling parameters                                            | 4211                                                                                                           |                                            |          | 0          |          |
| First and last bin range                                                           | 151                                                                                                            | 1.41 m                                     | 15.76m   | Mar 35.28  | ~ ,      |
| Battery usage                                                                      |                                                                                                                |                                            |          | 1320 77 44 | 29 packs |
| Standard deviation                                                                 |                                                                                                                |                                            |          | 1.08 cm/5  |          |
| Storage space required                                                             |                                                                                                                |                                            |          | 401.49 Mb) |          |
| Set the ADCP clock                                                                 | LĪ)                                                                                                            | GMT                                        |          | í.         |          |
| Run pre-deployment tests                                                           |                                                                                                                |                                            |          | ~          |          |
| Name the ADCP deployment                                                           |                                                                                                                | Ę                                          | TMKI     | BTKPI      |          |
| Deployment details                                                                 |                                                                                                                | _                                          | _        |            |          |
| Switch on date and time                                                            | $\Box$                                                                                                         | GMT                                        | 29/01/08 |            |          |
| Deployment date and time                                                           | LT)                                                                                                            | GMT                                        | 21/01    | 08 ishoo   |          |
| Deployment latitude\ northings                                                     |                                                                                                                |                                            | 3404     | 3,187      |          |
| Deployment longitude\ eastings                                                     |                                                                                                                |                                            |          | 3.635      |          |
| Site name                                                                          |                                                                                                                |                                            |          | sklys ion  |          |
| Site depth                                                                         |                                                                                                                |                                            |          | ~          |          |
| Deployment depth                                                                   |                                                                                                                |                                            | ()       | m          |          |

ADCP deployment sheet

10



### LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

| instrument type and serial number                                                                                |                                        |            |       |                       |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|-------|-----------------------|
| Check O-rings on both sides of the instrument                                                                    |                                        |            |       | ~                     |
| install a new battery and check the voltage                                                                      |                                        |            |       | usu                   |
| Connect the battery and communications cable                                                                     |                                        |            |       | -                     |
| inspect the transducer faces for cuts or scratches                                                               |                                        |            |       | new                   |
| Seal the instrument                                                                                              |                                        |            |       | /                     |
| Connect the instrument to a PC and run WinSC                                                                     |                                        |            |       |                       |
| Click on "configure an ADCP for a new deployment                                                                 | nt"                                    |            | 12.2  |                       |
| Set up the sampling parameters                                                                                   |                                        | 100        |       | and the second second |
| Frequency of unit being used                                                                                     |                                        |            | 600   | kHz.                  |
| Depth range                                                                                                      |                                        |            | 30,   | o                     |
| Number of bins (calculated automatically)                                                                        |                                        |            | 21    |                       |
| Bin Size (calculated automatically)                                                                              | 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            | 0.5   | ~                     |
| Wave burst duration                                                                                              | 119<br>2.002                           |            | 3 +0  | 34 m.                 |
| Time between wave bursts                                                                                         |                                        |            |       | 250 60-               |
| Pings per ensemble                                                                                               |                                        |            |       | .o                    |
| Ensemble interval                                                                                                |                                        |            | 10    | inter a               |
| Deployment duration                                                                                              |                                        |            | 49    | s days                |
| Transducer depth                                                                                                 |                                        |            | 30    | , n O                 |
| Any other commands                                                                                               |                                        |            | -     | -                     |
| Magnetic variation                                                                                               |                                        |            | 0     |                       |
| Temperature                                                                                                      |                                        |            | 5     | ۰۷                    |
| Recorder size                                                                                                    |                                        |            | 140   |                       |
| Consequences of the sampling parameters                                                                          |                                        |            | 0     |                       |
| First and last bin range                                                                                         | (5).                                   | 160 m      | 35.60 | man 35.22             |
| Battery usage                                                                                                    |                                        |            |       | 1350 WH               |
| Standard deviation                                                                                               | 2502 B                                 |            | 1.2   | 0 Sicmis              |
| Storage space required                                                                                           |                                        | The second |       | 340 Meyo              |
| Set the ADCP clock                                                                                               | LT)                                    | GMT        |       | 0                     |
| Run pre-deployment tests                                                                                         |                                        |            | 19    | -                     |
| Name the ADCP deployment                                                                                         |                                        |            | BTKP  | 0                     |
| Deployment details                                                                                               | NO ROW-                                |            |       |                       |
| Switch on date and time                                                                                          | Ū                                      | GMT        |       | 18 12hou              |
| Deployment date and time                                                                                         | LT)                                    | GMT        |       | 08 13420              |
| Deployment latitude\ northings                                                                                   |                                        | 10         | 34642 | 603                   |
| Deployment longitude\ eastings                                                                                   | 9. J. J. J.                            | 14.07      | 19°30 | .646                  |
| Site name                                                                                                        |                                        |            |       | stha 30m              |
| Site depth                                                                                                       |                                        |            |       | 2.00                  |
| and the second |                                        |            |       | s.m                   |



я LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### DEPLOYMENT 1.

| Instrument type and serial number                  |      | ROT   | 600 kHz | #10105      |
|----------------------------------------------------|------|-------|---------|-------------|
| Check O-rings on both sides of the instrument      |      |       |         | -           |
| Install a new battery and check the voltage        |      |       |         | 44.8V       |
| Connect the battery and communications cable       |      |       |         |             |
| Inspect the transducer faces for cuts or scratches |      |       |         |             |
| Seal the instrument                                |      |       |         |             |
| Connect the instrument to a PC and run WinSC       |      |       |         |             |
| Click on "configure an ADCP for a new deployment"  |      |       |         |             |
| Set up the sampling parameters                     |      |       |         |             |
| Frequency of unit being used                       |      |       |         | GOOKHZ      |
| Depth range                                        |      |       | 10      | m           |
| Number of bins (calculated automatically)          |      |       | 4       |             |
| Bin Size (calculated automatically)                |      |       |         | 35 m        |
| Wave burst duration                                |      |       | ί       | Ilmin       |
| Time between wave bursts                           |      |       |         | omin        |
| Pings per ensemble                                 |      |       |         | -O MIA      |
| Ensemble interval                                  |      |       | 10min 1 | 1           |
| Deployment duration                                |      |       |         | darpi       |
| Transducer depth                                   |      |       | 10,     | n           |
| Any other commands                                 |      |       | RIO     |             |
| Magnetic variation                                 |      |       | -       |             |
| Temperature                                        |      |       | 5°C     |             |
| Recorder size                                      |      | · · · | 16.6    |             |
| Consequences of the sampling parameters            |      |       |         |             |
| First and last bin range                           |      |       | 1.41m   | 15.76 0     |
| Battery usage                                      |      |       |         | 2 unicutes  |
| Standard deviation                                 |      |       |         | 1.08cm/5    |
| Storage space required                             |      |       |         | LOILLAW     |
| Set the ADCP clock                                 | (ĹŤ) | GMT   |         |             |
| Run pre-deployment tests                           |      |       |         | ·           |
| Name the ADCP deployment                           |      | B-    | KO 2    |             |
| Deployment details                                 |      |       | ·····   |             |
| Switch on date and time                            | (II) | GMT   | 2718    | HUS othe    |
| Deployment date and time                           | (ĨĨ) | GMT   | 27/03   | 108         |
| Deployment latitude\ northings                     |      |       | 34°43   | - 187       |
| Deployment longitude\ eastings                     |      |       | 19° 3.  | 3.635       |
| Site name                                          |      |       | Bart    | unsklip 10. |
| Site depth                                         |      |       |         | IIm         |
|                                                    |      |       |         |             |
| Deployment depth                                   |      |       |         | IIM         |



LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

| Install a new battery and check the voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Instrument type and serial number                  |   | PDI | 600KH2 | 10119           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---|-----|--------|-----------------|
| Connect the battery and communications cable       ///instance         nspect the transducer faces for cuts or scratches       //instance         Seal the instrument       //instance         Connect the instrument to a PC and run WinSC       //instance         Cilck on "configure an ADCP for a new deployment"       //instance         Set up the sampling parameters       //instance         Frequency of unit being used       //instance         Depth range       3.0 m         Number of bins (calculated automatically)       0.5 m         Wave burst duration       3.1 m.n         Time between wave bursts       //instance         Prigs per ensemble       2.5 V         Ensemble interval       i.0 m.n         Deployment duration       //i.5 dawp         Transducer depth       3.0 m         Any other commands       RT O         Magnetic variation       //ii.6 m         Temperature       S <sup>2</sup> C         Recorder size       1.6 m         Consect test       3.0 m         Storage space required       3.0 m         Standard deviation       0 s.6 cm /s         Storage space required       3.0 m         Standard deviation       0 s.6 cm /s         Standard deviation | Check O-rings on both sides of the instrument      |   |     |        |                 |
| Connect the battery and communications cable       ///instance         nspect the transducer faces for cuts or scratches       //instance         Seal the instrument       //instance         Connect the instrument to a PC and run WinSC       //instance         Cilck on "configure an ADCP for a new deployment"       //instance         Set up the sampling parameters       //instance         Frequency of unit being used       //instance         Depth range       3.0 m         Number of bins (calculated automatically)       0.5 m         Wave burst duration       3.1 m.n         Time between wave bursts       //instance         Prigs per ensemble       2.5 V         Ensemble interval       i.0 m.n         Deployment duration       //i.5 dawp         Transducer depth       3.0 m         Any other commands       RT O         Magnetic variation       //ii.6 m         Temperature       S <sup>2</sup> C         Recorder size       1.6 m         Consect test       3.0 m         Storage space required       3.0 m         Standard deviation       0 s.6 cm /s         Storage space required       3.0 m         Standard deviation       0 s.6 cm /s         Standard deviation | Install a new battery and check the voltage        |   |     |        | 44.40           |
| Seal the instrument       ////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Connect the battery and communications cable       |   |     |        |                 |
| Connect the instrument to a PC and run WinSC         Click on "configure an ADCP for a new deployment"         Set up the sampling parameters         Frequency of unit being used       6 oc it lt 2         Depth range       30 m         Number of bins (calculated automatically)       6 4         Bin Size (calculated automatically)       0.5 m         Wave burst duration       3 t, m, n         Time between wave bursts       60 m, n         Pings per ensemble       2 5 0         Ensemble interval       10 m, n         Deployment duration       115 dargo         Transducer depth       30 m         Any other commands       & GT O         Wagnetic variation       -         Temperature       \$ 2 C         Recorder size       16 ff 6         Consequences of the sampling parameters       5 frist and last bin range         Strader deviation       5 ff 6 m         Storage space required       3 k 0 m/g         Switch on date and time       (17)         Deployment details       5 ff 7 0 2 hos fob 0         Switch on date and time       (17)         Deployment details       3 g m         Switch on date and time       3 fo m box of thos         Deployment date           | Inspect the transducer faces for cuts or scratches |   |     |        | ~               |
| Click on "configure an ADCP for a new deployment"         Set up the sampling parameters         Frequency of unit being used       6 co it lt z         Depth range       30 m         Number of bins (calculated automatically)       0.5 m         Bin Size (calculated automatically)       0.5 m         Wave burst duration       3 ls m, n         Time between wave bursts       60 m, n         Pings per ensemble       2.5 0         Ensemble interval       10 m, n         Deployment duration       115 cd m         Transducer depth       30 m         Any other commands       RT 0         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seal the instrument                                |   |     |        | /               |
| Set up the sampling parameters         Frequency of unit being used       6 cc k H z         Depth range       30 m         Number of bins (calculated automatically)       6 st         Bin Size (calculated automatically)       0.5 m         Wave burst duration       3 t, m, n         Time between wave bursts       60 m, n         Pings per ensemble       2.5 0         Ensemble interval       10 m, n         Deployment duration       115 cd m o         Transducer depth       30 m         Any other commands       RT O         Wagnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Connect the instrument to a PC and run WinSC       |   |     |        |                 |
| Frequency of unit being used <i>coc</i> i. H z          Depth range <i>30 m</i> Number of bins (calculated automatically) <i>6</i> · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Click on "configure an ADCP for a new deployment   |   |     |        |                 |
| Depth range       30 m         Number of bins (calculated automatically)       6 %         Sin Size (calculated automatically)       0.5 m         Wave burst duration       3 h m, n         Time between wave bursts       60 m, n         Pings per ensemble       2 50         Ensemble interval       10 m, n         Deployment duration       115 damp         Transducer depth       30 m         Any other commands       RT 0         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Set up the sampling parameters                     |   |     |        |                 |
| Number of bins (calculated automatically)       6 °l         Bin Size (calculated automatically)       0.5 m         Wave burst duration       3 lumin         Time between wave bursts       60 m, n         Pings per ensemble       2.5 0         Ensemble interval       10 min         Deployment duration       115 dawp         Transducer depth       30 m         Any other commands       RT 0         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency of unit being used                       |   |     | GOOKHZ |                 |
| Number of bins (calculated automatically)       6 °l         Bin Size (calculated automatically)       0.5 m         Wave burst duration       3 lumin         Time between wave bursts       60 m, n         Pings per ensemble       2.5 0         Ensemble interval       10 min         Deployment duration       115 dawp         Transducer depth       30 m         Any other commands       RT 0         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depth range                                        |   |     | 30 m   |                 |
| Wave burst duration       3 k m, n         Time between wave bursts       60 m, n         Pings per ensemble       250         Ensemble interval       10 m, n         Deployment duration       115 days         Transducer depth       30 m         Any other commands       RT 0         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of bins (calculated automatically)          |   |     | 69     |                 |
| Wave burst duration       3 k m, n         Time between wave bursts       60 m, n         Pings per ensemble       250         Ensemble interval       10 m, n         Deployment duration       115 days         Transducer depth       30 m         Any other commands       RT 0         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bin Size (calculated automatically)                |   |     | 0.5 N  | <b>`</b>        |
| Time between wave bursts     60 m, n       Pings per ensemble     250       Ensemble interval     10 m, n       Deployment duration     115 days       Transducer depth     30 m       Any other commands     RT 0       Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wave burst duration                                |   |     |        |                 |
| Pings per ensemble       250         Ensemble interval       i0 min         Deployment duration       UiS days         Transducer depth       30 m         Any other commands       RT 0         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time between wave bursts                           |   |     |        |                 |
| Deployment duration       US darp         Transducer depth       30 m         Any other commands       RT 0         Magnetic variation       Image: Standard deviation         Temperature       S <sup>2</sup> C         Recorder size       16 m         Consequences of the sampling parameters         First and last bin range       16 m         Battery usage       3 Packo         Standard deviation       0 % 6 Cm / 5         Storage space required       3 h 0 merge         Set the ADCP clock       Image: CT         Run pre-deployment tests       Image: CT         Name the ADCP deployment       BT K 0 2         Deployment details       Switch on date and time         Switch on date and time       Image: CT         Deployment latitude\ northings       3 (° Li 2 · 6 ° 3)         Deployment longitude\ eastings       ''''''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                  | Pings per ensemble                                 |   |     |        |                 |
| Transducer depth       30 ml         Any other commands       RIO         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ensemble interval                                  |   |     | jomi   | $\sim$          |
| Any other commands       RT 0         Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deployment duration                                |   |     |        |                 |
| Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Transducer depth                                   |   |     | 30 m   | ( D             |
| Magnetic variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Any other commands                                 |   |     | RIC    | )               |
| Recorder size       I GT 6         Consequences of the sampling parameters         First and last bin range       I 6 m         Battery usage       3 Pocks         Standard deviation       0.56 cm /s         Storage space required       3 H0 merge         Set the ADCP clock       LT         Run pre-deployment tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Magnetic variation                                 |   |     | /      |                 |
| Consequences of the sampling parameters         First and last bin range       1.6 m       35.6 m         Battery usage       3 Pocks       0.86 cm /s         Standard deviation       0.86 cm /s       3.40 merge         Storage space required       3.40 merge       3.40 merge         Set the ADCP clock       (LT)       GMT       GMT         Run pre-deployment tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperature                                        |   |     | s°C    | ,               |
| First and last bin range       i.6 m       35.6 m         Battery usage       3 Pocks         Standard deviation       0.86 cm /s         Storage space required       3.40 merge         Set the ADCP clock       (LT)       GMT         Run pre-deployment tests       6T K 0.2         Deployment details       53.6 m         Switch on date and time       (LT)       GMT         Deployment latitude\ northings       3.4° Li 2.6° 3         Deployment latitude\ eastings       119.6° 30.6% 6         Site depth       30 m         Deployment depth       30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recorder size                                      |   |     | 1 GT 6 |                 |
| Battery usage     3 pucks       Standard deviation     0.560 cm /s       Storage space required     3 40 meap       Set the ADCP clock     (LT)       Run pre-deployment tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Consequences of the sampling parameters            |   |     |        |                 |
| Standard deviation       0.%66 cm /s         Storage space required       3.40 merg         Set the ADCP clock       (LT)       GMT         Run pre-deployment tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | First and last bin range                           |   |     | 1.6 m  | 35.6m           |
| Storage space required       3 40 merg         Set the ADCP clock       (LT)       GMT         Run pre-deployment tests       6T K 0 2         Deployment details       Switch on date and time       (LT)         Switch on date and time       (LT)       GMT       2 7 /0 3 /0 % or how         Deployment date and time       (LT)       GMT       2 7 /0 3 /0 % or how         Deployment date and time       (LT)       GMT       2 7 /0 3 /0 % or how         Deployment latitude\ northings       3 4 ° L 2 · 6 ° 3       13 hoo         Deployment longitude\ eastings       '1 ° 3 ° - 6 ° 4 %       3 ° m         Site depth       3 ° m       3 ° m         Deployment depth       3 ° m       3 ° m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Battery usage                                      |   |     |        | 3 pucks         |
| Set the ADCP clock       (IT)       GMT       GMT         Run pre-deployment tests       6T K0 2         Deployment details         Switch on date and time       (IT)       GMT       27 /03 /08 or hot         Deployment date and time       (IT)       GMT       27 /03 /08 or hot         Deployment date and time       (IT)       GMT       27 /03 /08 or hot         Deployment date and time       (IT)       GMT       27 /03 /08 or hot         Deployment date and time       (IT)       GMT       27 /03 /08 or hot         Deployment latitude\ northings       34 ° L 2 · 60 3       12 · 60 3         Deployment longitude\ eastings       '19 ° 30 · 64 ° 6       30 · m         Site depth       30 · m       30 · m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standard deviation                                 |   |     |        | 0.86 cm /s      |
| Set the ADCP clock       (IT)       GMT       GMT         Run pre-deployment tests       6T K0 2         Deployment details         Switch on date and time       (IT)       GMT       27 /03 /08 or hot         Deployment date and time       (IT)       GMT       27 /03 /08 or hot         Deployment date and time       (IT)       GMT       27 /03 /08 or hot         Deployment date and time       (IT)       GMT       27 /03 /08 or hot         Deployment date and time       (IT)       GMT       27 /03 /08 or hot         Deployment latitude\ northings       34 ° L 2 · 60 3       12 · 60 3         Deployment longitude\ eastings       '19 ° 30 · 64 ° 6       30 · m         Site depth       30 · m       30 · m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Storage space required                             |   |     |        | 340 mergs       |
| Name the ADCP deployment       BT K0 2         Deployment details       Switch on date and time       (LT)       GMT       27 /03 /08 on hot         Deployment date and time       (LT)       GMT       27 /03 /08 on hot         Deployment date and time       (LT)       GMT       27 /03 /08 on hot         Deployment date and time       (LT)       GMT       27 /03 /08 on hot         Deployment latitude\ northings       3 4° Li 2 · 603       3 4° Li 2 · 603         Deployment longitude\ eastings       '19° 30 · 696       Site name         Site depth       30 m       30 m         Deployment depth       30 m       30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Set the ADCP clock                                 |   | GMT |        | 0               |
| Deployment details         Switch on date and time         Deployment date and time         Deployment date and time         (LT)       GMT       27.03.08       03.00         Deployment date and time       (LT)       GMT       27.03.08       13.00         Deployment latitude\ northings       3.4° L 2.603       3.0° L 2.603         Deployment longitude\ eastings       19.9° 3.0° - 64.6       3.0° M         Site name       Butcumpki, p.30° M       3.0° M         Deployment depth       3.0° M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Run pre-deployment tests                           | - |     |        | -               |
| Switch on date and time       (L)       GMT       27.03.08       01.03         Deployment date and time       (L)       GMT       27.03.08       03.00         Deployment date and time       (L)       GMT       27.03.08       03.00         Deployment latitude\ northings       34° L12.0603       03.00       04° 30.0646         Site name       Batampki: p.30.046       30.00         Site depth       30.00       30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Name the ADCP deployment                           |   |     | BTKO   | 2               |
| Deployment date and time       (LT)       GMT       2.7 (0.3 / 0.5 / 1.3 ho 0         Deployment latitude\ northings       3.4° Li 2.603       3.4° Li 2.603         Deployment longitude\ eastings       1.9° 30.696       5.696         Site name       Butaunski, p. zo.m       3.0 m         Deployment depth       30.m       30.m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Deployment details                                 |   |     |        |                 |
| Deployment date and time       (LT)       GMT       2.7 (0.3 / 0.5 / 1.3 ho 0         Deployment latitude\ northings       3.4° Li 2.603       3.4° Li 2.603         Deployment longitude\ eastings       1.9° 30.696       5.696         Site name       Butaunski, p. zo.m       3.0 m         Deployment depth       30.m       30.m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Switch on date and time                            |   | GMT | 27/03  | 108 orho        |
| Deployment longitude\ eastings     :19° 30646       Site name     Butanski, p 30       Site depth     30 m       Deployment depth     30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deployment date and time                           | Û | GMT | 27(03  | 108 13h00       |
| Deployment longitude\ eastings     :19° 30646       Site name     Butanski, p 30       Site depth     30 m       Deployment depth     30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deployment latitude\ northings                     |   |     | 34° 41 | 2.603           |
| Site depth     30 m       Deployment depth     30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Deployment longitude\ eastings                     |   |     | ·190 3 | 0 -696          |
| Site depth     30 m       Deployment depth     30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Site name                                          |   |     | Berten | sklip zom       |
| Deployment depth 30m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Site depth                                         |   |     |        |                 |
| ADCP deployment shee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deployment depth                                   |   |     |        |                 |
| ADCP deployment shee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                  |   |     |        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                  |   |     | ADCF   | deployment shee |



#### 7.2 RBR-CT LOGGERS MOBILISATION AND RE-DEPLOYMENT SHEETS.

#### LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | YMENT  |     | S       | urfare     |
|-----------------------------------------------------|--------|-----|---------|------------|
| Instrument type and serial number                   |        | 124 | 20      | 12994      |
| Check O-rings on instrument                         |        |     |         | -          |
| Install a new battery and check the voltage         |        |     |         |            |
| Connect the battery and communications cable        |        |     |         | -          |
| Connect the instrument to a PC and run RBR softw    | are    |     | F.M. 4  |            |
| Click on "Setup"                                    |        |     |         |            |
| Set up the sampling parameters                      |        |     |         |            |
| Start of logging (date / time)                      |        | 2   | 101/05  | 24/12/08   |
| End of logging (date / time)                        |        |     | 1/12/08 | 12 400     |
| Sampling period                                     | 11.000 |     |         | 10 10. 0   |
| Averaging period                                    |        |     |         | Imin       |
| Deployment details                                  |        |     |         |            |
| Deployment date and time                            | (î)    |     | 21/01   | los ishic  |
| Deployment latitude\ northings                      |        |     | 34 47   | 2.625      |
| Deployment longitude\ eastings                      |        |     | 1903    | 0.696      |
| Site name                                           |        |     | Bantar  | nsklip 300 |
| Site depth                                          |        |     | 30      |            |
| Deployment depth                                    |        |     | 30      | 5 7n       |
| Acoustic release (1) serial number and release code |        |     |         | 4.4        |
| Acoustic release (2) serial number and release code |        |     | ŕ       | ·/A        |
| Argos beacon serial number                          |        |     |         | · ·        |



#### LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLOYMENT                                          |   |     |        | Brm      |
|-----------------------------------------------------|---|-----|--------|----------|
| Instrument type and serial number                   |   |     | YR LZO | 12498    |
| Check O-rings on instrument                         |   |     |        |          |
| Install a new battery and check the voltage         |   |     |        | ~ 12 hoo |
| Connect the battery and communications cable        |   |     |        | ~        |
| Connect the instrument to a PC and run RBR software |   |     |        |          |
| Click on "Setup"                                    |   |     |        |          |
| Set up the sampling parameters                      |   |     |        | •        |
| Start of logging (date / time)                      |   | 241 | 01/08  | 12 hoc   |
| End of logging (date / time)                        |   | 29  | 112/05 | 12 hoo   |
| Sampling period                                     |   |     |        | 10       |
| Averaging period                                    |   |     |        | Lm O     |
| Deployment details                                  |   |     |        | · ·      |
| Deployment date and time (LT                        | ) |     | 24/01  | 08 ishio |
| Deployment latitude\ northings                      |   |     |        | 2.625    |
| Deployment longitude\ eastings                      |   |     | 19 30  | 0.696    |
| Site name                                           |   |     | Burken | slup som |
| Site depth                                          |   |     |        | ~ /      |
| Deployment depth                                    |   |     | 2      | Sm       |
| Acoustic release (1) serial number and release code |   |     |        |          |
| Acoustic release (2) serial number and release code |   |     |        |          |
| Argos beacon serial number                          |   |     |        |          |



-



### LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | YMENT    |    |        | Suffare    |
|-----------------------------------------------------|----------|----|--------|------------|
| Instrument type and serial number                   |          |    | YRYZO  | 12944      |
| Check O-rings on instrument                         |          |    |        | -          |
| Install a new battery and check the voltage         |          |    |        | 112.21     |
| Connect the battery and communications cable        |          |    |        |            |
| Connect the instrument to a PC and run RBR softw    | are      |    |        |            |
| Click on "Setup"                                    |          |    |        |            |
| Set up the sampling parameters                      |          |    |        |            |
| Start of logging (date / time)                      |          | 27 | 103/08 | iohoo      |
| End of logging (date / time)                        |          | 31 | 112/08 | 12hoo      |
| Sampling period                                     |          |    |        | 10 min     |
| Averaging period                                    |          |    |        | imin       |
| Deployment details                                  |          |    |        |            |
| Deployment date and time                            |          |    | 27/03/ | 08 13h00   |
| Deployment latitude\ northings                      | <u> </u> |    |        | 12.625     |
| Deployment longitude\ eastings                      |          |    | 19.    | 30-696     |
| Site name                                           |          |    | Barlo  | moklyp 30m |
| Site depth                                          |          |    |        | om         |
| Deployment depth                                    |          |    |        | 7 m        |
| Acoustic release (1) serial number and release code |          |    |        |            |
| Acoustic release (2) serial number and release code |          |    |        | <u> </u>   |
| Argos beacon serial number                          |          |    |        |            |

#### Range:

| Northing | Easting | Range |
|----------|---------|-------|
|          |         |       |
|          |         |       |
|          |         |       |

| RECOVERY                          |     |    |     |                    |  |
|-----------------------------------|-----|----|-----|--------------------|--|
| Instrument type and serial number |     |    |     |                    |  |
| Deployment name                   |     |    |     |                    |  |
| Deployment date and time          | - I | LT | GMT |                    |  |
| Deployment latitude\ northings    |     |    |     | ,                  |  |
| Deployment longitude\ eastings    |     |    |     |                    |  |
| Recovery information              |     |    |     |                    |  |
| Recovery date and time            |     | LT | GMT |                    |  |
|                                   | 1   |    |     | CT deployment shee |  |



A.



### LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | YMENT           |          | 8Tm                                    |
|-----------------------------------------------------|-----------------|----------|----------------------------------------|
| Instrument type and serial number                   |                 | XRUZO    | 12998                                  |
| Check O-rings on instrument                         |                 |          | -                                      |
| Install a new battery and check the voltage         |                 | 1 Arada  | 12.2V                                  |
| Connect the battery and communications cable        |                 |          |                                        |
| Connect the instrument to a PC and run RBR softwa   | are             |          |                                        |
| Click on "Setup"                                    |                 |          |                                        |
| Set up the sampling parameters                      | The Manufacture |          | ······································ |
| Start of logging (date / time)                      |                 | 27/03/08 | 10400                                  |
| End of logging (date / time)                        |                 | 31/12/08 | Izhoo                                  |
| Sampling period                                     |                 |          | iomin                                  |
| Averaging period                                    |                 |          | Imin                                   |
| Deployment details                                  |                 |          |                                        |
| Deployment date and time                            |                 | 12/031   | 08 13h00                               |
| Deployment latitude\ northings                      |                 | 34042    | -625                                   |
| Deployment longitude\ eastings                      |                 |          | 0.696                                  |
| Site name                                           |                 | Barlam   | sldip 30m                              |
| Site depth                                          |                 | 30       |                                        |
| Deployment depth                                    | P 8- 100        | 2        | 8 M                                    |
| Acoustic release (1) serial number and release code |                 |          | +                                      |
| Acoustic release (2) serial number and release code |                 |          | -                                      |
| Argos beacon serial number                          |                 |          | -                                      |

#### Range:

| Northing | Easting                                | Range |
|----------|----------------------------------------|-------|
|          | •••••••••••••••••••••••••••••••••••••• |       |
|          |                                        |       |
|          |                                        |       |

| RECOVERY                          |    |     |                   |  |  |
|-----------------------------------|----|-----|-------------------|--|--|
| Instrument type and serial number |    |     |                   |  |  |
| Deployment name                   |    |     |                   |  |  |
| Deployment date and time          | LT | GMT |                   |  |  |
| Deployment latitude\ northings    |    |     | •                 |  |  |
| Deployment longitude\ eastings    |    |     |                   |  |  |
| Recovery information              |    |     |                   |  |  |
| Recovery date and time            | LT | GMT |                   |  |  |
|                                   | L  |     |                   |  |  |
|                                   | 1  |     | CT deployment she |  |  |



#### 7.3 **TIDE GAUGE**



#### LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### TGR1050HT TIDE GAUGE DEPLOYMENT / RECOVERY SHEET

| DEPLOYMENT                                          |          |                |
|-----------------------------------------------------|----------|----------------|
| Instrument type and serial number                   |          |                |
| Check O-rings on instrument                         |          |                |
| Install a new battery and check the voltage         |          | -              |
| Connect the battery and communications cable        |          |                |
| Connect the instrument to a PC and run RBR software |          |                |
| Click on "Setup"                                    |          |                |
| Set up the sampling parameters                      |          |                |
| Sampling period                                     | 10       | Selic          |
| Averaging period                                    |          | c C ullz       |
| Expected deployment duration                        |          |                |
| Start of logging (date / time)                      | 28/01/08 | 18600          |
| End of logging (date / time)                        | 28/12/08 | 18400          |
| Memory usage                                        |          |                |
| Battery usage                                       |          |                |
| Deployment details                                  |          |                |
| Deployment date and time                            | 28/12    | 108 19h10      |
| Deployment latitude\ northings                      | 340 1    | 12.462         |
| Deployment longitude\ eastings                      | 14       | 53.080         |
| Site name                                           | FINE     | 67466          |
| Site depth                                          | 15       | <sup>7</sup> m |
| Deployment depth                                    | 1.5      | 57M            |
| Acoustic release (1) serial number and release code |          | NIA            |
| Acoustic release (2) serial number and release code |          | n/A            |
| Argos beacon serial number                          |          | /              |
| Logger to sensur without distance 2.5m              |          |                |

- The porter RECOVERY

|                                           | RECOVERY             |     |  |
|-------------------------------------------|----------------------|-----|--|
| Instrument type and serial number         |                      |     |  |
| Deployment name                           |                      |     |  |
| Deployment date and time                  | LT                   | GMT |  |
| Deployment latitude\ northings            |                      |     |  |
| Deployment longitude\ eastings            |                      |     |  |
| Recovery information                      |                      |     |  |
| Recovery date and time                    | GMT                  | -   |  |
| Inspect the instrument for signs of floor | ling                 |     |  |
| Switch off and download the instrument    | using Aquadopp softw | are |  |
| Switch off date and time                  | LT                   | GMT |  |
| Name of the data directory                |                      |     |  |
| File size                                 |                      |     |  |
|                                           |                      |     |  |

|             |   | С.                                       |
|-------------|---|------------------------------------------|
| Client name | 1 | TGR1050HT deployment / recovery<br>sheet |



#### 7.4 ADCPS CONFIGURATION FILES

2R1 CF11101 EAO EBO RIO ED100 ES35 E×11111 EZ1111111 WA255 WB0 WD111100000 WF88 WN42 WP500 WS35 WV175 HD111000000 HB5 HP4920 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:01.00 CК CS ; ;Instrument = Workhorse Sentinel ;Frequency ;Water Profile = 614400 = YES Bottom Track = NO ;High Res. Modes = NO ;High Rate Pinging = NO ;Shallow Bottom Mode= NO ;Wave Gauge = YE = YES ;Lowered ADCP ;Beam angle = NO = 20 ;Temperature = 5.00 ;Deployment hours = 1080.00 ;Battery packs = 3 ;Automatic TP = Y = YES = 1000 ;Memory size [MB] ;Saved Screen = 2 Consequences generated by PlanADCP version 2.04: ;First cell range = 1.41 m = 15.76 m;Last cell range ;Max range = 35.28 m;Standard deviation = 1.08 cm/s ;Ensemble size = 994 bytes ;Storage required = 401.49 MB (420988320 bytes) Power usage = 1320.77 Wh



#### 7.5 TRDI ADCPS CALIBRATION CERTIFICATES

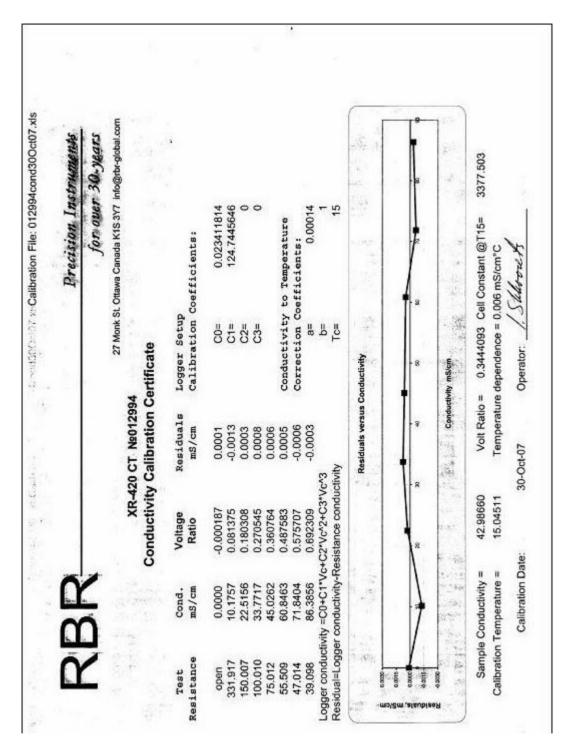
|                           |                    |                | e Technologia  |            |        |          |
|---------------------------|--------------------|----------------|----------------|------------|--------|----------|
|                           | Workhor            | se Conf        | guratio        | n Summar   | ¥      |          |
| Date                      | 11/30/2007         |                |                |            |        |          |
| Customer                  | PERTEC             |                |                |            |        |          |
| Sales Order or RMA No.    | 3018766            |                |                |            |        |          |
| System Type               | Sentinel           |                |                |            |        |          |
| Part number               | WHSW600-I-UG9      | 2              |                |            |        |          |
| Frequency                 | 600 kHz            |                |                |            |        |          |
| Depth Rating (meters)     | 200                |                |                |            |        |          |
| SERIAL NUMBERS:<br>System | 10119              | REVISION:      |                |            |        |          |
| CPU PCA                   | 11019              | Rev.           | J3             |            |        |          |
| PIO PCA                   | 6574               | Rev.           | F1             |            |        |          |
| DSP PCA                   | 14400              | Rev.           | G1             |            |        |          |
| RCV PCA                   | 14956              | Rev.           | E2             |            |        |          |
| AUX PCA                   |                    | Rev.           | 10.000         |            |        |          |
| FIRMWARE VERSION:         |                    |                |                |            |        |          |
| CPU                       | 16.30              |                |                |            |        |          |
| SENSORS INSTALLED:        |                    |                |                |            |        |          |
| Temperature 🗸             | Heading 🗸          | Pitch /        | Roll 🗸         | Pressure 🗸 | Rating | 200 mete |
| FEATURES INSTALLED        |                    |                |                |            |        |          |
| ✓ Water Profile           |                    | High Rat       | e Pinging      |            |        |          |
| Bottom Track              |                    | Shallow        | Bottom Mode    |            |        |          |
| High Resolution V         | Vater Modes        | 🖌 Wave Gu      | lage Acquisiti | on         |        |          |
| Lowered ADCP              |                    | River Su       | wey ADCP *     |            |        |          |
| * Includes Water Profile  | , Bottom Track and | High Resolutio | water Mode     | 5          |        |          |
| COMMUNICATIONS:           |                    |                |                |            |        |          |
| Communication             | RS-232             |                |                |            |        |          |
| Baud Rate                 | 9600               |                |                |            |        |          |
| Parity                    | NONE               |                |                |            |        |          |
| Recorder Capacity         | 1150               | MB (installed  | d)             |            | 1      |          |
| Power Configuration       | 20-60 VDC          |                |                |            |        |          |
| Cable Length              | 5                  | meters         |                |            |        |          |



# LWANDLE TECHNOLOGIES (PTY) LTD

|                          |                     | RD INSTRUMEN                  |              |               |      |
|--------------------------|---------------------|-------------------------------|--------------|---------------|------|
|                          |                     | A Teledyne Technologies       |              |               |      |
|                          |                     | se Configuration              | Summary      |               |      |
|                          | 11/30/2007          |                               |              |               |      |
| Customer                 | PERTEC              |                               |              |               |      |
| * Sales Order or RMA No. | 3018766             |                               |              |               |      |
| System Type              | Sentinel            | an an Training of             |              |               |      |
| Part number              | WHSW600-I-UG9       | 2                             |              |               |      |
| Frequency                | 600 kHz             |                               |              |               |      |
| Depth Rating (meters)    | 200                 |                               |              |               |      |
| SERIAL NUMBERS:          |                     | REVISION:                     |              |               |      |
| System                   | 10100               |                               |              |               |      |
| CPU PCA                  | 10999               | Rev. J3                       |              |               |      |
| PIO PCA                  | 6590                | Rev. F1                       |              |               |      |
| DSP PCA                  | 14424               | Rev. G1                       |              |               |      |
| RCV PCA                  | 14927               | Rev. E2                       |              |               |      |
| AUX PCA                  | Escare a            | Rev.                          |              |               |      |
| FIRMWARE VERSION:        |                     |                               |              |               |      |
| CPU                      | 16.30               |                               |              |               |      |
| SENSORS INSTALLED:       |                     |                               |              |               |      |
| Temperature 🖌            | Heading 🗸           | Pitch / Roll 🗸                | Pressure 🗸 🕴 | Rating 200 me | ters |
| FEATURES INSTALLED       |                     |                               |              |               |      |
| ✓ Water Profile          |                     | High Rate Pinging             |              |               |      |
| Bottom Track             |                     | Shallow Bottom Mode           |              |               |      |
| High Resolution V        | Vater Modes         | ✓ Wave Guage Acquisition      | 1            |               |      |
| Lowered ADCP             |                     | River Survey ADCP *           |              |               |      |
| * Includes Water Profile | e, Bottom Track and | I High Resolution Water Modes |              |               |      |
| COMMUNICATIONS:          |                     |                               |              |               |      |
| Communication            | RS-232              |                               |              |               |      |
| Baud Rate                | 9600                |                               |              |               |      |
| Parity                   | NONE                |                               |              | <b>2</b> 2    |      |
| Recorder Capacity        | 1150                | MB (installed)                |              |               |      |
| Power Configuration      | 20-60 VDC           |                               |              |               |      |
| Cable Length             | 5                   | meters                        |              |               |      |
|                          |                     |                               |              |               |      |




۰.

٠

|                       |                  | TELEDYNE                                    |
|-----------------------|------------------|---------------------------------------------|
|                       |                  | RD INSTRUMENTS                              |
|                       |                  | A Teledyne Technologies Company             |
|                       |                  | se Configuration Summary                    |
|                       | 11/30/2007       |                                             |
| Customer              |                  |                                             |
|                       | 3018766          |                                             |
|                       | Sentinel         |                                             |
|                       | WHSW600-I-UG92   |                                             |
| Frequency             | 600 kHz          |                                             |
| Depth Rating (meters) | 200              |                                             |
| SERIAL NUMBERS:       |                  | REVISION:                                   |
| System                | 10105            |                                             |
| CPU PCA               | 11052            | Rev. J3                                     |
| PIO PCA               | 6573             | Rev. F1                                     |
| DSP PCA               | 14390            | Rev. G1                                     |
| RCV PCA               | 14937            | Rev. E2                                     |
| AUX PCA               |                  | Rev.                                        |
| FIRMWARE VERSION:     |                  |                                             |
| CPU                   | 16.30            |                                             |
| SENSORS INSTALLED:    |                  |                                             |
| Temperature V         | Heading 🗸        | Pitch / Roll ✔ Pressure ✔ Rating 200 meters |
|                       | riouding -       |                                             |
| FEATURES INSTALLED    |                  | ·                                           |
| ✓ Water Profile       |                  | High Rate Pinging                           |
| Bottom Track          | ator Mod         | Shallow Bottom Mode                         |
| High Resolution W     | aller modes      | Wave Guage Acquisition                      |
| Lowered ADCP          | Bottom Track and | River Survey ADCP * * *                     |
| COMMUNICATIONS:       | DURUM TRUK AND   | rigii resuluuut vvalei inouos               |
| Communication         | RS-232           |                                             |
| Baud Rate             | 9600             |                                             |
| Parity                | NONE             |                                             |
| Recorder Capacity     | 1150             | MB (installed)                              |
| Power Configuration   | 20-60 VDC        |                                             |
| Cable Length          | 5                | meters                                      |
|                       | <b>.</b>         | 1100012                                     |
|                       |                  |                                             |



#### **RBR-CT CALIBRATION CERTIFICATES**





| Ω                     |                                                      |                      |                                      |                           | Precision Instrume                                   | streams       |
|-----------------------|------------------------------------------------------|----------------------|--------------------------------------|---------------------------|------------------------------------------------------|---------------|
| 2                     | 20                                                   |                      |                                      | a specific and a second   | for over 30 years                                    | @ years       |
| 0                     |                                                      |                      | 1976 - C                             |                           | 27 Monk St. Ottawa Canada K1S 3Y7 Info@br-globaf.com | @mr-global.co |
|                       |                                                      | XR-42                | XR-420 CT Ne012998                   | 8                         |                                                      |               |
|                       |                                                      | onductivity          | Conductivity Calibration Certificate | ertificate                |                                                      |               |
| Tort                  | Cond                                                 | Voltado              | Peeidinal e                          | Lodder Setur              |                                                      |               |
| Resistance            | mS/cm                                                | Ratio                | mS/cm                                | Calibration Coefficients: | oefficients:                                         |               |
| open                  | 0.0000                                               | -0.000214            | -0.0002                              | C0=                       | 0.026459735                                          |               |
| 331.917               | 10.1789                                              | 0.081456             | 0.0000                               | C1=                       | 124.6368814                                          |               |
| 150.007               | 22.5227                                              | 0.180502             | 0.0010                               | C2=                       | 0                                                    |               |
| 100.010               | 33.7822                                              | 0.270829             | -0.0004                              | C3=                       | 0                                                    |               |
| 75.012                | 45.0402                                              | 0.361158             | -0.0002                              |                           |                                                      |               |
| 55,509                | 60.8653                                              | 0.488127             | -0.0002                              | Conductivity              | Conductivity to Temperature                          |               |
| 47.014                | 71.8628                                              | 0.576357             | -0.0010                              | Correction Coefficients:  | efficients:                                          |               |
| 39.098                | 86.4126                                              | 0.693110             | 0.0010                               | an                        | 0.00014                                              |               |
| sgger conduct         | Logger conductivity =C0+C1*Vc+C2*Vc^2+C3*Vc^3        | C2*Vc^2+C3*Vc        | ×3                                   | =q                        | F                                                    |               |
| esidual=Logg          | Residual=Logger conductivity-Resistance conductivity | sistance conduc      | tivity                               | To=                       | 15                                                   |               |
| 13.3.<br>F            |                                                      |                      | Residuals versus Conductivity,       | Conduct/Nfty,             |                                                      | の記録           |
|                       |                                                      |                      |                                      |                           |                                                      | 1             |
| eleubies              | 2                                                    | 8                    | 8                                    | я                         |                                                      | 8             |
|                       | WEG<br>THOM<br>THOM                                  |                      | Conduc                               | Conductivity mS/cm        |                                                      |               |
| Sample<br>Calibration | Sample Conductivity =<br>Calibration Temperature =   | 43.03350<br>15.08309 | Volt Ratio =<br>Temperature d        | 0                         | iT15=                                                | 3378.559      |
|                       |                                                      |                      |                                      | 1001                      | 1 11                                                 |               |



8. PHOTOS TAKEN.

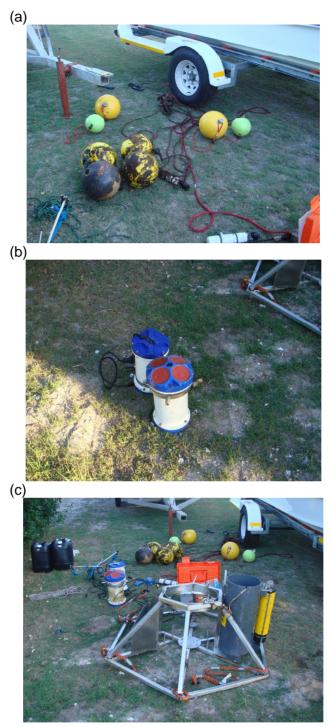



Figure 8: Recovered instruments: (a) RBR string (b) and (c) the ADCPs.



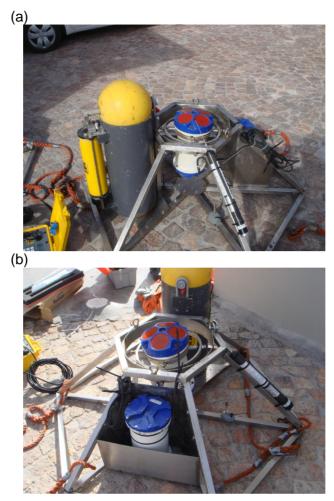
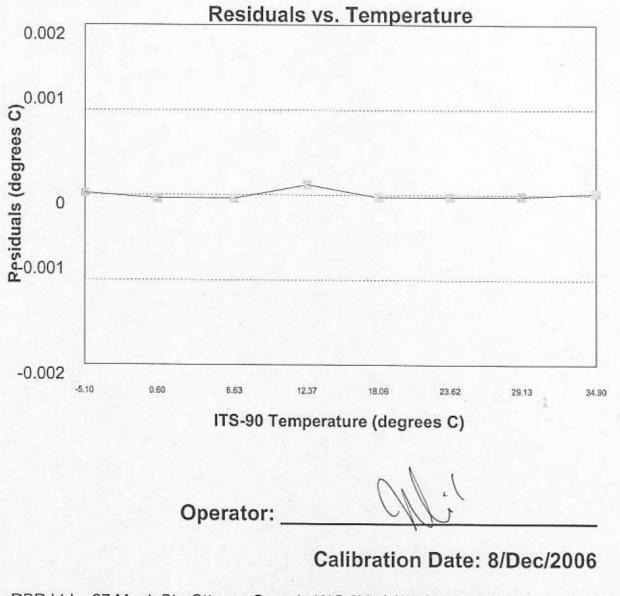
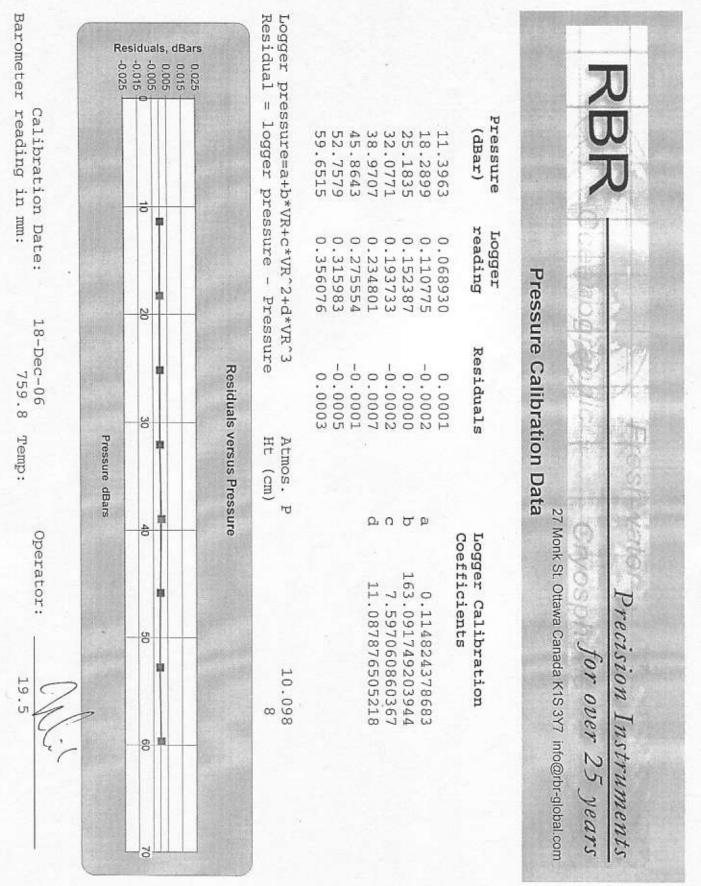



Figure 9: Instruments ready for redeployment.




#### 9. REPORTS FROM THE CSIR

The reports from the CSIR are attached as an appendage.


# **RBR** Temperature Calibration Certificate

Logger ID: TGR-2050 Serial No: 13070

| 1 | TS-90 Temp | Voltage Ratio | <b>Residuals</b> | <u>Coefficients</u> |
|---|------------|---------------|------------------|---------------------|
|   | -5.09674   | 0.728090      | 0.00002          | 0.003476451095491   |
|   | 0.59564    | 0.665181      | -0.00004         | -0.000255412457248  |
|   | 6.63301    | 0.594167      | -0.00004         | 0.000002584810438   |
|   | 12.36797   | 0.525356      | 0.00012          | -0.00000076888248   |
|   | 18.05689   | 0.458460      | -0.00003         |                     |
| 3 | 23.62267   | 0.396474      | -0.00003         |                     |
|   | 29.13254   | 0.340010      | -0.00002         |                     |
|   | 34.90487   | 0.287054      | 0.00002          |                     |



RBR Ltd. 27 Monk St., Ottawa, Canada K1S 3Y7 | (613) 233-1621 | www.rbr-global.com



12

Logger Serial Number: 013070pres.xls

# **RBR** Calibration Shipping Certificate

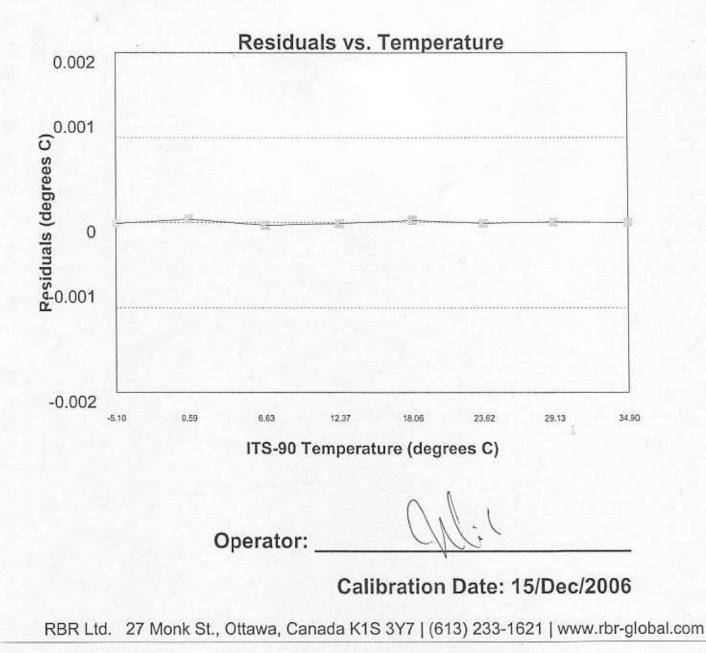
Calibration values for all channels when shipped.

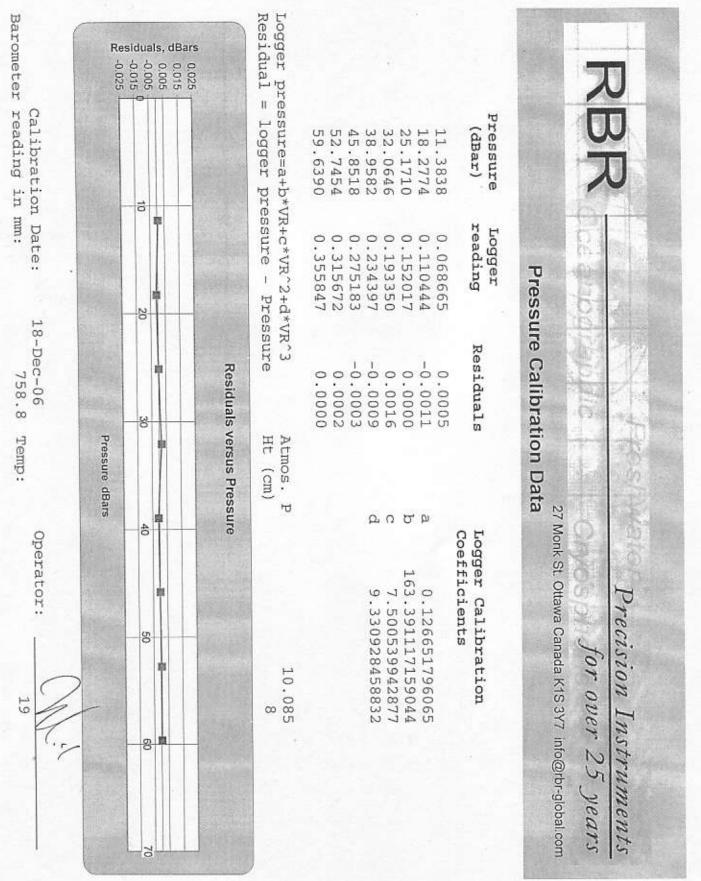
#### Logger ID: TGR-2050 Serial No: 13070

2006/Dec/18 14:21:08

1: 0.003476451095491 -0.000255412457248 0.000002584810438 -0.000000076888248 2: 0.114824378683000 163.091749203944000 7.597060860367000 11.087876505218000

**Operator:** 


20/Dec/2006


Richard Brancker Research Ltd. 27 Monk St., Ottawa, Canada K1S 3Y7 (613) 233-1621

# **RBR Temperature Calibration Certificate**

Logger ID: TGR-2050 Serial No: 13084

| ITS-90 Temp | Voltage Ratio | <u>Residuals</u> | <b>Coefficients</b> |
|-------------|---------------|------------------|---------------------|
| -5.09890    | 0.735395      | -0.00001         | 0.003467203073564   |
| 0.59351     | 0.673355      | 0.00004          | -0.000255022957844  |
| 6.63105     | 0.602975      | -0.00003         | 0.000002564034233   |
| 12.36636    | 0.534427      | -0.00001         | -0.000000068680142  |
| 18.05621    | 0.467447      | 0.00002          |                     |
| 23.62145    | 0.405113      | -0.00001         |                     |
| 29.13260    | 0.348072      | 0.00001          |                     |
| 34.90448    | 0.294384      | -0.00000         |                     |





Logger Serial Number: 013084pres.xls

12

# **RBR** Calibration Shipping Certificate

Calibration values for all channels when shipped.

#### Logger ID: TGR-2050 Serial No: 13084

2006/Dec/18 09:45:12

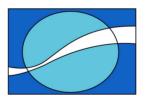
 $1: 0.003467203073564 - 0.000255022957844 \ 0.000002564034233 - 0.000000068680142 \\ 2: 0.126651796065000 \ 163.391117159044000 \ 7.500539942877000 \ 9.330928458832000 \\$ 

Operator: \_\_\_\_

20/Dec/2006

Richard Brancker Research Ltd. 27 Monk St., Ottawa, Canada K1S 3Y7 (613) 233-1621




### LWANDLE DATA REPORT

# **BANTAMSKLIP SITE – DEPLOYMENT TWO**

### PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



## PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



16 July 2008

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



#### TABLE OF CONTENTS

| 1. | EXEC  | UTIVE SU | MMARY                           | 4  |
|----|-------|----------|---------------------------------|----|
| 2. | INTRO | ODUCTION | Ν                               | 7  |
|    | 2.1   | PROJE    | CT DESCRIPTION                  | 7  |
|    | 2.2   | EQUIP    | MENT LIST                       | 7  |
|    | 2.3   | MEASU    | IREMENT LOCATION                | 7  |
| 3. | OPEF  | RATIONS  |                                 | 9  |
|    | 3.1   | SUMMA    | ARY OF EVENTS                   | 9  |
|    | 3.2   | INSTRU   | JMENT CONFIGURATIONS            | 11 |
|    |       | 3.2.1    | 600kHz ADCP                     |    |
|    |       | 3.2.2    | RBR XR420 CT LOGGER             |    |
|    |       | 3.2.3    | RBR TGR1050 HT TIDE GAUGE       |    |
|    |       | 3.2.4    | Biofouling Mooring              |    |
|    | 3.3   | RECOV    | ER AND REDEPLOYMENT METHODOLOGY | 13 |
|    |       | 3.3.1    | T&C mooring                     |    |
|    |       | 3.3.2    | ADCP mooring                    |    |
|    |       | 3.3.3    | Tidal Gauge.                    |    |
|    |       | 3.3.4    | Biofouling mooring              |    |
|    | 3.4   | MALFU    | NCTIONS AND LESSONS LEARNT      | 14 |
| 4. | DATA  |          | CONTROL                         | 15 |
|    | 4.1   | ADCP.    |                                 |    |
|    |       | 4.1.1    | Current processing              |    |
|    |       | 4.1.2    | Wave processing                 |    |
|    | 4.2   | RBR-C    | T LOGGER                        | 15 |
| 5. | DATA  |          | TATION                          |    |
|    | 5.1   | 10M AC   | ЭСР                             |    |
|    |       | 5.1.1    | Current Data                    |    |
|    |       | 5.1.1.1  | Time series plots               | 17 |
|    |       | 5.1.1.2  | Summary plots                   | 21 |
|    |       | 5.1.1.3  | Progressive vector plots        | 21 |
|    |       | 5.1.2    | Wave Data                       |    |
|    |       | 5.1.2.1  | Hs and Tp summary plot          | 27 |
|    |       | 5.1.2.2  | Hs and Dp summary plot          | 27 |
|    |       |          |                                 |    |



|    |        | 5.1.2.3 | Tp and Dp summary plot                                | 27 |
|----|--------|---------|-------------------------------------------------------|----|
|    |        | 5.1.2.4 | Wave spectral plot                                    | 31 |
|    | 5.2    | 30M AE  | DCP                                                   | 34 |
|    |        | 5.2.1   | Current Data                                          | 34 |
|    |        | 5.2.1.1 | Time series plots                                     | 34 |
|    |        | 5.2.1.2 | Summary plots                                         | 38 |
|    |        | 5.2.1.3 | Progressive vector plots                              | 38 |
|    |        | 5.2.2   | Wave Data                                             | 44 |
|    |        | 5.2.2.1 | Hs and Tp summary plot                                | 44 |
|    |        | 5.2.2.2 | Hs and Dp summary plot                                | 44 |
|    |        | 5.2.2.3 | Tp and Dp summary plot                                | 44 |
|    |        | 5.2.2.4 | Wave spectral plot                                    | 48 |
|    | 5.3    | COMPA   | ARISON PLOTS                                          | 51 |
|    |        | 5.3.1   | Hs, Tp and Dp time series plots for 10m and 30m ADCPs | 51 |
|    |        | 5.3.2   | Water properties: RBR-CT loggers and ADCPs            |    |
|    |        |         | temperature sensors                                   | 52 |
| 6. | DISCU  | SSION   |                                                       | 53 |
| 7. | INSTRU | JMENT F | PARTICULARS FOR SERVICE VISIT ONE                     | 55 |
|    | 7.1    | ADCPS   | RECOVERY AND RE-DEPLOYMENT SHEETS                     | 55 |
|    | 7.2    | RBR-C   | T LOGGERS RECOVERY SHEETS                             | 58 |
|    | 7.3    | TIDE G  | AUGE RECOVERY AND RE-DEPLOYMENT SHEETS                | 62 |
|    | 7.4    | ADCPS   | CONFIGURATION FILES                                   | 64 |
|    | 7.5    | CALIB   | RATION CERTIFICATES                                   | 66 |



#### 1. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 2 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Data return<br>(%) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|--------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -11.0        | 100                | 0.1675                           | 0.0317                            | 0.0217                           | 0.0200                                | 64.29                     |
| -10.7        | 100                | 0.1660                           | 0.0349                            | 0.0232                           | 0.0231                                | 57.53                     |
| -10.3        | 100                | 0.1690                           | 0.0374                            | 0.0240                           | 0.0245                                | 48.93                     |
| -10.0        | 100                | 0.1506                           | 0.0376                            | 0.0235                           | 0.0226                                | 43.02                     |
| -9.6         | 100                | 0.1575                           | 0.0366                            | 0.0226                           | 0.0226                                | 43.09                     |
| -9.3         | 100                | 0.1664                           | 0.0363                            | 0.0223                           | 0.0219                                | 45.64                     |
| -8.9         | 100                | 0.1615                           | 0.0354                            | 0.0217                           | 0.0203                                | 46.89                     |
| -8.6         | 100                | 0.1469                           | 0.0348                            | 0.0209                           | 0.0181                                | 46.28                     |
| -8.2         | 100                | 0.1516                           | 0.0343                            | 0.0207                           | 0.0161                                | 46.76                     |
| -7.9         | 100                | 0.1641                           | 0.0340                            | 0.0205                           | 0.0147                                | 48.62                     |
| -7.5         | 100                | 0.1588                           | 0.0338                            | 0.0208                           | 0.0121                                | 49.57                     |
| -7.2         | 100                | 0.1371                           | 0.0339                            | 0.0210                           | 0.0091                                | 53.81                     |
| -6.8         | 100                | 0.1532                           | 0.0346                            | 0.0218                           | 0.0068                                | 53.80                     |
| -6.5         | 100                | 0.1854                           | 0.0363                            | 0.0232                           | 0.0038                                | 60.65                     |
| -6.1         | 100                | 0.1903                           | 0.0378                            | 0.0248                           | 0.0009                                | 99.05                     |
| -5.8         | 100                | 0.1953                           | 0.0392                            | 0.0268                           | 0.0025                                | 211.90                    |
| -5.4         | 100                | 0.2356                           | 0.0417                            | 0.0295                           | 0.0060                                | 221.32                    |
| -5.1         | 100                | 0.2560                           | 0.0446                            | 0.0327                           | 0.0093                                | 227.24                    |
| -4.7         | 100                | 0.2666                           | 0.0475                            | 0.0352                           | 0.0133                                | 229.04                    |
| -4.4         | 99.97              | 0.2868                           | 0.0508                            | 0.0380                           | 0.0178                                | 231.23                    |
| -4.0         | 100                | 0.3062                           | 0.0552                            | 0.0420                           | 0.0236                                | 235.62                    |
| -3.7         | 100                | 0.3130                           | 0.0604                            | 0.0472                           | 0.0297                                | 238.33                    |
| -3.3         | 100                | 0.3436                           | 0.0647                            | 0.0497                           | 0.0341                                | 243.03                    |
| -3.0         | 100                | 0.3736                           | 0.0653                            | 0.0481                           | 0.0293                                | 248.69                    |
| -2.6         | 100                | 0.3878                           | 0.0834                            | 0.0597                           | 0.0325                                | 287.15                    |
| -2.3         | 100                | 0.4162                           | 0.1167                            | 0.0829                           | 0.0535                                | 319.22                    |
| -1.9         | 100                | 0.4387                           | 0.1405                            | 0.0930                           | 0.0609                                | 328.31                    |
| -1.6         | 97.86              | 0.4810                           | 0.1410                            | 0.0898                           | 0.0420                                | 330.63                    |
| -1.2         | 87.06              | 0.4741                           | 0.1366                            | 0.0820                           | 0.0295                                | 322.67                    |

Table 1 – Current flow summary for 10m ADCP

#### Table 2 – Waves summary for 10m ADCP

|        | Data Return (%) | Max   | Min  | Mean  | Std  |
|--------|-----------------|-------|------|-------|------|
| Hs (m) | 98.98           | 5.17  | 0.89 | 1.68  | 0.65 |
| Tp (s) | 98.98           | 17.00 | 2.20 | 12.25 | 2.17 |



| Vector mean<br>direction (°)<br>48.87<br>48.96 |
|------------------------------------------------|
|                                                |
| 19 06                                          |
| 40.90                                          |
| 50.53                                          |
| 53.50                                          |
| 59.19                                          |
| 70.43                                          |
| 102.08                                         |
| 144.45                                         |
| 169.56                                         |
| 171.52                                         |
| 175.69                                         |
| 164.91                                         |
| 160.90                                         |
| 154.66                                         |
| 150.97                                         |
| 142.26                                         |
| 139.49                                         |
| 132.06                                         |
| 127.94                                         |
| 120.74                                         |
| 116.42                                         |
| 111.69                                         |
| 109.55                                         |
| 103.99                                         |
| 99.73                                          |
| 98.09                                          |
| 96.00                                          |
| 93.19                                          |
| 90.67                                          |
| 88.10                                          |
| 87.90                                          |
| 85.64                                          |
| 84.27                                          |
| 84.32                                          |
| 83.17                                          |
| 89.53                                          |
| 110.58                                         |
| 154.98                                         |
| 186.91                                         |
| 206.46                                         |
| 216.23                                         |
| 221.16                                         |
| 223.78                                         |
|                                                |

#### Table 3 – Current flow summary for 30m ADCP



|      |       |        |        | 1      |        |        |
|------|-------|--------|--------|--------|--------|--------|
| -9.3 | 100   | 0.2682 | 0.0685 | 0.0418 | 0.0144 | 225.51 |
| -8.8 | 100   | 0.2586 | 0.0695 | 0.0423 | 0.0166 | 227.18 |
| -8.3 | 100   | 0.2683 | 0.0708 | 0.0428 | 0.0186 | 228.42 |
| -7.8 | 100   | 0.2671 | 0.0724 | 0.0438 | 0.0206 | 230.69 |
| -7.3 | 100   | 0.2814 | 0.0751 | 0.0449 | 0.0217 | 232.35 |
| -6.8 | 100   | 0.3034 | 0.0777 | 0.0460 | 0.0221 | 235.26 |
| -6.3 | 100   | 0.3174 | 0.0801 | 0.0459 | 0.0104 | 244.56 |
| -5.8 | 100   | 0.3054 | 0.0856 | 0.0474 | 0.0104 | 356.14 |
| -5.3 | 100   | 0.3482 | 0.0932 | 0.0541 | 0.0288 | 340.72 |
| -4.8 | 100   | 0.4039 | 0.1189 | 0.0680 | 0.0509 | 310.07 |
| -4.3 | 100   | 0.5765 | 0.1583 | 0.1016 | 0.0879 | 281.85 |
| -3.8 | 99.98 | 0.6236 | 0.1973 | 0.1217 | 0.1220 | 267.02 |
| -3.3 | 99.95 | 0.5388 | 0.2159 | 0.1259 | 0.1297 | 247.58 |
| -2.8 | 99.21 | 0.5393 | 0.2122 | 0.1185 | 0.1243 | 235.93 |
| -2.3 | 73.35 | 0.5559 | 0.2106 | 0.1202 | 0.1187 | 247.35 |

#### Table 4 – Waves summary for 30m ADCP

|        | Data Return (%) | Max   | Min  | Mean  | Std  |
|--------|-----------------|-------|------|-------|------|
| Hs (m) | 98.53           | 5.98  | 0.92 | 2.14  | 0.86 |
| Tp (s) | 98.53           | 19.50 | 2.70 | 12.32 | 1.87 |

#### Table 5 – Water temperature and salinity summary (surface)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100             | 11.44 | 15.22 | 9.53  |
| Conductivity     | 100             | 39.13 | 43.00 | 37.21 |
| Salinity (psu)   | 100             | 34.66 | 34.94 | 34.34 |

#### Table 6 – Water temperature and salinity summary (bottom)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100             | 10.20 | 11.75 | 9.39  |
| Conductivity     | 100             | 38.03 | 39.46 | 36.65 |
| Salinity (psu)   | 99.78           | 34.75 | 34.84 | 34.50 |



#### 2. INTRODUCTION

#### 2.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents currents, waves, temperature and salinity data collected at Bantamsklip station for the period March  $27^{th}$  2008 - April  $24^{th}$  2008 (Period 2) collected during Service Visit 2 (April  $24^{th}$  –  $25^{th}$  2008). Re-deployment of the instruments was undertaken in two parts as outlined in the Operations section.

#### 2.2 EQUIPMENT LIST

Lwandle provided the equipment as listed in Table 7 for the Bantamsklip site.

| ltem                       | Operational (on site) | Spare (for whole project) |
|----------------------------|-----------------------|---------------------------|
| TRDI 600kHz ADCP           | 2                     | 1                         |
| RBR XR420 CT logger        | 2                     | 1                         |
| RBR TGR 1050 HT Tide Gauge | 1                     | 0                         |
| RBR TGR 2050 HT Tide Gauge | 1                     | 0                         |

Table 7 – List of equipment provided.

#### 2.3 MEASUREMENT LOCATION

The initial deployment location of the mooring is given in Table 8 and shown in Figure 1.



Figure 1 - Map of the project area.



| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | 34° 42.462'   | 19° 33.080'    |
| 10m ADCP    | 34° 43.186'   | 19° 33.637'    |
| Biofouling  | 34° 43.190'   | 19° 33.686'    |
| 30m ADCP    | 34° 42.625'   | 19° 30.690'    |
| T&C mooring | 34° 42.605'   | 19° 30.659'    |

#### Table 8 – Measurement locations



#### 3. OPERATIONS

#### 3.1 SUMMARY OF EVENTS

Service visits 2a and 2b were undertaken on April  $24^{th} - 25^{th} 2008$  and May  $23^{rd} 2008$  respectively.

| Date                   | Description                                                                                                                                                                                                                                                 |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24 April 2008<br>07h00 | Lwandle's engineers departed from Cape Town.                                                                                                                                                                                                                |
| 09h00                  | The engineers arrived at Kleinbaai Harbour.                                                                                                                                                                                                                 |
| 10h00                  | The vessel was launched and it reached the 30m ADCP deployment location in approximately 50 minutes.                                                                                                                                                        |
| 11h00                  | The CART Pop-Up buoy was successfully released on the 30m mooring.                                                                                                                                                                                          |
| 11h10                  | The divers released the T&C line and detached the weights from the mooring. The 30m ADCP mooring was successfully retrieved.                                                                                                                                |
| 12h00                  | The 10m ADCP mooring was successfully retrieved                                                                                                                                                                                                             |
| 13h00                  | The vessel arrived back at Kleinbaai harbour.                                                                                                                                                                                                               |
| 14h00                  | The vessel was offloaded and the instruments taken back for servicing.                                                                                                                                                                                      |
| 15h30                  | The engineers arrived at the tide gauge site to download data.<br>The logger box was removed and only the Druck sensor cable<br>was at the position. The logger box was found inshore and<br>was stripped of its batteries and wires and filled with water. |
| 16h30                  | The instruments were cleaned, serviced and setup for deployment.                                                                                                                                                                                            |
| 25 April 2008          | The vessel was launched and it reached the 30m ADCP                                                                                                                                                                                                         |
| 09h30                  | deployment location in approximately 50 minutes.                                                                                                                                                                                                            |
| 10h30                  | The 30m ADCP mooring was redeployed.                                                                                                                                                                                                                        |
| 11h30                  | The 10m ADCP mooring was redeployed.                                                                                                                                                                                                                        |
| 13h00                  | The vessel arrived back at Kleinbaai harbour.                                                                                                                                                                                                               |
| 13h30                  | The vessel was offloaded and washed down                                                                                                                                                                                                                    |
| 14h30                  | The engineers depart for Cape Town.                                                                                                                                                                                                                         |
|                        |                                                                                                                                                                                                                                                             |

| Table 9 – Summar | y of events for Service Visit 2a |
|------------------|----------------------------------|
|------------------|----------------------------------|

Owing to bad weather, the T&C mooring was not re-deployed on April 25<sup>th</sup>.



| Date        | Description                                                                                                                                  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 23 May 2008 | The Lwandle engineer met up with the skipper at Kleinbaai                                                                                    |
| 10h30       | harbour.                                                                                                                                     |
| 11h00       | The engineer and skipper loaded up the vessel with the T & C mooring string.                                                                 |
| 11h15       | The vessel departed from Kleinbaai harbour and headed towards the mooring position.                                                          |
| 11h35       | The vessel arrived at the deployement position                                                                                               |
| 11h45       | The T&C mooring line was lowered down to the seabed (position 34'42.605 / 19'30.659) at a distance of about 6m away from the 30m ADCP frame. |
| 12h20       | The vessel returned to Kleinbaai harbour                                                                                                     |
| 13h30       | A TGR 2050 tide gauge was installed at the original tide gauge position.                                                                     |
| 15h00       | The Lwandle engineer returned to Cape Town.                                                                                                  |

#### Table 10 – Summary of events for Service Visit 2b



#### 3.2 INSTRUMENT CONFIGURATIONS

The as deployed instrumentation configurations are given in this section and completed deployment / recovery sheets are given in Section 7 (page 55).

#### 3.2.1 600kHz ADCP

Table 11 – Instrument configuration for 10m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10105                         |
| Wave burst duration         | 41 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 42                            |
| Bin size                    | 0.35 m                        |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 500                           |
| Edgetech Acoustic Release   | s/n 32380 release code 641722 |

#### Table 12 – Instrument configuration for 30m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10119                         |
| Wave burst duration         | 34 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 69                            |
| Bin size                    | 0.5 m                         |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 250                           |
| Edgetech Acoustic Release   | s/n 32383 release code 642016 |

#### 3.2.2 RBR XR420 CT LOGGER

#### Table 13 – Instrument configuration for T&C Mooring Line.

| Parameter                           | Configuration                               |
|-------------------------------------|---------------------------------------------|
| XR 420 Temperature and Conductivity | s/n 12994 (7m) and s/n 12998 (28m)          |
| Sampling and Averaging              | Sample at 1Hz for 1 minute every 10 minutes |



#### 3.2.3 RBR TGR1050 HT TIDE GAUGE

#### Table 14 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 1050 HT            | s/n 14005                               |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

#### 3.2.4 RBR TGR2050 HT TIDE GAUGE

#### Table 15 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 2050 HT            | s/n 013070                              |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

#### 3.2.5 Biofouling Mooring

#### Table 16 – Instrument configuration for Biofouling Mooring Line.

| Parameter                 | Configuration                                             |
|---------------------------|-----------------------------------------------------------|
| Biofouling Plates         | 3 plates (50cmx50cm) at 3m and 3 plates (50cmx50cm) at 8m |
| Edgetech Acoustic Release | s/n 32387 release code 642144                             |



#### 3.3 RECOVER AND REDEPLOYMENT METHODOLOGY

#### 3.3.1 T&C mooring

The T&C mooring line was deployed by lowering the array down via a rope through the anchor weights. The mooring line is recovered using divers to undo a single shackle that connects the mooring line to the anchor weights. Divers reattach the line onto the weights, after the instruments have been serviced.

#### 3.3.2 ADCP mooring

The ADCP Frame is lowered to the bottom and moved into position by divers, who also attach chain sections that act as anchors. To retrieve the frame divers have to locate the mooring, take of the anchor chains and surface the frame using air lift bags that they attach.

#### 3.3.3 Tidal Gauge.

The Druck pressure sensor was installed inside a stilling well, which was attached to a permanent steel frame in 1.87m depth of water. The sensor cable was covered with garden hosing and laid out to the tide logger box which was cemented onto a nearby rocky outcrop.

The TGR 2050 tide gauge was installed on the steel frame at the same location where the TGR 1050 was previously installed. No external logger box is necessary for this instrument.

#### 3.3.4 Biofouling mooring

The biofouling mooring line was deployed by lowering the array down via a rope through the anchor weights. Divers will locate the mooring line and retrieve a surface and bottom plate from the line at the required sampling periods. Recovery of the biofouling mooring was not scheduled for the second service visit.



#### 3.4 MALFUNCTIONS AND LESSONS LEARNT

A list of malfunctions experienced and consequent measures to be taken in future are provided in Table 17.

#### Table 17 – Lessons learnt and future mitigation measures

| Problem                                   | Mitigation measure(s)                   |
|-------------------------------------------|-----------------------------------------|
| Poachers dive in vicinity of tide gauge - | The RBR 1050 has been replaced with the |
| they tamper with the instrument.          | RBR 2050.                               |



#### 4. DATA QUALITY CONTROL

#### 4.1 ADCP

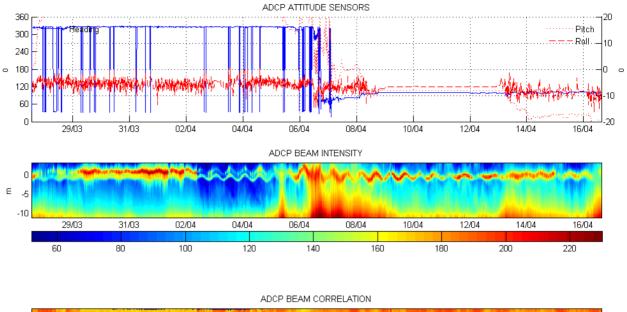
Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further.

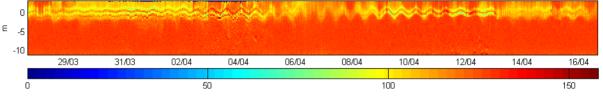
#### 4.1.1 Current processing

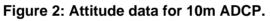
- The record was truncated to exclude times pre and post deployment.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 22' W and 25° 21' W for the 10m and 30m ADCPs respectively.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 2 and Figure 3).
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.

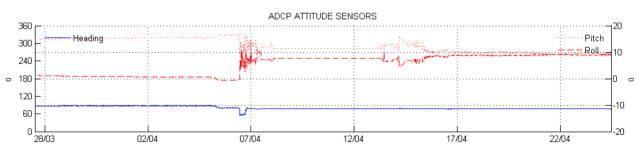
#### 4.1.2 Wave processing

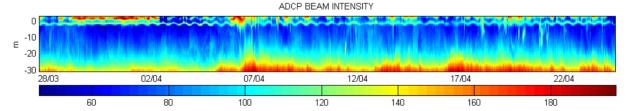
Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:

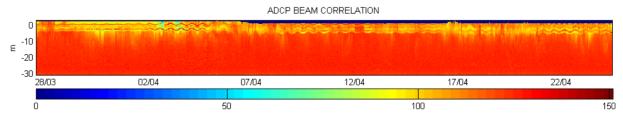

- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 22' W and 25° 21' W for the 10m and 30m ADCPs respectively.
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.

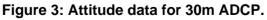

#### 4.2 RBR-CT LOGGER


The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.


- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.
- Salinity values less than 34.5psu were flagged for the bottom instrument.


















#### 5. DATA PRESENTATION

All data presented have been subject to the quality control procedures detailed in the previous section. Bad data have been excluded from all plots and calculations.

All plots in this section include a stamp that details the location, depth, time period and number of observations that the plot is based upon. Wherever possible, scaling of parameters has been kept constant throughout this section to facilitate comparison between plots and stations.

#### 5.1 10M ADCP

#### 5.1.1 Current Data

#### 5.1.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



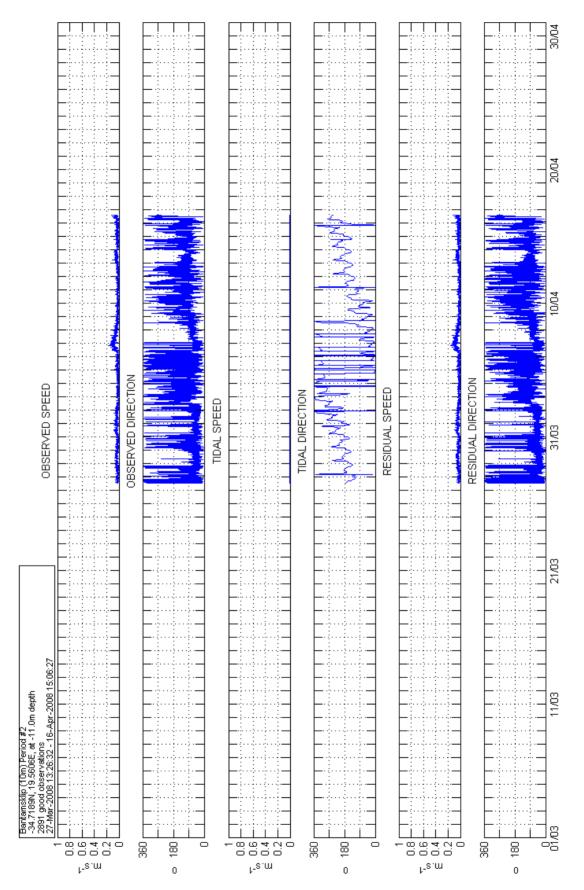



Figure 4: Time series plot for 10m ADCP current data at 11.0m



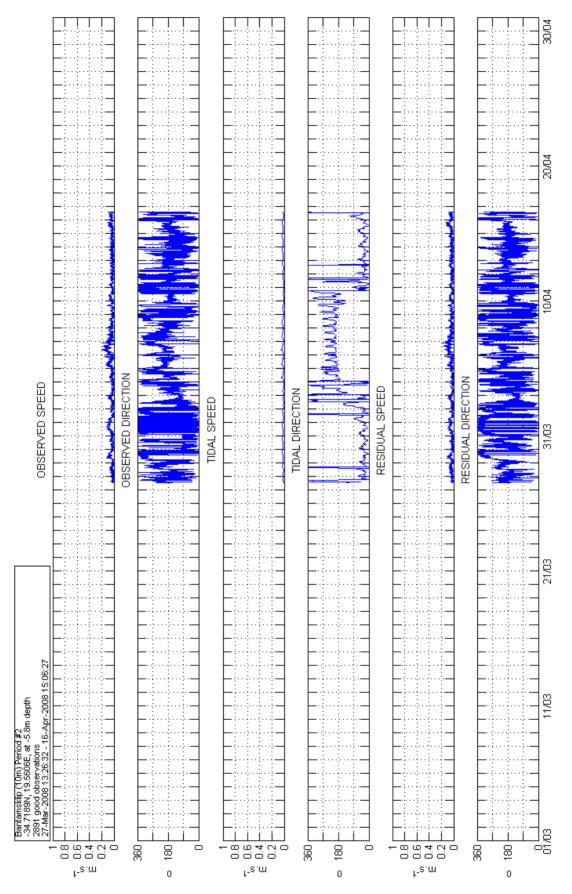



Figure 5: Time series plot for 10m ADCP current data at 5.8m



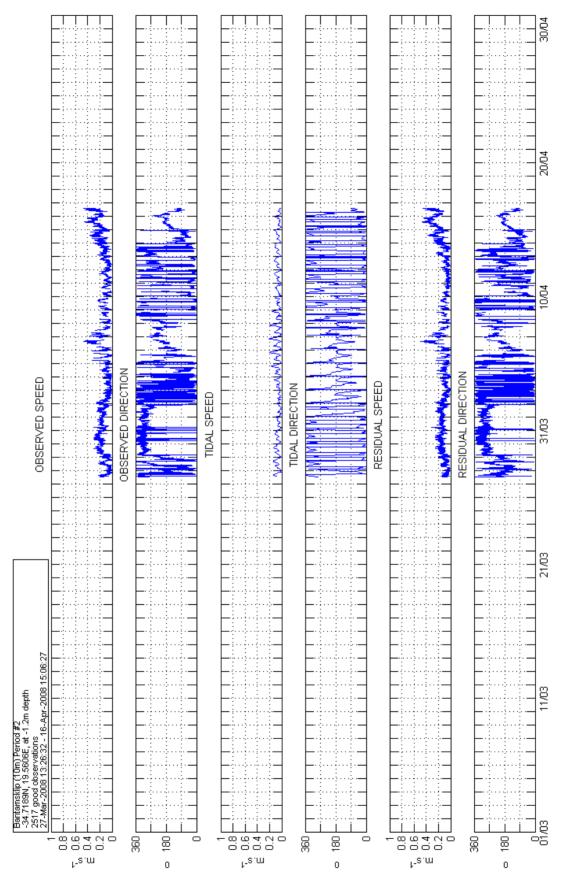



Figure 6: Time series plot for 10m ADCP current data at 1.2m



#### 5.1.1.2 Summary plots

The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.1.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.



| Bentamskip (10m) Period #2<br>-34.7189N,19.5606E, at -11.0m depth<br>2891 good observations<br>27-Mar-2008 13:26:32 - 15-Apr-2008 15:06:27 | p (10m) Pe<br>19.5606E,<br>observatio<br>13.26:32 | riod #2<br>, at -11.0m -<br>ins<br>2 - 16-Apr-; | depth<br>2008 15:06 | 327           |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------|---------------|------------------------|------------|----------|----------|---------|-------------------------------------------|---------|----------|--------|-------------------------|----------|---------------|-------|--------|
|                                                                                                                                            |                                                   |                                                 |                     |               |                        |            | JOINT D. | ISTRIBUT | TION OF | JOINT DISTRIBUTION OF SPEED AND DIRECTION | AND DIR | ECTION   |        |                         |          |               |       |        |
|                                                                                                                                            |                                                   | z                                               | NNE                 | ШN            | ENE                    | ш          | ESE      | Я        | SSE     | S                                         | SSW     | SW       | WSW    | ×                       | WNW      | NNN           | NNN   | ы      |
|                                                                                                                                            | 0-0.1                                             | 3.74                                            | 8.99                | 16.50         | 17.92                  | 12.97      | 8.37     | 6.09     | 4.67    | 3.60                                      | 3.11    | 2.35     | 2.35   | 2.35                    | 1.45     | 1.66          | 2.14  | 98.27  |
|                                                                                                                                            | 0.1-0.2                                           | 0.21                                            | 0.52                | 0.66          | 0.21                   |            |          |          |         |                                           |         |          |        | 0.10                    |          |               | 0.0   | 1.73   |
|                                                                                                                                            | 0.2-0.3                                           |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       | 0.0    |
|                                                                                                                                            | 0.3-0.4                                           |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       | 0.0    |
|                                                                                                                                            | 0.4-0.5                                           |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       | 0.0    |
|                                                                                                                                            | 0.5-0.6                                           |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       | 0.0    |
|                                                                                                                                            | 0.6-0.7                                           |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       | 0.0    |
|                                                                                                                                            | 0.7-0.8                                           |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       | 0.0    |
|                                                                                                                                            | 0.8-0.9                                           |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       | 0.0    |
|                                                                                                                                            | 0.9-1                                             |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       | 8.0    |
|                                                                                                                                            | ы                                                 | 3.94                                            | 9.51                | 17.16         | 18.13                  | 12.97      | 8.37     | 6.09     | 4.67    | 3.60                                      | 3.11    | 2.35     | 2.35   | 2.46                    | 1.45     | 1.66          | 2.18  | 100.00 |
|                                                                                                                                            |                                                   |                                                 |                     |               |                        |            |          |          |         |                                           |         |          |        |                         |          |               |       |        |
|                                                                                                                                            |                                                   | U.S.                                            | RRENT [             | DIRECTIC<br>0 | CURRENT DIRECTION ROSE |            |          |          | 001     |                                           |         | Ц.<br>СС | RENT S | CURRENT SPEED HISTOGRAM | ISTOGR/  | MA            |       |        |
|                                                                                                                                            |                                                   |                                                 | )<br>BB             | ₹/<br>∍(…     | _ 8/                   |            |          |          | 3       |                                           |         |          |        |                         |          | max: 0        |       |        |
|                                                                                                                                            |                                                   |                                                 |                     | Ç<br>         |                        |            |          |          | 8       |                                           |         |          |        |                         |          | imin:-0:      |       |        |
|                                                                                                                                            |                                                   |                                                 |                     | ≥ 2           |                        | 8,/        |          |          |         |                                           |         |          |        |                         |          | mean: 0:03    |       |        |
|                                                                                                                                            |                                                   | ~                                               |                     |               | 1                      |            |          |          | 09      |                                           |         |          |        |                         |          | std:.0.(<br>: |       |        |
|                                                                                                                                            |                                                   | 270                                             | · · · ·             | ×             | -                      | <u>6</u>   |          |          | %       |                                           |         |          |        |                         |          |               |       |        |
|                                                                                                                                            |                                                   |                                                 |                     |               |                        |            |          |          | 40      |                                           | <br>    |          |        |                         |          |               |       |        |
|                                                                                                                                            |                                                   | 240                                             | ·                   |               |                        | 120<br>120 |          |          | 2       |                                           |         |          |        |                         |          |               |       |        |
|                                                                                                                                            |                                                   |                                                 | 210                 | }             | . \ <mark>6</mark>     |            |          |          |         |                                           |         |          |        |                         |          |               |       |        |
|                                                                                                                                            |                                                   |                                                 |                     | 180           |                        |            |          |          | -0      |                                           | 0.2     | -        | - 7    | -                       | 9<br>0.6 |               | - 8.0 |        |
|                                                                                                                                            |                                                   |                                                 |                     |               |                        |            |          |          |         | 1                                         |         |          |        |                         | 1        |               |       |        |

Figure 7: Summary plot for 10m ADCP current data at 11.0m

m.s-1



|                                             | ы   | 96.71 | 3.29    | 0.0     | 0.0     | 0.0     | 0.0     | 0.00    | 0.00    | 0.00    | 0.00  | 100.00 |                                         |
|---------------------------------------------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|-----------------------------------------|
|                                             | NNN | 7.54  | 0.03    |         |         |         |         |         |         |         |       | 7.58   |                                         |
|                                             | NNN | 5.57  | 0.21    |         |         |         |         |         |         |         |       | 5.78   | nax.(<br>hin:0                          |
|                                             | WNW | 4.29  | 0.10    |         |         |         |         |         |         |         |       | 4.39   | CURRENT SPEED HISTOGRAM                 |
|                                             | ×   | 3.32  | 0.24    |         |         |         |         |         |         |         |       | 3.56   | SPEED +                                 |
|                                             | WSW | 4.01  | 0.07    |         |         |         |         |         |         |         |       | 4.08   |                                         |
| ECTION                                      | SW  | 4.53  | 0.31    |         |         |         |         |         |         |         |       | 4.84   |                                         |
| AND DIR                                     | SSW | 8.13  | 1.04    |         |         |         |         |         |         |         |       | 9.17   |                                         |
| SPEED                                       | S   | 8.23  | 0.62    |         |         |         |         |         |         |         |       | 8.86   |                                         |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION   | SSE | 8.54  | 0.24    |         |         |         |         |         |         |         |       | 8.79   | - · · · · · · · · · · · · · · · · · · · |
| ISTRIBU                                     | SE  | 6.43  | 0.03    |         |         |         |         |         |         |         |       | 6.47   |                                         |
| JOINT D                                     | ESE | 5.98  |         |         |         |         |         |         |         |         |       | 5.98   |                                         |
|                                             | ш   | 5.19  |         |         |         |         |         |         |         |         |       | 5.19   |                                         |
|                                             | ENE | 5.33  |         |         |         |         |         |         |         |         |       | 5.33   | R ROSE                                  |
| 827                                         | ШШ  | 4.91  |         |         |         |         |         |         |         |         |       | 4.91   |                                         |
| 2008 15:06                                  | NNE | 6.23  |         |         |         |         |         |         |         |         |       | 6.23   | CURRENT DIRECTION ROSE                  |
| 27-Mar-2008 13:26:32 - 16-Apr-2008 15:06:27 | z   | 8.47  | 0.38    |         |         |         |         |         |         |         |       | 8.86   | 270 300 CUI                             |
|                                             |     | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы      |                                         |

#### Figure 8: Summary plot for 10m ADCP current data at 5.8m



| 년 주 이 문        | Bantamskip (10m) Period #2<br>-34.7189N, 19.5606E, at -1.2m depth<br>2517 good observations<br>27.Mar.2008 13.26.32 - 16.4mr.2006 | Bantamskip (10m) Period #2<br>-34.7189N, 19.5606E, at -1.2m depth<br>2517 good observation 5. Anr2008 15.06.27<br>27.Mar2008 13.26.32 - 16.Anr2008 15.06.27 | 227       |                        |          |         |          |         |                                           |         |        |                         |         |          |            |       |        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|----------|---------|----------|---------|-------------------------------------------|---------|--------|-------------------------|---------|----------|------------|-------|--------|
| -1             |                                                                                                                                   |                                                                                                                                                             | -         |                        | ]        | D TNIOL | ISTRIBUT | TION OF | JOINT DISTRIBUTION OF SPEED AND DIRECTION | AND DIR | ECTION |                         |         |          |            |       |        |
|                | z                                                                                                                                 | NNE                                                                                                                                                         | Ш         | ENE                    | ш        | ESE     | ЗE       | SSE     | S                                         | SSW     | SW     | WSW                     | M       | WNW      | MN         | NNN   | ы      |
| ഥ              | 5.05                                                                                                                              | 4.49                                                                                                                                                        | 3.38      | 1.51                   | 1.15     | 1.31    | 0.95     | 1.39    | 1.19                                      | 1.75    | 2.70   | 2.86                    | 2.74    | 2.42     | 2.34       | 3.73  | 38.97  |
| ല്             | 3.85                                                                                                                              | 5.05                                                                                                                                                        | 2.30      | 1.19                   | 0.60     | 1.27    | 0.99     | 1.47    | 0.83                                      | 0.95    | 2.15   | 2.26                    | 2.11    | 5.72     | 5.88       | 4.93  | 41.56  |
| <del>~</del> ׂ | 1.15                                                                                                                              | 0.20                                                                                                                                                        | 0.72      | 1.31                   | 0.75     | 0.52    | 0.0      | 0.91    | 1.51                                      | 1.11    | 0.68   | 0.24                    | 0.20    | 1.83     | 1.95       | 1.95  | 15.10  |
|                |                                                                                                                                   |                                                                                                                                                             | 0.20      | 0.36                   | 0.28     | 0.28    | 0.04     | 0.32    | 1.51                                      | 0.56    | 0.08   | 0.04                    | 0.04    |          | 0.04       | 0.04  | 3.77   |
|                |                                                                                                                                   |                                                                                                                                                             |           |                        | 0.16     |         |          | 0.04    | 0.08                                      | 0.32    |        |                         |         |          |            |       | 0.60   |
|                |                                                                                                                                   |                                                                                                                                                             |           |                        |          |         |          |         |                                           |         |        |                         |         |          |            |       | 0.0    |
|                |                                                                                                                                   |                                                                                                                                                             |           |                        |          |         |          |         |                                           |         |        |                         |         |          |            |       | 8.0    |
|                |                                                                                                                                   |                                                                                                                                                             |           |                        |          |         |          |         |                                           |         |        |                         |         |          |            |       | 0.0    |
|                |                                                                                                                                   |                                                                                                                                                             |           |                        |          |         |          |         |                                           |         |        |                         |         |          |            |       | 0.0    |
|                |                                                                                                                                   |                                                                                                                                                             |           |                        |          |         |          |         |                                           |         |        |                         |         |          |            |       | 0.0    |
| 12             | 10.05                                                                                                                             | 9.73                                                                                                                                                        | 6.60      | 4.37                   | 2.94     | 3.38    | 2.07     | 4.13    | 5.13                                      | 4.69    | 5.60   | 5.40                    | 5.09    | 9.97     | 10.21      | 10.65 | 100.00 |
| -              | 201                                                                                                                               | 2.0                                                                                                                                                         |           | ř.                     | t<br>0.4 |         | ŏ.v      | 2<br>t  | 2                                         | )<br>t  |        | p<br>t                  | 6       | 5.5      | 17:01      | 0.0   |        |
|                | CUF                                                                                                                               | RENT C                                                                                                                                                      | IRECTIC   | CURRENT DIRECTION ROSE |          |         |          | ć       |                                           |         | CU     | CURRENT SPEED HISTOGRAM | SPEED H | IISTOGR, | AM         |       |        |
|                |                                                                                                                                   | 330                                                                                                                                                         | ≈/<br>-{… | /                      |          |         |          | 0       |                                           |         |        | <br>                    | <br>    |          | max: (     | .47   | L      |
|                |                                                                                                                                   |                                                                                                                                                             | ₽         | /<br>·                 | ;        |         |          | 20      |                                           |         |        |                         |         |          | min: 0.00  | .8    |        |
| .,             |                                                                                                                                   |                                                                                                                                                             |           | · · ·                  | P9/      |         |          | Ű       |                                           |         |        |                         |         |          | mean: 0.14 | 0.14  |        |
|                |                                                                                                                                   |                                                                                                                                                             |           |                        |          |         |          | ÷       |                                           |         |        |                         |         |          | std: 0.08  |       |        |
| 270            |                                                                                                                                   | <u></u>                                                                                                                                                     | ***       |                        | 06(      |         |          | ଳ<br>%  |                                           |         |        |                         |         |          |            |       |        |
|                |                                                                                                                                   |                                                                                                                                                             | 241       |                        |          |         |          |         |                                           |         |        |                         |         |          |            |       |        |

Figure 9: Summary plot for 10m ADCP current data at 1.2m

8. 0

0.6

40

0.2

-

6

8

2

540

G

20/

፼

т.<sup>-1</sup>

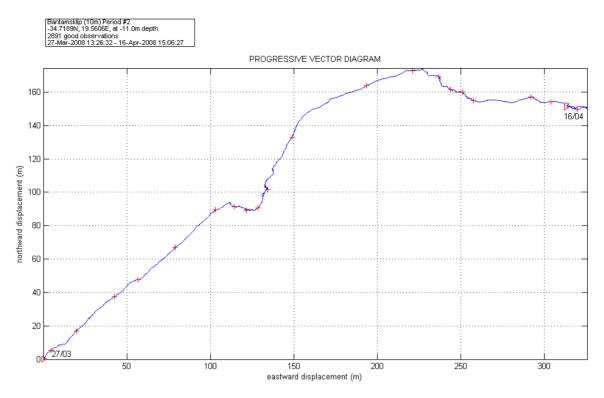



Figure 10: Progressive vector plot for 10m ADCP current data at 11.0m

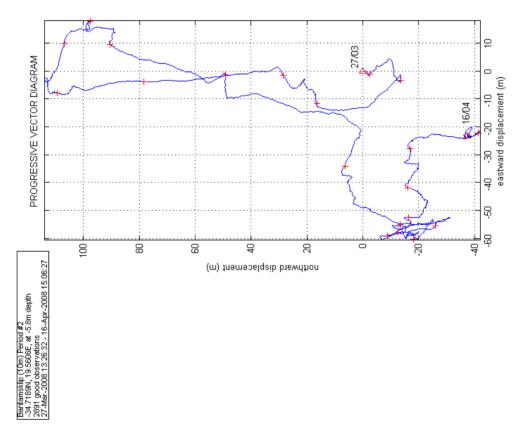



Figure 11: Progressive vector plot for 10m ADCP current data at 5.8m

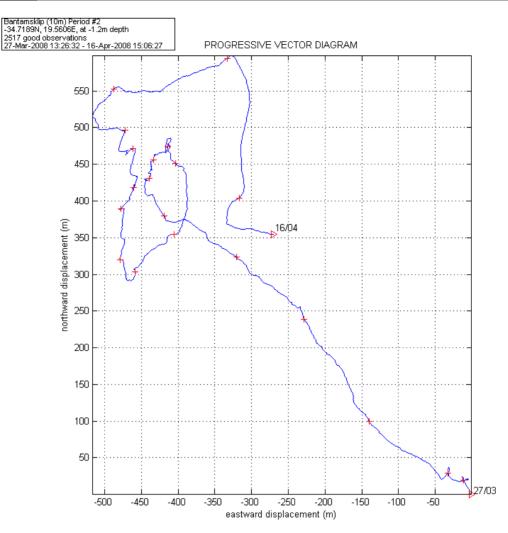



Figure 12: Progressive vector plot for 10m ADCP current data at 1.2m



### 5.1.2 Wave Data.

### 5.1.2.1 <u>Hs and Tp summary plot</u>

Figure 13 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

### 5.1.2.2 <u>Hs and Dp summary plot</u>

Figure 14 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

### 5.1.2.3 <u>Tp and Dp summary plot</u>

Figure 15 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.



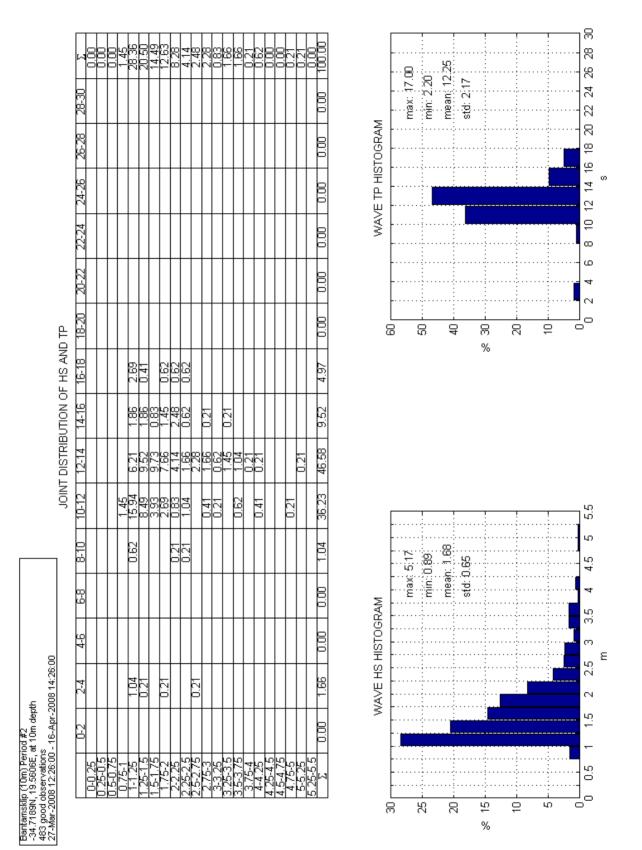
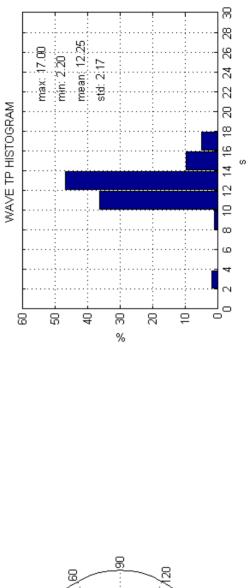
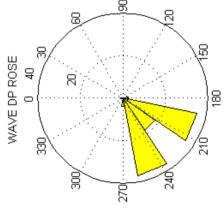
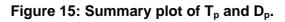



Figure 13: Summary plot of  $H_s$  and  $T_p$ .


|                                                                                                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             | س                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                                                                                                        |                           | 240233<br>2414<br>2514<br>2514<br>2514<br>2514<br>2514<br>2514<br>2514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2 P                                                           |
|                                                                                                                                        | ++++                      | ⊃←88222004rvr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                                                                                             | 5.17<br>5.17<br>1.68<br>1.68<br>1.65<br>4.5<br>4.5            |
|                                                                                                                                        | MNN                       | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.21                                                               | 0.62                                                                                        | A max: 5:17<br>min: 0.89<br>std: 0.65<br>std: 0.65<br>4 4.5 t |
|                                                                                                                                        | MN                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             |                                                               |
|                                                                                                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             | 3 3 <b>3 1</b>                                                |
|                                                                                                                                        |                           | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | 0.21                                                                                        | 75                                                            |
|                                                                                                                                        | >                         | 0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.21                                                               | 3.73                                                                                        | WAVE HS HISTOGRAM                                             |
|                                                                                                                                        | MSM                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 002122                                                             | 37.06                                                                                       |                                                               |
|                                                                                                                                        | A A                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 2 7 7 7                                                          | 10                                                                                          |                                                               |
| 8                                                                                                                                      | $\left  + + + \right $    | ++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++++++                                                             | ++++                                                                                        |                                                               |
| S AND                                                                                                                                  | MSS                       | 1.24<br>10.56<br>9.94<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.21<br>0.41<br>0.41                                               | 35.61                                                                                       | %                                                             |
| N OF H                                                                                                                                 | ω                         | 0.41<br>1.24<br>0.21<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | 0.21<br>0.21<br>2.69                                                                        |                                                               |
| RIBUTIO                                                                                                                                | SSE                       | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | 0.41                                                                                        |                                                               |
| JOINT DISTRIBUTION OF HS AND DP                                                                                                        | ы<br>Ш                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 0.41                                                                                        |                                                               |
| IIOL                                                                                                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             |                                                               |
|                                                                                                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | ++++                                                                                        |                                                               |
|                                                                                                                                        | ш                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             | 500                                                           |
|                                                                                                                                        | ENE                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 8                                                                                           |                                                               |
|                                                                                                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             | AVE D- ROSE                                                   |
| 26:00                                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             |                                                               |
| epth<br>-2008 14                                                                                                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             | 51 23 × ×                                                     |
| Bartamskip (10m) Period #2<br>-34.7189N,19.5506E, at 10m depth<br>-33 good observations<br>27-Mar-2008 12:26:00 - 16-Apr-2008 14:26:00 | z                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.21 U                                                             | 80                                                                                          | 300                                                           |
| )m) Per<br>5606E,<br>rvation;<br>2:26:00                                                                                               | -0.25<br>25-0.5<br>25-0.5 | 0.75-15<br>0.75-15<br>1.125-15<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-25<br>2.255-255-25<br>2.255-255-25<br>2.255-255-255-255-255-255-255-255-255-25 | 2.75-3<br>3.25-3.5<br>3.25-3.5<br>3.5-3.5<br>3.5-4<br>4.25<br>4.25 | N 22222                                                                                     |                                                               |
| klip (11<br>9N, 19.:<br>d obse<br>2008 12                                                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000044                                                           |                                                                                             |                                                               |
| antams<br>84.7189<br>83 good                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             |                                                               |
| <u>Ш.1.4</u> 01                                                                                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                             |                                                               |





ε



|                                                                                                                                         | ы   | 0.0 | 1.66 | 0.00 | 0.00   | 1.04 | 36.23 | 46.58 | 9.52  | 4.97  | 0.0   | 0.00  | 0.00  | 0.00  | 0.0   | 0.00  | 100.00 |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|------|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|                                                                                                                                         | MNN |     |      |      |        |      |       |       | 0.62  |       |       |       |       |       |       |       | 0.62   |
|                                                                                                                                         | NΝ  |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
|                                                                                                                                         | WNW |     |      |      |        |      |       | 0.21  |       |       |       |       |       |       |       |       | 0.21   |
|                                                                                                                                         | M   |     |      |      |        |      | 0.62  | 1.45  | 1.04  | 0.62  |       |       |       |       |       |       | 3.73   |
|                                                                                                                                         | WSW |     |      |      |        | 0.62 | 14.49 | 14.08 | 4.76  | 3.11  |       |       |       |       |       |       | 37.06  |
| 0                                                                                                                                       | SW  |     | 0.21 |      |        | 0.41 | 5.80  | 9.73  | 1.24  | 1.04  |       |       |       |       |       |       | 18.43  |
| AND DF                                                                                                                                  | SSW |     | 1.24 |      |        |      | 14.70 | 18.22 | 1.24  | 0.21  |       |       |       |       |       |       | 35.61  |
| N OF TF                                                                                                                                 | S   |     |      |      |        |      | 0.21  | 1.86  | 0.62  |       |       |       |       |       |       |       | 2.69   |
| OINT DISTRIBUTION OF TP AND DP                                                                                                          | SSE |     |      |      |        |      |       | 0.41  |       |       |       |       |       |       |       |       | 0.41   |
| DINT DIS                                                                                                                                | SE  |     |      |      |        |      | 0.41  |       |       |       |       |       |       |       |       |       | 0.41   |
| 9                                                                                                                                       | ESE |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
|                                                                                                                                         | ш   |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
|                                                                                                                                         | ENE |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
| 00,2                                                                                                                                    | Ш   |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 00.0   |
| 24.1891,19.1911,17.5104 #2<br>-24.71891,19.5105,181,10m depth<br>-33.3 good observations<br>27-Mar-2008 12:26:00 - 16-Apr-2008 14:26:00 | NNE |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.0    |
| nuu #∠<br>at 10m de⊧<br>s<br><u>- 16-Apr-,</u>                                                                                          | z   |     | 0.21 |      |        |      |       | 0.62  |       |       |       |       |       |       |       |       | 0.83   |
| Dautamissing 1 Unit Period #2<br>-34.7189N, 19.5606E, at 10m depth<br>483 good observations<br>27-Mar-2008 12.26:00 - 16-Apr-200        |     | 0-2 | 2-4  | 4-6  | e<br>e | 8-10 | 10-12 | 12-14 | 14-16 | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 | 26-28 | 28-30 | ы      |









### 5.1.2.4 Wave spectral plot

Figure 16 and Figure 17 display wave spectral plots for significant waves events. The time of each spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.



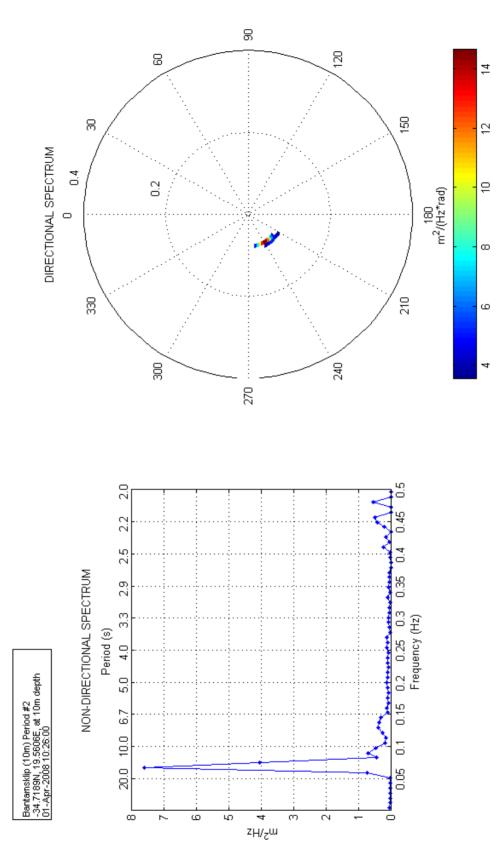



Figure 16: Wave spectra for 1<sup>st</sup> of April 2008 at 10:26:00.



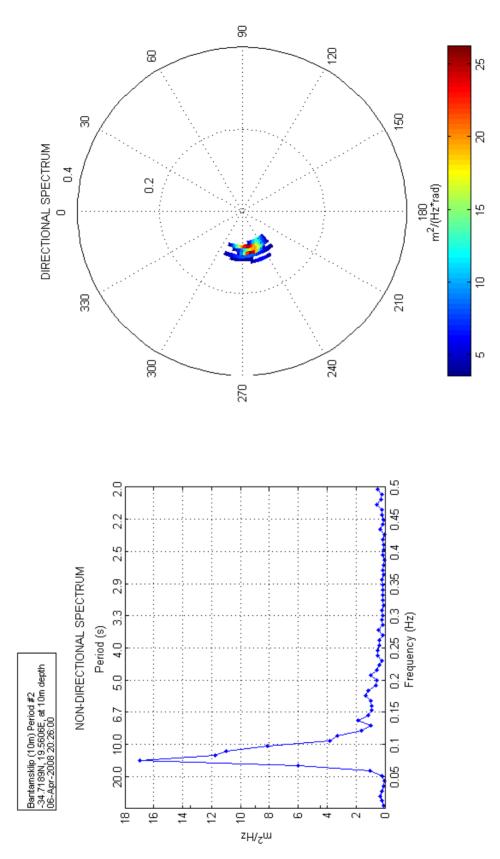



Figure 17: Wave spectra for 6<sup>th</sup> of April 2008 at 20:26:00.





### 5.2 30M ADCP

### 5.2.1 Current Data

### 5.2.1.1 Time series plots

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



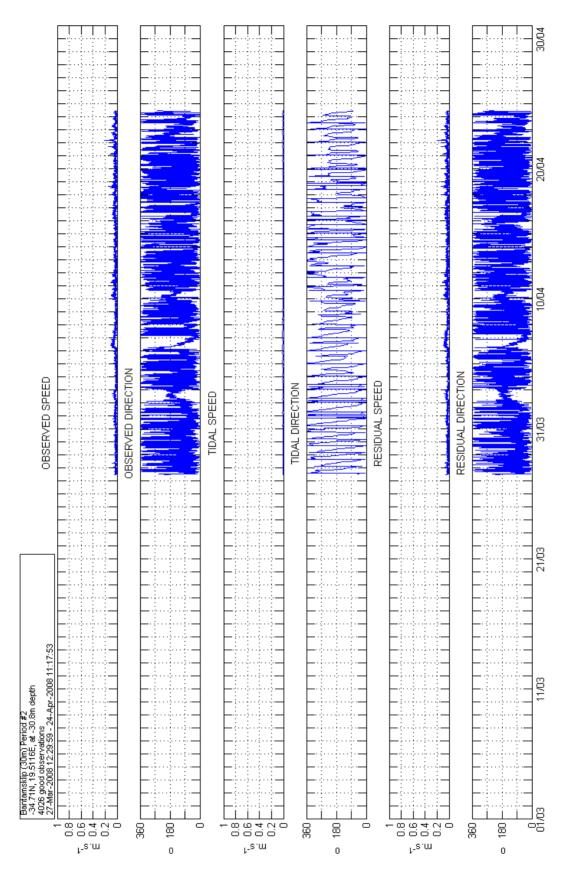



Figure 18: Time series plot for 30m ADCP current data at 30.8m



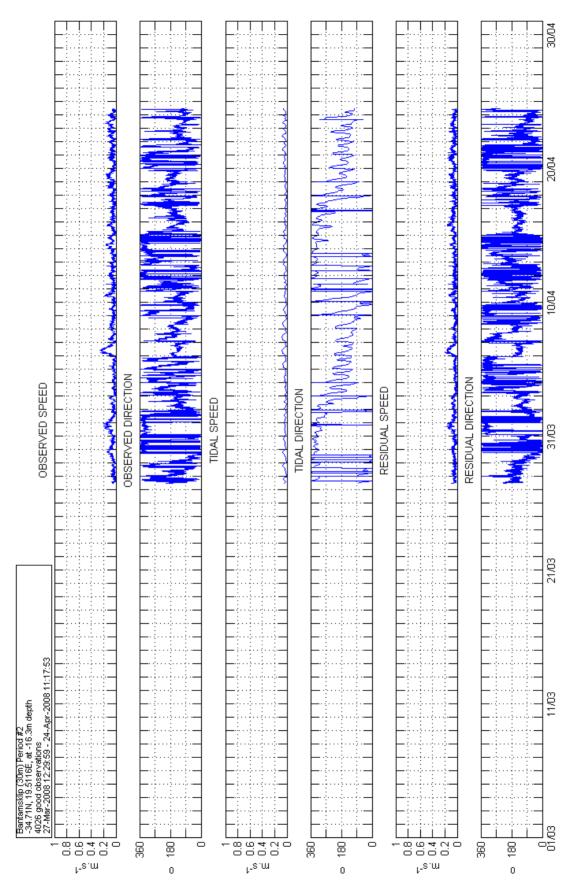



Figure 19: Time series plot for 30m ADCP current data at 16.3m



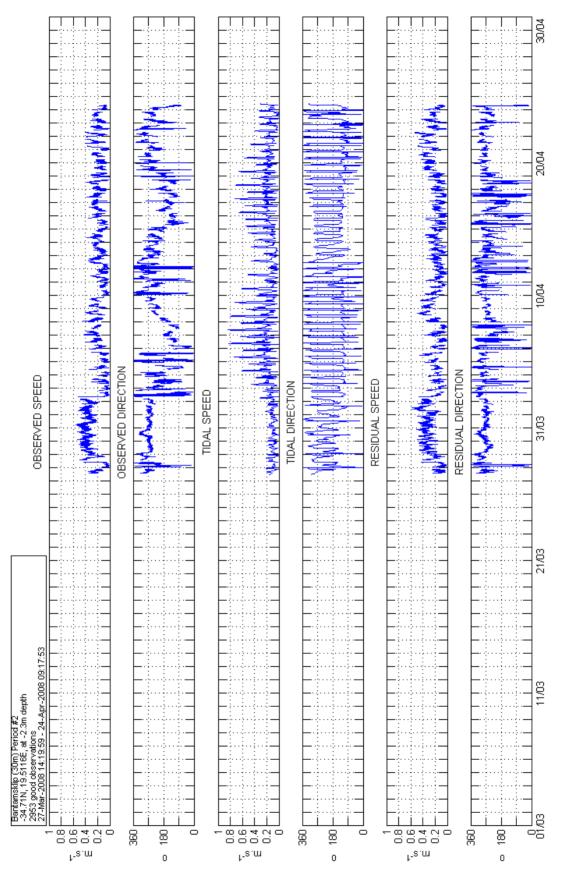



Figure 20: Time series plot for 30m ADCP current data at 2.3m



### 5.2.1.2 Summary plots

The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

### 5.2.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.



|                                                                                                                                       | ы   | 99.45 | 0:50    | 0.05    | 0.0     | 0.0     | 0.0     | 00.0    | 0.0     | 0.0     | 0.0   | 100.00 |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|----------------------------------------|
|                                                                                                                                       | WNW | 5.96  |         |         |         |         |         |         |         |         |       | 5.96   |                                        |
|                                                                                                                                       | MN  | 4.25  | 0.02    |         |         |         |         |         |         |         |       | 4.27   | nax:(<br>nin:0                         |
|                                                                                                                                       | WNW | 4.02  |         |         |         |         |         |         |         |         |       | 4.02   | CURRENT SPEED HISTOGRAM                |
|                                                                                                                                       | M   | 2.73  |         |         |         |         |         |         |         |         |       | 2.73   |                                        |
|                                                                                                                                       | WSW | 3.97  |         |         |         |         |         |         |         |         |       | 3.97   |                                        |
| RECTION                                                                                                                               | SW  | 4.17  | 0.32    | 0.05    |         |         |         |         |         |         |       | 4.55   |                                        |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION                                                                                             | SSW | 4.60  | 0.07    |         |         |         |         |         |         |         |       | 4.67   | 02                                     |
| SPEED                                                                                                                                 | S   | 5.02  |         |         |         |         |         |         |         |         |       | 5.02   |                                        |
| JTION OF                                                                                                                              | SSE | 4.40  | 0.02    |         |         |         |         |         |         |         |       | 4.42   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| OISTRIBL                                                                                                                              | ß   | 4.22  | 0.02    |         |         |         |         |         |         |         |       | 4.25   |                                        |
| JOINT                                                                                                                                 | ESE | 4.20  |         |         |         |         |         |         |         |         |       | 4.20   |                                        |
|                                                                                                                                       | ш   | 5.99  |         |         |         |         |         |         |         |         |       | 5.99   | 30                                     |
|                                                                                                                                       | ENE | 11.77 |         |         |         |         |         |         |         |         |       | 11.77  |                                        |
| 7:53                                                                                                                                  | IJ  | 12.87 | 0.02    |         |         |         |         |         |         |         |       | 12.89  |                                        |
| -24.71N, 19.5116E, at -30.8m depth<br>4026 good observations<br>27-Mar-2008 12:29:59 - 24-Apr-2008 11:17:53                           | NNE | 12.84 |         |         |         |         |         |         |         |         |       | 12.84  | CURRENT DIRECTION ROSE                 |
| t -30.8m dt<br>ons<br><u>9 - 24-Apr</u>                                                                                               | z   | 8.45  |         |         |         |         |         |         |         |         |       | 8.45   | 270 300<br>240                         |
| 9.5116E, a<br>observatio<br>08.12:29:50                                                                                               |     | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы      |                                        |
| -34.71N,19,5116E, at -30.8m depth<br>-34.71N,19,5116E, at -30.8m depth<br>4026 good observations<br>27-Mar-2008 12:29:59 - 24-Apr-200 |     |       |         |         |         |         |         |         |         |         |       |        |                                        |





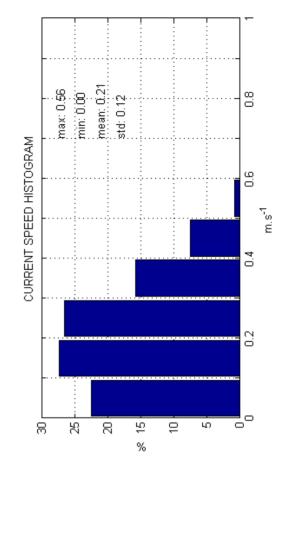
| Bantamskip (30m) Period #2<br>-34.71N, 19.5115E, at -16.3m depth<br>2026 good otsservation<br>27.Mar-2008 12.29:59 - 24.Apr-2008 11:17:53 | eriod #2<br>at -16.3m de<br>ons<br>.9 - 24-Apr- | spth<br>2008 11:11 | 7:53              |         |      |         |                                           |         |       |         |        |                         |        |          |             |       |        |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|-------------------|---------|------|---------|-------------------------------------------|---------|-------|---------|--------|-------------------------|--------|----------|-------------|-------|--------|
|                                                                                                                                           |                                                 |                    |                   |         |      | JOINT D | JOINT DISTRIBUTION OF SPEED AND DIRECTION | TION OF | SPEED | AND DIR | ECTION |                         |        |          |             |       |        |
|                                                                                                                                           | z                                               | NNE                | ¥                 | ENE     | ш    | ESE     | SE                                        | SSE     | S     | SSW     | SW     | WSW                     | M      | WNW      | NNN         | NNNN  | ы      |
| 0-0.1                                                                                                                                     | 5.76                                            | 5.04               | 5.69              | 5.41    | 7.38 | 7.03    | 8.15                                      | 8.30    | 5.61  | 3.20    | 2.63   | 2.96                    | 3.58   | 4.27     | 5.69        | 7.43  | 88.13  |
| 0.1-0.2                                                                                                                                   | 0.89                                            | 0.12               | 0.05              | 0.07    | 0.55 | 1.29    | 1.74                                      | 1.39    | 0.52  | 0.40    | 0.15   | 0.02                    | 0.02   | 0.10     | 0.99        | 2.78  | 11.10  |
| 0.2-0.3                                                                                                                                   |                                                 |                    |                   |         |      | 0.10    | 0.60                                      | 0.05    | 0.02  |         |        |                         |        |          |             |       | 0.77   |
| 0.3-0.4                                                                                                                                   |                                                 |                    |                   |         |      |         |                                           |         |       |         |        |                         |        |          |             |       | 0.0    |
| 0.4-0.5                                                                                                                                   |                                                 |                    |                   |         |      |         |                                           |         |       |         |        |                         |        |          |             |       | 0.0    |
| 0.5-0.6                                                                                                                                   |                                                 |                    |                   |         |      |         |                                           |         |       |         |        |                         |        |          |             |       | 0.0    |
| 0.6-0.7                                                                                                                                   |                                                 |                    |                   |         |      |         |                                           |         |       |         |        |                         |        |          |             |       | 0.0    |
| 0.7-0.8                                                                                                                                   |                                                 |                    |                   |         |      |         |                                           |         |       |         |        |                         |        |          |             |       | 0.0    |
| 0.8-0.9                                                                                                                                   |                                                 |                    |                   |         |      |         |                                           |         |       |         |        |                         |        |          |             |       | 0.0    |
| 0.9-1                                                                                                                                     |                                                 |                    |                   |         |      |         |                                           |         |       |         |        |                         |        |          |             |       | 0.0    |
| ы                                                                                                                                         | 6.66                                            | 5.17               | 5.74              | 5.49    | 7.92 | 8.42    | 10.48                                     | 9.74    | 6.16  | 3.60    | 2.78   | 2.98                    | 3.60   | 4.37     | 6.68        | 10.21 | 100.00 |
|                                                                                                                                           | Ŋ                                               | RRENT [            | CURRENT DIRECTION | ON ROSE | ,,,, |         |                                           |         |       |         | C      | CURRENT SPEED HISTOGRAM | PEED H | IISTOGR, | WA          |       |        |
|                                                                                                                                           |                                                 |                    | 0                 | 0       |      |         |                                           | 100     |       |         |        |                         |        |          |             |       |        |
|                                                                                                                                           |                                                 | ۲<br>۳             | {                 | R/.     |      |         |                                           |         |       |         |        |                         |        |          | max: (      | 0.26  |        |
|                                                                                                                                           | 000                                             |                    | <br>⊒             | /<br>·  | 0    |         |                                           | 8       |       |         |        |                         |        |          | ···imin: ·0 |       |        |
|                                                                                                                                           |                                                 |                    | 2                 | · · · · |      |         |                                           |         |       |         |        |                         |        |          | mean: 0:06  | 0.06  |        |
|                                                                                                                                           | ~                                               | <b>.</b>           |                   |         |      |         |                                           | 60      |       |         |        |                         |        |          | ····std: 0. | 04    |        |
|                                                                                                                                           | 270                                             |                    |                   |         | 06   |         |                                           | %       |       |         | ••••   |                         |        |          |             |       |        |
|                                                                                                                                           |                                                 |                    | 17                |         |      |         |                                           | 40      |       |         |        |                         |        |          |             |       |        |
|                                                                                                                                           | 540.                                            |                    | <u>1</u>          |         | 720  |         |                                           |         |       |         |        |                         |        |          |             |       |        |
|                                                                                                                                           | /                                               |                    |                   |         |      |         |                                           | 2       |       |         |        | <br>                    |        |          |             |       |        |
|                                                                                                                                           |                                                 | 710/               | -)@               | 150     |      |         |                                           | C       |       |         |        |                         |        |          |             |       |        |
|                                                                                                                                           |                                                 |                    | 1.1.              |         |      |         |                                           | -       |       |         |        |                         |        |          |             |       |        |



8. 0

0.6

0.4


0.2

0

m.s-1



| 1.15         1.49         2.44         3.83         2.27         1.66         1.66         1.39         1.05 |       | 2.27 1.46 2.17 2.44 3.59 4.00 3.22 2.68 1.39 0.41 27.26 | 2.54 2.54 1.29 1.25 2.95 4.44 3.32 3.05 1.35 0.61 26.45 | 0.64 0.54 0.30 0.24 0.95 4.13 5.38 1.46 1.25 0.20 15.75 | 0.14 0.07 2.61 3.12 0.37 1.08 7.38 | 0.27 0.27 0.07 0.10 0.71 |         |         |         |       | 6.43         5.82         5.25         6.37         11.38         17.71         16.97         9.28         6.57         2.27         100.00 |
|--------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------|--------------------------|---------|---------|---------|-------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1.12     0.98       1.79     2.27       2.34     2.54                                                        |       |                                                         |                                                         | 0.58 0.64                                               |                                    |                          |         |         |         |       | 5.82 6.43                                                                                                                                   |
|                                                                                                              |       | ╞                                                       | 0.54 2                                                  | 0.07 0                                                  |                                    |                          |         |         |         |       | 1.93 5                                                                                                                                      |
| 0 51                                                                                                         |       | 0.68                                                    | 0.17                                                    |                                                         |                                    |                          |         |         |         |       | 1.35                                                                                                                                        |
| 1                                                                                                            | 0.58  | 0.34                                                    | 0.07                                                    |                                                         |                                    |                          |         |         |         |       | 0.98                                                                                                                                        |
|                                                                                                              | 0.47  | 0.14                                                    |                                                         |                                                         |                                    |                          |         |         |         |       | 0.61                                                                                                                                        |
| 2                                                                                                            | 1.08  | 0.17                                                    |                                                         |                                                         |                                    |                          |         |         |         |       | 1.25                                                                                                                                        |
|                                                                                                              | 0-0.1 | 0.1-0.2                                                 | 0.2-0.3                                                 | 0.3-0.4                                                 | 0.4-0.5                            | 0.5-0.6                  | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы                                                                                                                                           |



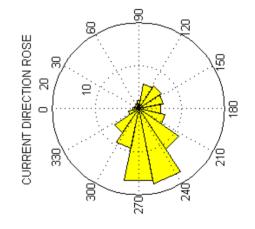



Figure 23: Summary plot for 30m ADCP current data at 2.3m

Bantamskip (30m) Period #2 -34.71N, 19.5116E, at -2.3m depth 2953 good observations 27-Mar-2008 14:19:59 - 24-Apr-2008 09:17:53

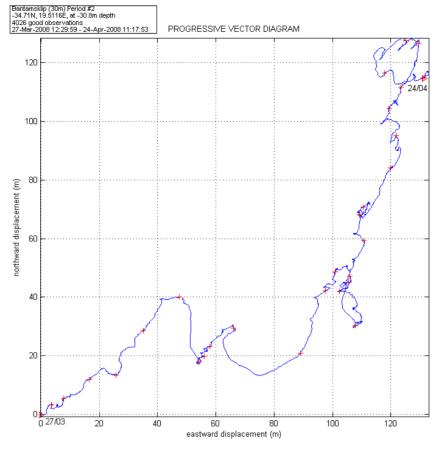



Figure 24: Progressive vector plot for 30m ADCP current data at 30.8m

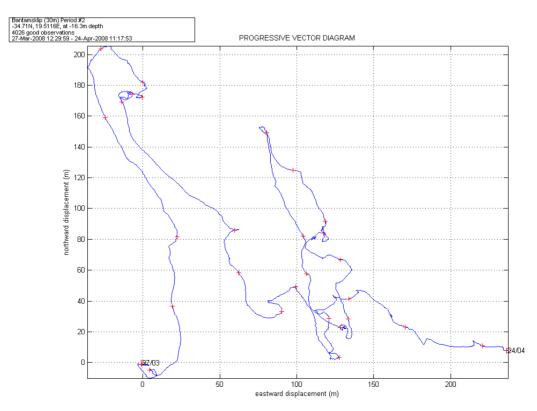



Figure 25: Progressive vector plot for 30m ADCP current data at 16.3m



Bantamsklip (30m) Period #2 -34.71N, 19.5116E, at -2.3m depth 2953 good observations 27-Mar-2008 14:19:59 - 24-Apr-2008 09:17:53

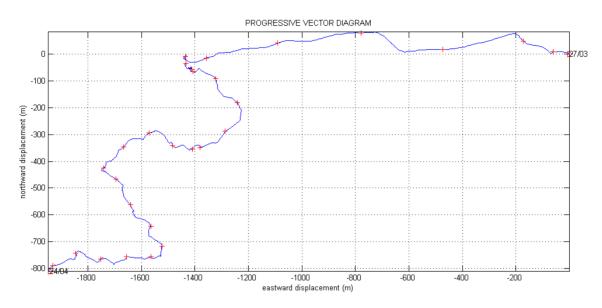



Figure 26: Progressive vector plot for 30m ADCP current data at 2.3m





### 5.2.2 Wave Data.

### 5.2.2.1 <u>Hs and Tp summary plot</u>

Figure 27 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

### 5.2.2.2 <u>Hs and Dp summary plot</u>

Figure 28 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

### 5.2.2.3 Tp and Dp summary plot

Figure 29 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.



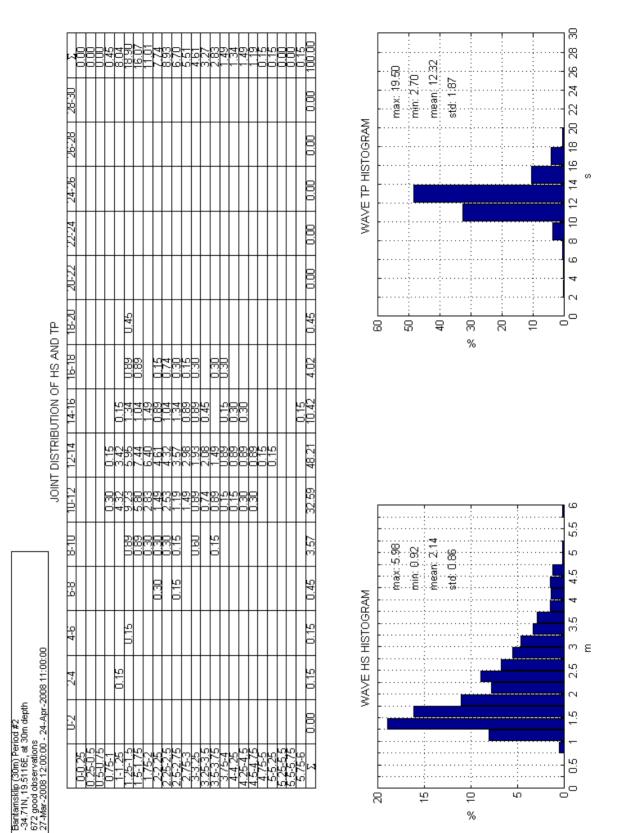



Figure 27: Summary plot of  $H_s$  and  $T_p$ .



| Bantamskii<br>-34.71N, 11<br>672 good o<br>27-Mar-20 | Bantamskip (30m) Period #2<br>-34.71N, 19.5116E, at 30m depth<br>672 good observations<br>27.Mar-2008 12.00:00 - 24.Apr-3 | riod #2<br>30m depth<br>s<br>1 - 24-Apr- | Bantamskilp (30m) Period #2<br>-34.71N, 19.5116E, at 30m depth<br>27.2 good deservations<br>27.Mar-2006 12.304 00:00 - 24.Abr-2008 11:00:00 |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       |        |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|----------|---------------------------------|---------|--------|-------|-------|----------|--------------------|------|-------|--------|
|                                                      |                                                                                                                           |                                          |                                                                                                                                             |      |      | ]    | 9    | INT DIST | JOINT DISTRIBUTION OF HS AND DP | N OF HS | AND DF | 0     |       |          |                    |      |       |        |
|                                                      |                                                                                                                           | z                                        | NNE                                                                                                                                         | Į    | ENE  | ш    | ESE  | 2        | SSE                             | 2       | - MSS  | - MV  | T WSW | M        | LANNAA             | L WW | I WWW | ы      |
|                                                      | 0-0.25                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       | 0.00   |
|                                                      | 0.25-0.5                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       | 0.0    |
|                                                      | 0.5-0.75                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       | 0.00   |
|                                                      | 0.75-1                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        | 0.15  | 0:30  |          |                    |      |       | 0.45   |
|                                                      | 1-1.25                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          | 0.15                            | 0:30    | 3.57   | 3.57  | 0:30  | 0.15     |                    |      |       | 8.04   |
|                                                      | 1.25-1.5                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          | 0.15                            | 1.64    | 9.52   | 1.29  | 0:30  |          |                    |      |       | 18.90  |
|                                                      | 1.5-1.75                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      | 0.15     |                                 | 0.60    | 8.93   | 6.10  | 0:30  |          |                    |      |       | 16.07  |
|                                                      | 1.75-2                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 | 0.45    | 5.95   | 4.32  | 0:00  |          |                    |      |       | 11.01  |
|                                                      | 2-2.25                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 | 0.15    | 4.61   | 2.83  | 0,15  |          |                    |      |       | 7.74   |
|                                                      | 2.25-2.5                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          |                                 | 0::0    | 5.06   | 3.57  |       |          |                    |      |       | 8.93   |
|                                                      | 2.5-2.75                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          |                                 | 0.15    | 4.17   | 2.23  | 0.15  |          |                    |      |       | 6.70   |
|                                                      | 2.75-3                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         | 4.02   | 1.49  |       |          |                    |      |       | 5.51   |
|                                                      | 3-3.25                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 | 0.15    | 3.5/   | 0.89  |       |          |                    |      |       | 4.61   |
|                                                      | G.25-3.51                                                                                                                 |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         | 2.08   | 1.19  |       |          |                    |      |       | 3.27   |
|                                                      | 0.5-3.75                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         | 1.79   | 1.04  |       |          |                    |      |       | 2.83   |
|                                                      | 3.75-4                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         | 1.19 1 | 0.30  |       |          |                    |      |       | 1.49   |
|                                                      | 4-4.25                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         | 1.04   | 0.30  |       |          |                    |      |       | 1.34   |
|                                                      | 4.25-4.5                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         | 1.04   | 0.45  |       |          |                    |      |       | 1.49   |
|                                                      | 4.5-4.751                                                                                                                 |                                          |                                                                                                                                             |      |      |      |      |          |                                 | 0.15    | 0.89   | 0.15  |       |          |                    |      |       | 1.19   |
|                                                      | 4.75-5                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         | 0.15   |       |       |          |                    |      |       | 0.15   |
|                                                      | 5-5.25                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        | 0.15  |       |          |                    |      |       | 0.15   |
|                                                      | 5.25-5.5                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       |        |
|                                                      | 5.5-5.75                                                                                                                  |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       | 0.00   |
|                                                      | 5.75-6                                                                                                                    |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         | 0.15   |       |       |          |                    |      |       | 0.15   |
|                                                      | ы                                                                                                                         | 0.00                                     | 0.00                                                                                                                                        | 0.00 | 0.00 | 0.00 | 0.00 | 0.15     | 0:30                            | 3.87    | 57.74  | 36.01 | 1.79  | 0.15     | 0.00               | 0.00 | 0.00  | 100.00 |
|                                                      |                                                                                                                           |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       |        |
|                                                      |                                                                                                                           |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       |        |
|                                                      |                                                                                                                           |                                          |                                                                                                                                             |      |      |      |      |          |                                 |         |        |       |       |          |                    |      |       |        |
|                                                      |                                                                                                                           |                                          | VULAVE                                                                                                                                      |      | Ц    |      |      |          |                                 |         |        |       |       | 10/07/10 | MANUE US UISTOCEAM |      |       |        |

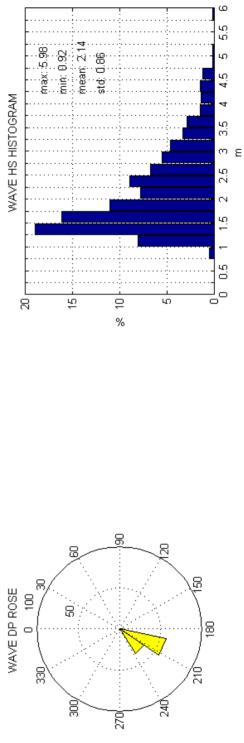
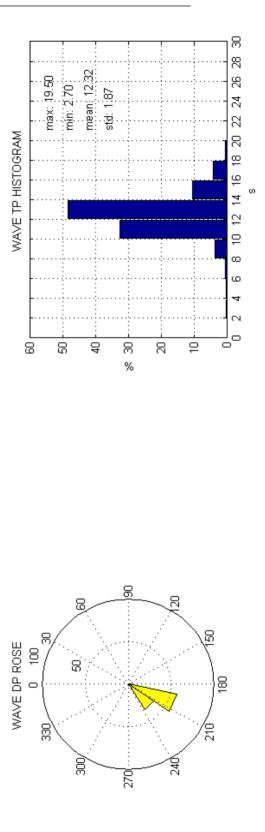




Figure 28: Summary plot of  $H_{s}$  and  $D_{p}.$ 

|                                                                                                         | м   | 0.00 | 0.15 | 0.15 | 0.45   | 3.57 | 32.59 | 48.21 | 10.42 | 4.02  | 0.45  | 8<br>0 | 8     | 8     | 8     | 0.0   | 100.00 |
|---------------------------------------------------------------------------------------------------------|-----|------|------|------|--------|------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|--------|
|                                                                                                         | NNN |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.0    |
|                                                                                                         | NVN |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.00   |
|                                                                                                         | WNW |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.0    |
|                                                                                                         | M   |      |      |      |        |      | 0.15  |       |       |       |       |        |       |       |       |       | 0.15   |
|                                                                                                         | WSW |      |      |      | 0.15   |      | 0.45  | 1.19  |       |       |       |        |       |       |       |       | 1.79   |
| -                                                                                                       | SW  |      | 0.15 |      | 0.15   | 0.74 | 10.71 | 18.60 | 3.42  | 1.93  | 0:30  |        |       |       |       |       | 36.01  |
| AND DF                                                                                                  | SSW |      |      | 0.15 | 0.15   | 2.23 | 19.05 | 26.93 | 6.99  | 2.08  | 0.15  |        |       |       |       |       | 57.74  |
| N OF TP                                                                                                 | S   |      |      |      |        | 0.60 | 1.93  | 1.34  |       |       |       |        |       |       |       |       | 3.87   |
| JOINT DISTRIBUTION OF TP AND DP                                                                         | SSE |      |      |      |        |      | 0.15  | 0.15  |       |       |       |        |       |       |       |       | 0:30   |
| INT DIST                                                                                                | SE  |      |      |      |        |      | 0.15  |       |       |       |       |        |       |       |       |       | 0.15   |
| С<br>Р                                                                                                  | ESE |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.0    |
|                                                                                                         | ш   |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.0    |
|                                                                                                         | ENE |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.0    |
| 8                                                                                                       | NE  |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.0    |
| 008 11:00:                                                                                              | NNE |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.0    |
| -34.71N, 19.5116E, at 30m depth<br>672 good observations<br>27-Mar-2008 12:00:00 - 24-Apr-2008 11:00:00 | z   |      |      |      |        |      |       |       |       |       |       |        |       |       |       |       | 0.0    |
| -34.71N, 19.5116E, at 30m depth<br>672 good observations<br>27-Mar-2008 12:00:00 - 24-Apr-/             |     | 0-2  | 2-4  | 4-6  | ۍ<br>ف | 8-10 | 10-12 | 12-14 | 14-16 | 16-18 | 18-20 | 20-22  | 22-24 | 24-26 | 26-28 | 28-30 | ы      |









### 5.2.2.4 Wave spectral plot

Figure 30 and Figure 31 display wave spectral plots for significant waves events. The time of each spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.



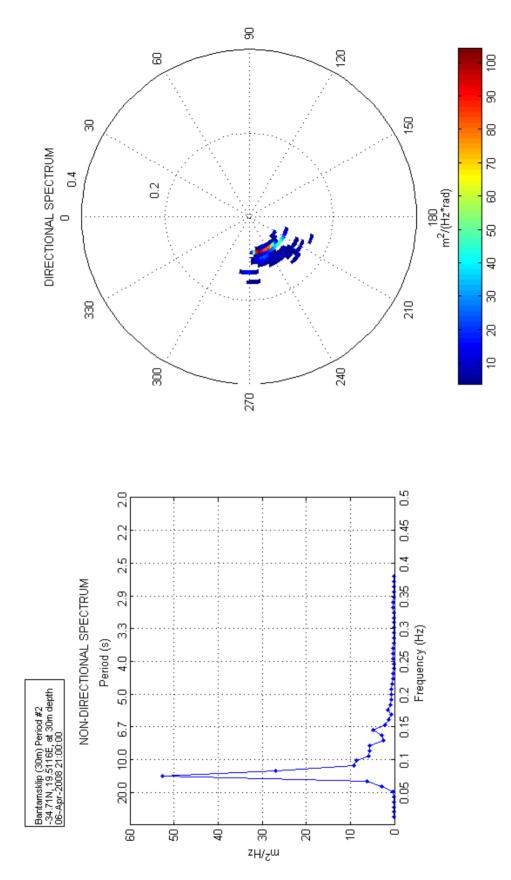



Figure 30: Wave spectra for 6<sup>th</sup> of April 2008 at 21:00:00.



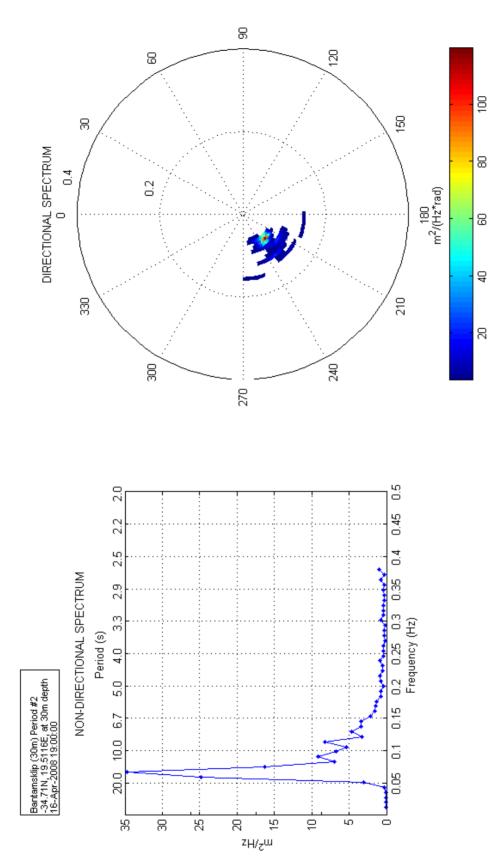



Figure 31: Wave spectra for 16<sup>th</sup> of April 2008 at 19:00:00.



### 5.3 COMPARISON PLOTS

### 5.3.1 Hs, Tp and Dp time series plots for 10m and 30m ADCPs.

Figure 32 displays a time series plot of the main wave parameters:

- The first (upper) panel is of the significant wave height (Hs).
- The second panel is of the peak period (Tp).
- The third panel is of the peak wave direction (Dp).

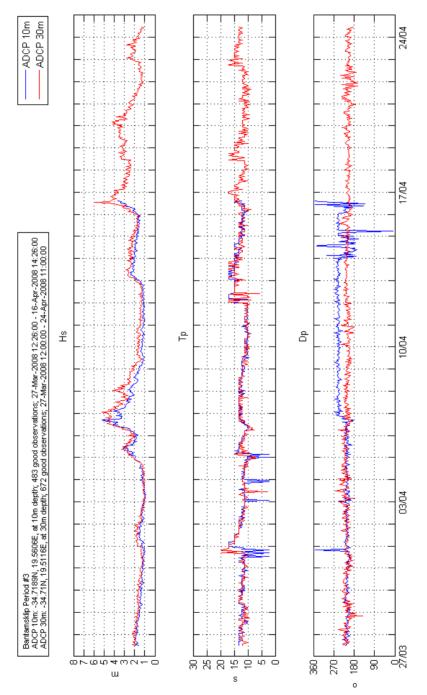



Figure 32: Wave Hs, Tp, and Dp for 10m and 30m ADCP.



### 5.3.2 Water properties: RBR-CT loggers and ADCPs temperature sensors.

Figure 33 displays a time series plot, which consists of:

- The first panel is of the observed water temperature from surface and bottom RBR loggers as well as ADCP temperature sensor against time.
- The second panel is of the derived salinity from the two RBR loggers against time.

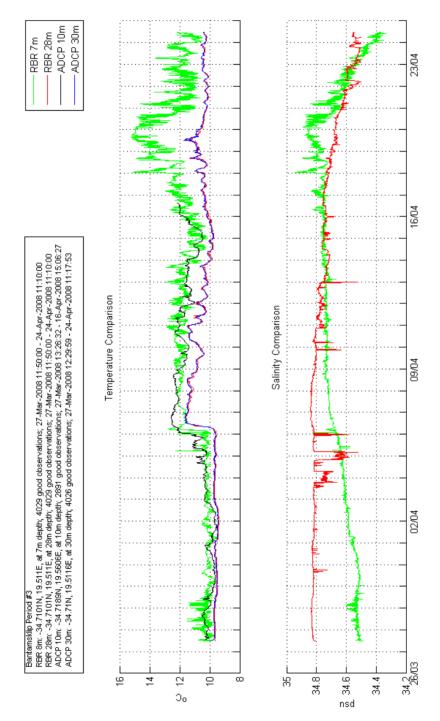



Figure 33: Time series of temperature and salinity from the RBR loggers and ADCPs.



### 6. DISCUSSION

The second set of oceanographic data collected off the coast of Bantamsklip for the period between March 27<sup>th</sup> and April 24<sup>th</sup> 2008 has been presented in this report. The measurements taken fall within a larger dataset being compiled to assist a preliminary safety survey of multiple sites around the South African coast reports for Eskom.

At the Bantamsklip site, 2 600 kHz ADCP, 2 RBR-CT loggers and 1 RBR tide gauge have been deployed to measure currents, waves, water temperature and salinity and tidal record. The ADCP is fixed on a frame at ~10m and ~30m and the RBR loggers are moored at ~7m and ~28m below the surface. During recovery of the data, undertaken during April 24<sup>th</sup> – 25<sup>th</sup> 2008, it was found that the tide gauge was tampered with. This report presents data obtained from 2 ADCPs and 2 RBR-CT loggers. During the service visit, only the ADCPs were re-deployed on account of bad weather. The engineers went on site again on May 23<sup>rd</sup> 2008 to deploy the 2 RBR-CT loggers. A new tide gauge (RBR 2050 HT) was also installed.

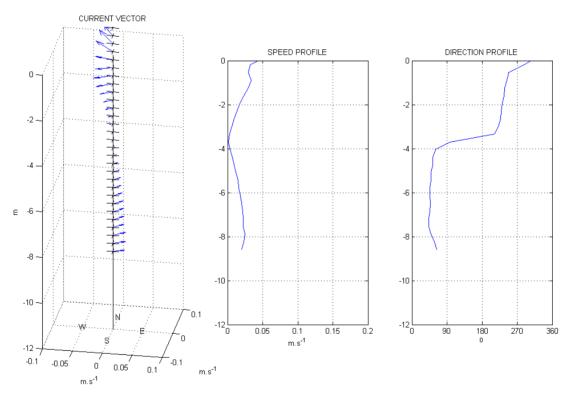



Figure 34: Mean profile plot for 10m ADCP.

The average surface flow for the 10m ADCP was 0.14ms<sup>-1</sup>, decreasing to ~0.03ms<sup>-1</sup> at 11m depth. The flow direction at the surface was predominantly towards the SW, while at depths below 4m, it was mainly towards the NE.

At the 30m site, the average flow at 2.3m was 0.21ms<sup>-1</sup>, decreasing to 0.02ms<sup>-1</sup> at 30.8m depth. The flow direction was variable throughout the water column.



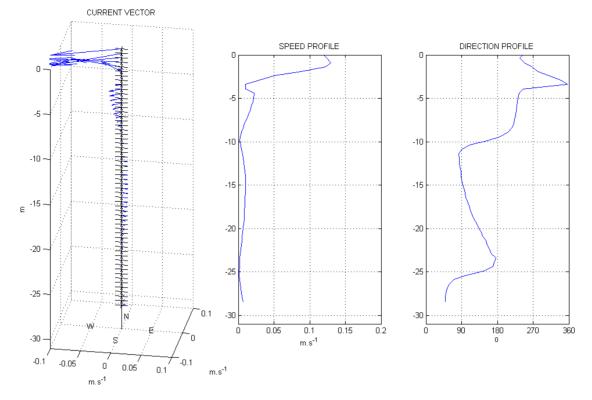



Figure 35: Mean profile plot for 30m ADCP.

Table 18: Mean wave parameters.

|          | Hs (m) | Tp (s) | Dp  |
|----------|--------|--------|-----|
| 10m ADCP | 1.68   | 12.25  | SW* |
| 30m ADCP | 2.14   | 12.32  | SW  |

\*The 10m ADCP attitude sensors showed a significant shift in the pitch after April 7<sup>th</sup> 2008 which may account for the sudden jump in the wave direction observed in Figure 32. Table 18 summarises the wave parameters for both ADCPs.

The temperature measured by the RBR-loggers and the corresponding ADCPs sensors were in good agreement.



### 7. INSTRUMENT PARTICULARS FOR SERVICE VISIT TWO

### 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

# LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

| Acoustic release (1) serial number and release code | Р                 |
|-----------------------------------------------------|-------------------|
| Acoustic release (2) serial number and release code | r/n               |
| Argos beacon serial number                          | Platform IN SOSOL |
|                                                     | 80801             |

#### 2. <u>RECOVERY</u>

| Instrument type and serial number                |       | ROI | GOOKIIZ | 10  | 105#     |     |
|--------------------------------------------------|-------|-----|---------|-----|----------|-----|
| Deployment name                                  |       |     | BTK     | 02  |          |     |
| Deployment date and time                         | G     | GMT | 27/03   | 08  | other    | 1   |
| Deployment latitude\ northings                   |       |     | 340 43  |     |          |     |
| Deployment longitude\ eastings                   |       |     | 19° 33  | . 6 | 35       |     |
| Recovery information                             |       |     |         |     |          |     |
| Recovery date and time                           | (I)   | GMT | 24/04/  | 0%  | 11/20    |     |
| Inspect the transducer faces for cuts or scratch | es    |     |         |     | <u> </u> |     |
| Inspect the instrument for signs of flooding     |       |     |         | Fb  | alingon  | KAR |
| Switch off and download the instrument using V   | WinSC |     | _       |     |          | 1   |
| Switch off date and time                         |       | GMT | 24/04   | 108 | ± 17400  | 1   |
| Name of the data directory                       |       |     |         |     |          |     |
| File size                                        |       |     |         |     |          |     |

# LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

| Acoustic release (1) serial number and release code |    | +     |
|-----------------------------------------------------|----|-------|
| Acoustic release (2) serial number and release code |    |       |
| Argos beacon serial number                          | IO | 80803 |

#### 2. <u>RECOVERY</u>

| Instrument type and serial number                  |     | ROI | 600KHz 10119    |
|----------------------------------------------------|-----|-----|-----------------|
| Deployment name                                    | _   |     |                 |
| Deployment date and time                           | LT) | GMT | 27/03/08 07/00  |
| Deployment latitude\ northings                     |     |     | 34°42.603       |
| Deployment longitude\ eastings                     |     |     | 190 30.696      |
| Recovery information                               |     |     |                 |
| Recovery date and time                             | ET) | GMT | 24/04/08 17/20  |
| Inspect the transducer faces for cuts or scratches |     |     | 1 Fine          |
| Inspect the instrument for signs of flooding       |     |     | Fire            |
| Switch off and download the instrument using Wir   | SC  |     |                 |
| Switch off date and time                           | (I) | GMT | 24/04/08 17hoot |
| Name of the data directory                         |     |     |                 |
| File size                                          |     |     |                 |



ł

# LWANDLE TECHNOLOGIES (PTY) LTD

# QUALITY ASSURANCE DEPLOYMENT SHEET

### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

| Instrument type and serial number                  |                | ROI         | 600KHz                                | 10105#          |  |  |
|----------------------------------------------------|----------------|-------------|---------------------------------------|-----------------|--|--|
| Check O-rings on both sides of the instrument      |                |             |                                       | ~               |  |  |
| Install a new battery and check the voltage        |                |             |                                       | 44.5V           |  |  |
| Connect the battery and communications cable       |                |             |                                       | -               |  |  |
| Inspect the transducer faces for cuts or scratches |                |             |                                       | ~               |  |  |
| Seal the instrument                                |                |             |                                       | -               |  |  |
| Connect the instrument to a PC and run WinSC       |                |             |                                       |                 |  |  |
| Click on "configure an ADCP for a new deployment"  | ,              |             |                                       | -               |  |  |
| Set up the sampling parameters                     |                |             |                                       |                 |  |  |
| requency of unit being used 600 k                  |                |             | cH2                                   |                 |  |  |
| Depth range                                        |                |             | 101                                   | ~               |  |  |
| Number of bins (calculated automatically)          |                |             | 42                                    |                 |  |  |
| Bin Size (calculated automatically) O              |                |             |                                       | 35m             |  |  |
|                                                    |                |             |                                       | nin             |  |  |
| Time between wave bursts 60                        |                |             | m. ^                                  |                 |  |  |
| Pings per ensemble 500                             |                |             |                                       |                 |  |  |
| Ensemble interval                                  |                |             | IOMIN                                 |                 |  |  |
| Deployment duration 45                             |                |             | 45 d                                  | 45 days         |  |  |
| Transducer depth                                   |                |             | 10 m                                  |                 |  |  |
| Any other commands                                 | other commands |             |                                       | RIO             |  |  |
| Magnetic variation                                 |                |             | 5° C                                  |                 |  |  |
| Temperature                                        |                |             |                                       |                 |  |  |
| Recorder size                                      |                | ) ۱         | σIĞ                                   |                 |  |  |
| Consequences of the sampling parameters            |                |             | · · · · · · · · · · · · · · · · · · · |                 |  |  |
| First and last bin range                           |                |             | 1.41m                                 | 15076m          |  |  |
| Battery usage                                      |                |             |                                       | 2.9 Packs       |  |  |
| Standard deviation                                 |                |             |                                       | 1.08 cm/5       |  |  |
| Storage space required                             |                |             |                                       | 401.44M         |  |  |
| Set the ADCP clock                                 |                | GMT         |                                       |                 |  |  |
| Run pre-deployment tests                           |                |             |                                       | ~~~             |  |  |
| Name the ADCP deployment                           |                | ß           | K103                                  |                 |  |  |
| Deployment details                                 |                | · · · · · · |                                       |                 |  |  |
| Switch on date and time                            |                | GMT         |                                       | <u>08 05h30</u> |  |  |
| Deployment date and time                           |                | GMT         | 25 hoy                                | los 13 hoo      |  |  |
| Deployment latitude\ northings                     |                |             | 344                                   | 3.187           |  |  |
| Deployment longitude\ eastings                     |                |             | 19 3                                  | 3.635           |  |  |
| Site name                                          |                |             |                                       | Lip 10m         |  |  |
| Site depth                                         |                |             | _                                     | <u>~</u>        |  |  |
| Deployment depth                                   |                |             | 10                                    | M               |  |  |

1

ADCP deployment sheet



.



# QUALITY ASSURANCE DEPLOYMENT SHEET

### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

### 1. DEPLOYMENT

| Instrument type and serial number                  |          | RDI      | 600Klk  | 10119      |  |  |
|----------------------------------------------------|----------|----------|---------|------------|--|--|
| Check O-rings on both sides of the instrument      |          | •        |         | L          |  |  |
| Install a new battery and check the voltage        |          | 44.8V    |         |            |  |  |
| Connect the battery and communications cable       |          |          |         |            |  |  |
| Inspect the transducer faces for cuts or scratches |          |          |         | -          |  |  |
| Seal the instrument                                |          |          |         |            |  |  |
| Connect the instrument to a PC and run WinSC       |          |          |         |            |  |  |
| Click on "configure an ADCP for a new deployment"  |          |          |         |            |  |  |
| Set up the sampling parameters                     |          |          |         |            |  |  |
| Frequency of unit being used                       |          |          | 600     | k(1z       |  |  |
| Depth range                                        |          |          | 30      | m          |  |  |
| Number of bins (calculated automatically)          |          |          | 6       | 4          |  |  |
| Bin Size (calculated automatically)                |          |          | 0.9     | 5 m        |  |  |
| Wave burst duration                                |          |          | 34      | min        |  |  |
| Time between wave bursts                           |          |          | 60      | NI O       |  |  |
| Pings per ensemble                                 |          |          | 250     | )          |  |  |
| Ensemble interval                                  |          |          | 10 m    | 10         |  |  |
| Deployment duration                                |          |          | Lisdays |            |  |  |
| Transducer depth                                   |          |          | 30m 0   |            |  |  |
| Any other commands                                 |          |          |         | RIO        |  |  |
| Magnetic variation                                 |          |          |         |            |  |  |
| Temperature                                        |          |          | 5'C     |            |  |  |
| Recorder size                                      |          |          | 16.6    |            |  |  |
| Consequences of the sampling parameters            |          |          |         |            |  |  |
| First and last bin range                           |          |          | 1.6 m   | 35.6 M     |  |  |
| Battery usage                                      |          |          |         | 3 Purches  |  |  |
| Standard deviation                                 |          |          |         | 0.86 cm/s  |  |  |
| Storage space required                             |          |          |         | 340 mers   |  |  |
| Set the ADCP clock                                 | Ē.       | GMT      |         | <u> </u>   |  |  |
| Run pre-deployment tests                           |          |          |         |            |  |  |
| Name the ADCP deployment                           |          | BK       | 30 3    |            |  |  |
| Deployment details                                 |          | <b>.</b> |         |            |  |  |
| Switch on date and time                            | <u> </u> | GMT      | 25/04   | los ostiso |  |  |
| Deployment date and time                           |          | GMT      |         | 108 12430  |  |  |
| Deployment latitude\ northings                     |          |          | 3404    | 2.603      |  |  |
| Deployment longitude\ eastings                     |          |          |         |            |  |  |
| Site name                                          |          |          |         | okly 30m   |  |  |
| Site depth                                         |          |          | ± 30,   |            |  |  |
| Deployment depth                                   |          |          | 30      | m          |  |  |

### ADCP deployment sheet



.

### 7.2 RBR-CT LOGGERS RECOVERY SHEETS



### LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLC                                               | YMENT |    |        | Surface    |
|-----------------------------------------------------|-------|----|--------|------------|
| Instrument type and serial number                   |       |    | YRYZO  | 12004      |
| Check O-rings on instrument                         |       |    |        | -          |
| Install a new battery and check the voltage         |       |    |        | 112.21     |
| Connect the battery and communications cable        |       |    |        |            |
| Connect the instrument to a PC and run RBR softw    | are   |    |        |            |
| Click on "Setup"                                    |       |    |        |            |
| Set up the sampling parameters                      |       |    |        |            |
| Start of logging (date / time)                      |       | 27 | 103/08 | iohoo      |
| End of logging (date / time)                        |       |    | 112/08 | izhoo      |
| Sampling period                                     |       |    |        | 10 min     |
| Averaging period                                    |       |    |        | Imin       |
| Deployment details                                  |       |    |        |            |
| Deployment date and time                            |       |    | 27/03/ | 08 13h00   |
| Deployment latitude\ northings                      | 0     |    | 3401   | 42.625     |
| Deployment longitude\ eastings                      |       |    | 19"    | 30.696     |
| Site name                                           |       |    | Barto  | moklyp 30m |
| Site depth                                          |       |    |        | on         |
| Deployment depth                                    |       |    |        | 7 m        |
| Acoustic release (1) serial number and release code |       |    |        |            |
| Acoustic release (2) serial number and release code |       |    |        | 1          |
| Argos beacon serial number                          |       |    |        | _          |

#### Range:

| Northing | Easting | Range |
|----------|---------|-------|
|          |         |       |
|          |         |       |
|          |         |       |

|                                   | RECOV | 'ERY        |     |        |           |
|-----------------------------------|-------|-------------|-----|--------|-----------|
| Instrument type and serial number |       |             |     | XR4ZO  | 12994     |
| Deployment name                   |       |             |     |        |           |
| Deployment date and time          |       | (ĹŢ)        | GMT | 27/03  | -         |
| Deployment latitude\ northings    |       |             |     | 34°42  | .625      |
| Deployment longitude\ eastings    |       |             |     | 19° 30 | . 696     |
| Recovery information              |       |             |     |        |           |
| Recovery date and time            |       | <u>(ĹŤ)</u> | GMT | 24'hA  | p.1 11600 |



.

### LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | YMENT |     |        | BTM       |
|-----------------------------------------------------|-------|-----|--------|-----------|
| Instrument type and serial number                   |       |     | XR420  | 12998     |
| Check O-rings on instrument                         |       |     |        | -         |
| Install a new battery and check the voltage         |       |     |        | 12.2V     |
| Connect the battery and communications cable        |       |     |        |           |
| Connect the instrument to a PC and run RBR softwa   | are   |     |        |           |
| Click on "Setup"                                    |       |     |        |           |
| Set up the sampling parameters                      |       |     |        |           |
| Start of logging (date / time)                      |       | 271 | 03/08  | 10400     |
| End of logging (date / time)                        |       | 311 | 12/08  | 12 hoc    |
| Sampling period                                     |       |     |        | iomin     |
| Averaging period                                    |       |     |        | Imin      |
| Deployment details                                  | _     |     |        |           |
| Deployment date and time                            |       |     | 17/03  | los 13200 |
| Deployment latitude\ northings                      |       |     | 34°47  | 2.625     |
| Deployment longitude\ eastings                      |       |     | 190 30 | 0.696     |
| Site name                                           |       |     | Bentam | sldip 30m |
| Site depth                                          |       |     |        | ν 1       |
| Deployment depth                                    |       |     | 2      | 8 ~       |
| Acoustic release (1) serial number and release code |       |     |        | +         |
| Acoustic release (2) serial number and release code |       |     |        | +         |
| Argos beacon serial number                          |       |     |        | /         |

#### Range:

| Northing | Easting | Range |
|----------|---------|-------|
|          |         |       |
|          |         |       |
|          |         |       |

|                                   | RECO | VERY |     |         |               |
|-----------------------------------|------|------|-----|---------|---------------|
| Instrument type and serial number |      |      |     | XR420   | 12998         |
| Deployment name                   |      |      |     | BTM     | BOTT          |
| Deployment date and time          |      | (ĹT) | GMT | 27/0:   | 3/08 13/00    |
| Deployment latitude\ northings    |      |      |     | 34°42   | . 625         |
| Deployment longitude\ eastings    |      |      |     | 19°30   | - 696         |
| Recovery information              |      | ~    |     |         |               |
| Recovery date and time            |      | Ū    | GMT | 24/04/0 | os ilhoo      |
|                                   | 1    |      |     | CT de   | ployment shee |





### QUALITY ASSURANCE DEPLOYMENT SHEET

.

### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLOYMENT                                          |     |  |     |        |        |       |  |
|-----------------------------------------------------|-----|--|-----|--------|--------|-------|--|
| Instrument type and serial number                   |     |  |     | XR-20  | 12     | 194   |  |
| Check O-rings on instrument                         |     |  |     |        |        | -     |  |
| Install a new battery and check the voltage         |     |  |     |        | í      | 2561  |  |
| Connect the battery and communications cable        |     |  |     |        |        |       |  |
| Connect the instrument to a PC and run RBR software | are |  |     |        |        |       |  |
| Click on "Setup"                                    |     |  |     |        |        |       |  |
| Set up the sampling parameters                      |     |  |     |        |        |       |  |
| Start of logging (date / time)                      |     |  | 22  | 105/05 | 146    | 20    |  |
| End of logging (date / time)                        |     |  | 311 | 12/03  | 121    |       |  |
| Sampling period                                     |     |  |     |        | 10     | min   |  |
| Averaging period                                    |     |  |     |        | 1      | MiD   |  |
| Deployment details                                  | 0   |  |     |        |        |       |  |
| Deployment date and time                            |     |  |     | 23/05  | 105    | ilhus |  |
| Deployment latitude\ northings                      |     |  |     | 34.4   | 2.60   | 25    |  |
| Deployment longitude\ eastings                      |     |  |     | 14 30  |        |       |  |
| Site name                                           |     |  |     | Berte  | mskl   | 4 י   |  |
| Site depth                                          |     |  |     | 30     | 0 m    | •     |  |
| Deployment depth                                    |     |  |     |        | $\sim$ |       |  |
| Acoustic release (1) serial number and release code |     |  |     |        |        |       |  |
| Acoustic release (2) serial number and release code |     |  |     |        |        |       |  |
| Argos beacon serial number                          |     |  |     |        |        |       |  |

#### Range:

| Northing | Easting | Range |
|----------|---------|-------|
|          |         | ÷     |
|          |         |       |
|          |         |       |
|          |         |       |

| RECOVERY                              |   |    |     |            |         |  |  |
|---------------------------------------|---|----|-----|------------|---------|--|--|
| Instrument type and serial number     |   |    |     |            |         |  |  |
| Deployment name                       |   |    |     |            |         |  |  |
| Deployment date and time              |   | LT | GMT |            |         |  |  |
| Deployment latitude\ northings        |   |    |     | •          |         |  |  |
| Deployment longitude\ eastings        |   |    |     |            |         |  |  |
| Recovery information                  |   |    |     |            |         |  |  |
| Recovery date and time                |   | LT | GMT |            |         |  |  |
| · · · · · · · · · · · · · · · · · · · |   |    |     |            |         |  |  |
|                                       | 1 |    |     | CT deploym | ent she |  |  |





### QUALITY ASSURANCE DEPLOYMENT SHEET

.

### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | YMENT |   |         |          |  |
|-----------------------------------------------------|-------|---|---------|----------|--|
| Instrument type and serial number                   |       |   | 78420   | 12995    |  |
| Check O-rings on instrument                         |       |   |         | <u>ب</u> |  |
| Install a new battery and check the voltage         |       |   |         |          |  |
| Connect the battery and communications cable        |       |   |         |          |  |
| Connect the instrument to a PC and run RBR softw    | are   |   |         |          |  |
| Click on "Setup"                                    |       |   |         |          |  |
| Set up the sampling parameters                      |       |   |         |          |  |
| Start of logging (date / time)                      |       | 2 | 2/05/05 | inhoo    |  |
| End of logging (date / time)                        |       | 5 | 2/05/05 | izheo    |  |
| Sampling period                                     |       |   |         | 10 min   |  |
| Averaging period                                    |       |   |         | Imin     |  |
| Deployment details                                  |       |   |         |          |  |
| Deployment date and time                            | (I)   |   | 23/05/0 | inhus    |  |
| Deployment latitude\ northings                      |       |   | 3442    | .605     |  |
| Deployment longitude\ eastings                      |       |   | 19:30   | 1-654    |  |
| Site name                                           |       |   | Bent    | msklip   |  |
| Site depth                                          |       |   | 25      | 5 m 30 m |  |
| Deployment depth                                    |       |   |         | 25m      |  |
| Acoustic release (1) serial number and release code |       |   |         |          |  |
| Acoustic release (2) serial number and release code |       |   |         |          |  |
| Argos beacon serial number                          |       |   |         |          |  |

#### Range:

| Northing | Easting | Range |  |  |
|----------|---------|-------|--|--|
|          |         | 1     |  |  |
|          |         |       |  |  |
|          |         |       |  |  |
|          |         |       |  |  |
|          |         |       |  |  |

| Deployment date and time                    | LT | GMT |   |  |
|---------------------------------------------|----|-----|---|--|
| Deployment name<br>Deployment date and time | LT | GMT |   |  |
|                                             | LT | GMT |   |  |
|                                             |    | •   |   |  |
| Deployment latitude\ northings              |    |     | • |  |
| Deployment longitude\ eastings              |    |     |   |  |
| Recovery information                        |    |     |   |  |
| Recovery date and time                      | LT | GMT |   |  |

4



### 7.3 TIDE GAUGE RECOVERY AND RE-DEPLOYMENT SHEETS



# LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

### TGR1050HT TIDE GAUGE DEPLOYMENT / RECOVERY SHEET

| DEPLOYMENT                                          |     |       |         |             |                        |
|-----------------------------------------------------|-----|-------|---------|-------------|------------------------|
| Instrument type and serial number                   |     | TERIO | 60      | 14002       |                        |
| Check O-rings on instrument                         |     |       |         |             |                        |
| Install a new battery and check the voltage         |     |       |         |             | 12.5V                  |
| Connect the battery and communications cable        |     |       |         |             |                        |
| Connect the instrument to a PC and run RBR software | are |       |         |             |                        |
| Click on "Setup"                                    |     |       |         |             |                        |
| Set up the sampling parameters                      |     |       |         |             |                        |
| Sampling period                                     |     |       |         |             | Osecs                  |
| Averaging period                                    |     |       |         |             | ISECS                  |
| Expected deployment duration                        |     |       |         | 3 ye        | en s                   |
| Start of logging (date / time)                      |     |       | 27      | 103/08      | 15440                  |
| End of logging (date / time)                        |     |       | 311     | 12/08       | ochoo                  |
| Memory usage                                        |     |       |         |             | 86.2%                  |
| Battery usage                                       |     |       |         |             | 3771_AH                |
| Deployment details                                  |     |       |         |             |                        |
| Deployment date and time                            |     |       |         |             | 108 16hzo              |
| Deployment latitude\ northings                      |     |       |         | 3404        | 2 <u>.462</u><br>3.080 |
| Deployment longitude\ eastings                      |     |       |         | 19"3        | 3.080                  |
| Site name Bio                                       |     |       | Bioteur | internsklip |                        |
| Site depth i                                        |     |       | 1.8     | 87m         |                        |
| Deployment depth                                    |     |       | 1.8     | 1.87n       |                        |
| Acoustic release (1) serial number and release code |     |       |         |             | /                      |
| Acoustic release (2) serial number and release code |     |       |         |             | +                      |
| Argos beacon serial number                          |     |       |         |             |                        |

| REC                                             | COVERY         |        |            |                        |   |
|-------------------------------------------------|----------------|--------|------------|------------------------|---|
| Instrument type and serial number               |                |        | TGR 1050   | 14002                  |   |
| Deployment name                                 |                |        |            |                        |   |
| Deployment date and time                        |                | GMT    | 27/03/0    | 08 16hzo               |   |
| Deployment latitude\ northings                  |                |        | 34°4'      | 2-462                  |   |
| Deployment longitude\ eastings                  |                |        | 1903       | 3.080                  |   |
| Recovery information                            |                |        | _          |                        |   |
| Recovery date and time                          | LT             | GMT    |            |                        |   |
| Inspect the instrument for signs of flooding    |                |        |            |                        |   |
| Switch off and download the instrument using Ac | quadopp softwa | are    |            |                        |   |
| Switch off date and time                        | LT             | GMT    |            |                        |   |
| Name of the data directory                      |                |        | ./         |                        |   |
| File size                                       |                |        |            |                        |   |
|                                                 | Ţ,             |        |            | f batteries<br>water   |   |
| Client name 1                                   |                | TGR105 | 0HT deploy | ment / recover<br>shee | • |





# QUALITY ASSURANCE DEPLOYMENT SHEET

#### TGR1050HT TIDE GAUGE DEPLOYMENT / RECOVERY SHEET

| DEPLOY                                              | MENT |      |          |                           |
|-----------------------------------------------------|------|------|----------|---------------------------|
| Instrument type and serial number                   | TG2  | 2050 |          | 013070                    |
| Check O-rings on instrument                         |      |      |          |                           |
| Install a new battery and check the voltage         |      |      |          | Genev                     |
| Connect the battery and communications cable        |      |      |          |                           |
| Connect the instrument to a PC and run RBR software | e    |      |          |                           |
| Click on "Setup"                                    |      |      |          |                           |
| Set up the sampling parameters                      |      |      |          |                           |
| Sampling period                                     |      |      | ic       | Sec                       |
| Averaging period                                    |      |      | i        | See                       |
| Expected deployment duration                        |      |      |          | dap                       |
| Start of logging (date / time)                      |      | 23 N | lay zoos | Dicheo                    |
| End of logging (date / time)                        |      | (cla |          | 15hoo                     |
| Memory usage                                        |      |      |          |                           |
| Battery usage                                       |      |      |          |                           |
| Deployment details                                  |      |      |          |                           |
| Deployment date and time                            |      |      | 23/ney   | 2005 15                   |
| Deployment latitude\ northings                      |      |      | 34°42    | -462                      |
| Deployment longitude\ eastings                      |      |      | 1903.    | 2005 15<br>-462<br>3.,080 |
| Site name                                           |      |      | Bentano  | klip hele                 |
| Site depth                                          |      |      | 1.       | 87m                       |
| Deployment depth                                    |      |      |          |                           |
| Acoustic release (1) serial number and release code |      |      |          |                           |
| Acoustic release (2) serial number and release code |      |      |          |                           |
| Argos beacon serial number                          |      |      |          |                           |

|                                              | RECOVERY            |     |  |
|----------------------------------------------|---------------------|-----|--|
| Instrument type and serial number            |                     |     |  |
| Deployment name                              |                     |     |  |
| Deployment date and time                     | LT                  | GMT |  |
| Deployment latitude\ northings               |                     |     |  |
| Deployment longitude\ eastings               |                     | 2   |  |
| Recovery information                         |                     |     |  |
| Recovery date and time                       | LT                  | GMT |  |
| Inspect the instrument for signs of flooding | 9                   |     |  |
| Switch off and download the instrument us    | sing Aquadopp softw | are |  |
| Switch off date and time                     | LT                  | GMT |  |
| Name of the data directory                   |                     |     |  |
| File size                                    |                     |     |  |

| Client name | 1 | TGR1050HT deployment / recovery |
|-------------|---|---------------------------------|
|             | • | sheet                           |





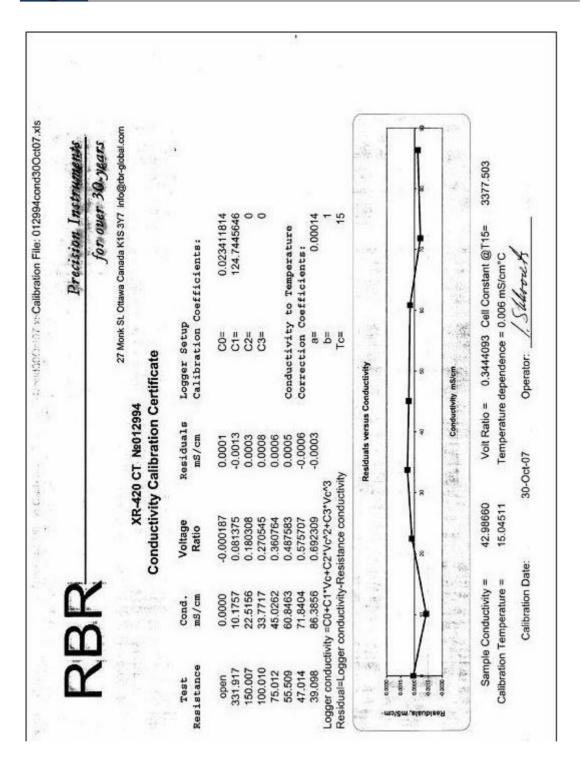
### 7.4 ADCPS CONFIGURATION FILES

| <pre>FR1<br/>CF11101<br/>EA0<br/>EB0<br/>RI0<br/>ED100<br/>ES35<br/>EX11111<br/>EZ111111<br/>WA255<br/>WB0<br/>WD111100000<br/>WF88<br/>WN42<br/>WP500<br/>WS35<br/>WV175<br/>HD111000000<br/>HB5<br/>HP4920<br/>HR01:00:00.00<br/>HF0:00:00.00<br/>TF00:01:00<br/>CK<br/>CS<br/>;<br/>instrument = Workhorse Sentinel<br/>FFrequency = 614400<br/>WA00<br/>CK<br/>CS<br/>;<br/>instrument = YES<br/>B0ttom Track = N0<br/>High Res. Modes = N0<br/>High Res. Modes = N0<br/>Shallow B0ttom Mode= N0<br/>;Wave Gauge = YES<br/>Lowered ADCP = N0<br/>Beam angle = 20<br/>;Temperature = 5.00<br/>Deployment hours = 1080.00<br/>Battery packs = 3<br/>Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>consequences generated by PlanADCP version 2.04:<br/>First cell range = 1.41 m<br/>Last cell range = 1.41 m<br/>Max range = 35.28 m<br/>Max range = 35.28 m<br/>Max range = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)<br/>;Power usage = 1320.77 wh</pre> |                      |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|
| CF11101<br>EA0<br>EB0<br>RI0<br>ED100<br>ES35<br>EX11111<br>WA255<br>WB0<br>WD111100000<br>WF88<br>WN42<br>WF500<br>WS35<br>WV175<br>HD11000000<br>HF5<br>HP4920<br>HR01:00:00.00<br>TF00:01:00.00<br>TF00:01:00.00<br>CK<br>CS<br>Instrument = Workhorse Sentinel<br>Frequency = 614400<br>Kater Profile = YES<br>Solution Track = NO<br>High Rate Pinging = NO<br>Shallow Bottom Mode= NO<br>Wave Gauge = YES<br>Lowered ADCP = NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 1.41 m<br>Last cell range = 15.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>End Screen = 94 bytes<br>Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                             | 2R1                  |                                |
| EA0<br>EB0<br>RIO<br>ED100<br>ES35<br>EX11111<br>EZ111111<br>WA255<br>WB0<br>WD11100000<br>WF88<br>WN42<br>WP500<br>WS35<br>WV175<br>HD11000000<br>HB5<br>HP4920<br>HR01:00:00.00<br>TF00:01.00<br>CK<br>CS<br>;<br>Instrument = Workhorse Sentinel<br>Frequency = 614400<br>;Water Profile = YES<br>Bottom Track = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>;High Rate Pinging = NO<br>;Shallow Bottom Mode = NO<br>;Wave Gauge = YES<br>;Lowered ADCP = NO<br>Beam angle = 20<br>;Temperature = 5.00<br>;Deployment hours = 1080.00<br>;Battery packs = 3<br>;Automatic TP = YES<br>;Memory size [MB] = 1000<br>;Saved Screen = 2<br>;<br>Consequences generated by PlanADCP version 2.04;<br>;First cell range = 1.41 m<br>;Last cell range = 15.76 m<br>;Max range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes                                                                                                                                                      | CF11101              |                                |
| EB0<br>RI0<br>ED100<br>ES35<br>EX1111<br>W2255<br>WB0<br>WD111100000<br>WF88<br>WN42<br>WP500<br>WS35<br>WV175<br>HD111000000<br>HB5<br>HP4920<br>HR01:00:00.00<br>HT00:00:00.50<br>TE00:10:00.00<br>CK<br>CS<br>i<br>Instrument = Workhorse Sentinel<br>Frequency = 614400<br>CK<br>CS<br>i<br>Instrument = YES<br>Bottom Track = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>High Rate Pinging = NO<br>Shallow Bottom Mode= NO<br>Wave Gauge = YES<br>Lowered ADCP = NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 1.41 m<br>Last cell range = 15.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes                                                                                                                                    |                      |                                |
| RIO<br>ED100<br>ES35<br>EX11111<br>EZ111111<br>WA255<br>WB0<br>WD111100000<br>WF88<br>WN42<br>WF500<br>WS35<br>WV175<br>HD11000000<br>HB5<br>HP4920<br>HR01:00:00.00<br>HT00:00:00.50<br>TE00:10:00.00<br>CK<br>CS<br>iinstrument = Workhorse Sentinel<br>HT00:00:00.50<br>TE00:10:00<br>CK<br>CS<br>iinstrument = YES<br>Bottom Track = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>Shallow Bottom Mode= NO<br>Shallow Bottom Mode= NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 1.41 m<br>Last cell range = 15.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes                                                                                                                                                                      |                      |                                |
| ED100<br>ES35<br>EX11111<br>EZ111111<br>WA255<br>WB0<br>WD111100000<br>WF88<br>WN42<br>WP500<br>WS35<br>WV175<br>HD11000000<br>HE5<br>HP4920<br>HR01:00:00.00<br>TF00:01:00<br>CK<br>CS<br>iInstrument = Workhorse Sentinel<br>FF00:01:00<br>CK<br>CS<br>iInstrument = YE5<br>Bottom Track = NO<br>High Rate Pinging = NO<br>Shallow Bottom Mode = NO<br>Wave Gauge = YE5<br>Lowered ADCP = NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YE5<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 1.41 m<br>Last cell range = 1.5.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes<br>Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                              |                      |                                |
| ES35<br>EX1111<br>EZ111111<br>WA255<br>WB0<br>WD11100000<br>WF88<br>WN42<br>WF500<br>WS35<br>WV175<br>HD11000000<br>HB5<br>HP4920<br>HR01:00:00.00<br>HT00:00:00.00<br>TF00:10:00.00<br>CK<br>CS<br>i<br>Instrument = Workhorse Sentinel<br>Frequency = 614400<br>CK<br>CS<br>i<br>Instrument = YES<br>B0ttom Track = NO<br>High Rate Pinging = NO<br>Shallow Bottom Mode= NO<br>Shallow Bottom Mode= NO<br>Shallow Bottom Mode= NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 1.41 m<br>Last cell range = 15.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes<br>Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                          |                      |                                |
| EX1111<br>EZ111111<br>EZ111111<br>EZ111111<br>WA255<br>WB0<br>WD111100000<br>WF88<br>WN42<br>WP500<br>WS35<br>WV175<br>HD111000000<br>HB5<br>HP4920<br>HR01:00:00.00<br>TF00:01:00<br>CK<br>CS<br>Instrument = Workhorse Sentinel<br>Frequency = 614400<br>Water Profile = YES<br>Bottom Track = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>Shallow Bottom Mode= NO<br>Shallow Bottom Mode= NO<br>Shallow Bottom Mode= NO<br>Beam angle = 20<br>Temperature = 5.00<br>Beployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 1.41 m<br>Last cell range = 1.42 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes<br>Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                         |                      |                                |
| EZ111111<br>WA255<br>WB0<br>WD111100000<br>WF88<br>WN42<br>WF500<br>WS35<br>WV175<br>HD111000000<br>HB5<br>HP4920<br>HR01:00:00.00<br>HT00:00:00.50<br>TE00:10:00.00<br>TF00:01.00<br>CK<br>CS<br>i<br>Instrument = Workhorse Sentinel<br>FFrequency = 614400<br>Water Profile = YES<br>Bottom Track = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>High Rate Pinging = NO<br>Shallow Bottom Mode= NO<br>Wave Gauge = YES<br>Lowered ADCP = NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 15.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes<br>Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                  |                      |                                |
| <pre>WA255 WB0 WD111100000 WF88 WM42 WF500 WS35 WV175 HD11100000 HB5 HP4920 HR01:00:00.00 HT00:00:00.00 TE00:10:00.00 TE00:10:00 CK CS iInstrument = Workhorse Sentinel Frequency = 614400 Water Profile = YES Bottom Track = N0 High Res. Modes = N0 High Res. Modes = N0 High Rate Pinging = N0 Shallow Bottom Mode= N0 Wave Gauge = YES Lowered ADCP = N0 Beam angle = 20 Temperature = 5.00 Deployment hours = 1080.00 Battery packs = 3 Automatic TP = YES Memory size [MB] = 1000 Saved Screen = 2 Consequences generated by PlanADCP version 2.04: First cell range = 15.76 m Max range = 35.28 m Standard deviation = 1.08 cm/s Ensemble size = 994 bytes Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                              |                      |                                |
| <pre>WB0<br/>WD111100000<br/>WF88<br/>WM42<br/>WF500<br/>WS35<br/>WU175<br/>HD111000000<br/>HB5<br/>HP4920<br/>HR01:00:00.00<br/>TF00:01.00<br/>CK<br/>CS<br/>i Instrument = Workhorse Sentinel<br/>Frequency = 614400<br/>Water Profile = YES<br/>Bottom Track = N0<br/>High Res. Modes = N0<br/>High Res. Modes = N0<br/>High Res. Modes = N0<br/>Shallow Bottom Mode= N0<br/>Wave Gauge = YES<br/>Lowered ADCP = N0<br/>Beam angle = 20<br/>Temperature = 5.00<br/>Deployment hours = 1080.00<br/>Battery packs = 3<br/>Automatic TP = YES<br/>Memory size [MB] = 1000<br/>Saved Screen = 2<br/>Consequences generated by PlanADCP version 2.04:<br/>First cell range = 15.76 m<br/>Max range = 35.28 m<br/>Standard deviation = 1.08 cm/s<br/>Ensemble size = 994 bytes<br/>Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                |                      |                                |
| <pre>WD111100000 WF88 WN42 WF500 WS35 WV175 HD111000000 HB5 HF4920 HR01:00:00.00 HT00:00:00.00 TF00:01.00 Ck CS Instrument = Workhorse Sentinel Frequency = 614400 Water Profile = YES Bottom Track = N0 High Rate Pinging = N0 Shallow Bottom Mode= N0 Wave Gauge = YES Lowered ADCP = N0 Beam angle = 20 Temperature = 5.00 Deployment hours = 1080.00 Battery packs = 3 Automatic TP = YES Memory size [MB] = 1000 Saved Screen = 2 Consequences generated by PlanADCP version 2.04: First cell range = 1.41 m Last cell range = 1.5.76 m Max range = 35.28 m Standard deviation = 1.08 cm/s Ensemble size = 994 bytes Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                      |                      |                                |
| <pre>WF88<br/>WH42<br/>WF500<br/>W335<br/>W175<br/>HD111000000<br/>HB5<br/>HP4920<br/>HR01:00:00.00<br/>TF00:01:00<br/>CK<br/>CS<br/>instrument = Workhorse Sentinel<br/>Frequency = 614400<br/>Water Profile = YE5<br/>Bottom Track = NO<br/>High Res. Modes = NO<br/>High Res. Modes = NO<br/>Shallow Bottom Mode= NO<br/>Shallow Bottom Mode= NO<br/>Wave Gauge = YES<br/>Lowered ADCP = NO<br/>Beam angle = 20<br/>Temperature = 5.00<br/>Deployment hours = 1080.00<br/>Battery packs = 3<br/>Automatic TP = YES<br/>Memory size [MB] = 1000<br/>Saved Screen = 2<br/>Consequences generated by PlanADCP version 2.04:<br/>First cell range = 1.41 m<br/>Last cell range = 1.5.76 m<br/>Max range = 35.28 m<br/>Standard deviation = 1.08 cm/s<br/>Ensemble size = 994 bytes<br/>Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                          |                      |                                |
| <pre>WN42<br/>WP500<br/>WS35<br/>WV175<br/>HD111000000<br/>HB5<br/>HP4920<br/>HR01:00:00.00<br/>TE00:10:00.00<br/>TF00:01.00<br/>CK<br/>CS<br/>;<br/>Instrument = Workhorse Sentinel<br/>Frequency = 614400<br/>Water Profile = YES<br/>Bottom Track = NO<br/>High Res. Modes = NO<br/>High Res. Modes = NO<br/>;High Res. Modes = NO<br/>;High Rate Pinging = NO<br/>;Shallow Bottom Mode= NO<br/>;Wave Gauge = YES<br/>Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                 |                      |                                |
| <pre>WPS00<br/>WS35<br/>WV175<br/>HD111000000<br/>HBS<br/>HP4920<br/>HR01:00:00.00<br/>TF00:01.00<br/>CK<br/>CS<br/>instrument = Workhorse Sentinel<br/>Frequency = 614400<br/>Water Profile = YES<br/>Bottom Track = NO<br/>High Res. Modes = NO<br/>High Res. Modes = NO<br/>High Rate Pinging = NO<br/>Shallow Bottom Mode= NO<br/>Wave Gauge = YES<br/>Lowered ADCP = NO<br/>Beam angle = 20<br/>Temperature = 5.00<br/>Deployment hours = 1080.00<br/>Battery packs = 3<br/>Automatic TP = YES<br/>Memory size [MB] = 1000<br/>Saved Screen = 2<br/>Consequences generated by PlanADCP version 2.04:<br/>First cell range = 1.41 m<br/>Last cell range = 15.76 m<br/>Max range = 35.28 m<br/>Standard deviation = 1.08 cm/s<br/>Ensemble size = 994 bytes<br/>Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                             |                      |                                |
| <pre>WS35<br/>WV175<br/>HD111000000<br/>HB5<br/>HP4920<br/>HR01:00:00.00<br/>TF00:01.00<br/>CK<br/>CS<br/>;<br/>instrument = Workhorse Sentinel<br/>;Frequency = 614400<br/>;Water Profile = YES<br/>;Bottom Track = NO<br/>;High Res. Modes = NO<br/>;High Res. Modes = NO<br/>;High Rate Pinging = NO<br/>;Shallow Bottom Mode= NO<br/>;Wave Gauge = YES<br/>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                          |                      |                                |
| <pre>WV175<br/>HD111000000<br/>HBS<br/>HP4920<br/>HR01:00:00.00<br/>TF00:01.00.00<br/>TF00:01.00<br/>CK<br/>CS<br/>iInstrument = Workhorse Sentinel<br/>Frequency = 614400<br/>Water Profile = YES<br/>Bottom Track = NO<br/>High Rate Pinging = NO<br/>Shallow Bottom Mode= NO<br/>Wave Gauge = YES<br/>Lowered ADCP = NO<br/>Beam angle = 20<br/>Temperature = 5.00<br/>Deployment hours = 1080.00<br/>Battery packs = 3<br/>Automatic TP = YES<br/>Memory size [MB] = 1000<br/>Saved Screen = 2<br/>Consequences generated by PlanADCP version 2.04:<br/>First cell range = 1.41 m<br/>Last cell range = 35.28 m<br/>Standard deviation = 1.08 cm/s<br/>Ensemble size = 994 bytes<br/>Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                       |                      |                                |
| HD11000000<br>HB5<br>HP4920<br>HR01:00:00.00<br>TF00:01.00<br>CK<br>CS<br>;<br>instrument = Workhorse Sentinel<br>;Frequency = 614400<br>;Water Profile = YES<br>;Bottom Track = NO<br>;High Res. Modes = NO<br>;High Rate Pinging = NO<br>;High Rate Pinging = NO<br>;Shallow Bottom Mode= NO<br>;Wave Gauge = YES<br>;Lowered ADCP = NO<br>;Beam angle = 20<br>;Temperature = 5.00<br>;Beam angle = 20<br>;Temperature = 500<br>;Beam angle = 20<br>;Temperature = 20<br>;Temperature = 5.00<br>;Beam angle = 20<br>;Temperature = 5.00<br>;Beatery packs = 3<br>;Automatic TP = YES<br>;Memory size [MB] = 1000<br>;Saved Screen = 2<br>;<br>Consequences generated by PlanADCP version 2.04:<br>;First cell range = 1.41 m<br>;Last cell range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                    |                      |                                |
| HBS<br>HP4920<br>HR01:00:00.00<br>HT00:01:00<br>CK<br>CS<br>instrument = Workhorse Sentinel<br>Frequency = 614400<br>Water Profile = YES<br>Bottom Track = NO<br>High Res. Modes = NO<br>High Rate Pinging = NO<br>Shallow Bottom Mode= NO<br>Wave Gauge = YES<br>Lowered ADCP = NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 15.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes<br>Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                      |                      |                                |
| HP4920<br>HR01:00:00.00<br>HT00:00:00.00<br>TE00:10:00.00<br>CK<br>CS<br>;<br>instrument = Workhorse Sentinel<br>;Frequency = 614400<br>;Water Profile = YES<br>;Bottom Track = NO<br>;High Res. Modes = NO<br>;High Res. Modes = NO<br>;Shallow Bottom Mode= NO<br>;Wave Gauge = YES<br>;Lowered ADCP = NO<br>;Beam angle = 20<br>;Temperature = 5.00<br>;Deployment hours = 1080.00<br>;Battery packs = 3<br>;Automatic TP = YES<br>;Memory size [MB] = 1000<br>;Saved Screen = 2<br>;Consequences generated by PlanADCP version 2.04:<br>;First cell range = 1.41 m<br>;Last cell range = 15.76 m<br>;Max range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                    | HD111000000          |                                |
| <pre>HR01:00:00.00<br/>HT00:00:00.50<br/>TE00:10:00.00<br/>TP00:01.00<br/>CK<br/>CS<br/>instrument = Workhorse Sentinel<br/>Frequency = 614400<br/>Water Profile = YES<br/>Bottom Track = NO<br/>High Res. Modes = NO<br/>High Res. Modes = NO<br/>Shallow Bottom Mode= NO<br/>Wave Gauge = YES<br/>Lowered ADCP = NO<br/>Beam angle = 20<br/>Temperature = 5.00<br/>Deployment hours = 1080.00<br/>Battery packs = 3<br/>Automatic TP = YES<br/>Memory size [MB] = 1000<br/>Saved Screen = 2<br/>Consequences generated by PlanADCP version 2.04:<br/>First cell range = 1.41 m<br/>Last cell range = 15.76 m<br/>Max range = 35.28 m<br/>Standard deviation = 1.08 cm/s<br/>Ensemble size = 994 bytes<br/>Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                    | HB5                  |                                |
| <pre>HT00:00:00.50<br/>TE00:10:00.00<br/>TP00:01.00<br/>CK<br/>CS<br/>;<br/>instrument = Workhorse Sentinel<br/>;Frequency = 614400<br/>;Water Profile = YES<br/>;Bottom Track = NO<br/>;High Res. Modes = NO<br/>;High Rate Pinging = NO<br/>;Shallow Bottom Mode= NO<br/>;Wave Gauge = YES<br/>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                   | HP4920               |                                |
| TE00:10:00.00<br>TP00:01.00<br>CK<br>CS<br>;<br>instrument = Workhorse Sentinel<br>;Frequency = 614400<br>;Water Profile = YES<br>;Bottom Track = NO<br>;High Res. Modes = NO<br>;High Res. Modes = NO<br>;High Res. Modes = NO<br>;High Res. Modes = NO<br>;Shallow Bottom Mode= NO<br>;Wave Gauge = YES<br>;Lowered ADCP = NO<br>;Beam angle = 20<br>;Temperature = 5.00<br>;Deployment hours = 1080.00<br>;Battery packs = 3<br>;Automatic TP = YES<br>;Memory size [MB] = 1000<br>;Saved Screen = 2<br>;<br>;Consequences generated by PlanADCP version 2.04:<br>;First cell range = 1.41 m<br>;Last cell range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                   | HR01:00:00.00        |                                |
| TP00:01.00<br>CK<br>CS<br>instrument = Workhorse Sentinel<br>Frequency = 614400<br>;Water Profile = YES<br>Bottom Track = NO<br>;High Res. Modes = NO<br>;High Rate Pinging = NO<br>;Shallow Bottom Mode= NO<br>;Wave Gauge = YES<br>;Lowered ADCP = NO<br>Beam angle = 20<br>;Temperature = 5.00<br>;Deployment hours = 1080.00<br>;Battery packs = 3<br>;Automatic TP = YES<br>;Memory size [MB] = 1000<br>;Saved Screen = 2<br>;Consequences generated by PlanADCP version 2.04:<br>;First cell range = 1.41 m<br>;Last cell range = 15.76 m<br>;Max range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                         | HT00:00:00.50        |                                |
| CK<br>CS<br>Instrument = Workhorse Sentinel<br>Frequency = 614400<br>Water Profile = YES<br>Bottom Track = NO<br>High Res. Modes = NO<br>High Res. Modes = NO<br>Shallow Bottom Mode= NO<br>Wave Gauge = YES<br>Lowered ADCP = NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 1.41 m<br>Last cell range = 15.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes<br>Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                            | TE00:10:00.00        |                                |
| CS<br>instrument = Workhorse Sentinel<br>Frequency = 614400<br>Water Profile = YES<br>Bottom Track = NO<br>High Res. Modes = NO<br>High Rate Pinging = NO<br>Shallow Bottom Mode= NO<br>Wave Gauge = YES<br>Lowered ADCP = NO<br>Beam angle = 20<br>Temperature = 5.00<br>Deployment hours = 1080.00<br>Battery packs = 3<br>Automatic TP = YES<br>Memory size [MB] = 1000<br>Saved Screen = 2<br>Consequences generated by PlanADCP version 2.04:<br>First cell range = 1.41 m<br>Last cell range = 15.76 m<br>Max range = 35.28 m<br>Standard deviation = 1.08 cm/s<br>Ensemble size = 994 bytes<br>Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                | TP00:01.00           |                                |
| <pre>instrument = Workhorse Sentinel Frequency = 614400 Water Profile = YES Bottom Track = N0 High Res. Modes = N0 High Rate Pinging = N0 Shallow Bottom Mode= N0 Wave Gauge = YES Lowered ADCP = N0 Beam angle = 20 Temperature = 5.00 Deployment hours = 1080.00 Battery packs = 3 Automatic TP = YES Memory size [MB] = 1000 Saved Screen = 2 Consequences generated by PlanADCP version 2.04: First cell range = 1.41 m Last cell range = 35.28 m Standard deviation = 1.08 cm/s Ensemble size = 994 bytes Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | СК                   |                                |
| <pre>instrument = Workhorse Sentinel Frequency = 614400 Water Profile = YES Bottom Track = N0 High Res. Modes = N0 High Rate Pinging = N0 Shallow Bottom Mode= N0 Wave Gauge = YES Lowered ADCP = N0 Beam angle = 20 Temperature = 5.00 Deployment hours = 1080.00 Battery packs = 3 Automatic TP = YES Memory size [MB] = 1000 Saved Screen = 2 Consequences generated by PlanADCP version 2.04: First cell range = 1.41 m Last cell range = 35.28 m Standard deviation = 1.08 cm/s Ensemble size = 994 bytes Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cs                   |                                |
| <pre>;Water Profile = YES<br/>;Bottom Track = NO<br/>;High Res. Modes = NO<br/>;High Rate Pinging = NO<br/>;Shallow Bottom Mode= NO<br/>;Wave Gauge = YES<br/>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                     | :                    |                                |
| <pre>;Water Profile = YES<br/>;Bottom Track = NO<br/>;High Res. Modes = NO<br/>;High Rate Pinging = NO<br/>;Shallow Bottom Mode= NO<br/>;Wave Gauge = YES<br/>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                     | :Instrument          | = Workhorse Sentinel           |
| <pre>;Water Profile = YES<br/>;Bottom Track = NO<br/>;High Res. Modes = NO<br/>;High Rate Pinging = NO<br/>;Shallow Bottom Mode= NO<br/>;Wave Gauge = YES<br/>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                     | :Frequency           | = 614400                       |
| <pre>;Bottom Track = NO<br/>;High Res. Modes = NO<br/>;High Rate Pinging = NO<br/>;Shallow Bottom Mode= NO<br/>;Wave Gauge = YES<br/>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                              | Water Profile        | = YFS                          |
| <pre>High Res. Modes = NO<br/>High Rate Pinging = NO<br/>Shallow Bottom Mode= NO<br/>Wave Gauge = YES<br/>Lowered ADCP = NO<br/>Beam angle = 20<br/>Temperature = 5.00<br/>Deployment hours = 1080.00<br/>Battery packs = 3<br/>Automatic TP = YES<br/>Memory size [MB] = 1000<br/>Saved Screen = 2<br/>Consequences generated by PlanADCP version 2.04:<br/>First cell range = 1.41 m<br/>Last cell range = 15.76 m<br/>Max range = 35.28 m<br/>Standard deviation = 1.08 cm/s<br/>Ensemble size = 994 bytes<br/>Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bottom Track         | = NO                           |
| <pre>;High Rate Pinging = NO<br/>;Shallow Bottom Mode= NO<br/>;Wave Gauge = YES<br/>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                               | High Res. Modes      |                                |
| <pre>Shallow Bottom Mode= NO<br/>Wave Gauge = YES<br/>Lowered ADCP = NO<br/>Beam angle = 20<br/>Temperature = 5.00<br/>Deployment hours = 1080.00<br/>Battery packs = 3<br/>Automatic TP = YES<br/>Memory size [MB] = 1000<br/>Saved Screen = 2<br/>;<br/>Consequences generated by PlanADCP version 2.04:<br/>First cell range = 1.41 m<br/>Last cell range = 15.76 m<br/>Max range = 35.28 m<br/>Standard deviation = 1.08 cm/s<br/>Ensemble size = 994 bytes<br/>Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High Rate Pinging    |                                |
| <pre>;Wave Gauge = YES<br/>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Shallow Bottom Mode  |                                |
| <pre>;Lowered ADCP = NO<br/>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •Waye Gauge          |                                |
| <pre>;Beam angle = 20<br/>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , Mave Gauge         |                                |
| <pre>;Temperature = 5.00<br/>;Deployment hours = 1080.00<br/>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , LOWERED ADER       |                                |
| <pre>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , Beam anyle         | - 5 00                         |
| <pre>;Battery packs = 3<br/>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , Temperature        | - 1000                         |
| <pre>;Automatic TP = YES<br/>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , Deproyment nours   | - 1080.00                      |
| <pre>;Memory size [MB] = 1000<br/>;Saved Screen = 2<br/>;<br/>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | -                              |
| <pre>;Saved Screen = 2 ; ;Consequences generated by PlanADCP version 2.04: ;First cell range = 1.41 m ;Last cell range = 15.76 m ;Max range = 35.28 m ;Standard deviation = 1.08 cm/s ;Ensemble size = 994 bytes ;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                |
| ;<br>;Consequences generated by PlanADCP version 2.04:<br>;First cell range = 1.41 m<br>;Last cell range = 15.76 m<br>;Max range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ;memory size [MB]    |                                |
| <pre>;Consequences generated by PlanADCP version 2.04:<br/>;First cell range = 1.41 m<br/>;Last cell range = 15.76 m<br/>;Max range = 35.28 m<br/>;Standard deviation = 1.08 cm/s<br/>;Ensemble size = 994 bytes<br/>;Storage required = 401.49 MB (420988320 bytes)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | = 2                            |
| ;First cell range = 1.41 m<br>;Last cell range = 15.76 m<br>;Max range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                    |                                |
| ;Last cell range = 15.76 m<br>;Max range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;Consequences genera | ated by PlanADCP version 2.04: |
| ;Max range = 35.28 m<br>;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                |
| ;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                |
| ;Standard deviation = 1.08 cm/s<br>;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;Max range           | = 35.28 m                      |
| ;Ensemble size = 994 bytes<br>;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ;Standard deviation  | = 1.08 cm/s                    |
| ;Storage required = 401.49 MB (420988320 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ;Ensemble size       |                                |
| ;Power usage = 1320.77 Wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Storage required     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ;Power usage         |                                |



R1 CF11101 EAO EBO ED300 ES35 E×11111 EZ1111111 WA255 WB0 WD111100000 WF88 WN69 WP250 RIO WS50 WV175 HD111000000 HB5 HP4080 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:02.00 TF08/03/27 07:00:00 СК CS ; ;Instrument = Workhorse Sentinel ;Frequency = 614400;Water Profile = YES Bottom Track = NO ;High Res. Modes = NO ;High Rate Pinging = NO Shallow Bottom Mode= NO ;Wave Gauge = YES ;Lowered ADCP = NO ;Beam angle ;Temperature = 20 = 5.00 ;Deployment hours = 1080.00 Battery packs = 3 ;Automatic TP = YES ;Memory size [MB] = 1000 ;Saved Screen = 2 Consequences generated by PlanADCP version 2.04: First cell range = 1.60 m; Last cell range = 35.60 m; = 38.22 m ;Max range ;Standard deviation = 0.86 cm/s ;Ensemble size = 1534 bytes Storage required = 337.34 MB (353725920 bytes)

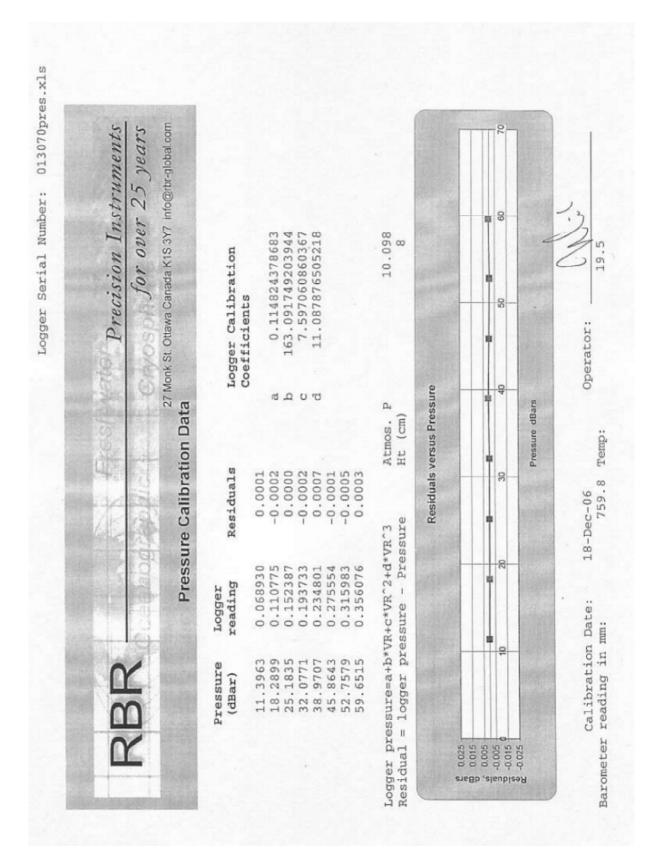



# 7.5 CALIBRATION CERTIFICATES

|                           |                    |               | YNE<br>STRUME | ies Company |        |         |
|---------------------------|--------------------|---------------|---------------|-------------|--------|---------|
|                           | Workhors           |               |               | n Summar    | v      |         |
| Date                      | 11/30/2007         |               | gurutio       | in o'anniai | I      |         |
| Customer                  | PERTEC             |               |               |             |        |         |
| Sales Order or RMA No.    | 3018766            |               |               |             |        |         |
| • System Type             | Sentinel           |               |               |             |        |         |
|                           | WHSW600-1-UG92     | 1             |               |             |        |         |
| Frequency                 | 600 kHz            |               |               |             |        |         |
| Depth Rating (meters)     | 200                |               |               |             |        |         |
| SERIAL NUMBERS:<br>System | 10119              | REVISION:     |               |             |        |         |
| CPU PCA                   | 11019              | Rev.          | J3            |             |        |         |
| PIO PCA                   | 6574               | Rev.          | F1            |             |        |         |
| DSP PCA                   | 14400              | Rev.          | GI            |             |        |         |
| RCV PCA                   | 14956              | Rev.          | E2            |             |        |         |
| AUX PCA                   |                    | Rev.          |               |             |        |         |
|                           |                    |               |               |             |        |         |
| FIRMWARE VERSION:         |                    |               |               |             |        |         |
| CPU                       | 16.30              |               |               |             |        |         |
| SENSORS INSTALLED:        |                    |               |               |             |        |         |
| Temperature 🗸             | Heading 🗸          | Pitch / I     | Roll 🗸        | Pressure 🗸  | Rating | 200 met |
| FEATURES INSTALLED        |                    |               |               |             |        |         |
| ✓ Water Profile           |                    | High Rat      | e Pinging     |             |        |         |
| Bottom Track              |                    |               | Bottom Mode   |             |        |         |
| High Resolution V         | /ater Modes        |               | lage Acquisit |             |        |         |
| Lowered ADCP              |                    |               | wey ADCP *    |             |        |         |
| * Includes Water Profile  | , Bottom Track and |               |               | es          |        |         |
| COMMUNICATIONS:           |                    |               |               |             |        |         |
| Communication             | RS-232             |               |               |             |        |         |
| Baud Rate                 | 9600               |               |               |             |        |         |
| Parity                    | NONE               |               |               |             |        |         |
| Recorder Capacity         | 1150               | MB (installed | ()            |             | 1      |         |
| Power Configuration       | 20-60 VDC          |               |               |             |        |         |
|                           | 5                  | meters        |               |             |        |         |



|                                                                 |                           | TELEDYNE                                    |
|-----------------------------------------------------------------|---------------------------|---------------------------------------------|
|                                                                 |                           | RD INSTRUMENTS                              |
|                                                                 |                           | A Teledyne Technologies Company             |
|                                                                 | Workhor                   | se Configuration Summary                    |
| Date                                                            | 11/30/2007                |                                             |
| Customer                                                        | PERTEC                    |                                             |
| <sup>*</sup> Sales Order or RMA No.                             | 3018766                   |                                             |
| System Type                                                     | Sentinel                  |                                             |
| Part number                                                     | WHSW600-I-UG9             | 2                                           |
| Frequency                                                       | 600 kHz                   | •                                           |
| Depth Rating (meters)                                           | 200                       |                                             |
| SERIAL NUMBERS:                                                 |                           | REVISION:                                   |
| System                                                          | 10105                     |                                             |
| CPU PCA                                                         | 11052                     | Rev. J3                                     |
| PIO PCA                                                         | 6573                      | Rev. F1                                     |
| DSP PCA                                                         | 14390                     | Rev. G1                                     |
| RCV PCA                                                         | 14937                     | Rev. E2                                     |
| AUX PCA                                                         |                           | Rev.                                        |
| FIRMWARE VERSION:                                               |                           |                                             |
| CPU                                                             | 16.30                     |                                             |
| SENSORS INSTALLED:                                              |                           |                                             |
| Temperature 🗸                                                   | Heading 🗸                 | Pitch / Roll 🗸 Pressure 🗸 Rating 200 meters |
| FEATURES INSTALLED                                              |                           |                                             |
| ✓ Water Profile                                                 |                           | High Rate Pinging                           |
| Bottom Track                                                    |                           | Shallow Bottom Mode                         |
| High Resolution V                                               | Water Modes               | ✓ Wave Guage Acquisition                    |
| Lowered ADCP                                                    |                           | River Survey ADCP *                         |
|                                                                 | e, Bottom Track and       | I High Resolution Water Modes               |
| COMMUNICATIONS:                                                 |                           | • · · · · · · · · · · · · · · · · · · ·     |
|                                                                 | RS-232                    |                                             |
| Communication                                                   |                           |                                             |
| Communication<br>Baud Rate                                      | 9600                      |                                             |
| Baud Rate                                                       | 9600<br>NONE              |                                             |
| Baud Rate<br>Parity                                             | NONE                      | MB (installed)                              |
| Baud Rate<br>Parity<br>Recorder Capacity                        | NONE<br>1150              | MB (installed)                              |
| Baud Rate<br>Parity<br>Recorder Capacity<br>Power Configuration | NONE<br>1150<br>20-60 VDC |                                             |
| Baud Rate<br>Parity<br>Recorder Capacity                        | NONE<br>1150              | MB (installed)<br>meters                    |
| Baud Rate<br>Parity<br>Recorder Capacity<br>Power Configuration | NONE<br>1150<br>20-60 VDC |                                             |





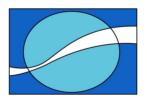



| Conductivity Calibration Ce       xR-420 CT Ne012998       conductivity Calibration Ce       cond.     Voltage       ms/cm     ms/cm       0.0000     -0.0002       0.1789     0.081456       0.1789     0.081456       0.1789     0.081456       0.180502     0.0000       10.1789     0.180502       0.180502     0.0000       22.5227     0.180502       0.180502     0.00010       23.7822     0.361158       0.180502     0.00010       245.0402     0.361158       0.488127     -0.0002       0.186537     -0.00010       66.4126     0.693110       0.6693110     0.0010       86.4126     0.693110       0.60010     0.0010       86.4126     0.693110       0.71.vC+C2*Vc*2+C3*Vc*3     -0.0010       ger conductivity-Resistance conductivity       Residuals versus conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                            | for ouer 30 years<br>27 Monk St. Ottawa Canada K1S 3Y7 Info@00rg/obal/com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XR-420 CT Ne012998           Conductivity Calibration Ce           Conductivity Calibration Ce           ms/cm         Residuals           ms/cm         0.0000         -0.0002           10.1789         0.081456         0.0000           22.5227         0.180502         0.0000           33.7822         0.270829         -0.0002           33.7822         0.361158         -0.0002           60.8653         0.488127         -0.0002           71.8628         0.576357         -0.00010           86.4126         0.693110         0.00010           ctivity =C0+C1*Vc+C2*Vc*2+C3*Vc*3         -0.0010           ger conductivity-Resistance conductivity         Residuals wraus conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 Monk St. Ottawa Canada K1S 3Y7 Info@fbr-globaf.co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T Ne012998<br>libration Ce<br>asiduals<br>ms/cm<br>-0.0002<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lficate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Conductivity Calibration Ce           cond.         Voltage         Residuals           ms/cm         Ratio         ms/cm         ms/cm         statio         ms/cm         statio         ms/cm         statio         ms/cm         statio         ms/cm         statio         ms/cm         ms/cm | ificate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cond.         Voltage         Residuals           ms/cm         Ratio         ms/cm           ms/cm         Ratio         ms/cm           0.0000         -0.000214         -0.0002           10.1789         0.081456         0.0000           22.5227         0.180502         0.0010           33.7822         0.270829         -0.0002           33.7822         0.361158         -0.0002           60.8653         0.488127         -0.0002           71.8628         0.576357         -0.00010           64.126         0.693110         0.0010           86.4126         0.693310         0.0010           ger conductivity-Resistance conductivity         Residuals verus conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cond.         Voltage         Residuals           ms/cm         Ratio         ms/cm           ms/cm         Ratio         ms/cm           0.0000         -0.000214         -0.0002           10.1789         0.081456         0.0000           22.5227         0.180502         0.0010           33.7822         0.270829         -0.0002           33.7822         0.270829         -0.0002           60.8653         0.488127         -0.0002           60.8653         0.488127         -0.00010           ctivity =C0+C1*Vc+C2*Vc*2+C3*Vc*3         -0.0010           ger conductivity-Resistance conductivity         Residuals wraus Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.0002<br>0.0000<br>0.0010<br>-0.0004<br>-0.0002<br>-0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logger Setup<br>Calibration Coefficients:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0000<br>0.0010<br>-0.0002<br>-0.0002<br>-0.0010<br>0.0010<br>0.0010<br>ty<br>testduals versus Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C0= 0.026459735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0010<br>-0.0004<br>-0.0002<br>-0.0010<br>0.0010<br>by<br>ty<br>tesiduals versus Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1= 124.6368814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.0004<br>-0.0002<br>-0.0010<br>0.0010<br>by<br>tesiduals versus Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -0.0002<br>-0.0002<br>-0.0010<br>by<br>tesiduals versus Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C3= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -0.0002<br>-0.0010<br>by<br>tesiduals versus Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.0010<br>0.0010<br>ly<br>tesiduals versus Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conductivity to Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 39.098 86.4126 0.693110 0.0010<br>Logger conductivity =C0+C1*Vc+C2*Vc^2+C3*Vc^3<br>Residual=Logger conductivity-Resistance conductivity<br>Residuals versus Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Correction Coefficients:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Logger conductivity =C0+C1*Vc+C2*Vc^2+C3*Vc^3<br>Residual=Logger conductivity-Resistance conductivity<br>Residuals versus Conduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a= 0.00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Residual=Logger conductivity-Resistance conductivity<br>Residuals versus Conduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b=<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tc= 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| i in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cettings, a state of the state |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| کے عدددہ 1 Conductivity mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>NSIGN</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sample Conductivity = 43.03350 Volt Ratio = 0.<br>Calibration Temperature = 15.08309 Temperature dept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Volt Ratio = 0.3450587 Cell Constant @T15= 3378.559<br>Temperature dependence = 0.006 mS/cm°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |








# LWANDLE DATA REPORT

# **BANTAMSKLIP SITE – DEPLOYMENT THREE**

# PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



# PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



28 July 2008

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



# TABLE OF CONTENTS

| 1. | EXEC  | UTIVE SU | JMMARY                           | 4  |
|----|-------|----------|----------------------------------|----|
| 2. | INTRO | ODUCTIO  | N                                | 7  |
|    | 2.1   | PROJE    | ECT DESCRIPTION                  | 7  |
|    | 2.2   | EQUIP    | MENT LIST                        | 7  |
|    | 2.3   | MEASU    | UREMENT LOCATION                 | 7  |
| 3. | OPER  | ATIONS.  |                                  | 9  |
|    | 3.1   | SUMM     | ARY OF EVENTS                    | 9  |
|    | 3.2   | INSTR    | UMENT CONFIGURATIONS             | 10 |
|    |       | 3.2.1    | 600kHz ADCP                      | 10 |
|    |       | 3.2.2    | RBR XR420 CT LOGGER              | 10 |
|    |       | 3.2.3    | RBR TGR2050 HT TIDE GAUGE        | 11 |
|    |       | 3.2.4    | Biofouling Mooring               | 11 |
|    | 3.3   | RECO\    | VER AND REDEPLOYMENT METHODOLOGY | 12 |
|    |       | 3.3.1    | T&C mooring                      | 12 |
|    |       | 3.3.2    | ADCP mooring                     | 12 |
|    |       | 3.3.3    | Tidal Gauge                      | 12 |
|    |       | 3.3.4    | Biofouling mooring               | 12 |
|    | 3.4   | MALFU    | JNCTIONS AND LESSONS LEARNT      | 13 |
| 4. | DATA  |          | Y CONTROL                        | 14 |
|    | 4.1   | ADCP     |                                  | 14 |
|    |       | 4.1.1    | Current processing               | 14 |
|    |       | 4.1.2    | Wave processing                  | 14 |
|    | 4.2   | RBR-C    | T LOGGER                         | 14 |
|    | 4.3   | TIDE G   | GAUGE                            | 16 |
|    | 4.4   | BIOFO    | ULING                            | 16 |
|    | 4.5   | WATE     | R SAMPLE                         | 16 |
| 5. | DATA  | PRESEN   | ITATION                          | 17 |
|    | 5.1   | 10M AI   | DCP                              | 17 |
|    |       | 5.1.1    | Current Data                     | 17 |
|    |       | 5.1.1.1  | Time series plots                | 17 |
|    |       | 5.1.1.2  | Summary plots                    | 21 |
|    |       | 5.1.1.3  | Progressive vector plots         | 21 |



|    |       | 5.1.2   | Wave Data                                             |    |
|----|-------|---------|-------------------------------------------------------|----|
|    |       | 5.1.2.1 | Hs and Tp summary plot                                | 27 |
|    |       | 5.1.2.2 | Hs and Dp summary plot                                | 27 |
|    |       | 5.1.2.3 | Tp and Dp summary plot                                | 27 |
|    |       | 5.1.2.4 | Wave spectral plot                                    | 31 |
|    | 5.2   | 30M AC  | ОСР                                                   | 34 |
|    |       | 5.2.1   | Current Data                                          | 34 |
|    |       | 5.2.1.1 | Time series plots                                     | 34 |
|    |       | 5.2.1.2 | Summary plots                                         | 38 |
|    |       | 5.2.1.3 | Progressive vector plots                              | 38 |
|    |       | 5.2.2   | Wave Data                                             | 44 |
|    |       | 5.2.2.1 | Hs and Tp summary plot                                | 44 |
|    |       | 5.2.2.2 | Hs and Dp summary plot                                | 44 |
|    |       | 5.2.2.3 | Tp and Dp summary plot                                | 44 |
|    |       | 5.2.2.4 | Wave spectral plot                                    | 48 |
|    | 5.3   | COMPA   | ARISON PLOTS                                          | 51 |
|    |       | 5.3.1   | Hs, Tp and Dp time series plots for 10m and 30m ADCPs | 51 |
|    |       | 5.3.2   | Water properties: RBR-CT loggers and ADCPs            |    |
|    |       |         | temperature sensors                                   | 52 |
|    | 5.4   | TIDE G  | AUGE                                                  | 53 |
|    | 5.5   | WATER   | SAMPLES.                                              | 53 |
| 6. | DISCU | JSSION  |                                                       | 56 |
| 7. | INSTR |         | PARTICULARS FOR SERVICE VISIT TWO                     | 58 |
|    | 7.1   |         | RECOVERY AND RE-DEPLOYMENT SHEETS                     |    |
|    | 7.2   |         | T LOGGERS RECOVERY SHEETS                             |    |
|    | 7.3   | -       | AUGE RECOVERY AND RE-DEPLOYMENT SHEETS                | -  |
|    | 7.4   |         | CONFIGURATION FILES                                   |    |
|    | 7.5   |         | RATION CERTIFICATES                                   |    |
| _  | -     | -       |                                                       |    |
| 8. | REPO  | RTS FRO | M THE CSIR                                            | 75 |



### 1. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 3 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Data return<br>(%) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|--------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -11.5        | 100                | 0.3814                           | 0.0306                            | 0.0184                           | 0.0187                                | 68.62                     |
| -11.1        | 100                | 0.1951                           | 0.0338                            | 0.0190                           | 0.0223                                | 65.48                     |
| -10.8        | 100                | 0.1346                           | 0.0357                            | 0.0199                           | 0.0238                                | 62.25                     |
| -10.4        | 100                | 0.2051                           | 0.0361                            | 0.0206                           | 0.0224                                | 63.04                     |
| -10.1        | 100                | 0.2481                           | 0.0360                            | 0.0207                           | 0.0206                                | 65.34                     |
| -9.7         | 100                | 0.1532                           | 0.0351                            | 0.0197                           | 0.0181                                | 73.28                     |
| -9.4         | 100                | 0.1736                           | 0.0350                            | 0.0200                           | 0.0163                                | 81.59                     |
| -9.0         | 100                | 0.2297                           | 0.0350                            | 0.0208                           | 0.0148                                | 92.48                     |
| -8.7         | 100                | 0.1854                           | 0.0347                            | 0.0212                           | 0.0129                                | 103.26                    |
| -8.3         | 100                | 0.1817                           | 0.0356                            | 0.0220                           | 0.0125                                | 117.16                    |
| -8.0         | 100                | 0.1835                           | 0.0363                            | 0.0226                           | 0.0124                                | 129.05                    |
| -7.6         | 100                | 0.1755                           | 0.0372                            | 0.0236                           | 0.0126                                | 142.25                    |
| -7.3         | 100                | 0.1815                           | 0.0383                            | 0.0246                           | 0.0136                                | 154.26                    |
| -6.9         | 100                | 0.1771                           | 0.0400                            | 0.0256                           | 0.0148                                | 164.36                    |
| -6.6         | 100                | 0.1721                           | 0.0420                            | 0.0262                           | 0.0161                                | 173.67                    |
| -6.2         | 100                | 0.1748                           | 0.0441                            | 0.0272                           | 0.0181                                | 181.67                    |
| -5.9         | 100                | 0.1849                           | 0.0467                            | 0.0282                           | 0.0204                                | 187.31                    |
| -5.5         | 100                | 0.1781                           | 0.0490                            | 0.0293                           | 0.0227                                | 191.99                    |
| -5.2         | 100                | 0.1994                           | 0.0524                            | 0.0308                           | 0.0250                                | 196.82                    |
| -4.8         | 100                | 0.1910                           | 0.0557                            | 0.0315                           | 0.0275                                | 200.28                    |
| -4.5         | 100                | 0.2344                           | 0.0591                            | 0.0326                           | 0.0298                                | 203.14                    |
| -4.1         | 100                | 0.2280                           | 0.0626                            | 0.0335                           | 0.0323                                | 205.51                    |
| -3.8         | 100                | 0.2249                           | 0.0660                            | 0.0347                           | 0.0342                                | 207.66                    |
| -3.4         | 100                | 0.2543                           | 0.0692                            | 0.0357                           | 0.0364                                | 209.32                    |
| -3.1         | 100                | 0.2698                           | 0.0725                            | 0.0362                           | 0.0378                                | 210.63                    |
| -2.7         | 100                | 0.2968                           | 0.0756                            | 0.0368                           | 0.0380                                | 210.39                    |
| -2.4         | 100                | 0.3312                           | 0.0800                            | 0.0385                           | 0.0324                                | 206.39                    |
| -2.0         | 100                | 0.3461                           | 0.0923                            | 0.0442                           | 0.0209                                | 192.30                    |
| -1.7         | 100                | 0.4449                           | 0.1198                            | 0.0608                           | 0.0176                                | 200.98                    |
| -1.3         | 92.75              | 0.6213                           | 0.1625                            | 0.0906                           | 0.0370                                | 230.10                    |

Table 1 – Current flow summary for 10m ADCP

# Table 2 – Waves summary for 10m ADCP

|        | Data Return (%) | Max   | Min  | Mean  | Std  |
|--------|-----------------|-------|------|-------|------|
| Hs (m) | 88.32           | 5.42  | 0.88 | 1.91  | 0.66 |
| Tp (s) | 88.32           | 23.10 | 2.00 | 12.25 | 2.24 |



|              | Table 3 – Current flow summary for 30m ADCP |                     |                      |                                  |                             |                              |  |  |
|--------------|---------------------------------------------|---------------------|----------------------|----------------------------------|-----------------------------|------------------------------|--|--|
| Depth<br>(m) | Data return<br>(%)                          | Max speed<br>(ms⁻¹) | Mean speed<br>(ms⁻¹) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean<br>speed (ms⁻¹) | Vector mean<br>direction (°) |  |  |
| -30.8        | 98.89                                       | 0.1772              | 0.0305               | 0.0228                           | 0.0081                      | 123.70                       |  |  |
| -30.3        | 98.83                                       | 0.1887              | 0.0328               | 0.0253                           | 0.0084                      | 134.42                       |  |  |
| -29.8        | 98.89                                       | 0.1971              | 0.0351               | 0.0275                           | 0.0088                      | 148.92                       |  |  |
| -29.3        | 98.86                                       | 0.2135              | 0.0374               | 0.0290                           | 0.0099                      | 158.48                       |  |  |
| -28.8        | 98.89                                       | 0.2060              | 0.0402               | 0.0305                           | 0.0108                      | 163.30                       |  |  |
| -28.3        | 98.89                                       | 0.2079              | 0.0430               | 0.0318                           | 0.0118                      | 168.66                       |  |  |
| -27.8        | 98.86                                       | 0.2321              | 0.0459               | 0.0339                           | 0.0135                      | 169.56                       |  |  |
| -27.3        | 98.89                                       | 0.2366              | 0.0487               | 0.0356                           | 0.0148                      | 169.69                       |  |  |
| -26.8        | 98.89                                       | 0.2373              | 0.0520               | 0.0368                           | 0.0159                      | 170.98                       |  |  |
| -26.3        | 98.89                                       | 0.2461              | 0.0552               | 0.0385                           | 0.0170                      | 169.38                       |  |  |
| -25.8        | 98.89                                       | 0.2476              | 0.0580               | 0.0396                           | 0.0178                      | 167.73                       |  |  |
| -25.3        | 98.89                                       | 0.2487              | 0.0608               | 0.0402                           | 0.0185                      | 165.44                       |  |  |
| -24.8        | 98.89                                       | 0.2556              | 0.0629               | 0.0409                           | 0.0188                      | 162.63                       |  |  |
| -24.3        | 98.89                                       | 0.2582              | 0.0650               | 0.0407                           | 0.0186                      | 159.90                       |  |  |
| -23.8        | 98.89                                       | 0.2541              | 0.0662               | 0.0407                           | 0.0187                      | 157.49                       |  |  |
| -23.3        | 98.89                                       | 0.2491              | 0.0678               | 0.0403                           | 0.0184                      | 154.52                       |  |  |
| -22.8        | 98.89                                       | 0.2360              | 0.0685               | 0.0397                           | 0.0178                      | 151.71                       |  |  |
| -22.3        | 98.89                                       | 0.2482              | 0.0693               | 0.0394                           | 0.0175                      | 147.87                       |  |  |
| -21.8        | 98.89                                       | 0.2447              | 0.0699               | 0.0388                           | 0.0167                      | 145.27                       |  |  |
| -21.3        | 98.89                                       | 0.2511              | 0.0703               | 0.0386                           | 0.0167                      | 141.35                       |  |  |
| -20.8        | 98.89                                       | 0.2552              | 0.0703               | 0.0382                           | 0.0164                      | 137.71                       |  |  |
| -20.3        | 98.86                                       | 0.2451              | 0.0706               | 0.0380                           | 0.0161                      | 134.24                       |  |  |
| -19.8        | 98.86                                       | 0.2623              | 0.0704               | 0.0377                           | 0.0151                      | 132.11                       |  |  |
| -19.3        | 98.86                                       | 0.2594              | 0.0708               | 0.0383                           | 0.0150                      | 129.66                       |  |  |
| -18.8        | 98.86                                       | 0.2438              | 0.0711               | 0.0383                           | 0.0150                      | 126.97                       |  |  |
| -18.3        | 98.86                                       | 0.2437              | 0.0712               | 0.0387                           | 0.0146                      | 126.12                       |  |  |
| -17.8        | 98.86                                       | 0.2527              | 0.0714               | 0.0386                           | 0.0146                      | 125.08                       |  |  |
| -17.3        | 98.86                                       | 0.2510              | 0.0718               | 0.0386                           | 0.0148                      | 123.74                       |  |  |
| -16.8        | 98.86                                       | 0.2524              | 0.0719               | 0.0386                           | 0.0144                      | 120.98                       |  |  |
| -16.3        | 98.86                                       | 0.2627              | 0.0719               | 0.0391                           | 0.0142                      | 118.71                       |  |  |
| -15.8        | 98.86                                       | 0.2553              | 0.0718               | 0.0391                           | 0.0138                      | 116.28                       |  |  |
| -15.3        | 98.86                                       | 0.2596              | 0.0714               | 0.0395                           | 0.0136                      | 113.29                       |  |  |
| -14.8        | 98.86                                       | 0.2680              | 0.0717               | 0.0398                           | 0.0130                      | 110.19                       |  |  |
| -14.3        | 98.89                                       | 0.2921              | 0.0720               | 0.0407                           | 0.0130                      | 107.36                       |  |  |
| -13.8        | 98.86                                       | 0.3090              | 0.0721               | 0.0411                           | 0.0126                      | 105.83                       |  |  |
| -13.3        | 98.86                                       | 0.3396              | 0.0728               | 0.0416                           | 0.0119                      | 101.11                       |  |  |
| -12.8        | 98.86                                       | 0.3573              | 0.0734               | 0.0421                           | 0.0115                      | 102.22                       |  |  |
| -12.3        | 98.89                                       | 0.3764              | 0.0745               | 0.0425                           | 0.0111                      | 97.80                        |  |  |
| -11.8        | 98.89                                       | 0.3547              | 0.0752               | 0.0429                           | 0.0107                      | 96.32                        |  |  |
| -11.3        | 98.86                                       | 0.3456              | 0.0762               | 0.0436                           | 0.0101                      | 95.14                        |  |  |
| -10.8        | 98.86                                       | 0.4005              | 0.0772               | 0.0449                           | 0.0094                      | 92.61                        |  |  |
| -10.3        | 98.86                                       | 0.3872              | 0.0789               | 0.0461                           | 0.0092                      | 94.59                        |  |  |
| -9.8         | 98.83                                       | 0.3592              | 0.0796               | 0.0469                           | 0.0086                      | 93.45                        |  |  |

# Table 3 – Current flow summary for 30m ADCP



|      |       |        |        | 1      |        | 1      |
|------|-------|--------|--------|--------|--------|--------|
| -9.3 | 98.78 | 0.3862 | 0.0811 | 0.0479 | 0.0079 | 94.69  |
| -8.8 | 98.69 | 0.3926 | 0.0831 | 0.0491 | 0.0069 | 94.77  |
| -8.3 | 98.67 | 0.4064 | 0.0850 | 0.0513 | 0.0062 | 96.21  |
| -7.8 | 98.55 | 0.4175 | 0.0868 | 0.0528 | 0.0058 | 99.47  |
| -7.3 | 98.61 | 0.4244 | 0.0890 | 0.0544 | 0.0047 | 102.13 |
| -6.8 | 98.55 | 0.4441 | 0.0912 | 0.0558 | 0.0046 | 101.00 |
| -6.3 | 98.44 | 0.4529 | 0.0939 | 0.0575 | 0.0033 | 104.44 |
| -5.8 | 98.55 | 0.4307 | 0.0973 | 0.0593 | 0.0029 | 102.28 |
| -5.3 | 98.53 | 0.4453 | 0.1000 | 0.0607 | 0.003  | 107.97 |
| -4.8 | 98.42 | 0.4578 | 0.1027 | 0.0616 | 0.0026 | 110.36 |
| -4.3 | 98.39 | 0.4604 | 0.1053 | 0.0635 | 0.0022 | 74.36  |
| -3.8 | 98.14 | 0.4516 | 0.1073 | 0.0649 | 0.0053 | 0.16   |
| -3.3 | 97.66 | 0.4771 | 0.1121 | 0.0651 | 0.0155 | 3.36   |
| -2.8 | 96.78 | 0.4708 | 0.1275 | 0.0658 | 0.0258 | 22.40  |
| -2.3 | 76.12 | 0.4797 | 0.1498 | 0.0730 | 0.0250 | 25.32  |

# Table 4 – Waves summary for 30m ADCP

|        | Data Return (%) | Max   | Min  | Mean  | Std  |
|--------|-----------------|-------|------|-------|------|
| Hs (m) | 96.80           | 4.59  | 1.07 | 2.18  | 0.68 |
| Tp (s) | 96.80           | 19.50 | 5.20 | 11.80 | 1.86 |

# Table 5 – Water temperature and salinity summary (surface)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100             | 16.37 | 17.24 | 14.49 |
| Conductivity     | 100             | 44.38 | 45.27 | 42.39 |
| Salinity (psu)   | 100             | 35.09 | 35.18 | 34.95 |

#### Table 6 – Water temperature and salinity summary (bottom)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100             | 15.73 | 16.92 | 12.47 |
| Conductivity     | 100             | 5.06  | 8.34  | 2.09  |
| Salinity (psu)   | 0               | -     | -     | -     |



# 2. INTRODUCTION

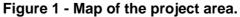
# 2.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents currents, waves, temperature and salinity and tidal data collected at Bantamsklip station for the period April  $25^{th}$  2008 - June  $19^{th}$  2008 (Period 3) as well as water samples collected during Service Visit 3 (June  $18^{th} - 20^{th}$  and  $27^{th}$  2008).

# 2.2 EQUIPMENT LIST

Lwandle provided the equipment as listed in Table 7 for the Bantamsklip site.


| ltem                       | Operational (on site) | Spare (for whole project) |
|----------------------------|-----------------------|---------------------------|
| TRDI 600kHz ADCP           | 2                     | 1                         |
| RBR XR420 CT logger        | 2                     | 1                         |
| RBR TGR 2050 HT Tide Gauge | 1                     | 0                         |

## Table 7 – List of equipment provided.

# 2.3 MEASUREMENT LOCATION

The initial deployment location of the mooring is given in Table 8 and shown in Figure 1. Table 9 shows the locations where water samples were taken respectively.







| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | 34° 42.462'   | 19° 33.080'    |
| 10m ADCP    | 34° 43.186'   | 19° 33.637'    |
| Biofouling  | 34° 43.190'   | 19° 33.686'    |
| 30m ADCP    | 34° 42.625'   | 19° 30.690'    |
| T&C mooring | 34° 42.605'   | 19° 30.659'    |

### Table 8 – Measurement locations

# Table 9 – Locations where water samples were taken

| Station | n 26 Mar 2008 | Latitude (°S) | Longitude (°E) |
|---------|---------------|---------------|----------------|
| S1      | 30m ADCP 4m   | 34° 42.603'   | 19° 30.696'    |
| S2      | 30m ADCP 12m  | 34° 42.603'   | 19° 30.696'    |
| S3      | 30m ADCP 20m  | 34° 42.603'   | 19° 30.696'    |
| S4      | 30m ADCP 28m  | 34° 42.603'   | 19° 30.696'    |
| S5      | 10m ADCP 4m   | 34° 43.187'   | 19° 33.635'    |
| S6      | 10m ADCP 8m   | 34° 43.187'   | 19° 33.635'    |
| S7      |               | 34° 43.141'   | 19° 33.710'    |
| S8      |               | 34° 43.055'   | 19° 33.616'    |
| S9      |               | 34° 42.938'   | 19° 33.445'    |
| S10     |               | 34° 42.901'   | 19° 33.287'    |
| S11     |               | 34° 42.860'   | 19° 33.149'    |

# 3. OPERATIONS

## 3.1 SUMMARY OF EVENTS

Service visit 3 was undertaken on June  $18^{th} - 20^{th}$  2008 and June  $27^{th}$  2008.

| Harbour.12h30The engineers stored the<br>dive centre.14h47The Lwandle engineers r<br>installed a new unit.19 June 2008 08h00The engineers started pro-<br>recoveries and water sand<br>09h3009h30The vessel departed from<br>10h5010h50The engineer proceeded<br>30m site. The Pop-up<br>descended to release<br>disconnect the chain sec<br>was successfully lifted or<br>11h3011h30The engineer proceeded<br>disconnect the chain sec<br>was already at the surfachain sections. The fram-<br>vessel. The engineer coll<br>13h0013h00The engineers deployed<br>The diver proceeded with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dive centre.14h47The Lwandle engineers r<br>installed a new unit.19 June 2008 08h00The engineers started pro-<br>recoveries and water same<br>ooph3009h30The vessel departed from<br>The engineer proceeded<br>30m site. The Pop-up<br>descended to release<br>disconnect the chain sec-<br>was successfully lifted or<br>11h3011h30The engineer proceeded<br>was already at the surfact<br>chain sections. The fram-<br>vessel. The engineer coll<br>13h0013h00The engineers deployed<br>The diver proceeded with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arted from Cape Town to Kleinbaai                                                                                                                                                                                                     |
| installed a new unit.19 June 2008 08h00The engineers started progression of the recoveries and water same of the vessel departed from the vessel departed from the engineer proceeded 30m site. The Pop-up descended to release disconnect the chain sections was successfully lifted or the engineer proceeded 12h0011h30The engineer proceeded was already at the surfact chain sections. The framewersel. The engineer coll13h00The engineers deployed the diver proceeded was already at the surfact chain sections. The framewersel was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. The framewersel the diver proceeded was already at the surfact chain sections. | Lwandle vessel at the White Shark                                                                                                                                                                                                     |
| recoveries and water same09h30The vessel departed from10h50The engineer proceeded<br>30m site. The Pop-up<br>descended to release<br>disconnect the chain sec<br>was successfully lifted or11h30The engineer proceeded<br>12h0012h00When the vessel arrived<br>was already at the surfactain sections. The fram<br>vessel. The engineer coll<br>13h0013h00The engineers deployed<br>The diver proceeded with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etrieved the tide gauge unit and                                                                                                                                                                                                      |
| 10h50The engineer proceeded<br>30m site. The Pop-up<br>descended to release<br>disconnect the chain sec<br>was successfully lifted or11h30The engineer proceeded12h00When the vessel arrived<br>was already at the surfactions. The fram<br>vessel. The engineer coll13h00The engineers deployed<br>The diver proceeded with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | epping the boat for the frame nples to be taken.                                                                                                                                                                                      |
| 30m site. The Pop-up<br>descended to release<br>disconnect the chain sec<br>was successfully lifted or11h30The engineer proceeded12h00When the vessel arrived<br>was already at the surfactions. The fram<br>vessel. The engineer coll13h00The engineers deployed<br>The diver proceeded with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NKleinbaai harbour to the 30m site.                                                                                                                                                                                                   |
| 12h00When the vessel arrived<br>was already at the surfa<br>chain sections. The fram<br>vessel. The engineer coll13h00The engineers deployed<br>The diver proceeded with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to collect the four water samples at the<br>buoy was released and the diver<br>the RBR mooring string, and to<br>tions from the ADCP frame. The frame<br>board the vessel.                                                            |
| was already at the surface<br>chain sections. The frame<br>vessel. The engineer coll13h00The engineers deployed<br>The diver proceeded with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to the 10m site.                                                                                                                                                                                                                      |
| The diver proceeded w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | at the 10 site the Pop-up canister float<br>ice. The diver descended to undo the<br>ne was successfully lifted onboard the<br>ected the 2 water samples.                                                                              |
| attempts, it was decided acoustic release. There                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a shotline on the biofouling position.<br>th several searches in the area, but<br>nooring string. After several search<br>d to release the mooring line via the<br>was no response from the acoustic<br>nd the operation was aborted. |
| 16h30 The vessel started back<br>off the last five water sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to Kleinbaai harbour, stopping to finish<br>pples.                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at Kleinbaai harbour and was taken to mes are to be dismantled.                                                                                                                                                                       |
| 20 June 2008 08h00 The engineers started pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | epping the boat.                                                                                                                                                                                                                      |
| 10h00 The vessel left Kleinbaai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | harbour and headed to the 10m site.                                                                                                                                                                                                   |
| 11h00 The 10m instrument fram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e was dropped on site.                                                                                                                                                                                                                |
| descended to attach the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | as dropped on site and the diver<br>chain weights. The RBR T&C string<br>e to adverse weather conditions.                                                                                                                             |
| 13h00The diver descended to<br>frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | attach the chain weights to the 10m                                                                                                                                                                                                   |
| 27 June 2008 Redeployment of RBR Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | &C loggers.                                                                                                                                                                                                                           |

| Table 10 – Summary o | f events f | or Service Visit 3 |
|----------------------|------------|--------------------|
|----------------------|------------|--------------------|



#### 3.2 INSTRUMENT CONFIGURATIONS

The as deployed instrumentation configurations are given in this section and completed deployment / recovery sheets are given in Section 7 (page 58).

#### 3.2.1 600kHz ADCP

 Table 11 – Instrument configuration for 10m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10105                         |
| Wave burst duration         | 41 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 42                            |
| Bin size                    | 0.35 m                        |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 500                           |
| Edgetech Acoustic Release   | s/n 32380 release code 641722 |

Some tests needed to be carried out with the ADCP s/n 10105. This was replaced with the space instrument s/n 10120.

Table 12 – Instrument configuration for 30m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10119                         |
| Wave burst duration         | 34 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 69                            |
| Bin size                    | 0.5 m                         |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 250                           |
| Edgetech Acoustic Release   | s/n 32383 release code 642016 |

## 3.2.2 RBR XR420 CT LOGGER

#### Table 13 – Instrument configuration for T&C Mooring Line.

| Parameter                           | Configuration                               |
|-------------------------------------|---------------------------------------------|
| XR 420 Temperature and Conductivity | s/n 12994 (7m) and s/n 12998 (28m)          |
| Sampling and Averaging              | Sample at 1Hz for 1 minute every 10 minutes |



# 3.2.3 RBR TGR2050 HT TIDE GAUGE

# Table 14 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 2050 HT            | s/n 013070                              |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

The TGR 2050 s/n 013070 was withdrawn and replaced with the s/n 014695.

## 3.2.4 Biofouling Mooring

# Table 15 – Instrument configuration for Biofouling Mooring Line.

| Parameter                 | Configuration                                             |
|---------------------------|-----------------------------------------------------------|
| Biofouling Plates         | 3 plates (50cmx50cm) at 3m and 3 plates (50cmx50cm) at 8m |
| Edgetech Acoustic Release | s/n 32387 release code 642144                             |





#### 3.3.1 T&C mooring

The T&C mooring line was deployed by lowering the array down via a rope through the anchor weights. The mooring line is recovered using divers to undo a single shackle that connects the mooring line to the anchor weights. Divers reattach the line onto the weights, after the instruments have been serviced.

#### 3.3.2 ADCP mooring

The ADCP Frame is lowered to the bottom and moved into position by divers, who also attach chain sections that act as anchors. To retrieve the frame divers have to locate the mooring, take of the anchor chains and surface the frame using air lift bags that they attach.

#### 3.3.3 Tidal Gauge.

The Druck pressure sensor was installed at depth of about 1.5m outside a stilling well, which was attached to a permanent steel frame in 1.87m depth of water.

#### 3.3.4 Biofouling mooring

The biofouling mooring line was deployed by lowering the array down via a rope through the anchor weights. Divers will locate the mooring line and retrieve a surface and bottom plate from the line at the required sampling periods.



### 3.4 MALFUNCTIONS AND LESSONS LEARNT

A list of malfunctions experienced and consequent measures to be taken in future are provided in Table 16.

| Problem                                                                                       | Mitigation measure(s)                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Pop-up float on the 10m frame broke loose and surfaced.                                   | The pop-up systems have been made<br>redundant. All frames are only to be fitted<br>with the CART units (for triangulation<br>purposes)                                                            |
| 10m ADCP frame seems to have moved                                                            | The unit was taken out of gulley and put back to its original position.                                                                                                                            |
| The biofouling mooring is lost                                                                | Use smaller (20cm x 20cm) plates, which will offer less resistance and strengthen them with a plastic backing.                                                                                     |
| One of the Y cable pins corroded off in the 30m external battery canister bulkhead connecter. | Cable was sent to TRDI factory.                                                                                                                                                                    |
| The 10m external battery canister only gives a 42V output.                                    | Canister to be sent to TRDI factory. Only<br>the 30m frame to have a spare external<br>battery canister. It was reported from the<br>TDRI factory that the external canister<br>was indeed faulty. |

| Table 16 – Lessons learnt and future mitigation measures |
|----------------------------------------------------------|
| Table Te Ecocono Ioanne and Tataro miligation modearoo   |



# 4. DATA QUALITY CONTROL

# 4.1 ADCP

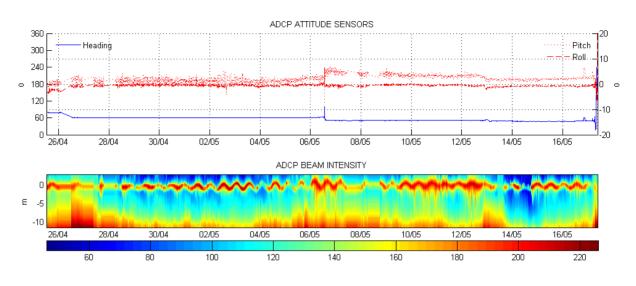
Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further.

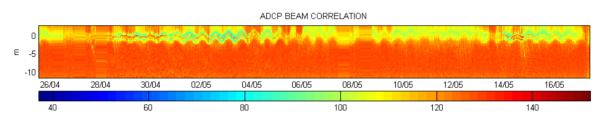
## 4.1.1 Current processing

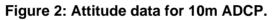
- The record was truncated to exclude times pre and post deployment.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 23' W and 25° 21' W for the 10m and 30m ADCPs respectively.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 2 and Figure 3).
- A cap of 1ms<sup>-1</sup> was implemented for the 30m ADCP data.
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.

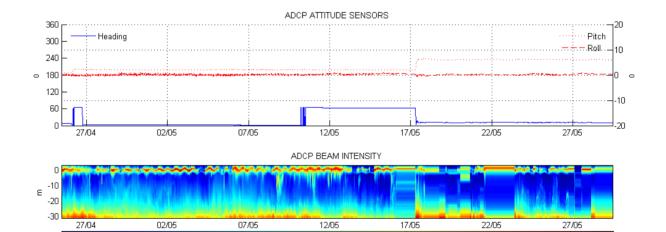
# 4.1.2 Wave processing

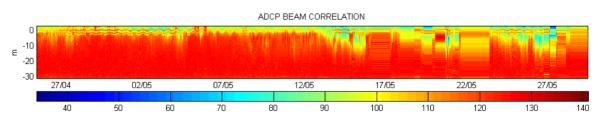
Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:

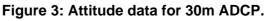

- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 23' W and 25° 21' W for the 10m and 30m ADCPs respectively.
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.


# 4.2 RBR-CT LOGGER


The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.


- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.
- Salinity values less than 34.5psu were flagged for the bottom instrument.
















## 4.3 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- Atmospheric sea level pressure correction was applied.
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is +0.73m.
- Finally the data was averaged over a 10-minute period.

## 4.4 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Recovery of the biofouling plates was scheduled for service visit 3. However, the plates were lost. Recovery of the new plates is now scheduled in three months, where two plates (surface (3m) and bottom (8m)) will be collected.

#### 4.5 WATER SAMPLE.

Water sample were collected and sent to the Council for Scientific and Industrial Research (CSIR) for analysis.

16





## 5. DATA PRESENTATION

All data presented have been subject to the quality control procedures detailed in the previous section. Bad data have been excluded from all plots and calculations.

All plots in this section include a stamp that details the location, depth, time period and number of observations that the plot is based upon. Wherever possible, scaling of parameters has been kept constant throughout this section to facilitate comparison between plots and stations.

## 5.1 10M ADCP

#### 5.1.1 Current Data

#### 5.1.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



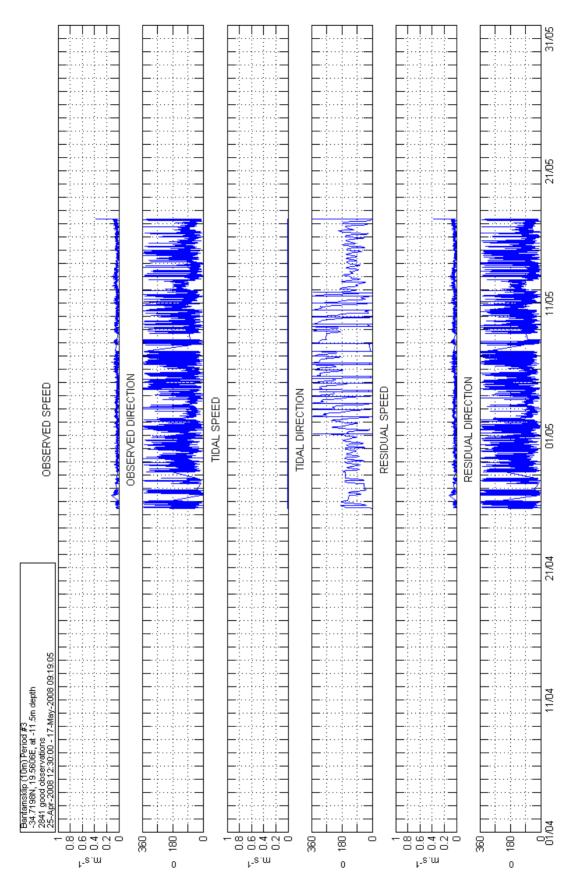



Figure 4: Time series plot for 10m ADCP current data at 11.5m



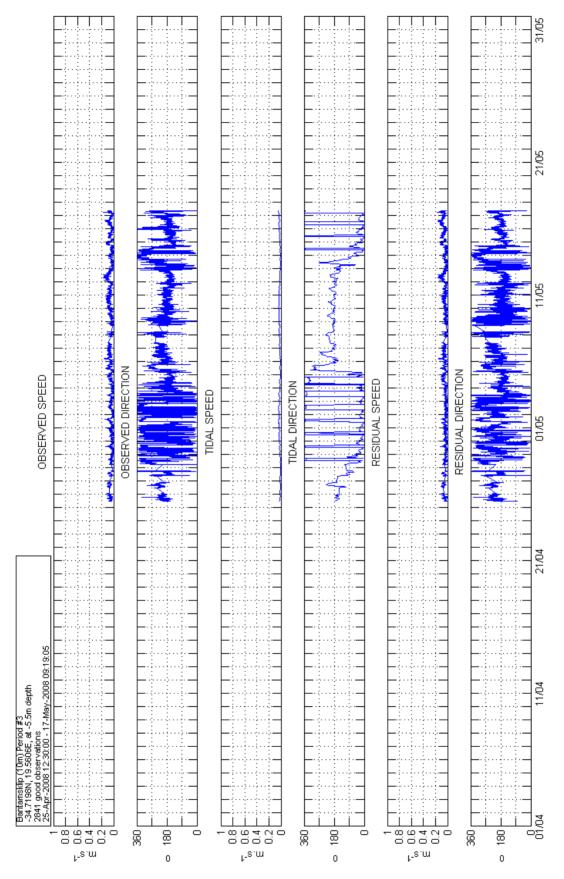



Figure 5: Time series plot for 10m ADCP current data at 5.5m



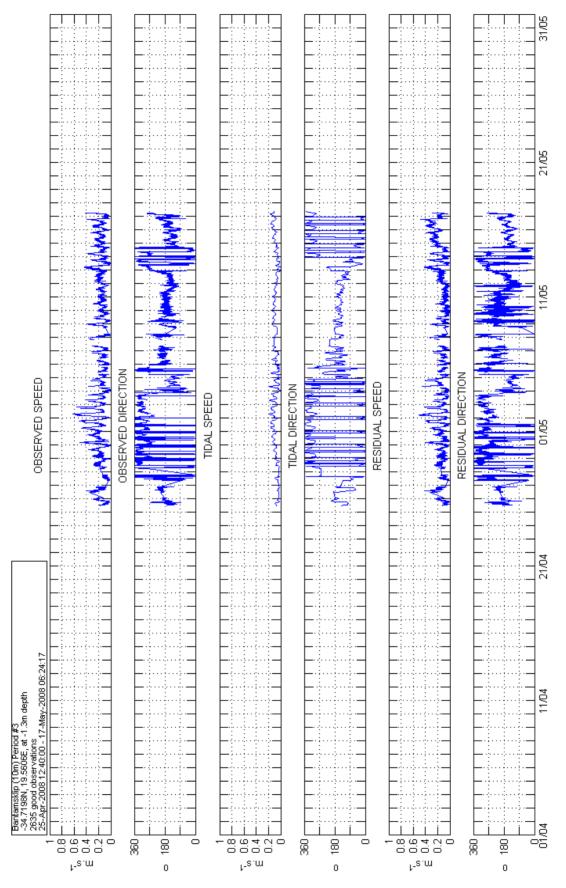



Figure 6: Time series plot for 10m ADCP current data at 1.3m



#### 5.1.1.2 Summary plots

The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.1.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.

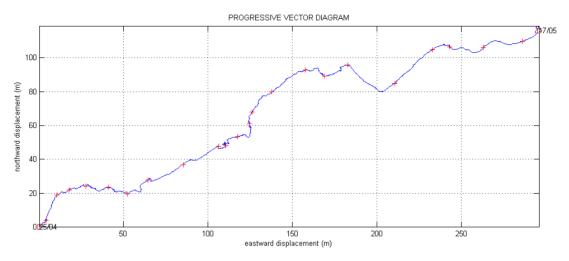


|                                             | ы   | 99.75 | 0.21    | 0.0     | 0.04    | 0.0     | 0.0     | 0.0     | 0.0     | 8.0     | 0.0   | 100.00 |                                               |       |
|---------------------------------------------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|-----------------------------------------------|-------|
|                                             | NNN | 2.46  | 0.04    |         |         |         |         |         |         |         |       | 2.50   |                                               |       |
|                                             | NNN | 2.92  |         |         |         |         |         |         |         |         |       | 2.92   | AM<br>max: 0.38<br>min: 0.00<br>std: 0.02<br> |       |
|                                             | WNW | 1.80  |         |         |         |         |         |         |         |         |       | 1.80   |                                               |       |
|                                             | M   | 1.76  |         |         |         |         |         |         |         |         |       | 1.76   |                                               |       |
|                                             | WSW | 2.04  |         |         |         |         |         |         |         |         |       | 2.04   |                                               | ,<br> |
| ECTION                                      | SW  | 1.90  |         |         |         |         |         |         |         |         |       | 1.90   | 2                                             |       |
| AND DIR                                     | SSW | 2.64  |         |         |         |         |         |         |         |         |       | 2.64   |                                               |       |
| SPEED                                       | S   | 3.66  |         |         | 0.04    |         |         |         |         |         |       | 3.70   |                                               | İ,    |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION   | SSE | 4.47  | 0.04    |         |         |         |         |         |         |         |       | 4.51   | ×<br>2 8 8 9 5                                |       |
| ISTRIBU                                     | SE  | 6.16  |         |         |         |         |         |         |         |         |       | 6.16   |                                               |       |
| JOINT D                                     | ESE | 9.43  | 0.04    |         |         |         |         |         |         |         |       | 9.47   |                                               |       |
|                                             | ш   | 12.11 |         |         |         |         |         |         |         |         |       | 12.11  |                                               |       |
|                                             | ENE | 19.85 |         |         |         |         |         |         |         |         |       | 19.85  |                                               |       |
| 9:05                                        | NE  | 15.52 |         |         |         |         |         |         |         |         |       | 15.52  | CURRENT DIRECTION ROSE                        | 2     |
| -2008 09:1                                  | NNE | 9.08  | 0.04    |         |         |         |         |         |         |         |       | 9.12   | 210 330 210                                   |       |
| 25-Apr-2008 12:30:00 - 17-May-2008 09:19:05 | z   | 3.94  | 0.07    |         |         |         |         |         |         |         |       | 4.01   | 240 300 CU                                    |       |
| 12:30:0(                                    |     | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы      |                                               |       |

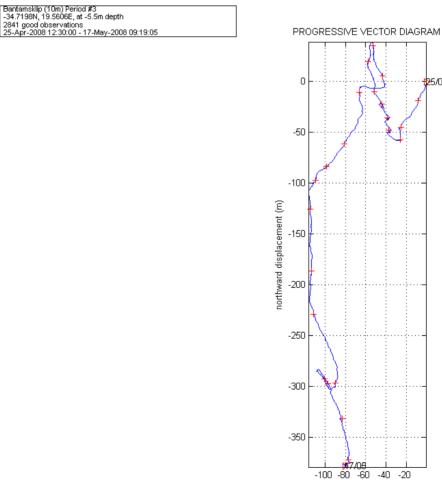




|                                                                       | ы    | 94.51 | 5.49    | 0.0     | 0.0     | 00:0    | 0.0     | 0.0     | 0.0     | 0.0     | 00:0  | 100.00 |                         | L    |           |               |            |                       |          |        |            |       |      |
|-----------------------------------------------------------------------|------|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|-------------------------|------|-----------|---------------|------------|-----------------------|----------|--------|------------|-------|------|
|                                                                       | NNNN | 6.62  | 0.11    |         |         |         |         |         |         |         |       | 6.72   |                         | <br> |           |               | 0.05       |                       |          |        |            |       | 8.0  |
|                                                                       | NVN  | 4.72  | 0.28    |         |         |         |         |         |         |         |       | 5.00   | AM                      |      | max: 0.18 | <b>m</b> m: A | mean: 0:05 | ····std:·U·U3···<br>: |          |        |            |       |      |
|                                                                       | WNW  | 3.63  | 0.07    |         |         |         |         |         |         |         |       | 3.70   | CURRENT SPEED HISTOGRAM |      |           |               |            |                       |          |        |            |       | - 90 |
|                                                                       | N    | 3.84  | 0.25    |         |         |         |         |         |         |         |       | 4.08   | PEED H                  |      |           |               |            |                       |          |        |            |       | -    |
|                                                                       | WSW  | 5.28  | 0.14    |         |         |         |         |         |         |         |       | 5.42   | RENT S                  |      |           |               |            |                       |          |        |            |       | 40   |
| ECTION                                                                | SW   | 7.81  | 0.25    |         |         |         |         |         |         |         |       | 8.06   | CUI                     |      |           |               |            |                       |          |        |            |       |      |
| AND DIRI                                                              | SSW  | 12.04 | 0.53    |         |         |         |         |         |         |         |       | 12.57  |                         |      |           |               |            | <br>                  |          |        |            |       | - 20 |
| SPEED /                                                               | S    | 14.54 | 1.23    |         |         |         |         |         |         |         |       | 15.77  |                         |      |           |               |            | :                     |          |        | <u>.</u> . |       |      |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION                             | SSE  | 12.78 | 1.62    |         |         |         |         |         |         |         |       | 14.40  | Ş                       | 6    | 8         | 00            | :          | D9                    | 9<br>%   | _<br>₽ | 2          |       | -    |
| ISTRIBU                                                               | ЗE   | 6.23  | 0.92    |         |         |         |         |         |         |         |       | 7.15   |                         |      |           |               |            |                       |          |        |            |       |      |
| JOINT D                                                               | ESE  | 2.89  |         |         |         |         |         |         |         |         |       | 2.89   |                         |      |           |               |            |                       |          |        |            |       |      |
|                                                                       | ш    | 1.76  |         |         |         |         |         |         |         |         |       | 1.76   |                         |      |           | 09            |            |                       | <u>6</u> |        | 120        |       |      |
|                                                                       | ENE  | 2.04  |         |         |         |         |         |         |         |         |       | 2.04   | IN ROSE                 |      | ₹/        | ·             |            | v;                    | • • • •  |        |            | 12    |      |
| 3:05                                                                  | ШN   | 2.57  | 0.04    |         |         |         |         |         |         |         |       | 2.60   | JIRECTIC                | 0    | (<br>     |               | 7          |                       |          |        |            | }ŧ    |      |
| 2008 09:1:                                                            | NNE  | 3.31  |         |         |         |         |         |         |         |         |       | 3.31   | CURRENT DIRECTION ROSE  | 0    | <br>₹     | <sup></sup>   |            | *                     |          |        |            | 5,0,1 |      |
| ns<br><u>) - 17-May-</u>                                              | z    | 4.47  | 0.07    |         |         |         |         |         |         |         |       | 4.54   | CUI                     |      |           | 300           |            |                       | 270      | ·.<br> | 240        |       |      |
| 2841 good observations<br>25-Apr-2008 12:30:00 - 17-May-2008 09:19:05 |      | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | Σ      |                         |      |           |               |            |                       |          |        |            |       |      |


# Figure 8: Summary plot for 10m ADCP current data at 5.5m




# Figure 9: Summary plot for 10m ADCP current data at 1.3m



Bantamsklip (10m) Period #3 -34.7198N, 19.5606E, at -11.5m depth 2841 good observations 25-Apr-2008 12:30:00 - 17-May-2008 09:19:05



#### Figure 10: Progressive vector plot for 10m ADCP current data at 11.5m



eastward displacement (m)

#### Figure 11: Progressive vector plot for 10m ADCP current data at 5.5m

25/04



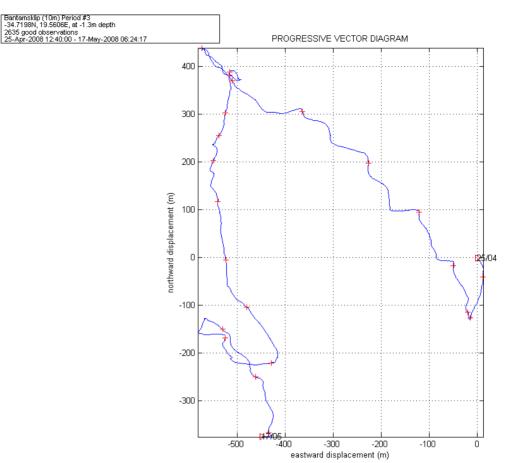



Figure 12: Progressive vector plot for 10m ADCP current data at 1.3m



### 5.1.2 Wave Data.

### 5.1.2.1 <u>Hs and Tp summary plot</u>

Figure 13 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

## 5.1.2.2 <u>Hs and Dp summary plot</u>

Figure 14 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

#### 5.1.2.3 <u>Tp and Dp summary plot</u>

Figure 15 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

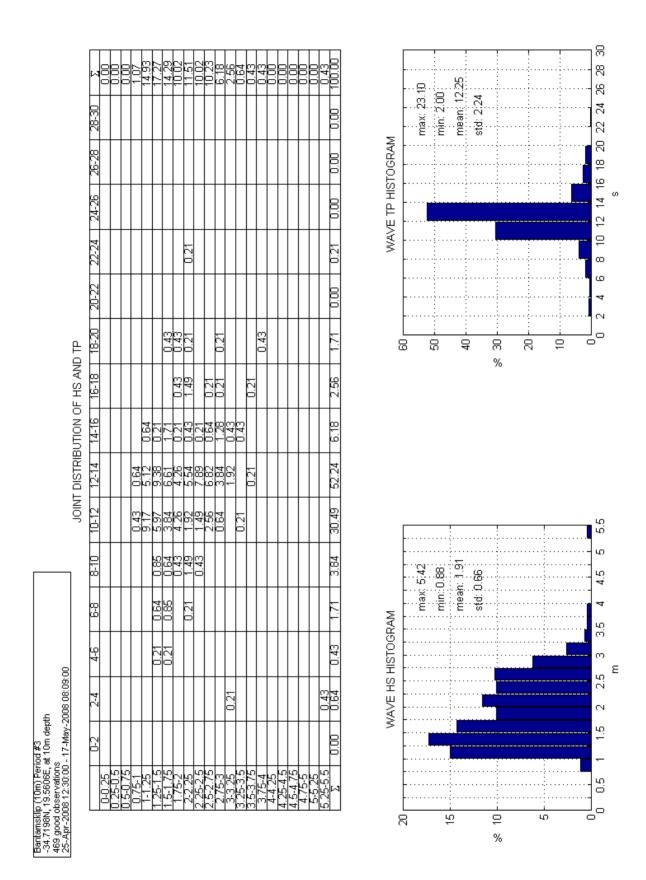



Figure 13: Summary plot of  $H_s$  and  $T_p$ .



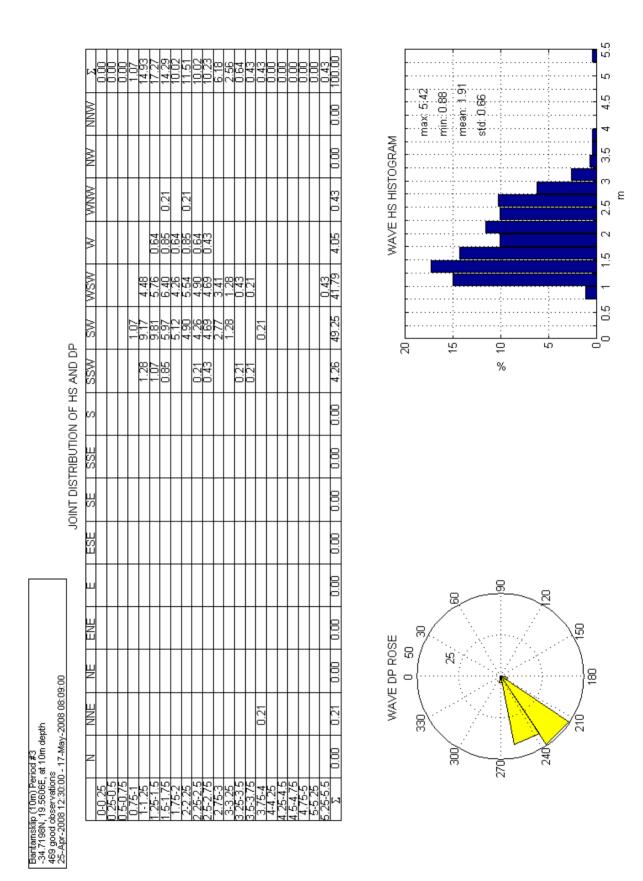
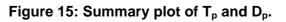




Figure 14: Summary plot of H<sub>s</sub> and D<sub>p</sub>.



|                                                                                                                                         | ы     | 0.00 | 0.64 | 0.43 | 1.71 | 3.84    | 30.49 | 2.24  | 6.18  | 2.56  | 1.71  | 0.0   | 0.21  | 0.0   | 0.0   | 0.0            | 100.00  | 8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|------|------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                         | NNN N |      |      |      |      |         |       | 40    |       |       |       |       |       |       |       |                | 0.00 1( | P HISTOGRAM<br>min: 200<br>min: 200<br>std: 2:24<br>std: 2:22<br>std: 2:24<br>std: 2:22<br>std: 2 |
|                                                                                                                                         | - MN  |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    | 8 20 21 22 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                         | WNW   |      |      | 0.21 |      | 0.21    |       |       |       |       |       |       |       |       |       |                | 0.43    | WAVE TP HISTOGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                         |       |      |      | 0.21 | 1.07 | 0.85    | 0.85  | 1.07  |       |       |       |       |       |       |       |                | 4.05    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                         | WSW   |      | 0.43 |      | 0.43 | 0.64    | 8.53  | 27.08 | 3.41  | 0.85  | 0.21  |       | 0.21  |       |       |                | 41.79   | ج<br>ص<br>ص                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                         | SW    |      | 0.21 |      |      | 2.13    | 18.12 | 23.24 | 2.77  | 1.49  | 1.28  |       |       |       |       |                | 49.25   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| JOINT DISTRIBUTION OF TP AND DP                                                                                                         | SSW   |      |      |      | 0.21 |         | 2.99  | 0.85  |       | 0.21  |       |       |       |       |       |                | 4.26    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ON OF TF                                                                                                                                | S     |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TRIBUTIC                                                                                                                                | SSE   |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OINT DIS                                                                                                                                | SE    |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -<br>-                                                                                                                                  | ESE   |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                         | ш     |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                         | ENE   |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 03:00                                                                                                                                   | ШN    |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    | WAVE DP ROSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bartamskip (10m) Period #3<br>-34.7198N, 19.5606E, at 10m depth<br>469 good observations<br>25-Apr-2008 12:30:00 - 17-May-2008 08:09:00 | NNE   |      |      |      |      |         |       |       |       |       | 0.21  |       |       |       |       |                | 0.21    | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eriod #3<br>E, at 10m d<br>nns<br><u>20 - 17-Ma</u> v                                                                                   | z     |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                | 0.00    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lip (10m) P<br>4, 19.56061<br>observatio<br>008 12:30:(                                                                                 |       | 0-2  | 2-4  | 4-6  | 8-9  | е<br>10 | 10-12 | 12-14 | 14-16 | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 | 26-28 | 28-30<br>28-30 | ы       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bantams)<br>-34.71981<br>469 good<br>25-Apr-2                                                                                           |       |      |      |      |      |         |       |       |       |       |       |       |       |       |       |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |







#### 5.1.2.4 Wave spectral plot

Figure 16 and Figure 17 display wave spectral plots for significant waves events. The time of each spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.



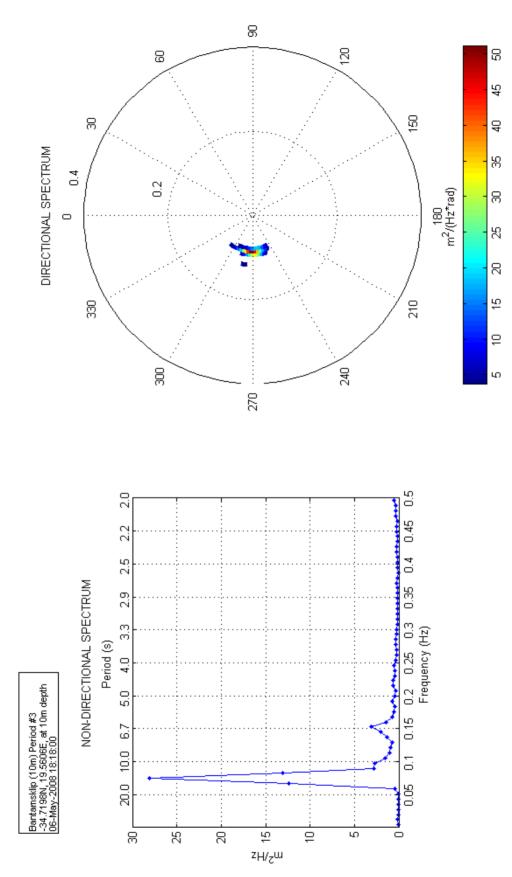



Figure 16: Wave spectra for 06<sup>th</sup> of May 2008 at 18:18:00.



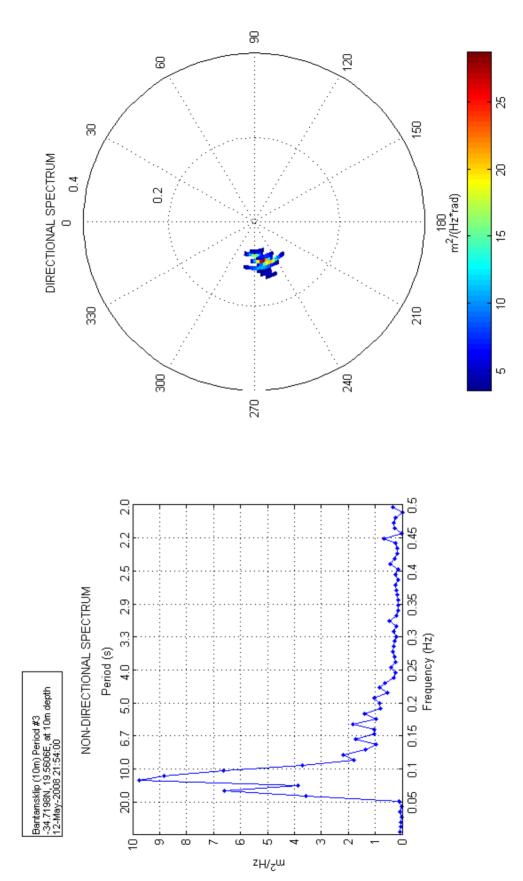



Figure 17: Wave spectra for 12<sup>th</sup> of May 2008 at 21:54:00.





#### 5.2 30M ADCP

#### 5.2.1 Current Data

#### 5.2.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



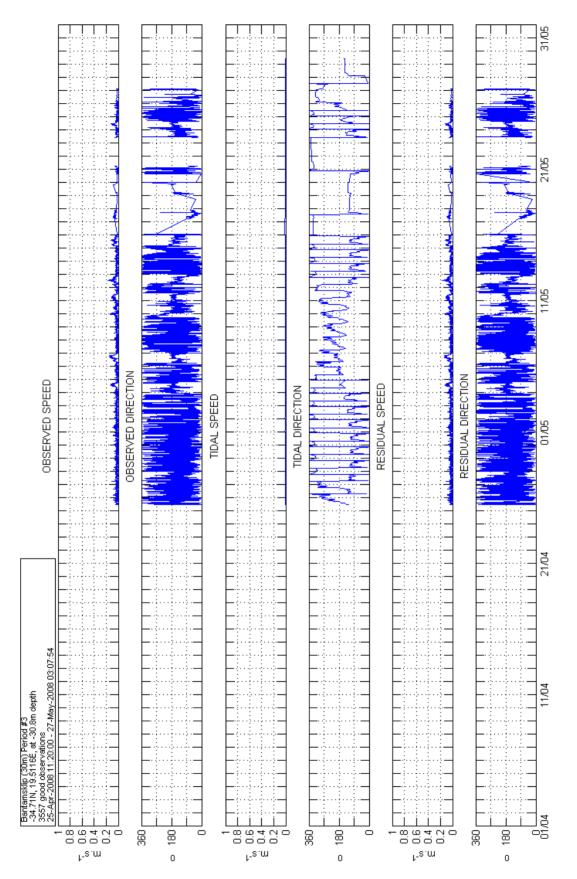



Figure 18: Time series plot for 30m ADCP current data at 30.8m



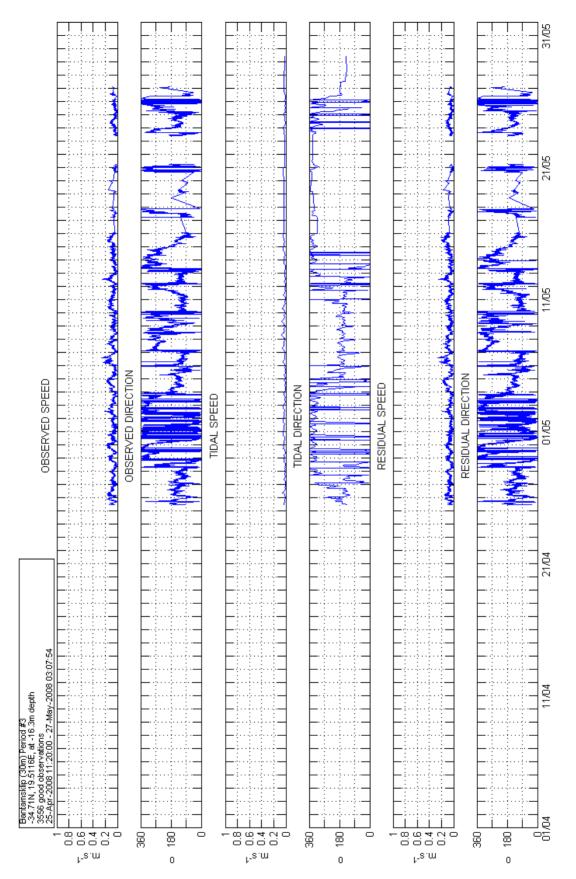



Figure 19: Time series plot for 30m ADCP current data at 16.3m



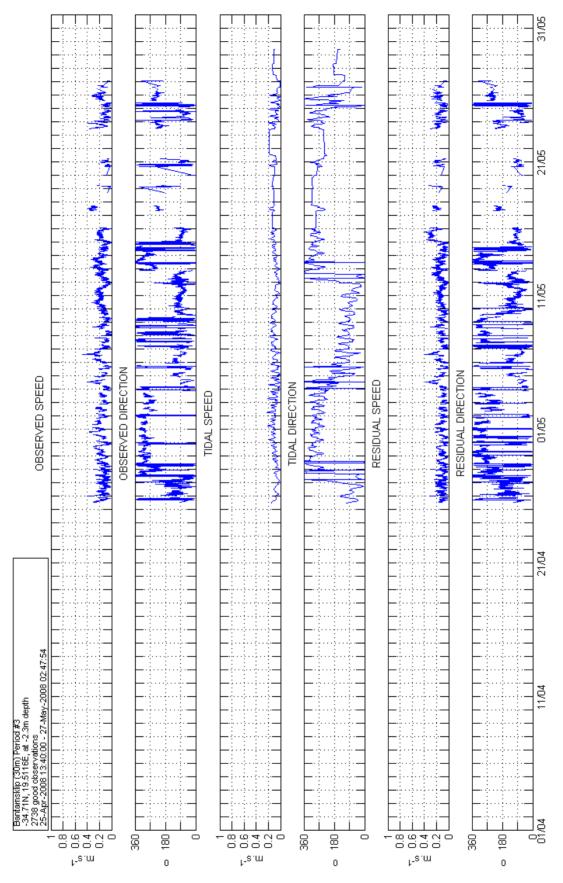



Figure 20: Time series plot for 30m ADCP current data at 2.3m



#### 5.2.1.2 Summary plots

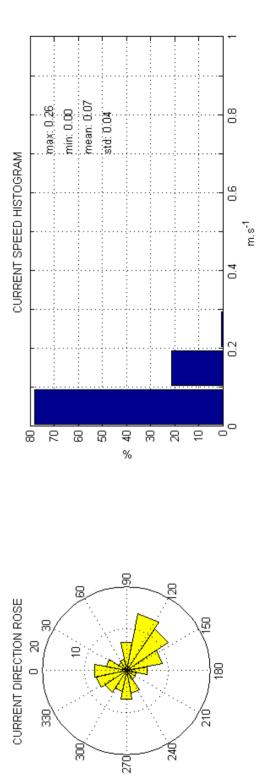
The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.2.1.3 Progressive vector plots

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.



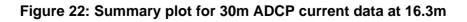
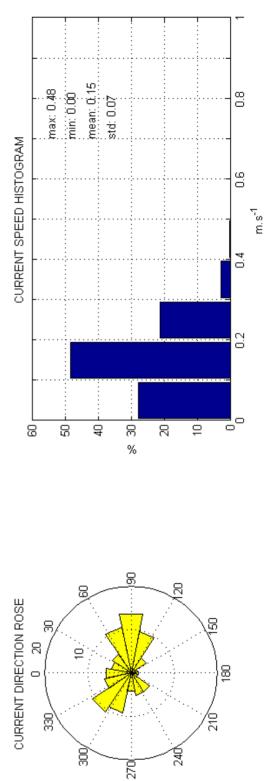


|                                             | ы    | 98.09 | 1.91 | 0.0     | 00.0    | 0.00    | 0.0     | 0.0     | 0.0     | 0.0     | 00.0  | 100.00 |                         |    |              |            |             |                 |          |   |                                                                                             |       |   |
|---------------------------------------------|------|-------|------|---------|---------|---------|---------|---------|---------|---------|-------|--------|-------------------------|----|--------------|------------|-------------|-----------------|----------|---|---------------------------------------------------------------------------------------------|-------|---|
|                                             | NNNN | 5.29  |      |         |         |         |         |         |         |         |       | 5.29   |                         |    |              | 8.         | 0 <u>.0</u> | 02 <sup>.</sup> |          |   |                                                                                             |       |   |
|                                             | NNV  | 5.17  |      |         |         |         |         |         |         |         |       | 5.17   | M                       |    | max: 0.18    | ···imin: 0 | mean:       | ···std:·0.      |          |   |                                                                                             |       |   |
|                                             | WNW  | 4.16  |      |         |         |         |         |         |         |         |       | 4.16   | CURRENT SPEED HISTOGRAM |    |              |            |             |                 |          |   |                                                                                             |       |   |
|                                             | M    | 2.84  |      |         |         |         |         |         |         |         |       | 2.84   | PEED H                  |    |              |            |             |                 |          |   |                                                                                             |       |   |
|                                             | WSW  | 2.95  |      |         |         |         |         |         |         |         |       | 2.95   | RENT S                  |    |              |            |             |                 |          |   |                                                                                             |       |   |
| ECTION                                      | SW   | 3.40  | 0.17 |         |         |         |         |         |         |         |       | 3.57   | G                       |    |              |            |             |                 |          |   |                                                                                             |       |   |
| AND DIR                                     | SSW  | 4.58  | 0.06 |         |         |         |         |         |         |         |       | 4.64   |                         |    |              |            |             |                 |          |   |                                                                                             |       |   |
| SPEED .                                     | S    | 7.82  | 0.53 |         |         |         |         |         |         |         |       | 8.35   |                         |    |              |            |             |                 |          |   |                                                                                             |       |   |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION   | SSE  | 10.26 | £7.0 |         |         |         |         |         |         |         |       | 10.99  |                         | 10 |              | 8          |             | 8               | %        | ₽ | (<br>(                                                                                      | 20    |   |
| ISTRIBU                                     | SE   | 7.14  | 0.22 |         |         |         |         |         |         |         |       | 7.37   |                         |    |              |            |             |                 |          |   |                                                                                             |       |   |
| JOINT D                                     | ESE  | 6.16  | 0.17 |         |         |         |         |         |         |         |       | 6.33   |                         |    |              |            |             |                 |          |   |                                                                                             |       |   |
|                                             | ш    | 5.51  |      |         |         |         |         |         |         |         |       | 5.51   | ш                       |    |              | Ę          | 8           |                 | <u>6</u> |   | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |       |   |
|                                             | ENE  | 8.21  |      |         |         |         |         |         |         |         |       | 8.21   | ON ROSE                 |    | 8/.          | /<br>·     | ·.<br>·.    |                 |          |   |                                                                                             |       | } |
| +0.7                                        | ¥    | 9.28  |      |         |         |         |         |         |         |         |       | 9.28   | OIRECTIC                | 0  | {            | ⊒          | Z           |                 | ×        |   | <mark>a</mark><br>Film                                                                      | ۱<br> | @ |
|                                             | NNE  | 8.21  | 0.03 |         |         |         |         |         |         |         |       | 8.24   | CURRENT DIRECTION ROSI  |    | 8<br>8<br>1. |            |             |                 |          |   | ••••••                                                                                      |       | ) |
| 111 - E                                     | z    | 7.11  |      |         |         |         |         |         |         |         |       | 7.11   | 9                       |    |              | 000        |             |                 | 270      |   | 240                                                                                         | /     |   |
| 25-Apr-2008 11:20:00 - 27-May-2008 03:07:54 |      |       | 2    | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 |        |                         |    |              |            |             |                 |          |   |                                                                                             |       |   |

Figure 21: Summary plot for 30m ADCP current data at 30.8m




|                                                                                                                                             | ы   | 78.12 | 21.34   | 0.53    | 0.00    | 0.0     | 0.0     | 0.00    | 0.00    | 0.0     | 0.00  | 100.00 |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|
|                                                                                                                                             | NNN | 5.12  | 2.14    |         |         |         |         |         |         |         |       | 7.26   |
|                                                                                                                                             | MW  | 4.81  | 1.27    |         |         |         |         |         |         |         |       | 6.07   |
|                                                                                                                                             | WNW | 4.75  | 0.31    |         |         |         |         |         |         |         |       | 5.06   |
|                                                                                                                                             | ×   | 6.16  | 0.67    | 0.03    |         |         |         |         |         |         |       | 6.86   |
|                                                                                                                                             | WSW | 4.50  | 0.98    |         |         |         |         |         |         |         |       | 5.48   |
| NOITON                                                                                                                                      | SW  | 2.25  | 0.25    |         |         |         |         |         |         |         |       | 2.50   |
| IOINT DISTRIBUTION OF SPEED AND DISECTION                                                                                                   | SSW | 2.39  | 0.06    |         |         |         |         |         |         |         |       | 2.45   |
|                                                                                                                                             | N L | 4.27  | 0.67    |         |         |         |         |         |         |         |       | 4.95   |
|                                                                                                                                             | SSE | 6.19  | 2.53    |         |         |         |         |         |         |         |       | 8.72   |
| лыдты                                                                                                                                       | SE  | 7.23  | 4.72    | 0.11    |         |         |         |         |         |         |       | 12.06  |
|                                                                                                                                             | ESE | 8.58  | 4.95    | 0.39    |         |         |         |         |         |         |       | 13.92  |
|                                                                                                                                             | ш   | 5.79  | 1.10    |         |         |         |         |         |         |         |       | 6.89   |
|                                                                                                                                             | ENE | 2.81  |         |         |         |         |         |         |         |         |       | 2.81   |
| 7:54                                                                                                                                        | NE  | 2.39  |         |         |         |         |         |         |         |         |       | 2.39   |
| cententseup (Join) refroa #3<br>-34.71N, 19.5116E, at -16.3m depth<br>3556 good observations<br>25-Apr-2008 11:20:00 - 27-May-2008 03:07:54 | NNE | 4.75  | 0.17    |         |         |         |         |         |         |         |       | 4.92   |
| -16.3m de<br>ns<br><u>) - 27-May-</u>                                                                                                       | z   | 6.13  | 1.52    |         |         |         |         |         |         |         |       | 7.65   |
| Dantamiskip ( John Period #3<br>-34.71N, 19.5116E, at -16.3m depth<br>3556 good observations<br>25-Apr-2008 11:20:00 - 27-May-20            |     | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | N      |







|                  | z    | NNE  | NE   | ENE   | ш     | ESE  | SE   | SSE  | S    | SSW  | SW   | WSW  | M    | WNW  | MN    | NNN  | ы      |
|------------------|------|------|------|-------|-------|------|------|------|------|------|------|------|------|------|-------|------|--------|
| 1 <sup>°</sup> 1 | 1.97 | 2.30 | 1.86 | 2.59  | 2.92  | 2.08 | 1.28 | 0.91 | 1.02 | 0.62 | 0.33 | 1.35 | 1.39 | 2.05 | 2.74  | 2.26 | 27.68  |
| L.,              | 3.10 | 1.94 | 2.52 | 4.97  | 8.07  | 5.33 | 2.23 | 0.47 | 0.55 | 0.73 | 1.53 | 2.45 | 2.30 | 3.80 | 5.37  | 2.99 | 48.36  |
|                  | 0.66 | 0.29 | 0.51 | 2.56  | 2.74  | 2.19 | 0.66 | 20:0 | 0.11 | 0.26 | 2.26 | 1.24 | 0.62 | 3.40 | 2.59  | 0.95 | 21.11  |
| 0.3-0.4 0        | 0.04 |      | 0.22 | 0.55  | 0.07  | 0.11 |      |      |      | 0.04 | 1.06 | 0.18 |      | 0.18 | 0.18  | 0.07 | 2.70   |
| 0.4-0.5          |      |      |      | 0.11  | 0.04  |      |      |      |      |      |      |      |      |      |       |      | 0.15   |
| 0.5-0.6          |      |      |      |       |       |      |      |      |      |      |      |      |      |      |       |      | 80.0   |
| 0.6-0.7          |      |      |      |       |       |      |      |      |      |      |      |      |      |      |       |      | 00:0   |
| 0.7-0.8          |      |      |      |       |       |      |      |      |      |      |      |      |      |      |       |      | 0.0    |
| 0.8-0.9          |      |      |      |       |       |      |      |      |      |      |      |      |      |      |       |      | 80.0   |
|                  |      |      |      |       |       |      |      |      |      |      |      |      |      |      |       |      | 00.0   |
| -27              | 5.77 | 4.53 | 5.11 | 10.77 | 13.84 | 9.72 | 4.16 | 1.46 | 1.68 | 1.64 | 5.19 | 5.22 | 4.31 | 9.42 | 10.88 | 6.28 | 100.00 |



Bantamskip (30m) Period #3 -34.71N, 19.5116E, at -2.3m depth 2738 good observations 25.Apr-2008 13.40:00 - 27-May-2008 02:47:54 25.Apr-2008 13.40:00 - 27-May-2008 02:47:54 0.0.1 1 1 0.7 3 30 1

JOINT DISTRIBUTION OF SPEED AND DIRECTION

### Figure 23: Summary plot for 30m ADCP current data at 2.3m



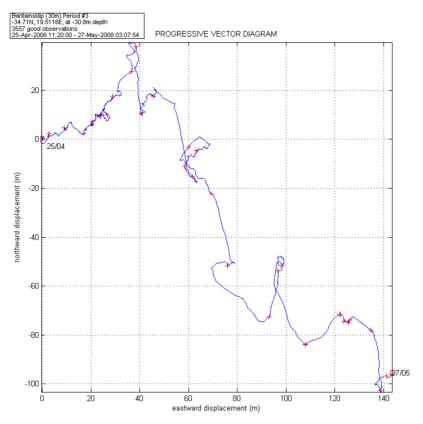



Figure 24: Progressive vector plot for 30m ADCP current data at 30.8m

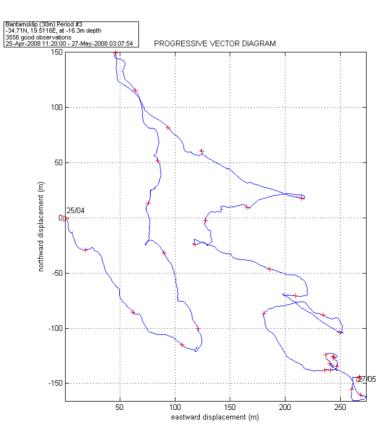



Figure 25: Progressive vector plot for 30m ADCP current data at 16.3m

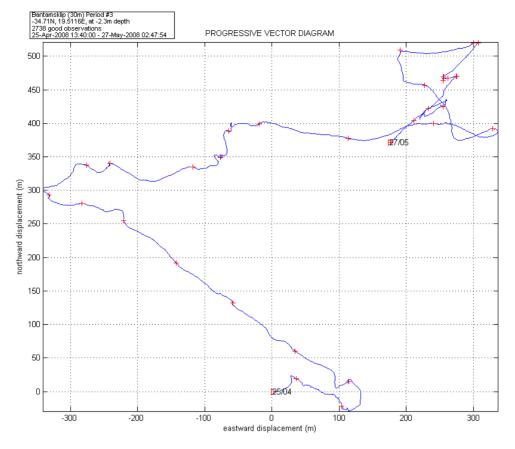



Figure 26: Progressive vector plot for 30m ADCP current data at 2.3m





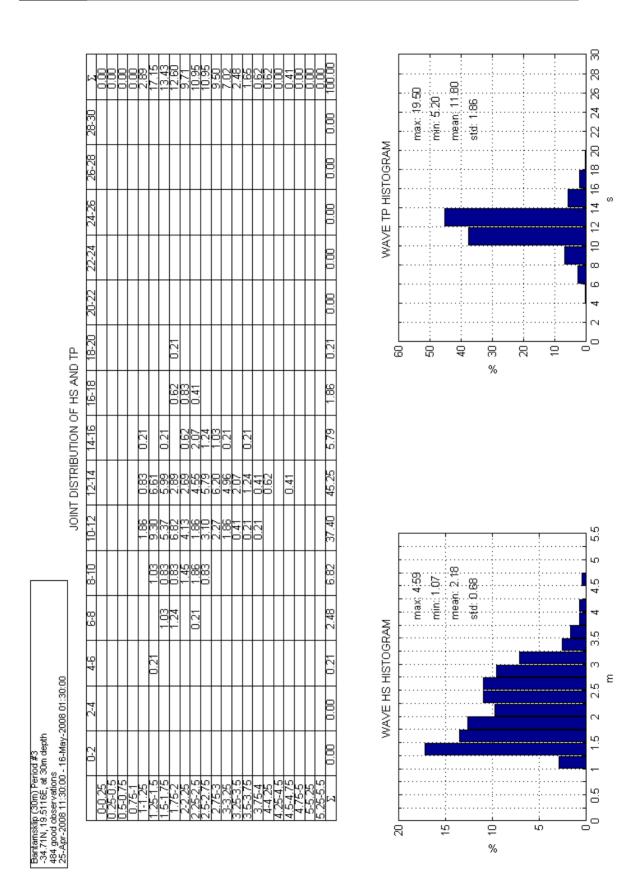
#### 5.2.2 Wave Data.

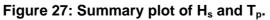
#### 5.2.2.1 <u>Hs and Tp summary plot</u>

Figure 27 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

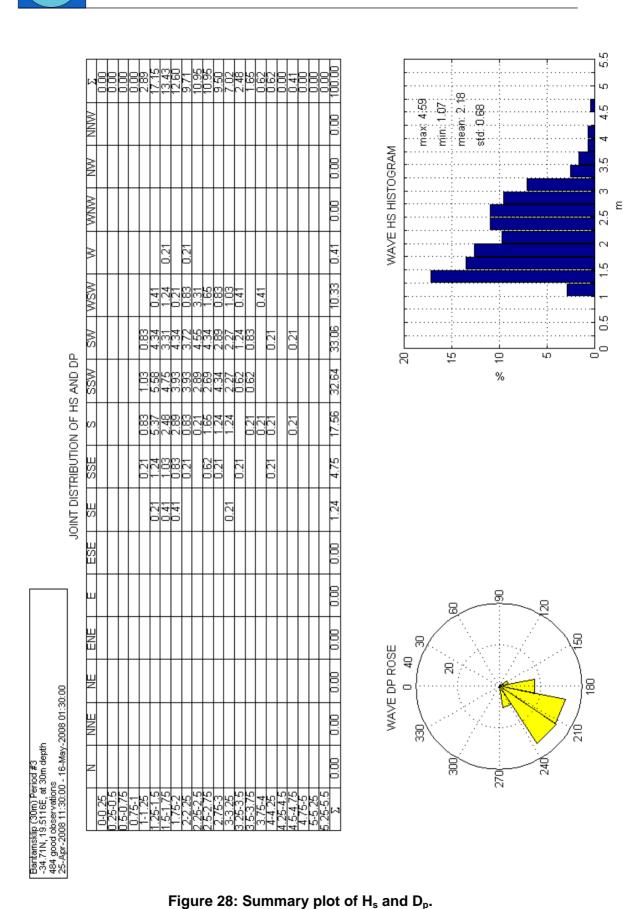
- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

#### 5.2.2.2 <u>Hs and Dp summary plot</u>


Figure 28 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:


- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

#### 5.2.2.3 <u>Tp and Dp summary plot</u>


Figure 29 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.











|                                                                      | ы   | 0.0 | 0.0 | 0.21 | 2.48 | 6.82 | 37.40             | 45.25        | 5.79  | 1.86  | 0.21  | 0.00  | 0.0   | 0.0   | 0.0   | 0.00  | 100.00 |                                                                    |
|----------------------------------------------------------------------|-----|-----|-----|------|------|------|-------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------------------------------------------------------------------|
|                                                                      | NNN |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   | A max: 19.50<br>min: 5.20<br>mean: 11.80<br>std: 1.86<br>std: 1.86 |
|                                                                      | NNN |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   | 18 20                                                              |
|                                                                      | WNW |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   | WAVE TP HISTOGRAM                                                  |
|                                                                      | M   |     |     |      |      | 0.21 | 0.21              |              |       |       |       |       |       |       |       |       | 0.41   |                                                                    |
|                                                                      | WSW |     |     | 0.21 | 0.41 | 2.07 | 1.86              | 3.93         | 1.65  | 0.21  |       |       |       |       |       |       | 10.33  |                                                                    |
|                                                                      | N/S |     |     |      |      | 1.86 | 88.<br>88.<br>88. | 17.36        | 3.10  | 1.65  | 0.21  |       |       |       |       |       | 33.06  |                                                                    |
| AND DF                                                               | SSW |     |     |      | 0.41 | 1.03 | 13.22             | 16.94        | 1.03  |       |       |       |       |       |       |       | 32.64  |                                                                    |
| N OF TP                                                              | S   |     |     |      | 0.41 | 0.83 | 10.33             | 5.99         |       |       |       |       |       |       |       |       | 17.56  |                                                                    |
| JOINT DISTRIBUTION OF TP AND DP                                      | SSE |     |     |      | 0.62 | 0.83 | 2.48              | 0.83<br>88:0 |       |       |       |       |       |       |       |       | 4.75   |                                                                    |
| INT DIST                                                             | SE  |     |     |      | 0.62 |      | 0.41              | 0.21         |       |       |       |       |       |       |       |       | 1.24   |                                                                    |
| Ş                                                                    | ESE |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   |                                                                    |
|                                                                      | ш   |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   | 50 <u>3</u> 0                                                      |
|                                                                      | ENE |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   |                                                                    |
| 8                                                                    | R   |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   | AVE DP ROSE                                                        |
| 2008 01:30                                                           | NNE |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   |                                                                    |
| 484 good observations<br>25-Apr-2008 11:30:00 - 16-May-2008 01:30:00 | z   |     |     |      |      |      |                   |              |       |       |       |       |       |       |       |       | 0.00   |                                                                    |
| servation:<br>8 11:30:00                                             |     | 0-2 | 2-4 | 4-6  | 6-8  | 8-10 | 10-12             | 12-14        | 14-16 | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 | 26-28 | 28-30 | ы      |                                                                    |

Figure 29: Summary plot of  $T_{\rm p}$  and  $D_{\rm p}.$ 



#### 5.2.2.4 Wave spectral plot

Figure 30 and Figure 31 display wave spectral plots for significant waves events. The time of each spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.



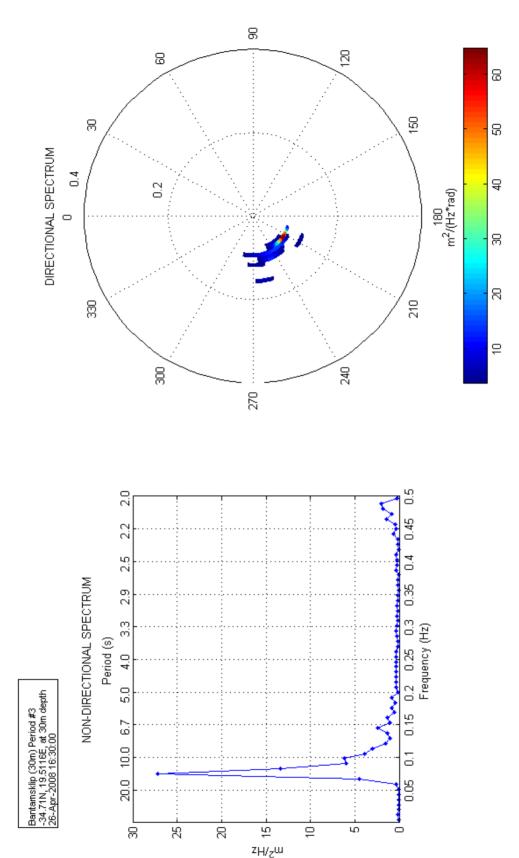



Figure 30: Wave spectra for 26<sup>th</sup> of April 2008 at 16:30:00.



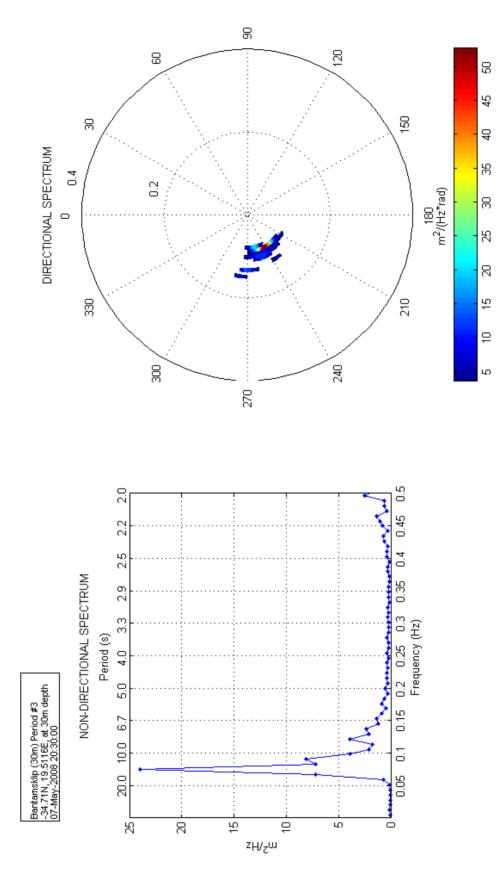



Figure 31: Wave spectra for 7<sup>th</sup> of May 2008 at 20:30:00.



### 5.3 COMPARISON PLOTS

#### 5.3.1 Hs, Tp and Dp time series plots for 10m and 30m ADCPs.

Figure 32 displays a time series plot of the main wave parameters:

- The first (upper) panel is of the significant wave height (Hs).
- The second panel is of the peak period (Tp).
- The third panel is of the peak wave direction (Dp).

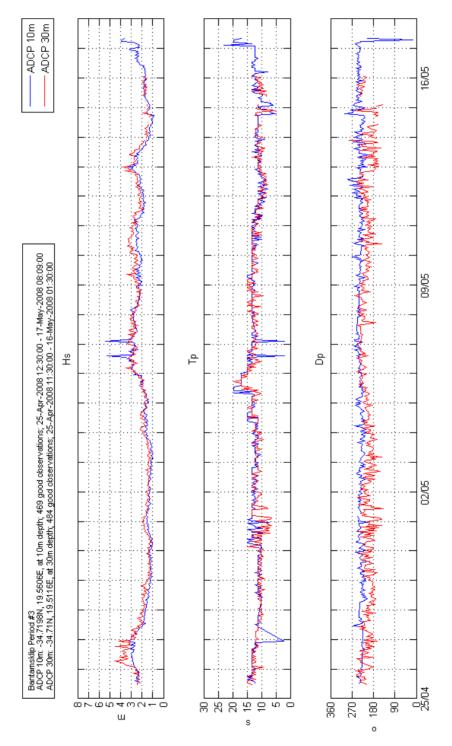



Figure 32: Wave Hs, Tp, and Dp for 10m and 30m ADCP.



#### 5.3.2 Water properties: RBR-CT loggers and ADCPs temperature sensors.

Figure 33 displays a time series plot, which consists of:

- The first panel is of the observed water temperature from surface and bottom RBR loggers as well as ADCP temperature sensor against time.
- The second panel is of the derived salinity from the two RBR loggers against time.

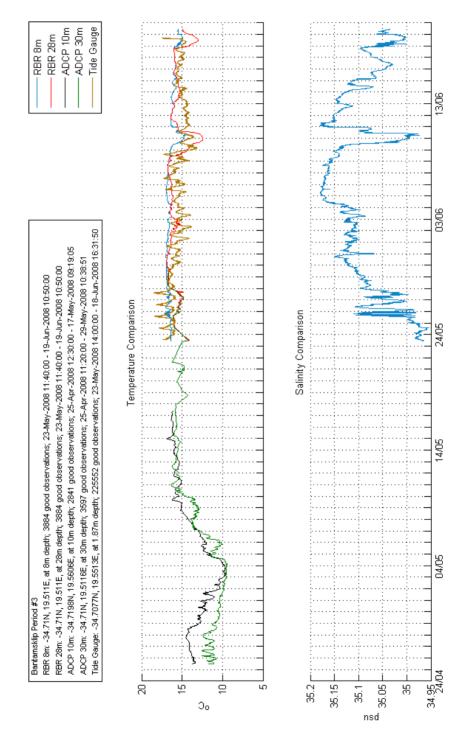



Figure 33: Time series of temperature and salinity from the RBR loggers and ADCPs.



#### 5.4 TIDE GAUGE

Figure 34 displays a time series plot of the tidal height.

- The first (upper) panel is of the observed height against time.
- The second panel is of the tidal height, calculated from the observed height, against time. The tidal calculation follows the method of Foreman and uses the observed height as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The third panel is of the residual height against time. The residual has been calculated as the observed height minus the tidal height.

Table 17 shows the tidal harmonics resulting from the analysis.

#### 5.5 WATER SAMPLES.

Analysis of water samples were undertaken by the CSIR and results are presented as an appendage (Section 8, page 75).



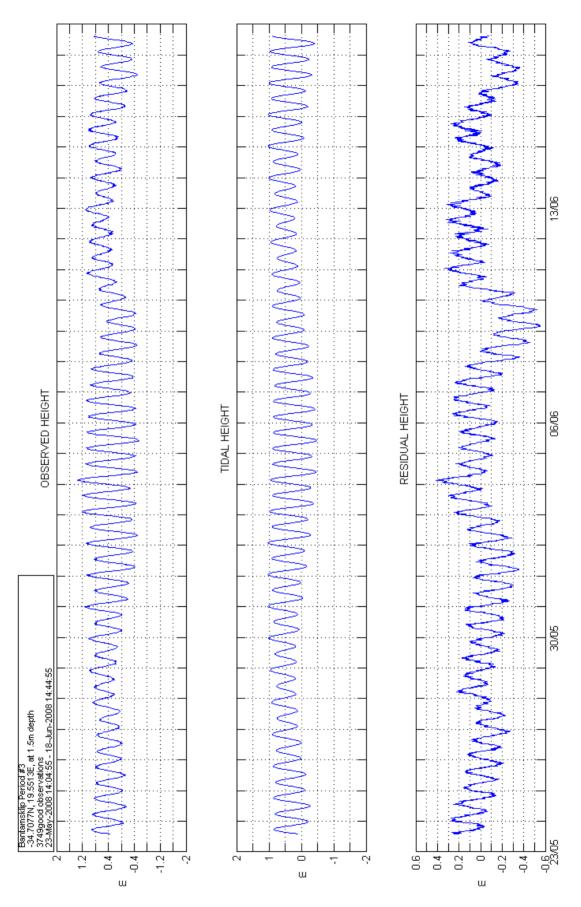



Figure 34: Tidal time series.



#### Table 17: Tidal harmonics.

Bantamsklip Period #3 -34.7077N, 19.5513E, in 1.5m depth 3749 good observations 23-May-2008 14:04:55 - 18-Jun-2008 14:44:55

#### HARMONIC COMPONENTS

| Component | Amplitude (m) | Phase (deg) |
|-----------|---------------|-------------|
| MSF       | 0.15          | 230.24      |
| 01        | 0.02          | 265.17      |
| K1        | 0.07          | 138.75      |
| M2        | 0.51          | 91.42       |
| S2        | 0.15          | 111.71      |
| MЗ        | 0.01          | 3.19        |
| SK3       | 0.01          | 160.71      |
| M4        | 0.01          | 138.50      |
| MS4       | 0.00          | 218.63      |
| S4        | 0.00          | 232.96      |
| 2MK5      | 0.00          | 62.77       |
| 2SK5      | 0.00          | 293.54      |
| M6        | 0.00          | 52.90       |
| 2MS6      | 0.00          | 106.23      |
| 2SM6      | 0.00          | 185.83      |
| ЗМК7      | 0.00          | 69.74       |
| M8        | 0.00          | 9.54        |

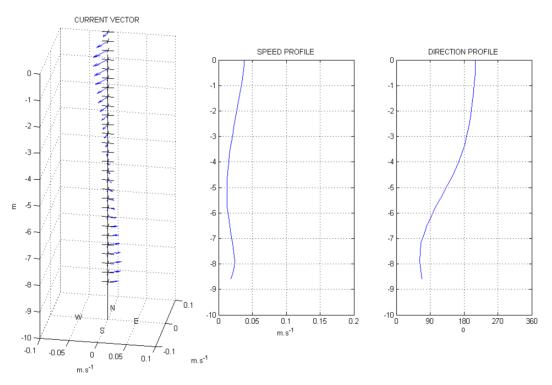
55

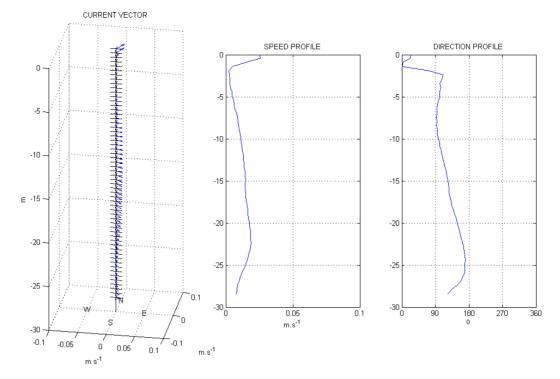


#### 6. DISCUSSION

The third set of oceanographic data collected off the coast of Bantamsklip for the period between April 25<sup>th</sup> and June 19<sup>th</sup> 2008 has been presented in this report. The measurements taken fall within a larger dataset being compiled to assist a preliminary safety survey of multiple sites around the South African coast reports for Eskom.

At the Bantamsklip site, 2 600 kHz ADCP, 2 RBR-CT loggers and 1 RBR tide gauge have been deployed to measure currents, waves, water temperature and salinity and tidal record. The ADCP is fixed on a frame at ~10m and ~30m and the RBR loggers are moored at ~7m and ~28m below the surface. During the service visit, undertaken during June  $18^{th} - 20^{th}$  and  $27^{th}$  2008, it was found that the biofouling plates were lost. This report presents data obtained from the 2 ADCPs, the 2 RBR-CT loggers, the RBR tide gauge and water samples collected during the service visit.





Figure 35: Mean profile plot for 10m ADCP.

The average surface flow for the 10m ADCP was  $0.16ms^{-1}$ , decreasing to  $\sim 0.03ms^{-1}$  at 11.5m depth. The flow direction at the surface was predominantly towards the S/SE, while at depth, it was mainly towards the ENE.

At the 30m site, the average flow at 2.3m was 0.15ms<sup>-1</sup>, decreasing to 0.03ms<sup>-1</sup> at 30.8m depth. The flow direction was variable throughout the water column.







#### Figure 36: Mean profile plot for 30m ADCP.

| _        | Hs (m) | Tp (s) | Dp     |
|----------|--------|--------|--------|
| 10m ADCP | 1.91   | 12.25  | WSW-SW |
| 30m ADCP | 2.18   | 11.80  | SSW-SW |

#### Table 18: Mean wave parameters.

Table 18 summarises the wave parameters for both ADCPs. Figure 32 shows a fair agreement in wave parameters measured by both ADCPs.

The conductivity sensor for the bottom RBR logger failed. However, in Figure 33, the temperature sensors on board the ADCPs, tide gauge and RBR loggers recorded reasonably similar values during the deployment period.

Unfortunately, due to insufficient data, it was not possible to fully resolve the tidal constituents in the present record.



#### 7. INSTRUMENT PARTICULARS FOR SERVICE VISIT TWO

#### 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

.

### LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

| Acoustic release (1) serial number and release code |  |
|-----------------------------------------------------|--|
| Acoustic release (2) serial number and release code |  |
| Argos beacon serial number                          |  |

#### 2. <u>RECOVERY</u>

| Instrument type and serial number                 |      |     | 201    | 10105     |
|---------------------------------------------------|------|-----|--------|-----------|
| Deployment name                                   |      |     |        |           |
| Deployment date and time                          |      | GMT |        | 105 13hoc |
| Deployment latitude\ northings                    |      |     |        | 3.187     |
| Deployment longitude\ eastings                    |      |     | 195 3  | 3.635     |
| Recovery information                              |      |     |        |           |
| Recovery date and time                            |      | GMT | 19/06/ | 05 13400  |
| Inspect the transducer faces for cuts or scratche | s    |     |        |           |
| Inspect the instrument for signs of flooding      |      |     |        |           |
| Switch off and download the instrument using W    | inSC |     |        |           |
| Switch off date and time                          | (ÌT) | GMT | 19bel  | 03 15h00  |
| Name of the data directory                        | -    |     |        |           |
| File size                                         |      |     |        |           |

### LWANDLE TECHNOLOGIES (PTY) LTD

#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

| Acoustic release (1) serial number and release code |  |
|-----------------------------------------------------|--|
| Acoustic release (2) serial number and release code |  |
| Argos beacon serial number                          |  |

#### 2. <u>RECOVERY</u>

| Instrument type and serial number                 |          |     | RDI   | 10    | 119   |
|---------------------------------------------------|----------|-----|-------|-------|-------|
| Deployment name                                   |          |     |       |       |       |
| Deployment date and time                          |          | GMT | 25/00 | 105   | Izh   |
| Deployment latitude\ northings                    | <u> </u> |     | 3401  | 12.0  | 03    |
| Deployment longitude\ eastings                    |          |     | 190   | 30.   | (46   |
| Recovery information                              | ~        |     |       |       |       |
| Recovery date and time                            | (IT)     | GMT | 19/06 | ors.  | ih3   |
| Inspect the transducer faces for cuts or scratche | s        |     |       | F,    | ~2    |
| Inspect the instrument for signs of flooding      |          |     |       | F.    | ~e    |
| Switch off and download the instrument using W    | inSC     |     |       |       |       |
| Switch off date and time                          |          | GMT | 19/06 | 108   | 18 ho |
| Name of the data directory                        |          |     |       |       |       |
| File size                                         |          |     | 3     | ZC .n | er_   |





### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. <u>DEPLOYMENT</u>

| nt" |      | RUT                                    | 10119<br>40103<br>                                         |
|-----|------|----------------------------------------|------------------------------------------------------------|
|     |      |                                        |                                                            |
|     |      |                                        |                                                            |
|     |      |                                        |                                                            |
|     |      | ······································ |                                                            |
|     |      |                                        |                                                            |
| nt" |      |                                        |                                                            |
| nt" |      |                                        |                                                            |
|     |      |                                        |                                                            |
|     |      |                                        |                                                            |
|     |      | 600                                    | KHZ                                                        |
|     |      | 10m                                    |                                                            |
|     |      |                                        |                                                            |
|     |      |                                        |                                                            |
|     |      |                                        |                                                            |
|     |      |                                        |                                                            |
|     |      | 50                                     | 0                                                          |
|     |      |                                        |                                                            |
|     |      |                                        |                                                            |
|     |      | 101                                    | . 1 I                                                      |
|     |      | RIO                                    |                                                            |
|     |      |                                        |                                                            |
|     |      | 5.6                                    |                                                            |
|     |      | 1000 Mey                               | В                                                          |
|     |      | ر<br>· · · · · ·                       |                                                            |
|     |      | 141m                                   | 15,76m                                                     |
|     |      |                                        | 2 1 Pirchis                                                |
|     |      |                                        | 1.05cm/s                                                   |
|     |      |                                        | 401.44Me                                                   |
|     | ₃GMT |                                        |                                                            |
|     |      |                                        | L                                                          |
|     |      | BKICH                                  |                                                            |
|     |      |                                        |                                                            |
|     | GMT  |                                        | 46 20/06/c                                                 |
| LT  | GMT  |                                        | los ilhou                                                  |
|     |      |                                        | 3.187                                                      |
|     |      |                                        | 3-635                                                      |
|     |      | Benk                                   | emskl.p 10.n                                               |
|     |      |                                        | IUW                                                        |
|     |      |                                        | 10m                                                        |
|     |      |                                        |                                                            |
|     |      | LTGMT<br><br>LTGMT                     | $\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$ |



.

# LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

#### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

| Instrument type and serial number                  |       |       | ROJ    | 10120                                 |  |  |
|----------------------------------------------------|-------|-------|--------|---------------------------------------|--|--|
| Check O-rings on both sides of the instrument      | 1.402 |       |        |                                       |  |  |
| Install a new battery and check the voltage        | 44.5V |       |        |                                       |  |  |
| Connect the battery and communications cable       | -     |       |        |                                       |  |  |
| Inspect the transducer faces for cuts or scratches | -     |       |        |                                       |  |  |
| Seal the instrument                                |       |       |        |                                       |  |  |
| Connect the instrument to a PC and run WinSC       |       |       |        |                                       |  |  |
| Click on "configure an ADCP for a new deployment"  |       |       |        |                                       |  |  |
| Set up the sampling parameters                     |       |       |        | ·                                     |  |  |
| Frequency of unit being used                       |       |       | 600    | KHZ                                   |  |  |
| Depth range                                        |       |       | 301    |                                       |  |  |
| Number of bins (calculated automatically)          |       |       | 69     |                                       |  |  |
| Bin Size (calculated automatically)                |       |       | 05     | >                                     |  |  |
| Wave burst duration                                |       |       | 34.    |                                       |  |  |
| Time between wave bursts                           |       |       | 60 1   |                                       |  |  |
| Pings per ensemble                                 |       |       | 250    |                                       |  |  |
| Ensemble interval                                  |       |       |        | 10,110                                |  |  |
| Deployment duration                                |       |       | hsdup  |                                       |  |  |
| Transducer depth                                   |       |       | 30 m 3 |                                       |  |  |
| Any other commands                                 |       |       | RIO    |                                       |  |  |
| Magnetic variation                                 |       |       | -      |                                       |  |  |
| Temperature                                        |       |       | 54     |                                       |  |  |
| Recorder size                                      |       |       | 1000 1 | k-1                                   |  |  |
| Consequences of the sampling parameters            |       |       |        |                                       |  |  |
| First and last bin range                           |       |       | 1.6m   |                                       |  |  |
| Battery usage                                      |       |       |        | 3 Parchis                             |  |  |
| Standard deviation                                 |       |       |        | 0 séconts                             |  |  |
| Storage space required                             |       |       |        | 340, nego                             |  |  |
| Set the ADCP clock                                 |       | , GMT |        | · · · · · · · · · · · · · · · · · · · |  |  |
| Run pre-deployment tests                           |       |       |        | <u></u>                               |  |  |
| Name the ADCP deployment                           |       | ß     | K 304  |                                       |  |  |
| Deployment details                                 |       |       | 1      |                                       |  |  |
| Switch on date and time                            |       | GMT   |        | os usihsy                             |  |  |
| Deployment date and time                           | LT    | GMT   |        | los izhori                            |  |  |
| Deployment latitude\ northings                     |       |       |        | 12-603                                |  |  |
| Deployment longitude\ eastings                     |       |       |        | 0.646                                 |  |  |
| Site name                                          |       |       |        | wski, p30m                            |  |  |
| Site depth                                         |       |       |        | om                                    |  |  |
| Deployment depth                                   |       |       | 30     | 267                                   |  |  |

10

#### ADCP deployment sheet



#### 7.2 RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT SHEETS



### LWANDLE TECHNOLOGIES (PTY) LTD

### QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | YMENT                                  |    |        |           |
|-----------------------------------------------------|----------------------------------------|----|--------|-----------|
| Instrument type and serial number                   | ······································ |    | XR-20  | 12994     |
| Check O-rings on instrument                         |                                        |    |        |           |
| Install a new battery and check the voltage         | -                                      |    |        | 12.561    |
| Connect the battery and communications cable        |                                        |    |        |           |
| Connect the instrument to a PC and run RBR softw    | are                                    |    |        |           |
| Click on "Setup"                                    |                                        |    |        |           |
| Set up the sampling parameters                      |                                        |    |        |           |
| Start of logging (date / time)                      |                                        | 22 | 105/08 | 14400     |
| End of logging (date / time)                        |                                        |    | 112/03 | 12 hoo    |
| Sampling period                                     |                                        |    |        | lomin     |
| Averaging period                                    |                                        |    |        | IMID      |
| Deployment details                                  | -                                      |    |        |           |
| Deployment date and time                            |                                        |    | 23/05  | 105 libus |
| Deployment latitude\ northings                      | _                                      |    | 34.4   | 2.605     |
| Deployment longitude\ eastings                      |                                        |    | 19" 30 | 2.651     |
| Site name                                           |                                        |    | Berta  | nskup     |
| Site depth                                          |                                        |    |        | 2 M 1     |
| Deployment depth                                    |                                        |    | 5      | m         |
| Acoustic release (1) serial number and release code |                                        |    |        |           |
| Acoustic release (2) serial number and release code |                                        |    |        |           |
| Argos beacon serial number                          |                                        |    |        |           |

#### Range:

| Northing | Easting | Range        |
|----------|---------|--------------|
|          |         | •            |
|          |         | · ···· ··· · |
|          |         |              |

|                                   | RECO | VERY |     |           |          |
|-----------------------------------|------|------|-----|-----------|----------|
| Instrument type and serial number |      |      |     | NL 420 12 | 994      |
| Deployment name                   |      |      |     |           |          |
| Deployment date and time          |      | Ē    | GMT | 23/05/08  | inhu     |
| Deployment latitude\ northings    |      |      |     | 34042-6   |          |
| Deployment longitude\ eastings    |      |      |     | 19.30.0   | 59       |
| Recovery information              |      | _    |     |           |          |
| Recovery date and time            |      | (LT) | GMT | 19/06/05  | 10450    |
| 2<br>                             |      |      |     |           |          |
|                                   | 1    |      |     | CT deploy | ment she |





### QUALITY ASSURANCE DEPLOYMENT SHEET

.

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | YMENT |     |         |                    |
|-----------------------------------------------------|-------|-----|---------|--------------------|
| Instrument type and serial number                   |       |     | 78420   | 12995              |
| Check O-rings on instrument                         |       |     |         | -                  |
| Install a new battery and check the voltage         | -     |     |         | 12.261             |
| Connect the battery and communications cable        |       |     |         |                    |
| Connect the instrument to a PC and run RBR softw    | are   |     |         |                    |
| Click on "Setup"                                    |       |     |         |                    |
| Set up the sampling parameters                      |       |     |         |                    |
| Start of logging (date / time)                      |       | 22  | 05/05   | inhoo              |
| End of logging (date / time)                        |       | 511 | 12/05   | izheo              |
| Sampling period                                     |       |     |         | (Comin             |
| Averaging period                                    |       |     |         | Imin               |
| Deployment details                                  |       |     |         |                    |
| Deployment date and time                            | Ű     |     | 23/05/0 | is illus           |
| Deployment latitude\ northings                      |       |     | 3442    |                    |
| Deployment longitude\ eastings                      |       |     |         | -654               |
| Site name                                           |       |     | Bente   | miklip<br>5 m 30 m |
| Site depth                                          |       |     | 25      | 5 m 30 m           |
| Deployment depth                                    |       |     |         | 28m                |
| Acoustic release (1) serial number and release code |       |     |         |                    |
| Acoustic release (2) serial number and release code |       |     |         |                    |
| Argos beacon serial number                          |       |     |         |                    |

#### Range:

| Northing | Easting | Range |
|----------|---------|-------|
|          |         | •     |
|          |         |       |
|          |         |       |
|          |         |       |

|                                   | RECO | VERY |     |          |              |
|-----------------------------------|------|------|-----|----------|--------------|
| Instrument type and serial number |      |      |     | XRUZU    | 129995       |
| Deployment name                   |      |      |     |          |              |
| Deployment date and time          |      | (LT) | GMT | 23/05/0  | 5 11h45      |
| Deployment latitude\ northings    |      |      |     | 3404     | 2.605        |
| Deployment longitude\ eastings    |      |      |     | 19 - 3   | 0.654        |
| Recovery information              |      |      |     |          |              |
| Recovery date and time            |      | (LT) | GMT | 19/00/09 | s ichso      |
| :                                 |      |      |     |          |              |
|                                   | 1    |      |     | CT de    | ployment she |

٨



| QUALITY ASSUR                                 | ANCE DEPI                                                                                                      | OYMENT    | SHEET   |                       |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|---------|-----------------------|
| QUALITY ASSUR                                 | CANCE DEFE                                                                                                     | OTHER     |         |                       |
| MD1 LOGGING XR 420 (                          | CT DEPLOYME                                                                                                    | NT / RECO | VERY SH | EET                   |
|                                               |                                                                                                                |           |         |                       |
|                                               | DEPLOYMENT                                                                                                     |           |         |                       |
| Instrument type and serial number             | RBR                                                                                                            |           | XK 420  | 0994                  |
| Check O-rings on instrument                   |                                                                                                                |           |         | . (                   |
| Install a new battery and check the voltag    | e                                                                                                              |           |         |                       |
| Connect the battery and communications        | cable                                                                                                          |           |         |                       |
| Connect the instrument to a PC and run R      | BR software                                                                                                    |           |         |                       |
| Click on "Setup"                              | /                                                                                                              |           |         |                       |
| Set up the sampling parameters                | V                                                                                                              |           |         | and the second second |
| Start of logging (date / time)                |                                                                                                                |           |         |                       |
| End of logging (date / time)                  |                                                                                                                |           |         |                       |
| Sampling period                               |                                                                                                                |           |         |                       |
| Averaging period                              |                                                                                                                |           |         |                       |
| Deployment details                            |                                                                                                                |           |         | 1                     |
| Deployment date and time                      | LT                                                                                                             | 101-30    | 27/06   | 108.                  |
| Deployment latitude\ northings                | a land a land                                                                                                  |           | 34 4    | 2 608                 |
| Deployment longitude\ eastings                |                                                                                                                |           | 19 20   | 0 659                 |
| Site name                                     |                                                                                                                |           | BAWTIGU | 15 30                 |
| Site depth                                    |                                                                                                                |           | 30      | h                     |
| Deployment depth                              |                                                                                                                |           | 30-     | +8m                   |
| Acoustic release (1) serial number and releas | and a second |           |         |                       |

| LWANDLE                                          | TECHN    | IOLO  | GIES (PT | Y) LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------|----------|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |          |       |          | No. of Concession, Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| QUALITY ASSURAN                                  | ICE DEPL | OYME  | NT SHEE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MD1 LOGGING XR 420 CT D                          | EPLOYME  | NT/RE | COVERTS  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  | PLOYMENT |       | 18120    | 12995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Instrument type and serial number                | C.       | D.C.  | negeo    | The state of the s |
| Check O-rings on instrument                      |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Install a new battery and check the voltage      |          |       |          | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Connect the battery and communications cabl      | e        |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Connect the instrument to a PC and run RBR s     | software |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Click on "Setup"                                 |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Set up the sampling parameters                   |          |       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Start of logging (date / time)                   |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| End of logging (date / time)                     |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling period                                  |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Averaging period                                 |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deployment details                               |          |       | /        | 1. 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Deployment date and time                         | LT       | ph    | 30 24/   | 06/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Deployment latitude\ northings                   |          |       | 344      | 2605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Deployment longitude\ eastings                   |          |       | 193      | 0659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Site name                                        |          |       | EAN.     | Mans 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Site depth                                       |          |       | 30       | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Deployment depth                                 |          |       | 25       | 5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Acoustic release (1) serial number and release c | ode      |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acoustic release (2) serial number and release c |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Argos beacon serial number                       |          |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### 7.3 TIDE GAUGE RECOVERY AND RE-DEPLOYMENT SHEETS



# LWANDLE TECHNOLOGIES (PTY) LTD

# QUALITY ASSURANCE DEPLOYMENT SHEET

# TGR1050HT TIDE GAUGE DEPLOYMENT / RECOVERY SHEET

| DEPLOYM                                             |     |       |        |            |
|-----------------------------------------------------|-----|-------|--------|------------|
|                                                     |     | 2050  |        | 013070     |
| Instrument type and serial number                   | IGK | 20.50 |        | 01501-     |
| Check O-rings on instrument                         |     |       |        | 6046 V     |
| Install a new battery and check the voltage         |     |       |        | 6740       |
| Connect the battery and communications cable        |     |       |        |            |
| Connect the instrument to a PC and run RBR software |     |       |        |            |
| Click on "Setup"                                    |     |       |        |            |
| Set up the sampling parameters                      |     |       |        |            |
| Sampling period                                     |     |       |        | )sec       |
| Averaging period                                    |     |       |        | dap        |
| Expected deployment duration                        |     |       |        |            |
| Start of logging (date / time)                      |     | 23 N  |        | 15hac      |
| End of logging (date / time)                        |     | (0/0  | \$105  | 13100      |
| Memory usage                                        |     |       |        |            |
| Battery usage                                       |     |       |        |            |
| Deployment details                                  |     |       | 270    | 12005 15h  |
| Deployment date and time                            |     |       | 25110  | 12005 1Sh  |
| Deployment latitude\ northings                      |     |       | 1902   | 2 080      |
| Deployment longitude\ eastings                      |     |       |        | sklip hole |
| Site name                                           |     |       | Bendem | set p new  |
| Site depth                                          |     |       | 11     | SIM        |
| Deployment depth                                    |     |       |        |            |
| Acoustic release (1) serial number and release code |     |       |        |            |
| Acoustic release (2) serial number and release code |     |       |        |            |
| Argos beacon serial number                          |     |       |        |            |
|                                                     |     |       |        |            |

| REC                                            | COVERY         |      |              |                                                |
|------------------------------------------------|----------------|------|--------------|------------------------------------------------|
| Instrument type and serial number              |                |      | 205C         | GN3C 10                                        |
| Deployment name                                |                |      | had been for | S well be                                      |
| Deployment date and time                       |                | GMT  |              | S isher                                        |
| Deployment latitude\ northings                 |                |      | 54 42        | 2.462                                          |
| Deployment longitude\ eastings                 | +              |      | 17 3         | 3.05                                           |
| Recovery information                           |                | 0117 | Let 11 1     | ie seriler                                     |
| Recovery date and time                         | (LT)           | GMT  | SICCIC       | 5 #514hs                                       |
| Inspect the instrument for signs of flooding   |                |      |              | F. ~2                                          |
| Switch off and download the instrument using A | quadopp softwa | re   |              | <i>«</i> , , , , , , , , , , , , , , , , , , , |
| Switch off date and time                       |                | GMT  | isiclo       | s 16h30                                        |
| Name of the data directory                     |                |      |              |                                                |
| File size                                      |                |      |              |                                                |

1

TGR1050HT deployment / recovery sheet







#### QUALITY ASSURANCE DEPLOYMENT SHEET

#### TGR1050HT TIDE GAUGE DEPLOYMENT / RECOVERY SHEET

| DEPLOYMENT                                          |    |           |             |
|-----------------------------------------------------|----|-----------|-------------|
| Instrument type and serial number                   |    | IGR 1050  | 014695      |
| Check O-rings on instrument                         |    |           | -           |
| Install a new battery and check the voltage         |    |           | 635V        |
| Connect the battery and communications cable        |    |           |             |
| Connect the instrument to a PC and run RBR software |    |           |             |
| Click on "Setup"                                    |    |           |             |
| Set up the sampling parameters                      |    |           |             |
| Sampling period                                     |    | 1         | O Sees      |
| Averaging period                                    |    | 1ses      |             |
| Expected deployment duration                        |    |           | 3 months    |
| Start of logging (date / time)                      |    | 15/06/08  | 14445       |
| End of logging (date / time)                        |    | 31/012/08 | 1 zhaci     |
| Memory usage                                        |    |           | 60 6%       |
| Battery usage                                       |    |           | 667mAH      |
| Deployment details                                  |    |           | . <u> </u>  |
| Deployment date and time                            | ī) |           | 105 121 161 |
| Deployment latitude\ northings                      |    |           | 2.462       |
| Deployment longitude\ eastings                      |    |           | 3.050       |
| Site name                                           |    | Bento     | nskl.p      |
| Site depth                                          |    |           | sin'        |
| Deployment depth                                    |    | <u> </u>  | 65 m        |
| Acoustic release (1) serial number and release code |    |           |             |
| Acoustic release (2) serial number and release code |    |           |             |
| Argos beacon serial number                          |    |           |             |

| REC                                             | OVERY        |      |  |
|-------------------------------------------------|--------------|------|--|
| Instrument type and serial number               |              |      |  |
| Deployment name                                 |              |      |  |
| Deployment date and time                        | LT           | GMT  |  |
| Deployment latitude\ northings                  |              |      |  |
| Deployment longitude\ eastings                  |              | 4    |  |
| Recovery information                            |              |      |  |
| Recovery date and time                          | LT           | GMT  |  |
| Inspect the instrument for signs of flooding    |              |      |  |
| Switch off and download the instrument using Aq | uadopp softw | vare |  |
| Switch off date and time                        | LT           | GMT  |  |
| Name of the data directory                      |              |      |  |
| File size                                       |              | •    |  |

|             |   | TGR1050HT deployment / recovery |
|-------------|---|---------------------------------|
| Client name | 1 | sheet                           |

\* Instrument type should read "TGR2050" instead of "TGR1050".



### 7.4 ADCPS CONFIGURATION FILES

| 10m                                                                             |
|---------------------------------------------------------------------------------|
| CR1                                                                             |
| CF11101<br>EA0                                                                  |
| EBO                                                                             |
| RIO                                                                             |
| ED100                                                                           |
| ES35                                                                            |
| EX11111                                                                         |
| EZ1111111<br>WA255                                                              |
| WB0                                                                             |
| WD111100000                                                                     |
| WF88                                                                            |
| WN42                                                                            |
| WP500<br>WS35                                                                   |
| WV175                                                                           |
| HD111000000                                                                     |
| HB5                                                                             |
| HP4920<br>HR01:00:00.00                                                         |
| HT00:00:00.50                                                                   |
| TE00:10:00.00                                                                   |
| TP00:01.00                                                                      |
| CK<br>CS                                                                        |
|                                                                                 |
| ;Instrument = Workhorse Sentinel                                                |
| ;Frequency = 614400                                                             |
| ;Water Profile = YES<br>:Bottom Track = NO                                      |
| ;High Res. Modes = NO                                                           |
| ;High Rate Pinging = NO                                                         |
| ;Shallow Bottom Mode= NO                                                        |
| ;Wave Gauge = YES<br>;Lowered ADCP = NO                                         |
| ;Beam angle = 20                                                                |
| ;Temperature = 5.00                                                             |
| ;Deployment hours = 360.00                                                      |
| ;Battery packs = 1<br>:Automatic TP = YES                                       |
| ;Memory size [MB] = 1000                                                        |
| ;Saved Screen = 2                                                               |
| ;                                                                               |
| ;Consequences generated by PlanADCP version 2.04:<br>;First cell range = 1.41 m |
| ;Last cell range = 1.41 m<br>;Last cell range = 15.76 m                         |
| ;Max range = $35.28 \text{ m}$                                                  |
| ;Standard deviation = 1.08 cm/s                                                 |
| ;Ensemble size = 994 bytes                                                      |
| ;Storage required = 133.83 MB (140329440 bytes)<br>;Power usage = 440.26 Wh     |
| ;Battery usage = 1.0                                                            |
| ;Samples / Wv Burst = 4920                                                      |
| ;Min NonDir Wave Per= 1.85 s                                                    |
| ;Min Dir Wave Period= 2.49 s<br>;Bytes / Wave Burst = 383840                    |
| ,2)100, Hato Balor - 0000+0                                                     |
|                                                                                 |
|                                                                                 |



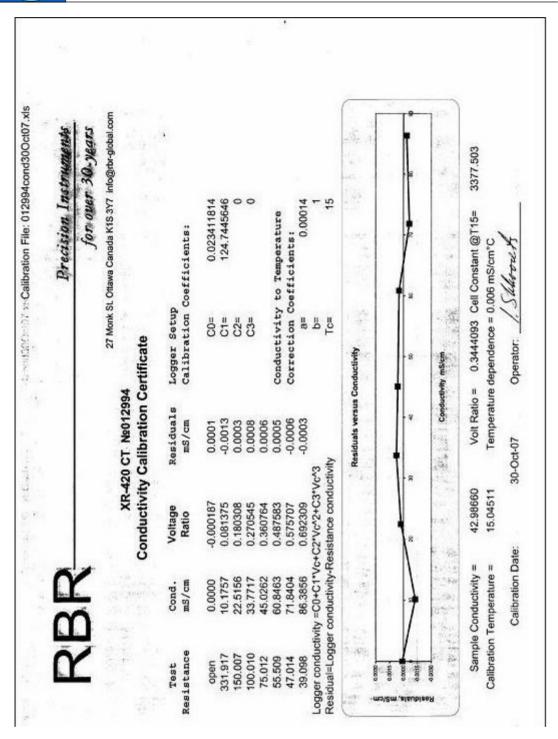


## 7.5 CALIBRATION CERTIFICATES

|                           |                  |               | YNE<br>TRUME | es Company |        |          |
|---------------------------|------------------|---------------|--------------|------------|--------|----------|
|                           | Workhor          |               |              | n Summar   | v      |          |
| Date                      | 11/30/2007       | oc oom        | guiudo       | in ouninar | I      |          |
| Customer                  | PERTEC           |               |              |            |        |          |
| Sales Order or RMA No.    | 3018766          |               |              |            |        |          |
| • System Type             | Sentinel         |               |              |            |        |          |
|                           | WHSW600-1-UG92   | ,             |              |            |        |          |
| Frequency                 | 600 kHz          |               |              |            |        |          |
| Depth Rating (meters)     | 200              |               |              |            |        |          |
| SERIAL NUMBERS:           |                  | REVISION:     |              |            |        |          |
| System                    | 10119            |               |              |            |        |          |
| CPU PCA<br>PIO PCA        | 11019<br>6574    | Rev.          | J3<br>F1     |            |        |          |
| DSP PCA                   | 14400            | Rev.          | G1           |            |        |          |
| RCV PCA                   | 14956            | -             |              |            |        |          |
|                           | 14956            | Rev.          | E2           |            |        |          |
| AUX PCA                   |                  | Rev.          |              |            |        |          |
| FIRMWARE VERSION:         |                  |               |              |            |        |          |
| CPU                       | 16.30            |               |              |            |        |          |
| SENSORS INSTALLED:        |                  |               |              |            |        |          |
| Temperature 🗸             | Heading 🗸        | Pitch / F     | Roll 🗸       | Pressure 🗸 | Rating | 200 mete |
| FEATURES INSTALLED        |                  |               |              |            |        |          |
| ✓ Water Profile           |                  | High Rate     | e Pinging    |            |        |          |
| Bottom Track              |                  |               | Bottom Mode  | e          |        |          |
| High Resolution W         | ater Modes       |               | age Acquisit |            |        |          |
| Lowered ADCP              |                  |               | wey ADCP .   |            |        |          |
| * Includes Water Profile, | Bottom Track and |               |              | es         |        |          |
| COMMUNICATIONS:           |                  | 5880797AC     |              |            |        |          |
| Communication             | RS-232           |               |              |            |        |          |
| Baud Rate                 | 9600             |               |              |            |        |          |
| Parity                    | NONE             |               |              |            |        |          |
| Recorder Capacity         | 1150             | MB (installed | 0            |            | 1      |          |
| Power Configuration       | 20-60 VDC        |               |              |            |        |          |
| Cable Length              | 5                | meters        |              |            |        |          |



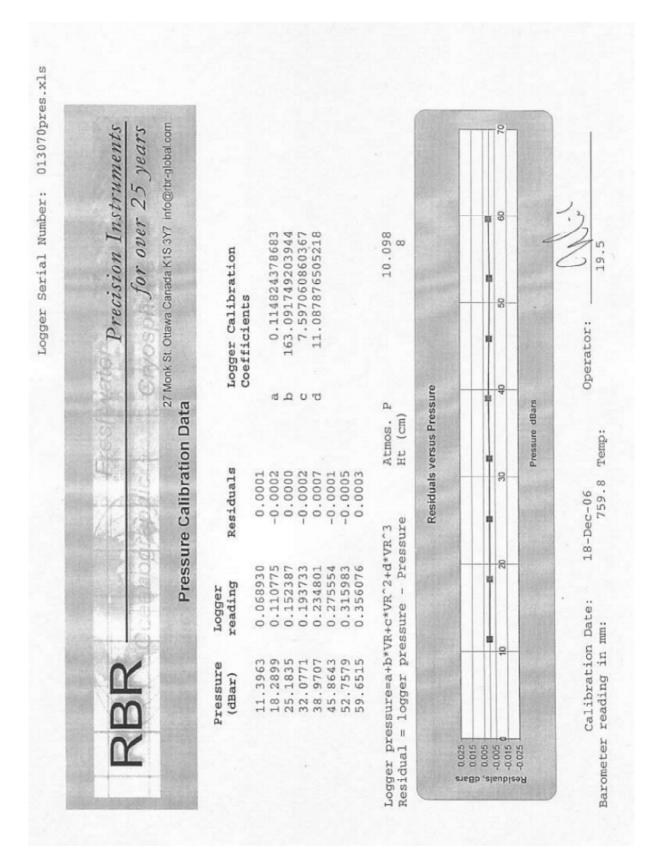
.


|                                     |                     | TELEDYNE                                    |
|-------------------------------------|---------------------|---------------------------------------------|
|                                     |                     | RD INSTRUMENTS                              |
|                                     |                     | A Teledyne Technologies Company             |
|                                     | Workhor             | se Configuration Summary                    |
| Date                                | 11/30/2007          |                                             |
| Customer                            | PERTEC              |                                             |
| <sup>2</sup> Sales Order or RMA No. | 3018766             |                                             |
| System Type                         | Sentinel            |                                             |
| Part number                         | WHSW600-I-UG9       | 2                                           |
| Frequency                           | 600 kHz             | -                                           |
| Depth Rating (meters)               | 200                 |                                             |
| SERIAL NUMBERS:                     |                     | REVISION:                                   |
| System                              | 10105               |                                             |
| CPU PCA                             | 11052               | Rev. J3                                     |
| PIO PCA                             | 6573                | Rev. F1                                     |
| DSP PCA                             | 14390               | Rev. G1                                     |
| RCV PCA                             | 14937               | Rev. E2                                     |
| AUX PCA                             | •                   | Rev.                                        |
| FIRMWARE VERSION:                   |                     |                                             |
| CPU                                 | 16.30               |                                             |
|                                     |                     |                                             |
| SENSORS INSTALLED:<br>Temperature ✓ | Heading 🗸           | Pitch / Roll ✔ Pressure ✔ Rating 200 meters |
| remperature                         | nearing *           |                                             |
| FEATURES INSTALLED                  |                     | · · · · · · · · · · · · · · · · · · ·       |
| ✓ Water Profile                     |                     | High Rate Pinging                           |
| Bottom Track                        |                     | Shallow Bottom Mode                         |
| High Resolution \                   | Water Modes         | ✓ Wave Guage Acquisition                    |
| Lowered ADCP                        |                     | River Survey ADCP *                         |
|                                     | e, Bottom Track and | I High Resolution Water Modes               |
| COMMUNICATIONS:                     |                     |                                             |
| Communication                       | RS-232              |                                             |
| Baud Rate                           | 9600                |                                             |
| Parity                              | NONE                | •                                           |
| Recorder Capacity                   | 1150                | MB (installed)                              |
| Power Configuration                 | 20-60 VDC           |                                             |
| Cable Length                        | 5                   | meters                                      |

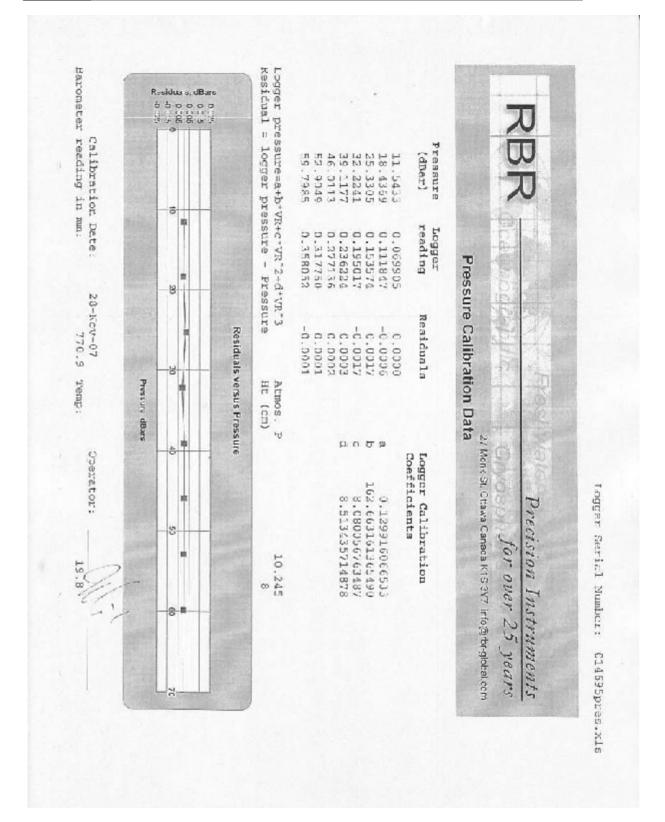
14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com



|                                     |                   | A Teledyn       | e Technologie  | es Company |        |     |       |
|-------------------------------------|-------------------|-----------------|----------------|------------|--------|-----|-------|
|                                     | Workhor           | rse Conf        | iguration      | n Summar   | Y      |     |       |
| Date                                | 11/30/2007        |                 |                |            |        |     |       |
| Customer                            | PERTEC            |                 |                |            |        |     |       |
| <sup>4</sup> Sales Order or RMA No. | 3018756           |                 |                |            |        |     |       |
| System Type                         | Sentinel          |                 |                |            |        |     |       |
| Part number                         | WHSW6004-UG9      | 12              |                |            |        |     |       |
| Frequency                           | 600 kHz           |                 |                |            |        |     |       |
| Depth Rating (meters)               | 200               |                 |                |            |        |     |       |
| SERIAL NUMBERS:                     |                   | REVISION:       |                |            |        |     |       |
| System                              | 10120             | 1000            | 1.41           |            |        |     |       |
| CPU PCA                             | 11063             | Rev.            | 10             |            |        |     |       |
| PIO PCA                             | 6603              | Rev.            | FI             |            |        |     |       |
| DSP PCA                             | 14431             | Rev.            | G1             |            |        |     |       |
| RCV PCA                             | 14061             | Rev.            | E2             |            |        |     |       |
| AUX PCA                             |                   | Rev.            |                |            |        |     |       |
| FIRWWARE VERSION:                   |                   |                 |                |            |        |     |       |
| CPU                                 | 16.30             |                 |                |            |        |     |       |
| SENSORS INSTALLED:                  |                   |                 |                |            |        |     |       |
| Temperature 🖌                       | Heading 🗸         | Pitch /         | Roll 🗸         | Pressure 🖌 | Rating | 200 | meter |
| FEATURES INSTALLED                  |                   |                 |                |            |        |     |       |
| ✓ Water Profile                     |                   | High Ra         | te Pinging     |            |        |     |       |
| Bottom Track                        |                   | Shallow         | Bottom Mode    |            |        |     |       |
| High Resolution V                   | Vater Modes       | ✓ Wave G        | uage Acquisiti | ion        |        |     |       |
| Lowered ADCP                        |                   | River St        | IVEY ADOP -    |            |        |     |       |
| * Includes Water Profile            | , Bottom Track an | d High Resoluti | on Water Mode  | 15         |        |     |       |
| COMMUNICATIONS:                     |                   |                 |                |            |        |     |       |
| Communication                       | RS-232            |                 |                |            |        |     |       |
| Baud Rate                           | 9600              |                 |                |            |        |     |       |
| Parity                              | NONE              |                 |                |            |        |     |       |
| Recorder Capacity                   | 1150              | MB (Installe    | d)             |            |        |     |       |
| Power Configuration                 | 20-60 VDC         |                 |                |            |        |     |       |
| Cable Length                        | 5                 | meters          |                |            |        |     |       |






| C                                     |                                                      |                      |                                             |                                           | Precision Instrum                                      | unionts          |
|---------------------------------------|------------------------------------------------------|----------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------------------|------------------|
| C                                     | R                                                    |                      |                                             | A STATE OF                                | for oner 310 vener                                     | a vener          |
| 1                                     | 1                                                    |                      | 1977 - 10 T                                 | 27 Monk St. C                             | 27 Monk St. Ottawa Canada K1S 3Y7. Info@fbr-piobal.com | Dithr-global, co |
|                                       | -*                                                   | XR-42                | XR-420 CT Ne012998                          | -                                         |                                                        |                  |
| -16                                   | 11 1 1 1 1 1 1                                       | Conductivity         | <b>Conductivity Calibration Certificate</b> | ertificate                                |                                                        |                  |
|                                       |                                                      |                      |                                             |                                           |                                                        |                  |
| Test<br>Resistance                    | Cond.<br>ms/cm                                       | Voltage<br>Ratio     | Residuals<br>mS/cm                          | Logger Setup<br>Calibration Coefficients: | efficients:                                            |                  |
| open                                  | 0.0000                                               | -0.000214            | -0.0002                                     | C0=                                       | 0.026459735                                            |                  |
| 331.917                               | 10.1789                                              | 0.081456             | 0.0000                                      | C1=                                       | 124.6368814                                            |                  |
| 150.007                               | 22.5227                                              | 0.180502             | 0.0010                                      | C2=                                       | 0                                                      |                  |
| 100.010                               | 33.7822                                              | 0.270829             | -0.0004                                     | C3=                                       | 0                                                      |                  |
| 75.012                                | 45.0402                                              | 0.361158             | -0.0002                                     |                                           |                                                        |                  |
| 55,509                                | 60.8653                                              | 0.488127             | -0.0002                                     | Conductivity to Temperature               | o Temperature                                          |                  |
| 47.014                                | 71.8628                                              | 0.576357             | -0.0010                                     | Correction Coefficients:                  | fficients:                                             |                  |
| 39.098                                | 86.4126                                              | 0.693110             | 0.0010                                      | ш                                         | 0.00014                                                |                  |
| ogger conducti                        | Logger conductivity =C0+C1*Vc+C2*Vc^2+C3*Vc^3        | C2*Vc^2+C3*Vc        | £v.3                                        | Ę                                         | F                                                      |                  |
| tesidual=Logge                        | Residual=Logger conductivity-Resistance conductivity | sistance conduc      | tivity                                      | Tc=                                       | 15                                                     |                  |
| 1.2                                   |                                                      |                      | Residuals versus Conductivity,              | Conductivity,                             |                                                        |                  |
| molęm ,<br>2000 - 2000<br>2000 - 2000 |                                                      |                      |                                             |                                           |                                                        | 1                |
|                                       | 2                                                    | 8                    | 3                                           | 3                                         |                                                        |                  |
|                                       | ikita<br>Alba<br>Alba                                |                      | Conduc                                      | Conductivity mS/cm                        |                                                        |                  |
| Sample<br>Calibration                 | Sample Conductivity =<br>Calibration Temperature =   | 43.03350<br>15.08309 | Volt Ratio =<br>Temperature o               | -                                         | T15=                                                   | 3378.559         |
|                                       |                                                      |                      |                                             | 101                                       | "                                                      |                  |







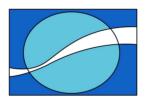




## 8. REPORTS FROM THE CSIR

The reports from the CSIR are attached as an appendage.




## LWANDLE DATA REPORT

## **BANTAMSKLIP SITE – DEPLOYMENT FOUR**

## PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



## PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



14 October 2008

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



## TABLE OF CONTENTS

| 1. | EXEC  | UTIVE SUMMARY                             | 4  |  |  |  |  |  |  |
|----|-------|-------------------------------------------|----|--|--|--|--|--|--|
|    | 1.1   | DATA RETURN FOR BANTAMSKLIP SITE          | 6  |  |  |  |  |  |  |
| 2. | INTRO | INTRODUCTION                              |    |  |  |  |  |  |  |
|    | 2.1   | PROJECT DESCRIPTION                       |    |  |  |  |  |  |  |
|    | 2.2   | EQUIPMENT LIST                            | 7  |  |  |  |  |  |  |
|    | 2.3   | MEASUREMENT LOCATION                      | 7  |  |  |  |  |  |  |
| 3. | OPER  | ATIONS                                    | 9  |  |  |  |  |  |  |
|    | 3.1   | SUMMARY OF EVENTS, MALFUNCTIONS AND LESSO | NS |  |  |  |  |  |  |
|    |       | LEARNT                                    | 9  |  |  |  |  |  |  |
|    | 3.2   | INSTRUMENT CONFIGURATIONS                 |    |  |  |  |  |  |  |
|    |       | 3.2.1 600kHz ADCP                         | 10 |  |  |  |  |  |  |
|    |       | 3.2.2 RBR XR420 CT LOGGER                 | 10 |  |  |  |  |  |  |
|    |       | 3.2.3 RBR TGR2050 HT TIDE GAUGE           | 11 |  |  |  |  |  |  |
|    |       | 3.2.4 Biofouling Mooring                  | 11 |  |  |  |  |  |  |
|    | 3.3   | RECOVER AND REDEPLOYMENT METHODOLOGY      |    |  |  |  |  |  |  |
|    |       | 3.3.1 T&C mooring                         | 12 |  |  |  |  |  |  |
|    |       | 3.3.2 ADCP mooring                        | 12 |  |  |  |  |  |  |
|    |       | 3.3.3 Tidal Gauge                         | 12 |  |  |  |  |  |  |
|    |       | 3.3.4 Biofouling mooring                  | 12 |  |  |  |  |  |  |
| 4. | DATA  | QUALITY CONTROL                           | 13 |  |  |  |  |  |  |
|    | 4.1   | ADCP                                      | 13 |  |  |  |  |  |  |
|    |       | 4.1.1 Current processing                  | 13 |  |  |  |  |  |  |
|    |       | 4.1.2 Wave processing                     | 13 |  |  |  |  |  |  |
|    | 4.2   | RBR-CT LOGGER                             |    |  |  |  |  |  |  |
|    | 4.3   | TIDE GAUGE                                |    |  |  |  |  |  |  |
|    | 4.4   | BIOFOULING.                               |    |  |  |  |  |  |  |
|    | 4.5   | WATER SAMPLE.                             |    |  |  |  |  |  |  |
| 5. | DATA  | PRESENTATION                              | 16 |  |  |  |  |  |  |
|    | 5.1   | 10M ADCP                                  | 16 |  |  |  |  |  |  |
|    |       | 5.1.1 Current Data                        | 16 |  |  |  |  |  |  |
|    |       | 5.1.1.1 Time series plots                 | 16 |  |  |  |  |  |  |
|    |       | 5.1.1.2 Summary plots                     | 20 |  |  |  |  |  |  |
|    |       |                                           |    |  |  |  |  |  |  |



|    |       | 5.1.1.3 | Progressive vector plots                              | 20 |
|----|-------|---------|-------------------------------------------------------|----|
|    |       | 5.1.2   | Wave Data                                             | 26 |
|    |       | 5.1.2.1 | Figure 12 displays a time series plot of the main     |    |
|    |       | wave p  | arameters:                                            | 26 |
|    |       | 5.1.2.2 | Hs and Tp summary plot                                | 27 |
|    |       | 5.1.2.3 | Hs and Dp summary plot                                | 27 |
|    |       | 5.1.2.4 | Tp and Dp summary plot                                | 27 |
|    |       | 5.1.2.5 | Wave spectral plot                                    | 31 |
|    | 5.2   | COMP    | ARISON PLOTS                                          | 35 |
|    |       | 5.2.1   | Water properties: RBR-CT loggers and ADCP temperature |    |
|    |       |         | sensor                                                | 35 |
|    | 5.3   | TIDE G  | AUGE                                                  | 36 |
|    | 5.4   | WATE    | R SAMPLES                                             | 36 |
| 6. | DISCU | JSSION  |                                                       | 39 |
| 7. | INSTR |         | PARTICULARS FOR SERVICE VISIT TWO                     | 41 |
|    | 7.1   | ADCPS   | RECOVERY AND RE-DEPLOYMENT SHEETS                     | 41 |
|    | 7.2   | RBR-C   | T LOGGERS RECOVERY AND RE-DEPLOYMENT                  |    |
|    |       | SHEET   | S                                                     | 46 |
|    | 7.3   | TIDE G  | AUGE RECOVERY AND RE-DEPLOYMENT SHEETS                | 48 |
|    | 7.4   | CALIB   | RATION CERTIFICATES                                   | 49 |
| 8. | РНОТ  | OS TAKE | N                                                     | 54 |
| 9. | REPO  | RTS FRO | M THE CSIR                                            | 56 |



#### 1. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 4 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Data return<br>(%) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|--------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -11.1        | 99.31              | 0.2167                           | 0.0572                            | 0.0329                           | 0.0492                                | 59.56                     |
| -10.7        | 99.34              | 0.2008                           | 0.0539                            | 0.0323                           | 0.0451                                | 64.02                     |
| -10.4        | 99.35              | 0.2285                           | 0.0513                            | 0.0304                           | 0.0416                                | 68.54                     |
| -10.0        | 99.35              | 0.2244                           | 0.0500                            | 0.0295                           | 0.0388                                | 73.56                     |
| -9.7         | 99.35              | 0.2368                           | 0.0489                            | 0.0293                           | 0.0362                                | 78.68                     |
| -9.3         | 99.35              | 0.2641                           | 0.0477                            | 0.0294                           | 0.0334                                | 87.03                     |
| -9.0         | 99.35              | 0.2795                           | 0.0522                            | 0.0284                           | 0.0398                                | 79.68                     |
| -8.6         | 99.31              | 0.2761                           | 0.0480                            | 0.0301                           | 0.0332                                | 96.28                     |
| -8.3         | 99.31              | 0.3229                           | 0.0478                            | 0.0313                           | 0.0320                                | 108.05                    |
| -7.9         | 99.32              | 0.3223                           | 0.0490                            | 0.0327                           | 0.0332                                | 114.55                    |
| -7.6         | 99.32              | 0.3293                           | 0.0501                            | 0.0341                           | 0.0347                                | 121.26                    |
| -7.2         | 99.29              | 0.3296                           | 0.0515                            | 0.0355                           | 0.0363                                | 126.41                    |
| -6.9         | 99.28              | 0.3317                           | 0.0533                            | 0.0372                           | 0.0385                                | 130.94                    |
| -6.5         | 99.28              | 0.3917                           | 0.0554                            | 0.0389                           | 0.0411                                | 135.73                    |
| -6.2         | 99.29              | 0.3754                           | 0.0574                            | 0.0410                           | 0.0431                                | 139.13                    |
| -5.8         | 99.29              | 0.3901                           | 0.0598                            | 0.0433                           | 0.0459                                | 142.63                    |
| -5.5         | 99.28              | 0.4019                           | 0.0625                            | 0.0456                           | 0.0490                                | 145.21                    |
| -5.1         | 99.28              | 0.4247                           | 0.0654                            | 0.0479                           | 0.0521                                | 148.25                    |
| -4.8         | 99.28              | 0.3677                           | 0.0682                            | 0.0501                           | 0.0549                                | 150.22                    |
| -4.4         | 99.31              | 0.4190                           | 0.0711                            | 0.0526                           | 0.0579                                | 151.67                    |
| -4.1         | 99.28              | 0.4098                           | 0.0740                            | 0.0545                           | 0.0606                                | 152.70                    |
| -3.7         | 99.31              | 0.4442                           | 0.0778                            | 0.0575                           | 0.0640                                | 153.63                    |
| -3.4         | 99.29              | 0.4387                           | 0.0811                            | 0.0596                           | 0.0671                                | 154.29                    |
| -3.0         | 99.29              | 0.4515                           | 0.0842                            | 0.0618                           | 0.0697                                | 153.94                    |
| -2.7         | 99.29              | 0.4864                           | 0.0870                            | 0.0632                           | 0.0716                                | 152.53                    |
| -2.3         | 99.29              | 0.5014                           | 0.0891                            | 0.0647                           | 0.0713                                | 148.29                    |
| -2.0         | 99.29              | 0.4974                           | 0.0951                            | 0.0659                           | 0.0695                                | 139.41                    |
| -1.6         | 99.23              | 0.5179                           | 0.1088                            | 0.0694                           | 0.0694                                | 129.41                    |
| -1.3         | 92.88              | 0.5452                           | 0.1313                            | 0.0765                           | 0.0761                                | 130.02                    |

Table 1 – Current flow summary for 10m ADCP

#### Table 2 – Waves summary for 10m ADCP

|        | Data Return (%) | Max    | Min    | Mean   | Std   |
|--------|-----------------|--------|--------|--------|-------|
| Hs (m) | 96.24           | 5.13   | 0.78   | 2.07   | 0.74  |
| Tp (s) | 96.24           | 17.00  | 2.00   | 12.09  | 1.66  |
| Dp (°) | 96.24           | 284.58 | 171.58 | 219.98 | 11.59 |



| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100             | 14.98 | 15.90 | 14.16 |
| Conductivity     | 100             | 43.05 | 44.00 | 42.15 |
| Salinity (psu)   | 100             | 35.13 | 35.21 | 35.00 |

## Table 3 – Water temperature and salinity summary (surface)

## Table 4 – Water temperature and salinity summary (bottom)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100             | 14.72 | 15.74 | 12.55 |
| Conductivity     | 100             | 3.58  | 5.48  | 2.00  |
| Salinity (psu)   | 0               | -     | -     | -     |



## 1.1 DATA RETURN FOR BANTAMSKLIP SITE.

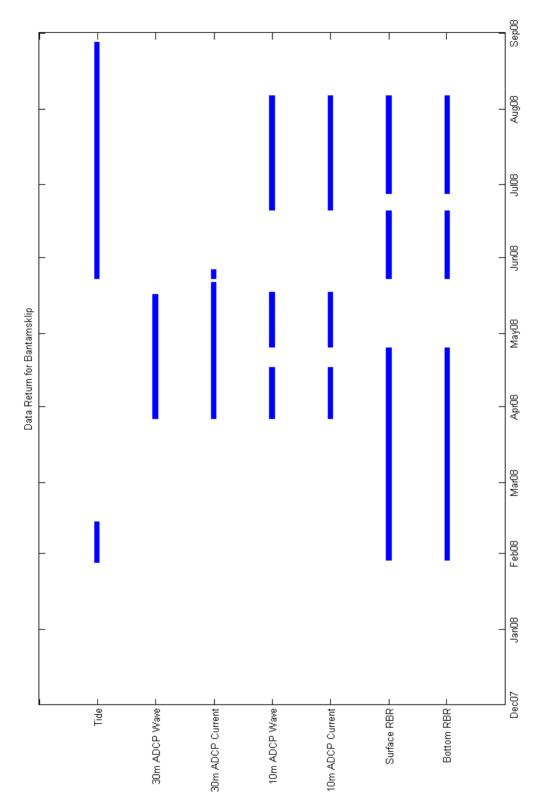



Figure 1: An indication of the data return at the Bantamsklip site since the beginning of the project.





### 2. INTRODUCTION

#### 2.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents currents, waves, temperature and salinity and tidal data collected at Bantamsklip station for the period June  $20^{th} 2008$  - August  $27^{th} 2008$  (Period 4). Three service visits were undertaken: 4a (July  $12^{th} - 13^{th}$ ), 4b (August  $5^{th} - 6^{th} 2008$ ) and 4c (August  $27^{th} 2008$ ). Water samples were collected during service 4a and 4b.

#### 2.2 EQUIPMENT LIST

Lwandle provided the equipment as listed in Table 5 for the Bantamsklip site.

| ltem                       | Operational (on site) | Spare (for whole project) |
|----------------------------|-----------------------|---------------------------|
| TRDI 600kHz ADCP           | 2                     | 1                         |
| RBR XR420 CT logger        | 2                     | 1                         |
| RBR TGR 2050 HT Tide Gauge | 1                     | 0                         |

#### Table 5 – List of equipment provided.

#### 2.3 MEASUREMENT LOCATION

The initial deployment location of the mooring is given in Table 6. Table 7 and Table 8 show the locations where water samples were taken respectively.

| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | 34° 42.462'   | 19° 33.080'    |
| 10m ADCP    | 34° 43.187'   | 19° 33.635'    |
| Biofouling  | 34° 43.190'   | 19° 33.686'    |
| 30m ADCP    | 34° 42.602'   | 19° 30.677'    |
| T&C mooring | 34° 42.605'   | 19° 30.659'    |

#### Table 6 – Measurement locations



| Station | n 26 Mar 2008 | Latitude (°S) | Longitude (°E) |
|---------|---------------|---------------|----------------|
| S1      | 30m ADCP 4m   | 34° 42.603'   | 19° 30.696'    |
| S2      | 30m ADCP 12m  | 34° 42.603'   | 19° 30.696'    |
| S3      | 30m ADCP 20m  | 34° 42.603'   | 19° 30.696'    |
| S4      | 30m ADCP 28m  | 34° 42.603'   | 19° 30.696'    |
| S5      | 10m ADCP 4m   | 34° 43.187'   | 19° 33.635'    |
| S6      | 10m ADCP 8m   | 34° 43.187'   | 19° 33.635'    |
| S7      |               | 34° 43.141'   | 19° 33.710'    |
| S8      |               | 34° 43.055'   | 19° 33.616'    |
| S9      |               | 34° 42.938'   | 19° 33.445'    |
| S10     |               | 34° 42.901'   | 19° 33.287'    |
| S11     |               | 34° 42.860'   | 19° 33.149'    |

## Table 7 – Locations where water samples were taken during service visit 4a

Table 8 – Locations where water samples were taken during service visit 4b

| Station | n 26 Mar 2008 | Latitude (°S) | Longitude (°E) |
|---------|---------------|---------------|----------------|
| S1      | 30m ADCP 4m   | 34° 42.602'   | 19° 30.677'    |
| S2      | 30m ADCP 12m  | 34° 42.602'   | 19° 30.677'    |
| S3      | 30m ADCP 20m  | 34° 42.602'   | 19° 30.677'    |
| S4      | 30m ADCP 28m  | 34° 42.602'   | 19° 30.677'    |
| S5      | 10m ADCP 2m   | 34° 43.187'   | 19° 33.635'    |
| S6      | 10m ADCP 4m   | 34° 43.187'   | 19° 33.635'    |
| S7      | 10m ADCP 6m   | 34° 43.187'   | 19° 33.635'    |
| S8      | 10m ADCP 8m   | 34° 43.187'   | 19° 33.635'    |
| S9      | 4m            | 34° 43.133'   | 19° 33.700'    |
| S10     | 4m            | 34° 43.050'   | 19° 33.533'    |
| S11     | 4m            | 34° 42.933'   | 19° 33.433'    |
| S12     | 4m            | 34° 42.900'   | 19° 33.283'    |
| S13     | 4m            | 34° 42.850'   | 19° 33.150'    |





## 3. OPERATIONS

#### 3.1 SUMMARY OF EVENTS, MALFUNCTIONS AND LESSONS LEARNT

Service visit 4 was undertaken in three parts as outlined below.

Visit 4a July  $12^{th} - 13^{th}$ :

Only the 10m ADCP was serviced. During service visit 3, the 10m ADCP was deployed without an external battery canister. It was anticipated that the internal battery would last for about 2 - 3 weeks. A full dataset was recovered from the instrument and following a service, it was redeployed. A set of water samples were also taken.

#### Visit 4b August $5^{th} - 6^{th}$ :

During this visit, both ADCPs as well as the CT Loggers were retrieved. Owing to inclement weather, the tide gauge was not serviced. Water samples were taken. A full dataset was downloaded from the 10m ADCP as well as from the CT loggers. However, the 30m ADCP was found to be faulty. Water leak (photos attached) on the 30m ADCP (s/n 10120) damaged the internal battery pack of the main unit. The unit was withdrawn.

The 10m ADCP (s/n 10119) was redeployed at the 30m site where a new concrete plinth with a fixed frame was installed (photos attached). The CT loggers were successfully re-deployed.

During data processing, it was observed that the conductivity sensor on bottom CT logger (s/n 12998) was faulty. This was also observed during the previous deployment period. Consequently, upon the next visit, this logger will be withdrawn and sent to the manufacturer for inspection/re-calibration, as necessary.

#### Visit 4c August 27<sup>th</sup>:

The tide gauge (s/n 014695) was recovered and re-deployed successfully. At the 10m site, ADCP s/n 10117 was re-deployed.



#### 3.2 INSTRUMENT CONFIGURATIONS

The as deployed instrumentation configurations are given in this section and completed deployment / recovery sheets are given in Section 7 (page 41).

#### 3.2.1 600kHz ADCP

| Table 9 – Instrument configuration for 10m Bantamsklip ADCF |
|-------------------------------------------------------------|
|-------------------------------------------------------------|

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10119                         |
| Wave burst duration         | 41 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 42                            |
| Bin size                    | 0.35 m                        |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 500                           |
| Edgetech Acoustic Release   | s/n 32380 release code 641722 |

Redeployment of the 10m ADCP was undertaken during service visit 4c - spare unit s/n 10117.

Table 10 – Instrument configuration for 30m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10120                         |
| Wave burst duration         | 34 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 69                            |
| Bin size                    | 0.5 m                         |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 250                           |
| Edgetech Acoustic Release   | s/n 32383 release code 642016 |

The 30m ADCP was withdrawn during Service 4b. Instead, s/n 10119 (previously at the 10m site) was redeployed at the 30m site.

#### 3.2.2 RBR XR420 CT LOGGER

#### Table 11 – Instrument configuration for T&C Mooring Line.

| Parameter                           | Configuration                               |
|-------------------------------------|---------------------------------------------|
| XR 420 Temperature and Conductivity | s/n 12994 (7m) and s/n 12998 (28m)          |
| Sampling and Averaging              | Sample at 1Hz for 1 minute every 10 minutes |



## 3.2.3 RBR TGR2050 HT TIDE GAUGE

## Table 12 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 2050 HT            | s/n 014695                              |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

## 3.2.4 Biofouling Mooring

## Table 13 – Instrument configuration for Biofouling Mooring Line.

| Parameter                 | Configuration                                             |
|---------------------------|-----------------------------------------------------------|
| Biofouling Plates         | 3 plates (20cmx20cm) at 3m and 3 plates (20cmx20cm) at 8m |
| Edgetech Acoustic Release | s/n 32387 release code 642144                             |



#### 3.3 RECOVER AND REDEPLOYMENT METHODOLOGY

#### 3.3.1 T&C mooring

The T&C mooring line was deployed by lowering the array down via a rope through the anchor weights. The mooring line is recovered using divers to undo a single shackle that connects the mooring line to the anchor weights. Divers reattach the line onto the weights, after the instruments have been serviced.

#### 3.3.2 ADCP mooring

The ADCP Frame is lowered to the bottom and moved into position by divers, who also attach chain sections that act as anchors. To retrieve the frame divers have to locate the mooring, take of the anchor chains and surface the frame using air lift bags that they attach.

#### 3.3.3 Tidal Gauge.

The Druck pressure sensor was installed at depth of about 1.5m outside a stilling well, which was attached to a permanent steel frame in 1.87m depth of water.

#### 3.3.4 Biofouling mooring

The biofouling mooring line was deployed by lowering the array down via a rope through the anchor weights. Divers will locate the mooring line and retrieve a surface and bottom plate from the line at the required sampling periods.



## 4. DATA QUALITY CONTROL

### 4.1 ADCP

Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further. Since data for the 10m ADCP was recovered during both visits 4a and 4b, the WavesMon output was merged and presented as one full record. During service visit 4a (July  $12^{th} - 13^{th}$ ), the ADCP was out of the water for service and download.

### 4.1.1 Current processing

- The record was truncated to exclude times pre and post deployment.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 25' W for the 10m ADCP.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 2).
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.

#### 4.1.2 Wave processing

Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:

- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 25' W for the 10m ADCP.
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.

## 4.2 RBR-CT LOGGER

The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.

- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.
- Salinity values less than 34.5psu were flagged for the bottom instrument.



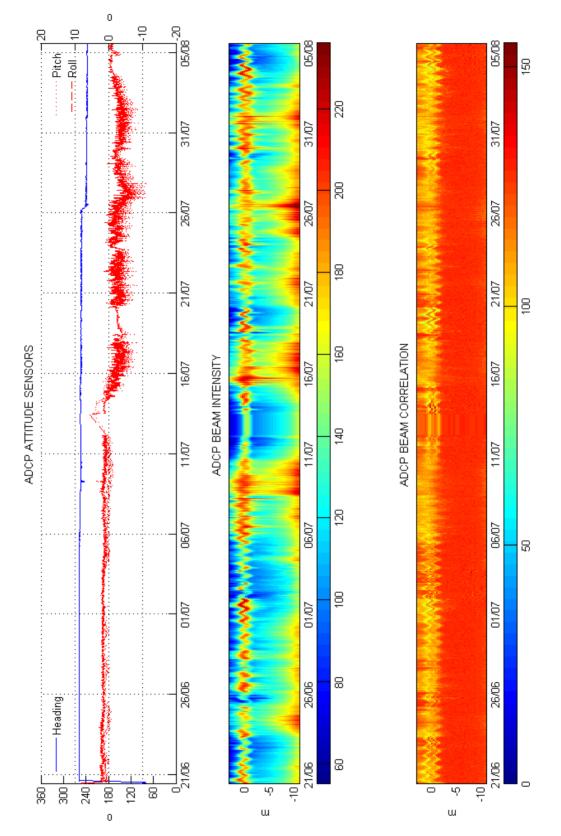



Figure 2: Attitude data for 10m ADCP – Instrument service July 12<sup>th</sup> – 13<sup>th</sup> 2008.



### 4.3 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- Atmospheric sea level pressure correction was applied.
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is +0.73m.
- Finally the data was averaged over a 10-minute period.

### 4.4 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Recovery of the biofouling plates was not scheduled for service visit 4.

#### 4.5 WATER SAMPLE.

Water sample were collected during the first two service visits and sent to the Council for Scientific and Industrial Research (CSIR) for analysis.





### 5. DATA PRESENTATION

All data presented have been subject to the quality control procedures detailed in the previous section. Bad data have been excluded from all plots and calculations.

All plots in this section include a stamp that details the location, depth, time period and number of observations that the plot is based upon. Wherever possible, scaling of parameters has been kept constant throughout this section to facilitate comparison between plots and stations.

### 5.1 10M ADCP

#### 5.1.1 Current Data

#### 5.1.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



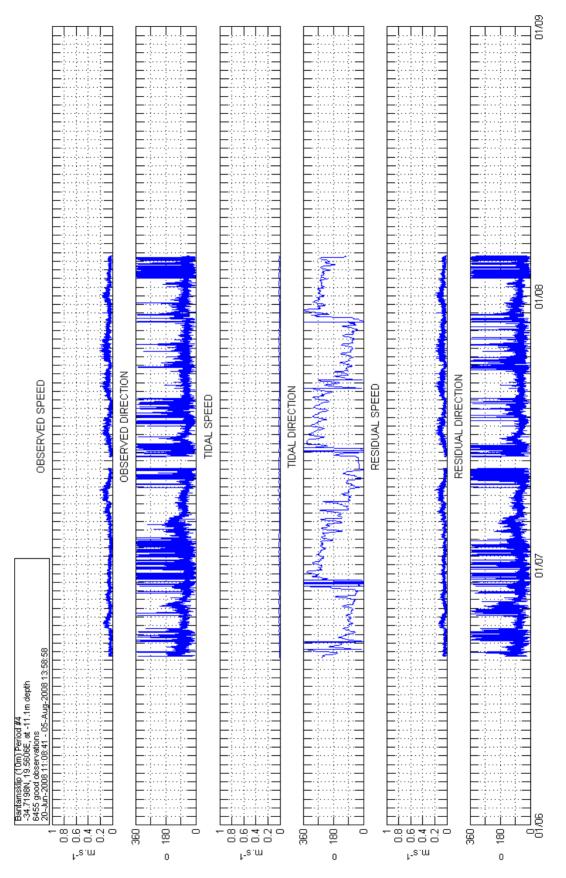



Figure 3: Time series plot for 10m ADCP current data at 11.1m.



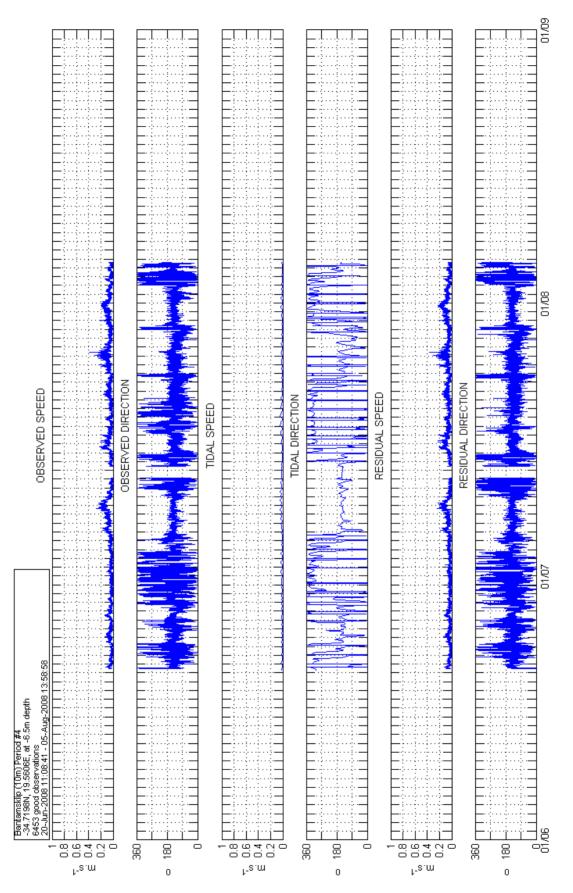



Figure 4: Time series plot for 10m ADCP current data at 6.5m.



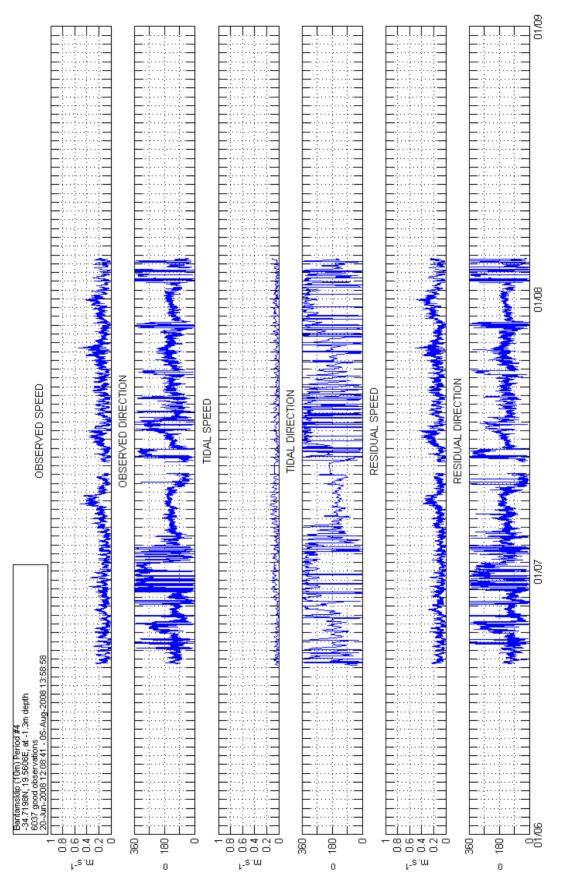



Figure 5: Time series plot for 10m ADCP current data at 1.3m.



#### 5.1.1.2 Summary plots

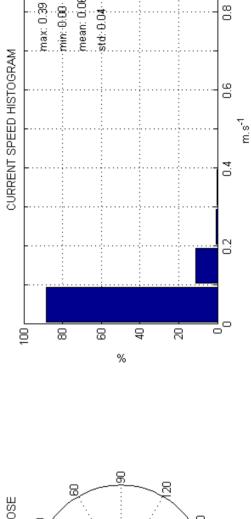
The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

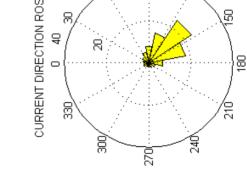
- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.1.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.





|                                                  |      | 88.23  | 11.71   | 0.06    | 8       | 8       | 8.0     | 0.0     | 8.0     | 8.0     | 8.0   | 100.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|------|--------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | MNN  | 2.56 8 |         |         |         |         |         |         |         |         |       | 2.56 1 | 8.5.5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  | MN   | 0.90   |         |         |         |         |         |         |         |         |       | 0.0    | nax:(<br>nin:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                  | WNW  | 0.40   |         |         |         |         |         |         |         |         |       | 0.40   | CURRENT SPEED HISTOGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  | M    | 0.17   |         |         |         |         |         |         |         |         |       | 0.17   | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                  | WSW  | 0.14   |         |         |         |         |         |         |         |         |       | 0.14   | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CTION                                            | SW \ | 0.23   |         |         |         |         |         |         |         |         |       | 0.23   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND DIRE                                          | SSW  | 0.28   |         |         |         |         |         |         |         |         |       | 0.28   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SPEED A                                          | S    | 0.76   |         |         |         |         |         |         |         |         |       | 0.76   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION        | SSE  | 1.91   |         |         |         |         |         |         |         |         |       | 1.91   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | ß    | 3.52   | 0.09    |         |         |         |         |         |         |         |       | 3.61   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOINT DIS                                        | ESE  | 6.82   | 0.25    |         |         |         |         |         |         |         |       | 7.06   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  | ш    | 11.77  | 0.56    |         |         |         |         |         |         |         |       | 12.33  | 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  | ENE  | 23.49  | 5.24    |         |         |         |         |         |         |         |       | 28.72  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28                                               | R    | 20.59  | 5.13    | 0.06    |         |         |         |         |         |         |       | 25.78  | 190 - 40 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1 |
| lepth<br>2008 13:58                              | NNE  | 9.68   | 0.40    |         |         |         |         |         |         |         |       | 10.09  | CURRENT DIRECTION RO<br>330 0 40 30<br>210 180 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| iod #4<br>at -11.1m c<br>1s<br><u>- 05-Aug-2</u> | z    | 5.02   | 0.05    |         |         |         |         |         |         |         |       | 5.07   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bantamsking (1 um) Period #4<br>                 |      | 0-0.1  | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы      | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





|                                                                                                                                            |                                           | ы   | 88.27 | 11.16   | 0.56    | 0.02    | 0.00    | 0.0     | 0.00    | 0.00    | 0.0     | 0.00  | 100.00 |                         |                |                |       | !         |             |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|-------------------------|----------------|----------------|-------|-----------|-------------|
|                                                                                                                                            |                                           | NNN | 2.22  | 0.08    |         |         |         |         |         |         |         |       | 2.29   |                         | 66             |                | 90.00 |           | t           |
|                                                                                                                                            |                                           | ΝΝ  | 1.84  |         |         |         |         |         |         |         |         |       | 1.84   | AM                      | :<br>max: 0.39 | :<br>min:-0:00 | mean  | std0.04   | ;<br>;<br>; |
|                                                                                                                                            |                                           | WNW | 1.91  |         |         |         |         |         |         |         |         |       | 1.91   | CURRENT SPEED HISTOGRAM |                |                |       |           |             |
|                                                                                                                                            |                                           | M   | 1.52  |         |         |         |         |         |         |         |         |       | 1.52   | SPEED H                 |                |                |       |           |             |
|                                                                                                                                            |                                           | WSW | 1.83  |         |         |         |         |         |         |         |         |       | 1.83   | JRRENT (                |                |                |       |           |             |
|                                                                                                                                            | RECTION                                   | SW  | 2.09  | 0.02    |         |         |         |         |         |         |         |       | 2.11   | СС                      |                |                |       |           |             |
|                                                                                                                                            | JOINT DISTRIBUTION OF SPEED AND DIRECTION | SSW | 2.90  | 0.09    | 0.02    |         |         |         |         |         |         |       | 3.01   |                         |                |                |       |           |             |
|                                                                                                                                            | SPEED                                     | S   | 5.86  | 0.62    | 0.17    | 0.02    |         |         |         |         |         |       | 6.66   |                         |                |                |       |           |             |
|                                                                                                                                            | TION OF                                   | SSE | 13.50 | 4.00    | 0.26    |         |         |         |         |         |         |       | 17.76  | 001                     | 3              | 8              | }     | Ы         | 3<br>9      |
|                                                                                                                                            | ISTRIBU                                   | ЗE  | 19.25 | 5.25    | 0.06    |         |         |         |         |         |         |       | 24.56  |                         |                |                |       |           |             |
|                                                                                                                                            | JOINT D                                   | ESE | 13.54 | 0.91    | 0.05    |         |         |         |         |         |         |       | 14.50  |                         |                |                |       |           |             |
|                                                                                                                                            |                                           | ш   | 7.92  | 0.12    |         |         |         |         |         |         |         |       | 8.04   |                         |                |                | 09/   |           | 00          |
|                                                                                                                                            |                                           | ENE | 5.35  |         |         |         |         |         |         |         |         |       | 5.35   | ON ROSE                 |                | (              | · · . |           |             |
| 0:58                                                                                                                                       |                                           | R   | 3.42  |         |         |         |         |         |         |         |         |       | 3.42   | 5                       | ₹/<br>⊃(…      |                | 8     | · · · · · | 1           |
| tepth<br>-2008 13:5                                                                                                                        |                                           | NNE | 2.85  |         |         |         |         |         |         |         |         |       | 2.85   | IRRENT I                | 330            | ,<br>C         |       |           |             |
| sriod #4<br>, at -6.5m c<br>)ns<br>1 - 05-Aug.                                                                                             |                                           | z   | 2.28  | 0.06    |         |         |         |         |         |         |         |       | 2.34   | CO                      |                |                | 300   | ~         | 270         |
| Bartamskip (10m) Period #4<br>-34.7198N, 19.5606E, at -6.5m depth<br>6453 good observations<br>20-Jun-2008 11:08:41 - 05-Aug-2008 13:58:58 |                                           |     | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | Σ      |                         |                |                |       |           |             |
| Bantamski<br>-34.7198N<br>6453 good<br>20-Jun-20                                                                                           |                                           |     |       |         |         |         |         |         |         |         |         |       |        |                         |                |                |       |           |             |





## Figure 7: Summary plot for 10m ADCP current data at 6.5m



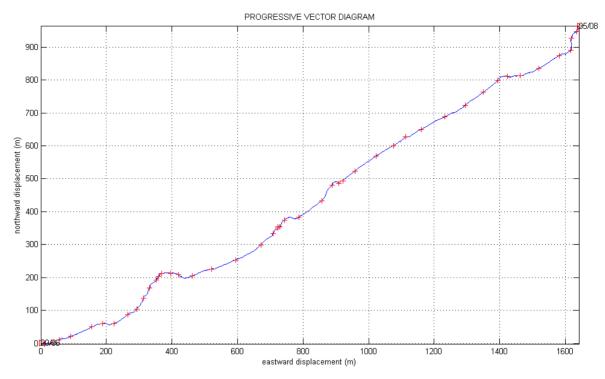

|                                                                                                                                           |         | ы   | 38.30 | 45.09   | 13.30   | 2.88    | 0.40    | 0.03    | 0.0     | 0.0     | 0.0     | 0.00  | 100.00 |                                                         | -   |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|---------------------------------------------------------|-----|
|                                                                                                                                           |         | MNN | 1.71  | 1.24    |         |         |         |         |         |         |         |       | 2.95   |                                                         | 0.8 |
|                                                                                                                                           |         | MN  | 1.87  | 1.24    | 0.12    |         |         |         |         |         |         |       | 3.23   | AM<br>max: 0.55<br>mean: 0.00<br>std: 0.08              | 0   |
|                                                                                                                                           |         | WNW | 1.74  | 0.84    | 0.27    |         |         |         |         |         |         |       | 2.85   | CURRENT SPEED HISTOGRAM                                 | 0.6 |
|                                                                                                                                           |         | M   | 1.28  | 1.13    | 0.27    | 0.05    |         |         |         |         |         |       | 2.72   | н<br>Ш<br>Ш<br>Ц                                        |     |
|                                                                                                                                           |         | WSW | 1.08  | 0.86    | 0.40    | 0.08    |         |         |         |         |         |       | 2.42   |                                                         | 0.4 |
|                                                                                                                                           | ECTION  | SW  | 1.18  | 0.61    | 0.22    |         |         |         |         |         |         |       | 2.00   | 6                                                       |     |
|                                                                                                                                           | AND DIR | SSW | 0.75  | 0.65    | 0.55    | 0.18    | 0.02    | 0.02    |         |         |         |       | 2.15   |                                                         | 0.2 |
|                                                                                                                                           | SPEED   | S   | 0.83  | 1.36    | 1.29    | 0.35    | 0.08    |         |         |         |         |       | 3.91   |                                                         | _   |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION                                                                                                 | TION OF | SSE | 2.32  | 4.75    | 3.66    | 1.74    | 0.28    | 0.02    |         |         |         |       | 12.77  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                  | ,0  |
|                                                                                                                                           | ISTRIBU | ЗE  | 4.52  | 11.33   | 3.63    | 0.48    | 0.02    |         |         |         |         |       | 19.98  |                                                         |     |
|                                                                                                                                           | JOINT D | ESE | 5.68  | 9.14    | 1.79    |         |         |         |         |         |         |       | 16.61  |                                                         |     |
|                                                                                                                                           |         | ш   | 4.75  | 4.94    | 0.51    |         |         |         |         |         |         |       | 10.20  | 30 00                                                   |     |
|                                                                                                                                           |         | ENE | 4.06  | 2.95    | 0.27    |         |         |         |         |         |         |       | 7.27   | CURRENT DIRECTION ROSE<br>330 0 20 30<br>210 10 150 150 |     |
| 8:58                                                                                                                                      |         | ШN  | 2.77  | 2.05    | 0.23    |         |         |         |         |         |         |       | 5.05   |                                                         |     |
| lepth<br>-2008 13:5                                                                                                                       |         | NNE | 2.17  | 1.09    | 0.08    |         |         |         |         |         |         |       | 3.35   | 210 330 330 210 210 210 210 210 210 210 210 210 21      |     |
| riod #4<br>. at -1.3m c<br>ins<br>I - 05-Aug                                                                                              |         | z   | 1.61  | 0.89    | 0.03    |         |         |         |         |         |         |       | 2.53   | 240 CU                                                  |     |
| Bantamskip (10m) Period #4<br>-34.7198N,19.5606E, at -1.3m depth<br>6037 good observations<br>20-Jun-2008 12:08:41 - 05-Aug-2008 13:58:58 |         |     | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы      |                                                         |     |
| Bantamski<br>-34.7198N<br>6037 good<br>20-Jun-200                                                                                         |         |     |       |         |         |         |         |         |         |         |         |       |        |                                                         |     |

Figure 8: Summary plot for 10m ADCP current data at 1.3m.

m.s-1









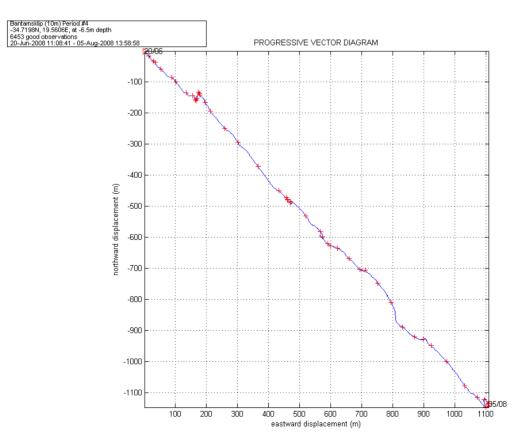



Figure 10: Progressive vector plot for 10m ADCP current data at 6.5m.



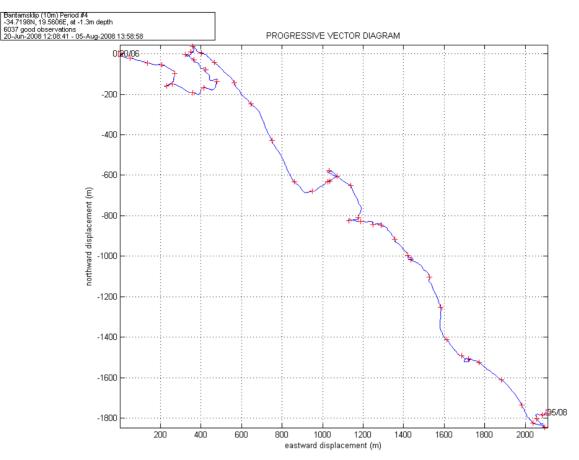



Figure 11: Progressive vector plot for 10m ADCP current data at 1.3m.



### 5.1.2 Wave Data.

- 5.1.2.1 Figure 12 displays a time series plot of the main wave parameters:
  - The first (upper) panel is of the significant wave height (Hs).
  - The second panel is of the peak period (Tp).
  - The third panel is of the peak wave direction (Dp).

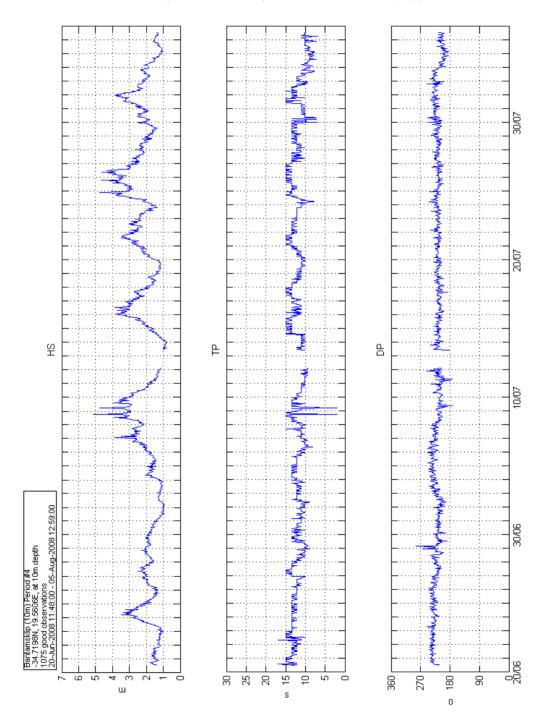



Figure 12: Time series of wave parameters Hs, Tp and Dp for 10m ADCP.



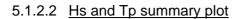
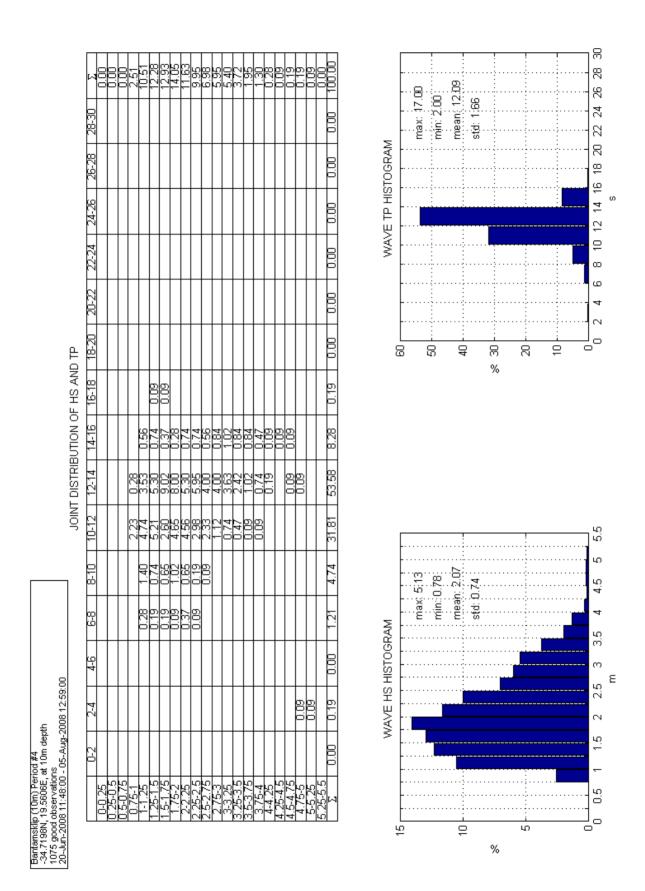
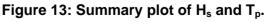


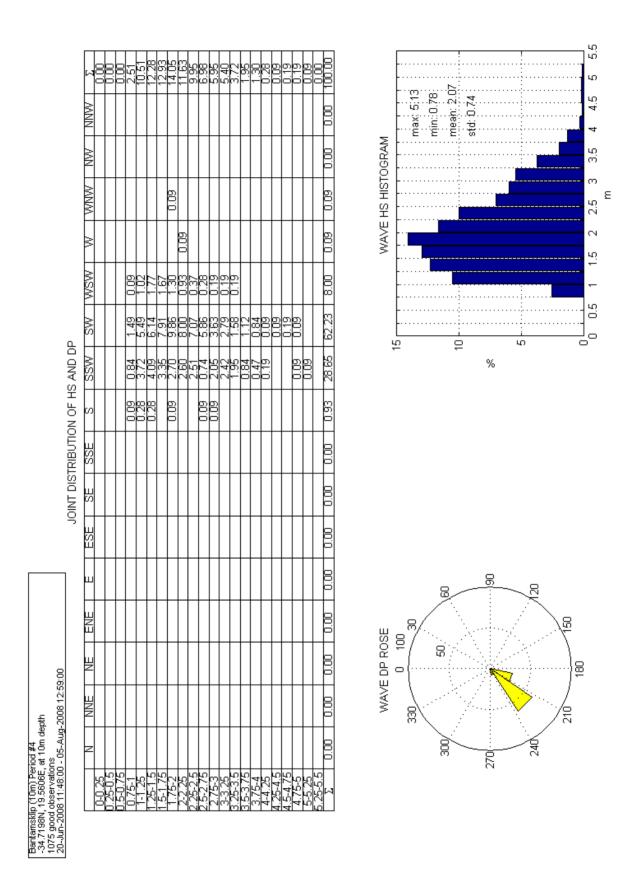

Figure 13 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

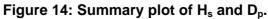
- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

#### 5.1.2.3 <u>Hs and Dp summary plot</u>


Figure 14 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:


- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

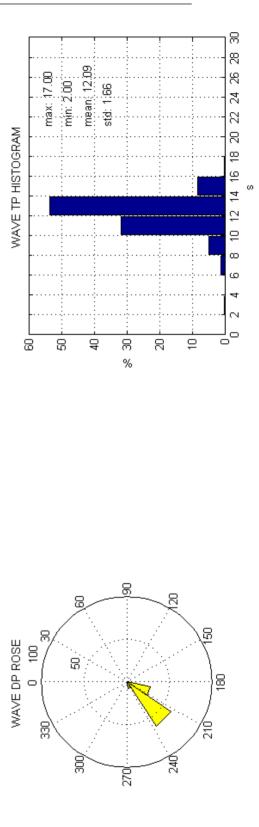

#### 5.1.2.4 <u>Tp and Dp summary plot</u>


Figure 15 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.














|                                                                                                            | ы      | 0.0 | 0.19 | 0.00 | 1.21   | 4.74 | 31.81 | 53.58 | 8.28  | 0.19  | 0.00  | 0.00  | 0.00  | 0.0   | 0.00  | 0.00  | 100.00 |
|------------------------------------------------------------------------------------------------------------|--------|-----|------|------|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|                                                                                                            | NNN    |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
|                                                                                                            | NVN    |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
|                                                                                                            | WWW    |     |      |      |        | 0.09 |       |       |       |       |       |       |       |       |       |       | 0.09   |
|                                                                                                            | M      |     |      |      |        | 60.0 |       |       |       |       |       |       |       |       |       |       | 0.09   |
|                                                                                                            | WSW    |     |      |      | 0.28   | 0.28 | 1.67  | 5.02  | 0.65  | 60'0  |       |       |       |       |       |       | 8.00   |
| n                                                                                                          | SW     |     |      |      | 0.37   | 1.40 | 19.91 | 35.26 | 5.21  | 0.09  |       |       |       |       |       |       | 62.23  |
| IOINT DISTRIBUTION OF TP AND DP                                                                            | ANSS N |     | 0.19 |      | 0.28   | 2.88 | 9.77  | 13.21 | 2.33  |       |       |       |       |       |       |       | 28.65  |
| IL JO NO                                                                                                   | 5 0    |     |      |      | 0.28   |      | 0.47  | 0.09  | 60'0  |       |       |       |       |       |       |       | 0.93   |
| лывыт.                                                                                                     | SSE    |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
| SINT DIS                                                                                                   | SE     |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
| 4                                                                                                          | ESE    |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
|                                                                                                            | ш      |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.00   |
|                                                                                                            | ENE    |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.0    |
| 0                                                                                                          | Ę      |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.0    |
| ath<br>2008 12:55                                                                                          | NNE    |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.0    |
| -34.7198N, 19.5606E, at 10m depth<br>1075 good observations<br>20-Jun-2008 11:48:00 - 05-Aug-2008 12:59:00 | z      |     |      |      |        |      |       |       |       |       |       |       |       |       |       |       | 0.0    |
| -34.7198N, 19.5606E, at 10m depth<br>1075 good observations<br>20-Jun-2008 11:48:00 - 05-Aug-20            |        | 0-2 | 2-4  | 4-6  | е<br>С | 8-10 | 10-12 | 12-14 | 14-16 | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 | 26-28 | 28-30 | ы      |



### Figure 15: Summary plot of $T_p$ and $D_p$ .



#### 5.1.2.5 Wave spectral plot

Figure 16 to Figure 18 display wave spectral plots for significant waves events. The time of each spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.



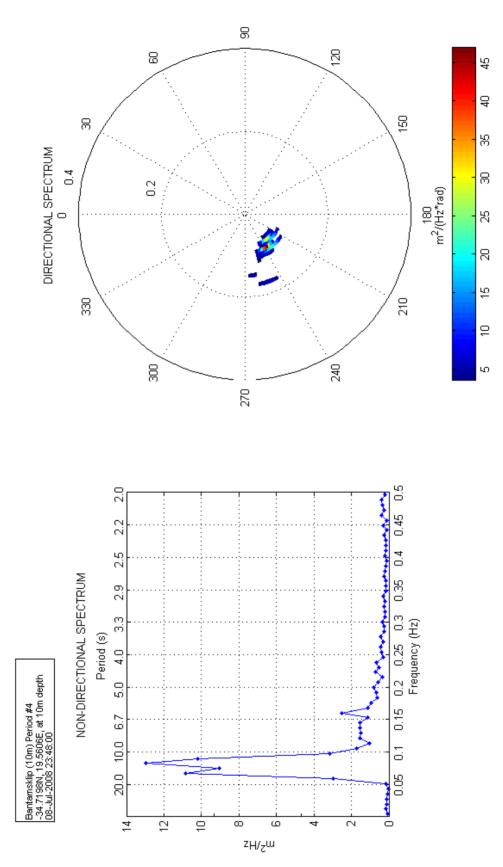



Figure 16: Wave spectra for 08<sup>th</sup> of July 2008 at 23:48:00.



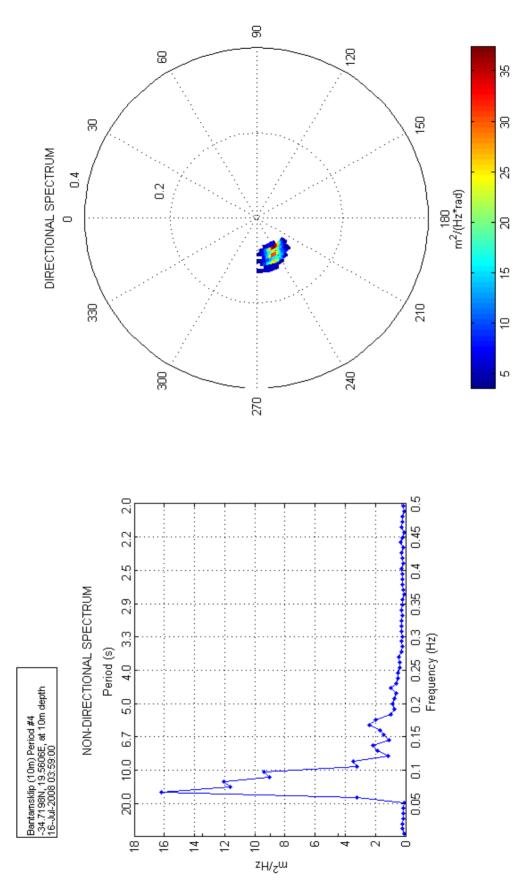



Figure 17: Wave spectra for 16<sup>th</sup> of July 2008 at 03:59:00.



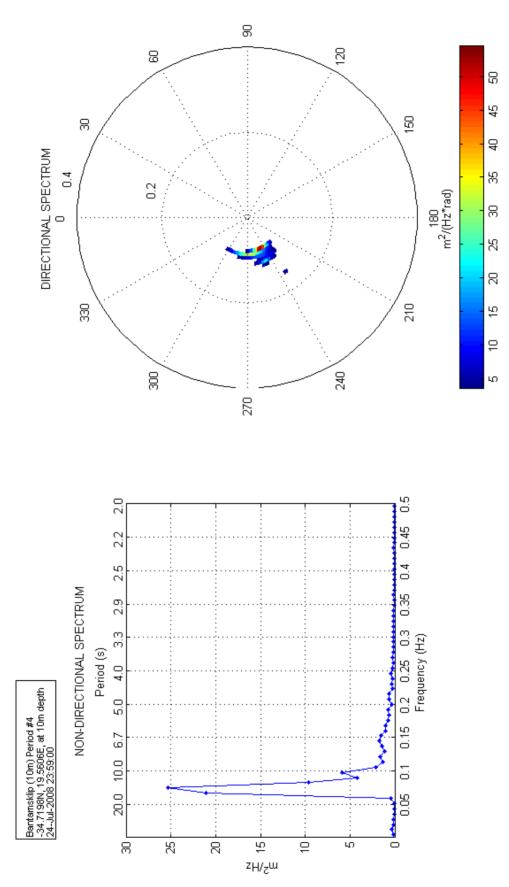



Figure 18: Wave spectra for 24<sup>th</sup> of July 2008 at 23:59:00.



### 5.2 COMPARISON PLOTS

#### 5.2.1 Water properties: RBR-CT loggers and ADCP temperature sensor.

Figure 19 displays a time series plot, which consists of:

- The first panel is of the observed water temperature from surface and bottom RBR loggers as well as ADCP temperature sensor against time.
- The second panel is of the derived salinity from the RBR loggers against time.

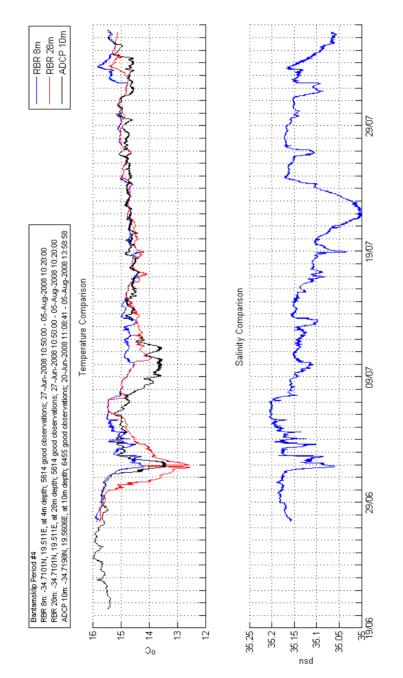



Figure 19: Time series of temperature and salinity from the RBR loggers and 10m ADCP.



### 5.3 TIDE GAUGE

Figure 20 displays a time series plot of the tidal height.

- The first (upper) panel is of the observed height against time.
- The second panel is of the tidal height, calculated from the observed height, against time. The tidal calculation follows the method of Foreman and uses the observed height as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The third panel is of the residual height against time. The residual has been calculated as the observed height minus the tidal height.

Table 14 shows the tidal harmonics resulting from the analysis.

#### 5.4 WATER SAMPLES.

Analysis of water samples were undertaken by the CSIR and results are presented as an appendage (Section 8, page 54).



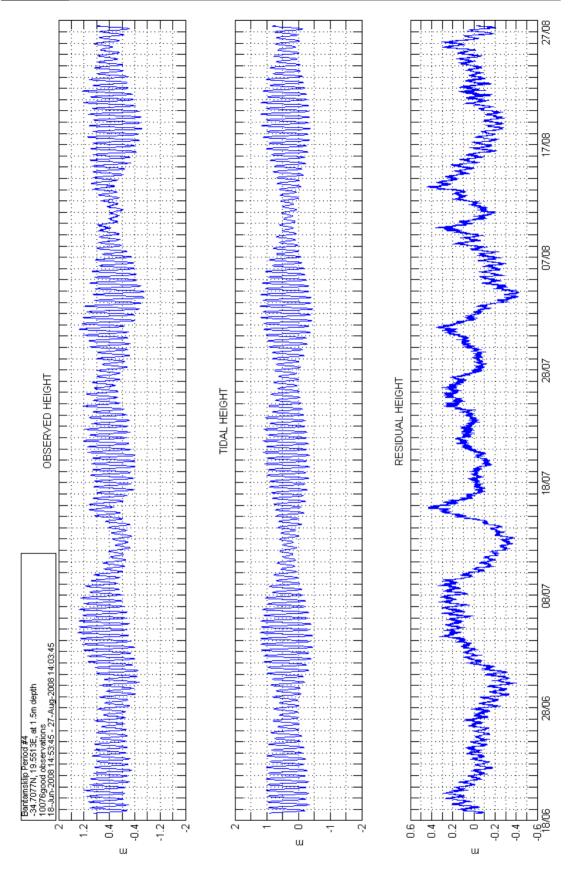



Figure 20: Tidal time series.



### Table 14: Tidal harmonics.

Bantamsklip Period #4 -34.7077N, 19.5513E, in 1.5m depth 10076 good observations 18-Jun-2008 14:53:45 - 27-Aug-2008 14:03:45

#### HARMONIC COMPONENTS

| Component | Amplitude (m) | Phase (deg) |
|-----------|---------------|-------------|
| MM        | 0.02          | 20.01       |
| MSF       | 0.03          | 99.23       |
| ALP1      | 0.00          | 168.98      |
| 2Q1       | 0.00          | 157.60      |
| Q1        | 0.00          | 261.95      |
| 01        | 0.02          | 269.02      |
| NO1       | 0.01          | 241.09      |
| K1        | 0.06          | 148.37      |
| J1        | 0.01          | 158.51      |
| 001       | 0.00          | 181.29      |
| UPS1      | 0.00          | 124.51      |
| EPS2      | 0.01          | 69.64       |
| MU2       | 0.02          | 109.27      |
| N2        | 0.11          | 76.76       |
| M2        | 0.50          | 91.19       |
| L2        | 0.01          | 106.74      |
| S2        | 0.22          | 128.93      |
| ETA2      | 0.01          | 97.57       |
| MO3       | 0.00          | 6.98        |
| M3        | 0.00          | 15.03       |
| MK3       | 0.00          | 324.11      |
| SK3       | 0.01          | 194.77      |
| MN4       | 0.00          | 81.31       |
| M4        | 0.00          | 148.87      |
| SN4       | 0.00          | 292.30      |
| MS4       | 0.00          | 299.77      |
| S4        | 0.00          | 315.37      |
| 2MK5      | 0.00          | 160.32      |
| 2SK5      | 0.00          | 14.81       |
| 2MN6      | 0.00          | 280.76      |
| M6        | 0.00          | 46.91       |
| 2MS6      | 0.00          | 171.72      |
| 2SM6      | 0.00          | 172.80      |
| 3MK7      | 0.00          | 83.96       |
| M8        | 0.00          | 93.34       |



### 6. DISCUSSION

The fouth set of oceanographic data collected off the coast of Bantamsklip for the period between June 20<sup>th</sup> and August 27<sup>th</sup> 2008 has been presented in this report. The measurements taken fall within a larger dataset being compiled to assist a preliminary safety survey of multiple sites around the South African coast reports for Eskom.

At the Bantamsklip site, 2 600 kHz ADCP, 2 RBR-CT loggers and 1 RBR tide gauge have been deployed to measure currents, waves, water temperature and salinity and tidal record. The ADCP is fixed on a frame at ~10m and ~30m and the RBR loggers are moored at ~7m and ~28m below the surface.

Three service visits were undertaken over the deployment period. New ADCP frames were installed. The bottom RBR-CT logger is affixed to the 30m ADCP frame and the surface one is moored ~8m below the surface about 5m away.

This report presents data obtained from the 10m ADCP, the 2 RBR-CT loggers, the RBR tide gauge and water samples collected during the first two service visits.

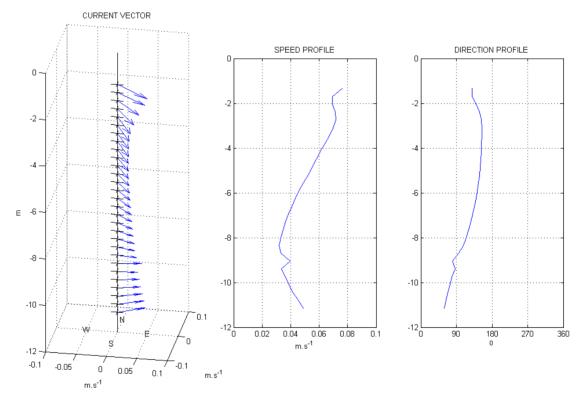



Figure 21: Mean profile plot for 10m ADCP.

The average surface flow for the 10m ADCP was  $0.13 \text{ms}^{-1}$ , decreasing to  $\sim 0.06 \text{ms}^{-1}$  at 11.1m depth. The flow direction at the surface was predominantly towards the S/SE, while at depth, it was mainly towards the ENE. Average wave parameters of  $\sim 2\text{m}$ ,  $\sim 12\text{s}$  and  $\sim 220^{\circ}$  were recorded for Hs, Tp and Dp respectively. These results are in agreement with previous deployments.

The conductivity sensor for the bottom RBR logger failed – the instrument will be withdrawn during the next recovery. Figure 19 shows the temperature sensors on



board the ADCPs and RBR loggers recorded reasonably similar values during the deployment period.

The tide analysis shows some degree of semi-diurnal component in the residual height with negligible amplitude of ~0.1m.



7. INSTRUMENT PARTICULARS FOR SERVICE VISIT TWO

### 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

10m ADCP.

| LWANDLE TEC                                                                                                                                                                                                                                                                                   | HNOLOG      | IES (P           | TY) LTD                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                               |             |                  |                                                                        |
| QUALITY ASSURAN                                                                                                                                                                                                                                                                               | ICE DEPLO   | YMEN             | T SHEET                                                                |
|                                                                                                                                                                                                                                                                                               | 1           |                  |                                                                        |
| LOGGING ADCP DEPL                                                                                                                                                                                                                                                                             | OYMENT / RE | ECOVER           | RY SHEET                                                               |
| Acoustic release (1) serial number and release co                                                                                                                                                                                                                                             | de          |                  |                                                                        |
| Acoustic release (2) serial number and release co                                                                                                                                                                                                                                             | de          |                  |                                                                        |
| Argos beacon serial number                                                                                                                                                                                                                                                                    |             |                  |                                                                        |
|                                                                                                                                                                                                                                                                                               |             |                  | 1                                                                      |
|                                                                                                                                                                                                                                                                                               |             |                  | ROT 10119                                                              |
| Deployment name                                                                                                                                                                                                                                                                               |             |                  | ROE 10119                                                              |
| Deployment date and time                                                                                                                                                                                                                                                                      | (LÎ)        | GMT              | ROZ 10119<br>20/06/08 11/00                                            |
| Deployment name<br>Deployment date and time<br>Deployment latitude\ northings                                                                                                                                                                                                                 | ĹĴ          | GMT              | ROZ 10119<br>20/06/08 11/00<br>34 43 187                               |
| Deployment name<br>Deployment date and time<br>Deployment latitude\ northings<br>Deployment longitude\ eastings                                                                                                                                                                               | ĹĴ          | GMT              | RD 10119<br>20/06/08 11200<br>3443 187<br>1933 635                     |
| Deployment name<br>Deployment date and time<br>Deployment latitude\ northings<br>Deployment longitude\ eastings<br>Recovery information                                                                                                                                                       |             |                  | 20/06/08 11/00<br>34 43 187<br>19 33 635                               |
| Deployment name Deployment date and time Deployment latitude\ northings Deployment longitude\ eastings Recovery information Recovery date and time                                                                                                                                            |             | GMT              | ROS 10119<br>20/06/08 11/00<br>34 43 187<br>19 33 638<br>15 6 0 7 12/0 |
| Deployment name Deployment date and time Deployment latitude\ northings Deployment longitude\ eastings Recovery information Recovery date and time Inspect the transducer faces for cuts or scratch                                                                                           |             |                  | 20/06/08 11/00<br>34 43 187<br>19 33 635                               |
| Deployment name Deployment date and time Deployment latitude\ northings Deployment longitude\ eastings Recovery information Recovery date and time Inspect the transducer faces for cuts or scratch Inspect the instrument for signs of flooding                                              | (LT)<br>hes | GMT              | 20/06/08 11/00<br>34 43 187<br>19 33 635                               |
| Deployment name Deployment date and time Deployment latitude\ northings Deployment longitude\ eastings Recovery information Recovery date and time Inspect the transducer faces for cuts or scratcl Inspect the instrument for signs of flooding Switch off and download the instrument using | (LT)<br>hes | GMT              | 20/06/08 11/00<br>34 43 187<br>19 33 635                               |
| Deployment name Deployment date and time Deployment latitude\ northings Deployment longitude\ eastings                                                                                                                                                                                        | (LT)<br>hes | GMT<br>ON<br>GMT | 20/06/08 11/00<br>34 43 187<br>19 33 635                               |



### QUALITY ASSURANCE DEPLOYMENT SHEET

### LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

|                                                   |                                                                                                                 |                                                                                                                | 80-      |                                                                                                                |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|
| nstrument type and serial number                  |                                                                                                                 |                                                                                                                | ROI      | 10119                                                                                                          |
| Check O-rings on both sides of the instrument     |                                                                                                                 |                                                                                                                | REILACED |                                                                                                                |
| nstall a new battery and check the voltage        |                                                                                                                 |                                                                                                                |          | 44,70                                                                                                          |
| Connect the battery and communications cable      |                                                                                                                 |                                                                                                                |          |                                                                                                                |
| nspect the transducer faces for cuts or scratches |                                                                                                                 |                                                                                                                |          | ~                                                                                                              |
| Seal the instrument                               |                                                                                                                 |                                                                                                                |          |                                                                                                                |
| Connect the instrument to a PC and run WinSC      |                                                                                                                 |                                                                                                                |          | •                                                                                                              |
| Click on "configure an ADCP for a new deployment" |                                                                                                                 | and the second second                                                                                          | -        |                                                                                                                |
| Set up the sampling parameters                    |                                                                                                                 | Same and the second |          | and a second |
| Frequency of unit being used                      |                                                                                                                 |                                                                                                                | 600      |                                                                                                                |
| Depth range                                       |                                                                                                                 | FERST                                                                                                          | 4/1 LAS  | T 15,76 MH2                                                                                                    |
| Number of bins (calculated automatically)         |                                                                                                                 |                                                                                                                | 42       |                                                                                                                |
| Bin Size (calculated automatically)               |                                                                                                                 |                                                                                                                | 0,35     |                                                                                                                |
| Wave burst duration                               | and the Banda Solar S | 41                                                                                                             | 50 m     | inutes                                                                                                         |
| Time between wave bursts                          |                                                                                                                 | 1143                                                                                                           | 60 m     | inutes                                                                                                         |
| Pings per ensemble                                |                                                                                                                 | 5                                                                                                              | 00 9     | .00-                                                                                                           |
| Ensemble interval                                 | And a second provide second second                                                                              |                                                                                                                | 10 m     | inutes                                                                                                         |
| Deployment duration                               |                                                                                                                 | 45 44                                                                                                          |          |                                                                                                                |
| Transducer depth                                  |                                                                                                                 | 10 m                                                                                                           |          |                                                                                                                |
| Any other commands                                |                                                                                                                 |                                                                                                                |          |                                                                                                                |
| Magnetic variation                                |                                                                                                                 |                                                                                                                |          |                                                                                                                |
| Temperature                                       |                                                                                                                 |                                                                                                                | 50       |                                                                                                                |
| Recorder size                                     |                                                                                                                 |                                                                                                                | 148mb <  | 975 mb.                                                                                                        |
| Consequences of the sampling parameters           |                                                                                                                 |                                                                                                                |          |                                                                                                                |
| First and last bin range                          |                                                                                                                 |                                                                                                                | 1141     | 15,76                                                                                                          |
| Battery usage                                     |                                                                                                                 |                                                                                                                |          | 2,9                                                                                                            |
| Standard deviation                                |                                                                                                                 |                                                                                                                |          | 1,08                                                                                                           |
| Storage space required                            |                                                                                                                 |                                                                                                                |          | 401,49                                                                                                         |
| Set the ADCP clock                                | LT)                                                                                                             | GMT                                                                                                            | 06       | 453                                                                                                            |
| Run pre-deployment tests                          |                                                                                                                 |                                                                                                                | N        | <u> </u>                                                                                                       |
| Name the ADCP deployment                          | 1                                                                                                               | BA                                                                                                             | K 107    |                                                                                                                |
| Deployment details                                |                                                                                                                 |                                                                                                                |          | /                                                                                                              |
| Switch on date and time                           | (LT)                                                                                                            | GMT                                                                                                            | 13/07    |                                                                                                                |
| Deployment date and time                          | Ĩ                                                                                                               | GMT                                                                                                            | 13/07    | 108 10h5                                                                                                       |
| Deployment latitude\ northings                    |                                                                                                                 |                                                                                                                | 34       | 43 187                                                                                                         |
| Deployment longitude\ eastings                    |                                                                                                                 |                                                                                                                | 19 -     | 33 635                                                                                                         |
| Site name                                         |                                                                                                                 |                                                                                                                | SBW      | TAN S.                                                                                                         |
|                                                   |                                                                                                                 |                                                                                                                | 100      | ~                                                                                                              |
| Site depth                                        |                                                                                                                 | and a second second second                                                                                     |          |                                                                                                                |



| and the second se |                                                                                                                | OYMEN                                   | South and the second second second |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|---------------------|
| LOGGING ADCP DEPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OYMENT / F                                                                                                     | RECOVE                                  | RY SHEE                            | т                   |
| Acoustic release (1) serial number and release co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ode                                                                                                            | •                                       |                                    |                     |
| Acoustic release (2) serial number and release co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ode                                                                                                            |                                         |                                    |                     |
| Argos beacon serial number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and a second |                                         |                                    |                     |
| Charles on basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a second a second s |                                         | 10.952                             | white the same      |
| 2. <u>RECOVERY</u> from Ion site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                              |                                         |                                    |                     |
| Instrument type and serial number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sin and second                                                                                                 |                                         | Pint                               | 1 10                |
| Deployment name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                         | LOI                                | 10119.              |
| Deployment date and time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LT                                                                                                             | GMT                                     |                                    | ing the discount of |
| Deployment latitude\ northings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                         | 34 0 1                             | 2. 1021             |
| Deployment longitude\ eastings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | X                                       | 190 2                              | 3.(25)              |
| Recovery information<br>Recovery date and time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                         | and the second                     | 3.630               |
| Inspect the transducer faces for cuts or scratch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ú.                                                                                                             | GMT                                     | 05/08/                             | 108 14hze           |
| Inspect the instrument for signs of flooding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | les                                                                                                            |                                         |                                    | ~                   |
| Switch off and download the instrument using N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ninec                                                                                                          |                                         |                                    | ~                   |
| Switch off date and time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WINSC II                                                                                                       |                                         |                                    | 5                   |
| Name of the data directory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | GMT                                     | 1-1                                | 8.2125              |
| File size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                              |                                         | 56107                              | 1840 BYTE           |
| Million and Constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ar all                                                                                                         | -                                       | c ce ye                            | , 1040 ent          |
| - LINET SUTTRIFFE AFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | 52                                      |                                    | - / /               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                         |                                    |                     |
| - DIATA POWNLOWDED . UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O CASCE                                                                                                        |                                         | mælit                              | 6 Coulte            |
| - PATA POWMOUSED IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37,46                                                                                                          | - CP                                    | <del>p I</del> lde                 | 10. (071H           |
| - PATA POWMORDED UT<br>- MUASM UNET BAT =<br>- DATA CAKO KEUTOVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37,46                                                                                                          |                                         | I Ala                              | 6. ( 17/14          |
| - PATA POWMORDED UT<br>- MUASM UNET BAT =<br>- DATA CAKO KEUTOVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37,46                                                                                                          |                                         | mældt.                             | ,                   |
| - DATA POWMOUDED IT<br>MASM UNET BAT =<br>- DATA CAKO REMOVEL<br>CANTSTER BAT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 38                                                                                                           | 29                                      | In El UE                           | 56 ( i7/14<br>,     |
| - DATA POWMOUDED IT<br>MASM UNET BAT =<br>- DATA CAKO REMOVEL<br>CANTSTER BAT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 38                                                                                                           | 29                                      | In Seleck                          | 6 [ 17]H            |
| - PATA POWMORDED UT<br>- MUASM UNET BAT =<br>- DATA CAKO KEUTOVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 38                                                                                                           | 29                                      | In <b>U</b> lat                    | Go ( 1714           |
| - DATA POWMOUDED IT<br>- MASM UNET BAT =<br>- DATA CAKO REMOVEL<br>- CANTSTEC BAT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 38                                                                                                           | 29                                      | MALA.                              | Go ( 1714           |
| - DATA POWMOUDED IT<br>MASN UNET BAT =<br>- DATA CAKO REMOVEL<br>CANTSTEC BAT I<br>BAT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 38,<br>= 38,                                                                                                 | 29<br>32.                               |                                    |                     |
| - DATA POWMOUDED IT<br>MASM UNET BAT =<br>- DATA CARO REMOVILLE<br>CANTSTER BAT I<br>BAT 2<br>UNIT DIETLOYED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 38,<br>= 38,<br>= 38,                                                                                        | 29<br>32<br>4                           | SETA                               |                     |
| - DATA POWMOUDED IE<br>MARN UNET BAT =<br>- DATA CARO REMOVEL<br>CANESTER BAT I<br>BAT 2<br>UMIT DEFLOYED<br>WETH RER 12994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>CABCE</li> <li>37,46</li> <li>= 38,</li> <li>= 38,</li> <li>ow 3</li> <li>ATTENDARY</li> </ul>        | 29<br>32.<br>1<br>0m<br>ACINED          | SETA<br>FO,                        | E<br>FKANE.         |
| UNIT DEFLOYED<br>WITH KBK 12994<br>+ ACOUSTIC KELEASE A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>CASCE</li> <li>37,46</li> <li>= 38,</li> <li>= 38,</li> <li>0~ 3</li> <li>ATTIMO AND</li> </ul>       | 29<br>32.<br>*<br>0m<br>ACIHEN<br>605 B | SETA<br>TO ,<br>EAcor              | E<br>EKAN-E.        |
| - PATA POWMOUDED IT<br>- PHASM UNER BAT =<br>- DATA CARO REMOVEL<br>- CANTSTEC BAT I<br>BAT 2<br>- UNIT DEFLOYED<br>WETH REC 12994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>CASCE</li> <li>37,46</li> <li>= 38,</li> <li>= 38,</li> <li>0~ 3</li> <li>ATTIMO AND</li> </ul>       | 29<br>32.<br>*<br>0m<br>ACIHEN<br>605 B | SETA<br>TO ,<br>EAcor              | E<br>EKAN-E.        |

•



LWANDLE TECHNOLOGIES (PTY) LTD

20

tam sklip SV400

P

# QUALITY ASSURANCE DEPLOYMENT SHEET

## LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

| Instrument type and serial number<br>Check O-rings on both sides of the instrument                |      |            | R      | DE                | 10117   |
|---------------------------------------------------------------------------------------------------|------|------------|--------|-------------------|---------|
| Install a new better and should the                                                               |      |            |        |                   | RERIACE |
| Install a new battery and check the voltage                                                       |      |            |        |                   | 44,8    |
| Connect the battery and communications cable<br>Inspect the transducer faces for cuts or scratche |      |            |        |                   | ~       |
| Seal the instrument                                                                               | 98   |            |        |                   | ~       |
| Connect the instrument to a PC and run WinSC                                                      |      |            |        |                   | ~       |
| Click on "configure an ADCP for a new deployme                                                    |      |            |        |                   |         |
| Set up the sampling parameters                                                                    | ent" |            |        |                   |         |
| Frequency of unit being used                                                                      |      |            |        |                   |         |
| Depth range                                                                                       |      |            | 6      | 600               |         |
| Number of bins (calculated automatically)                                                         |      |            |        | 10                |         |
| Bin Size (coloulated automatically)                                                               |      |            | 4      | +2                |         |
| Bin Size (calculated automatically)<br>Wave burst duration                                        |      |            | . 0    | 35                |         |
| Time between wave bursts                                                                          | 1    |            | 41     | <del>50 mir</del> | nates   |
| Pings per ensemble                                                                                |      |            |        | 60 min            | utes    |
| Ensemble interval                                                                                 |      | 500        | . 20   | Ð-                |         |
| Deployment duration                                                                               |      | 10 minutes |        |                   |         |
| Transducer depth                                                                                  | · C  | 14         | 44     | •                 |         |
| Any other commands                                                                                |      |            |        | 10 m.             |         |
| Magnetic variation                                                                                |      | -          | The TH | Non               | e RIØ   |
| Femperature                                                                                       |      |            |        | _                 |         |
| Recorder size                                                                                     |      |            | 5      | 50                |         |
|                                                                                                   |      |            | 448m   | b 100             | 0       |
| Consequences of the sampling parameters                                                           |      |            |        |                   |         |
|                                                                                                   |      |            | 44     | 1                 | 15,76   |
| Battery usage<br>Standard deviation                                                               |      |            |        |                   | 0,9     |
|                                                                                                   |      | 4          |        |                   | 1,08    |
| Storage space required                                                                            |      |            |        | 124,21            |         |
| et the ADCP clock                                                                                 | Ē    | GM         | 1 27   | 108/0             | 8 09415 |
| un pre-deployment tests                                                                           |      |            |        |                   | ~       |
| ame the ADCP deployment                                                                           |      | 1          | 69108  |                   |         |
| eployment details                                                                                 |      |            |        | -                 |         |
| witch on date and time                                                                            |      | GM         | 27     | 108/09            | 1 oghis |
| eployment date and time                                                                           | (LT) | GMT        | 27/    | 68/08             | 16400   |
| eployment latitude\ northings                                                                     |      |            | 34     | 43                |         |
| eployment longitude\ eastings                                                                     |      |            | 190    | 33                | 398     |
| te name                                                                                           |      |            | BA     | NTAM              |         |
| te depth                                                                                          |      |            |        | Dan.              | 10.4.   |
| eployment depth                                                                                   |      |            | 10     |                   |         |



30m ADCP.

# LWANDLE TECHNOLOGIES (PTY) LTD

## QUALITY ASSURANCE DEPLOYMENT SHEET

## LOGGING ADCP DEPLOYMENT / RECOVERY SHEET

#### 1. DEPLOYMENT

| Instrument type and serial number                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | a line                                | RDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check O-rings on both sides of the instrument                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Install a new battery and check the voltage                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.73U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Connect the battery and communications cable                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | -                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 171-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Inspect the transducer faces for cuts or scratche                                                                                                                                                                                                                                                                                                                                    | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Seal the instrument                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Connect the instrument to a PC and run WinSC                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | non<br>E <sup>rst</sup> er            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Click on "configure an ADCP for a new deployme                                                                                                                                                                                                                                                                                                                                       | ent"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Set up the sampling parameters                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a de la seconda de |
| Frequency of unit being used                                                                                                                                                                                                                                                                                                                                                         | Week Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                       | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | litta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Depth range                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                       | 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of bins (calculated automatically)                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                       | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bin Size (calculated automatically)                                                                                                                                                                                                                                                                                                                                                  | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                       | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vave burst duration                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 34                                    | min 50 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ime between wave bursts                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pings per ensemble                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 2:                                    | 50 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nsemble interval                                                                                                                                                                                                                                                                                                                                                                     | n - Alfred States - Alfred Sta |    |                                       | 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Deployment duration                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 4                                     | 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>#</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ransducer depth                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ny other commands                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1                                     | TO No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | me mente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ~                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| lagnetic variation                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 4                                     | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71007.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| emperature                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 4                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| emperature<br>ecorder size                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 4                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| emperature<br>ecorder size<br>onsequences of the sampling parameters                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ~                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ~                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000 MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ~                                     | 5°<br>448mb //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000 MB<br>35,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  |                                       | 5°<br>448mb //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35,60.<br>35,60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  |                                       | 5°<br>448mb //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000 MB<br>35,60<br>3.<br>0,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MT                                    | 5°<br>448mb //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35,60<br>35,60<br>3.<br>0,86<br>337,364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                       | 5°<br>448mb //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35,60<br>35,60<br>3.<br>0,86<br>337,364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests<br>ame the ADCP deployment                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MT                                    | 5°<br>448mb / 1<br>1,60<br>06/08/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35,60<br>35,60<br>3.<br>0,86<br>337,364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests<br>ame the ADCP deployment<br>eployment details                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MT                                    | 5°<br>448mb //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35,60<br>35,60<br>3.<br>0,86<br>337,364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests<br>ame the ADCP deployment                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G  | MT                                    | 5°<br>448mb //<br>1/60<br>06/08/0<br>/( 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000 MB<br>35,60<br>3.<br>0,86<br>337,36M<br>8 orh43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests<br>ame the ADCP deployment<br>eployment details<br>witch on date and time<br>eployment date and time                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G  | MT<br>&.                              | 5°<br>448mb //<br>448mb //<br>448mb //<br>460<br>//<br>66/08/0<br>06/08/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000 MB<br>35,60<br>3.<br>0,86<br>337,36m<br>8 ozh43.<br>8 ozh43.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests<br>ame the ADCP deployment<br>eployment details<br>vitch on date and time<br>eployment date and time<br>eployment latitude\ northings                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G  | MT<br>ØT                              | 5°<br>448mb //<br>1,60<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000 ms<br>35,60<br>3.<br>0,86<br>337,36m<br>8 07h43.<br>8 07h48.<br>8 13200                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests<br>ame the ADCP deployment<br>eployment details<br>witch on date and time<br>eployment date and time                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G  | MT<br>ØT                              | 5°<br>448mb //<br>1,60<br>06/08/0<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000 ms<br>35,60<br>3.<br>0,86<br>337,36m<br>8 07h43<br>8 07h48.<br>8 07h48.<br>98 13L00<br>36,1                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests<br>ame the ADCP deployment<br>eployment details<br>vitch on date and time<br>eployment date and time<br>eployment latitude\ northings                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GI | MT<br>ØZ                              | 5°<br>448mb //<br>1,60<br>1,60<br>06/08/0<br>1,30 %<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>00/000000000000000000000000000000 | 000 ms<br>35,60<br>3.<br>0,86<br>337,36m<br>8 07h43.<br>8 07h43.<br>8 07h48.<br>8 13L00<br>36,1<br>40,6.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| emperature<br>ecorder size<br>onsequences of the sampling parameters<br>irst and last bin range<br>attery usage<br>tandard deviation<br>torage space required<br>et the ADCP clock<br>un pre-deployment tests<br>ame the ADCP deployment<br>eployment details<br>witch on date and time<br>eployment date and time<br>eployment latitude\ northings<br>eployment longitude\ eastings |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GI | MT<br>ØZ                              | 5°<br>448mb //<br>1,60<br>1,60<br>06/08/0<br>1,30 %<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>06/08/0<br>00/000000000000000000000000000000 | 2000 ms<br>35,60<br>3.<br>0,86<br>337,36m<br>8 07h43<br>8 07h48.<br>08 13L00<br>.36,1<br>40,6<br>~5 30m.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

POWER PARK CONSERVED VOLTAGE : 45.



#### 7.2 RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT SHEETS

#### Surface.

| LWANDI                                       | LE TECHNO         | DLOGI | ES (PTY  | ) LTD   |
|----------------------------------------------|-------------------|-------|----------|---------|
| QUALITY ASSURA                               | NCE DEPLC         | YMEN  | T SHEET  |         |
| MD1 LOGGING XR 420 CT                        |                   |       | /        | ET      |
| 03                                           | 108/08            | 12    | 774      | . /     |
| Inspect the instrument for signs of flooding |                   |       |          |         |
| Switch off and download the instrument usin  | ng Aquadopp softw | are   |          |         |
| Switch off date and time                     | UT                | GMT   | 06/08/08 | 5 Obhil |
| Name of the data directory DATA /BAN         | MAMS 0508         | 2068  | 30m R    | BK 8m   |
| File size                                    |                   |       | 11.6.63  | SUKBS   |

| RECOVERY                          |    |     |                |  |  |  |
|-----------------------------------|----|-----|----------------|--|--|--|
| Instrument type and serial number | λ. |     | 21420 12994    |  |  |  |
| Deployment name                   |    |     |                |  |  |  |
| Deployment date and time          | Œ  | GMT | 27/06/08 10h30 |  |  |  |
| Deployment latitude\ northings    |    |     | 34 42 605      |  |  |  |
| Deployment longitude\ eastings    |    |     | 19 30 659      |  |  |  |
| Recovery information              |    |     |                |  |  |  |
| Recovery date and time            | LT | GMT | 05/08/08 10425 |  |  |  |

## LWANDLE TECHNOLOGIES (PTY) LTD

Ben

### QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

| DEPLO                                               | OYMENT                                    |         |        |         |
|-----------------------------------------------------|-------------------------------------------|---------|--------|---------|
| Instrument type and serial number                   | 1. J. |         | 28420  | 12994   |
| Check O-rings on instrument                         |                                           |         |        | ~       |
| Install a new battery and check the voltage         |                                           |         | ~      | 3,056×7 |
| Connect the battery and communications cable        |                                           |         |        | ~       |
| Connect the instrument to a PC and run RBR softw    | vare                                      |         |        | ~       |
| Click on "Setup"                                    |                                           |         |        |         |
| Set up the sampling parameters                      |                                           |         |        |         |
| Start of logging (date / time)                      |                                           | 06/     | 08/08  | 10400   |
| End of logging (date / time)                        |                                           | 31      | 12/08  | 12600   |
| Sampling period                                     |                                           |         |        | 10 SEC  |
| Averaging period                                    | 5                                         |         |        | ISEC    |
| Deployment details                                  | 1                                         |         | 1      | ,       |
| Deployment date and time                            | (I)                                       | 04/08/0 | \$ 131 | h 30.   |
| Deployment latitude\ northings                      | Arrest and a second                       |         | 344    | 2605    |
| Deployment longitude\ eastings                      |                                           |         | 19 7   | 0659    |
| Site name                                           |                                           |         | SAWTI  | ans zon |
| Site depth                                          |                                           |         | 30     | an.     |
| Deployment depth                                    |                                           |         | 1 8    | m,      |
| Acoustic release (1) serial number and release code |                                           |         |        |         |
| Acoustic release (2) serial number and release code |                                           |         |        |         |
| Argos beacon serial number                          |                                           |         |        |         |



#### Bottom.

| LWANI                                        | DLE TECHN            | OLOGI    | ES (PTY) LTD   |
|----------------------------------------------|----------------------|----------|----------------|
|                                              | RANCE DEPLO          | OYMEN1   | SHEET          |
| MD1 LOGGING XR 420 (                         |                      | T / RECC | VERY SHEET     |
| 0.                                           | 5/08/08              | 1299     | 8.             |
| Inspect the instrument for signs of flooding | ng                   |          |                |
| Switch off and download the instrument u     | ising Aquadopp softw | /are     |                |
| Switch off date and time                     | LT                   | GMT      | 06/08/08 07/02 |
| Name of the data directory PATA 15           | AWTAMS OSC           | 80058    | 30m lbl 28m    |
| File size                                    |                      |          | 146KB HER = 84 |
| · · · · · · · · · · · · · · · · · · ·        | RECOVERY             | -        |                |
| Instrument type and serial number            |                      |          | XR 420 12998.  |
| Deployment name                              |                      |          |                |
| Deployment date and time                     | Û                    | GMT      | 27/06/08 10/3  |
| Deployment latitude\ northings               | 1                    |          | 34 47 605      |
| Deployment longitude\ eastings               |                      |          | 19 30 659      |
| Recovery information                         |                      |          |                |
| Recovery date and time                       | (LT)                 | GMT      | 05/08/08 11635 |

CT deployment sheet



### LWANDLE TECHNOLOGIES (PTY) LTD

## QUALITY ASSURANCE DEPLOYMENT SHEET

#### MD1 LOGGING XR 420 CT DEPLOYMENT / RECOVERY SHEET

1

| DEPLOYMENT                                          |                                                                                                                 |          |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|
| Instrument type and serial number                   | XR470                                                                                                           | 12998.   |
| Check O-rings on instrument                         | 1 - 0 4 00                                                                                                      | V        |
| Install a new battery and check the voltage         |                                                                                                                 | 3157 411 |
| Connect the battery and communications cable        | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | 2001-24  |
| Connect the instrument to a PC and run RBR software |                                                                                                                 |          |
| Click on "Setup"                                    |                                                                                                                 |          |
| Set up the sampling parameters                      |                                                                                                                 |          |
| Start of logging (date / time)                      | 06/08/08                                                                                                        | 106 00   |
| End of logging (date / time)                        | 37/12/08                                                                                                        | 12/00    |
| Sampling period                                     | Fal 9                                                                                                           | 10 SEC   |
| Averaging period                                    | · .                                                                                                             | 1 460    |
| Deployment details                                  |                                                                                                                 | 1 300    |
| Deployment date and time                            | 08/09. 13                                                                                                       | 600      |
| Deployment latitude\ northings                      | 34 1.7                                                                                                          | 3/ 1     |
| Deployment longitude\ eastings                      | 19 30                                                                                                           | 0 1.06   |
| Site name                                           | SPILTA                                                                                                          | me zna   |
| Site depth                                          | 34                                                                                                              | 5 2012   |
| Deployment depth                                    | 30                                                                                                              |          |
| Acoustic release (1) serial number and release code |                                                                                                                 | <u> </u> |
| Acoustic release (2) serial number and release code |                                                                                                                 |          |
| Argos beacon serial number                          | 1                                                                                                               |          |



### 7.3 TIDE GAUGE RECOVERY AND RE-DEPLOYMENT SHEETS

LWANDLE TECHNOLOGIES (PTY) LTD QUALITY ASSURANCE DEPLOYMENT SHEET TGR1050HT TIDE GAUGE DEPLOYMENT / RECOVERY SHEET DEPLOYMENT Instrument type and serial number TGRINGO # 14695 Check O-rings on instrument 1-Install a new battery and check the voltage 2× 3.20 Connect the battery and communications cable 4 Connect the instrument to a PC and run RBR software L Click on "Setup" 1 Set up the sampling parameters Sampling period 10 sec Averaging period ) sec Expected deployment duration Start of logging (date / time) 27/08/08 14 440 End of logging (date / time) 31/01/09 12400 Memory usage Battery usage Deployment details Deployment date and time LT 27/08/08 14 240 Deployment latitude\ northings =34. 42.265 Deployment longitude\ eastings =19. 33. 099 Site name Barts aVI Site depth 22m Deployment depth 220 Acoustic release (1) serial number and release code Acoustic release (2) serial number and release code Argos beacon serial number RECOVERY Instrument type and serial number Deployment name Deployment date and time LT GMT Deployment latitude\ northings Deployment longitude\ eastings **Recovery information** Recovery date and time LT/ GMT 7/08/08 1 14630 Inspect the instrument for signs of flooding 1 Switch off and download the instrument using Aquadopp software

Client name 1 TGR1050HT deployment //recovery

(1)

GMT

27/08/08

7,087

14/36

014695-27082038-074230

KBytos

\* Instrument type should read "TGR2050" instead of "TGR1050".

Switch off date and time

File size

Name of the data directory



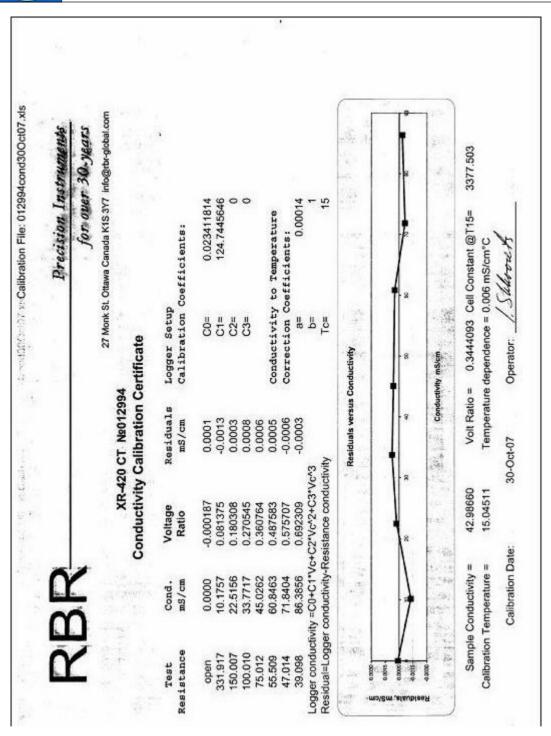
### 7.4 CALIBRATION CERTIFICATES

|                                 |                  |                | YNE<br>STRUME | ies Company |        |          |
|---------------------------------|------------------|----------------|---------------|-------------|--------|----------|
|                                 | Workhors         |                |               | on Summar   | v      |          |
| Date                            | 11/30/2007       |                |               |             | -      |          |
| Customer                        | PERTEC           |                |               |             |        |          |
| Sales Order or RMA No.          | 3018766          |                |               |             |        |          |
| <ul> <li>System Type</li> </ul> | Sentinel         |                |               |             |        |          |
| Part number                     | WHSW600-1-UG92   |                |               |             |        |          |
| Frequency                       | 600 kHz          |                |               |             |        |          |
| Depth Rating (meters)           | 200              |                |               |             |        |          |
| SERIAL NUMBERS:<br>System       | 10119            | REVISION:      |               |             |        |          |
| CPU PCA                         | 11019            | Rev.           | J3            |             |        |          |
| PIO PCA                         | 6574             | Rev.           | F1            |             |        |          |
| DSP PCA                         | 14400            | Rev.           | GI            |             |        |          |
| RCV PCA                         | 14956            | Rev.           | E2            |             |        |          |
| AUX PCA                         |                  | Rev.           |               |             |        |          |
|                                 |                  |                |               |             |        |          |
| FIRMWARE VERSION:               |                  |                |               |             |        |          |
| CPU                             | 16.30            |                |               |             |        |          |
| SENSORS INSTALLED:              |                  |                |               |             |        |          |
| Temperature 🗸                   | Heading 🗸        | Pitch / I      | Roll 🗸        | Pressure 🗸  | Rating | 200 mete |
| FEATURES INSTALLED              |                  |                |               |             |        |          |
| ✓ Water Profile                 |                  | High Rat       | e Pinging     |             |        |          |
| Bottom Track                    |                  | Shallow        | Bottom Mod    | le          |        |          |
| High Resolution W               | ater Modes       | ✓ Wave Gu      | lage Acquisi  | tion        |        |          |
| Lowered ADCP                    |                  | River Su       | wey ADCP -    |             |        |          |
| * Includes Water Profile        | Bottom Track and | High Resolutio | n Water Moo   | les         |        |          |
| COMMUNICATIONS:                 |                  |                |               |             |        |          |
| Communication                   | RS-232           |                |               |             |        |          |
| Baud Rate                       | 9600             |                |               |             |        |          |
| Parity                          | NONE             |                |               |             |        |          |
| Recorder Capacity               | 1150             | MB (installed  | i)            |             | 1      |          |
| Power Configuration             | 20-60 VDC        |                |               |             |        |          |
| Cable Length                    | 5                | meters         |               |             |        |          |

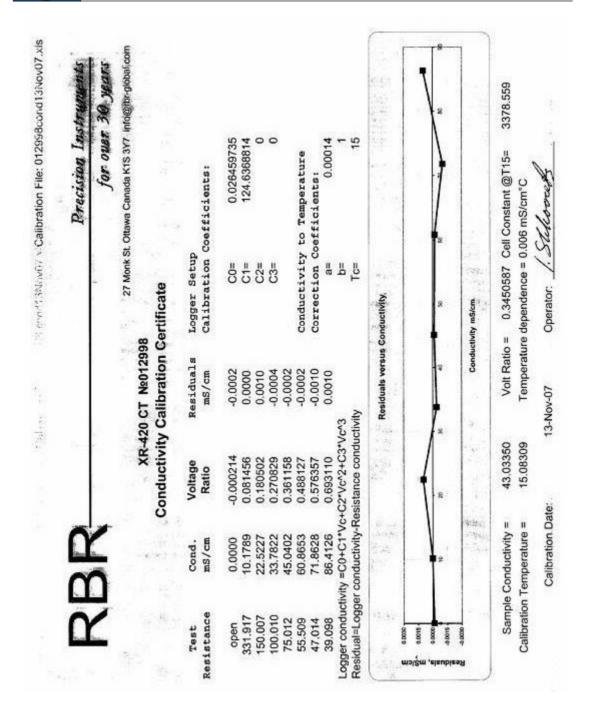




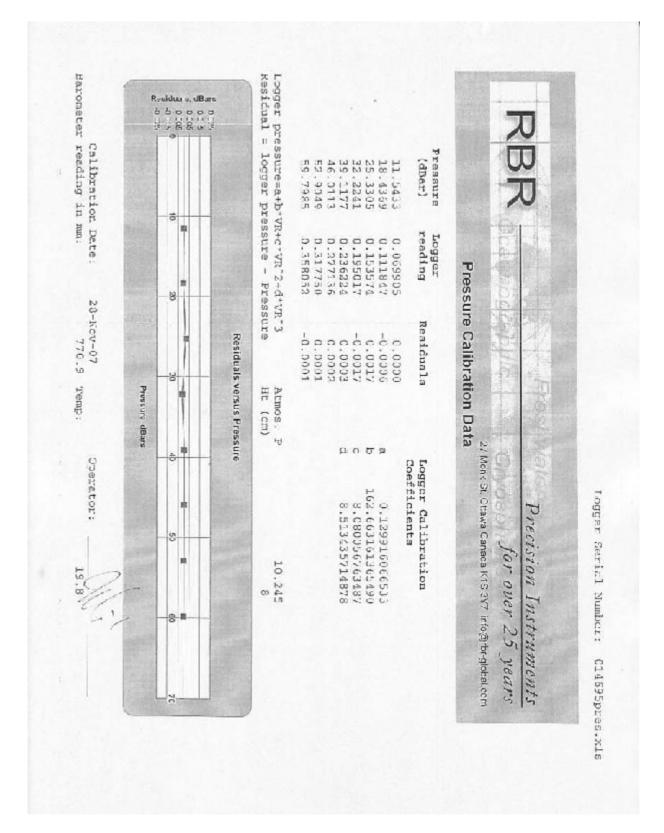
A Teledyne Technologies Company


### Workhorse Configuration Summary

| Pate                              | 11/30/2007         |                                                                                                                  |  |
|-----------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------|--|
| Customer                          | PERTEC             | n and a second |  |
| Sales Order or RMA No.            | 3018766            | 1 B 100 B 1 1 1 1                                                                                                |  |
| System Type                       | Sentinel           |                                                                                                                  |  |
| Part number                       | WHSW600-I-UG9      | 32                                                                                                               |  |
| Frequency                         | 600 kHz            |                                                                                                                  |  |
| Depth Rating (meters)             | 200                |                                                                                                                  |  |
|                                   |                    |                                                                                                                  |  |
| SERIAL NUMBERS:<br>System         | 10117              | REVISION:                                                                                                        |  |
| CPU PCA                           | 11015              | Rev. J3                                                                                                          |  |
| PIO PCA                           | 6597               | Rev. F1                                                                                                          |  |
| DSP PCA                           | 14406              |                                                                                                                  |  |
|                                   | 14949              |                                                                                                                  |  |
| RCV PCA                           | 14949              | Rev. E2                                                                                                          |  |
| AUX PCA                           | -<br>              | Rev.                                                                                                             |  |
| FIRMWARE VERSION:                 |                    | *                                                                                                                |  |
| CPU                               | 16.30              |                                                                                                                  |  |
|                                   |                    |                                                                                                                  |  |
| SENSORS INSTALLED:                |                    |                                                                                                                  |  |
| Temperature 🗸                     | Heading 🗸          | Pitch / Roll V. Pressure V. Rating 200 meters                                                                    |  |
| FEATURES INSTALLED                |                    |                                                                                                                  |  |
| <ul> <li>Water Profile</li> </ul> |                    | High Rate Pinging                                                                                                |  |
| Bottom Track                      |                    | Shallow Bottom Mode                                                                                              |  |
| High Resolution V                 | Vater Modes        | <ul> <li>Wave Guage Acquisition</li> </ul>                                                                       |  |
| Lowered ADCP                      |                    | River Survey ADCP *                                                                                              |  |
| * Includes Water Profile          | , Bottom Track and | d High Resolution Water Modes                                                                                    |  |
| COMMUNICATIONS:                   |                    |                                                                                                                  |  |
| Communication                     | RS-232             |                                                                                                                  |  |
| Baud Rate                         | 9600               |                                                                                                                  |  |
| Parity                            | NONE               |                                                                                                                  |  |
| Recorder Capacity                 | 1150               | MB (installed)                                                                                                   |  |
| Power Configuration               | 20-60 VDC          |                                                                                                                  |  |
|                                   |                    |                                                                                                                  |  |


Cable Length 5 meters

14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com
















### 8. PHOTOS TAKEN

(a)







(C)

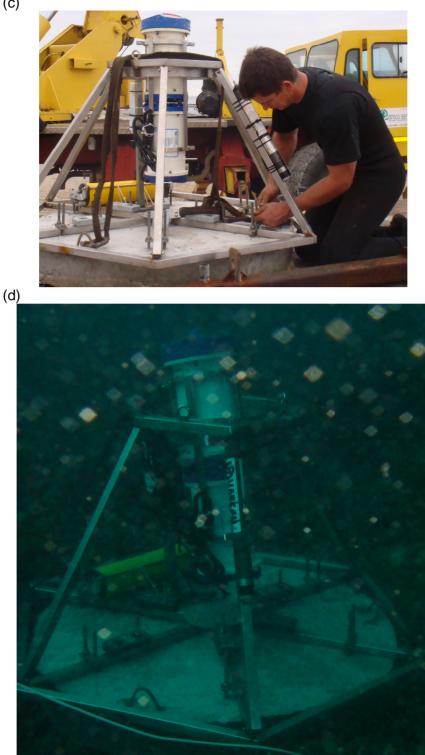



Figure 22: Photos taken during SV 4b. (a,b) Damage done to the internal battery pack of the 30m ADCP due ostensibly due to a minor leak. The instrument was withdrawn. (c) Preparation of the new setup comprising of the ADCP frame and the concrete plinth. (d) Instrument deployed.



### 9. **REPORTS FROM THE CSIR**

The reports from the CSIR are attached as an appendage.

## **CERTIFICATE OF ANALYSIS**

### Our ref: H:\USERS\MARLAB\REPORTS\Malr2766

Report Number: MALR2766

24 July 2008

Lwandle Technologies Gabriel Place 1 Gabriel Road Plumstead 7800

### **Attention Craig Matthysen**

### CHEMICAL ANALYSIS: Water samples (Order No.: )

Samples received: 22/07/08 Analysis completed: 24/07/08 Sample description: Seawater in sealed plastic bottles.

| Lab   | Sample      | Sample   | Total Suspended Solids | EC     | Salinity |
|-------|-------------|----------|------------------------|--------|----------|
| No    | ld          | Date     | in mg/L                | in S/m | PSU      |
|       |             |          |                        |        |          |
| 37074 | Bantams S1  | 12/07/08 | <2                     | 4.1    | 34.1     |
| 37075 | Bantams S2  | 12/07/08 | 2                      | 4.1    | 34.2     |
| 37076 | Bantams S3  | 12/07/08 | <2                     | 4.1    | 34.2     |
| 37077 | Bantams S4  | 12/07/08 | <2                     | 4.1    | 34.5     |
| 37078 | Bantams S5  | 12/07/08 | <2                     | 4.1    | 34.5     |
| 37079 | Bantams S6  | 12/07/08 | 6                      | 4.1    | 34.4     |
| 37080 | Bantams S7  | 12/07/08 | 3                      | 4.1    | 34.4     |
| 37081 | Bantams S8  | 12/07/08 | <2                     | 4.1    | 34.5     |
| 37082 | Bantams S9  | 12/07/08 | <2                     | 4.1    | 34.5     |
| 37083 | Bantams S10 | 12/07/08 | 5                      | 4.1    | 34.5     |
| 37084 | Bantams S11 | 12/07/08 | <2                     | 4.1    | 34.4     |

Andrew Pascall MARINE ANALYTICAL SERVICES Laboratory Manager Sebastian Brown MARINE ANALYTICAL SERVICES Deputy Laboratory Manager

Page 1 of 1

• Method not included in the scope of accreditation.

## **CERTIFICATE OF ANALYSIS**

Our ref: H:\USERS\MARLAB\REPORTS\Malr2784 Report Number: MALR2784 23 August 2008

Lwandle Technologies Gabriel Place 1 Gabriel Road Plumstead 7800

### **Attention Craig Matthysen**

### CHEMICAL ANALYSIS: Seawater samples (Order No.: )

Samples received: 08/08/08 Analysis completed: 20/08/08 Sample description: Seawater in sealed plastic bottles.

| Lab   | Sample | *Total Suspended |
|-------|--------|------------------|
| No    | ld     | Solids in mg/L   |
|       |        |                  |
| 34233 | S1     | 2                |
| 34234 | S2     | 10               |
| 34235 | S3     | 3                |
| 34236 | S4     | <2               |
| 34237 | S5     | <2               |
| 34238 | S6     | <2               |
| 34239 | S7     | <2               |
| 34240 | S8     | 2                |
| 34241 | S9     | <2               |
| 34242 | S10    | 2                |
| 34243 | S11    | 3                |
| 34244 | S12    | 2                |
| 34245 | S13    | <2               |

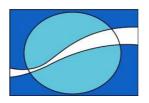
Andrew Pascall MARINE ANALYTICAL SERVICES Laboratory Manager Sebastian Brown MARINE ANALYTICAL SERVICES Deputy Laboratory Manager

Page 1 of 1

• Method not included in the scope of accreditation.

This report relates only to the samples actually supplied to the Division of Water, Environment and Forestry Technology. The Division does not accept responsibility for any matters arising from the further use of these results. This certificate shall not




# LWANDLE DATA REPORT

# **BANTAMSKLIP SITE – DEPLOYMENT FIVE**

## PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



# PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



9 February 2009

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



### TABLE OF CONTENTS

| 1. | EXECU        | ITIVE SU             | MMARY                            | 4  |  |  |  |
|----|--------------|----------------------|----------------------------------|----|--|--|--|
|    | 1.1          | DATA F               | RETURN FOR BANTAMSKLIP SITE      | 7  |  |  |  |
| 2. | INTRODUCTION |                      |                                  |    |  |  |  |
|    | 2.1          | PROJECT DESCRIPTION  |                                  |    |  |  |  |
|    | 2.2          |                      | MENT LIST                        |    |  |  |  |
|    | 2.3          | MEASUREMENT LOCATION |                                  |    |  |  |  |
| 3. | OPERA        | TIONS                |                                  | 10 |  |  |  |
| •  | 3.1          |                      |                                  |    |  |  |  |
|    | 3.2          |                      | JMENT CONFIGURATIONS             |    |  |  |  |
|    |              | 3.2.1                | 600kHz ADCP                      |    |  |  |  |
|    |              | 3.2.2                | RBR XR420 CT LOGGER              |    |  |  |  |
|    |              | 3.2.3                | RBR TGR2050 HT TIDE GAUGE        |    |  |  |  |
|    |              | 3.2.4                | Biofouling Mooring               | 12 |  |  |  |
|    | 3.3          | RECOV                | VER AND REDEPLOYMENT METHODOLOGY |    |  |  |  |
|    |              | 3.3.1                | T&C mooring                      | 13 |  |  |  |
|    |              | 3.3.2                | ADCP mooring                     | 13 |  |  |  |
|    |              | 3.3.3                | Tidal Gauge                      |    |  |  |  |
|    |              | 3.3.4                | Biofouling mooring               | 13 |  |  |  |
| 4. | DATA (       | QUALITY              | CONTROL                          | 14 |  |  |  |
|    | 4.1          | ADCP.                |                                  | 14 |  |  |  |
|    |              | 4.1.1                | Current processing               | 14 |  |  |  |
|    |              | 4.1.2                | Wave processing                  | 14 |  |  |  |
|    | 4.2          | RBR-C                |                                  | 16 |  |  |  |
|    | 4.3          | TIDE GAUGE           |                                  |    |  |  |  |
|    | 4.4          | BIOFOULING.          |                                  |    |  |  |  |
|    | 4.5          | WATEF                | R SAMPLE                         | 16 |  |  |  |
| 5. | DATA F       | PRESEN               | TATION                           | 17 |  |  |  |
|    | 5.1          | 10M AE               | DCP                              | 17 |  |  |  |
|    |              | 5.1.1                | Current Data                     | 17 |  |  |  |
|    |              | 5.1.1.1              | Time series plots                | 17 |  |  |  |
|    |              | 5.1.1.2              | Summary plots                    | 21 |  |  |  |
|    |              | 5.1.1.3              | Progressive vector plots         | 21 |  |  |  |



|    |        | 5.1.2   | Wave D        | ata           |              |             |         |        | 28 |
|----|--------|---------|---------------|---------------|--------------|-------------|---------|--------|----|
|    |        | 5.1.2.1 |               | Hs and Tp s   | ummary plo   | ot          |         |        | 28 |
|    |        | 5.1.2.2 |               | Hs and Dp s   | ummary plo   | ot          |         |        | 28 |
|    |        | 5.1.2.3 |               | Tp and Dp s   | ummary plo   | ot          |         |        | 28 |
|    |        | 5.1.2.4 |               | Wave specti   | al plot      |             |         |        | 32 |
|    | 5.2    | 30M AD  | СР            |               |              |             |         |        | 33 |
|    |        | 5.2.1   | Current       | Data          |              |             |         |        | 33 |
|    |        | 5.2.1.1 |               | Time series   | plots        |             |         |        | 33 |
|    |        | 5.2.1.2 |               | Summary pl    | ots          |             |         |        | 37 |
|    |        | 5.2.1.3 |               | Progressive   | vector plots | 3           |         |        | 37 |
|    |        | 5.2.2   | Wave D        | ata           |              |             |         |        | 43 |
|    |        | 5.2.2.1 |               | Hs and Tp s   | ummary plo   | ot          |         |        | 43 |
|    |        | 5.2.2.2 |               | Hs and Dp s   | ummary plo   | ot          |         |        | 43 |
|    |        | 5.2.2.3 |               | Tp and Dp s   | ummary plo   | ot          |         |        | 43 |
|    |        | 5.2.2.4 |               | Wave spect    | al plot      |             |         |        | 47 |
|    | 5.3    | COMPA   | PARISON PLOTS |               |              |             |         |        | 48 |
|    |        | 5.3.1   | Hs, Tp a      | and Dp time s | eries plots  | for 10m an  | d 30m / | ADCPs  | 48 |
|    |        | 5.3.2   | Water         | properties:   |              |             |         |        |    |
|    |        |         | tempera       | ture sensor.  |              |             |         |        | 49 |
|    | 5.4    | WATER   | SAMPL         | ES            |              |             |         |        | 50 |
| 6. | DISCUS | SSION   |               |               |              |             |         |        | 51 |
| 7. | INSTRU | JMENT P | ARTICU        | LARS FOR S    | SERVICE V    | ISIT FIVE . |         |        | 53 |
|    | 7.1    | ADCPS   | RECOV         | ERY AND RE    | E-DEPLOYI    | MENT SHE    | ETS     |        | 53 |
|    | 7.2    | RBR-C   | LOG           | GERS REC      | OVERY        | AND RE-     | DEPLO   | OYMENT |    |
|    |        | SHEET   | S             |               |              |             |         |        | 56 |
|    | 7.3    | CALIB   |               | CERTIFICAT    | ES           |             |         |        | 58 |
|    |        |         |               |               |              |             |         |        |    |
|    | 7.4    | ADCP (  | ONFIGU        | JRATION FIL   | .ES          |             |         |        | 62 |



### 1. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 5 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Data return<br>(%) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|--------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -10.1        | 99.17              | 0.5480                           | 0.0779                            | 0.0790                           | 0.0618                                | 123.92                    |
| -9.7         | 99.26              | 0.5783                           | 0.0805                            | 0.0822                           | 0.0628                                | 121.68                    |
| -9.4         | 99.26              | 0.5833                           | 0.0838                            | 0.0843                           | 0.0649                                | 118.88                    |
| -9.0         | 99.17              | 0.6307                           | 0.0871                            | 0.0855                           | 0.0674                                | 117.20                    |
| -8.7         | 99.12              | 0.6538                           | 0.0903                            | 0.0858                           | 0.0701                                | 114.83                    |
| -8.3         | 98.99              | 0.6027                           | 0.0917                            | 0.0869                           | 0.0715                                | 113.48                    |
| -8.0         | 99.21              | 0.6033                           | 0.0953                            | 0.0883                           | 0.0741                                | 113.61                    |
| -7.6         | 99.34              | 0.6397                           | 0.0990                            | 0.0892                           | 0.0770                                | 110.93                    |
| -7.3         | 99.43              | 0.6083                           | 0.1030                            | 0.0916                           | 0.0803                                | 110.67                    |
| -6.9         | 99.26              | 0.6253                           | 0.1042                            | 0.0904                           | 0.0821                                | 109.68                    |
| -6.6         | 99.30              | 0.6670                           | 0.1072                            | 0.0920                           | 0.0841                                | 108.71                    |
| -6.2         | 99.21              | 0.6391                           | 0.1082                            | 0.0921                           | 0.0845                                | 107.55                    |
| -5.9         | 99.30              | 0.6061                           | 0.1099                            | 0.0929                           | 0.0858                                | 107.19                    |
| -5.5         | 99.17              | 0.6105                           | 0.1113                            | 0.0921                           | 0.0868                                | 106.51                    |
| -5.2         | 99.30              | 0.6151                           | 0.1141                            | 0.0945                           | 0.0885                                | 106.02                    |
| -4.8         | 99.17              | 0.6290                           | 0.1155                            | 0.0956                           | 0.0900                                | 105.45                    |
| -4.5         | 99.08              | 0.6643                           | 0.1174                            | 0.0958                           | 0.0909                                | 104.79                    |
| -4.1         | 99.30              | 0.6607                           | 0.1207                            | 0.0972                           | 0.0931                                | 104.67                    |
| -3.8         | 98.90              | 0.6454                           | 0.1218                            | 0.0974                           | 0.0940                                | 103.41                    |
| -3.4         | 99.12              | 0.6614                           | 0.1246                            | 0.0976                           | 0.0959                                | 102.82                    |
| -3.1         | 98.95              | 0.6497                           | 0.1270                            | 0.0987                           | 0.0973                                | 101.72                    |
| -2.7         | 99.12              | 0.6750                           | 0.1295                            | 0.0991                           | 0.0996                                | 100.24                    |
| -2.4         | 99.12              | 0.6522                           | 0.1323                            | 0.1003                           | 0.1017                                | 98.42                     |
| -2.0         | 98.99              | 0.7338                           | 0.1355                            | 0.0998                           | 0.1042                                | 96.29                     |
| -1.7         | 99.12              | 0.7206                           | 0.1410                            | 0.1011                           | 0.1102                                | 93.31                     |
| -1.3         | 98.95              | 0.7316                           | 0.1473                            | 0.0985                           | 0.1166                                | 88.83                     |
| -1.0         | 99.12              | 0.7212                           | 0.1564                            | 0.0986                           | 0.1257                                | 86.37                     |

Table 1 – Current flow summary for 10m ADCP

|        | Data Return (%) | Max    | Min   | Mean   | Std   |
|--------|-----------------|--------|-------|--------|-------|
| Hs (m) | 97.42           | 5.91   | 0.66  | 2.01   | 1.14  |
| Tp (s) | 97.42           | 9.50   | 2.00  | 7.85   | 2.33  |
| Dp (°) | 97.42           | 355.58 | 92.58 | 182.42 | 30.48 |



|       | Table 3 – Current flow summary for 30m ADCP |                     |                     |                     |                           |               |
|-------|---------------------------------------------|---------------------|---------------------|---------------------|---------------------------|---------------|
| Depth | Data return                                 | Max speed           | Mean speed          | Std speed           | Vector mean               | Vector mean   |
| (m)   | (%)                                         | (ms <sup>-1</sup> ) | (ms <sup>-1</sup> ) | (ms <sup>-1</sup> ) | speed (ms <sup>-1</sup> ) | direction (°) |
| -27.7 | 14.35                                       | 0.2029              | 0.0361              | 0.0246              | 0.0069                    | 248.76        |
| -27.2 | 14.31                                       | 0.2173              | 0.0375              | 0.0271              | 0.0045                    | 248.79        |
| -26.7 | 14.35                                       | 0.2037              | 0.0395              | 0.0282              | 0.0022                    | 258.27        |
| -26.2 | 14.35                                       | 0.2146              | 0.0412              | 0.0295              | 0.0012                    | 248.38        |
| -25.7 | 14.35                                       | 0.2348              | 0.0435              | 0.0316              | 0.0029                    | 180.51        |
| -25.2 | 14.38                                       | 0.3475              | 0.0462              | 0.0359              | 0.0028                    | 177.23        |
| -24.7 | 14.38                                       | 0.3563              | 0.0490              | 0.0377              | 0.0053                    | 185.34        |
| -24.2 | 14.35                                       | 0.2721              | 0.0494              | 0.0339              | 0.0077                    | 199.54        |
| -23.7 | 14.38                                       | 0.3679              | 0.0520              | 0.0374              | 0.0092                    | 197.84        |
| -23.2 | 14.35                                       | 0.2985              | 0.0522              | 0.0344              | 0.0121                    | 196.27        |
| -22.7 | 14.35                                       | 0.2927              | 0.0529              | 0.0334              | 0.0147                    | 196.80        |
| -22.2 | 14.35                                       | 0.2765              | 0.0539              | 0.0322              | 0.0160                    | 194.07        |
| -21.7 | 14.35                                       | 0.2945              | 0.0543              | 0.0315              | 0.0177                    | 194.59        |
| -21.2 | 14.35                                       | 0.2594              | 0.0542              | 0.0299              | 0.0187                    | 194.53        |
| -20.7 | 14.35                                       | 0.2352              | 0.0545              | 0.0280              | 0.0207                    | 197.39        |
| -20.2 | 14.35                                       | 0.2336              | 0.0542              | 0.0278              | 0.0213                    | 198.16        |
| -19.7 | 14.35                                       | 0.2124              | 0.0545              | 0.0268              | 0.0237                    | 198.44        |
| -19.2 | 14.35                                       | 0.2172              | 0.0542              | 0.0264              | 0.0245                    | 195.52        |
| -18.7 | 14.35                                       | 0.2136              | 0.0538              | 0.0275              | 0.0254                    | 193.68        |
| -18.2 | 14.35                                       | 0.1744              | 0.0549              | 0.0270              | 0.0276                    | 192.32        |
| -17.7 | 14.35                                       | 0.1632              | 0.0554              | 0.0277              | 0.0285                    | 193.42        |
| -17.2 | 14.35                                       | 0.2353              | 0.0559              | 0.0290              | 0.0286                    | 192.95        |
| -16.7 | 14.35                                       | 0.2311              | 0.0568              | 0.0292              | 0.0301                    | 191.78        |
| -16.2 | 14.35                                       | 0.1929              | 0.0564              | 0.0300              | 0.0311                    | 190.54        |
| -15.7 | 14.38                                       | 0.2464              | 0.0580              | 0.0315              | 0.0315                    | 192.56        |
| -15.2 | 14.38                                       | 0.2243              | 0.0589              | 0.0313              | 0.0314                    | 191.70        |
| -14.7 | 14.38                                       | 0.2307              | 0.0596              | 0.0318              | 0.0325                    | 189.14        |
| -14.2 | 14.38                                       | 0.2472              | 0.0595              | 0.0322              | 0.0328                    | 190.50        |
| -13.7 | 14.38                                       | 0.2581              | 0.0600              | 0.0326              | 0.0339                    | 190.27        |
| -13.2 | 14.38                                       | 0.2578              | 0.0625              | 0.0341              | 0.0358                    | 189.93        |
| -12.7 | 14.38                                       | 0.2534              | 0.0630              | 0.0353              | 0.0359                    | 189.42        |
| -12.2 | 14.38                                       | 0.2273              | 0.0638              | 0.0343              | 0.0368                    | 188.41        |
| -11.7 | 14.38                                       | 0.2338              | 0.0654              | 0.0363              | 0.0374                    | 189.71        |
| -11.2 | 14.38                                       | 0.1957              | 0.0666              | 0.0362              | 0.0389                    | 189.87        |
| -10.7 | 14.38                                       | 0.2021              | 0.0681              | 0.0363              | 0.0397                    | 188.49        |
| -10.2 | 14.35                                       | 0.1719              | 0.0682              | 0.0362              | 0.0401                    | 188.14        |
| -9.7  | 14.35                                       | 0.2126              | 0.0690              | 0.0382              | 0.0409                    | 188.67        |
| -9.2  | 14.35                                       | 0.2321              | 0.0697              | 0.0386              | 0.0404                    | 188.64        |
| -8.7  | 14.35                                       | 0.2610              | 0.0713              | 0.0389              | 0.0416                    | 186.76        |
| -8.2  | 14.35                                       | 0.2712              | 0.0728              | 0.0395              | 0.0419                    | 186.94        |
| -7.7  | 14.31                                       | 0.2544              | 0.0731              | 0.0410              | 0.0418                    | 185.72        |
| -7.2  | 14.31                                       | 0.2426              | 0.0739              | 0.0401              | 0.0429                    | 184.45        |
| -6.7  | 14.35                                       | 0.2484              | 0.0754              | 0.0399              | 0.0422                    | 183.17        |
| -0.7  | 14.33                                       | 0.2464              | 0.0754              | 0.0233              | 0.0422                    | 103.1/        |

# Table 3 – Current flow summary for 30m ADCP



| -6.2 | 14.31 | 0.2420 | 0.0777 | 0.0395 | 0.0433 | 180.00 |
|------|-------|--------|--------|--------|--------|--------|
| -5.7 | 14.35 | 0.2342 | 0.0765 | 0.0401 | 0.0406 | 177.82 |
| -5.2 | 14.31 | 0.2778 | 0.0741 | 0.0407 | 0.0363 | 171.80 |
| -4.7 | 14.35 | 0.3300 | 0.0715 | 0.0405 | 0.0291 | 165.39 |
| -4.2 | 14.38 | 0.3376 | 0.0725 | 0.0406 | 0.0229 | 126.34 |
| -3.7 | 14.38 | 0.3237 | 0.0876 | 0.0453 | 0.0447 | 75.87  |
| -3.2 | 14.38 | 0.3326 | 0.1200 | 0.0544 | 0.0821 | 70.87  |

# Table 4 – Waves summary for 30m ADCP

|        | Data Return (%) | Max    | Min   | Mean   | Std   |
|--------|-----------------|--------|-------|--------|-------|
| Hs (m) | 98.86           | 10.18  | 1.43  | 3.36   | 1.52  |
| Tp (s) | 98.36           | 19.50  | 7.30  | 13.31  | 2.35  |
| Dp (°) | 98.36           | 267.60 | 92.60 | 217.59 | 22.67 |

# Table 5 – Water temperature and salinity summary (surface)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100.00          | 14.74 | 15.57 | 13.37 |
| Conductivity     | 100.00          | 39.43 | 43.80 | 30.29 |
| Salinity (psu)   | 53.28           | 35.08 | 35.38 | 34.00 |



# 1.1 DATA RETURN FOR BANTAMSKLIP SITE.

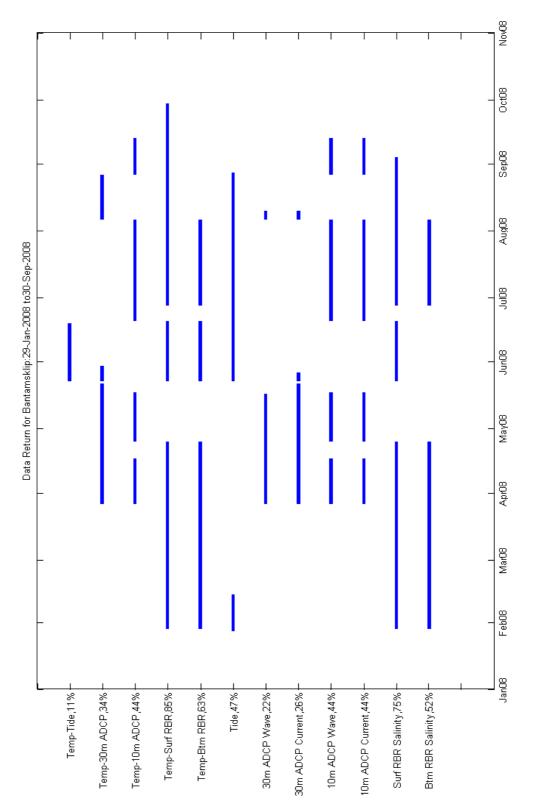



Figure 1: An indication of the data return at the Bantamsklip site since the beginning of the project.



# 2. INTRODUCTION

# 2.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents currents, waves, temperature and salinity data collected at Bantamsklip station for the period August  $27^{th} 2008$  – September  $28^{th} 2008$  (Period 5). Three service visits were undertaken: 5a (September  $27^{th}$ ), 5b (November  $1^{st}$ ) and 5c (November  $5^{th} - 6^{th}$ ). Water samples were collected during service 5b.

# 2.2 EQUIPMENT LIST

Lwandle provided the equipment as listed in Table 6 for the Bantamsklip site.

| Item                       | Operational (on site) | Spare (for whole project) |
|----------------------------|-----------------------|---------------------------|
| TRDI 600kHz ADCP           | 2                     | 1                         |
| RBR XR420 CT logger        | 2                     | 1                         |
| RBR TGR 2050 HT Tide Gauge | 1                     | 0                         |

#### Table 6 – List of equipment provided.

# 2.3 MEASUREMENT LOCATION

The deployment location of the instruments is given in Table 7. Table 8 shows the locations where water samples were taken.

| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | 34° 42.462'   | 19°33.080'     |
| 10m ADCP    | 34°43.105'    | 19°33.391'     |
| Biofouling  | 34°43.190'    | 19°33.686'     |
| 30m ADCP    | 34° 42.625'   | 19° 30.635'    |
| T&C mooring | 34° 42.625'   | 19°30.635'     |

#### Table 7 – Measurement locations



| STN<br># | Lat         | Long        | SAMPLES<br>type | Exact Time<br>HH:MM:SS | COMMENTS (if<br>RBR profile is |
|----------|-------------|-------------|-----------------|------------------------|--------------------------------|
|          |             |             | (W,B,G)         |                        | taken etc)                     |
| 1        | 34° 42.625' | 34° 42.625' | W               | 14.30                  | 4m                             |
| 2        | 34° 42.625' | 34° 42.625' | W               | 14.32                  | 12m                            |
| 3        | 34° 42.625' | 34° 42.625' | W               | 14.38                  | 20m                            |
| 4        | 34° 42.625' | 34° 42.625' | W               | 14.41                  | 28m                            |
| 5        | 34°43.190'  | 19°33.611'  | W               | 15.25                  | 4m                             |
| 6        | 34°43.161'  | 19°33.591'  | W               | 15.32                  | 4m                             |
| 7        | 34°43.124'  | 19°33.584'  | W               | 15.34                  | 4m                             |
| 8        | 34°43.097'  | 19°33.577'  | W               | 15.37                  | 4m                             |
| 9        | 34°43.081'  | 19°33.541'  | W               | 15.40                  | 4m                             |
| 10       | 34°43.148'  | 19°33.398'  | W               |                        | 4m                             |

# Table 8 – Locations where water samples were taken during service visit 5b



### 3. **OPERATIONS**

#### 3.1 SUMMARY OF EVENTS

Service visit 5 was undertaken in three parts as outlined below.

Visit 5a September 27<sup>th</sup>:

Recovery of the 30m ADCP (s/n 10119) was undertaken. An attempt to locate the 10m ADCP (s/n 10117) was made – but failed. The RBR string was recovered and it was found that the bottom RBR (s/n 12998) was lost.

#### Visit 5b November 1<sup>st</sup>:

Deployment of the 30m ADCP (s/n 10841) and RBR TC String (s/n 12994 at 8m and s/n 15248 at 30m) was carried out. Water samples were collected. The engineers could not locate the tide gauge – it was lost.

#### Visit 5c November $5^{th} - 6^{th}$ :

Nov 5<sup>th</sup>: Deployment of a new unit at the 10m site (s/n 10105) at 34°43.148'S, 19°33.398'E was undertaken. Biofouling plates were installed.

Nov  $6^{\text{th}}$ : The 10m ADCP (s/n 10117) was recovered 400m away (34°43.105'S, 19°33.391'E).



## 3.2 INSTRUMENT CONFIGURATIONS

The as deployed instrumentation configurations are given in this section and completed deployment / recovery sheets are given in Section 7 (page 53).

#### 3.2.1 600kHz ADCP

Table 9 – Instrument configuration for 10m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10117                         |
| Wave burst duration         | 41 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 42                            |
| Bin size                    | 0.35 m                        |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 500                           |
| Edgetech Acoustic Release   | s/n 32380 release code 641722 |

Redeployment of the 10m ADCP was undertaken during service visit 5c - s/n 10105.

Table 10 – Instrument configuration for 30m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10119                         |
| Wave burst duration         | 34 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 69                            |
| Bin size                    | 0.5 m                         |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 250                           |
| Edgetech Acoustic Release   | s/n 32383 release code 642016 |

ADCP s/n 10841 was redeployed at the 30m site – service visit 5b.

# 3.2.2 RBR XR420 CT LOGGER

#### Table 11 – Instrument configuration for T&C Mooring Line.

| Parameter                           | Configuration                               |
|-------------------------------------|---------------------------------------------|
| XR 420 Temperature and Conductivity | s/n 12994 (8m) and s/n 12998 (30m)          |
| Sampling and Averaging              | Sample at 1Hz for 1 minute every 10 minutes |

The bottom RBR logger was lost and was replaced with a new one (s/n 15248).



# 3.2.3 RBR TGR2050 HT TIDE GAUGE

## Table 12 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 2050 HT            | s/n 014695                              |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

The tide gauge was lost.

# 3.2.4 Biofouling Mooring

## Table 13 – Instrument configuration for Biofouling Mooring Line.

| Parameter                 | Configuration                                             |
|---------------------------|-----------------------------------------------------------|
| Biofouling Plates         | 3 plates (20cmx20cm) at 3m and 3 plates (20cmx20cm) at 8m |
| Edgetech Acoustic Release | s/n 32387 release code 642144                             |



# 3.3 RECOVER AND REDEPLOYMENT METHODOLOGY

## 3.3.1 T&C mooring

The T&C mooring line was deployed by lowering the array down via a rope through the anchor weights. The mooring line is recovered using divers to undo a single shackle that connects the mooring line to the anchor weights. Divers reattach the line onto the weights, after the instruments have been serviced.

## 3.3.2 ADCP mooring

The ADCP Frame is lowered to the bottom and moved into position by divers, who also attach chain sections that act as anchors. To retrieve the frame divers have to locate the mooring, take of the anchor chains and surface the frame using air lift bags that they attach.

## 3.3.3 Tidal Gauge.

The Druck pressure sensor was installed at depth of about 1.5m outside a stilling well, which was attached to a permanent steel frame in 1.87m depth of water.

## 3.3.4 Biofouling mooring

The biofouling mooring line was deployed by lowering the array down via a rope through the anchor weights. Divers will locate the mooring line and retrieve a surface and bottom plate from the line at the required sampling periods.



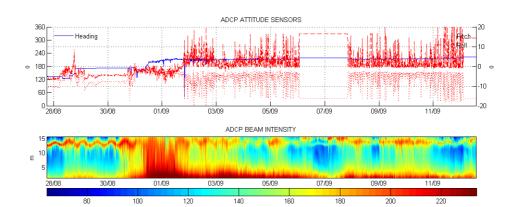
# 4. DATA QUALITY CONTROL

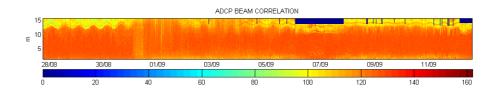
# 4.1 ADCP

Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further.

# 4.1.1 Current processing

- The record was truncated to exclude times pre and post deployment.
- The pressure sensor on board the ADCP failed and depth was manually set to 11.5m.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 25' W for the 10m ADCP and 25° 24' W for the 30m ADCP.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 2).
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.


# 4.1.2 Wave processing


Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:

- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 25' W for the 10m ADCP and 25° 24' W for the 30m ADCP.
- Wave data after August 9<sup>th</sup> 2008 was truncated for the 30m ADCP (viz. Figure 2b)
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.



(a)





(b)

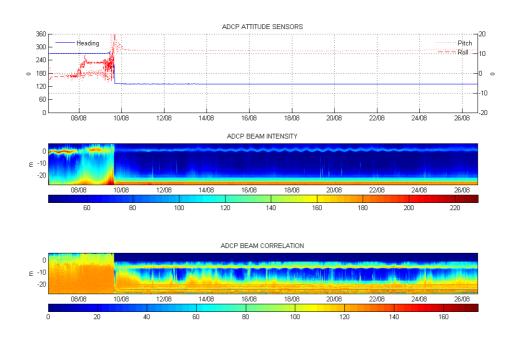



Figure 2: Attitude data for (a) 10m ADCP and (b) 30m ADCP.



# 4.2 RBR-CT LOGGER

The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.

- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.
- Salinity values less than 34psu were flagged.

# 4.3 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- Atmospheric sea level pressure correction was applied.
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is +0.73m.
- Finally the data was averaged over a 10-minute period.

The tide gauge was lost and will be replaced with a new one.

# 4.4 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Recovery of the biofouling plates was not scheduled for service visit 5.

# 4.5 WATER SAMPLE.

Water sample were collected during the first two service visits and sent to the Council for Scientific and Industrial Research (CSIR) for analysis.



# 5. DATA PRESENTATION

All data presented have been subject to the quality control procedures detailed in the previous section. Bad data have been excluded from all plots and calculations.

All plots in this section include a stamp that details the location, depth, time period and number of observations that the plot is based upon. Wherever possible, scaling of parameters has been kept constant throughout this section to facilitate comparison between plots and stations.

# 5.1 10M ADCP

## 5.1.1 Current Data

#### 5.1.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



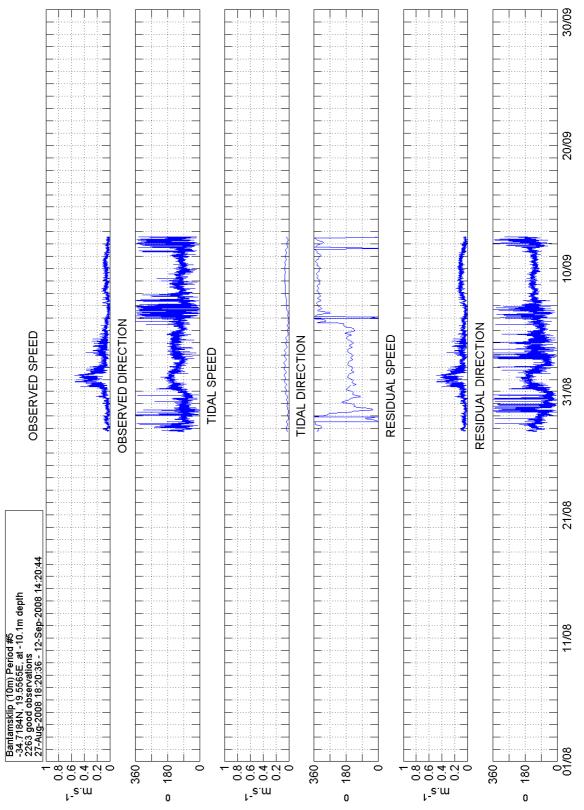



Figure 3: Time series plot for 10m ADCP current data at 10.1m.



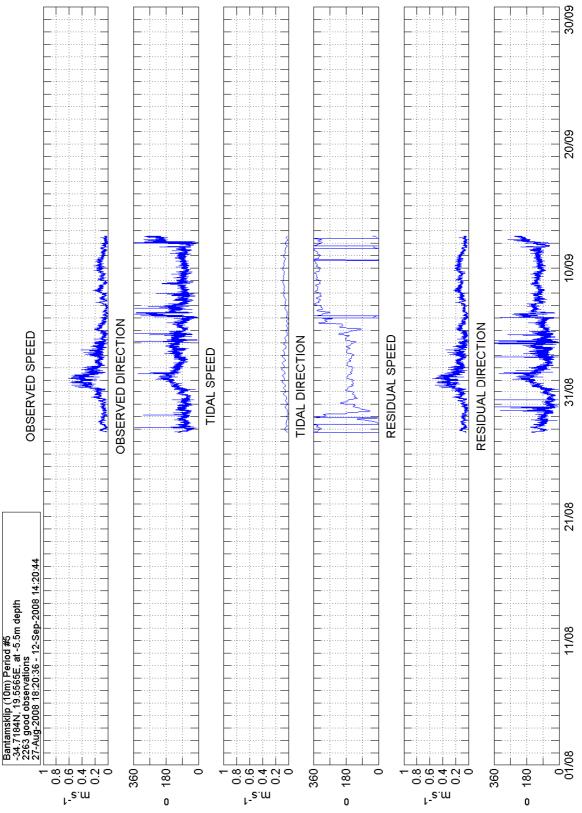



Figure 4: Time series plot for 10m ADCP current data at 5.5m.



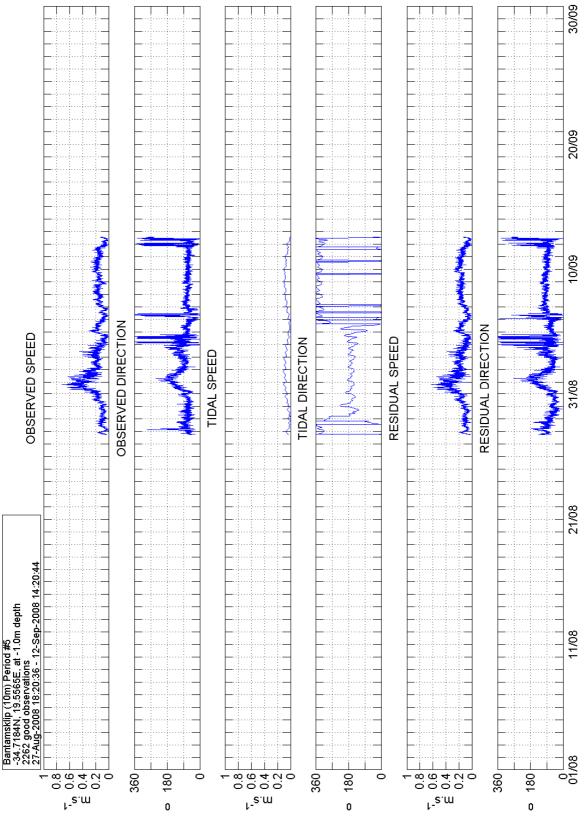



Figure 5: Time series plot for 10m ADCP current data at 1.0m.



#### 5.1.1.2 Summary plots

The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.1.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.

3antamsklip (10m) Period #5 34.7184N, 19.5565E, at -10.1m depth 2263 good observations 27-Aug-2008 18:20:36 - 12-Sep-2008 14:20:44 JOI

| Aug-2000 10.20.30 - 12-38p-2000 14.20.44 | 1 - 90°.07 | 17-dac-7 | 000 14.2 | 44.            |          | r DISTF | RIBUTI | ON OF | SPEEI | JOINT DISTRIBUTION OF SPEED AND DIRECTION | DIREC | TION   |      |                         |        |            |        |
|------------------------------------------|------------|----------|----------|----------------|----------|---------|--------|-------|-------|-------------------------------------------|-------|--------|------|-------------------------|--------|------------|--------|
|                                          | z          | NNE      | ЫN       | ENE            | ш        | ESE     | SE     | SSE   | S     | SSW                                       |       | SW WSW | M    | WNW                     |        | NNN NNW    | Σ      |
| 0-0.1                                    | 1.68       | 2.43     | 4.24     | 9.85           | 19.40    | 17.85   | 11.31  | 5.52  | 2.08  | 0.66                                      | 0.80  | 1.02   | 0.75 | 0.88                    | 1.10   | 1.28       | 80.87  |
| 0.1-0.2                                  |            |          | 0.18     | 1.06           | 1.94     | 2.08    | 3.67   | 2.25  | 0.57  | 0.04                                      | 0.04  |        |      |                         |        |            | 11.84  |
| 0.2-0.3                                  |            |          |          | 0.04           | 0.09     | 0.40    | 1.28   | 1.63  | 0.27  |                                           |       |        |      |                         |        |            | 3.71   |
| 0.3-0.4                                  |            |          |          |                |          |         | 0.62   | 1.33  | 0.40  | 0.04                                      |       |        |      |                         |        |            | 2.39   |
| 0.4-0.5                                  |            |          |          |                |          |         | 0.09   | 0.66  | 0.22  | 0.04                                      |       |        |      |                         |        |            | 1.02   |
| 0.5-0.6                                  | •          |          |          |                |          |         | 0.04   | 0.13  |       |                                           |       |        |      |                         |        |            | 0.18   |
| 0.6-0.7                                  | _          |          |          |                |          |         |        |       |       |                                           |       |        |      |                         |        |            | 0.00   |
| 0.7-0.8                                  |            |          |          |                |          |         |        |       |       |                                           |       |        |      |                         |        |            | 0.00   |
| 0.8-0.9                                  |            |          |          |                |          |         |        |       |       |                                           |       |        |      |                         |        |            | 0.00   |
| 0.9-1                                    |            |          |          |                |          |         |        |       |       |                                           |       |        |      |                         |        |            | 0.00   |
| ы                                        | 1.68       | 2.43     | 4.42     | 10.96          | 21.43    | 20.33   | 17.01  | 11.53 | 3.54  | 0.80                                      | 0.84  | 1.02   | 0.75 | 0.88                    | 1.10   | 1.28       | 100.00 |
|                                          |            |          |          |                |          |         |        |       |       |                                           |       |        |      |                         |        |            |        |
|                                          | CURRENT    | RENT C   |          | DIRECTION ROSE | JSE      |         |        | 001   |       |                                           | CURR  | ENT SI | PEED | CURRENT SPEED HISTOGRAM | GRAM   |            |        |
|                                          |            | 330      | ≎(       | %<br>9 {       |          |         |        | 3     |       |                                           |       |        |      |                         | max:   | max: 0.55  |        |
|                                          |            | ,        | ç<br>    |                | /        |         |        | 80    |       |                                           |       |        |      |                         | min: ( | min: 0.00  |        |
|                                          | 300        |          | V        |                | <u> </u> |         |        |       |       |                                           |       |        |      |                         | mear   | mean: 0.08 |        |



22

std: 0.08

60

%

8

270

40

20

2

240

S

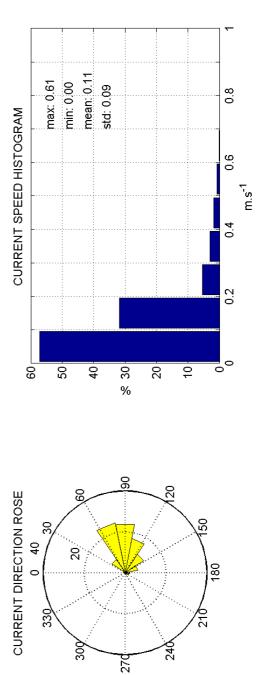
20

80

0.8

0.6

0.4

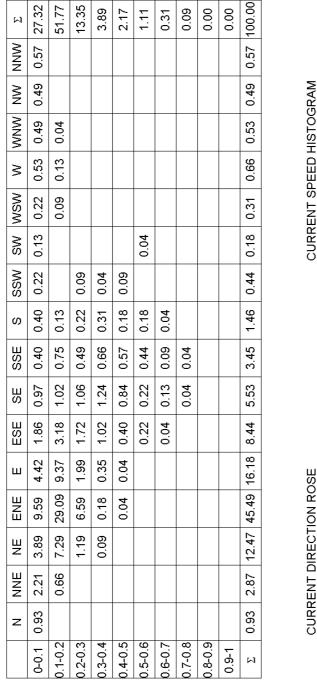

0.2

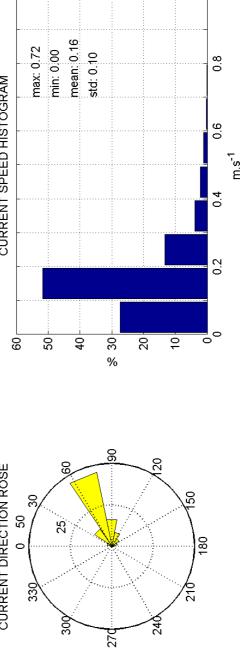
**1**0

m.s<sup>-1</sup>



100.00 57.14 31.82 5.48 0.04 0.00 0.00 3.00 0.00 1.81 0.71 ы NNN 0.22 0.22 0.13 0.13 MΝ WNW 0.53 0.53 0.62 0.62 ≥ WSW 0.84 0.84 JOINT DISTRIBUTION OF SPEED AND DIRECTION SW 1.19 0.09 0.04 1.37 0.04 SSW 1.72 0.04 0.04 0.13 0.09 0.04 1.37 1.02 0.18 0.40 2.34 0.27 0.22 0.27 S 6.19 SSE 0.35 0.88 0.84 0.88 0.62 2.61 10.87 4.55 2.74 0.13 1.02 0.62 1.81 ы 17.01 ESE 8.79 0.18 1.59 0.49 5.97 24.08 13.79 0.09 9.90 0.31 ш 10.16 24.75 14.10 ENE 0.49 Bantamskilp (10m) Period #5 -34.7184N, 19.565E, at -5.5m depth 27.40g-2008 18:20:36 - 12-Sep-2008 14:20:34 5.83 0.18 7.78 1.77 ШИ NNE 0.97 0.97 0.57 0.57 z 0.4-0.5 0.5-0.6 0.7-0.8 0.8-0.9 0.2-0.3 0.3-0.4 0.1-0.2 0.6-0.7 0-0.1 0.9-1 ы





| Figure 7: Summary | plot for 10r | n ADCP current | data at 5.5m |
|-------------------|--------------|----------------|--------------|
|-------------------|--------------|----------------|--------------|





Bantamskip (10m) Period #5 -34.7164N. 19.5656E; at -1.0m depth -2262 good observations 27-Aug-2008 18:20:36 - 12-Sep-2008 14:20:44 JOINT DISTRIBUTION OF SPEED AND DIRECTION







24





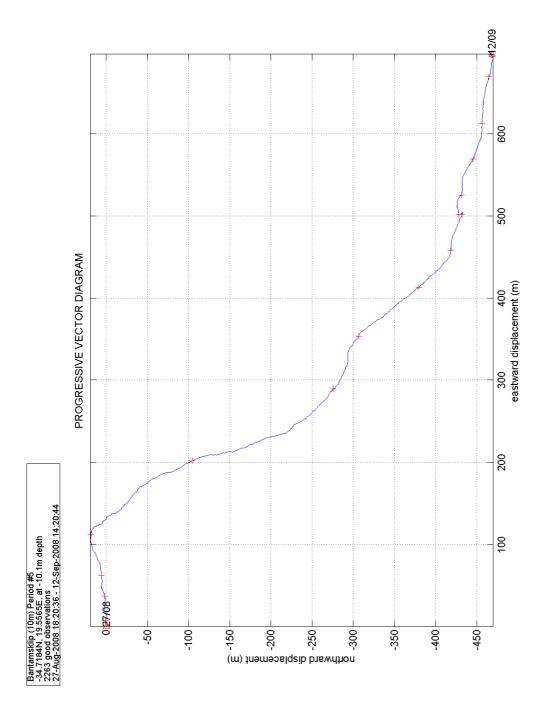



Figure 9: Progressive vector plot for 10m ADCP current data at 10.1m.



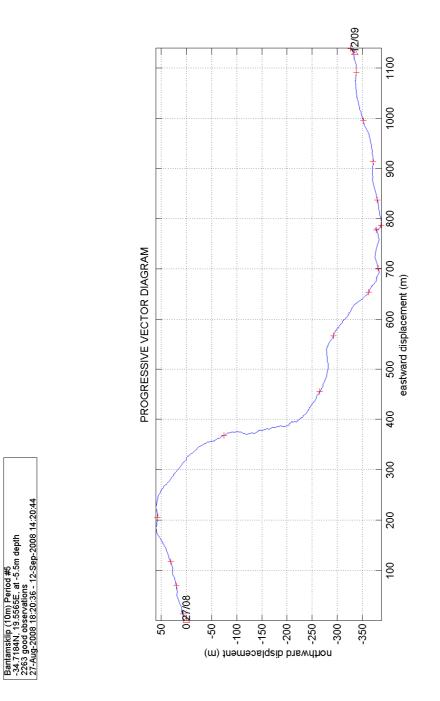



Figure 10: Progressive vector plot for 10m ADCP current data at 5.5m.



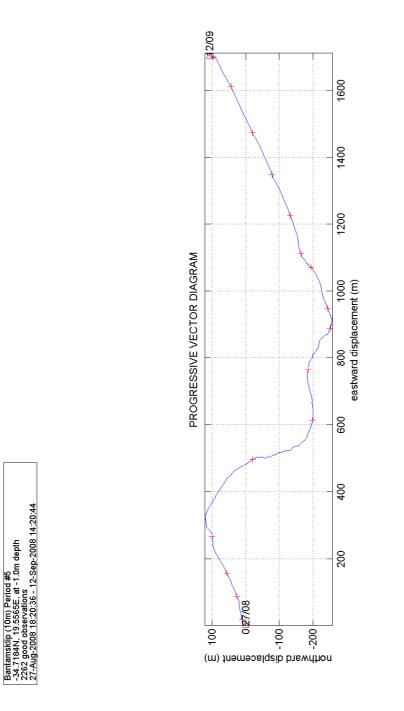



Figure 11: Progressive vector plot for 10m ADCP current data at 1.0m.



### 5.1.2 Wave Data.

### 5.1.2.1 <u>Hs and Tp summary plot</u>

Figure 12 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

## 5.1.2.2 <u>Hs and Dp summary plot</u>

Figure 13 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

#### 5.1.2.3 <u>Tp and Dp summary plot</u>

Figure 14 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

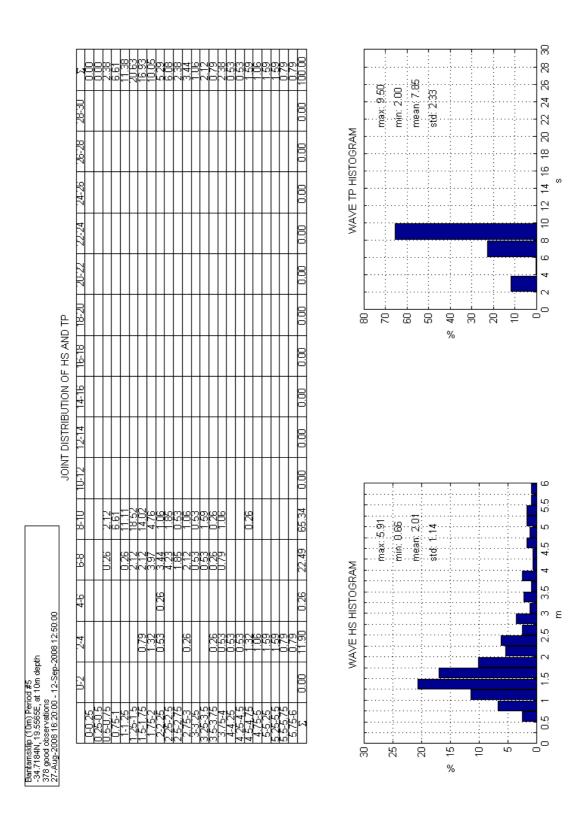



Figure 12: Summary plot of  $H_s$  and  $T_p$ .



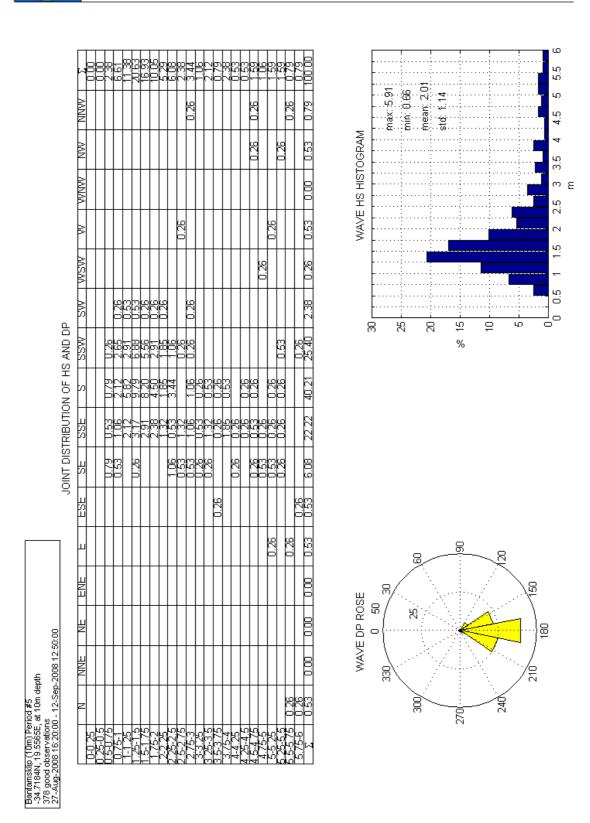



Figure 13: Summary plot of  $H_s$  and  $D_p$ .

30

PROJECT: LT-JOB-50



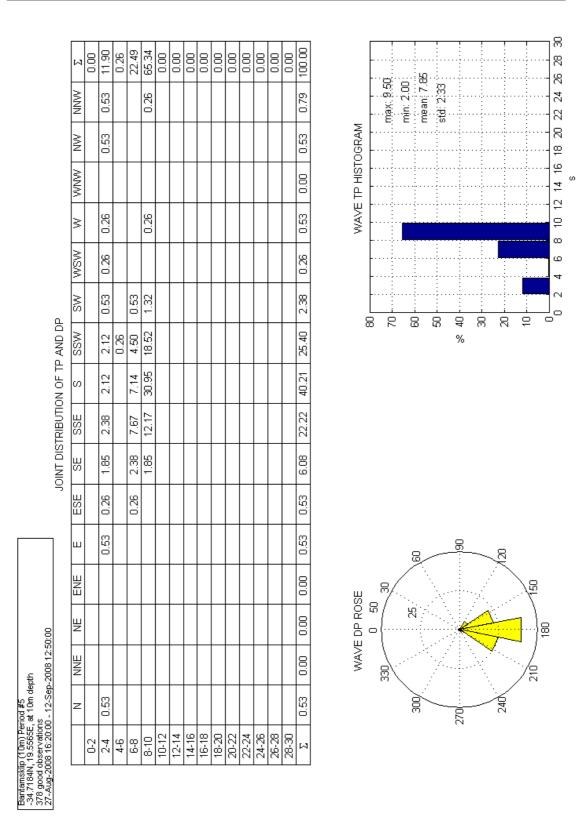



Figure 14: Summary plot of  $T_p$  and  $D_p$ .

31





#### 5.1.2.4 Wave spectral plot

Figure 15 displays a wave spectral plot for a significant wave event. The time of the spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.

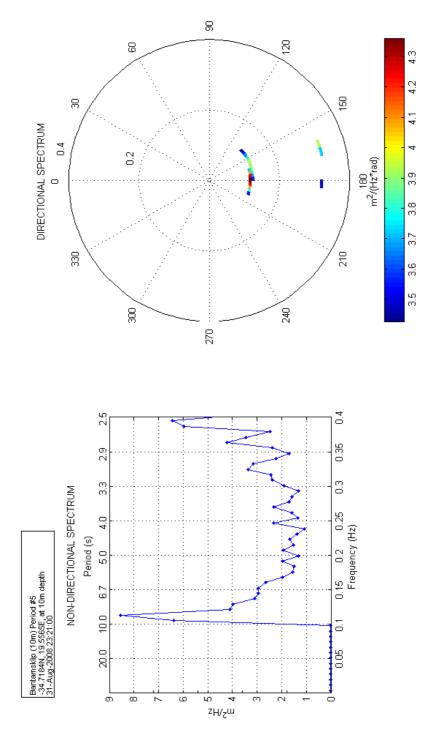



Figure 15: Wave spectra for 31<sup>st</sup> of August 2008 at 23:21:00.





## 5.2 30M ADCP

#### 5.2.1 Current Data

#### 5.2.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



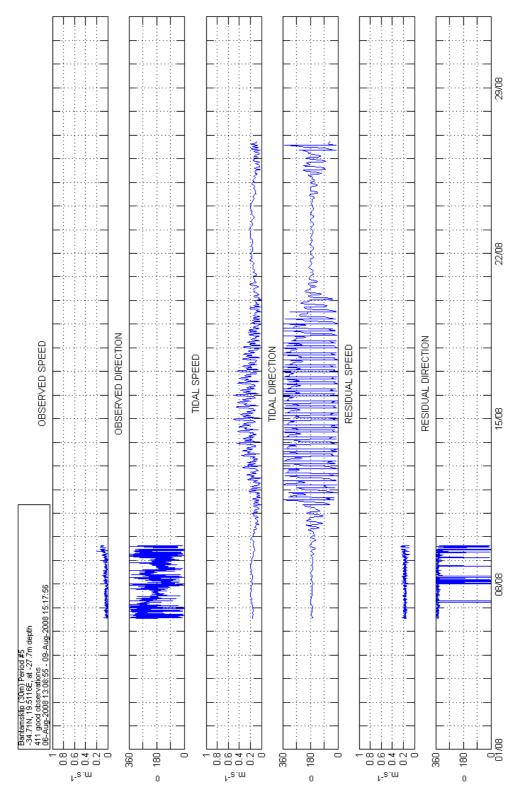



Figure 16: Time series plot for 30m ADCP current data at 27.7m.



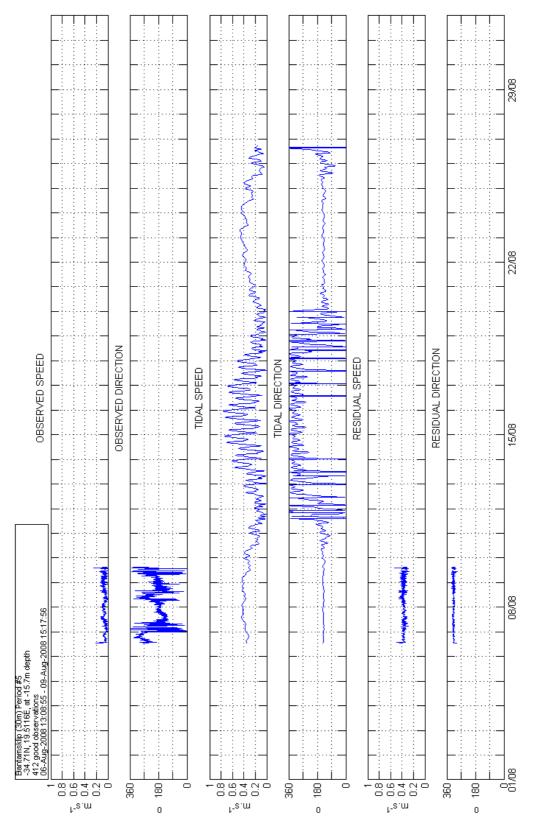



Figure 17: Time series plot for 30m ADCP current data at 15.7m.



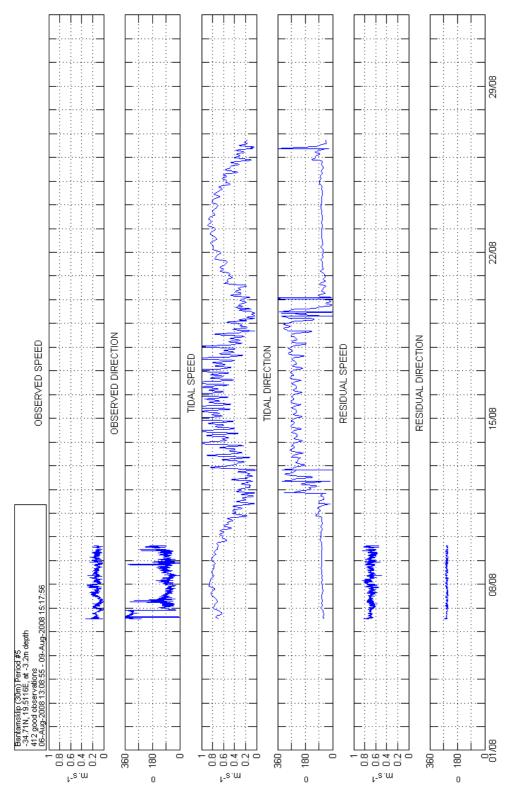



Figure 18: Time series plot for 30m ADCP current data at 3.2m.



#### 5.2.1.2 Summary plots

The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.2.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.



|                                             | ы   | 97.08 | 2.68    | 0.24    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.00  | 100.00 |                                                                         |
|---------------------------------------------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|-------------------------------------------------------------------------|
|                                             | MNN | 3.41  |         |         |         |         |         |         |         |         |       | 3.41   | 80.00                                                                   |
|                                             | MN  | 5.60  |         |         |         |         |         |         |         |         |       | 5.60   | nin:0                                                                   |
|                                             | WNW | 6.81  | 0.24    |         |         |         |         |         |         |         |       | 7.06   | CURRENT SPEED HISTOGRAM                                                 |
|                                             | M   | 5.84  | 0.24    |         |         |         |         |         |         |         |       | 6.08   |                                                                         |
|                                             | WSW | 8.52  |         |         |         |         |         |         |         |         |       | 8.52   |                                                                         |
| ECTION                                      | SW  | 9.49  | 0.49    | 0.24    |         |         |         |         |         |         |       | 10.22  |                                                                         |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION   | SSW | 8.76  |         |         |         |         |         |         |         |         |       | 8.76   | 02                                                                      |
| SPEED /                                     | S   | 9.98  |         |         |         |         |         |         |         |         |       | 9.98   |                                                                         |
| TION OF                                     | SSE | 5.35  |         |         |         |         |         |         |         |         |       | 5.35   |                                                                         |
| ISTRIBU                                     | SE  | 4.38  |         |         |         |         |         |         |         |         |       | 4.38   |                                                                         |
| DINT D                                      | ESE | 3.41  |         |         |         |         |         |         |         |         |       | 3.41   |                                                                         |
|                                             | ш   | 3.65  |         |         |         |         |         |         |         |         |       | 3.65   | 37 38 29                                                                |
|                                             | ENE | 3.89  |         |         |         |         |         |         |         |         |       | 3.89   | BU ROSE                                                                 |
| 7:56                                        | ¥   | 4.87  | 0.73    |         |         |         |         |         |         |         |       | 5.60   |                                                                         |
| 06-Aug-2008 13:08:55 - 09-Aug-2008 15:17:56 | NNE | 5.60  | 0.49    |         |         |         |         |         |         |         |       | 6.08   | CURRENT DIRECTION ROSE<br>330 0 20 30<br>210 10 10 20 30<br>210 180 150 |
| 9-Aug                                       | z   | 7.54  | 0.49    |         |         |         |         |         |         |         |       | 8.03   | 2400 300 CC                                                             |
| 2.0                                         |     | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы      |                                                                         |

Figure 19: Summary plot for 30m ADCP current data at 27.7m.



|                                                                                      | м   | 92.23 | 7.28    | 0.49    | 0.0     | 8.0     | 0.0     | 0.0     | 0.0     | 0.0     | 00.0  | 100.00 |                                                                                  |
|--------------------------------------------------------------------------------------|-----|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|----------------------------------------------------------------------------------|
|                                                                                      | MNN | 2.43  | 0.24    | 0.24    |         |         |         |         |         |         |       | 2.91   |                                                                                  |
|                                                                                      | NNN | 3.64  |         |         |         |         |         |         |         |         |       | 3.64   | nin:0                                                                            |
|                                                                                      | WNW | 7.28  | 0.24    |         |         |         |         |         |         |         |       | 7.52   |                                                                                  |
|                                                                                      | ×   | 7.04  | 0.24    |         |         |         |         |         |         |         |       | 7.28   |                                                                                  |
|                                                                                      | WSW | 6.80  | 0.24    | 0.24    |         |         |         |         |         |         |       | 7.28   |                                                                                  |
| ECTION                                                                               | SW  | 5.58  | 0.24    |         |         |         |         |         |         |         |       | 5.83   |                                                                                  |
| AND DIR                                                                              | SSW | 10.44 | 1.21    |         |         |         |         |         |         |         |       | 11.65  |                                                                                  |
| SPEED ,                                                                              | S   | 17.72 | 2.67    |         |         |         |         |         |         |         |       | 20.39  |                                                                                  |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION                                            | SSE | 11.41 | 0.97    |         |         |         |         |         |         |         |       | 12.38  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                           |
| ISTRIBU                                                                              | SЕ  | 8.01  | 0.97    |         |         |         |         |         |         |         |       | 8.98   |                                                                                  |
| DINT D                                                                               | ESE | 2.67  | 0.24    |         |         |         |         |         |         |         |       | 2.91   |                                                                                  |
|                                                                                      | ш   | 2.43  |         |         |         |         |         |         |         |         |       | 2.43   | 20<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 |
|                                                                                      | ENE | 1.46  |         |         |         |         |         |         |         |         |       | 1.46   | ON ROSE                                                                          |
| 7:56                                                                                 | Ψ   | 1.46  |         |         |         |         |         |         |         |         |       | 1.46   |                                                                                  |
| -2008 15:1                                                                           | NNE | 2.18  |         |         |         |         |         |         |         |         |       | 2.18   |                                                                                  |
| 712 good 00557 - 09-Aug-2008 15:17:56<br>06-Aug-2008 13:08:55 - 09-Aug-2008 15:17:56 | z   | 1.70  |         |         |         |         |         |         |         |         |       | 1.70   | 240 300 CU                                                                       |
| 08 13:08:5                                                                           |     | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы      |                                                                                  |

Figure 20: Summary plot for 30m ADCP current data at 15.7m



|                                                                                                                                         | μ   | 37.86    | 55.58   | 6.31    | 0.24    | 0.00    | 0.0     | 0.00    | 0.0     | 0.0     | 0:0   | 100.00 |                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----|----------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|--------------------------------------------------------------|
|                                                                                                                                         | NNN | 1.94     | 2.43    |         |         |         |         |         |         |         |       | 4.37   | M<br>max: 0.33<br>min: 0.01<br>std: 0.05<br>std: 0.05<br>0.8 |
|                                                                                                                                         | MN  | 0.97     | 3.64    |         | 0.24    |         |         |         |         |         |       | 4.85   | AM<br>min: C<br>std: O                                       |
|                                                                                                                                         | WNW | 0.49     | 1.21    |         |         |         |         |         |         |         |       | 1.70   |                                                              |
|                                                                                                                                         | M   | 0.24     |         |         |         |         |         |         |         |         |       | 0.24   |                                                              |
|                                                                                                                                         | WSW | 0.73     |         |         |         |         |         |         |         |         |       | 0.73   | CURRENT SPEED HISTOGRAM                                      |
| ECTION                                                                                                                                  | NS  | 0.49     | 0.49    |         |         |         |         |         |         |         |       | 0.97   | Ē                                                            |
| JOINT DISTRIBUTION OF SPEED AND DIRECTION                                                                                               | SSW | 0.49     | 0.24    |         |         |         |         |         |         |         |       | 0.73   | <u></u> 3                                                    |
| SPEED ,                                                                                                                                 | S   | 0.97     | 0.24    |         |         |         |         |         |         |         |       | 1.21   |                                                              |
| TON OF                                                                                                                                  | SSE | 1.46     | 0.73    |         |         |         |         |         |         |         |       | 2.18   |                                                              |
| STRIBUT                                                                                                                                 | ЗE  | 4.13     | 1.46    |         |         |         |         |         |         |         |       | 5.58   |                                                              |
| JOINT DI                                                                                                                                | ESE | 5.83     | 7.28    | 0.97    |         |         |         |         |         |         |       | 14.08  |                                                              |
|                                                                                                                                         | ш   | 7.28     | 15.05   | 1.46    |         |         |         |         |         |         |       | 23.79  | 50 - 50 - 50                                                 |
|                                                                                                                                         | ENE | 7.04     | 11.41   | 2.18    |         |         |         |         |         |         |       | 20.63  | N ROSE                                                       |
| .26                                                                                                                                     | ۳   | 3.16     | 8.50    | 1.70    |         |         |         |         |         |         |       | 13.35  |                                                              |
| h<br>2008 15:17                                                                                                                         | NNE | 1.70     | 0.49    |         |         |         |         |         |         |         |       | 2.18   | CURRENT DIRECTION ROSE                                       |
| od #5<br>-3.2m deptl<br>*<br>- 09-Aug-:                                                                                                 | z   | 0.97     | 2.43    |         |         |         |         |         |         |         |       | 3.40   | 2400 0CL                                                     |
| (30m) Peri<br>5116E, at -<br>iservations<br>8 13:08:55                                                                                  |     | 0-0.1    | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1 | ы      | N                                                            |
| Bartamskip (30m) Period #5<br>-34.71N, 19.5116E, at -3.2m depth<br>412 good observations<br>06-Aug-2008 13:08:55 - 09-Aug-2008 15:17:56 |     | <u> </u> |         |         |         |         |         |         |         |         |       |        |                                                              |

Figure 21: Summary plot for 30m ADCP current data at 3.2m.



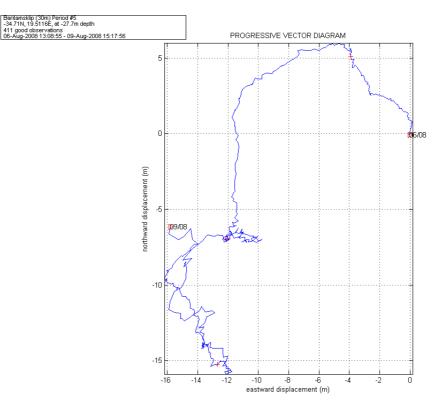



Figure 22: Progressive vector plot for 30m ADCP current data at 27.7m.

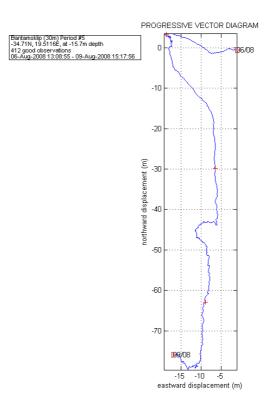



Figure 23: Progressive vector plot for 30m ADCP current data at 15.7m.



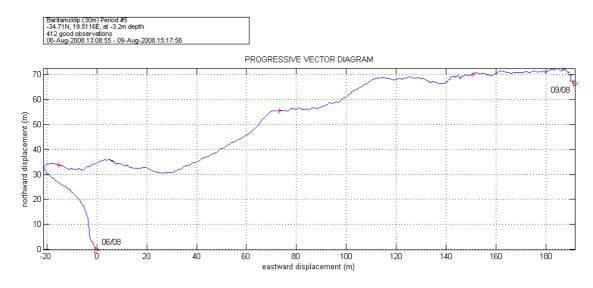



Figure 24: Progressive vector plot for 30m ADCP current data at 3.2m.



### 5.2.2 Wave Data.

### 5.2.2.1 <u>Hs and Tp summary plot</u>

Figure 25 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

### 5.2.2.2 <u>Hs and Dp summary plot</u>

Figure 26 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

### 5.2.2.3 <u>Tp and Dp summary plot</u>

Figure 27 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

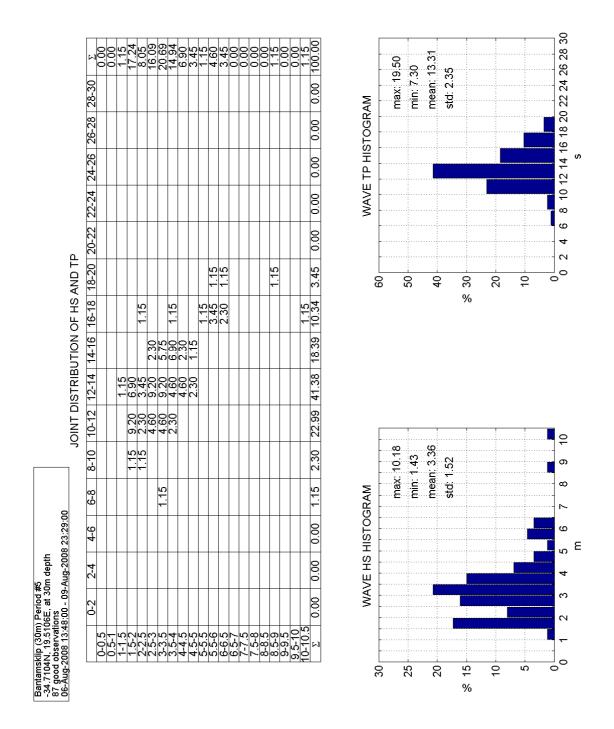



Figure 25: Summary plot of  $H_s$  and  $T_p$ .





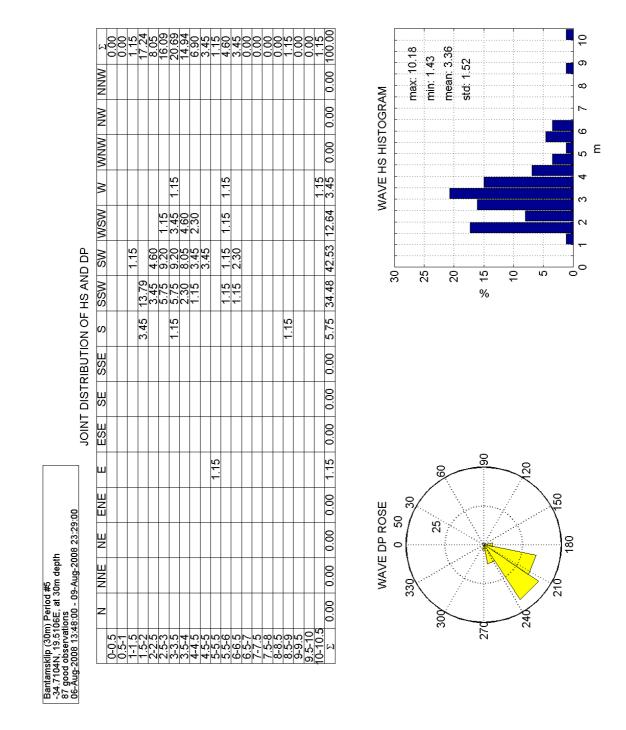
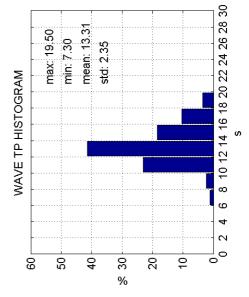
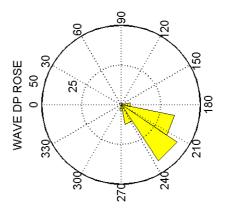
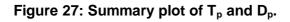






Figure 26: Summary plot of  $H_s$  and  $D_p$ .

|                                                                                                | ы      | 0.00 | 0.00 | 0.00     | 1.15        | 2.30 | 22.99      | 41.38 | 18.39           | 10.34 | 3.45  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 100.00       |
|------------------------------------------------------------------------------------------------|--------|------|------|----------|-------------|------|------------|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------------------|
|                                                                                                | MNN    |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       |                   |
|                                                                                                | NΜ     |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
|                                                                                                | WNW    |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
|                                                                                                | N      |      |      |          | 1.15        |      |            |       |                 | 2.30  |       |       |       |       |       |       | 3.45              |
|                                                                                                | WSW    |      |      |          |             |      | 2.30       | 5.75  | 2.30            | 1.15  | 1.15  |       |       |       |       |       | 12.64             |
| 0 0                                                                                            | SW     |      |      |          |             |      | 4.60       | 20.69 | 12.64           | 3.45  | 1.15  |       |       |       |       |       | 42.53             |
| JOINT DISTRIBUTION OF TP AND DP                                                                | SSW    |      |      |          |             | 1.15 | 13.79 4.60 | 13.79 | 3.45 12.64 2.30 | 2.30  |       |       |       |       |       |       | 34.48 42.53 12.64 |
| ON OF                                                                                          | S      |      |      |          |             | 1.15 | 2.30       | 1.15  |                 |       | 1.15  |       |       |       |       |       | 5.75              |
| RUTI                                                                                           | SSE    |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
| - DISTF                                                                                        | ы<br>С |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
| LNIOF                                                                                          | ESE    |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
|                                                                                                | ш      |      |      |          |             |      |            |       |                 | 1.15  |       |       |       |       |       |       | 1.15              |
| 0                                                                                              | ШNЕ    |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
| 1<br>08 23:29                                                                                  | ШZ     |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
| ritou #5<br>, at 30m depth<br>) - 09-Aug-2008 23:29:00                                         | NNE    |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
|                                                                                                | z      |      |      |          |             |      |            |       |                 |       |       |       |       |       |       |       | 0.00              |
| Earnamskilp (.3um) Pei<br>-34.7104N, 19.5106E,<br>87 good observations<br>06-Aug-2008 13:48:00 |        | 0-2  | 2-4  | 4-6<br>6 | 9<br>8<br>8 | 8-10 | 10-12      | 12-14 | 14-16           | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 | 26-28 | 28-30 | Σ                 |











### 5.2.2.4 Wave spectral plot

Figure 28 displays a wave spectral plot for a significant wave event. The time of the spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.

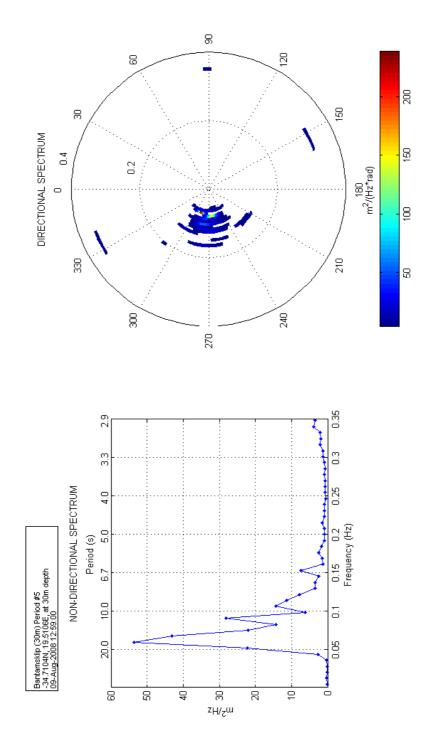



Figure 28: Wave spectra for 09<sup>th</sup> of August 2008 at 12:59:00.



## 5.3 COMPARISON PLOTS

### 5.3.1 Hs, Tp and Dp time series plots for 10m and 30m ADCPs.

Figure 29 displays a time series plot of the main wave parameters:

- The first (upper) panel is of the significant wave height (Hs).
- The second panel is of the peak period (Tp).
- The third panel is of the peak wave direction (Dp).

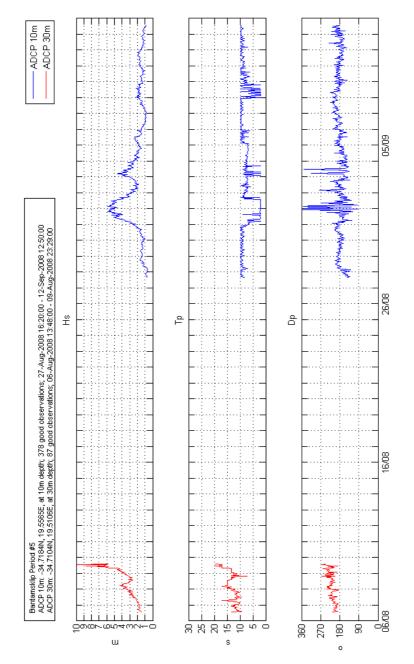



Figure 29: Time series of Hs, Tp and Dp from 10m and 30m ADCPs.



### 5.3.2 Water properties: RBR-CT loggers and ADCPs' temperature sensor.

Figure 30 displays a time series plot, which consists of:

- The first panel is of the observed water temperature from surface and bottom RBR loggers as well as ADCPs' temperature sensor against time.
- The second panel is of the derived salinity from the RBR loggers against time.

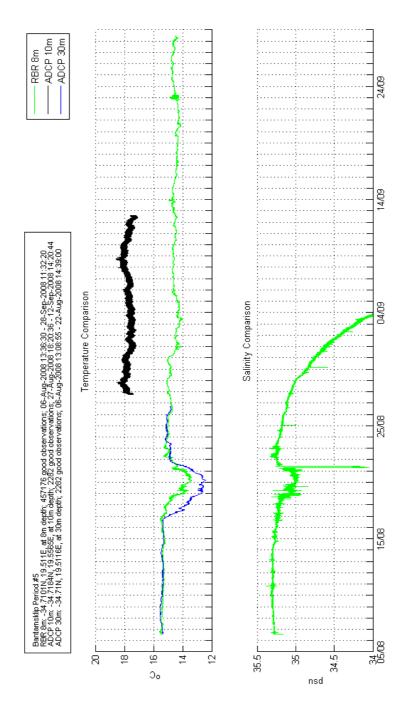
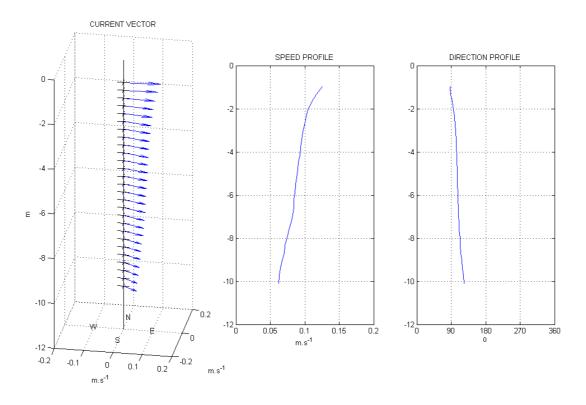



Figure 30: Time series of temperature and salinity from the RBR loggers and ADCPs.



### 5.4 WATER SAMPLES.

Analysis of water samples were undertaken by the CSIR and results are presented as an appendage (Section 7.4, page 62).






### 6. DISCUSSION

The fifth set of oceanographic data collected off the coast of Bantamsklip for the period between August 27<sup>th</sup> and September 28<sup>th</sup> 2008 has been presented in this report. The measurements taken fall within a larger dataset being compiled to assist a preliminary safety survey of multiple sites around the South African coast reports for Eskom.

Three service visits were undertaken over the deployment period. This report presents data obtained from the 10m and 30m ADCPs, the surface RBR-CT logger, and water samples collected during the fifth service visit. The pressure and temperature sensors on board the 10m ADCP failed, the data is presented nonetheless solely for completeness purposes.



### Figure 31: Mean profile plot for 10m ADCP.

The average surface flow for the 10m ADCP was  $0.16ms^{-1}$ , decreasing to  $\sim 0.08ms^{-1}$  at  $\sim 10m$  depth. The flow throughout the water column was predominantly from the East. Average wave parameters of  $\sim 2m$ ,  $\sim 8s$  and  $\sim 182^{\circ}$  were recorded for Hs, Tp and Dp respectively.



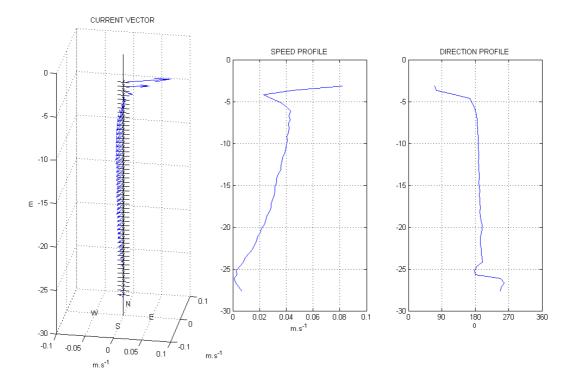



Figure 32: Mean profile plot for 30m ADCP.

The average surface flow for the 30m ADCP was  $0.12ms^{-1}$ , decreasing to  $\sim 0.04ms^{-1}$  at  $\sim 27m$  depth. Average wave parameters of  $\sim 3m$ ,  $\sim 13s$  and  $\sim 217^{\circ}$  were recorded for Hs, Tp and Dp respectively.

Figure 30 shows the temperature sensors on board the 30m ADCP and surface RBR logger recorded reasonably similar values during the deployment period. It is believed that the  $\sim$ 3°C difference between the temperatures measured by the 10m ADCP and the 8m RBR logger is erroneous. This would be due to the failure of the temperature sensor on the 10m ADCP.



### 7. INSTRUMENT PARTICULARS FOR SERVICE VISIT FIVE

### 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

### 10m ADCP.

### 1. <u>RECOVERY</u> Site Name: <u>Bantamsklip 10m Site</u> Date: <u>6 Nov 2008.</u>

| Instrument type and serial number                    |                          |        | RDI | 10117 |  |  |
|------------------------------------------------------|--------------------------|--------|-----|-------|--|--|
| Recovery date and time                               | Nov 6 <sup>th</sup> 2008 |        |     |       |  |  |
| Latitude (do not ignore – if same, please indicate)  | 34                       | 43.105 |     |       |  |  |
| Longitude (do not ignore - if same, please indicate) | 19 33.391                |        |     |       |  |  |
| Switch off date and time                             | LT                       | GMT    |     |       |  |  |
| File size                                            | File size                |        |     |       |  |  |
| Was the data copied to memory card?                  |                          |        | Y   | N     |  |  |

| 2. <u>RE-DEPLOYMENT</u> Site Name: Banta           | <u>msklip 10 m site</u>   | Date 5 Nov | 2008    |
|----------------------------------------------------|---------------------------|------------|---------|
| Instrument type and serial number (do not ignore - | if same, please indicate) | RDI        | 10105   |
| Install a new battery and/or check the voltage     |                           |            | 1*44.8V |
| Frequency of unit being used                       |                           | 600kHz     |         |
| Depth range                                        |                           | 10m        |         |
| Number of bins (calculated automatically)          |                           | 42         |         |
| Bin Size (calculated automatically)                |                           | 0.35       |         |
| Wave burst duration                                |                           | 41min      |         |
| Time between wave bursts                           |                           | 60min      |         |
| Pings per ensemble                                 |                           | 500        |         |
| Ensemble interval                                  |                           | 10min      |         |
| Deployment duration                                |                           | 15days     |         |
| Transducer depth                                   |                           | 10m        |         |
| Any other commands                                 |                           | minTP,R    | 0       |
| Temperature                                        |                           | 5          |         |
| Recorder size                                      | 125                       | 6MB        |         |

Consequences of the sampling parameters

| First and last bin range |            |     | 1.41  | 15.76        |
|--------------------------|------------|-----|-------|--------------|
| Battery usage            |            |     |       | 440Wh        |
| Standard deviation       |            |     |       | 1.08         |
| Storage space required   |            |     |       | 133MB        |
| Set the ADCP clock       | LT         | GMT | 4 No  | v 2008 19.58 |
| Run pre-deployment tests |            |     |       |              |
| Name the ADCP deployment |            |     | B1011 |              |
| Deployme                 | nt details |     |       |              |
| Switch on date and time  | LT         | GMT | 4 No  | v 2008 19.58 |

| Switch on date and time                              | L I                                                 | Givi | 4 100 2000 15.50 |  |
|------------------------------------------------------|-----------------------------------------------------|------|------------------|--|
| Deployment date and time                             | LT                                                  | GMT  | 5 Nov 2008 10:20 |  |
| Deployment Latitude (do not ignore - if same, please | Latitude (do not ignore – if same, please indicate) |      |                  |  |
| Deployment Longitude (do not ignore - if same, plea  | 19 33.398                                           |      |                  |  |



| Site depth                                          | 10m           | Deployment depth |   | 10m   |
|-----------------------------------------------------|---------------|------------------|---|-------|
| Acoustic release (1) serial number and release co   | de            |                  |   |       |
| Acoustic release (2) serial number and release co   | de            |                  |   |       |
| Argos beacon serial number                          |               |                  |   |       |
| Save whp, dpl and scl files in one folder (filename | format: seria | alnumber_date)   | B | 31011 |

### 30m ADCP.

## 1. <u>RECOVERY</u> Site Name: <u>Batams 30m</u> Date: <u>27 Sept 2008</u>.

| Instrument type and serial number                    |                |     | RDI | 10119      |  |  |
|------------------------------------------------------|----------------|-----|-----|------------|--|--|
| Recovery date and time                               | nd time LT GMT |     |     |            |  |  |
| Latitude (do not ignore - if same, please indicate)  |                |     | 34  | 42.625     |  |  |
| Longitude (do not ignore – if same, please indicate) |                |     |     | 19 30.6355 |  |  |
| Switch off date and time                             | LT             | GMT |     |            |  |  |
| File size                                            |                |     |     |            |  |  |
| Was the data copied to memory card?                  |                |     | Y   | N          |  |  |

#### 2. <u>RE-DEPLOYMENT</u> Site Name: <u>Bantamsklip 30m site</u> Date 1 Nov 2008

| Instrument type and serial number (do not ignore - | <ul> <li>if same, please indicate)</li> </ul> | RDI        | 10841   |
|----------------------------------------------------|-----------------------------------------------|------------|---------|
| Install a new battery and/or check the voltage     |                                               |            | 1*44.8V |
| Frequency of unit being used                       |                                               | 600kHz     |         |
| Depth range                                        |                                               | <b>30m</b> |         |
| Number of bins (calculated automatically)          |                                               | <b>69</b>  |         |
| Bin Size (calculated automatically)                |                                               | 0.5        |         |
| Wave burst duration                                |                                               | 34min      |         |
| Time between wave bursts                           |                                               | 60min      |         |
| Pings per ensemble                                 |                                               | 250        |         |
| Ensemble interval                                  |                                               | 10min      |         |
| Deployment duration                                |                                               | 15days     |         |
| Transducer depth                                   |                                               | <b>30m</b> |         |
| Any other commands                                 |                                               | minTP,R    | 10      |
| Temperature                                        |                                               | 5          |         |
| Recorder size                                      | 12                                            | 56MB       |         |

#### Consequences of the sampling parameters

|             |                   | <b>1.6</b> | 35.6                 |
|-------------|-------------------|------------|----------------------|
|             |                   |            | 447Wh                |
|             |                   |            | 1.08                 |
|             |                   |            | 112MB                |
| LT          | GMT               | 1 No       | v 2008 08:00         |
|             |                   |            |                      |
|             |                   | B3111      |                      |
| ent details |                   |            |                      |
|             | LT<br>ent details |            | LT GMT 1 No<br>B3111 |

| Switch on date and time                              | LT           | GMT | 1 Nov 2008 08:00 |
|------------------------------------------------------|--------------|-----|------------------|
| Deployment date and time                             | LT           | GMT | 1Nov 2008 14.10  |
| Deployment Latitude (do not ignore - if same, please | e indicate)  |     | 34 42.625        |
| Deployment Longitude (do not ignore - if same, plea  | se indicate) |     | 19 30.635        |



| Site depth                                          | 30m           | Deployment depth |   | <b>30m</b> |
|-----------------------------------------------------|---------------|------------------|---|------------|
| Acoustic release (1) serial number and release co   | de            |                  |   |            |
| Acoustic release (2) serial number and release code |               |                  |   |            |
| Argos beacon serial number                          |               |                  |   |            |
| Save whp, dpl and scl files in one folder (filename | format: seria | alnumber_date)   | В | 3111       |



### 7.2 RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT SHEETS

#### Surface.

#### 1. <u>RECOVERY</u> Site Name: Bantams Date: 27 Sep 2008 .

| Instrument type and serial number                                              |  |  | RBR       | 12994  |
|--------------------------------------------------------------------------------|--|--|-----------|--------|
| Recovery date and time LT GMT                                                  |  |  |           |        |
| Latitude (do not ignore – if same, please indicate)                            |  |  | 34        | 42.625 |
| Longitude (do not ignore – if same, please indicate)                           |  |  | 19 30.635 |        |
| Switch off date and time LT GMT                                                |  |  |           |        |
| File size                                                                      |  |  |           |        |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |  |  |           |        |

## 2. <u>RE-DEPLOYMENT</u> Site Name: <u>Banatamsklip</u> Date: <u>1 Nov 2008</u>.

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 12994   |
|------------------------------------------------------------------------------|--------------|---------|
| Install a new battery and check the voltage                                  |              | 4* 3.2V |

#### Set up the sampling parameters

| Sampling period                |      | 10min   |          |
|--------------------------------|------|---------|----------|
| Averaging period               |      | 1min    |          |
| Expected deployment duration   |      | 30days  |          |
| Start of logging (date / time) | 1 No | v 2008  | 06:37:10 |
| End of logging (date / time)   | 10 D | ec 2008 | 12:00:00 |
| Memory usage                   |      |         | .4%      |
| Battery usage                  |      |         | 997mAH   |

### **Deployment details**

| Deployment date and time                                         | LT        | GMT | 1 Nov 2008 13:36 |  |
|------------------------------------------------------------------|-----------|-----|------------------|--|
| Deployment Latitude (do not ignore - if same, please             | 34 42.625 |     |                  |  |
| Deployment Longitude (do not ignore – if same, please indicate)  |           |     | 19 30.635        |  |
| Site name                                                        |           |     | Batamsklip       |  |
| Site depth                                                       |           |     | 30m              |  |
| Deployment depth                                                 |           |     | 8m               |  |
| Acoustic release (1) serial number and release code              |           |     |                  |  |
| Acoustic release (2) serial number and release code              |           |     |                  |  |
| Argos beacon serial number                                       |           |     |                  |  |
| Save log file (filename format: serialnumber_date)012994_0111200 |           |     | 012994_01112008  |  |



### Bottom.

#### 1. <u>RECOVERY</u> Site Name: <u>Bantams</u> Date: <u>27 Sep 2008</u>

| Instrument type and serial number                                              |  |  |           | 12998  |
|--------------------------------------------------------------------------------|--|--|-----------|--------|
| Recovery date and time LT GMT                                                  |  |  |           |        |
| Latitude (do not ignore – if same, please indicate)                            |  |  |           | 42.625 |
| Longitude (do not ignore – if same, please indicate)                           |  |  | 19 30.635 |        |
| Switch off date and time LT GMT                                                |  |  |           |        |
| File size                                                                      |  |  |           |        |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |  |  |           | R LOST |

### 2. <u>RE-DEPLOYMENT</u> Site Name: <u>Banatamsklip</u> Date: <u>1 Nov 2008.</u>

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 15248    |
|------------------------------------------------------------------------------|--------------|----------|
| Install a new battery and check the voltage                                  |              | 3 * 3.0V |

### Set up the sampling parameters

| Sampling period                |      | 10min   |          |
|--------------------------------|------|---------|----------|
| Averaging period               |      | 1min    |          |
| Expected deployment duration   |      | 30      | days     |
| Start of logging (date / time) | 1 No | v 2008  | 06:41:00 |
| End of logging (date / time)   | 10 D | ec 2008 | 12:00:00 |
| Memory usage                   |      |         | .4%      |
| Battery usage                  |      |         | 997mAH   |

### **Deployment details**

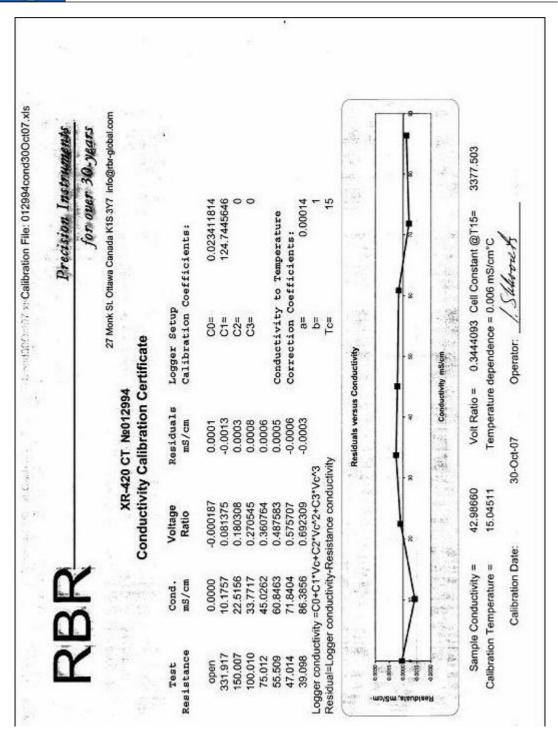
| Deployment date and time                             | LT         | GMT | 1 Nov 2008 14.10 |  |
|------------------------------------------------------|------------|-----|------------------|--|
| Deployment Latitude (do not ignore - if same, please | 34 42.625  |     |                  |  |
| Deployment Longitude (do not ignore - if same, plea  | 19 30.635  |     |                  |  |
| Site name                                            | Batamsklip |     |                  |  |
| Site depth                                           |            |     | 30m              |  |
| Deployment depth                                     |            |     | 30m              |  |
| Acoustic release (1) serial number and release code  |            |     |                  |  |
| Acoustic release (2) serial number and release code  |            |     |                  |  |
| Argos beacon serial number                           |            |     |                  |  |
| Save log file (filename format: serialnumber_date)   |            |     | 015248_01112008  |  |

.

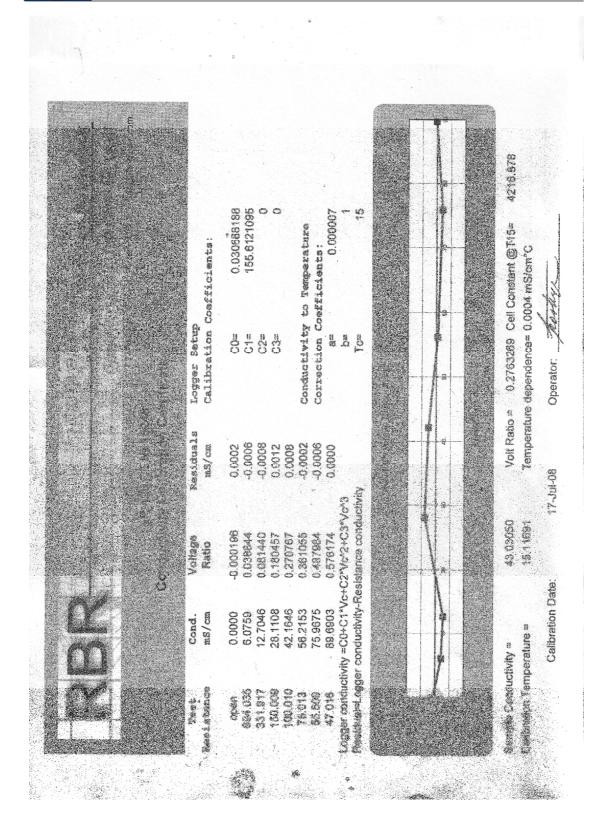


## 7.3 CALIBRATION CERTIFICATES

|                                   |                     | RD INSTRUMENTS                              |
|-----------------------------------|---------------------|---------------------------------------------|
|                                   |                     | A Teledyne Technologies Company             |
|                                   | Workhor             | se Configuration Summary                    |
| Date                              | 11/30/2007          |                                             |
| Customer                          | PERTEC              |                                             |
| Sales Order or RMA No.            | 3018786             |                                             |
| System Type                       | Sentinel            |                                             |
| Part number                       | WHSW600-I-UG8       | 2                                           |
| Frequency                         | 600 kHz             | •                                           |
| Depth Rating (meters)             | 200                 |                                             |
| SERIAL NUMBERS:                   |                     | REVISION:                                   |
| System<br>CPU PCA                 | 10105               | Rev. J3                                     |
|                                   |                     |                                             |
| PIO PCA                           | 6573                |                                             |
| DSP PCA                           | 14390               | Rev. G1                                     |
| RCV PCA                           | 14937               | Rev. E2                                     |
| AUX PCA                           |                     | Rev.                                        |
| FIRMWARE VERSION:                 |                     |                                             |
| CPU                               | 16.30               |                                             |
| SENSORS INSTALLED:                |                     |                                             |
| Temperature 🗸                     | Heading 🗸           | Pitch / Roll 🗸 Pressure 🖌 Rating 200 meters |
| FEATURES INSTALLED                |                     |                                             |
| <ul> <li>Water Profile</li> </ul> |                     | High Rate Pinging                           |
| Bottom Track                      |                     | Shallow Bottom Mode                         |
| High Resolution V                 | Vater Modes         | <ul> <li>Wave Guage Acquisition</li> </ul>  |
| Lowered ADCP                      |                     | River Survey ADCP * 4                       |
| * Includes Water Profile          | e, Bottom Track and | d High Resolution Water Modes               |
| COMMUNICATIONS:                   |                     | -                                           |
| Communication                     | RS-232              |                                             |
| Baud Rate                         | 9600                |                                             |
| Parity                            | NONE                |                                             |
| Recorder Capacity                 | 1150                | MB (installed)                              |
|                                   | 20-60 VDC           |                                             |
| Power Configuration               | 10.00 100           |                                             |


14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com




|                         |                     | TELEDYNE<br>RD INSTRUME      | NTC        |                  |
|-------------------------|---------------------|------------------------------|------------|------------------|
|                         |                     | A Teledyne Technologie       |            |                  |
|                         | Workhor             | se Configuration             |            | v                |
| Date                    |                     |                              | Junio      | L                |
| Customer                | PERTEC              | 1                            | 7          |                  |
| Sales Order or RMA No.  | 3019414             |                              | _          |                  |
| System Type             | Sentinel            |                              |            |                  |
| Part number             | WHSW600-I-UG1       | 33                           |            |                  |
| Frequency               | 600 kHz             |                              |            |                  |
| Depth Rating (meters)   | 200                 |                              |            |                  |
| SERIAL NUMBERS:         |                     | REVISION:                    |            |                  |
| System                  | 10841               |                              |            |                  |
| CPU PCA                 | 11549               | Rev. J3                      |            |                  |
| PIO PCA                 | 6665                | Rev. F1                      |            |                  |
| DSP PCA                 | 14610               | Rev. G1                      |            |                  |
| RCV PCA                 | 15134               | Rev. E3                      |            |                  |
| AUX PCA                 |                     | Rev.                         |            |                  |
| FIRMWARE VERSION:       |                     |                              |            |                  |
| CPU                     | 16.30               |                              |            |                  |
|                         |                     |                              |            |                  |
| SENSORS INSTALLED:      |                     |                              | - 5        |                  |
| Temperature 🗹           | Heading 🗹           | Pitch / Roli 🗹               | Pressure 🗹 | Rating 50 meters |
| FEATURES INSTALLED:     |                     |                              |            |                  |
| Water Profile           |                     | High Rate Pinging            |            |                  |
| Bottom Track            |                     | Shallow Bottom Mode          | •          |                  |
| High Resolution \       | Water Modes         | Wave Guage Acquisit          | Ion        |                  |
| LADCP/Surface T         | rack                | River Survey ADCP *          |            |                  |
| " Includes Water Profil | e, Bottom Track and | d High Resolution Water Mode | 85         |                  |
| COMMUNICATIONS:         |                     |                              |            |                  |
| Communication           | RS-232              |                              |            |                  |
| Baud Rate               | 9600                |                              |            |                  |
| Parity                  | NONE                |                              |            |                  |
| Recorder Capacity       | 1278                | MB (Installed)               |            |                  |
| Power Configuration     | 20-60 VDC           |                              |            |                  |
| Cable Length            | 5                   | meters                       |            |                  |

14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com











### 7.4 ADCP CONFIGURATION FILES

```
10m ADCP.
CR1
CF11101
EA0
EB0
ED100
ES35
EX11111
EZ1111111
RI0
WA255
WB0
WD111100000
WF88
WN42
WP500
WS35
WV175
HD111000000
HB5
HP4920
HR01:00:00.00
HT00:00:00.50
TE00:10:00.00
TP00:00.50
CK
CS
;
;Instrument
                  = Workhorse Sentinel
;Frequency
                   = 614400
                  = YES
;Water Profile
;Bottom Track
                   = NO
                  = NO
;High Res. Modes
;High Rate Pinging = NO
;Shallow Bottom Mode= NO
              = YES
;Wave Gauge
;Lowered ADCP
                  = NO
;Beam angle
                  = 20
                  = 5.00
;Temperature
;Deployment hours = 360.00
;Battery packs = 1
;Automatic TP
                  = NO
;Memory size [MB] = 2000
;Saved Screen
                  = 2
;
;Consequences generated by PlanADCP version 2.04:
;First cell range = 1.41 m
;Last cell range = 15.76 m
;Max range
                  = 35.28 m
;Standard deviation = 1.08 cm/s
;Ensemble size = 994 bytes
;Storage required = 133.83 MB (140329440 bytes)
                 = 440.26 Wh
;Power usage
;Battery usage
                  = 1.0
;Samples / Wv Burst = 4920
;Min NonDir Wave Per= 1.85 s
;Min Dir Wave Period= 2.49 s
```



;Bytes / Wave Burst = 383840
;
;
; WARNINGS AND CAUTIONS:
; Waves Gauge feature has to be installed in Workhorse to use
selected option.
; Advanced settings have been changed.

#### 30m ADCP.

CR1 CF11101 EA0 EB0 ED300 ES35 EX11111 EZ1111111 RI0 WA255 WB0 WD111100000 WF88 WN69 WP250 WS50 WV175 HD111000000 HB5 HP2400 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 CK CS ; ;Instrument ;Frequency = Workhorse Sentinel = 614400 ;Water Profile = YES ;Bottom Track = NO = NO ;High Res. Modes ;High Rate Pinging = NO ;Shallow Bottom Mode= NO = YES ;Wave Gauge ;Lowered ADCP = NO ;Beam angle = 20 = 5.00 ;Temperature ;Deployment hours = 360.00 ;Battery packs = 1 ;Automatic TP = NO ;Memory size [MB] = 1256 ;Saved Screen = 3 ; ;Consequences generated by PlanADCP version 2.04: ;First cell range = 1.60 m ;Last cell range = 35.60 m = 38.22 m;Max range ;Standard deviation = 0.86 cm/s ;Ensemble size = 1534 bytes ;Storage required = 67.46 MB (70734240 bytes)



;Power usage = 321.01 Wh ;Battery usage = 0.7 ;Samples / Wv Burst = 2400 ;Min NonDir Wave Per= 2.59 s ;Min Dir Wave Period= 4.31 s ;Bytes / Wave Burst = 187280 ; ; WARNINGS AND CAUTIONS: ; Waves Gauge feature has to be installed in Workhorse to use selected option. ; Advanced settings have been changed.



## 8. REPORTS FROM THE CSIR

The reports from the CSIR are attached as an appendage.

## **CERTIFICATE OF ANALYSIS**

Our ref: H:\USERS\MARLAB\REPORTS\Malr2861

Report Number: MALR2861

13 November 2008

Lwandle Technologies Gabriel Place 1 Gabriel Road Plumstead 7800

## **Attention Craig Matthysen**

### CHEMICAL ANALYSIS: Water samples (Order No.: )

Samples received: 11/11/08 Analysis completed: 12/11/08 Sample description: Seawater in sealed plastic bottles.

| Lab   | Sample     | * Total Suspended Solids |
|-------|------------|--------------------------|
| No    | ld         | in mg/L                  |
|       |            |                          |
| 34926 | S1         | 5                        |
| 34927 | S2         | 2                        |
| 34928 | <b>S</b> 3 | 3                        |
| 34929 | S4         | <2                       |
| 34930 | S5         | <2                       |
| 34931 | S6         | 6                        |
| 34932 | <b>S</b> 7 | 3                        |
| 34933 | <b>S</b> 8 | 2                        |
| 34934 | S9         | <2                       |
| 34935 | S10        | 5                        |
|       |            |                          |

Andrew Pascall MARINE ANALYTICAL SERVICES Laboratory Manager

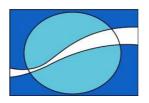
Sebastian Brown MARINE ANALYTICAL SERVICES Deputy Laboratory Manager

Page 1 of 1

• Method not included in the scope of accreditation.

This report relates only to the samples actually supplied to the Division of Water, Environment and Forestry Technology. The Division does not accept responsibility for any matters arising from the further use of these results. This certificate shall not be




## LWANDLE DATA REPORT

## **BANTAMSKLIP SITE – DEPLOYMENT SIX**

## PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



## PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



9 February 2009

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



## TABLE OF CONTENTS

| 1. | EXECU  | ITIVE SU | MMARY                            | 4    |  |  |  |
|----|--------|----------|----------------------------------|------|--|--|--|
|    | 1.1    | DATA F   | RETURN FOR BANTAMSKLIP SITE      | 7    |  |  |  |
| 2. | INTRO  | DUCTIO   | ۷                                | 8    |  |  |  |
|    | 2.1    |          | CT DESCRIPTION                   |      |  |  |  |
|    | 2.2    |          | MENT LIST                        |      |  |  |  |
|    | 2.3    | MEASU    | IREMENT LOCATION                 | 8    |  |  |  |
| 3. | OPERA  | TIONS    |                                  | 10   |  |  |  |
| •  | 3.1    |          | ARY OF EVENTS                    |      |  |  |  |
|    | 3.2    |          | JMENT CONFIGURATIONS             |      |  |  |  |
|    |        | 3.2.1    | 600kHz ADCP                      |      |  |  |  |
|    |        | 3.2.2    | RBR XR420 CT LOGGER              |      |  |  |  |
|    |        | 3.2.3    | RBR TGR2050 HT TIDE GAUGE        |      |  |  |  |
|    |        | 3.2.4    | Biofouling Mooring               | 12   |  |  |  |
|    | 3.3    | RECOV    | /ER AND REDEPLOYMENT METHODOLOGY |      |  |  |  |
|    |        | 3.3.1    | T&C mooring                      | . 13 |  |  |  |
|    |        | 3.3.2    | ADCP mooring                     | . 13 |  |  |  |
|    |        | 3.3.3    | Tidal Gauge                      |      |  |  |  |
|    |        | 3.3.4    | Biofouling mooring               | . 13 |  |  |  |
| 4. | DATA ( | QUALITY  | CONTROL                          | 14   |  |  |  |
|    | 4.1    | ADCP.    |                                  | . 14 |  |  |  |
|    |        | 4.1.1    | Current processing               | . 14 |  |  |  |
|    |        | 4.1.2    | Wave processing                  | . 14 |  |  |  |
|    | 4.2    | RBR-C    | T LOGGER                         | . 16 |  |  |  |
|    | 4.3    | TIDE G   | TIDE GAUGE                       |      |  |  |  |
|    | 4.4    | BIOFO    | ULING                            | . 16 |  |  |  |
|    | 4.5    | WATEF    | R SAMPLE                         | . 16 |  |  |  |
| 5. | DATA F | PRESEN   | TATION                           | 17   |  |  |  |
|    | 5.1    | 10M AE   | DCP                              | . 17 |  |  |  |
|    |        | 5.1.1    | Current Data                     | 17   |  |  |  |
|    |        | 5.1.1.1  | Time series plots                | 17   |  |  |  |
|    |        | 5.1.1.2  | Summary plots                    | 21   |  |  |  |
|    |        | 5.1.1.3  | Progressive vector plots         | 21   |  |  |  |



|    |       | 5.1.2   | Wave D   | Data          |              |            |         |        | 28 |
|----|-------|---------|----------|---------------|--------------|------------|---------|--------|----|
|    |       | 5.1.2.1 |          | Hs and Tp s   | ummary plo   | ot         |         |        | 28 |
|    |       | 5.1.2.2 |          | Hs and Dp s   | summary plo  | ot         |         |        | 28 |
|    |       | 5.1.2.3 |          | Tp and Dp s   | summary plo  | ot         |         |        | 28 |
|    |       | 5.1.2.4 |          | Wave spect    | ral plot     |            |         |        | 32 |
|    | 5.2   | 30M AC  | DCP      |               |              |            |         |        | 33 |
|    |       | 5.2.1   | Current  | t Data        |              |            |         |        | 33 |
|    |       | 5.2.1.1 |          | Time series   | plots        |            |         |        | 33 |
|    |       | 5.2.1.2 |          | Summary pl    | ots          |            |         |        | 37 |
|    |       | 5.2.1.3 |          | Progressive   | vector plots | 6          |         |        | 37 |
|    |       | 5.2.2   | Wave D   | Data          |              |            |         |        | 44 |
|    |       | 5.2.2.1 |          | Hs and Tp s   | ummary plo   | ot         |         |        | 44 |
|    |       | 5.2.2.2 |          | Hs and Dp s   | summary plo  | ot         |         |        | 44 |
|    |       | 5.2.2.3 |          | Tp and Dp s   | summary plo  | ot         |         |        | 44 |
|    |       | 5.2.2.4 |          | Wave spect    | ral plot     |            |         |        | 48 |
|    | 5.3   | COMPA   | ARISON   | PLOTS         |              |            |         |        | 49 |
|    |       | 5.3.1   | Hs, Tp   | and Dp time s | series plots | for 10m an | d 30m / | ADCPs  | 49 |
|    |       | 5.3.2   | Water    | properties:   | RBR-CT       | loggers    | and     | ADCPs' |    |
|    |       |         | tempera  | ature sensor. |              |            |         |        | 50 |
|    | 5.4   | WATEF   | R SAMPL  | _ES           |              |            |         |        | 51 |
| 6. | DISCU | JSSION  |          |               |              |            |         |        | 52 |
| 7. | INSTR |         | PARTICU  |               | SERVICE V    | ISIT FIVE  |         |        | 54 |
|    | 7.1   |         |          | ERY AND R     |              |            |         |        |    |
|    | 7.2   | RBR-C   | T LOG    | GERS REC      | OVERY        | AND RE     | -DEPL(  | OYMENT |    |
|    |       | SHEET   | S        |               |              |            |         |        | 57 |
|    | 7.3   | CALIB   | RATION   | CERTIFICAT    | ES           |            |         |        | 59 |
|    | 7.4   | ADCP (  | CONFIG   | URATION FIL   | .ES          |            |         |        | 64 |
| •  |       |         |          |               |              |            |         |        | ~- |
| 8. | KEPU  | KI3 FKU | IN THE C | CSIR          |              |            |         |        |    |



### 1. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 6 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Data return<br>(%) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|--------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -10.9        | 100.00             | 0.0962                           | 0.0408                            | 0.0197                           | 0.0291                                | 12.79                     |
| -10.6        | 100.00             | 0.1094                           | 0.0386                            | 0.0190                           | 0.0239                                | 11.23                     |
| -10.2        | 100.00             | 0.1077                           | 0.0378                            | 0.0184                           | 0.0191                                | 13.32                     |
| -9.9         | 100.00             | 0.1072                           | 0.0372                            | 0.0187                           | 0.0162                                | 16.22                     |
| -9.5         | 100.00             | 0.1244                           | 0.0362                            | 0.0191                           | 0.0121                                | 16.85                     |
| -9.2         | 100.00             | 0.1405                           | 0.0368                            | 0.0188                           | 0.0099                                | 22.03                     |
| -8.8         | 100.00             | 0.1440                           | 0.0369                            | 0.0201                           | 0.0081                                | 26.10                     |
| -8.5         | 100.00             | 0.1634                           | 0.0371                            | 0.0208                           | 0.0073                                | 39.71                     |
| -8.1         | 100.00             | 0.1686                           | 0.0371                            | 0.0203                           | 0.0078                                | 56.13                     |
| -7.8         | 100.00             | 0.1977                           | 0.0373                            | 0.0204                           | 0.0076                                | 65.26                     |
| -7.4         | 100.00             | 0.1742                           | 0.0375                            | 0.0205                           | 0.0071                                | 86.42                     |
| -7.1         | 100.00             | 0.2030                           | 0.0379                            | 0.0214                           | 0.0075                                | 94.68                     |
| -6.7         | 100.00             | 0.2009                           | 0.0383                            | 0.0224                           | 0.0070                                | 102.11                    |
| -6.4         | 100.00             | 0.2218                           | 0.0403                            | 0.0234                           | 0.0055                                | 112.28                    |
| -6.0         | 100.00             | 0.2140                           | 0.0420                            | 0.0254                           | 0.0054                                | 122.82                    |
| -5.7         | 100.00             | 0.2413                           | 0.0439                            | 0.0269                           | 0.0052                                | 136.41                    |
| -5.3         | 100.00             | 0.2303                           | 0.0458                            | 0.0280                           | 0.0060                                | 148.54                    |
| -5.0         | 100.00             | 0.2597                           | 0.0481                            | 0.0287                           | 0.0051                                | 153.29                    |
| -4.6         | 100.00             | 0.2575                           | 0.0503                            | 0.0298                           | 0.0058                                | 166.27                    |
| -4.3         | 100.00             | 0.2576                           | 0.0520                            | 0.0292                           | 0.0073                                | 181.54                    |
| -3.9         | 100.00             | 0.2644                           | 0.0540                            | 0.0299                           | 0.0088                                | 184.35                    |
| -3.6         | 100.00             | 0.2315                           | 0.0581                            | 0.0314                           | 0.0108                                | 193.17                    |
| -3.2         | 100.00             | 0.2312                           | 0.0614                            | 0.0327                           | 0.0120                                | 199.53                    |
| -2.9         | 100.00             | 0.2184                           | 0.0650                            | 0.0344                           | 0.0140                                | 199.16                    |
| -2.5         | 100.00             | 0.1903                           | 0.0681                            | 0.0356                           | 0.0146                                | 204.45                    |
| -2.2         | 100.00             | 0.2031                           | 0.0709                            | 0.0377                           | 0.0138                                | 209.02                    |
| -1.8         | 100.00             | 0.2083                           | 0.0756                            | 0.0407                           | 0.0036                                | 304.26                    |
| -1.5         | 100.00             | 0.2250                           | 0.0911                            | 0.0453                           | 0.0319                                | 353.84                    |
| -1.1         | 88.10              | 0.3564                           | 0.1109                            | 0.0600                           | 0.0530                                | 342.13                    |

Table 1 – Current flow summary for 10m ADCP

## Table 2 – Waves summary for 10m ADCP

|        | Data Return (%) | Max    | Min    | Mean   | Std   |
|--------|-----------------|--------|--------|--------|-------|
| Hs (m) | 91.22           | 2.51   | 0.63   | 1.43   | 0.49  |
| Tp (s) | 91.22           | 15.00  | 4.20   | 10.05  | 1.81  |
| Dp (°) | 91.22           | 246.55 | 165.55 | 201.48 | 11.38 |



|       | Table 3 – Current flow summary for 30m ADCP |                     |                     |                     |                           |               |  |
|-------|---------------------------------------------|---------------------|---------------------|---------------------|---------------------------|---------------|--|
| Depth | Data return                                 | Max speed           | Mean speed          | Std speed           | Vector mean               | Vector mean   |  |
| (m)   | (%)                                         | (ms <sup>-1</sup> ) | (ms <sup>-1</sup> ) | (ms <sup>-1</sup> ) | speed (ms <sup>-1</sup> ) | direction (°) |  |
| -27.5 | 99.96                                       | 0.1653              | 0.0414              | 0.0265              | 0.0130                    | 132.02        |  |
| -27.0 | 100.00                                      | 0.1840              | 0.0464              | 0.0301              | 0.0155                    | 133.99        |  |
| -26.5 | 100.00                                      | 0.2027              | 0.0512              | 0.0334              | 0.0182                    | 132.98        |  |
| -26.0 | 100.00                                      | 0.2299              | 0.0554              | 0.0361              | 0.0202                    | 130.66        |  |
| -25.5 | 100.00                                      | 0.2260              | 0.0600              | 0.0381              | 0.0227                    | 126.98        |  |
| -25.0 | 100.00                                      | 0.2222              | 0.0639              | 0.0397              | 0.0246                    | 124.15        |  |
| -24.5 | 100.00                                      | 0.3302              | 0.0669              | 0.0404              | 0.0260                    | 120.90        |  |
| -24.0 | 100.00                                      | 0.4361              | 0.0703              | 0.0419              | 0.0275                    | 116.90        |  |
| -23.5 | 100.00                                      | 0.4764              | 0.0722              | 0.0425              | 0.0287                    | 115.17        |  |
| -23.0 | 100.00                                      | 0.4998              | 0.0742              | 0.0432              | 0.0291                    | 113.18        |  |
| -22.5 | 100.00                                      | 0.5424              | 0.0758              | 0.0439              | 0.0290                    | 111.65        |  |
| -22.0 | 100.00                                      | 0.5456              | 0.0773              | 0.0445              | 0.0288                    | 109.49        |  |
| -21.5 | 100.00                                      | 0.5416              | 0.0781              | 0.0450              | 0.0284                    | 107.03        |  |
| -21.0 | 100.00                                      | 0.5624              | 0.0789              | 0.0457              | 0.0276                    | 104.32        |  |
| -20.5 | 100.00                                      | 0.6015              | 0.0794              | 0.0464              | 0.0262                    | 102.67        |  |
| -20.0 | 100.00                                      | 0.6064              | 0.0799              | 0.0471              | 0.0243                    | 101.14        |  |
| -19.5 | 100.00                                      | 0.6768              | 0.0805              | 0.0482              | 0.0229                    | 99.21         |  |
| -19.0 | 100.00                                      | 0.6588              | 0.0820              | 0.0484              | 0.0208                    | 95.98         |  |
| -18.5 | 100.00                                      | 0.6921              | 0.0836              | 0.0490              | 0.0181                    | 93.99         |  |
| -18.0 | 100.00                                      | 0.6630              | 0.0858              | 0.0493              | 0.0159                    | 90.44         |  |
| -17.5 | 100.00                                      | 0.6114              | 0.0880              | 0.0496              | 0.0125                    | 85.43         |  |
| -17.0 | 100.00                                      | 0.6127              | 0.0903              | 0.0497              | 0.0081                    | 78.44         |  |
| -16.5 | 100.00                                      | 0.6125              | 0.0918              | 0.0504              | 0.0061                    | 62.96         |  |
| -16.0 | 100.00                                      | 0.5507              | 0.0929              | 0.0507              | 0.0045                    | 47.82         |  |
| -15.5 | 100.00                                      | 0.5013              | 0.0943              | 0.0514              | 0.0038                    | 6.44          |  |
| -15.0 | 100.00                                      | 0.5114              | 0.0952              | 0.0519              | 0.0043                    | 332.13        |  |
| -14.5 | 100.00                                      | 0.5147              | 0.0964              | 0.0527              | 0.0060                    | 314.20        |  |
| -14.0 | 100.00                                      | 0.5006              | 0.0974              | 0.0530              | 0.0077                    | 301.20        |  |
| -13.5 | 100.00                                      | 0.4355              | 0.0987              | 0.0537              | 0.0094                    | 291.03        |  |
| -13.0 | 100.00                                      | 0.3940              | 0.0995              | 0.0537              | 0.0117                    | 282.41        |  |
| -12.5 | 100.00                                      | 0.3475              | 0.1009              | 0.0536              | 0.0137                    | 278.19        |  |
| -12.0 | 100.00                                      | 0.3389              | 0.1008              | 0.0534              | 0.0163                    | 274.21        |  |
| -11.5 | 100.00                                      | 0.3501              | 0.1018              | 0.0533              | 0.0181                    | 269.79        |  |
| -11.0 | 100.00                                      | 0.3902              | 0.1029              | 0.0534              | 0.0213                    | 267.54        |  |
| -10.5 | 100.00                                      | 0.4042              | 0.1042              | 0.0535              | 0.0238                    | 263.90        |  |
| -10.0 | 99.96                                       | 0.3769              | 0.1057              | 0.0546              | 0.0275                    | 262.63        |  |
| -9.5  | 99.96                                       | 0.3808              | 0.1072              | 0.0552              | 0.0298                    | 261.59        |  |
| -9.0  | 99.96                                       | 0.3643              | 0.1086              | 0.0562              | 0.0324                    | 261.55        |  |
| -8.5  | 100.00                                      | 0.3725              | 0.1107              | 0.0578              | 0.0349                    | 260.26        |  |
| -8.0  | 100.00                                      | 0.3988              | 0.1127              | 0.0592              | 0.0378                    | 260.25        |  |
| -7.5  | 100.00                                      | 0.3800              | 0.1143              | 0.0607              | 0.0400                    | 260.95        |  |
| -7.0  | 100.00                                      | 0.3731              | 0.1168              | 0.0621              | 0.0432                    | 261.75        |  |
| -6.5  | 100.00                                      | 0.3893              | 0.1186              | 0.0631              | 0.0448                    | 262.96        |  |

### Table 3 – Current flow summary for 30m ADCP



| -6.0 | 100.00 | 0.4112 | 0.1211 | 0.0648 | 0.0468 | 265.41 |
|------|--------|--------|--------|--------|--------|--------|
| -5.5 | 100.00 | 0.4518 | 0.1229 | 0.0664 | 0.0465 | 269.75 |
| -5.0 | 100.00 | 0.4575 | 0.1245 | 0.0670 | 0.0442 | 276.39 |
| -4.5 | 99.89  | 0.4281 | 0.1247 | 0.0664 | 0.0303 | 301.08 |
| -4.0 | 99.92  | 0.3912 | 0.1255 | 0.0654 | 0.0354 | 5.48   |
| -3.5 | 99.81  | 0.4497 | 0.1296 | 0.0663 | 0.0544 | 359.25 |
| -3.0 | 99.58  | 0.7061 | 0.1680 | 0.0891 | 0.1122 | 298.67 |
| -2.5 | 96.47  | 0.6881 | 0.2210 | 0.1043 | 0.1489 | 287.87 |
| -2.0 | 67.93  | 0.6535 | 0.2508 | 0.1090 | 0.1506 | 283.87 |

## Table 4 – Waves summary for 30m ADCP

|        | Data Return (%) | Max    | Min    | Mean   | Std   |
|--------|-----------------|--------|--------|--------|-------|
| Hs (m) | 97.98           | 4.39   | 0.76   | 2.07   | 0.76  |
| Tp (s) | 97.98           | 14.90  | 4.20   | 10.45  | 1.99  |
| Dp (°) | 97.98           | 262.57 | 127.57 | 195.27 | 22.85 |

## Table 5 – Water temperature and salinity summary (surface, 8m)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100.00          | 14.23 | 16.92 | 11.16 |
| Conductivity     | 100.00          | 42.20 | 45.12 | 39.07 |
| Salinity (psu)   | 100.00          | 35.03 | 35.33 | 34.49 |

| Table 6 – Water temperature | e and salinity summary | (bottom, 30m) |
|-----------------------------|------------------------|---------------|
|-----------------------------|------------------------|---------------|

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 100.00          | 12.27 | 16.52 | 10.46 |
| Conductivity     | 100.00          | 40.34 | 44.77 | 38.45 |
| Salinity (psu)   | 100.00          | 35.07 | 35.34 | 34.92 |



## 1.1 DATA RETURN FOR BANTAMSKLIP SITE.

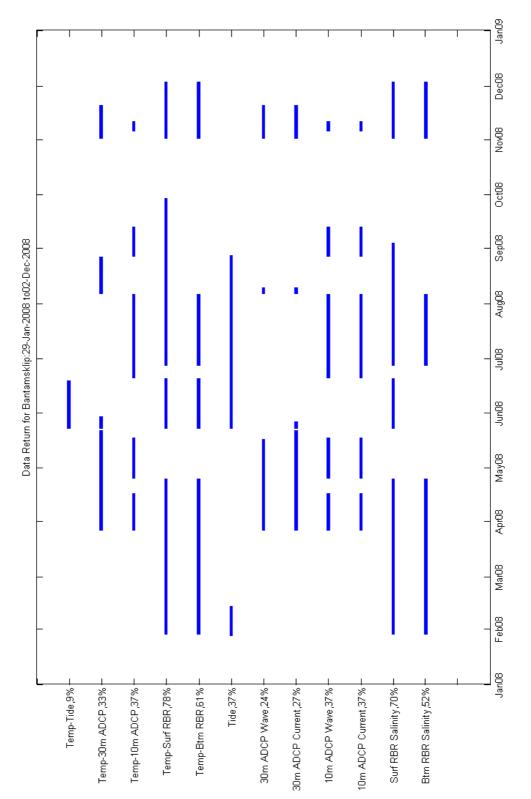



Figure 1: An indication of the data return at the Bantamsklip site since the beginning of the project.



## 2. INTRODUCTION

### 2.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents currents, waves, temperature and salinity data collected at Bantamsklip station for the period November  $1^{st} 2008$  – December  $2^{nd} 2008$  (Period 6). The service visit was undertaken between December  $2^{nd}$  and  $5^{th} 2008$ . Water samples were collected on December  $5^{th}$ .

### 2.2 EQUIPMENT LIST

Lwandle provided the equipment as listed in Table 7 for the Bantamsklip site.

| Item                       | Operational (on site) | Spare (for whole project) |  |
|----------------------------|-----------------------|---------------------------|--|
| TRDI 600kHz ADCP           | 2                     | 1                         |  |
| RBR XR420 CT logger        | 2                     | 1                         |  |
| RBR TGR 2050 HT Tide Gauge | 1                     | 0                         |  |

### Table 7 – List of equipment provided.

### 2.3 MEASUREMENT LOCATION

The deployment location of the instruments is given in Table 8. Table 9 shows the locations where water samples were taken.

| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | -             | -              |
| 10m ADCP    | 34°43.148'    | 19°33.398'     |
| Biofouling  | 34°43.190'    | 19°33.686'     |
| 30m ADCP    | 34° 42.625'   | 19°30.635'     |
| T&C mooring | 34° 42.625'   | 19°30.635'     |

#### **Table 8 – Measurement locations**



| STN | Lat       | Long      | SAMPLES | Exact Time | COMMENTS (if   |
|-----|-----------|-----------|---------|------------|----------------|
| #   |           |           | type    | HH:MM:SS   | RBR profile is |
|     |           |           | (W,B,G) |            | taken etc)     |
| 1   | 34 42.625 | 19 30.676 | w       | 10.28      | 4m             |
| 2   | 34 42.625 | 19 30.676 | w       | 10.30      | 12m            |
| 3   | 34 42.625 | 19 30.676 | w       | 10.33      | 20m            |
| 4   | 34 42.625 | 19 30.676 | w       | 10.36      | 28m            |
| 5   | 34 43.190 | 19 33.611 | w       | 11.27      | 4m             |
| 6   | 34 43.161 | 19 33.591 | w       | 11.30      | 8m             |
| 7   | 34 43.190 | 19 33.611 | w       | 11.34      | 4m             |
| 8   | 34 43.161 | 19 33.591 | w       | 11.37      | 4m             |
| 9   | 34 43.124 | 10 33.584 | w       | 11.39      | 4m             |
| 10  | 34 43.097 | 19 33.577 | w       | 11.41      | 4m             |
| 11  | 34 43.081 | 19 33.541 | w       | 11.41      | 4m             |

## Table 9 – Locations where water samples were taken during the service



### 3. OPERATIONS

### 3.1 SUMMARY OF EVENTS

Service visit 6 was undertaken as outlined below.

December 2<sup>nd</sup>:

Recovery of the 10m ADCP (s/n 10105) and the RBR String (s/n 12994 and 15248) was undertaken.

December 5<sup>th</sup>:

- Recovery of the 30m ADCP (s/n 10841).
- Redeployment of all instruments: RBR String (s/n 12994 at 8m and s/n 15248 at 30m), 10m ADCP (s/n 10105) and 30m ADCP (s/n 11424).
- Water samples were collected.



### 3.2 INSTRUMENT CONFIGURATIONS

The as deployed instrumentation configurations are given in this section and completed deployment / recovery sheets are given in Section 7 (page 54).

#### 3.2.1 600kHz ADCP

 Table 10 – Instrument configuration for 10m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10105                         |
| Wave burst duration         | 41 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 42                            |
| Bin size                    | 0.35 m                        |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 500                           |
| Edgetech Acoustic Release   | s/n 32380 release code 641722 |

#### Table 11 – Instrument configuration for 30m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 10841                         |
| Wave burst duration         | 34 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 69                            |
| Bin size                    | 0.5 m                         |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 250                           |
| Edgetech Acoustic Release   | s/n 32383 release code 642016 |

ADCP s/n 11424 was redeployed at the 30m site.

# 3.2.2 RBR XR420 CT LOGGER

#### Table 12 – Instrument configuration for T&C Mooring Line.

| Parameter                           | Configuration                               |
|-------------------------------------|---------------------------------------------|
| XR 420 Temperature and Conductivity | s/n 12994 (8m) and s/n 15248 (30m)          |
| Sampling and Averaging              | Sample at 1Hz for 1 minute every 10 minutes |



## 3.2.3 RBR TGR2050 HT TIDE GAUGE

### Table 13 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 2050 HT            | No tide gauge (found lost during SV5)   |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

## 3.2.4 Biofouling Mooring

## Table 14 – Instrument configuration for Biofouling Mooring Line.

| Parameter                 | Configuration                                             |
|---------------------------|-----------------------------------------------------------|
| Biofouling Plates         | 3 plates (20cmx20cm) at 3m and 3 plates (20cmx20cm) at 8m |
| Edgetech Acoustic Release | s/n 32387 release code 642144                             |



## 3.3 RECOVER AND REDEPLOYMENT METHODOLOGY

### 3.3.1 T&C mooring

The T&C mooring line was deployed by lowering the array down via a rope through the anchor weights. The mooring line is recovered using divers to undo a single shackle that connects the mooring line to the anchor weights. Divers reattach the line onto the weights, after the instruments have been serviced.

### 3.3.2 ADCP mooring

The ADCP Frame is lowered to the bottom and moved into position by divers, who also attach chain sections that act as anchors. To retrieve the frame divers have to locate the mooring, take of the anchor chains and surface the frame using air lift bags that they attach.

### 3.3.3 Tidal Gauge.

The Druck pressure sensor was installed at depth of about 1.5m outside a stilling well, which was attached to a permanent steel frame in 1.87m depth of water.

### 3.3.4 Biofouling mooring

The biofouling mooring line was deployed by lowering the array down via a rope through the anchor weights. Divers will locate the mooring line and retrieve a surface and bottom plate from the line at the required sampling periods.



# 4. DATA QUALITY CONTROL

## 4.1 ADCP

Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further.

## 4.1.1 Current processing

- The record was truncated to exclude times pre and post deployment.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 27' W for the 10m ADCP and 25° 26' W for the 30m ADCP.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 2).
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.

## 4.1.2 Wave processing

Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:

- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 27' W for the 10m ADCP and 25° 26' W for the 30m ADCP.
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.



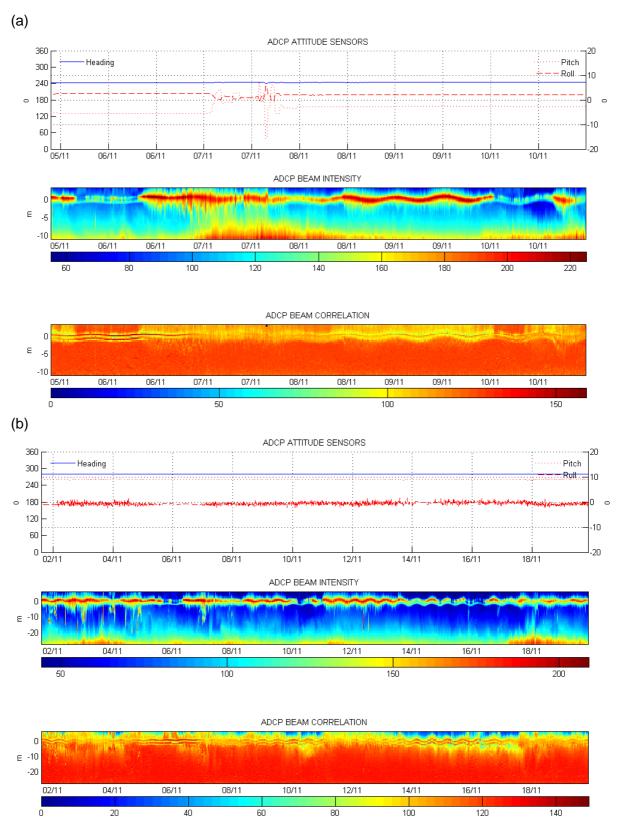



Figure 2: Attitude data for (a) 10m ADCP and (b) 30m ADCP.

Π



# 4.2 RBR-CT LOGGER

The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.

- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.

## 4.3 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- Atmospheric sea level pressure correction was applied.
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is +0.73m.
- Finally the data was averaged over a 10-minute period.

The tide gauge was found lost during SV5 and will be replaced with a new one.

### 4.4 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Recovery of the biofouling plates was not scheduled for service visit 6

## 4.5 WATER SAMPLE.

Water sample were collected during the first two service visits and sent to the Council for Scientific and Industrial Research (CSIR) for analysis.



## 5. DATA PRESENTATION

All data presented have been subject to the quality control procedures detailed in the previous section. Bad data have been excluded from all plots and calculations.

All plots in this section include a stamp that details the location, depth, time period and number of observations that the plot is based upon. Wherever possible, scaling of parameters has been kept constant throughout this section to facilitate comparison between plots and stations.

## 5.1 10M ADCP

### 5.1.1 Current Data

### 5.1.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



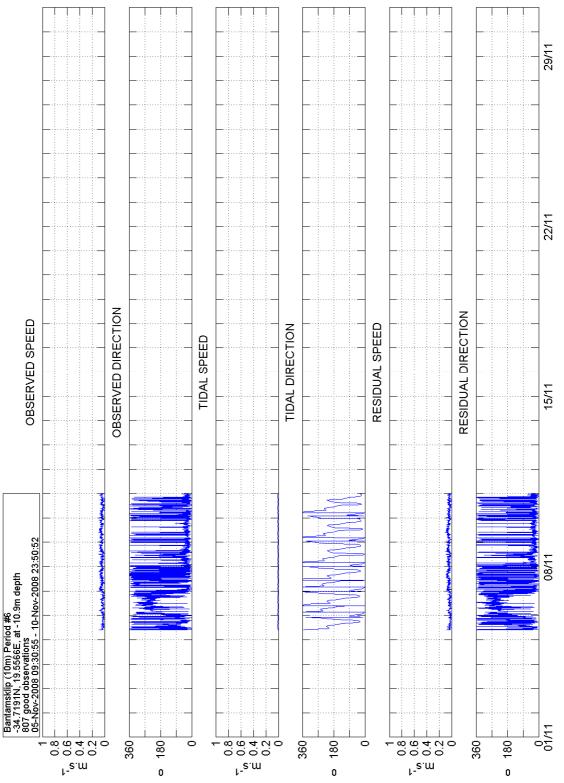



Figure 3: Time series plot for 10m ADCP current data at 10.9m.



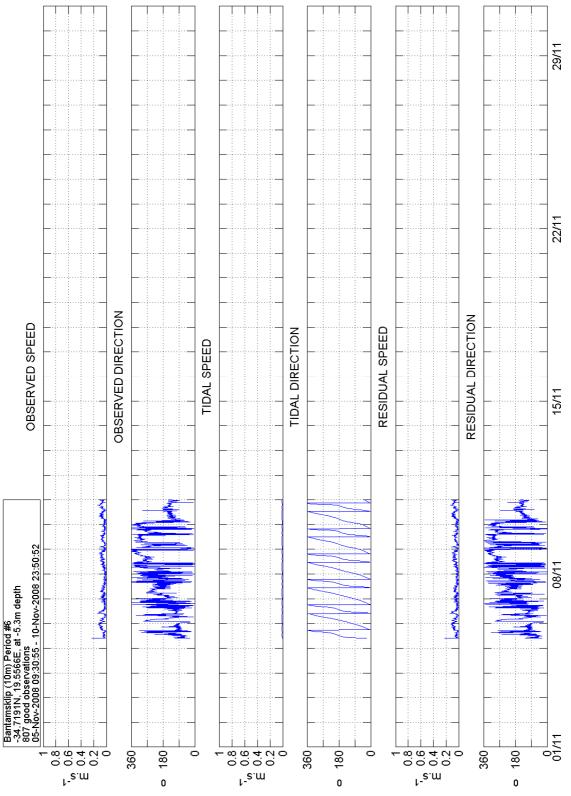



Figure 4: Time series plot for 10m ADCP current data at 5.3m.



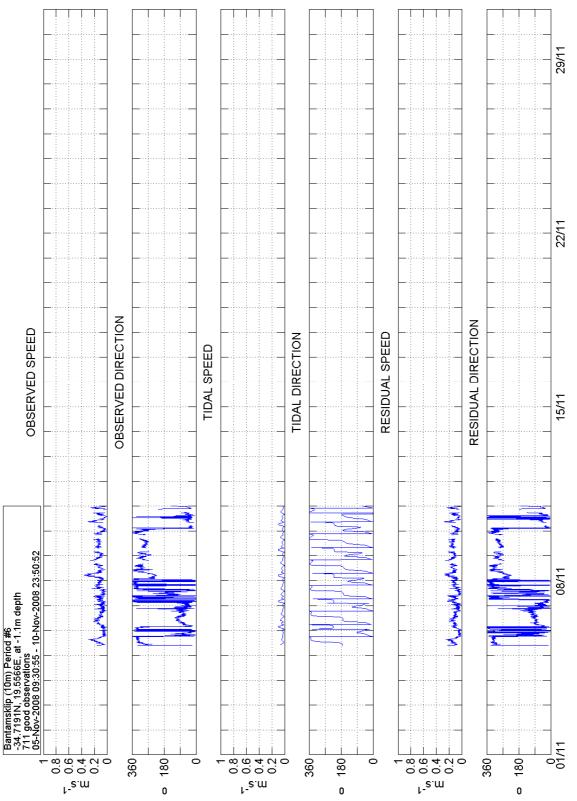
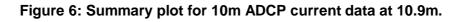



Figure 5: Time series plot for 10m ADCP current data at 1.1m.



#### 5.1.1.2 Summary plots

The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:


- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

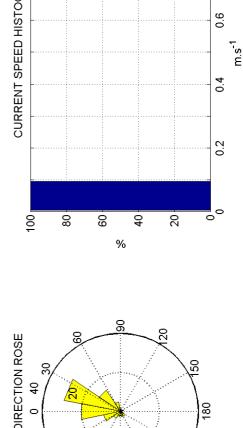
#### 5.1.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.

| 0-0.1 20.32 29.37 13.14 4.83 1.98 |      | ц    | SSE  | თ    | SSW  | SW   | WSW WSW | N    | WNW NW |      | MNN         | ы      |
|-----------------------------------|------|------|------|------|------|------|---------|------|--------|------|-------------|--------|
|                                   | 1.24 | 1.12 | 1.73 | 0.99 | 1.49 | 3.10 | 2.73    | 2.35 | 2.60   | 4.21 | 8.80 100.00 | 100.0  |
| 0.1-0.2                           |      |      |      |      |      |      |         |      |        |      |             | 00.0   |
| 0.2-0.3                           |      |      |      |      |      |      |         |      |        |      |             | 0.0    |
| 0.3-0.4                           |      |      |      |      |      |      |         |      |        |      |             | 0.0    |
| 0.4-0.5                           |      |      |      |      |      |      |         |      |        |      |             | 0.0    |
| 0.5-0.6                           |      |      |      |      |      |      |         |      |        |      |             | 0.0    |
| 0.6-0.7                           |      |      |      |      |      |      |         |      |        |      |             | 0.0    |
| 0.7-0.8                           |      |      |      |      |      |      |         |      |        |      |             | 0.00   |
| 0.8-0.9                           |      |      |      |      |      |      |         |      |        |      |             | 0.00   |
| 0.9-1                             |      |      |      |      |      |      |         |      |        |      |             | 00.0   |
| Σ 20.32 29.37 13.14 4.83 1.98     | 1.24 | 1.12 | 1.73 | 0.99 | 1.49 | 3.10 | 2.73    | 2.35 | 2.60   | 4.21 | 8.80        | 100.00 |




20

240

270







std: 0.02

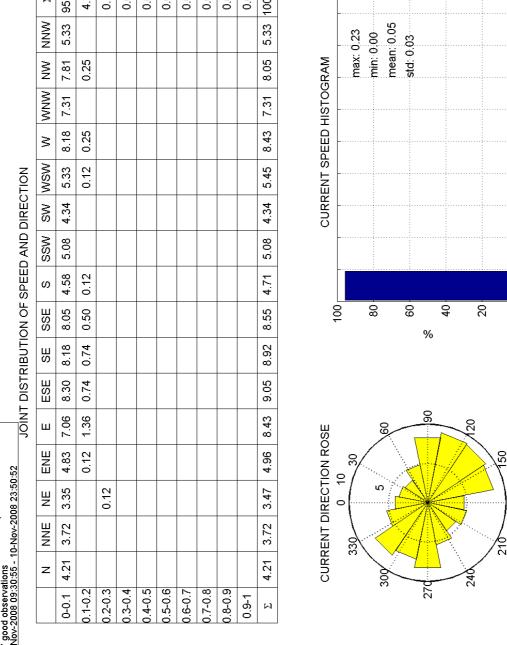
0.8

100.00 95.66 0.12 0.0 0.00 0.0 0.0 0.00 0.00 0.00 4.21 Ы MNN 5.33 5.33 max: 0.23 min: 0.00 MN 8.05 7.81 0.25 CURRENT SPEED HISTOGRAM WNW 7.31 7.31 8.18 8.43 0.25 ≥ WSW 5.33 0.12 5.45 JOINT DISTRIBUTION OF SPEED AND DIRECTION SW 4.34 4.34 SSW 5.08 5.08 4.58 0.12 4.71 S SSE 8.05 0.50 8.55 9 80 8.18 0.74 8.92 SП ESE 0.74 9.05 8.30 8.43 7.06 1.36 ш CURRENT DIRECTION ROSE ENE 0.12 4.96 4.83 80 Bantamskiip (10m) Period #6 -34.7191N, 19.5566E, at -5.3m depth 807 good observations 05-Nov-2008 09:30:55 - 10-Nov-2008 23:50:52 9 3.35 0.12 3.47 Ш Z  $\subset$ ШNП 3.72 3.72 330 4.21 4.21 z .4-0.5 5-0.6 2-0.3 7-0.8 0.8-0.9 0.1-0.2 3-0.4 6-0.7 0-0.1 0.9-1 Ы  $\sim$ റ്

Figure 7: Summary plot for 10m ADCP current data at 5.3m

0.8

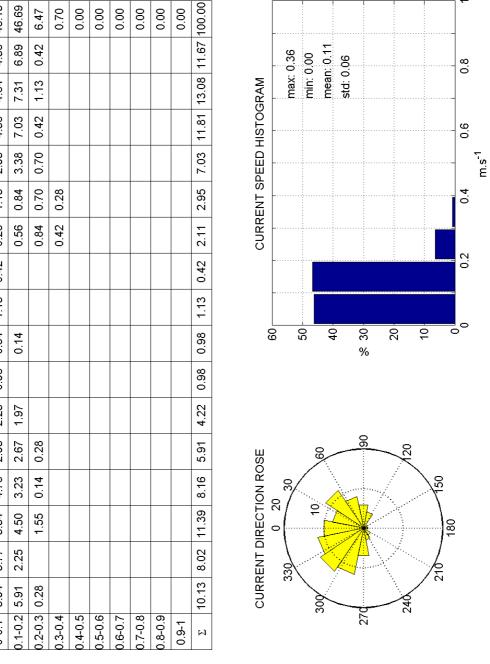
0.6


0.4

0.2

**\_**0

180


m.s-1





100.00 46.13 46.69 6.47 0.70 0.00 0.0 0.00 0.00 0.00 0.00 ы 11.67 MNN 4.36 6.89 0.42 13.08 1.13 Ň 4.64 7.31 CURRENT SPEED HISTOGRAM WNW 11.81 4.36 7.03 0.42 0.70 7.03 2.95 3.38 ≥ WSW 1.13 0.70 2.95 0.28 0.84 JOINT DISTRIBUTION OF SPEED AND DIRECTION 2.11 0.56 0.42 SW 0.28 0.84 SSW 0.42 0.42 1.13 1.13 S SSE 0.98 00 0.84 0.14 0.98 0.98 ЯS ESE 2.25 4.22 1.97 2.95 2.67 0.28 5.91 ш CURRENT DIRECTION ROSE 8.16 ШNП 4.78 3.23 0.14 Bantamskilp (10m) Period #6 -34.7191N, 19.5566E, at -1.1m depth 711 good observations 05-Nov-2008 09:30:55 - 10-Nov-2008 23:50:52 11.39 5.34 1.55 4.50 Ш Z ШNП 8.02 5.77 2.25 10.13 3.94 5.91 0.28 z 1-0.2 2-0.3 4-0.5 5-0.6 3-0.4 6-0.7 7-0.8 8-0.9 0-0.1 0.9-1 ы

Figure 8: Summary plot for 10m ADCP current data at 1.1m.





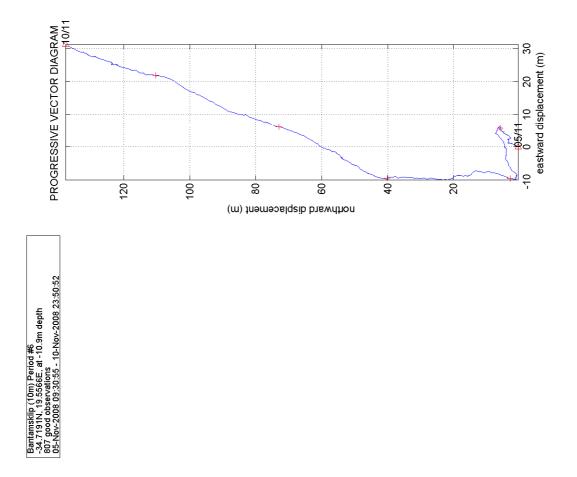



Figure 9: Progressive vector plot for 10m ADCP current data at 10.9m.



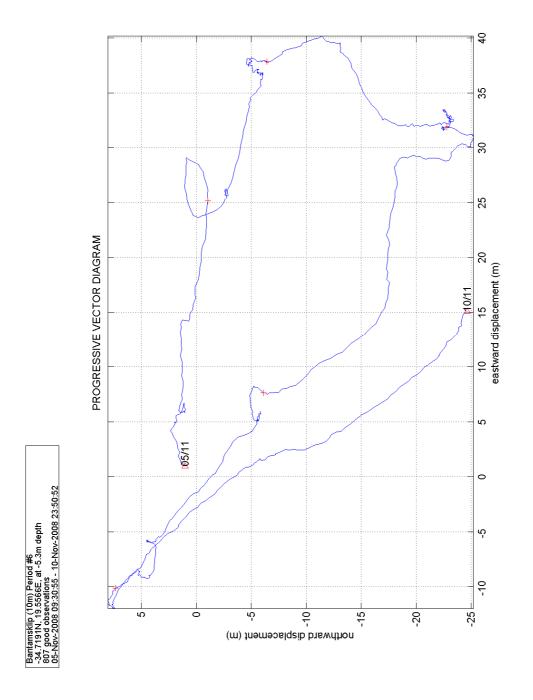



Figure 10: Progressive vector plot for 10m ADCP current data at 5.3m.



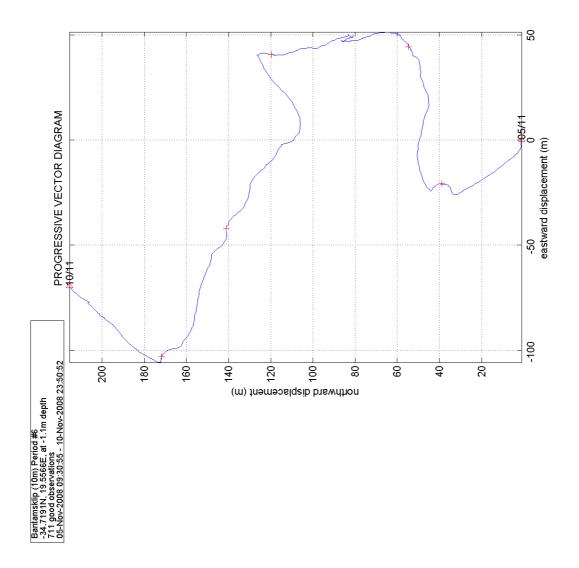



Figure 11: Progressive vector plot for 10m ADCP current data at 1.1m.



### 5.1.2 Wave Data.

### 5.1.2.1 <u>Hs and Tp summary plot</u>

Figure 12 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

### 5.1.2.2 <u>Hs and Dp summary plot</u>

Figure 13 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

### 5.1.2.3 <u>Tp and Dp summary plot</u>

Figure 14 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

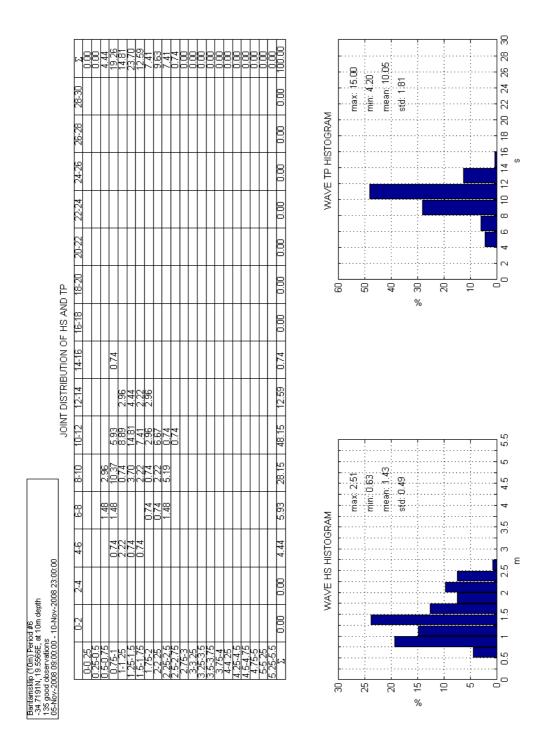



Figure 12: Summary plot of  $H_s$  and  $T_p$ .



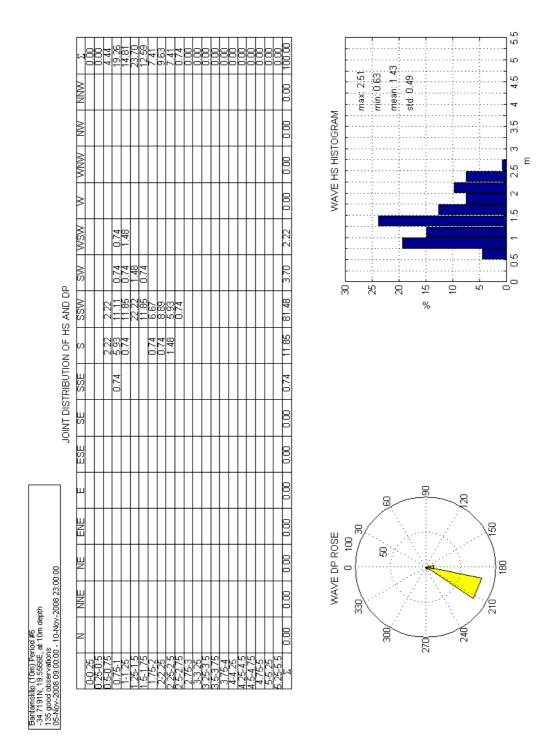



Figure 13: Summary plot of  $H_s$  and  $D_p$ .



Я 28.15 48.15 0.74 0.00 00.001 888888 0.00 5.93 0.0 8 80 mean 10.05 8 max: 15.00 4 20 stid: 1:81 MNN 24 0.0 uiu: ន WAVE TP HISTOGRAM 8 MN 80 ∞ 12 14 16 WNW 80 80 ₽ ≥ ω WSW 2.22 ى 2.22 4 C I 0.74 0.74 3.70 S∛ 2.22 6 8 G 육 В 2 JOINT DISTRIBUTION OF TP AND DP 21.48 43.70 12.59 81.48 SSW 3.70 % 11.85 2.22 6.67 2.96 S 0.74 SSE 0.74 0.0 ŝ ESE 0.0 8.0 ш 5 8 8 ШR 8 ß В WAVE DP ROSE 5 ß 80 끨 6 Bartamskip (10m) Period #6 -34. 1719 (13 5566); at 10m depth 136 good observations 05-Nov-2008 09:00:00 - 10-Nov-2008 23:00:00  $\circ$ NNE 0.0 89 20, 8.0 Ő 59 z 270 12-14 14-16 18-20 20-22 0-2 2-4 6-8 6-8 10-12 10-12 24-26 26-28 22-24 28-30 28 ы

Figure 14: Summary plot of T<sub>p</sub> and D<sub>p</sub>.



v



### 5.1.2.4 Wave spectral plot

Figure 15 displays a wave spectral plot for a significant wave event. The time of the spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.

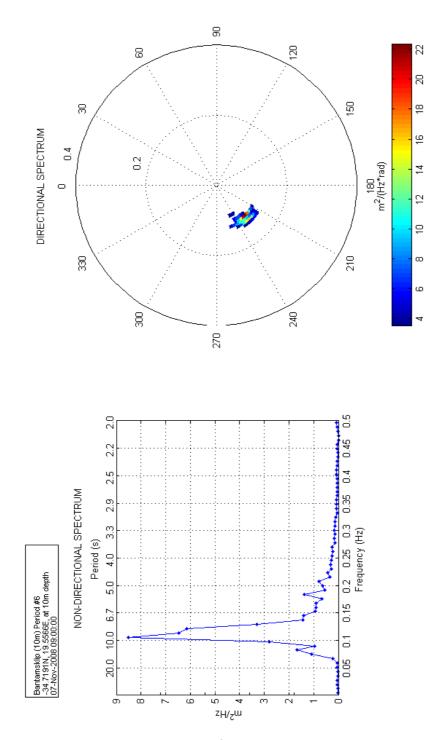



Figure 15: Wave spectra for 7<sup>th</sup> of November 2008 at 09:00:00.





### 5.2 30M ADCP

#### 5.2.1 Current Data

### 5.2.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



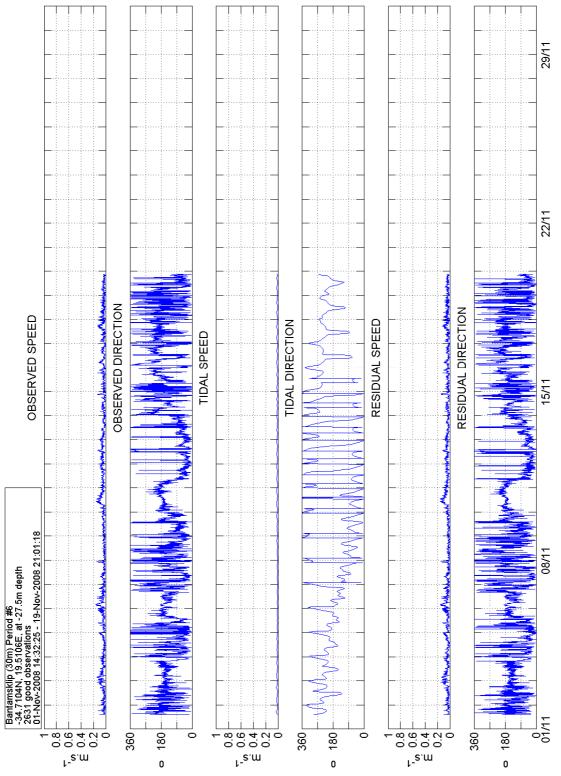



Figure 16: Time series plot for 30m ADCP current data at 27.5m.



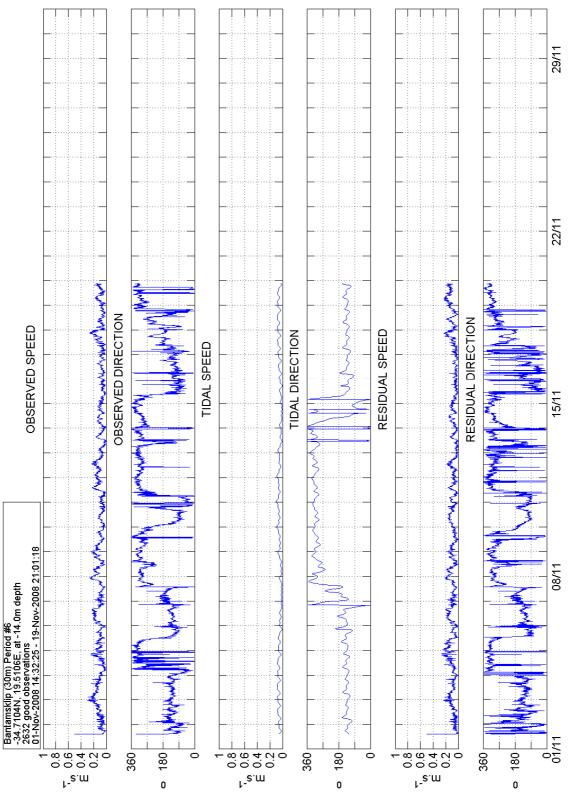



Figure 17: Time series plot for 30m ADCP current data at 14.0m.



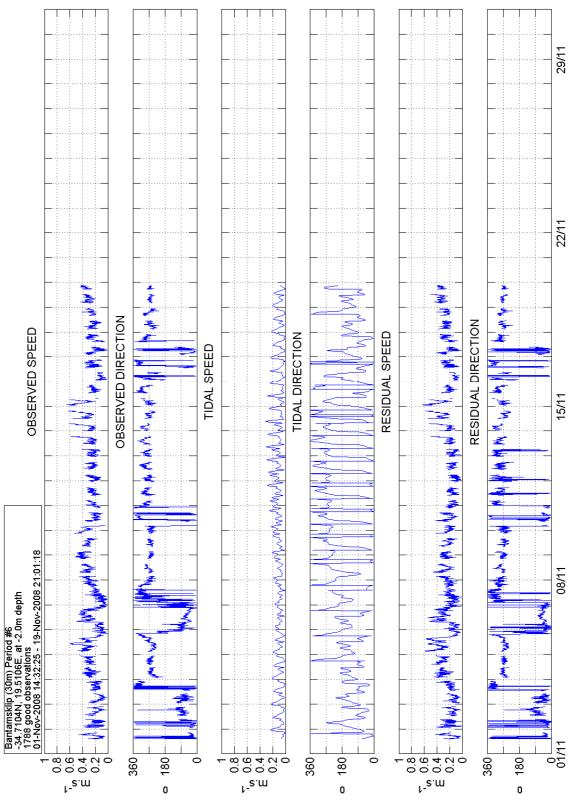



Figure 18: Time series plot for 30m ADCP current data at 2.0m.



#### 5.2.1.2 Summary plots

The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.2.1.3 <u>Progressive vector plots</u>

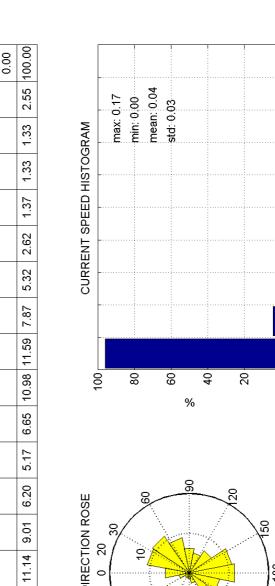
The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.

100.00 95.93 4.07 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 ы NNΝ 2.36 0.19 2.55 1.33 MΝ 1.33 WNW 1.33 1.33 1.37 1.37 ≥ WSW 2.62 2.62 JOINT DISTRIBUTION OF SPEED AND DIRECTION SW 5.09 5.32 0.23 SSW 7.26 0.61 7.87 11.59 10.26 1.33 S 10.98 SSE 9.50 1.48 6.65 0.11 6.54 ЯS ESE 5.17 5.17 6.20 6.20 ш ENE 9.01 9.01 Bantamskilp (30m) Period #5 -34.7104N, 19.5106E. at -27.5m depth 2631 good observations 01-Nov-2008 14:32:25 - 19-Nov-2008 21:01:18 11.14 11.10 0.04 ШZ 10.72 10.76 ЫNП 0.04 6.12 6.08 0.04 z 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 .5-0.6 0.7-0.8 0.8-0.9 0.6-0.7 0-0.1 0.9-1 ы

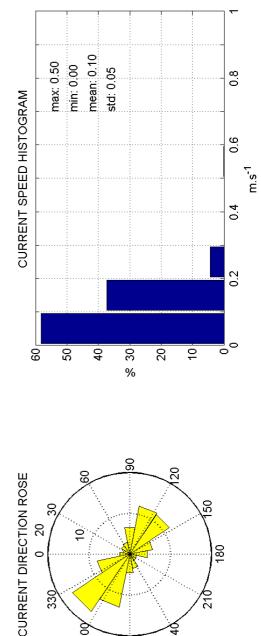
mean: 0.04 max: 0.17 min: 0,00 std: 0.03 0.8 CURRENT SPEED HISTOGRAM 0.6 m.s<sup>-1</sup> 0.4 0.2 **\_**0 00 80 8 40 20 % 8 2 CURRENT DIRECTION ROSE 60 20 30 3 õ 180 C 330




LWANDLE TECHNOLOGIES (PTY) LTD

210

240


22



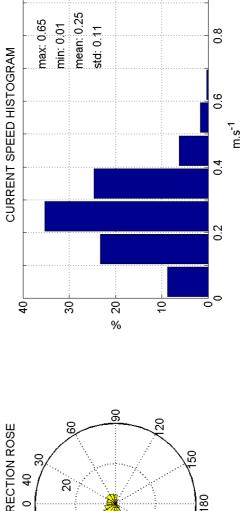


g

100.00 58.24 37.27 4.45 0.00 0.00 0.04 0.0 0.0 0.0 0.0 Ы NNN 3.15 8.17 5.02 16.83 MΝ 6.65 8.97 1.22 13.15 WNW 0.72 5.93 6.50 4.60 1.71 2.89 ≥ WSW 2.93 0.65 0.04 3.61 JOINT DISTRIBUTION OF SPEED AND DIRECTION SW 1.63 0.23 86 ÷ SSW 1.14 1.71 0.49 0.04 0.04 1.14 4.29 2.81 0.34 S SSE 5.70 1.79 3.31 0.61 11.63 6.08 4.67 0.87 SП 12.04 ESE 7.07 4.37 0.61 6.69 5.40 1.29 ш ΕNΕ 3.00 0.23 2.77 Bantamskilp (30m) Period #6 -34.7(104N, 195.106E, at -14.0m depth 26.7(2004) 195.106E, at -14.0m depth 01-Nov-2008 14:32:25 - 19-Nov-2008 21:01:18 01-Nov-2008 14:32:25 - 19-Nov-2008 21:01:18 2.51 2.51 Ш Z NNE 1.52 0.19 1.71 0.49 2.01 2.51 Z 0.1-0.2 5-0.6 .2-0.3 .3-0.4 .4-0.5 .6-0.7 .7-0.8 .8-0.9 0-0.1 0.9-1 ы  $\sim$  $\sim$  $\sim$ 



300




240

24



| Bantams<br>-34.7104<br>1788 go<br>01-Nov-: | Bantamskiip (30m) Peri<br>-34.7104N, 19.5106E, a<br>1788 good observation<br>01-Nov-2008 14:32:25 | Bantamskilp (30m) Period #6<br>-34.7104N, 19.5106E, at -2.0m depth<br>1788 good observations<br>01-Nov-2008 14:32:25 - 19-Nov-2008 | iod #6<br>at -2.0m depth<br>s<br>- 19-Nov-2008 21:01:18 | oth<br>108 21:01 | 1:18                 |      | JOINT DISTRIBUTION OF SPEED AND DIRECTION | RIBUTI | ON OF  | SPEEI |      | DIREC | TION   |       |                         |           |      |        |
|--------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------|----------------------|------|-------------------------------------------|--------|--------|-------|------|-------|--------|-------|-------------------------|-----------|------|--------|
|                                            |                                                                                                   | z                                                                                                                                  | NNE                                                     | ШN               | ENE                  | ш    | ESE                                       | Я      | SSE    | S     | SSW  | SW    | WSW    | ×     | WNW                     | MN        | MNN  | μ      |
|                                            | 0-0.1                                                                                             | 0.78                                                                                                                               | 1.01                                                    | 0.56             | 1.01                 | 1.01 | 0.62                                      | 0.17   | 0.34   | 0.50  | 0.34 | 0.17  | 0.11   | 0.39  | 0.34                    | 0.50      | 0.95 | 8.78   |
|                                            | 0.1-0.2                                                                                           | 1.90                                                                                                                               | 1.17                                                    | 1.68             | 1.57                 | 2.18 | 0.50                                      | 0.11   | 0.06   | 0.11  | 0.28 | 0.67  | 1.23   | 2.13  | 3.47                    | 3.47      | 2.68 | 23.21  |
|                                            | 0.2-0.3                                                                                           | 1.40                                                                                                                               | 1.12                                                    | 1.06             | 1.51                 | 0.89 | 0.73                                      | 0.06   |        | 0.11  | 0.06 | 0.95  | 5.20   | 9.00  | 7.49                    | 4.14      | 1.51 | 35.23  |
|                                            | 0.3-0.4                                                                                           | 0.11                                                                                                                               | 0.67                                                    | 1.34             | 1.01                 | 0.34 | 0.06                                      |        |        | 0.06  |      | 0.56  | 7.16   | 9.28  | 3.02                    | 0.78      | 0.22 | 24.61  |
|                                            | 0.4-0.5                                                                                           |                                                                                                                                    | 0.39                                                    | 0.84             |                      |      |                                           |        |        |       |      | 0.11  | 2.13   | 2.52  | 0.28                    |           |      | 6.26   |
|                                            | 0.5-0.6                                                                                           |                                                                                                                                    |                                                         |                  |                      |      |                                           |        |        |       |      | 0.11  | 0.78   | 0.56  | 0.17                    |           |      | 1.62   |
|                                            | 0.6-0.7                                                                                           |                                                                                                                                    |                                                         |                  |                      |      |                                           |        |        |       |      |       |        | 0.11  | 0.17                    |           |      | 0.28   |
|                                            | 0.7-0.8                                                                                           |                                                                                                                                    |                                                         |                  |                      |      |                                           |        |        |       |      |       |        |       |                         |           |      | 0.00   |
|                                            | 0.8-0.9                                                                                           |                                                                                                                                    |                                                         |                  |                      |      |                                           |        |        |       |      |       |        |       |                         |           |      | 0.00   |
|                                            | 0.9-1                                                                                             |                                                                                                                                    |                                                         |                  |                      |      |                                           |        |        |       |      |       |        |       |                         |           |      | 0.00   |
|                                            | Σ                                                                                                 | 4.19                                                                                                                               | 4.36                                                    | 5.48             | 5.09                 | 4.42 | 1.90                                      | 0.34   | 0.39   | 0.78  | 0.67 | 2.57  | 16.61  | 23.99 | 14.93                   | 8.89      | 5.37 | 100.00 |
|                                            |                                                                                                   |                                                                                                                                    |                                                         |                  |                      |      |                                           |        |        |       |      |       |        |       |                         |           |      |        |
|                                            |                                                                                                   | CURF                                                                                                                               | RENT D                                                  | IRECT            | RRENT DIRECTION ROSE | SSE  |                                           |        | ç      |       |      | CURR  | ENT SI | PEED  | CURRENT SPEED HISTOGRAM | BRAM      |      |        |
|                                            |                                                                                                   |                                                                                                                                    | 330                                                     | 0<br>(           | 8/3                  |      |                                           |        | 4<br>○ |       |      |       |        |       |                         | max: 0.65 | 0.65 |        |
|                                            |                                                                                                   | `                                                                                                                                  |                                                         |                  |                      |      |                                           |        | -      |       |      | j     |        |       |                         |           |      | -      |



300

Figure 21: Summary plot for 30m ADCP current data at 2.0m.

29

24Ò

270



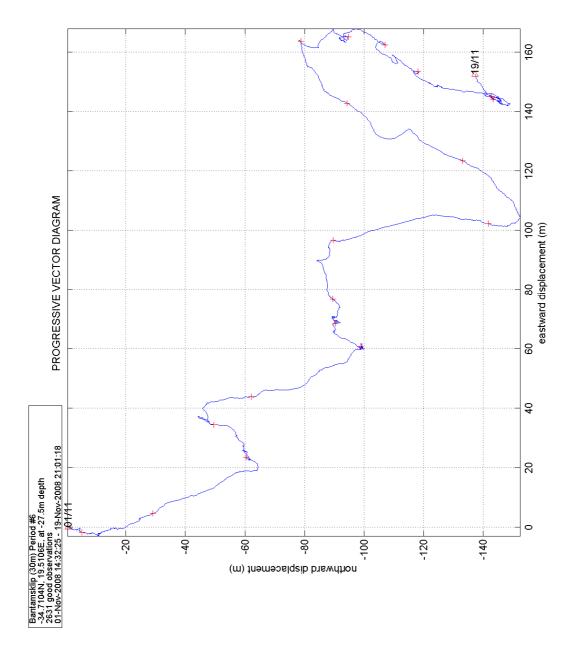



Figure 22: Progressive vector plot for 30m ADCP current data at 27.5m.



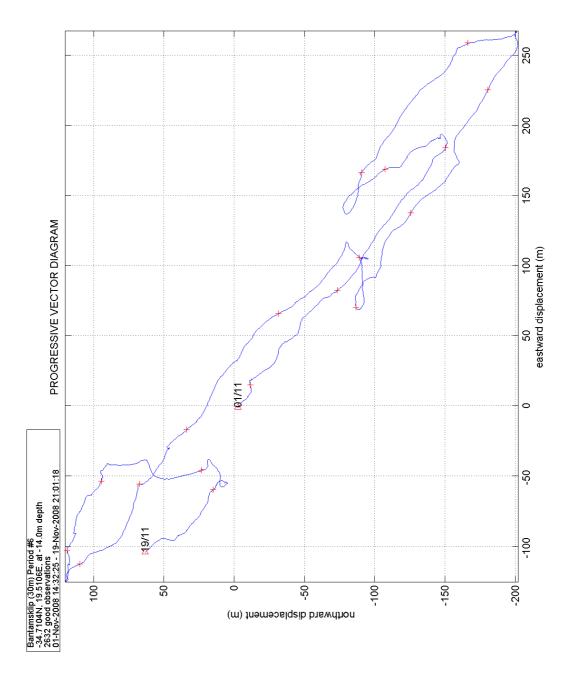



Figure 23: Progressive vector plot for 30m ADCP current data at 14.0m.



Bantamskilp (30m) Period #6 -34.104M, 12-5106E, at -2.0m depth 1788 godd observations 01-Nov-2008 14:32:25 - 19-Nov-2008 21:01:18

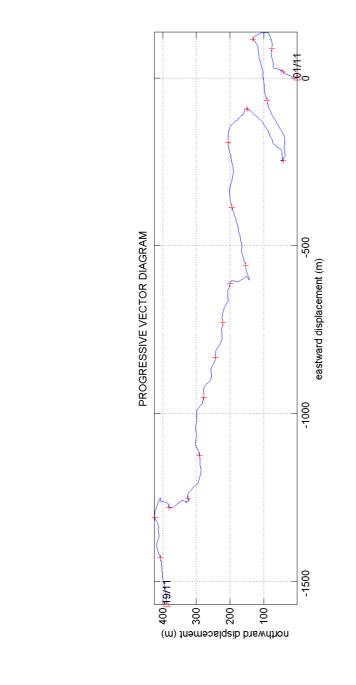



Figure 24: Progressive vector plot for 30m ADCP current data at 2.0m.



### 5.2.2 Wave Data.

### 5.2.2.1 <u>Hs and Tp summary plot</u>

Figure 25 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

### 5.2.2.2 <u>Hs and Dp summary plot</u>

Figure 26 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

### 5.2.2.3 <u>Tp and Dp summary plot</u>

Figure 27 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

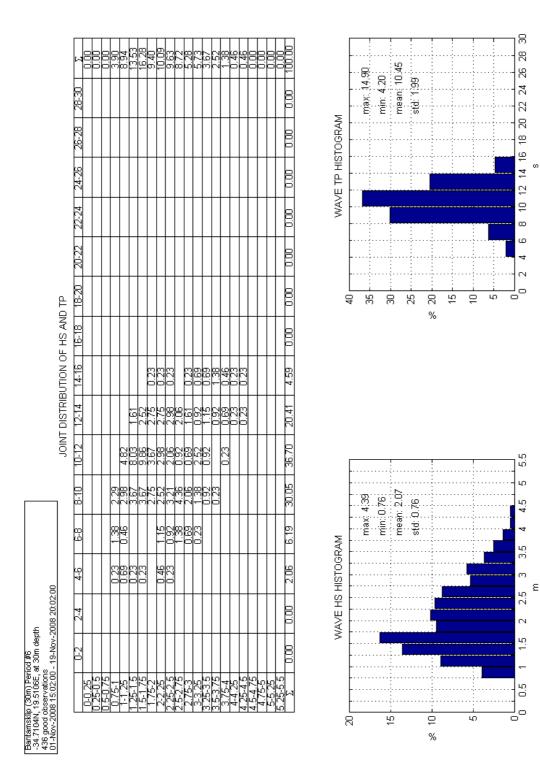



Figure 25: Summary plot of  $H_s$  and  $T_p$ .

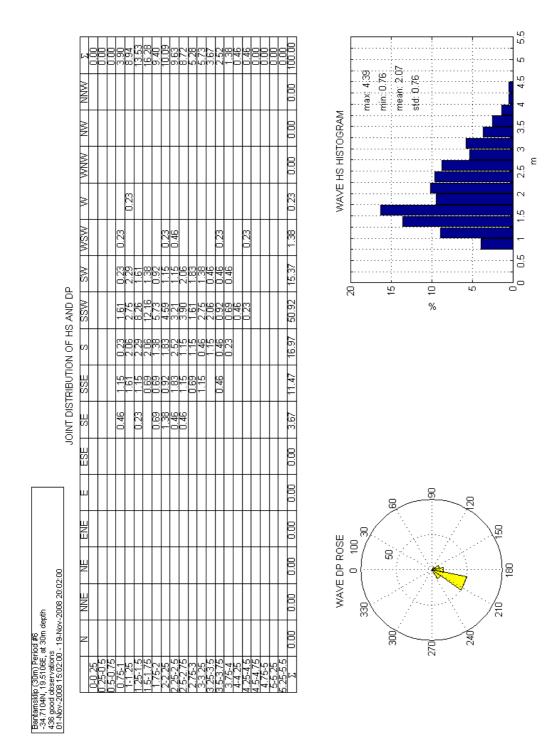
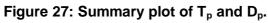




Figure 26: Summary plot of  $H_s$  and  $D_p$ .



|                                                                                                                                         | ы   | 0.0 | 0.0 | 2.06 | 6.19       | 30.05        | 36.70 | 20.41 | 4.59  | 0.00  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.00 |                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------------------------------------------------------------|
|                                                                                                                                         | NNN |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   |                                                            |
|                                                                                                                                         | NNN |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   | 0008AM                                                     |
|                                                                                                                                         | WNW |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   | WAVE TP HISTOGRAM                                          |
|                                                                                                                                         | M   |     |     | 0.23 |            |              |       |       |       |       |       |       |       |       |       |       | 0.23   |                                                            |
|                                                                                                                                         | WSW |     |     | 0.69 |            |              | 0.23  |       | 0.46  |       |       |       |       |       |       |       | 1.38   |                                                            |
| 0                                                                                                                                       | SW  |     |     | 0.46 | 0.46       | 4.13         | 4.82  | 4.13  | 1.38  |       |       |       |       |       |       |       | 15.37  | 2 2 3 3 <del>3</del> 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| AND DI                                                                                                                                  | SSW |     |     | 0.23 | 2.06       | 10.78        | 22.02 | 13.53 | 2.29  |       |       |       |       |       |       |       | 50.92  | **************************************                     |
| ON OF TE                                                                                                                                |     |     |     | 0.23 | 0.92       | 5.28         | 7.57  | 2.52  | 0.46  |       |       |       |       |       |       |       | 16.97  |                                                            |
| TRIBUTIO                                                                                                                                | SSE |     |     |      | 2.29       | 6.88<br>6.88 | 2.06  | 0.23  |       |       |       |       |       |       |       |       | 11.47  |                                                            |
| JOINT DISTRIBUTION OF TP AND DP                                                                                                         | SE  |     |     | 0.23 | 0.46       | 2.98         |       |       |       |       |       |       |       |       |       |       | 3.67   | -<br>;<br>;                                                |
| 9                                                                                                                                       | ESE |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   |                                                            |
|                                                                                                                                         | ш   |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   |                                                            |
|                                                                                                                                         | ENE |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   |                                                            |
| 50                                                                                                                                      | IJ  |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   |                                                            |
| pth<br>2008 20:00                                                                                                                       | NNE |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   | 33 MAVE                                                    |
| riod #6<br>at 30m de <br>s<br><u>3 - 19-Nov-</u>                                                                                        | z   |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       | 0.00   | 300 300                                                    |
| o (30m) Pei<br>19.5106E,<br>bservation<br><u>18 15:02:0(</u>                                                                            |     | 0-2 | 2-4 | 4-6  | 8-9<br>0-0 | 8-10         | 10-12 | 12-14 | 14-16 | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 | 26-28 | 28-30 | Σ      |                                                            |
| Bartamskip (30m) Period #6<br>-34.7104N, 19.5106E, at 30m depth<br>436 good observations<br>01-Mov-2008 15:02:00 - 19-Nov-2008 20:02:00 |     |     |     |      |            |              |       |       |       |       |       |       |       |       |       |       |        |                                                            |



R 39 8 7 8 8 -|@-14 16 <sub>s</sub> 5 ₽ ω ى 4 S





### 5.2.2.4 Wave spectral plot

Figure 28 displays a wave spectral plot for a significant wave event. The time of the spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.

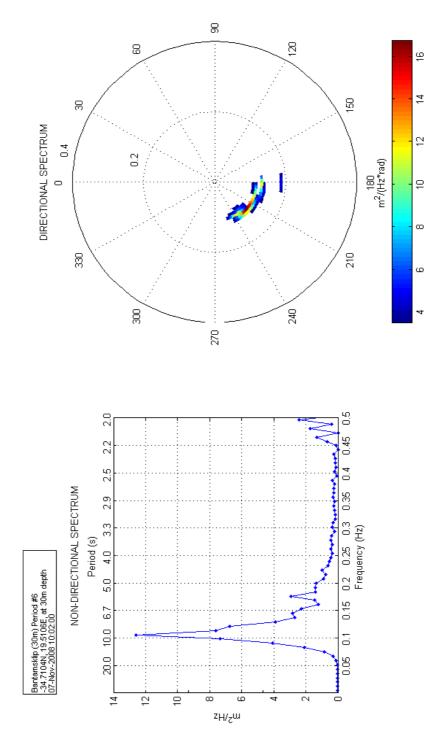



Figure 28: Wave spectra for 7<sup>th</sup> of November 2008 at 10:02:00.



# 5.3 COMPARISON PLOTS

### 5.3.1 Hs, Tp and Dp time series plots for 10m and 30m ADCPs.

Figure 29 displays a time series plot of the main wave parameters:

- The first (upper) panel is of the significant wave height (Hs).
- The second panel is of the peak period (Tp).
- The third panel is of the peak wave direction (Dp).

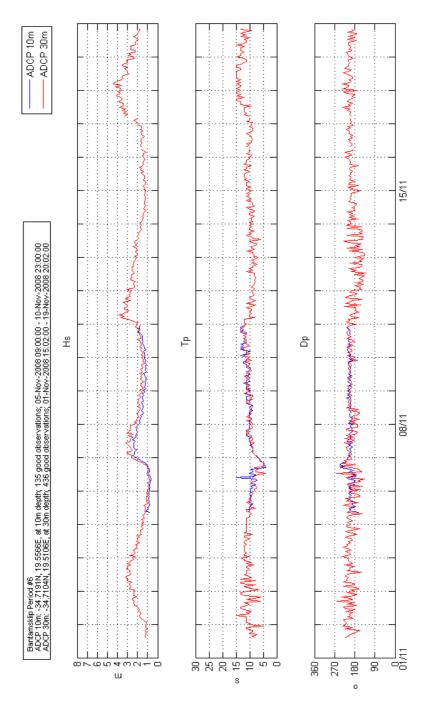



Figure 29: Time series of Hs, Tp and Dp from 10m and 30m ADCPs.



### 5.3.2 Water properties: RBR-CT loggers and ADCPs' temperature sensor.

Figure 30 displays a time series plot, which consists of:

- The first panel is of the observed water temperature from surface and bottom RBR loggers as well as ADCPs' temperature sensor against time.
- The second panel is of the derived salinity from the RBR loggers against time.

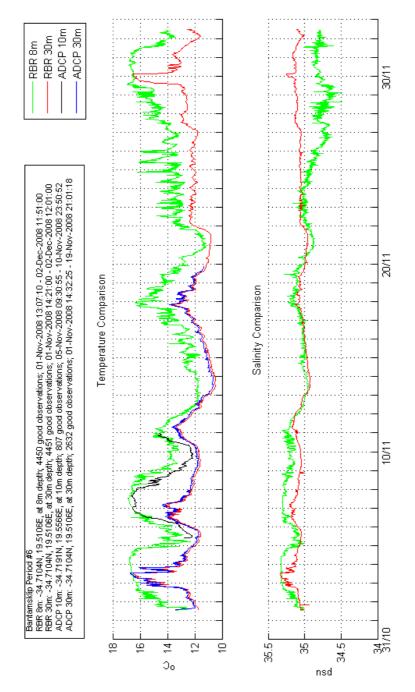



Figure 30: Time series of temperature and salinity from the RBR loggers and ADCPs.



## 5.4 WATER SAMPLES.

Analysis of water samples were undertaken by the CSIR and results are presented as an appendage (Section 7.4, page 64).





### 6. DISCUSSION

The sixth set of oceanographic data collected off the coast of Bantamsklip for the period between November 1<sup>st</sup> 2008 – December 2<sup>nd</sup> 2008 has been presented in this report. The measurements taken fall within a larger dataset being compiled to assist a preliminary safety survey of multiple sites around the South African coast reports for Eskom.

This report presents data obtained from the 10m and 30m ADCPs, the surface and bottom RBR-CT loggers, and water samples collected during the sixth service visit.

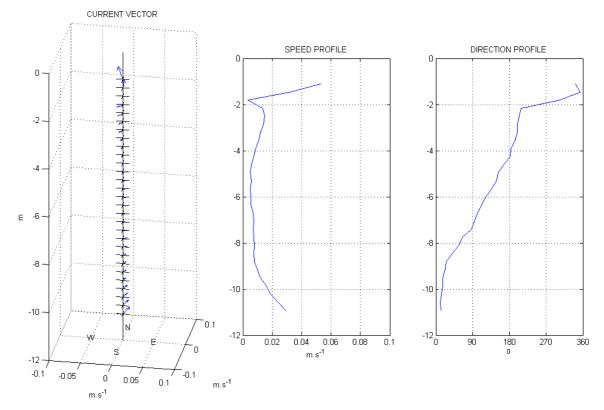



Figure 31: Mean profile plot for 10m ADCP.

The average surface flow for the 10m ADCP was  $0.11 \text{ms}^{-1}$ , decreasing to  $\sim 0.04 \text{ms}^{-1}$  at  $\sim 10 \text{m}$  depth. The flow throughout the water column was predominantly from the East. Average wave parameters of  $\sim 1.4 \text{m}$ ,  $\sim 10 \text{s}$  and  $\sim 200^{\circ}$  were recorded for Hs, Tp and Dp respectively.



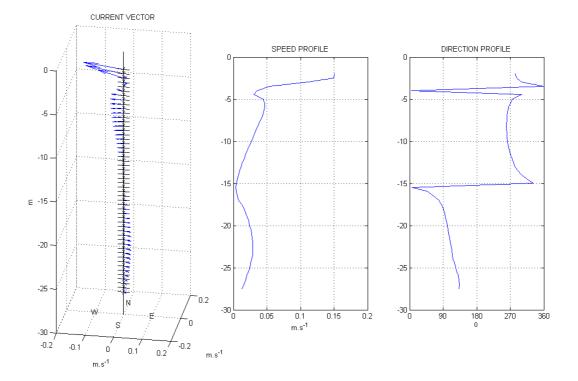



Figure 32: Mean profile plot for 30m ADCP.

The average surface flow for the 30m ADCP was  $0.25ms^{-1}$ , decreasing to  $\sim 0.04ms^{-1}$  at  $\sim 27m$  depth. Average wave parameters of  $\sim 2m$ ,  $\sim 10.5s$  and  $\sim 195^{\circ}$  were recorded for Hs, Tp and Dp respectively.

Figure 30 shows the temperature sensors on board the 30m ADCP and surface RBR logger recorded reasonably similar values during the deployment period.



## 7. INSTRUMENT PARTICULARS FOR SERVICE VISIT FIVE

## 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

### 10m ADCP.

### 1. <u>RECOVERY</u> Site Name: <u>Bantams 10 m site</u> Date: <u>2 Dec 2008</u>

| Instrument type and serial number                    | RDI 10105 |     |                  |      |  |
|------------------------------------------------------|-----------|-----|------------------|------|--|
| Recovery date and time LT GMT                        |           |     | 2 Dec 2008 13:07 |      |  |
| Latitude (do not ignore - if same, please indicate)  | 34 43 148 |     |                  |      |  |
| Longitude (do not ignore - if same, please indicate) | 19 33.398 |     |                  |      |  |
| Switch off date and time                             | LT        | GMT | 3 Dec 2008 07:47 |      |  |
| File size                                            |           |     |                  | 57MB |  |
| Was the data copied to memory card?                  |           |     |                  | N    |  |

### 2. <u>RE-DEPLOYMENT</u> Site Name: Bantams 10 m site Date 5 Dec 2008

| Instrument type and serial number (do not ignore – if same, please indicate) RDI 10105 |        |        |         |         |  |  |  |  |
|----------------------------------------------------------------------------------------|--------|--------|---------|---------|--|--|--|--|
| Install a new battery and/or check the voltage                                         |        |        |         | 1*44.8V |  |  |  |  |
| Frequency of unit being used                                                           |        |        | 600kHz  |         |  |  |  |  |
| Depth range                                                                            |        |        | 10m     |         |  |  |  |  |
| Number of bins (calculated automatically)                                              |        |        | 42      |         |  |  |  |  |
| Bin Size (calculated automatically)                                                    |        |        | 0.35    |         |  |  |  |  |
| Wave burst duration                                                                    |        | 41min  |         |         |  |  |  |  |
| Time between wave bursts                                                               |        | 60min  |         |         |  |  |  |  |
| Pings per ensemble                                                                     |        | 500    |         |         |  |  |  |  |
| Ensemble interval                                                                      |        | 10min  |         |         |  |  |  |  |
| Deployment duration                                                                    |        | 15days |         |         |  |  |  |  |
| Transducer depth                                                                       |        |        | 10m     |         |  |  |  |  |
| Any other commands                                                                     |        | m      | inTP,RI | )       |  |  |  |  |
| Temperature                                                                            |        |        | 5       |         |  |  |  |  |
| Recorder size                                                                          | 1256MB |        |         |         |  |  |  |  |

Consequences of the sampling parameters

| oonsequent                                  | ses of the sampling par | ameters |                 |               |
|---------------------------------------------|-------------------------|---------|-----------------|---------------|
| First and last bin range                    |                         |         | 1.41            | 15.76         |
| Battery usage                               |                         |         | ·               | 440Wh         |
| Standard deviation                          |                         |         |                 | 1.08          |
| Storage space required                      |                         |         |                 | 133MB         |
| Set the ADCP clock                          | LT                      | GMT     | 4 Dec 2         | 2008 22:35:33 |
| Run pre-deployment tests                    |                         |         |                 |               |
| Name the ADCP deployment                    |                         |         | B1012           |               |
|                                             | Deployment details      |         |                 |               |
| Switch on date and time                     | LT                      | GMT     | 4 Dec 2         | 2008 22:35:33 |
| Deployment date and time                    | LT                      | GMT     | 5 Dec 2008 11:1 |               |
| Deployment Latitude (do not ignore - if san | ne, please indicate)    |         | 34              | 4 43.186      |
| Deployment Longitude (do not ignore - if s  | ame, please indicate)   |         | 1               | 9 33.637      |

Site depth

10m

Deployment depth

10m



| Acoustic release (1) serial number and release code                            |          |                                       |
|--------------------------------------------------------------------------------|----------|---------------------------------------|
| Acoustic release (2) serial number and release code                            |          |                                       |
| Argos beacon serial number                                                     |          |                                       |
| Save whp, dpl and scl files in one folder (filename format: serialnumber_date) | 2008/ADC | 5 December<br>CP_newDeplo<br>es/B1012 |

### 30m ADCP.

### 1. <u>RECOVERY</u> Site Name: Bantamsklip 30m site Date: 5 Dec 2008

| Instrument type and serial number                    |     |     | RDI              | 10841     |  |  |
|------------------------------------------------------|-----|-----|------------------|-----------|--|--|
| Recovery date and time                               | LT* | GMT | 5 Dec 2008 09:20 |           |  |  |
| Latitude (do not ignore – if same, please indicate)  |     |     |                  | 34 42.625 |  |  |
| Longitude (do not ignore – if same, please indicate) |     |     |                  | 19 30.676 |  |  |
| Switch off date and time                             | LT  | GMT | 5 Dec 2008 16:20 |           |  |  |
| File size                                            |     |     | 145MB            |           |  |  |
| Was the data copied to memory card?                  |     |     |                  | N         |  |  |

### 2. <u>RE-DEPLOYMENT</u> Site Name: Bantams 30m site Date: 5 Dec 2008

| Instrument type and serial number (do not ignore | <ul> <li>if same, please indicate)</li> </ul> | RDI        | 11424   |  |  |
|--------------------------------------------------|-----------------------------------------------|------------|---------|--|--|
| Install a new battery and/or check the voltage   |                                               |            | 1*44.8V |  |  |
| Frequency of unit being used                     |                                               | 600kHz     |         |  |  |
| Depth range                                      |                                               | <b>30m</b> |         |  |  |
| Number of bins (calculated automatically)        |                                               | 69         |         |  |  |
| Bin Size (calculated automatically)              |                                               | 0.5        |         |  |  |
| Wave burst duration                              |                                               | 34min      |         |  |  |
| Time between wave bursts                         |                                               | 60min      |         |  |  |
| Pings per ensemble                               |                                               | 250        |         |  |  |
| Ensemble interval                                |                                               | 10min      |         |  |  |
| Deployment duration                              |                                               | 15days     |         |  |  |
| Transducer depth                                 |                                               | 30m        |         |  |  |
| Any other commands                               |                                               | minTP,RI0  |         |  |  |
| Temperature                                      |                                               | 5          |         |  |  |
| Recorder size                                    | 1250                                          | 6MB        |         |  |  |

Consequences of the sampling parameters

| First and last bin range       |          |     | 1.6   | 35.6          |
|--------------------------------|----------|-----|-------|---------------|
| Battery usage                  |          |     |       | 447Wh         |
| Standard deviation             |          |     |       | 1.08          |
| Storage space required         |          |     |       | 112MB         |
| Set the ADCP clock             | LT       | GMT | 5 Dec | 2008 04:07:14 |
| Run pre-deployment tests       | <u>.</u> |     |       | yes           |
| Name the ADCP deployment B3012 |          |     |       | 2             |

**Deployment details** 

| Switch on date and time                              | LT          | GMT | 5 Dec 2008 04:07:14 |
|------------------------------------------------------|-------------|-----|---------------------|
| Deployment date and time                             | LT          | GMT | 5 Dec 2008 09:20    |
| Deployment Latitude (do not ignore - if same, please | e indicate) |     | 34 42.602           |
| Deployment Longitude (do not ignore - if same, plea  | 19 30.676   |     |                     |



| Site depth                                                                | 30m                                                      | Deployment depth |  | 30m |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------------|------------------|--|-----|--|--|
| Acoustic release (1) serial number and release co                         | serial number and release code 32383                     |                  |  |     |  |  |
| Acoustic release (2) serial number and release co                         |                                                          |                  |  |     |  |  |
| Argos beacon serial number                                                |                                                          |                  |  |     |  |  |
| Save <i>whp</i> , <i>dpl</i> and <i>scl</i> files in one folder (filename | Bantams 5 December<br>2008/ADCP_newDeplo<br>yFiles/B3012 |                  |  |     |  |  |



### 7.2 RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT SHEETS

### Surface.

### 1. <u>RECOVERY</u> Site Name: Bantams 30m site Date: 2 Dec 2008

| Instrument type and serial number                         |                  |     | RBR<br>420ct                   | 12994 |  |
|-----------------------------------------------------------|------------------|-----|--------------------------------|-------|--|
| Recovery date and time                                    | 2 Dec 2008 08:30 |     |                                |       |  |
| Latitude (do not ignore - if same, please indicate)       | 34 42.602        |     |                                |       |  |
| Longitude (do not ignore - if same, please indicate)      | 19 30.676        |     |                                |       |  |
| Switch off date and time                                  | LT               | GMT | 3 Dec 2008 13:43:22            |       |  |
| File size                                                 |                  |     | 101KB                          |       |  |
| Save log, hex and dat files in one folder (filename forma | ber_date)        |     | s 5 December<br>_RecoveredData |       |  |

### 2. <u>RE-DEPLOYMENT</u> Site Name: Bantams 30m site Date: 5 Dec 2008

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 12994   |
|------------------------------------------------------------------------------|--------------|---------|
| Install a new battery and check the voltage                                  |              | 4* 3.2V |

### Set up the sampling parameters

| Sampling period                |       | 10     | min      |
|--------------------------------|-------|--------|----------|
| Averaging period               |       | 1min   |          |
| Expected deployment duration   |       | 30     | days     |
| Start of logging (date / time) | 5 De  | c 2008 | 04:15:30 |
| End of logging (date / time)   | 7 Jar | n 2009 | 12:00:00 |
| Memory usage                   |       |        | .3%      |
| Battery usage                  |       |        | 830mAH   |

### **Deployment details**

| Deployment date and time                                          | LT                                                                                            | GMT | 5 Dec 2008 10:20 |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----|------------------|
| Deployment Latitude (do not ignore - if same, please              | e indicate)                                                                                   |     | 34 42.602        |
| Deployment Longitude (do not ignore - if same, plea               | se indicate)                                                                                  |     | 19 30.676        |
| Site name                                                         |                                                                                               |     | Batamsklip       |
| Site depth                                                        |                                                                                               |     | 30m              |
| Deployment depth                                                  |                                                                                               |     | 8m               |
| Acoustic release (1) serial number and release code               |                                                                                               |     |                  |
| Acoustic release (2) serial number and release code               |                                                                                               |     |                  |
| Argos beacon serial number                                        |                                                                                               |     |                  |
| Save <i>log</i> file (filename format: <b>serialnumber_date</b> ) | e log file (filename format: <b>serialnumber_date</b> ) Bantams 5 E<br>2008/RBR_Re<br>a/01299 |     |                  |



Bottom.

1. **RECOVERY** 

Site Name: Bantams 30m site Date: 2 Dec 2008

| Instrument type and serial number                                              | RBR<br>420ct | 15248 |              |                                |  |
|--------------------------------------------------------------------------------|--------------|-------|--------------|--------------------------------|--|
| Recovery date and time LT GMT                                                  |              |       | <u>2 Dec</u> | 2008 11:45                     |  |
| Latitude (do not ignore – if same, please indicate)                            |              |       |              | 42.602                         |  |
| Longitude (do not ignore – if same, please indicate)                           |              |       |              | 19 30.676                      |  |
| Switch off date and time LT GMT                                                |              |       | 3 Dec 2      | 008 13:39:49                   |  |
| File size                                                                      |              |       |              | I01KB                          |  |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |              |       |              | s 5 December<br>_RecoveredData |  |

# 2. <u>RE-DEPLOYMENT</u> Site Name: Bantams 30m site Date: 5 Dec 2008

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 15248    |
|------------------------------------------------------------------------------|--------------|----------|
| Install a new battery and check the voltage                                  |              | 3 * 3.0V |

#### Set up the sampling parameters

| Sampling period                |       | 10min  |          |
|--------------------------------|-------|--------|----------|
| Averaging period               |       | 1min   |          |
| Expected deployment duration   |       | 30     | days     |
| Start of logging (date / time) | 5 De  | c 2008 | 04:13:50 |
| End of logging (date / time)   | 7 Jar | n 2009 | 12:00:00 |
| Memory usage                   |       |        | .3%      |
| Battery usage                  |       |        | 830mAH   |

### **Deployment details**

| Deployment date and time                                          | LT                                                                                           | GMT | 5 Dec 2008 09:20 |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|------------------|--|
| Deployment Latitude (do not ignore - if same, please              | 34 42.602                                                                                    |     |                  |  |
| Deployment Longitude (do not ignore - if same, plea               | se indicate)                                                                                 |     | 19 30.676        |  |
| Site name                                                         |                                                                                              |     | Batamsklip       |  |
| Site depth                                                        |                                                                                              |     | 30m              |  |
| Deployment depth                                                  |                                                                                              |     | 30m              |  |
| Acoustic release (1) serial number and release code               |                                                                                              |     |                  |  |
| Acoustic release (2) serial number and release code               | coustic release (2) serial number and release code                                           |     |                  |  |
| Argos beacon serial number                                        |                                                                                              |     |                  |  |
| Save <i>log</i> file (filename format: <b>serialnumber_date</b> ) | log file (filename format: serialnumber_date) Bantams 5 Dec<br>2008/RBR_Recov<br>a/015248.ld |     |                  |  |



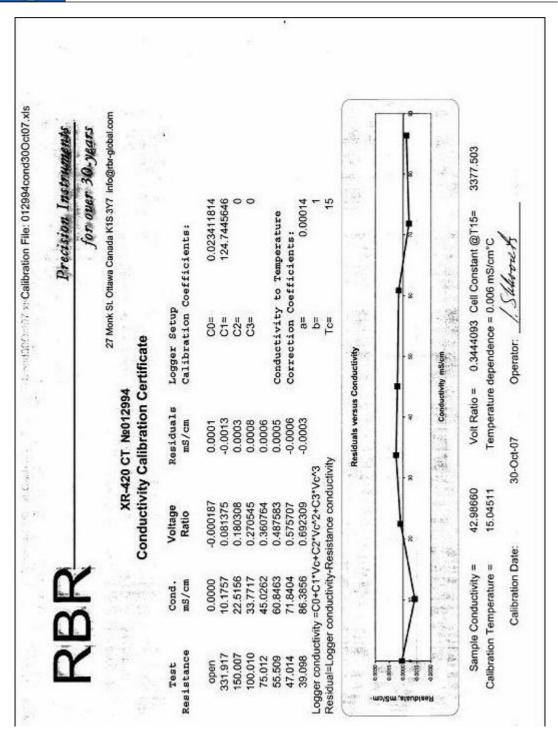
# 7.3 CALIBRATION CERTIFICATES

|                                   |                     | RD INSTRUMENTS                              |
|-----------------------------------|---------------------|---------------------------------------------|
|                                   | , ,                 | A Teledyne Technologies Company             |
|                                   | Workhor             | se Configuration Summary                    |
| Date                              | 11/30/2007          |                                             |
| Customer                          | PERTEC              |                                             |
| Sales Order or RMA No.            | 3018786             |                                             |
| System Type                       | Sentinel            |                                             |
| Part number                       | WHSW600-I-UG92      | 2                                           |
| Frequency                         | 600 kHz             |                                             |
| Depth Rating (meters)             | 200                 |                                             |
| SERIAL NUMBERS:                   | 1010-               | REVISION:                                   |
| System<br>CPU PCA                 | 10105               | Rev. J3                                     |
| PIO PCA                           | 6573                |                                             |
|                                   | -                   |                                             |
| DSP PCA                           | 14390               | Rev. G1                                     |
| RCV PCA                           | 14937               | Rev. E2                                     |
| AUX PCA                           |                     | Rev.                                        |
| FIRMWARE VERSION:                 |                     |                                             |
| CPU                               | 16.30               |                                             |
| SENSORS INSTALLED:                |                     |                                             |
| Temperature 🗸                     | Heading 🗸           | Pitch / Roll V Pressure V Rating 200 meters |
| FEATURES INSTALLED                |                     |                                             |
| <ul> <li>Water Profile</li> </ul> |                     | High Rate Pinging                           |
| Bottom Track                      |                     | Shallow Bottom Mode                         |
| High Resolution V                 | Vater Modes         | <ul> <li>Wave Guage Acquisition</li> </ul>  |
| Lowered ADCP                      |                     | River Survey ADCP *                         |
| * Includes Water Profile          | e, Bottom Track and | High Resolution Water Modes                 |
| COMMUNICATIONS:                   |                     | -                                           |
| Communication                     | RS-232              |                                             |
| Baud Rate                         | 9600                |                                             |
| Parity                            | NONE                |                                             |
| Recorder Consolly                 | 1150                | MB (installed)                              |
| Recorder Capacity                 |                     |                                             |
| Power Configuration               | 20-60 VDC           |                                             |

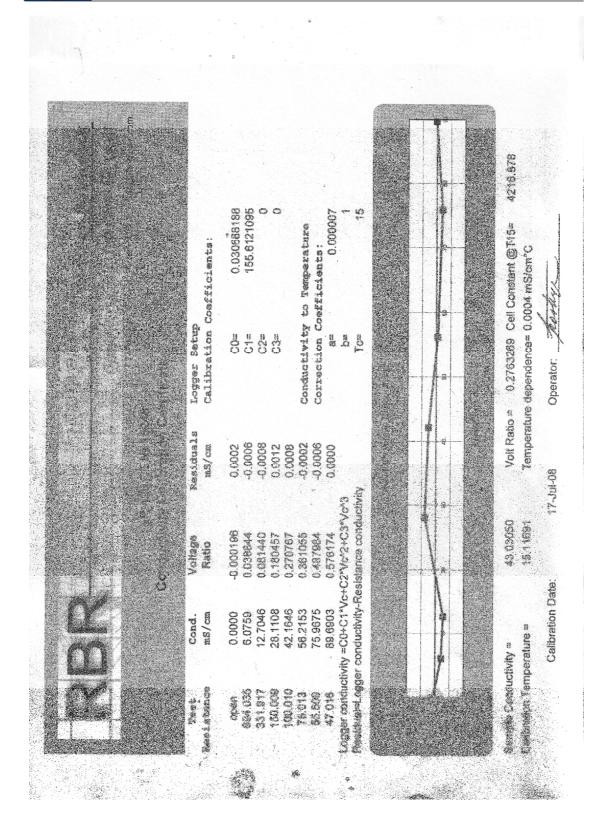
14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com



|                         |                     | TELEDYNE<br>RD INSTRUME     | INTO       |                  |
|-------------------------|---------------------|-----------------------------|------------|------------------|
|                         |                     | A Teledyne Technolog        |            |                  |
|                         | Workhor             | se Configuratio             |            | v                |
| Date                    | 5/9/2008            | se configurate              | 7 Junio    | r<br>T           |
| Customer                | PERTEC              | •                           | _          |                  |
| Sales Order or RMA No.  | 3019414             |                             |            |                  |
| System Type             | Sentinel            |                             |            |                  |
| Part number             | WHSW600-I-UG1       | 33                          |            |                  |
| Frequency               | 600 kHz             |                             |            |                  |
| Depth Rating (meters)   | 200                 |                             |            |                  |
| SERIAL NUMBERS:         |                     | REVISION:                   |            |                  |
| System                  | 10841               |                             |            |                  |
| CPU PCA                 | 11549               | Rev. J3                     |            |                  |
| PIO PCA                 | 6665                | Rev. F1                     |            |                  |
| DSP PCA                 | 14610               | Rev. G1                     |            |                  |
| RCV PCA                 | 15134               | Rev. E3                     |            |                  |
| AUX PCA                 |                     | Rev.                        |            |                  |
| FIRMWARE VERSION:       |                     |                             |            |                  |
| CPU                     | 16.30               |                             |            |                  |
| SENSORS INSTALLED:      |                     |                             |            |                  |
| Temperature 🗹           | Heading 🗹           | Pitch / Roll 🗹              | Pressure 🗹 | Rating 50 meters |
| FEATURES INSTALLED:     |                     |                             |            |                  |
| Water Profile           |                     | High Rate Pinging           |            |                  |
| Bottom Track            |                     | Shallow Bottom Mod          | le         |                  |
| High Resolution V       | Water Modes         | Wave Guage Acquis           | ition      |                  |
| LADCP/Surface T         | rack                | River Survey ADCP *         |            |                  |
| " Includes Water Profil | e, Bottom Track and | i High Resolution Water Mox | des        |                  |
| COMMUNICATIONS:         |                     |                             |            |                  |
| Communication           | RS-232              |                             |            |                  |
| Baud Rate               | 9600                |                             |            |                  |
| Parity                  | NONE                |                             |            |                  |
| Recorder Capacity       | 1278                | MB (Installed)              |            |                  |
| -                       |                     |                             |            |                  |
| Power Configuration     | 20-60 VDC           |                             |            |                  |


14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com




|                                  |                     | TELEDYNE<br>RD INSTRUMEN<br>A Teledyne Technologies ( |            |                   |
|----------------------------------|---------------------|-------------------------------------------------------|------------|-------------------|
|                                  | Workhor             | se Configuration                                      |            | ¥.                |
| Date                             | 9/23/2008           |                                                       |            |                   |
| Customer                         | PERTEC              |                                                       |            |                   |
| Sales Order or RMA No.           | 2919891             |                                                       |            |                   |
| System Type                      | Sentinel            |                                                       |            |                   |
| Part number                      | WHS600              |                                                       |            |                   |
| Frequency                        | 600 kHz             |                                                       |            |                   |
| Depth Rating (meters)            | 200                 |                                                       |            |                   |
| <u>SERIAL NUMBERS:</u><br>System | 11424               | REVISION:                                             |            |                   |
| CPU PCA                          | 12050               | Rev. J3                                               |            |                   |
| PIO PCA                          | 7411                | Rev. G0                                               |            |                   |
| DSP PCA                          | 15267               | Rev. G1                                               |            |                   |
| RCV PCA                          | 16053               | Rev. E4                                               |            |                   |
| AUX PCA                          |                     | Rev.                                                  |            |                   |
| FIRMWARE VERSION:                |                     |                                                       |            |                   |
| CPU                              | 16.31               |                                                       |            |                   |
| SENSORS INSTALLED:               |                     |                                                       |            |                   |
| Temperature 🗹                    | Heading 🗹           | Pitch / Roll 🗹                                        | Pressure 🗹 | Rating 200 meters |
| FEATURES INSTALLED:              |                     |                                                       |            |                   |
| Water Profile                    |                     | High Rate Pinging                                     |            |                   |
| Bottom Track                     |                     | Shallow Bottom Mode                                   |            |                   |
| High Resolution V                | Nater Modes         | Wave Guage Acquisition                                | l          |                   |
| LADCP/Surface T                  | rack                | River Survey ADCP *                                   |            |                   |
| * Includes Water Profile         | e, Bottom Track and | High Resolution Water Modes                           |            |                   |
| COMMUNICATIONS:                  |                     |                                                       |            |                   |
| Communication                    | RS-232              |                                                       |            |                   |
| Baud Rate                        | 9600                |                                                       |            |                   |
| Parity                           | NONE                |                                                       |            |                   |
| Recorder Capacity                |                     | MB (Installed)                                        |            |                   |
| Power Configuration              | 20-60 VDC           |                                                       |            |                   |
| Cable Length                     | 0                   | metera                                                |            |                   |

14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com











### 7.4 ADCP CONFIGURATION FILES

```
10m ADCP.
CR1
CF11101
EA0
EB0
ED100
ES35
EX11111
EZ1111111
RI0
WA255
WB0
WD111100000
WF88
WN42
WP500
WS35
WV175
HD111000000
HB5
HP4920
HR01:00:00.00
HT00:00:00.50
TE00:10:00.00
TP00:00.50
CK
CS
;
;Instrument
                  = Workhorse Sentinel
;Frequency
                   = 614400
;Water Profile
                  = YES
;Bottom Track
                   = NO
                  = NO
;High Res. Modes
;High Rate Pinging = NO
;Shallow Bottom Mode= NO
              = YES
;Wave Gauge
;Lowered ADCP
                  = NO
                  = 20
;Beam angle
                  = 5.00
;Temperature
;Deployment hours = 360.00
;Battery packs = 1
;Automatic TP
                  = NO
;Memory size [MB] = 1000
;Saved Screen
                  = 2
;
;Consequences generated by PlanADCP version 2.04:
;First cell range = 1.41 m
;Last cell range = 15.76 m
;Max range
                  = 35.28 m
;Standard deviation = 1.08 cm/s
;Ensemble size = 994 bytes
;Storage required = 133.83 MB (140329440 bytes)
                 = 440.26 Wh
;Power usage
;Battery usage
                  = 1.0
;Samples / Wv Burst = 4920
;Min NonDir Wave Per= 1.85 s
;Min Dir Wave Period= 2.49 s
```



;Bytes / Wave Burst = 383840
;
;
; WARNINGS AND CAUTIONS:
; Waves Gauge feature has to be installed in Workhorse to use
selected option.
; Advanced settings have been changed.

#### 30m ADCP.

```
CR1
CF11101
EA0
EB0
ED300
ES35
EX11111
EZ1111111
RI0
WA255
WB0
WD111100000
WF88
WN69
WP250
WS50
WV175
HD111000000
HB5
HP4080
HR01:00:00.00
HT00:00:00.50
TE00:10:00.00
TP00:00.50
CK
CS
;
                   = Workhorse Sentinel
;Instrument
                    = 614400
;Frequency
;Water Profile
                    = YES
;Bottom Track
                    = NO
;High Res. Modes
                    = NO
;High Rate Pinging = NO
;Shallow Bottom Mode= NO
               = YES
;Wave Gauge
;Lowered ADCP
                    = NO
;Beam angle
                    = 20
                   = 5.00
;Temperature
;Deployment hours
                  = 360.00
;Battery packs
                    = 1
;Automatic TP
                    = NO
;Memory size [MB]
                    = 1000
;Saved Screen
                    = 1
;
;Consequences generated by PlanADCP version 2.04:
;First cell range = 1.60 m
;Last cell range = 35.60 m
                    = 38.22 \text{ m}
;Max range
;Standard deviation = 0.86 cm/s
```



;Ensemble size = 1534 bytes ;Storage required = 112.45 MB (117908640 bytes) = 447.68 Wh ;Power usage = 1.0 ;Battery usage ;Samples / Wv Burst = 4080 ;Min NonDir Wave Per= 2.59 s ;Min Dir Wave Period= 4.31 s ;Bytes / Wave Burst = 318320 ; ; WARNINGS AND CAUTIONS: ; Waves Gauge feature has to be installed in Workhorse to use selected option. ; Advanced settings have been changed.



# 8. REPORTS FROM THE CSIR

The reports from the CSIR are attached as an appendage.

# **CERTIFICATE OF ANALYSIS**

Our ref: H:\USERS\MARLAB\REPORTS\Malr2887

Report Number: MALR2887

18 December 2008

Lwandle Technologies Gabriel Place 1 Gabriel Road Plumstead 7800

# **Attention Craig Matthysen**

# CHEMICAL ANALYSIS: Water samples (Order No.: )

Samples received: 15/12/08 Analysis completed: 18/12/08

Sample description: Seawater in sealed plastic bottles.

| Lab   | Sample | Total Suspended Solids |
|-------|--------|------------------------|
| No    | ld     | in mg/L                |
| 35244 | B 1    | 5                      |
| 35245 | B 2    | 5                      |
| 35246 | B 3    | 4                      |
| 35247 | B 4    | 10                     |
| 35248 | B 5    | 3                      |
| 35249 | B 6    | 4                      |
| 35250 | B 7    | 6                      |
| 35251 | B 8    | 7                      |
| 35252 | В9     | 4                      |
| 35253 | B 10   | 2                      |
| 35254 | B 11   | <2                     |

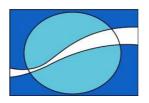
Andrew Pascall MARINE ANALYTICAL SERVICES Laboratory Manager Sebastian Brown MARINE ANALYTICAL SERVICES Deputy Laboratory Manager

Page 1 of 1

• Method not included in the scope of accreditation.

This report relates only to the samples actually supplied to the Division of Water, Environment and Forestry Technology. The Division does not accept responsibility for any matters arising from the further use of these results. This certificate shall not be




# LWANDLE DATA REPORT

# **BANTAMSKLIP SITE – DEPLOYMENT SEVEN**

# PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



# PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



9 February 2009

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



# TABLE OF CONTENTS

| 1. | EXEC  | UTIVE SU | JMMARY                           | 4  |  |  |
|----|-------|----------|----------------------------------|----|--|--|
|    | 1.1   | DATA     | RETURN FOR BANTAMSKLIP SITE      | 7  |  |  |
| 2. | INTRO | ODUCTIO  | N                                | 8  |  |  |
|    | 2.1   | PROJE    | ECT DESCRIPTION                  | 8  |  |  |
|    | 2.2   | EQUIP    | MENT LIST                        | 8  |  |  |
|    | 2.3   | MEAS     | UREMENT LOCATION                 | 8  |  |  |
| 3. | OPER  | RATIONS. |                                  | 9  |  |  |
|    | 3.1   | SUMM     | ARY OF EVENTS                    | 9  |  |  |
|    | 3.2   | INSTR    | UMENT CONFIGURATIONS             | 10 |  |  |
|    |       | 3.2.1    | 600kHz ADCP                      | 10 |  |  |
|    |       | 3.2.2    | RBR XR420 CT LOGGER              | 10 |  |  |
|    |       | 3.2.3    | RBR TGR2050 HT TIDE GAUGE        | 11 |  |  |
|    |       | 3.2.4    | Biofouling Mooring               | 11 |  |  |
|    | 3.3   | RECO     | VER AND REDEPLOYMENT METHODOLOGY | 12 |  |  |
|    |       | 3.3.1    | T&C mooring                      | 12 |  |  |
|    |       | 3.3.2    | ADCP mooring                     | 12 |  |  |
|    |       | 3.3.3    | Tidal Gauge                      | 12 |  |  |
|    |       | 3.3.4    | Biofouling mooring               | 12 |  |  |
| 4. | DATA  |          | Y CONTROL                        | 13 |  |  |
|    | 4.1   | ADCP     |                                  | 13 |  |  |
|    |       | 4.1.1    | Current processing               | 13 |  |  |
|    |       | 4.1.2    | Wave processing                  | 13 |  |  |
|    | 4.2   | RBR-C    | T LOGGER                         | 15 |  |  |
|    | 4.3   |          | TIDE GAUGE                       |    |  |  |
|    | 4.4   | BIOFO    | ULING                            | 15 |  |  |
|    | 4.5   | WATE     | R SAMPLE                         | 15 |  |  |
| 5. | DATA  | PRESEN   | ITATION                          | 16 |  |  |
|    | 5.1   | 10M A    | DCP                              | 16 |  |  |
|    |       | 5.1.1    | Current Data                     | 16 |  |  |
|    |       | 5.1.1.1  | Time series plots                | 16 |  |  |
|    |       | 5.1.1.2  | Summary plots                    | 20 |  |  |
|    |       | 5.1.1.3  | Progressive vector plots         | 20 |  |  |



|    |        | 5.1.2            | Wave Data                                             | . 27 |
|----|--------|------------------|-------------------------------------------------------|------|
|    |        | 5.1.2.1          | Hs and Tp summary plot                                | 27   |
|    |        | 5.1.2.2          | Hs and Dp summary plot                                | 27   |
|    |        | 5.1.2.3          | Tp and Dp summary plot                                | 27   |
|    | 5.2    | 30M AD           | DCP                                                   | . 31 |
|    |        | 5.2.1            | Current Data                                          | . 31 |
|    |        | 5.2.1.1          | Time series plots                                     | 31   |
|    |        | 5.2.1.2          | Summary plots                                         | 35   |
|    |        | 5.2.1.3          | Progressive vector plots                              | 35   |
|    |        | 5.2.2            | Wave Data                                             | . 42 |
|    |        | 5.2.2.1          | Hs and Tp summary plot                                | 42   |
|    |        | 5.2.2.2          | Hs and Dp summary plot                                | 42   |
|    |        | 5.2.2.3          | Tp and Dp summary plot                                | 42   |
|    |        | 5.2.2.4          | Wave spectral plot                                    | 46   |
|    | 5.3    | COMPA            | RISON PLOTS                                           | . 47 |
|    |        | 5.3.1            | Hs, Tp and Dp time series plots for 10m and 30m ADCPs | . 47 |
|    |        | 5.3.2            | Water properties: RBR-CT loggers and ADCPs'           |      |
|    |        |                  | temperature sensor                                    | . 48 |
| 6. | DISCUS | SSION            |                                                       | . 49 |
| 7. | INSTRU | JMENT P          | ARTICULARS FOR SERVICE VISIT FIVE                     | . 51 |
|    | 7.1    |                  | RECOVERY AND RE-DEPLOYMENT SHEETS                     |      |
|    | 7.2    | RBR-C            | LOGGERS RECOVERY AND RE-DEPLOYMENT                    |      |
|    |        | SHEET            | S                                                     | . 55 |
|    | 7.3    | RBR <sup>-</sup> | TIDE GAUGE RECOVERY AND RE-DEPLOYMENT                 |      |
|    |        |                  | S                                                     | . 60 |
|    | 7.4    |                  | ATION CERTIFICATES                                    |      |
|    | 7.5    | ADCP (           | CONFIGURATION FILES                                   | . 65 |
|    |        |                  |                                                       |      |



### 1. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 7 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Data return<br>(%) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|--------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -10.8        | 74.75              | 0.2386                           | 0.0733                            | 0.0496                           | 0.0672                                | 37.88                     |
| -10.5        | 74.75              | 0.1987                           | 0.0680                            | 0.0466                           | 0.0591                                | 40.58                     |
| -10.1        | 74.75              | 0.1873                           | 0.0621                            | 0.0381                           | 0.0505                                | 42.50                     |
| -9.8         | 74.75              | 0.1792                           | 0.0581                            | 0.0336                           | 0.0451                                | 43.75                     |
| -9.4         | 74.75              | 0.1696                           | 0.0567                            | 0.0312                           | 0.0423                                | 46.26                     |
| -9.1         | 74.75              | 0.1684                           | 0.0536                            | 0.0282                           | 0.0374                                | 51.37                     |
| -8.7         | 74.75              | 0.1939                           | 0.0526                            | 0.0276                           | 0.0338                                | 55.32                     |
| -8.4         | 74.75              | 0.2093                           | 0.0514                            | 0.0271                           | 0.0307                                | 62.00                     |
| -8.0         | 74.75              | 0.1894                           | 0.0511                            | 0.0266                           | 0.0292                                | 66.8                      |
| -7.7         | 74.75              | 0.1753                           | 0.0502                            | 0.0268                           | 0.0274                                | 75.51                     |
| -7.3         | 74.75              | 0.2060                           | 0.0505                            | 0.0270                           | 0.0263                                | 86.24                     |
| -7.0         | 74.75              | 0.2226                           | 0.0507                            | 0.0281                           | 0.0272                                | 100.16                    |
| -6.6         | 74.75              | 0.2220                           | 0.0505                            | 0.0279                           | 0.0269                                | 108.00                    |
| -6.3         | 74.75              | 0.2242                           | 0.0514                            | 0.0298                           | 0.0296                                | 117.78                    |
| -5.9         | 74.51              | 0.1543                           | 0.0517                            | 0.0294                           | 0.0297                                | 123.42                    |
| -5.6         | 74.75              | 0.2567                           | 0.0555                            | 0.0332                           | 0.0337                                | 133.99                    |
| -5.2         | 74.75              | 0.2675                           | 0.0591                            | 0.0348                           | 0.0363                                | 141.00                    |
| -4.9         | 74.75              | 0.3024                           | 0.0639                            | 0.0366                           | 0.0406                                | 143.69                    |
| -4.5         | 74.51              | 0.1649                           | 0.0672                            | 0.0351                           | 0.0400                                | 147.61                    |
| -4.2         | 74.75              | 0.3152                           | 0.0739                            | 0.0398                           | 0.0451                                | 146.75                    |
| -3.8         | 74.75              | 0.3250                           | 0.0788                            | 0.0429                           | 0.0469                                | 144.36                    |
| -3.5         | 74.75              | 0.3155                           | 0.0831                            | 0.0431                           | 0.0486                                | 145.88                    |
| -3.1         | 74.75              | 0.3317                           | 0.0848                            | 0.0439                           | 0.0473                                | 143.29                    |
| -2.8         | 74.51              | 0.1966                           | 0.0871                            | 0.0435                           | 0.0453                                | 139.90                    |
| -2.4         | 74.51              | 0.2093                           | 0.0922                            | 0.0453                           | 0.0436                                | 132.35                    |
| -2.1         | 74.75              | 0.3595                           | 0.0979                            | 0.0479                           | 0.0412                                | 125.51                    |
| -1.7         | 74.75              | 0.3660                           | 0.1041                            | 0.0511                           | 0.0387                                | 113.19                    |
| -1.4         | 74.51              | 0.2485                           | 0.1151                            | 0.0562                           | 0.0492                                | 102.26                    |

Table 1 – Current flow summary for 10m ADCP

|        | Data Return (%) | Max    | Min    | Mean   | Std  |
|--------|-----------------|--------|--------|--------|------|
| Hs (m) | 11.39           | 4.07   | 1.17   | 2.28   | 0.79 |
| Tp (s) | 11.39           | 13.40  | 2.10   | 11.35  | 1.85 |
| Dp (°) | 11.39           | 236.53 | 203.53 | 219.23 | 7.30 |



| (m)(%)(ms <sup>-1</sup> )(ms <sup>-1</sup> )(ms <sup>-1</sup> )speed (ms <sup>-1</sup> )-27.3100.000.14760.03290.01880.0113-26.8100.000.14240.03530.02030.0112-26.3100.000.15200.03650.02190.0104-25.8100.000.18720.03880.02340.0092 | Vector mean<br>direction (°)<br>120.27<br>124.88<br>124.25<br>123.46<br>122.94 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| -27.3100.000.14760.03290.01880.0113-26.8100.000.14240.03530.02030.0112-26.3100.000.15200.03650.02190.0104-25.8100.000.18720.03880.02340.0092                                                                                         | 120.27<br>124.88<br>124.25<br>123.46                                           |
| -26.8100.000.14240.03530.02030.0112-26.3100.000.15200.03650.02190.0104-25.8100.000.18720.03880.02340.0092                                                                                                                            | 124.88<br>124.25<br>123.46                                                     |
| -26.3         100.00         0.1520         0.0365         0.0219         0.0104           -25.8         100.00         0.1872         0.0388         0.0234         0.0092                                                          | 124.25<br>123.46                                                               |
| -25.8         100.00         0.1872         0.0388         0.0234         0.0092                                                                                                                                                     | 123.46                                                                         |
|                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                      | 122.94                                                                         |
|                                                                                                                                                                                                                                      |                                                                                |
| -24.8 100.00 0.2648 0.0427 0.0255 0.0097                                                                                                                                                                                             | 125.14                                                                         |
| -24.3 100.00 0.2805 0.0441 0.0261 0.0104                                                                                                                                                                                             | 124.96                                                                         |
| -23.8 100.00 0.2860 0.0453 0.0270 0.0107                                                                                                                                                                                             | 121.88                                                                         |
| -23.3 100.00 0.3014 0.0472 0.0277 0.0116                                                                                                                                                                                             | 121.10                                                                         |
| -22.8 100.00 0.3048 0.0493 0.0284 0.0137                                                                                                                                                                                             | 117.97                                                                         |
| -22.3 100.00 0.3005 0.0511 0.0292 0.0153                                                                                                                                                                                             | 118.21                                                                         |
| -21.8 100.00 0.3487 0.0520 0.0301 0.0161                                                                                                                                                                                             | 115.09                                                                         |
| -21.3 100.00 0.3850 0.0524 0.0308 0.0164                                                                                                                                                                                             | 111.13                                                                         |
| -20.8 100.00 0.3822 0.0531 0.0315 0.0163                                                                                                                                                                                             | 108.51                                                                         |
| -20.3 100.00 0.3914 0.0535 0.0320 0.0165                                                                                                                                                                                             | 103.22                                                                         |
| -19.8 99.91 0.3497 0.0535 0.0318 0.0162                                                                                                                                                                                              | 96.53                                                                          |
| -19.3 99.86 0.3561 0.0533 0.0314 0.0158                                                                                                                                                                                              | 90.86                                                                          |
| -18.8 99.91 0.3247 0.0537 0.0317 0.0158                                                                                                                                                                                              | 85.75                                                                          |
| -18.3 99.91 0.3474 0.0537 0.0320 0.0156                                                                                                                                                                                              | 78.41                                                                          |
| -17.8 99.91 0.3529 0.0542 0.0321 0.0157                                                                                                                                                                                              | 73.89                                                                          |
| -17.3 100.00 0.3227 0.0549 0.0329 0.0160                                                                                                                                                                                             | 65.56                                                                          |
| -16.8 99.95 0.2979 0.0554 0.0330 0.0155                                                                                                                                                                                              | 59.16                                                                          |
| -16.3 99.95 0.3214 0.0562 0.0329 0.0160                                                                                                                                                                                              | 54.49                                                                          |
| -15.8 99.95 0.3217 0.0577 0.0336 0.0164                                                                                                                                                                                              | 49.12                                                                          |
| -15.3 100.00 0.2955 0.0591 0.0350 0.0164                                                                                                                                                                                             | 44.96                                                                          |
| -14.8 99.91 0.2569 0.0593 0.0346 0.0166                                                                                                                                                                                              | 38.42                                                                          |
| -14.3 99.91 0.2853 0.0609 0.0358 0.0163                                                                                                                                                                                              | 32.57                                                                          |
| -13.8 100.00 0.2908 0.0622 0.0376 0.0161                                                                                                                                                                                             | 28.14                                                                          |
| -13.3 99.95 0.2895 0.0630 0.0381 0.0161                                                                                                                                                                                              | 25.15                                                                          |
| -12.8 99.95 0.3077 0.0633 0.0400 0.0148                                                                                                                                                                                              | 19.37                                                                          |
| -12.3 99.95 0.2919 0.0644 0.0408 0.0150                                                                                                                                                                                              | 13.94                                                                          |
| -11.8 99.95 0.3111 0.0659 0.0430 0.0151                                                                                                                                                                                              | 4.44                                                                           |
| -11.3 99.95 0.3328 0.0676 0.0449 0.0151                                                                                                                                                                                              | 356.41                                                                         |
| -10.8 99.95 0.3305 0.0687 0.0461 0.0155                                                                                                                                                                                              | 347.47                                                                         |
| -10.3 99.91 0.3170 0.0699 0.0469 0.0152                                                                                                                                                                                              | 340.86                                                                         |
| -9.8 99.91 0.3299 0.0715 0.0478 0.0168                                                                                                                                                                                               | 331.88                                                                         |
| -9.3 99.82 0.3269 0.0743 0.0495 0.0180                                                                                                                                                                                               | 321.38                                                                         |
| -8.8 99.72 0.4546 0.0771 0.0522 0.0206                                                                                                                                                                                               | 311.76                                                                         |
| -8.3 99.72 0.4467 0.0806 0.0552 0.0237                                                                                                                                                                                               | 305.92                                                                         |
| -7.8 99.77 0.4304 0.0835 0.0566 0.0270                                                                                                                                                                                               | 301.07                                                                         |
| -7.3 99.58 0.3895 0.0854 0.0569 0.0304                                                                                                                                                                                               | 295.39                                                                         |
| -6.8 99.58 0.4097 0.0868 0.0574 0.0325                                                                                                                                                                                               | 291.87                                                                         |
| -6.3 99.68 0.4501 0.0864 0.0590 0.0315                                                                                                                                                                                               | 284.48                                                                         |

# Table 3 – Current flow summary for 30m ADCP



|      |       |        |        | -      |        |        |
|------|-------|--------|--------|--------|--------|--------|
| -5.8 | 99.86 | 0.5304 | 0.0903 | 0.0581 | 0.0180 | 173.33 |
| -5.3 | 99.77 | 0.5800 | 0.0983 | 0.0595 | 0.0209 | 168.24 |
| -4.8 | 99.82 | 0.4950 | 0.1337 | 0.0772 | 0.0484 | 294.65 |
| -4.3 | 99.72 | 0.5904 | 0.2033 | 0.1144 | 0.1494 | 321.33 |
| -3.8 | 99.63 | 0.5646 | 0.2656 | 0.1243 | 0.2171 | 317.35 |
| -3.3 | 99.68 | 0.6421 | 0.2721 | 0.1333 | 0.2205 | 302.93 |
| -2.8 | 99.45 | 0.6432 | 0.2673 | 0.1380 | 0.2144 | 283.28 |
| -2.3 | 91.27 | 0.7051 | 0.2865 | 0.1469 | 0.2394 | 268.66 |

# Table 4 – Waves summary for 30m ADCP

|        | Data Return (%) | Max    | Min    | Mean   | Std   |
|--------|-----------------|--------|--------|--------|-------|
| Hs (m) | 95.99           | 3.22   | 1.04   | 1.71   | 0.41  |
| Tp (s) | 95.99           | 14.90  | 2.70   | 10.76  | 1.66  |
| Dp (°) | 95.99           | 282.57 | 151.57 | 223.13 | 18.95 |

Table 5 – Water temperature and salinity summary (surface, 8m)

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 96.63           | 13.97 | 19.20 | 11.21 |
| Conductivity     | 96.63           | 41.85 | 47.43 | 37.75 |
| Salinity (psu)   | 96.63           | 34.92 | 35.28 | 32.79 |

| Parameter        | Data Return (%) | Mean  | Max   | Min   |
|------------------|-----------------|-------|-------|-------|
| Temperature (°C) | 96.65           | 11.97 | 19.20 | 10.51 |
| Conductivity     | 96.65           | 39.99 | 47.62 | 38.15 |
| Salinity (psu)   | 96.65           | 35.00 | 35.44 | 31.85 |



# 1.1 DATA RETURN FOR BANTAMSKLIP SITE.

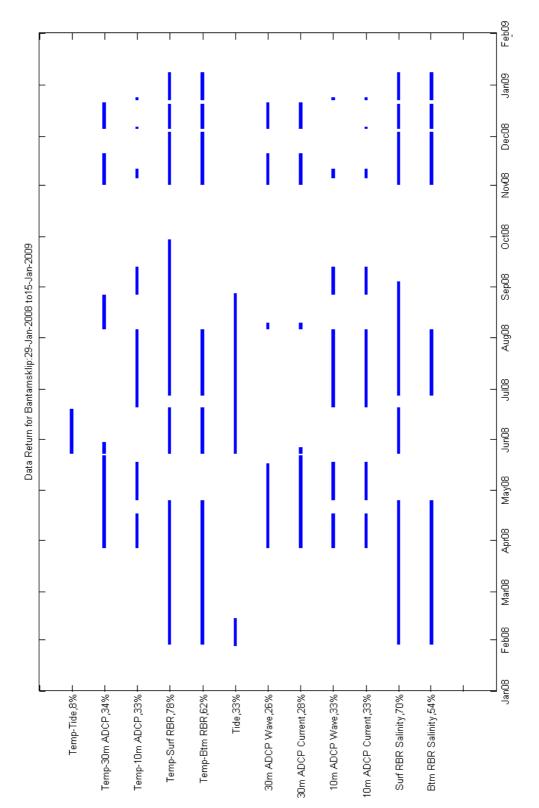



Figure 1: An indication of the data return at the Bantamsklip site since the beginning of the project.



# 2. INTRODUCTION

## 2.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents waves, currents, temperature and salinity data collected at Bantamsklip station for the period December 5<sup>th</sup> 2008 - January 7<sup>th</sup> 2009 (Period 7). Service of the instruments was undertaken twice: December  $20^{th} - 21^{st}$  2008 and January 7<sup>th</sup>/February 2<sup>nd</sup> 2009.

## 2.2 EQUIPMENT LIST

Lwandle provided the equipment as listed in Table 7 for the Bantamsklip site.

| Item                       | Operational (on site) | Spare (for whole project) |
|----------------------------|-----------------------|---------------------------|
| TRDI 600kHz ADCP           | 2                     | 1                         |
| RBR XR420 CT logger        | 2                     | 1                         |
| RBR TGR 2050 HT Tide Gauge | 1                     | 0                         |

### Table 7 – List of equipment provided.

## 2.3 MEASUREMENT LOCATION

The deployment location of the instruments is given in Table 8.

| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | 34° 42.241'   | 19°33.101'     |
| 10m ADCP    | 34° 43.148'   | 19°33.398'     |
| Biofouling  | 34°43.190'    | 19°33.686'     |
| 30m ADCP    | 34° 42.625'   | 19° 30.635'    |
| T&C mooring | 34° 42.625'   | 19°30.635'     |

### **Table 8 – Measurement locations**



### 3. OPERATIONS

### 3.1 SUMMARY OF EVENTS

December 20<sup>th</sup> 2008.

Recovery of the 10m (s/n 10105) and 30m (s/n 11424) ADCPs as well as the RBR-CT loggers (s/n 12994 and 15248) that was attached on the respective frames was undertaken.

December 21<sup>st</sup> 2008.

Redeployment of all the instruments was successful.

# January 7th 2009.

Recovery of the 10m and 30m ADCPs as well as the RBR-CT loggers that was attached on the respective frames was undertaken. A new Tide gauge was deployed (s/n 13084).

### February 2<sup>nd</sup> 2009.

Redeployment of all the instruments was successful. The RBR mooring was moved to 34.7101°S, 19.5111°E with the surface sensor at 13m below the sea-surface. The bottom RBR logger was strapped to the 30m ADPC frame.



### 3.2 INSTRUMENT CONFIGURATIONS

The as deployed instrumentation configurations are given in this section and completed deployment / recovery sheets are given in Section 7 (page 51).

### 3.2.1 600kHz ADCP

Table 9 – Instrument configuration for 10m Bantamsklip ADCP

| Parameter                   | Configuration                 |  |
|-----------------------------|-------------------------------|--|
| ADCP model                  | 600KHz WH ADCP                |  |
| ADCP serial number          | 10105                         |  |
| Wave burst duration         | 41 min                        |  |
| Time between wave bursts    | 60 min                        |  |
| Number of bins              | 42                            |  |
| Bin size                    | 0.35 m                        |  |
| Sampling/ ensemble interval | 10 minutes                    |  |
| Pings per ensemble          | 500                           |  |
| Edgetech Acoustic Release   | s/n 32380 release code 641722 |  |

### Table 10 – Instrument configuration for 30m Bantamsklip ADCP

| Parameter                   | Configuration                 |
|-----------------------------|-------------------------------|
| ADCP model                  | 600KHz WH ADCP                |
| ADCP serial number          | 11424                         |
| Wave burst duration         | 34 min                        |
| Time between wave bursts    | 60 min                        |
| Number of bins              | 69                            |
| Bin size                    | 0.5 m                         |
| Sampling/ ensemble interval | 10 minutes                    |
| Pings per ensemble          | 250                           |
| Edgetech Acoustic Release   | s/n 32383 release code 642016 |

## 3.2.2 RBR XR420 CT LOGGER

### Table 11 – Instrument configuration for T&C Mooring Line.

| Parameter                           | Configuration                               |
|-------------------------------------|---------------------------------------------|
| XR 420 Temperature and Conductivity | s/n 12994 (8m) and s/n 15248 (30m)          |
| Sampling and Averaging              | Sample at 1Hz for 1 minute every 10 minutes |

Surface RBR s/n 12994 redeployed at 13m.



## 3.2.3 RBR TGR2050 HT TIDE GAUGE

### Table 12 – Instrument configuration for the Tide Gauge

| Parameter              | Configuration                           |
|------------------------|-----------------------------------------|
| TGR 2050 HT            | s/n 13084                               |
| Sampling and Averaging | 10sec sampling and 1sec @ 4Hz averaging |

# 3.2.4 Biofouling Mooring

## Table 13 – Instrument configuration for Biofouling Mooring Line.

| Parameter                 | Configuration                                             |
|---------------------------|-----------------------------------------------------------|
| Biofouling Plates         | 3 plates (20cmx20cm) at 3m and 3 plates (20cmx20cm) at 8m |
| Edgetech Acoustic Release | s/n 32387 release code 642144                             |



# 3.3 RECOVER AND REDEPLOYMENT METHODOLOGY

### 3.3.1 T&C mooring

The T&C mooring line was deployed by lowering the array down via a rope through the anchor weights. The mooring line is recovered using divers to undo a single shackle that connects the mooring line to the anchor weights. Divers reattach the line onto the weights, after the instruments have been serviced.

## 3.3.2 ADCP mooring

The ADCP Frame is lowered to the bottom and moved into position by divers, who also attach chain sections that act as anchors. To retrieve the frame divers have to locate the mooring, take of the anchor chains and surface the frame using air lift bags that they attach.

### 3.3.3 Tidal Gauge.

The Druck pressure sensor was installed at depth of about 1.5m outside a stilling well, which was attached to a permanent steel frame in 1.87m depth of water.

### 3.3.4 Biofouling mooring

The biofouling mooring line was deployed by lowering the array down via a rope through the anchor weights. Divers will locate the mooring line and retrieve a surface and bottom plate from the line at the required sampling periods.



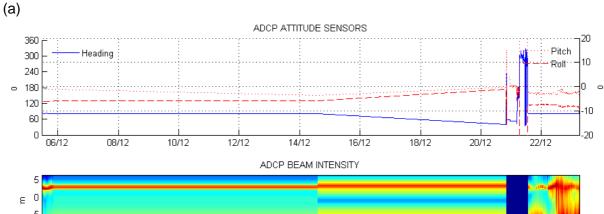
# 4. DATA QUALITY CONTROL

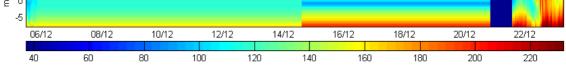
# 4.1 ADCP

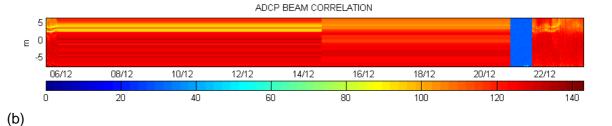
Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further.

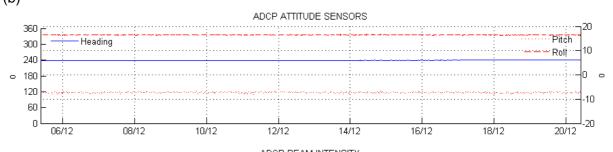
## 4.1.1 Current processing

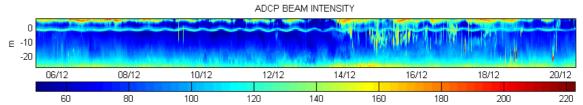
- The record was truncated to exclude times pre and post deployment as well for Dec 20 – 21's service visit when the instruments were out of the water.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 28' W for the 10m ADCP and 25° 26' W for the 30m ADCP.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 2).
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.


## 4.1.2 Wave processing


Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:


- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 28' W for the 10m ADCP and 25° 26' W for the 30m ADCP.
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.


The instruments were recovered, serviced and redeployed on December 20 - 21 2008.













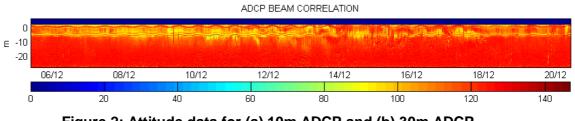




Figure 2: Attitude data for (a) 10m ADCP and (b) 30m ADCP.



# 4.2 RBR-CT LOGGER

The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.

- The record was truncated to exclude times pre and post deployment as well for Dec 20 21's service visit when the instruments were out of the water.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.

# 4.3 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- Atmospheric sea level pressure correction was applied.
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is +0.73m.
- Finally the data was averaged over a 10-minute period.

The tide gauge was found lost during SV5 and was replaced on January 7<sup>th</sup> 2009.

### 4.4 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Recovery of the biofouling plates was not scheduled for service visit 7.

### 4.5 WATER SAMPLE.

No water samples were collected during this service.



# 5. DATA PRESENTATION

All data presented have been subject to the quality control procedures detailed in the previous section. Bad data have been excluded from all plots and calculations.

All plots in this section include a stamp that details the location, depth, time period and number of observations that the plot is based upon. Wherever possible, scaling of parameters has been kept constant throughout this section to facilitate comparison between plots and stations.

## 5.1 10M ADCP

## 5.1.1 Current Data

### 5.1.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



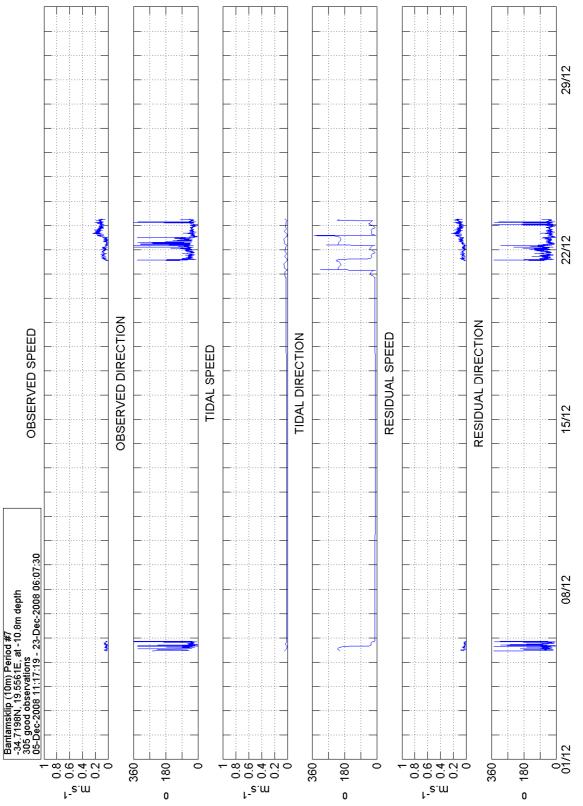
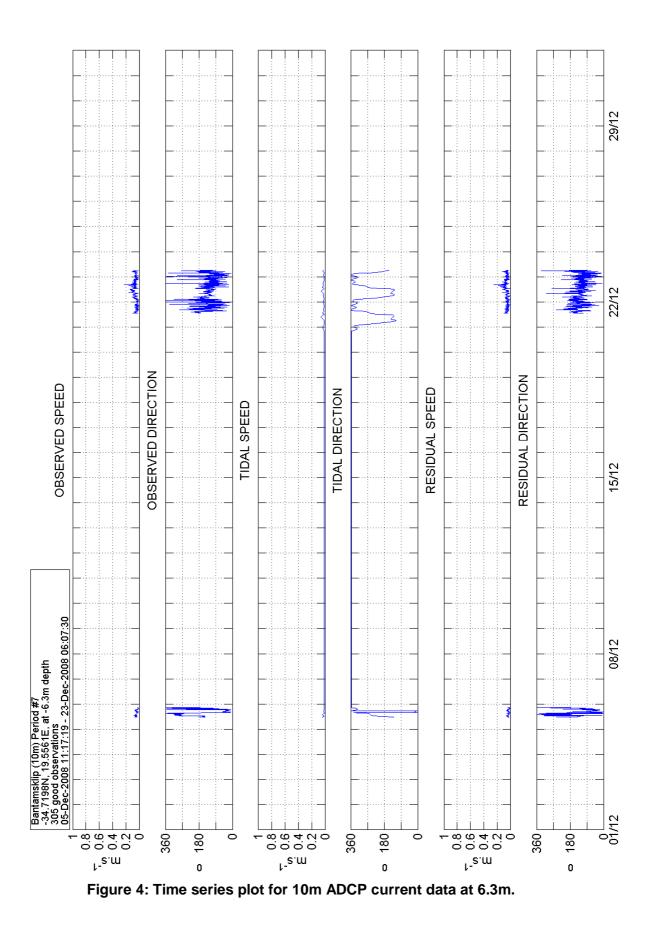




Figure 3: Time series plot for 10m ADCP current data at 10.8m.







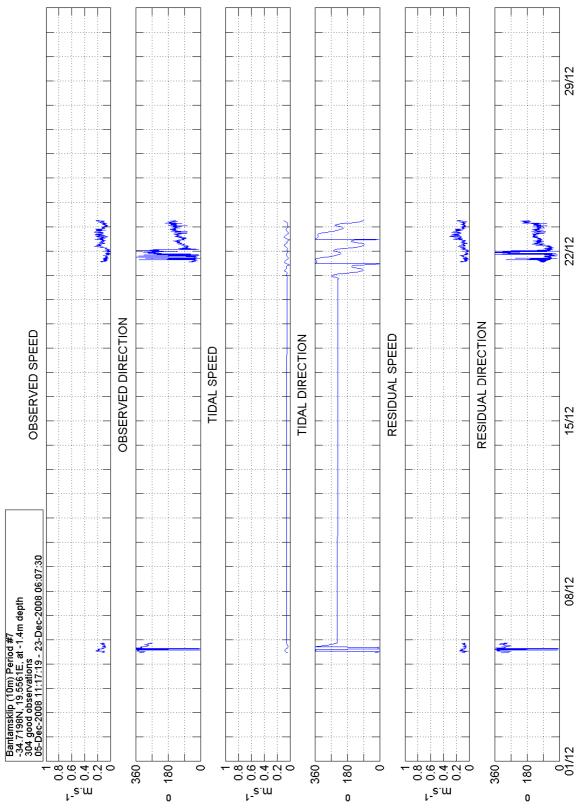
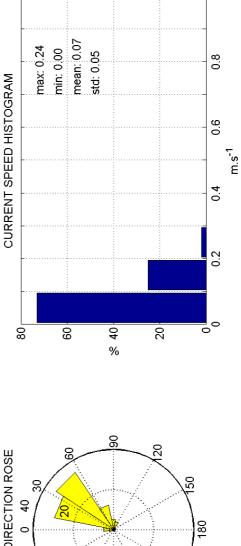



Figure 5: Time series plot for 10m ADCP current data at 1.4m.



#### 5.1.1.2 Summary plots

The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:


- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.1.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.

100.00 73.11 24.92 1.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ы NNN 2.30 2.30 0.66 0.66 MN WNW 0.33 0.33 0.0  $\geq$ WSW 0.98 0.98 JOINT DISTRIBUTION OF SPEED AND DIRECTION SW 0.98 0.98 SSW 0.33 0.33 1.31 1.31 S SSE 0.66 0.66 1.31 1.31 В ESE 4.26 4.26 5.25 4.92 0.33 ш CURRENT DIRECTION ROSE 12.46 12.46 ENE Bantamsklip (10m) Period #7 -34.7/198N, 19.5561E, at -10.8m depth 305 good observations 05-Dec-2008 11:17:19 - 23-Dec-2008 06:07:30 22.95 34.43 11.15 0.33 ШZ 15.08 NNE 13.11 84 64 29. ÷ 4.59 0.33 92 z 4 1-0.2 .2-0.3 .3-0.4 .4-0.5 0.5-0.6 7-0.8 .8-0.9 0.6-0.7 0-0.1 0.9-1 ы



330

300

Figure 6: Summary plot for 10m ADCP current data at 10.8m.

উ≅≊ Figure 6: Summary plo

210

25

270



|         | z        | NNE  | ШZ   | ENE  | ш    | ESE   | В     | SSE  | S     | SSW  | SW   | WSW  | ×    | WNW  | ΜN   | MNN         | ы     |
|---------|----------|------|------|------|------|-------|-------|------|-------|------|------|------|------|------|------|-------------|-------|
| 0-0.1   | 3.61     | 6.89 | 7.54 | 8.85 | 7.21 | 11.48 | 13.11 | 8.85 | 9.84  | 3.93 | 1.97 | 0.98 | 1.97 | 2.95 | 1.97 | 1.97        | 93.11 |
| 0.1-0.2 | <u> </u> | 0.33 | 0.33 |      | 1.31 | 1.97  | 1.97  | 0.33 | 0.33  |      |      |      |      |      |      |             | 6.56  |
| 0.2-0.3 | _        |      |      |      |      |       |       | 0.33 |       |      |      |      |      |      |      |             | 0.33  |
| 0.3-0.4 | _        |      |      |      |      |       |       |      |       |      |      |      |      |      |      |             | 0.0   |
| 0.4-0.5 |          |      |      |      |      |       |       |      |       |      |      |      |      |      |      |             | 0.00  |
| 0.5-0.6 | 6        |      |      |      |      |       |       |      |       |      |      |      |      |      |      |             | 0.00  |
| 0.6-0.7 | N        |      |      |      |      |       |       |      |       |      |      |      |      |      |      |             | 0.00  |
| 0.7-0.8 |          |      |      |      |      |       |       |      |       |      |      |      |      |      |      |             | 0.00  |
| 0.8-0.9 |          |      |      |      |      |       |       |      |       |      |      |      |      |      |      |             | 0.00  |
| 0.9-1   |          |      |      |      |      |       |       |      |       |      |      |      |      |      |      |             | 0.00  |
| ы       | 3.61     | 7.21 | 7.87 | 8.85 | 8.52 | 13.44 | 15.08 | 9.51 | 10.16 | 3.93 | 1.97 | 0.98 | 1.97 | 2.95 | 1.97 | 1.97 100.00 | 100.0 |

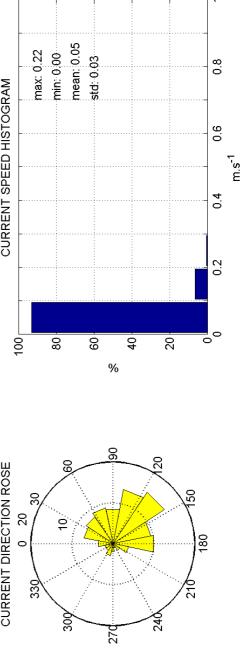
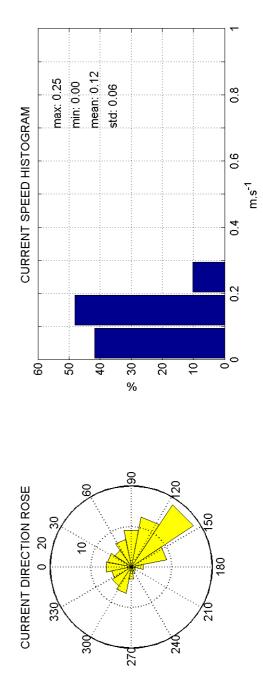




Figure 7: Summary plot for 10m ADCP current data at 6.3m



41.78 48.03 10.20 0.00 0.0 0.00 0.0 0.00 Ы MNN 2.63 0.33 1.97 2.30 NΝ 3.29 WNW 4.61 1.97 1.32 1.64 ≥ WSW 1.64 JOINT DISTRIBUTION OF SPEED AND DIRECTION 1.32 SW SSW 0.66 0.33 0.99 1.97 S SSE 2.96 3.95 1.97 11.18 4.28 2.96 В ESE 3.29 8.22 0.99 6.25 1.32 1.64 ш ENE 1.32 2.96 2.63 Bantamskip (10m) Period #7 -04. 7098\, 10561ft, at -1.4m depth 304. 70904 0586.7561ft, at -1.4m depth 05-Dec-2008 11:17.19 - 23-Dec-2008 06:07:30 3.62 1.32 Ш Z NNE 1.32 4.61 3.29 1.64 1.32 z 0.1-0.2 2-0.3 0.4-0.5 5-0.6 0.7-0.8 3-0.4 6-0.7 0-0.1





0.8-0.9

0.9-1 2

0.0

100.00

4.93

5.59

6.58

2.96

1.64

1.32

0.99

2.96

8.88

18.42

20

çi

9.21

6.91

4.93

5.92

6.25





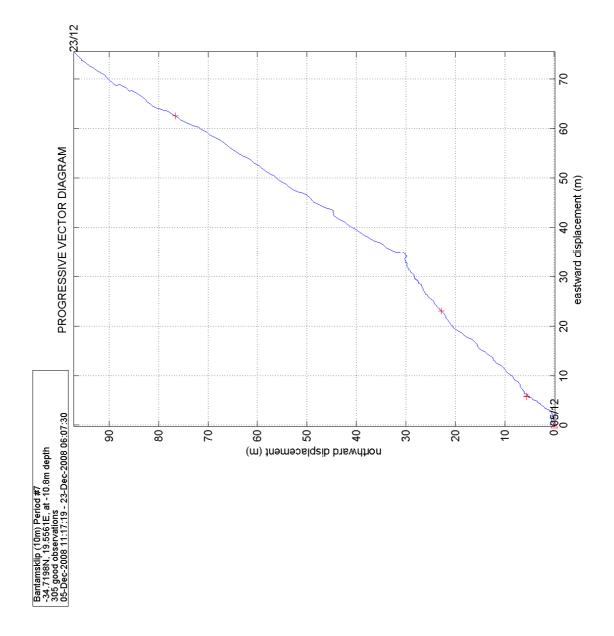



Figure 9: Progressive vector plot for 10m ADCP current data at 10.8m.



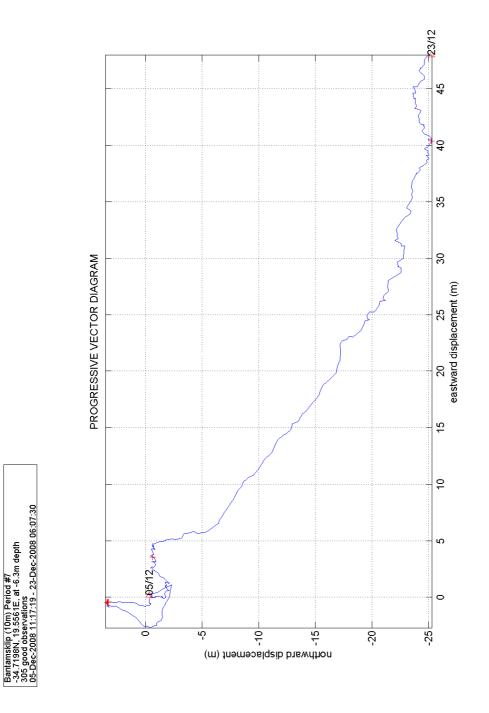



Figure 10: Progressive vector plot for 10m ADCP current data at 6.3m.



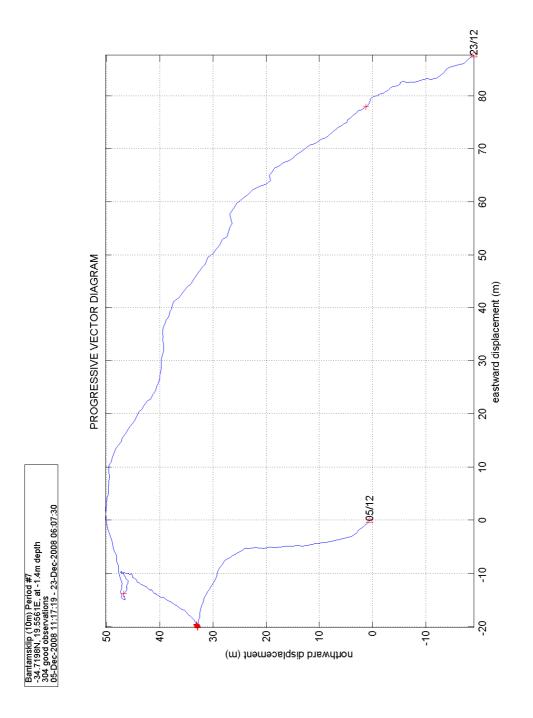



Figure 11: Progressive vector plot for 10m ADCP current data at 1.4m.



### 5.1.2 Wave Data.

### 5.1.2.1 <u>Hs and Tp summary plot</u>

Figure 12 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

## 5.1.2.2 <u>Hs and Dp summary plot</u>

Figure 13 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

### 5.1.2.3 <u>Tp and Dp summary plot</u>

Figure 14 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

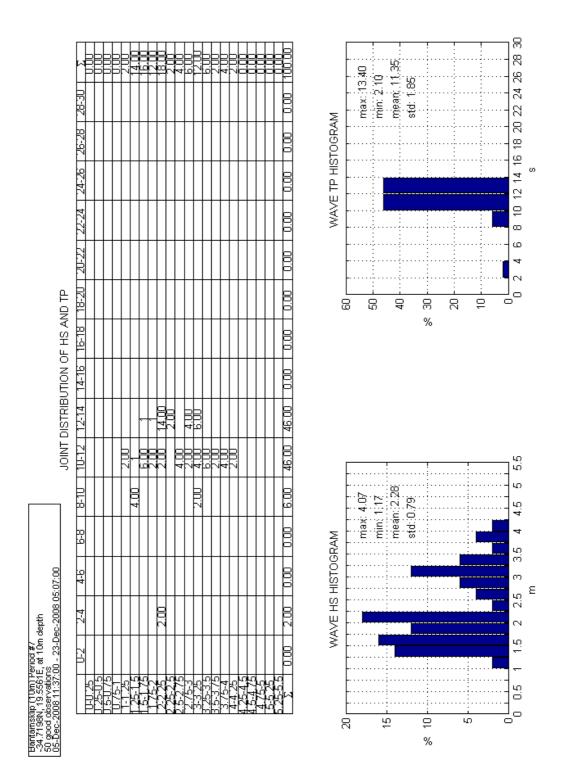
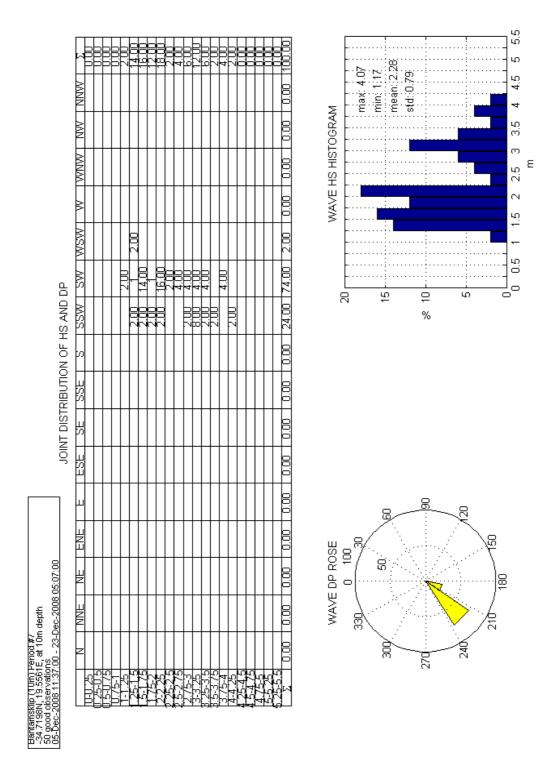
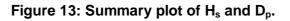





Figure 12: Summary plot of H<sub>s</sub> and T<sub>p</sub>.







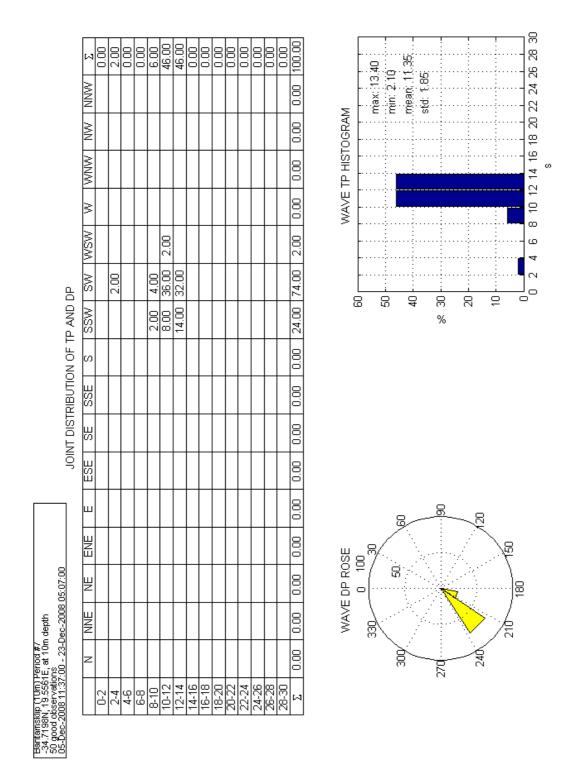



Figure 14: Summary plot of T<sub>p</sub> and D<sub>p</sub>.







## 5.2 30M ADCP

#### 5.2.1 Current Data

### 5.2.1.1 <u>Time series plots</u>

The figures on the following pages display time series plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The first (upper) panel is of the averaged current speed against time.
- The second panel is of the averaged current direction against time.
- The third panel is of the tidal current speed, calculated from the observed current speed and direction, against time. The entire data set of observations is used in the derivation of the tidal component. The tidal calculation follows the method of Foreman and uses the observed complex current vector as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)
- The fourth panel is of the tidal current direction, calculated as above, against time.
- The fifth panel is of the residual current speed against time. The residual has been calculated as north and east components (residual component = observed component tidal component), which have then been converted into residual speed and direction.
- The sixth panel is of the residual current direction against time, calculated as above.



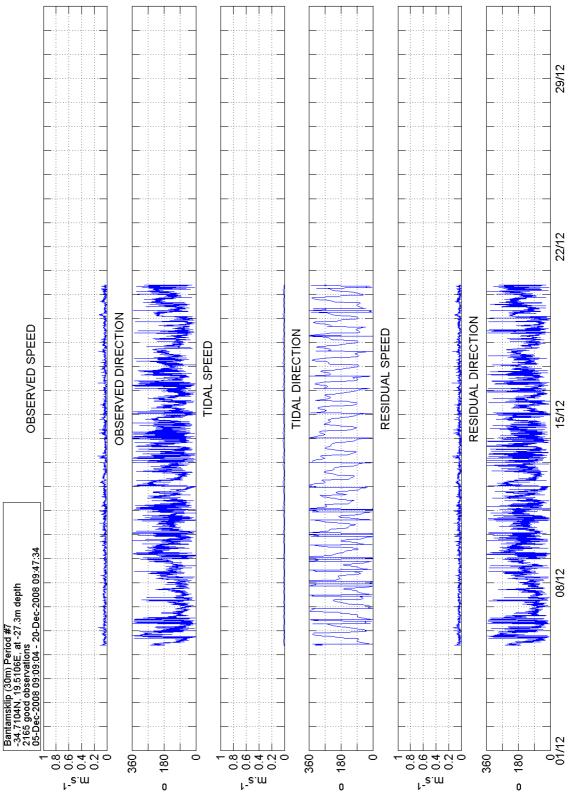



Figure 15: Time series plot for 30m ADCP current data at 27.3m.



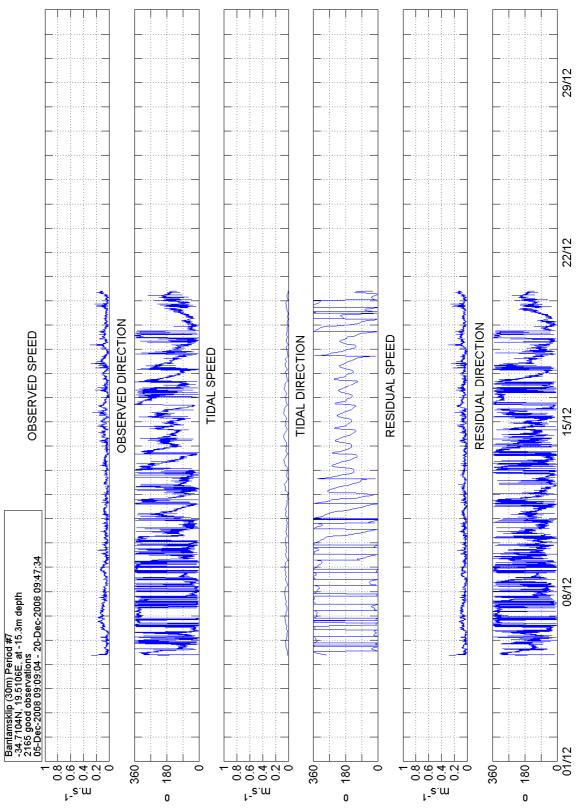



Figure 16: Time series plot for 30m ADCP current data at 15.3m.



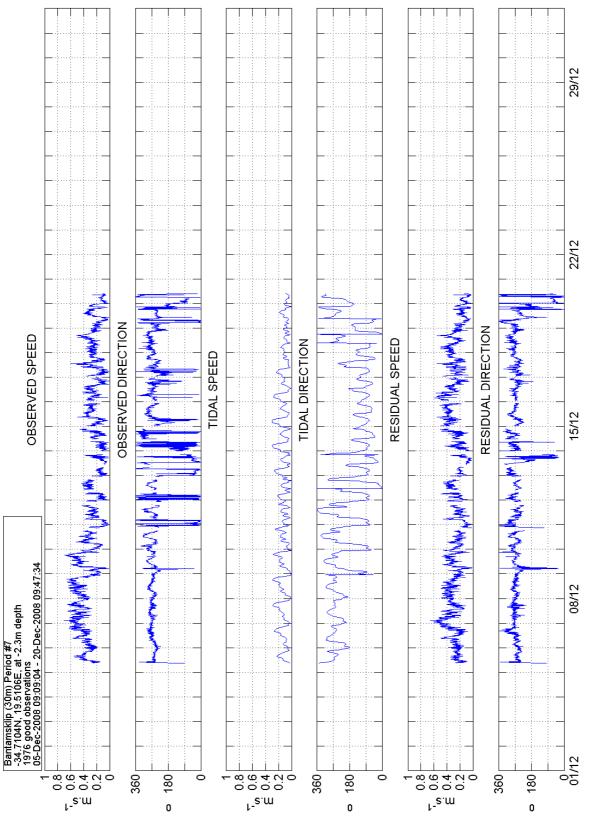
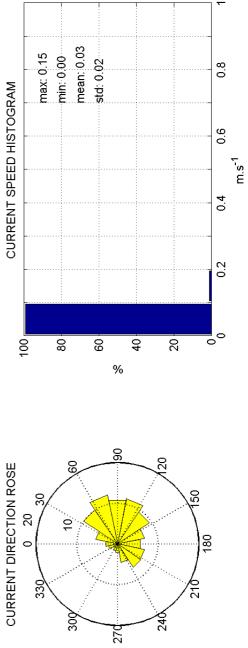



Figure 17: Time series plot for 30m ADCP current data at 2.3m.



#### 5.2.1.2 Summary plots

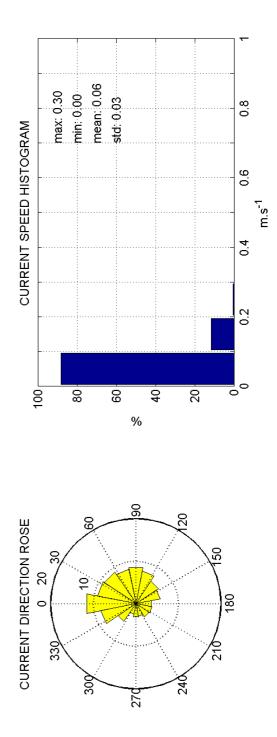
The figures on the following pages display summary plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:


- The upper panel is a table of the joint distribution of 10 minute averaged current speed against direction. Columns of the table represent direction classes and rows the speed classes. The numbers in the table reflect the percentage of observations that fall within a particular speed interval and direction sector.
- The lower left hand panel is a rose of the 10 minute averaged current direction. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the 10 minute averaged current speeds. This reflects the percentage of observations that fall within each speed interval. Included on the plot are basic statistics for the current speed distribution.

#### 5.2.1.3 <u>Progressive vector plots</u>

The figures on the following pages display progressive vector plots for depths representing near-bottom, mid-depth and near-surface flow respectively. These plots consist of:

- The solid line represents the displacement that a particle of water would undergo when subject to the currents that were observed.
- The start and end points of the observations are labelled.
- Each day is represented by a red cross.


100.00 98.94 1.06 0.0 0.0 0.0 0.00 0.0 0.0 0.00 0.00 Ы NNW 2.17 2.17 1.25 1.25 MΝ WNW 1.71 1.71 2.03 1.99 0.05 ≥ WSW 4.62 4.53 0.09 JOINT DISTRIBUTION OF SPEED AND DIRECTION 6.42 0.46 6.88 SW SSW 6.42 0.32 6.74 5.64 5.64 S SSE 6.74 6.74 9.42 SП 9.42 11.32 11.32 ESE 10.90 10.90 ш 12.10 12.24 ENE 0.14 Bantamskilp (30m) Period #7 -34.7104N, 19.5106E, at 27.3m depth 2165 good observations 05-Dec-2008 09:09:04 - 20-Dec-2008 09:47.34 10.02 10.02 ШZ NNE 5.45 5.45 2.86 2.86 z 4-0.5 5-0.6 0.1-0.2 .2-0.3 3-0.4 6-0.7 .7-0.8 8-0.9 0-0.1 0.9-1 ы







|          | $\omega$ |         |         |         |         |         |         |         |         |       |
|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|-------|
| MNN      | 5.64     | 2.73    |         |         |         |         |         |         |         |       |
| ٨٨N      | 4.57     | 0.46    |         |         |         |         |         |         |         |       |
|          | 2.36     | 0.14    |         |         |         |         |         |         |         |       |
| Ŵ        | 2.96     | 0.18    |         |         |         |         |         |         |         |       |
| WSW      | 2.86     | 0.09    | 0.05    |         |         |         |         |         |         |       |
| NN<br>NN | 3.09     | 0.51    | 0.05    |         |         |         |         |         |         |       |
| SSW      | 3.23     | 0.55    | 0.05    |         |         |         |         |         |         |       |
| თ        | 3.09     | 0.55    |         |         |         |         |         |         |         |       |
| SSE      | 4.48     | 1.20    | 0.09    |         |         |         |         |         |         |       |
| Ц<br>Л   | 5.40     | 0.88    | 0.09    |         |         |         |         |         |         |       |
| ESE      | 7.39     | 0.37    | 0.05    |         |         |         |         |         |         |       |
| ш        | 8.31     | 0.37    |         |         |         |         |         |         |         |       |
| ENE      | 7.99     | 0.28    |         |         |         |         |         |         |         |       |
| ЫR       | 8.45     | 0.51    |         |         |         |         |         |         |         |       |
| NNE      | 8.64     | 0.60    |         |         |         |         |         |         |         |       |
| z        | 9.56     | 2.17    |         |         |         |         |         |         |         |       |
|          | 0-0.1    | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 7.0-9.0 | 0.7-0.8 | 0.8-0.9 | 0.9-1 |





11.59 88.04

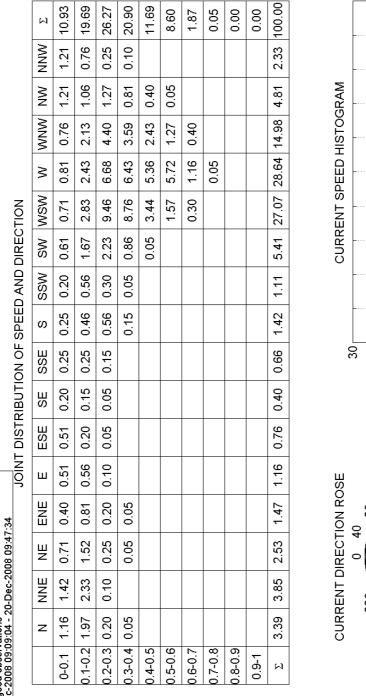
ы

0.37 0.00 0.0 0.00 0.0 0.00 0.00 100.00

8.36

5.03

5.77 3.65 3.83 3.65 3.00 3.14 2.49


8.68 7.81 6.37

11.73 9.24 8.96 8.27

ы

0.00

| R<br>R<br>R | ON OF | RIBUTI | JOINT DISTRIBUTION OF SPE | LNIOL |    |          |           |                    |                     |                                                               |
|-------------|-------|--------|---------------------------|-------|----|----------|-----------|--------------------|---------------------|---------------------------------------------------------------|
|             |       |        |                           |       | 34 | 08 09:47 | 0-Dec-20  | 09:04 - 2          | 008 09:0            | 05-Dec-2008 09:09:04 - 20-Dec-2008 09:47:34                   |
|             |       |        |                           |       |    | ÷        | -2.3m dep | 06E, at<br>vations | N, 19.51<br>d obsen | -34.7104N, 19.5106E, at -2.3m depth<br>1976 good observations |
|             |       |        |                           |       |    |          |           |                    |                     |                                                               |



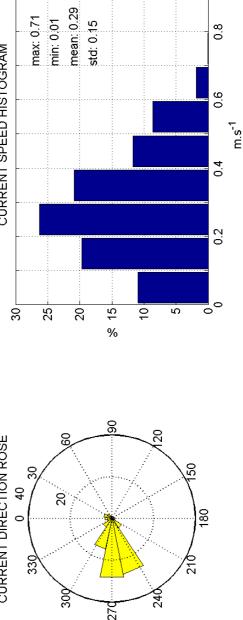



Figure 20: Summary plot for 30m ADCP current data at 2.3m.





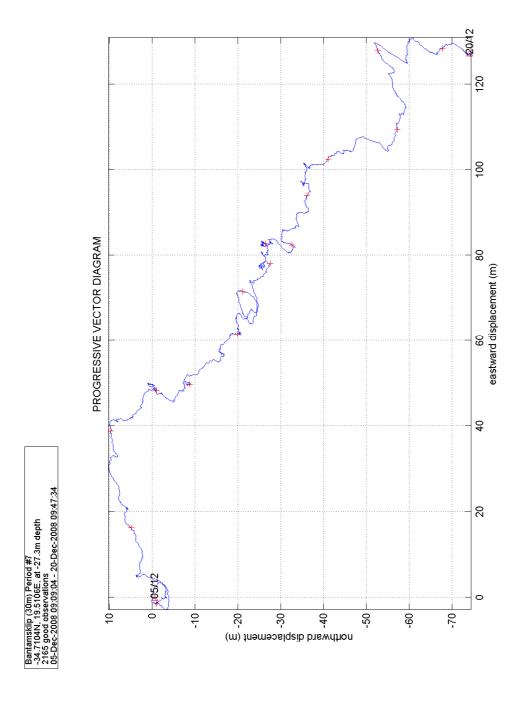



Figure 21: Progressive vector plot for 30m ADCP current data at 27.3m.



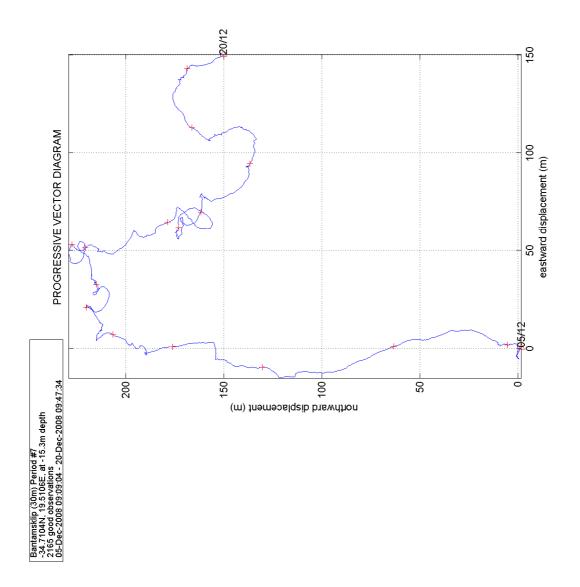



Figure 22: Progressive vector plot for 30m ADCP current data at 15.3m.



sklip (30m) Period #7 4N, 19.5106E, at -2.3m depth ood observations -2008 09.09.04 - 20-Dec-2008 09.47:34

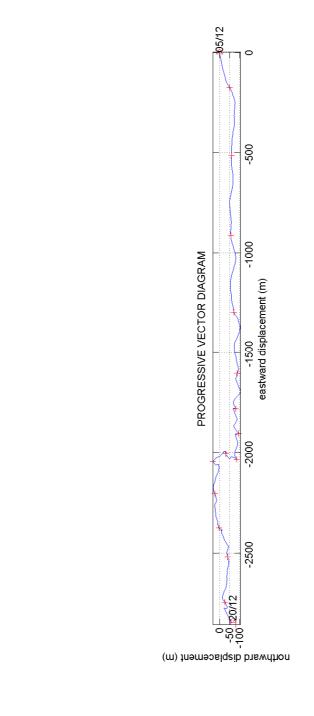



Figure 23: Progressive vector plot for 30m ADCP current data at 2.3m.



### 5.2.2 Wave Data.

### 5.2.2.1 <u>Hs and Tp summary plot</u>

Figure 24 displays a summary plot for the wave parameters significant wave height (Hs) and peak period (Tp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Tp. Columns of the table represent Tp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Tp sector.
- The lower left hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

## 5.2.2.2 <u>Hs and Dp summary plot</u>

Figure 25 displays a summary plot for the wave parameters significant wave height (Hs) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Hs against Dp. Columns of the table represent Dp classes and rows the Hs classes. The numbers in the table reflect the percentage of observations that fall within a particular Hs and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Hs. This reflects the percentage of observations that fall within each Hs interval. Included on the plot are basic statistics for the Hs distribution.

### 5.2.2.3 <u>Tp and Dp summary plot</u>

Figure 26 displays a summary plot for the wave parameters peak period (Tp) and peak direction (Dp). The plots consist of:

- The upper panel is a table of the joint distribution of Tp against Dp. Columns of the table represent Dp classes and rows the Tp classes. The numbers in the table reflect the percentage of observations that fall within a particular Tp and Dp sector.
- The lower left hand panel is a rose of the observed Dp. This is a histogram of the directional distribution and reflects the percentage of observations that fall within each direction sector.
- The lower right hand panel is a histogram of the observed Tp. This reflects the percentage of observations that fall within each Tp interval. Included on the plot are basic statistics for the Tp distribution.

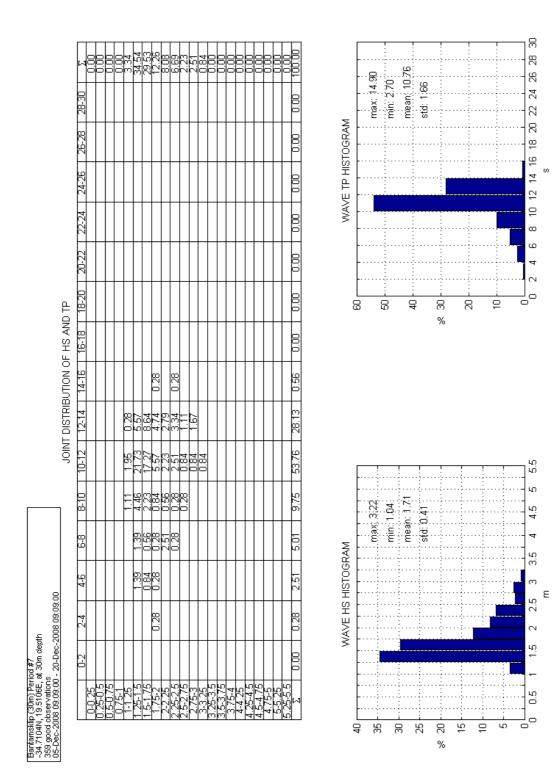
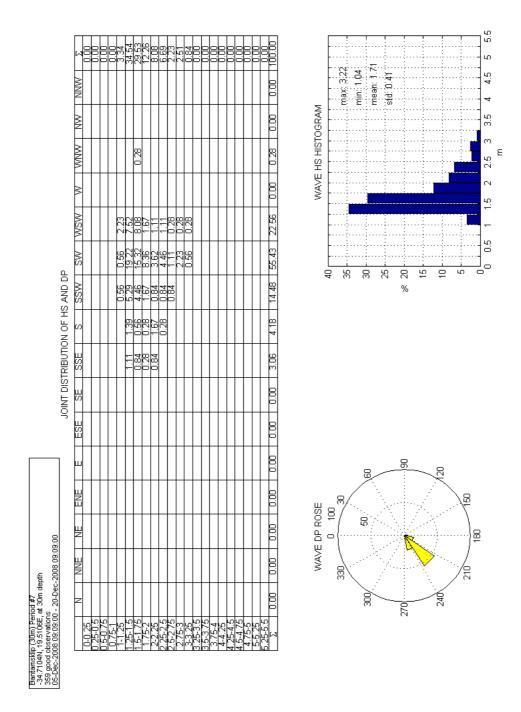
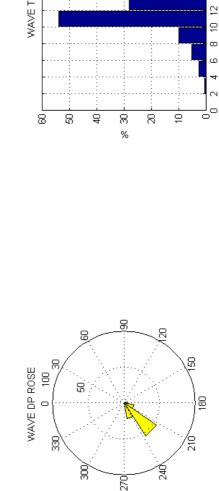



Figure 24: Summary plot of  $H_s$  and  $T_p$ .







Figure 25: Summary plot of  $H_s$  and  $D_p$ .



53.76 28.13 100.00 0.28 5.01 9.75 88 ы 8 8 mean: 10.76 max: 14.90 min: 2.70 MNN 8 WAVE TP HISTOGRAM 80 Ž WNW 0.28 0.28 0.0 ≥ WSW 2.51 16.16 22.56 3.90 55.43 ٨S 0.28 4.46 28.97 20.89 0.28 0.56 8 ය JOINT DISTRIBUTION OF TP AND DP SSW 14.48 1.11 2.23 3.06 3.06 0.84 0.56 0.56 4.18 S SSE 1.67 З.06 Ш 0.0 ESE 8 80 ш 8 ENE 8 Я WAVE DP ROSE 6 ය 80 빌 Bartamskip (30m) Period #7 -4. 71 041 (1 9.51 06E, at 30m depth 359 good observations 05-Dec-2008 09:09:00 - 20-Dec-2008 09:09:00 UN N 0.0 330 8 8 z 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26 26-28 28-30 28 2-4 6-8 6-8 10 9 ы

Figure 26: Summary plot of T<sub>p</sub> and D<sub>p</sub>.





stid: 1:66



문

8

8

24

8

8

₽ 9

w 4



#### 5.2.2.4 Wave spectral plot

Figure 27 displays a wave spectral plot for a significant wave event. The time of the spectra is given in the title of the graph. The plots consist of:

- The spectral energy for each frequency is presented on the left panel.
- The direction spectrum for each frequency is presented on the right panel.

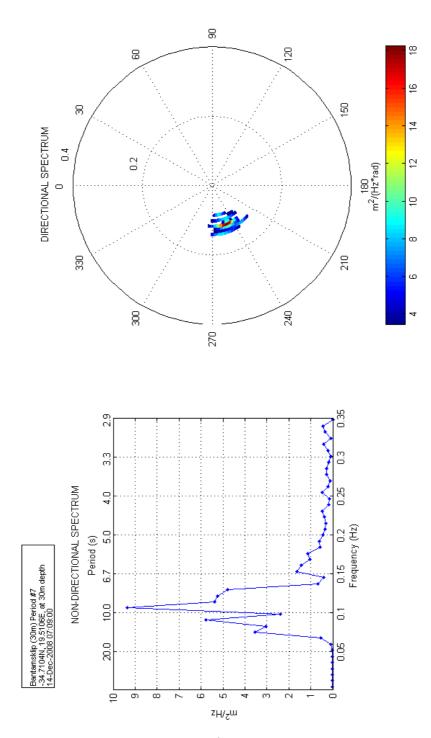



Figure 27: Wave spectra for 14<sup>th</sup> of December 2008 at 07:09:00.



# 5.3 COMPARISON PLOTS

# 5.3.1 Hs, Tp and Dp time series plots for 10m and 30m ADCPs.

Figure 28 displays a time series plot of the main wave parameters:

- The first (upper) panel is of the significant wave height (Hs).
- The second panel is of the peak period (Tp).
- The third panel is of the peak wave direction (Dp).

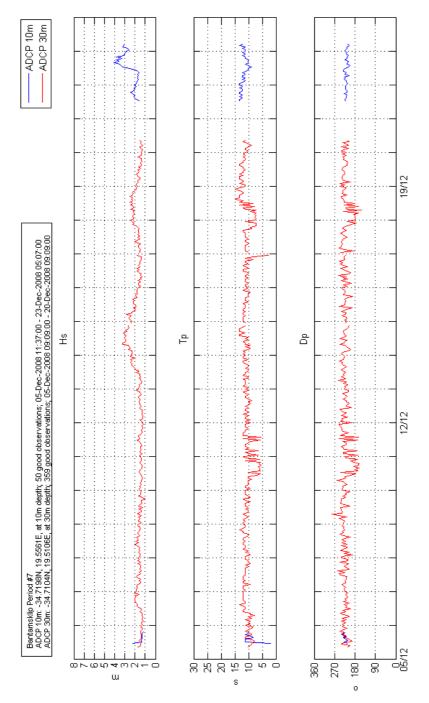



Figure 28: Time series of Hs, Tp and Dp from 10m and 30m ADCPs.



#### 5.3.2 Water properties: RBR-CT loggers and ADCPs' temperature sensor.

Figure 29 displays a time series plot, which consists of:

- The first panel is of the observed water temperature from surface and bottom RBR loggers as well as ADCPs' temperature sensor against time.
- The second panel is of the derived salinity from the RBR loggers against time.

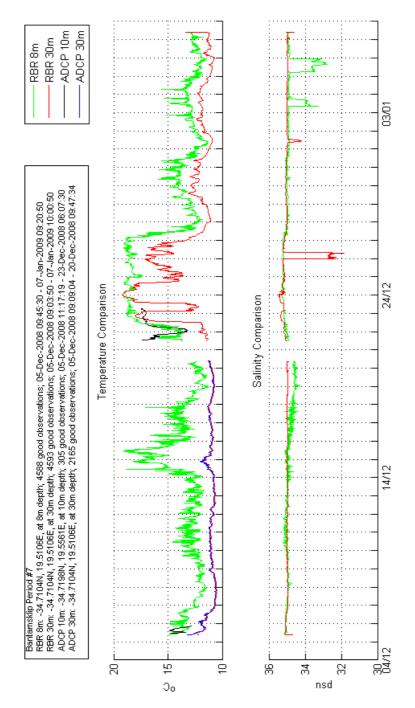



Figure 29: Time series of temperature and salinity from the RBR loggers and ADCPs.





### 6. DISCUSSION

The seventh set of oceanographic data collected off the coast of Bantamsklip for the period between December 5<sup>th</sup> 2008 – January 7<sup>th</sup> 2009 has been presented in this report. The measurements taken fall within a larger dataset being compiled to assist a preliminary safety survey of multiple sites around the South African coast reports for Eskom. This report presents data obtained from the 10m and 30m ADCPs, the surface and bottom RBR-CT loggers.

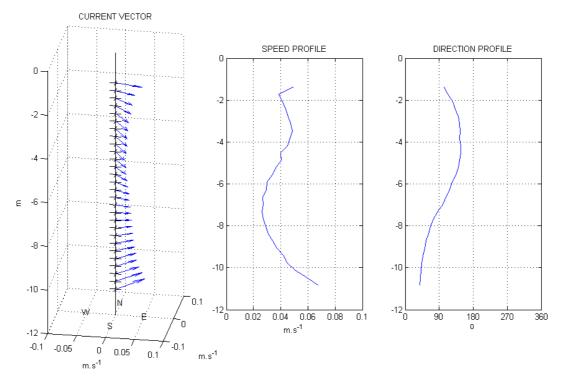



Figure 30: Mean profile plot for 10m ADCP.

The average surface flow for the 10m ADCP was  $0.12ms^{-1}$ , decreasing to  $\sim 0.07ms^{-1}$  at ~10m depth. The flow at the surface was predominantly from the NNE/NE, while at depth it was more variable. Average wave parameters of ~1.2m, ~11.3s and ~200° were recorded for Hs, Tp and Dp respectively.





Figure 31: Mean profile plot for 30m ADCP.

The average surface flow for the 30m ADCP was  $0.29ms^{-1}$ , decreasing to  $\sim 0.03ms^{-1}$  at  $\sim 27m$  depth. Surface flow was mainly from the W/WSW. Average wave parameters of  $\sim 1.7m$ ,  $\sim 10.8s$  and  $\sim 223^{\circ}$  were recorded for Hs, Tp and Dp respectively.

Figure 29 shows the temperature sensors on board the 30m ADCP and surface RBR logger recorded reasonably similar values during the deployment period.



# 7. INSTRUMENT PARTICULARS FOR SERVICE VISIT FIVE

# 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

### 10m ADCP.

### 1. <u>RECOVERY</u> Site Name: <u>Bantams 10 m site</u> Date: 20 Dec 2008

| Instrument type and serial number                    |  |  | RDI               | 10105  |
|------------------------------------------------------|--|--|-------------------|--------|
| ecovery date and time LT GMT                         |  |  | 20 Dec 2008 10:35 |        |
| Latitude (do not ignore – if same, please indicate)  |  |  | 34                | 43.186 |
| Longitude (do not ignore – if same, please indicate) |  |  | 19 33.637         |        |
| Switch off date and time LT GMT                      |  |  | 20 Dec 2008 20:06 |        |
| File size                                            |  |  |                   | 8MB    |
| Was the data copied to memory card?                  |  |  | Y*                | Ν      |

### 2. <u>RE-DEPLOYMENT</u> Site Name: <u>Bantams 10 m site</u> Date 21 Dec 2008

| Instrument type and serial number (do not ignore - | <ul> <li>if same, please indicate)</li> </ul> | RDI    | 10105   |
|----------------------------------------------------|-----------------------------------------------|--------|---------|
| Install a new battery and/or check the voltage     |                                               |        | 1*44.8V |
| Frequency of unit being used                       |                                               | 600kHz |         |
| Depth range                                        |                                               | 10m    |         |
| Number of bins (calculated automatically)          |                                               | 42     |         |
| Bin Size (calculated automatically)                | 0.35                                          |        |         |
| Wave burst duration 41min                          |                                               |        |         |
| Time between wave bursts                           | 60min                                         |        |         |
| Pings per ensemble                                 | 500                                           |        |         |
| Ensemble interval                                  | 10min                                         |        |         |
| Deployment duration                                |                                               | 15days |         |
| Transducer depth                                   |                                               | 10m    |         |
| Any other commands                                 | minTP,RI0                                     |        | 0       |
| Temperature                                        |                                               | 5      |         |
| Recorder size                                      | 12                                            | 56MB   |         |

| Consequences of the sampling parameters |            |                          |                       |       |  |  |
|-----------------------------------------|------------|--------------------------|-----------------------|-------|--|--|
| First and last bin range                |            |                          | 1.41                  | 15.76 |  |  |
| Battery usage                           |            |                          |                       | 440Wh |  |  |
| Standard deviation                      |            |                          |                       |       |  |  |
| Storage space required 133              |            |                          |                       |       |  |  |
| Set the ADCP clock                      | LT         | GMT 20 Dec 2008 20:05:   |                       |       |  |  |
| Run pre-deployment tests                |            |                          |                       |       |  |  |
| Name the ADCP deployment                |            | B1013                    |                       |       |  |  |
| Deployme                                | nt details |                          |                       |       |  |  |
| Switch on date and time                 | LT         | GMT 20 Dec 2008 20:05:56 |                       |       |  |  |
| Deployment date and time                | LT         | GMT                      | GMT 21 Dec 2008 01:07 |       |  |  |

Deployment Latitude (do not ignore - if same, please indicate)

Deployment Longitude (do not ignore - if same, please indicate)

34 43.186

19 33.637



| Site depth                                                                     | 10m | Deployment depth |  | 10m                                  |
|--------------------------------------------------------------------------------|-----|------------------|--|--------------------------------------|
| Acoustic release (1) serial number and release co                              | de  |                  |  |                                      |
| Acoustic release (2) serial number and release co                              | de  |                  |  |                                      |
| Argos beacon serial number                                                     |     |                  |  |                                      |
| Save whp, dpl and scl files in one folder (filename format: serialnumber_date) |     |                  |  | 20 December<br>P newDeplo<br>s/B1013 |

# 3. <u>RECOVERY</u> Site Name: <u>Bantams 10 m site</u> Date: 7 Jan 2009

| Instrument type and serial number                    |  |  | RDI                     | 10105  |  |
|------------------------------------------------------|--|--|-------------------------|--------|--|
| Recovery date and time LT GMT                        |  |  | <u>7 Jan 2009 09:09</u> |        |  |
| Latitude (do not ignore – if same, please indicate)  |  |  | 34                      | 43.186 |  |
| Longitude (do not ignore – if same, please indicate) |  |  | 19 33.637               |        |  |
| Switch off date and time LT GMT                      |  |  | 7 Jan 2009 21:30        |        |  |
| File size                                            |  |  | :                       | 23MB   |  |
| Was the data copied to memory card?                  |  |  | Y*                      | N      |  |

### 4. <u>RE-DEPLOYMENT</u> Site Name: <u>Bantams 10 m site</u> Date 2 Feb 2009

| Instrument type and serial number (do not ignore - | if same, please indicate) | RDI    | 10105   |
|----------------------------------------------------|---------------------------|--------|---------|
| Install a new battery and/or check the voltage     |                           | •      | 1*44.7V |
| Frequency of unit being used                       | 600kHz                    |        |         |
| Depth range                                        |                           | 10m    |         |
| Number of bins (calculated automatically)          |                           | 42     |         |
| Bin Size (calculated automatically)                | 0.35                      |        |         |
| Wave burst duration                                | 40min                     |        |         |
| Time between wave bursts                           | 60min                     |        |         |
| Pings per ensemble                                 | 500                       |        |         |
| Ensemble interval                                  |                           | 10min  |         |
| Deployment duration                                |                           | 13days |         |
| Transducer depth                                   |                           | 10m    |         |
| Any other commands                                 | minTP,RI0                 |        | 0       |
| Temperature                                        | 5                         |        |         |
| Recorder size                                      | 112                       | 8MB    |         |

| Consequence              | es of the sampling par | rameters |         |              |
|--------------------------|------------------------|----------|---------|--------------|
| First and last bin range |                        |          | 1.41    | 15.76        |
| Battery usage            |                        |          |         | 376Wh        |
| Standard deviation       |                        |          |         | 1.08         |
| Storage space required   |                        |          |         | 113MB        |
| Set the ADCP clock       | LT*                    | GMT      | 2 Feb 2 | 009 03:17:00 |
| Run pre-deployment tests |                        |          |         | Yes          |
| Name the ADCP deployment |                        |          | B1001   |              |
| D                        | eployment details      |          |         |              |
| Switch on date and time  | LT*                    | GMT      | 2 Feb 2 | 009 12:00:00 |

| Switch on date and time                                        | LT* | GMT | 2 Feb 2009 12:00:00 |  |  |  |  |
|----------------------------------------------------------------|-----|-----|---------------------|--|--|--|--|
| Deployment date and time                                       | LT* | GMT | 2 Feb 2009 08:50:00 |  |  |  |  |
| Deployment Latitude (do not ignore – if same, please indicate) |     |     | 34 43.186           |  |  |  |  |



| Deployment Longitude (do not ignore - if same, please indicate)                                              |     |                  | 19       | 33.637                                             |
|--------------------------------------------------------------------------------------------------------------|-----|------------------|----------|----------------------------------------------------|
| Site depth                                                                                                   | 10m | Deployment depth |          | 12.3m                                              |
| Acoustic release (1) serial number and release code                                                          |     |                  |          |                                                    |
| Acoustic release (2) serial number and release code                                                          |     |                  |          |                                                    |
| Argos beacon serial number                                                                                   |     |                  |          |                                                    |
| Save <i>whp</i> , <i>dpl</i> and <i>scl</i> files in one folder (filename format: <i>serialnumber_date</i> ) |     |                  | 2009/ADC | <u>2 February</u><br>P_newDeplo<br><u>s/</u> B1001 |

# 30m ADCP.

### 1. <u>RECOVERY</u> Site Name: Bantams 30m site

Date: 20 Dec 2008

| Instrument type and serial number                    |                                 |  | RDI               | 11424      |  |
|------------------------------------------------------|---------------------------------|--|-------------------|------------|--|
| Recovery date and time LT GMT                        |                                 |  | 20 Dec 2008 10:15 |            |  |
| Latitude (do not ignore – if same, please indicate)  |                                 |  | 34                | 42.602     |  |
| Longitude (do not ignore – if same, please indicate) |                                 |  | 19 30.696         |            |  |
| Switch off date and time                             | Switch off date and time LT GMT |  |                   | 2008 18:24 |  |
| File size                                            |                                 |  | 1                 | 25Mb       |  |
| Was the data copied to memory card?                  |                                 |  | Y*                | N          |  |

### 2. <u>RE-DEPLOYMENT</u> Site Name: Bantams 30m site

Date: 21 Dec 2008

| Instrument type and serial number (do not ignore - | · if same, please indicate) | RDI         | 11424   |
|----------------------------------------------------|-----------------------------|-------------|---------|
| Install a new battery and/or check the voltage     |                             |             | 1*44.8V |
| Frequency of unit being used                       |                             | 600kHz      |         |
| Depth range                                        |                             | <b>30</b> m |         |
| Number of bins (calculated automatically)          |                             | 69          |         |
| Bin Size (calculated automatically)                | 0.5                         |             |         |
| Vave burst duration                                |                             | 34min       |         |
| Time between wave bursts                           |                             | 60min       |         |
| Pings per ensemble                                 | 250                         |             |         |
| Ensemble interval                                  | 10min                       |             |         |
| Deployment duration                                |                             | 15days      |         |
| Transducer depth                                   |                             | <b>30</b> m |         |
| Any other commands                                 | minTP,RI0                   |             | 10      |
| Temperature                                        | 5                           |             |         |
| Recorder size                                      | 12                          | 56MB        |         |

#### Consequences of the sampling parameters

| First and last bin range |    |       | 1.6   | 35.6            |
|--------------------------|----|-------|-------|-----------------|
| Battery usage            |    |       |       | 447Wh           |
| Standard deviation       |    |       |       | 1.08            |
| Storage space required   |    |       |       | 112MB           |
| Set the ADCP clock       | LT | GMT   | 20 De | c 2008 20:11:20 |
| Run pre-deployment tests |    |       |       | yes             |
| Name the ADCP deployment |    | B3013 | 3     |                 |



| Deployment details                                                                                           |     |                    |          |                                        |        |  |
|--------------------------------------------------------------------------------------------------------------|-----|--------------------|----------|----------------------------------------|--------|--|
| Switch on date and time                                                                                      | Ľ   | Г                  | GMT      | 20 Dec 2008 20:11:20                   |        |  |
| Deployment date and time                                                                                     | Ľ   | Г                  | GMT      | 21 Dec 2008 11:30                      |        |  |
| Deployment Latitude (do not ignore - if same, please indicate)                                               |     |                    |          |                                        | 42.602 |  |
| Deployment Longitude (do not ignore – if same, please indicate)                                              |     |                    |          | 19 30.696                              |        |  |
| Site depth                                                                                                   | 30m | n Deployment depth |          |                                        | 30m    |  |
| Acoustic release (1) serial number and release code                                                          |     |                    |          | 32383                                  | 642016 |  |
| Acoustic release (2) serial number and release code                                                          |     |                    |          |                                        |        |  |
| Argos beacon serial number                                                                                   |     |                    |          |                                        |        |  |
| Save <i>whp</i> , <i>dpl</i> and <i>scl</i> files in one folder (filename format: <i>serialnumber_date</i> ) |     |                    | 2008/ADC | 20 December<br>CP_newDeplo<br>es/B3013 |        |  |

#### 3.

# RECOVERY Site Name: Bantams 30m site

Date: 7 Jan 2009

| Instrument type and serial number                    |  |  | RDI              | 11424  |  |
|------------------------------------------------------|--|--|------------------|--------|--|
| Recovery date and time LT GMT                        |  |  | 7 Jan 2009 10:03 |        |  |
| Latitude (do not ignore – if same, please indicate)  |  |  | 34               | 42.602 |  |
| Longitude (do not ignore – if same, please indicate) |  |  | 19 30.676        |        |  |
| Switch off date and time LT GMT                      |  |  | 7 Jan 2009 21:44 |        |  |
| File size                                            |  |  |                  | 6MB    |  |
| Was the data copied to memory card?                  |  |  | Y*               | N      |  |

#### **<u>RE-DEPLOYMENT</u>** Site Name: Bantams 30m site Date: 2 Feb 2009 4.

| Instrument type and serial number (do not ignor | Instrument type and serial number (do not ignore - if same, please indicate) |             |         |  |
|-------------------------------------------------|------------------------------------------------------------------------------|-------------|---------|--|
| Install a new battery and/or check the voltage  |                                                                              |             | 1*44.7V |  |
| Frequency of unit being used                    |                                                                              | 600kHz      | 2       |  |
| Depth range                                     |                                                                              | <b>30</b> m |         |  |
| Number of bins (calculated automatically)       |                                                                              | <b>69</b>   |         |  |
| Bin Size (calculated automatically)             |                                                                              | 0.5         |         |  |
| Wave burst duration                             |                                                                              | 40min       |         |  |
| Time between wave bursts                        |                                                                              | 60min       |         |  |
| Pings per ensemble                              |                                                                              | 250         |         |  |
| Ensemble interval                               |                                                                              | 10min       |         |  |
| Deployment duration                             |                                                                              | 13days      |         |  |
| Transducer depth                                |                                                                              | <b>30</b> m |         |  |
| Any other commands                              |                                                                              | minTP,R     | 10      |  |
| Temperature                                     |                                                                              | 5           |         |  |
| Recorder size                                   | 11                                                                           | 28MB        |         |  |

#### Consequences of the sampling parameters

| First and last bin range |               | 1.6 | 35.6  |
|--------------------------|---------------|-----|-------|
| Battery usage            |               |     | 453Wh |
| Standard deviation       |               |     | 1.08  |
| Storage space required   |               |     | 114MB |
| Set the ADCP clock       | 2009 09:18:00 |     |       |



| Run pre-deployment tests                                                                                     |        |                    |                                                          |           |           |          | yes      |
|--------------------------------------------------------------------------------------------------------------|--------|--------------------|----------------------------------------------------------|-----------|-----------|----------|----------|
| Name the ADCP deployment                                                                                     |        |                    | B300                                                     | B3001     |           |          |          |
| Deplo                                                                                                        | oyment | deta               | ils                                                      |           |           |          |          |
| Switch on date and time                                                                                      |        | LT                 | *                                                        | GMT       | 2 Fel     | o 2009   | 12:00:00 |
| Deployment date and time                                                                                     |        | LT* GMT            |                                                          | 2 Fel     | o 2009    | 07:45:00 |          |
| Deployment Latitude (do not ignore - if same, please indicate)                                               |        |                    |                                                          |           | 34 42.601 |          | 601      |
| Deployment Longitude (do not ignore – if same, please indicate)                                              |        |                    |                                                          | 19 30.691 |           | 691      |          |
| Site depth                                                                                                   | 30m    | n Deployment depth |                                                          |           |           |          | 28.6m    |
| Acoustic release (1) serial number and release code                                                          |        |                    |                                                          |           | 3238      | 3        | 642016   |
| Acoustic release (2) serial number and release code                                                          |        |                    |                                                          |           |           |          |          |
| Argos beacon serial number                                                                                   |        |                    |                                                          |           |           |          |          |
| Save <i>whp</i> , <i>dpl</i> and <i>scl</i> files in one folder (filename format: <i>serialnumber_date</i> ) |        |                    | Bantams 2 February<br>2009/ADCP_newDeplo<br>yFiles/B3001 |           | newDeplo  |          |          |

# 7.2 RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT SHEETS

# Surface.

### 1. <u>RECOVERY</u>

Site Name: Bantams 30m site Date: 20 Dec 2008

| Instrument type and serial number                                              |                                |                     |  | 12994                         |  |
|--------------------------------------------------------------------------------|--------------------------------|---------------------|--|-------------------------------|--|
| Recovery date and time                                                         | <u>20 Dec</u>                  | <u>: 2008 08:45</u> |  |                               |  |
| Latitude (do not ignore - if same, please indicate)                            | 34 42.602                      |                     |  |                               |  |
| Longitude (do not ignore – if same, please indicate)                           |                                |                     |  | 19 30.696                     |  |
| Switch off date and time                                                       | witch off date and time LT GMT |                     |  | 2008 18:42:53                 |  |
| File size                                                                      |                                | 50KB                |  |                               |  |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |                                |                     |  | 20 December<br>_RecoveredData |  |

# 2. <u>RE-DEPLOYMENT</u> Site Name: Bantams 30m site Date: 21 Dec 2008

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 12994   |
|------------------------------------------------------------------------------|--------------|---------|
| Install a new battery and check the voltage                                  |              | 4* 3.2V |

#### Set up the sampling parameters

| Sampling period                |      | 10      | min      |
|--------------------------------|------|---------|----------|
| Averaging period               |      | 1min    |          |
| Expected deployment duration   |      | 30      | days     |
| Start of logging (date / time) | 20 D | ec 2008 | 19:49:20 |
| End of logging (date / time)   | 27 J | an 2009 | 12:00:00 |
| Memory usage                   |      |         | .4%      |
| Battery usage                  |      |         | 939mAH   |

#### Deployment details



| Deployment date and time                                          | LT        | GMT | 21 Dec 2008 12:15                                            |  |
|-------------------------------------------------------------------|-----------|-----|--------------------------------------------------------------|--|
| Deployment Latitude (do not ignore - if same, please              | 34 42.602 |     |                                                              |  |
| Deployment Longitude (do not ignore - if same, plea               | 19 30.696 |     |                                                              |  |
| Site name                                                         |           |     | Batamsklip                                                   |  |
| Site depth                                                        | 30m       |     |                                                              |  |
| Deployment depth                                                  |           |     | 8m                                                           |  |
| Acoustic release (1) serial number and release code               |           |     |                                                              |  |
| Acoustic release (2) serial number and release code               |           |     |                                                              |  |
| Argos beacon serial number                                        |           |     |                                                              |  |
| Save <i>log</i> file (filename format: <i>serialnumber_date</i> ) |           |     | Bantams 20 December<br>2008/RBR_RecoveredDat<br>a/012994.log |  |

# 3. <u>RECOVERY</u> Site Name: Bantams 30m site Date: 7 Jan 2009

| Instrument type and serial number                                              |                                 |            |  | 12994                          |  |
|--------------------------------------------------------------------------------|---------------------------------|------------|--|--------------------------------|--|
| Recovery date and time                                                         | <u>7 Jan</u>                    | 2009 10:03 |  |                                |  |
| Latitude (do not ignore - if same, please indicate)                            | 34 42.602                       |            |  |                                |  |
| Longitude (do not ignore – if same, please indicate)                           |                                 |            |  | 19 30.676                      |  |
| Switch off date and time                                                       | Switch off date and time LT GMT |            |  | 7 Jan 2009 21:30:19            |  |
| File size                                                                      | 57KB                            |            |  |                                |  |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |                                 |            |  | ns 7 January<br>_RecoveredData |  |

### 4. <u>RE-DEPLOYMENT</u> Site Name: Bantams 30m site Date: 2 Feb 2009

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 12994   |
|------------------------------------------------------------------------------|--------------|---------|
| Install a new battery and check the voltage                                  |              | 4* 3.2V |

#### Set up the sampling parameters

| Sampling period                |      | 10      | min      |
|--------------------------------|------|---------|----------|
| Averaging period               |      | 11      | nin      |
| Expected deployment duration   |      | 30      | days     |
| Start of logging (date / time) | 2 Fe | o 2009  | 12:00:00 |
| End of logging (date / time)   | 14 N | ar 2009 | 12:00:00 |
| Memory usage                   |      |         | .4%      |
| Battery usage                  |      |         | 997mAH   |

#### **Deployment details**

| Deployment date and time                             | LT*          | GMT | 2 Feb 2009 07:45:00 |
|------------------------------------------------------|--------------|-----|---------------------|
| Deployment Latitude (do not ignore - if same, please | e indicate)  |     | 34 42.605           |
| Deployment Longitude (do not ignore - if same, plea  | se indicate) |     | 19 30.667           |



| Site name                                                         | Batamsklip                                             |
|-------------------------------------------------------------------|--------------------------------------------------------|
| Site depth                                                        | 30m                                                    |
| Deployment depth                                                  | 13m                                                    |
| Acoustic release (1) serial number and release code               |                                                        |
| Acoustic release (2) serial number and release code               |                                                        |
| Argos beacon serial number                                        |                                                        |
| Save <i>log</i> file (filename format: <b>serialnumber_date</b> ) | Bantams 2 Feb<br>2009/RBR_RecoveredDat<br>a/012994.log |



Bottom.

1. <u>RECOVERY</u>

Site Name: Bantams 30m site Date: 20 Dec 2008

| Instrument type and serial number                                                                            |    |     | RBR<br>420ct | 15248                         |  |
|--------------------------------------------------------------------------------------------------------------|----|-----|--------------|-------------------------------|--|
| Recovery date and time                                                                                       | LT | GMT | 20 Dec       | <del>: 2008 08:45</del>       |  |
| Latitude (do not ignore - if same, please indicate)                                                          |    |     | 34           | 42.602                        |  |
| Longitude (do not ignore – if same, please indicate)                                                         |    |     | 19 30.676    |                               |  |
| Switch off date and time                                                                                     | LT | GMT | 20 Dec 2     | 2008 18:44:30                 |  |
| File size                                                                                                    |    |     | 50KB         |                               |  |
| Save <i>log</i> , <i>hex</i> and <i>dat</i> files in one folder (filename format: <b>serialnumber_date</b> ) |    |     |              | 20 December<br>_RecoveredData |  |

# 2. <u>RE-DEPLOYMENT</u> Site Name: Bantams 30m site Date: 21 Dec 2008

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 15248    |
|------------------------------------------------------------------------------|--------------|----------|
| Install a new battery and check the voltage                                  |              | 3 * 3.0V |

#### Set up the sampling parameters

| Sampling period                |       | 10      | min      |
|--------------------------------|-------|---------|----------|
| Averaging period               |       | 1       | min      |
| Expected deployment duration   |       | 30      | days     |
| Start of logging (date / time) | 20 D  | ec 2008 | 19:50:50 |
| End of logging (date / time)   | 27 Ja | an 2009 | 12:00:00 |
| Memory usage                   |       |         | .4%      |
| Battery usage                  |       |         | 939mAH   |

#### **Deployment details**

| Deployment date and time                                          | LT                   | GMT | 21 Dec 2008 12:15                                                    |
|-------------------------------------------------------------------|----------------------|-----|----------------------------------------------------------------------|
| Deployment Latitude (do not ignore - if same, please              | e indicate)          |     | 34 42.602                                                            |
| Deployment Longitude (do not ignore – if same, please indicate)   |                      |     | 19 30.676                                                            |
| Site name                                                         |                      |     | Batamsklip                                                           |
| Site depth                                                        |                      |     | 30m                                                                  |
| Deployment depth                                                  |                      |     | 30m                                                                  |
| Acoustic release (1) serial number and release code               | ber and release code |     |                                                                      |
| Acoustic release (2) serial number and release code               |                      |     |                                                                      |
| Argos beacon serial number                                        |                      |     |                                                                      |
| Save <i>log</i> file (filename format: <b>serialnumber_date</b> ) |                      |     | Bantams 20 December<br>2008/RBR_RecoveredDat<br>a/ <b>015248.log</b> |



### 3. <u>RECOVERY</u> Site Name: Bantams 30m site Date: 7 Jan 2009

| Instrument type and serial number                                                                            |    |     |              | 15248                          |  |
|--------------------------------------------------------------------------------------------------------------|----|-----|--------------|--------------------------------|--|
| Recovery date and time                                                                                       | LT | GMT | <u>7 Jan</u> | <u>2009 10:03</u>              |  |
| Latitude (do not ignore - if same, please indicate)                                                          |    |     | 34           | 42.602                         |  |
| Longitude (do not ignore – if same, please indicate)                                                         |    |     | 19 30.676    |                                |  |
| Switch off date and time                                                                                     | LT | GMT | 7 Jan 2      | 009 21:27:36                   |  |
| File size                                                                                                    |    |     | 57KB         |                                |  |
| Save <i>log</i> , <i>hex</i> and <i>dat</i> files in one folder (filename format: <b>serialnumber_date</b> ) |    |     |              | ns 7 January<br>_RecoveredData |  |

### 4. <u>RE-DEPLOYMENT</u> Site Name: Bantams 30m site Date: 2 Feb 2009

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 15248    |
|------------------------------------------------------------------------------|--------------|----------|
| Install a new battery and check the voltage                                  |              | 3 * 3.2V |

#### Set up the sampling parameters

| Sampling period                |      | 10       | min      |
|--------------------------------|------|----------|----------|
| Averaging period               |      | 1r       | nin      |
| Expected deployment duration   |      | 300      | days     |
| Start of logging (date / time) | 2 Fe | b 2009   | 12:00:00 |
| End of logging (date / time)   | 14 N | lar 2009 | 12:00:00 |
| Memory usage                   |      |          | .4%      |
| Battery usage                  |      |          | 997mAH   |

| Deployment details                                                |              |     |                                                                    |             |
|-------------------------------------------------------------------|--------------|-----|--------------------------------------------------------------------|-------------|
| Deployment date and time                                          | LT           | GMT | 2 Feb 20                                                           | 09 07:45:00 |
| Deployment Latitude (do not ignore - if same, please              | e indicate)  |     | 34 42.601                                                          |             |
| Deployment Longitude (do not ignore - if same, plea               | se indicate) |     | 19 :                                                               | 30.691      |
| Site name                                                         |              |     | Bata                                                               | amsklip     |
| Site depth                                                        |              |     | 30m                                                                |             |
| Deployment depth                                                  |              |     | 28.6m                                                              |             |
| Acoustic release (1) serial number and release code               |              |     |                                                                    |             |
| Acoustic release (2) serial number and release code               |              |     |                                                                    |             |
| Argos beacon serial number                                        |              |     |                                                                    | •           |
| Save <i>log</i> file (filename format: <i>serialnumber_date</i> ) |              |     | Bantams 2 February<br>2009/RBR_RecoveredDa<br>a/ <b>015248.log</b> |             |



# 7.3 RBR TIDE GAUGE RECOVERY AND RE-DEPLOYMENT SHEETS

# 1. <u>DEPLOYMENT</u> Site Name: Bantamsklip Date: 7 Jan 2009

| Instrument type and serial number (do not ignore – if same, please indicate) | TGR<br>2050 | 13084    |
|------------------------------------------------------------------------------|-------------|----------|
| Install a new battery and check the voltage                                  |             | 2 * 3.28 |

#### Set up the sampling parameters

| Sampling period                |       | 10      | sec      |
|--------------------------------|-------|---------|----------|
| Averaging period               |       | 1 sec   |          |
| Expected deployment duration   |       | 6 w     | eeks     |
| Start of logging (date / time) | 7 Jai | n 2009  | 04:41:30 |
| End of logging (date / time)   | 27 F  | eb 2009 | 12:00:00 |
| Memory usage                   |       |         | 31.7%    |
| Battery usage                  |       |         | 177mAH   |

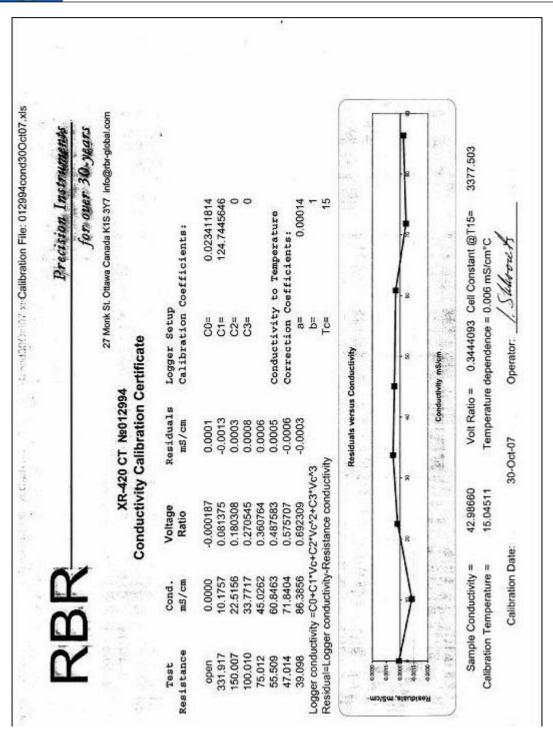
#### Deployment details

| Deployment date and time                                          | LT                                                             | GMT | 7 Jan 2009 08:22                         |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------|-----|------------------------------------------|--|--|--|
| Deployment Latitude (do not ignore - if same, please              | Deployment Latitude (do not ignore – if same, please indicate) |     |                                          |  |  |  |
| Deployment Longitude (do not ignore - if same, plea               | 19 33.101                                                      |     |                                          |  |  |  |
| Site name                                                         | Bantamsklip                                                    |     |                                          |  |  |  |
| Site depth                                                        |                                                                |     | 1.8m                                     |  |  |  |
| Deployment depth                                                  |                                                                |     | 1.7m                                     |  |  |  |
| Acoustic release (1) serial number and release code               |                                                                |     |                                          |  |  |  |
| Acoustic release (2) serial number and release code               |                                                                |     |                                          |  |  |  |
| Argos beacon serial number                                        |                                                                |     |                                          |  |  |  |
| Save <i>log</i> file (filename format: <i>serialnumber_date</i> ) |                                                                |     | Bantams 7 January<br>2009/TideGuage_Data |  |  |  |

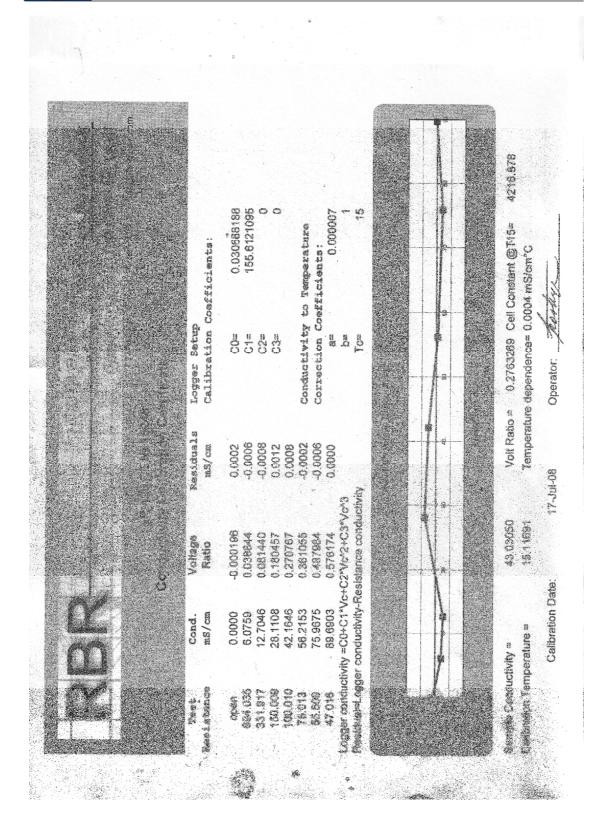


# 7.4 CALIBRATION CERTIFICATES

|                                   |                     | RD INSTRUMENTS                              |
|-----------------------------------|---------------------|---------------------------------------------|
|                                   | , ,                 | A Teledyne Technologies Company             |
|                                   | Workhor             | se Configuration Summary                    |
| Date                              | 11/30/2007          |                                             |
| Customer                          | PERTEC              |                                             |
| Sales Order or RMA No.            | 3018786             |                                             |
| System Type                       | Sentinel            |                                             |
| Part number                       | WHSW600-I-UG9       | 12                                          |
| Frequency                         | 600 kHz             | •                                           |
| Depth Rating (meters)             | 200                 |                                             |
| SERIAL NUMBERS:                   |                     | REVISION:                                   |
| System<br>CPU PCA                 | 10105               | Rev. J3                                     |
| PIO PCA                           | 6573                |                                             |
|                                   | -                   |                                             |
| DSP PCA                           | 14390               | Rev. G1                                     |
| RCV PCA                           | 14937               | Rev. E2                                     |
| AUX PCA                           |                     | Rev.                                        |
| FIRMWARE VERSION:                 |                     |                                             |
| CPU                               | 16.30               |                                             |
| SENSORS INSTALLED:                |                     |                                             |
| Temperature 🗸                     | Heading 🗸           | Pitch / Roll V Pressure V Rating 200 meters |
| FEATURES INSTALLED                |                     |                                             |
| <ul> <li>Water Profile</li> </ul> |                     | High Rate Pinging                           |
| Bottom Track                      |                     | Shallow Bottom Mode                         |
| High Resolution V                 | Vater Modes         | ✓ Wave Guage Acquisition                    |
| Lowered ADCP                      |                     | River Survey ADCP * 4                       |
| * Includes Water Profile          | a, Bottom Track and | d High Resolution Water Modes               |
| COMMUNICATIONS:                   |                     |                                             |
| Communication                     | RS-232              |                                             |
| Baud Rate                         | 9600                |                                             |
| Parity                            | NONE                |                                             |
| Recorder Capacity                 | 1150                | MB (installed)                              |
| Power Configuration               | 20-60 VDC           |                                             |
| Cable Length                      | 5                   | meters                                      |


14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com




|                          |                     | TELEDYNE<br>RD INSTRUMEN<br>A Teledyne Technologies ( | Company    |                   |
|--------------------------|---------------------|-------------------------------------------------------|------------|-------------------|
|                          | Workhor             | se Configuration                                      | Summary    | L                 |
| Date                     | 9/23/2008           |                                                       |            |                   |
| Customer                 | PERTEC              |                                                       |            |                   |
| Sales Order or RMA No.   | 2919891             |                                                       |            |                   |
| System Type              | Sentinel            |                                                       |            |                   |
| Part number              | WHS600              |                                                       |            |                   |
| Frequency                | 600 kHz             |                                                       |            |                   |
| Depth Rating (meters)    | 200                 |                                                       |            |                   |
| SERIAL NUMBERS:          |                     | REVISION:                                             |            |                   |
| System                   | 11424               |                                                       |            |                   |
| CPU PCA                  | 12050               | Rev. J3                                               |            |                   |
| PIO PCA                  | 7411<br>15267       | Rev. G0<br>Rev. G1                                    |            |                   |
| DSP PCA<br>RCV PCA       | 16053               |                                                       |            |                   |
| AUX PCA                  | 10000               | Rev. E4                                               |            |                   |
|                          |                     | 1004.                                                 |            |                   |
| FIRMWARE VERSION:        |                     |                                                       |            |                   |
| CPU                      | 16.31               |                                                       |            |                   |
| SENSORS INSTALLED:       |                     |                                                       |            |                   |
| Temperature 🗹            | Heading 🗹           | Pitch / Roll 🗹                                        | Pressure 🗹 | Rating 200 meters |
| FEATURES INSTALLED:      |                     |                                                       |            |                   |
| ✓ Water Profile          |                     | High Rate Pinging                                     |            |                   |
| Bottom Track             |                     | Shallow Bottom Mode                                   |            |                   |
| High Resolution V        | Vater Modes         | Wave Guage Acquisition                                |            |                   |
| LADCP/Surface Tr         | rack                | River Survey ADCP *                                   |            |                   |
| * Includes Water Profile | e, Bottom Track and | High Resolution Water Modes                           |            |                   |
| COMMUNICATIONS:          |                     |                                                       |            |                   |
| Communication            | RS-232              |                                                       |            |                   |
| Baud Rate                | 9600                |                                                       |            |                   |
| Parity                   | NONE                |                                                       |            |                   |
| Recorder Capacity        | 1150                | MB (Installed)                                        |            |                   |
| Power Configuration      | 20-60 VDC           |                                                       |            |                   |
| Cable Length             | 0                   | metera                                                |            |                   |

14020 Stowe Drive, Poway, CA 92064, (858)842-2600, FAX (858)842-2822, Internet: rdi@rdinstruments.com











# 7.5 ADCP CONFIGURATION FILES

```
10m ADCP.
CR1
CF11101
EA0
EB0
ED100
ES35
EX11111
EZ1111111
RI0
WA255
WB0
WD111100000
WF88
WN42
WP500
WS35
WV175
HD111000000
HB5
HP4920
HR01:00:00.00
HT00:00:00.50
TE00:10:00.00
TP00:00.50
CK
CS
;
;Instrument
                  = Workhorse Sentinel
;Frequency
                   = 614400
                  = YES
;Water Profile
;Bottom Track
                   = NO
                  = NO
;High Res. Modes
;High Rate Pinging = NO
;Shallow Bottom Mode= NO
              = YES
;Wave Gauge
;Lowered ADCP
                  = NO
;Beam angle
                  = 20
                  = 5.00
;Temperature
;Deployment hours = 360.00
;Battery packs = 1
;Automatic TP
                  = NO
;Memory size [MB] = 1000
;Saved Screen
                  = 2
;
;Consequences generated by PlanADCP version 2.04:
;First cell range = 1.41 m
;Last cell range = 15.76 m
;Max range
                  = 35.28 m
;Standard deviation = 1.08 cm/s
;Ensemble size = 994 bytes
;Storage required = 133.83 MB (140329440 bytes)
                 = 440.26 Wh
;Power usage
;Battery usage
                  = 1.0
;Samples / Wv Burst = 4920
;Min NonDir Wave Per= 1.85 s
;Min Dir Wave Period= 2.49 s
```



;Bytes / Wave Burst = 383840 ; WARNINGS AND CAUTIONS: ; Waves Gauge feature has to be installed in Workhorse to use selected option. ; Advanced settings have been changed. CR1 CF11101 EA0 EB0 ED100 ES35 EX11111 EZ1111111 RI0 WA255 WB0 WD111100000 WF88 WN42 WP500 WS35 WV175 HD111000000 HB5 HP4800 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 TF09/02/02 12:00:00 CK CS ; , ;Instrument = Workhorse Sentinel ;Frequency = 614400 ;Water Profile = YES ;Bottom Track = NO ;High Res. Modes = NO ;High Rate Pinging = NO ;Shallow Bottom Mode= NO ;Wave Gauge = YES ;Lowered ADCP = NO ;Beam angle = 20 = 5.00 ;Temperature ;Deployment hours = 312.00 ;Battery packs = 1 ;Automatic TP = NO ;Memory size [MB] = 1128 ;Saved Screen = 2 ; ;Consequences generated by PlanADCP version 2.04: ;First cell range = 1.41 m ;Last cell range = 15.76 m = 35.28 m ;Max range ;Standard deviation = 1.08 cm/s ;Ensemble size = 994 bytes ;Storage required = 113.20 MB (118698528 bytes)



;Power usage = 376.92 Wh ;Battery usage = 0.8 ;Samples / Wv Burst = 4800 ;Min NonDir Wave Per= 1.85 s ;Min Dir Wave Period= 2.49 s ;Bytes / Wave Burst = 374480 ; ; WARNINGS AND CAUTIONS: ; Waves Gauge feature has to be installed in Workhorse to use selected option. ; Advanced settings have been changed.

### 30m ADCP.

CR1 CF11101 EA0 EB0 ED300 ES35 EX11111 EZ1111111 RI0 WA255 WB0 WD111100000 WF88 WN69 WP250 WS50 WV175 HD111000000 HB5 HP4080 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 CK CS ; = Workhorse Sentinel ;Instrument ;Frequency = 614400 ;Water Profile = YES ;Bottom Track = NO = NO ;High Res. Modes ;High Rate Pinging = NO ;Shallow Bottom Mode= NO = YES ;Wave Gauge ;Lowered ADCP = NO = 20 ;Beam angle = 5.00 ;Temperature ;Deployment hours = 360.00 ;Battery packs = 1 ;Automatic TP = NO ;Memory size [MB] = 1000;Saved Screen = 1



;

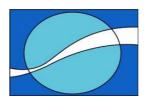
```
;Consequences generated by PlanADCP version 2.04:
;First cell range = 1.60 m
                   = 35.60 m
;Last cell range
                  = 33.22 m
;Max range
;Standard deviation = 0.86 cm/s
;Ensemble size = 1534 bytes
Storage required = 112.45 MB (117908640 bytes)
;Power usage = 447.68 Wh
;Battery usage
                    = 1.0
;Samples / Wv Burst = 4080
;Min NonDir Wave Per= 2.59 s
;Min Dir Wave Period= 4.31 s
;Bytes / Wave Burst = 318320
; WARNINGS AND CAUTIONS:
; Waves Gauge feature has to be installed in Workhorse to use
selected option.
; Advanced settings have been changed.
```

CR1 CF11101 EA0 EB0 ED300 ES35 EX11111 EZ1111111 RI0 WA255 WB0 WD111100000 WF88 WN69 WP250 WS50 WV175 HD111000000 HB5 HP4800 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 TF09/02/02 12:00:00 CK CS ; = Workhorse Sentinel ;Instrument = 614400;Frequency ;Water Profile = YES ;Bottom Track = NO ;High Res. Modes = NO ;High Rate Pinging = NO ;Shallow Bottom Mode= NO ;Wave Gauge = YES ;Lowered ADCP = NO = 20 ;Beam angle



```
= 5.00
;Temperature
                    = 312.00
;Deployment hours
                    = 1
;Battery packs
;Automatic TP
                    = NO
;Memory size [MB]
                    = 1128
;Saved Screen
                    = 2
;Consequences generated by PlanADCP version 2.04:
;First cell range = 35.60 m
;Last cell range = 38.22 m
;First cell range = 1.60 m
;Standard deviation = 0.86 cm/s
;Ensemble size
                   = 1534 bytes
;Storage required = 114.16 MB (119709408 bytes)
                   = 435.03 Wh
;Power usage
;Battery usage
                    = 1.0
;Samples / Wv Burst = 4800
;Min NonDir Wave Per= 2.59 s
;Min Dir Wave Period= 4.31 s
;Bytes / Wave Burst = 374480
;
; WARNINGS AND CAUTIONS:
; Waves Gauge feature has to be installed in Workhorse to use
selected option.
; Advanced settings have been changed.
```




# LWANDLE DATA REPORT

# **BANTAMSKLIP SITE – DEPLOYMENT EIGHT**

# PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



# PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



28 August 2009

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD Unit 13 Constantiaberg Business Park, 31 Princess Vlei Road, Diep River, 7800, Cape Town, South Africa

Co Reg. No. 2003/015524/07



# TABLE OF CONTENTS

| 1. | DISCL | AIMER                                     | 3  |
|----|-------|-------------------------------------------|----|
| 2. | EXEC  | UTIVE SUMMARY                             | 4  |
|    | 2.1   | DATA RETURN FOR BANTAMSKLIP SITE.         | 7  |
| 3. | INTRO | DDUCTION                                  | 8  |
|    | 3.1   | PROJECT DESCRIPTION                       | 8  |
|    | 3.2   | MEASUREMENT LOCATION                      | 8  |
| 4. | OPER  | ATIONS                                    | 9  |
|    | 4.1   | SUMMARY OF EVENTS                         | 9  |
|    | 4.2   | INSTRUMENT CONFIGURATIONS                 | 9  |
| 5. | DATA  | QUALITY CONTROL                           | 10 |
|    | 5.1   | ADCP                                      | 10 |
|    |       | 5.1.1 Current processing                  | 10 |
|    |       | 5.1.2 Wave processing                     | 10 |
|    | 5.2   | RBR-CT LOGGER                             | 12 |
|    | 5.3   | TIDE GAUGE                                | 12 |
|    | 5.4   | BIOFOULING                                | 12 |
|    | 5.5   | WATER SAMPLE                              | 12 |
| 6. | DATA  | PRESENTATION AND DISCUSSION               | 13 |
| 7. | INSTR | UMENT PARTICULARS                         | 19 |
|    | 7.1   | ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS   | 19 |
|    | 7.2   | RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT |    |
|    |       | SHEETS                                    | 21 |
|    | 7.3   | RBR TIDE GAUGE RECOVERY AND RE-DEPLOYMENT |    |
|    |       | SHEETS                                    | 23 |
|    | 7.4   | ADCP CONFIGURATION FILES                  | 24 |





### 1. DISCLAIMER

The data is this report will undergo additional quality control procedures by Prestedge Retief Dresner Wijnberg (PRDW). For this reason no data in this report should be used for design purposes and only quality controlled data provided by PRDW should be used.



# 2. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 8 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -10.8        | 0.1135                           | 0.0379                            | 0.0202                           | 0.0301                                | 58.39                     |
| -10.4        | 0.1008                           | 0.0345                            | 0.0185                           | 0.0205                                | 78.23                     |
| -10.1        | 0.0863                           | 0.0350                            | 0.0161                           | 0.0188                                | 99.80                     |
| -9.7         | 0.1010                           | 0.0350                            | 0.0174                           | 0.0133                                | 125.34                    |
| -9.4         | 0.0983                           | 0.0374                            | 0.0185                           | 0.0154                                | 143.37                    |
| -9.0         | 0.1008                           | 0.0424                            | 0.0210                           | 0.0231                                | 160.72                    |
| -8.7         | 0.0993                           | 0.0451                            | 0.0197                           | 0.0273                                | 164.74                    |
| -8.3         | 0.0905                           | 0.0477                            | 0.0212                           | 0.0347                                | 167.13                    |
| -8.0         | 0.1109                           | 0.0550                            | 0.0258                           | 0.0434                                | 167.27                    |
| -7.6         | 0.1280                           | 0.0597                            | 0.0273                           | 0.0498                                | 160.90                    |
| -7.3         | 0.1344                           | 0.0637                            | 0.0275                           | 0.0543                                | 161.50                    |
| -6.9         | 0.1337                           | 0.0714                            | 0.0291                           | 0.0613                                | 160.40                    |
| -6.6         | 0.1448                           | 0.0762                            | 0.0282                           | 0.0659                                | 158.89                    |
| -6.2         | 0.1461                           | 0.0807                            | 0.0285                           | 0.0709                                | 156.59                    |
| -5.9         | 0.1543                           | 0.0866                            | 0.0304                           | 0.0772                                | 151.90                    |
| -5.5         | 0.1691                           | 0.0915                            | 0.0316                           | 0.0820                                | 150.50                    |
| -5.2         | 0.1754                           | 0.0929                            | 0.0312                           | 0.0839                                | 149.68                    |
| -4.8         | 0.1587                           | 0.0937                            | 0.0292                           | 0.0843                                | 150.58                    |
| -4.5         | 0.1904                           | 0.0960                            | 0.0297                           | 0.0863                                | 148.31                    |
| -4.1         | 0.1786                           | 0.0998                            | 0.0308                           | 0.0887                                | 147.22                    |
| -3.8         | 0.1840                           | 0.1069                            | 0.0311                           | 0.0946                                | 146.55                    |
| -3.4         | 0.1864                           | 0.1093                            | 0.0287                           | 0.0963                                | 146.17                    |
| -3.1         | 0.1908                           | 0.1126                            | 0.0277                           | 0.0959                                | 144.98                    |
| -2.7         | 0.1992                           | 0.1166                            | 0.0312                           | 0.0992                                | 144.28                    |
| -2.4         | 0.2011                           | 0.1214                            | 0.0299                           | 0.1038                                | 144.78                    |
| -2.0         | 0.1725                           | 0.1235                            | 0.0276                           | 0.1033                                | 144.32                    |
| -1.7         | 0.1817                           | 0.1292                            | 0.0290                           | 0.1100                                | 142.62                    |
| -1.3         | 0.2152                           | 0.1343                            | 0.0308                           | 0.1166                                | 135.84                    |
| -1.0         | 0.3085                           | 0.1535                            | 0.0466                           | 0.1325                                | 128.62                    |

Table 1 – Current flow summary for 10m ADCP

# Table 2 – Waves summary for 10m ADCP

|        | Max    | Min    | Mean   | Std  |
|--------|--------|--------|--------|------|
| Hs (m) | 2.22   | 1.20   | 1.74   | 0.30 |
| Tp (s) | 12.20  | 10.20  | 11.43  | 0.81 |
| Dp (°) | 233.52 | 218.52 | 224.45 | 3.53 |



|              | Table 5 – Current now summary for 50m ADCP |                                   |                                  |                                       |                              |  |
|--------------|--------------------------------------------|-----------------------------------|----------------------------------|---------------------------------------|------------------------------|--|
| Depth<br>(m) | Max speed<br>(ms <sup>-1</sup> )           | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean<br>direction (°) |  |
| -27.3        | 0.1497                                     | 0.0372                            | 0.0218                           | 0.0149                                | 61.16                        |  |
| -26.8        | 0.1739                                     | 0.0408                            | 0.0237                           | 0.0156                                | 57.32                        |  |
| -26.3        | 0.2233                                     | 0.0438                            | 0.0259                           | 0.0164                                | 56.11                        |  |
| -25.8        | 0.2529                                     | 0.0472                            | 0.0277                           | 0.0176                                | 52.76                        |  |
| -25.3        | 0.2774                                     | 0.0495                            | 0.0291                           | 0.0180                                | 49.45                        |  |
| -24.8        | 0.2581                                     | 0.0519                            | 0.0301                           | 0.0187                                | 46.97                        |  |
| -24.3        | 0.2433                                     | 0.0544                            | 0.0314                           | 0.0196                                | 43.98                        |  |
| -23.8        | 0.2317                                     | 0.0563                            | 0.0321                           | 0.0205                                | 41.30                        |  |
| -23.3        | 0.2400                                     | 0.0587                            | 0.0332                           | 0.0209                                | 37.75                        |  |
| -22.8        | 0.2075                                     | 0.0604                            | 0.0339                           | 0.0212                                | 33.18                        |  |
| -22.3        | 0.2024                                     | 0.0621                            | 0.0347                           | 0.0219                                | 31.18                        |  |
| -21.8        | 0.2196                                     | 0.0645                            | 0.0359                           | 0.0224                                | 26.27                        |  |
| -21.3        | 0.2288                                     | 0.0658                            | 0.0369                           | 0.0232                                | 22.22                        |  |
| -20.8        | 0.2202                                     | 0.0671                            | 0.0378                           | 0.0239                                | 17.74                        |  |
| -20.3        | 0.2227                                     | 0.0687                            | 0.0384                           | 0.0253                                | 13.71                        |  |
| -19.8        | 0.2344                                     | 0.0697                            | 0.0392                           | 0.0264                                | 9.53                         |  |
| -19.3        | 0.2339                                     | 0.0704                            | 0.0399                           | 0.0279                                | 6.06                         |  |
| -18.8        | 0.2241                                     | 0.0716                            | 0.0401                           | 0.0286                                | 1.88                         |  |
| -18.3        | 0.2116                                     | 0.0728                            | 0.0402                           | 0.0298                                | 358.04                       |  |
| -17.8        | 0.2073                                     | 0.0737                            | 0.0406                           | 0.0311                                | 355.37                       |  |
| -17.3        | 0.2441                                     | 0.0748                            | 0.0415                           | 0.0320                                | 352.27                       |  |
| -16.8        | 0.2257                                     | 0.0761                            | 0.0418                           | 0.0326                                | 349.71                       |  |
| -16.3        | 0.2327                                     | 0.0778                            | 0.0417                           | 0.0335                                | 347.64                       |  |
| -15.8        | 0.2271                                     | 0.0791                            | 0.0421                           | 0.0339                                | 345.05                       |  |
| -15.3        | 0.2541                                     | 0.0804                            | 0.0430                           | 0.0339                                | 342.33                       |  |
| -14.8        | 0.3091                                     | 0.0811                            | 0.0436                           | 0.0345                                | 338.91                       |  |
| -14.3        | 0.3165                                     | 0.0821                            | 0.0439                           | 0.0346                                | 335.03                       |  |
| -13.8        | 0.3003                                     | 0.0829                            | 0.0440                           | 0.0351                                | 331.26                       |  |
| -13.3        | 0.2899                                     | 0.0829                            | 0.0445                           | 0.0348                                | 327.87                       |  |
| -12.8        | 0.2751                                     | 0.0833                            | 0.0447                           | 0.0360                                | 323.02                       |  |
| -12.3        | 0.2910                                     | 0.0838                            | 0.0444                           | 0.0372                                | 319.82                       |  |
| -11.8        | 0.3168                                     | 0.0845                            | 0.0453                           | 0.0383                                | 315.18                       |  |
| -11.3        | 0.3379                                     | 0.0851                            | 0.0460                           | 0.0402                                | 312.90                       |  |
| -10.8        | 0.3516                                     | 0.0858                            | 0.0467                           | 0.0419                                | 309.44                       |  |
| -10.3        | 0.3252                                     | 0.0869                            | 0.0476                           | 0.0432                                | 307.01                       |  |
| -9.8         | 0.3272                                     | 0.0882                            | 0.0492                           | 0.0450                                | 304.90                       |  |
| -9.3         | 0.3471                                     | 0.0897                            | 0.0500                           | 0.0470                                | 303.25                       |  |
| -8.8         | 0.3591                                     | 0.0916                            | 0.0508                           | 0.0486                                | 301.70                       |  |
| -8.3         | 0.3403                                     | 0.0937                            | 0.0521                           | 0.0503                                | 299.82                       |  |
| -7.8         | 0.3762                                     | 0.0965                            | 0.0539                           | 0.0526                                | 297.86                       |  |
| -7.3         | 0.3945                                     | 0.0985                            | 0.0556                           | 0.0549                                | 296.03                       |  |
| -6.8         | 0.4132                                     | 0.1010                            | 0.0575                           | 0.0576                                | 294.26                       |  |
| -6.3         | 0.4038                                     | 0.1036                            | 0.0595                           | 0.0604                                | 292.72                       |  |

# Table 3 – Current flow summary for 30m ADCP



| -5.8 | 0.4053 | 0.1064 | 0.0614 | 0.0635 | 290.95 |
|------|--------|--------|--------|--------|--------|
| -5.3 | 0.4090 | 0.1103 | 0.0630 | 0.0674 | 289.70 |
| -4.8 | 0.3864 | 0.1139 | 0.0646 | 0.0706 | 287.84 |
| -4.3 | 0.3670 | 0.1175 | 0.0660 | 0.0745 | 287.15 |
| -3.8 | 0.3880 | 0.1209 | 0.0674 | 0.0771 | 288.92 |
| -3.3 | 0.3766 | 0.1283 | 0.0667 | 0.0815 | 300.49 |
| -2.8 | 0.3776 | 0.1419 | 0.0667 | 0.0921 | 311.08 |
| -2.3 | 0.4396 | 0.1637 | 0.0736 | 0.1109 | 310.85 |

# Table 4 – Waves summary for 30m ADCP

|        | Max    | Min    | Mean   | Std   |
|--------|--------|--------|--------|-------|
| Hs (m) | 3.26   | 1.00   | 1.67   | 0.50  |
| Tp (s) | 15.00  | 5.40   | 11.17  | 1.88  |
| Dp (°) | 253.53 | 156.53 | 219.40 | 15.67 |

Table 5 – Water temperature and salinity summary (surface, 13m)

| Parameter        | Mean  | Max   | Min   |
|------------------|-------|-------|-------|
| Temperature (°C) | 12.20 | 17.89 | 10.23 |
| Conductivity     | 40.04 | 45.84 | 37.42 |
| Salinity (psu)   | 34.83 | 35.11 | 33.32 |

| Parameter        | Mean  | Max   | Min   |
|------------------|-------|-------|-------|
| Temperature (°C) | 10.69 | 13.72 | 9.93  |
| Conductivity     | 38.71 | 41.73 | 34.72 |
| Salinity (psu)   | 34.96 | 35.08 | 30.64 |



# 2.1 DATA RETURN FOR BANTAMSKLIP SITE.

| Bantams P08       | 29 January 2008 –<br>15 January 2009 | 15 January 2009 –<br>3 March 2009 | 2 February 2009 –<br>3 March 2009 |
|-------------------|--------------------------------------|-----------------------------------|-----------------------------------|
| Btm RBR Salinity  | 54                                   | 63                                | 100                               |
| Surf RBR Salinity | 70                                   | 63                                | 100                               |
| 10m ADCP Current  | 33                                   | 4                                 | 7                                 |
| 10m ADCP Wave     | 33                                   | 4                                 | 7                                 |
| 30m ADCP Current  | 28                                   | 33                                | 53                                |
| 30m ADCP Wave     | 25                                   | 33                                | 53                                |
| Tide              | 35                                   | 92                                | 87                                |
| Temp-Btm RBR,     | 62                                   | 63                                | 100                               |
| Temp-Surf RBR     | 77                                   | 63                                | 100                               |
| Temp-10m ADCP     | 33                                   | 4                                 | 7                                 |
| Temp-30m ADCP     | 34                                   | 33                                | 53                                |
| Tide Temperature  | 10                                   | 92                                | 87                                |
| 30m Temperature   | 76                                   | 63                                | 100                               |
| 10m Temperature   | 86                                   | 63                                | 100                               |

# Table 7 – Data Return (%).



# 3. INTRODUCTION

# 3.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents waves, currents, temperature and salinity data collected at Bantamsklip station for the period February  $2^{nd}$  – March  $3^{rd}$  2009 (Period 8). Service of the instruments was undertaken during March  $3^{rd}$  –  $7^{th}$  2009.

# 3.2 MEASUREMENT LOCATION

The deployment location of the instruments is given in Table 8 and a location of waters samples taken on March 7th is given in Table 9.

| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | 34.7040       | 19.5517        |
| 10m ADCP    | 34.7198       | 19.5606        |
| Biofouling  | 34.7198       | 19.5614        |
| 30m ADCP    | 34.7101       | 19.5111        |
| T&C mooring | 34.7101       | 19.5111        |

### Table 8 – Measurement locations.

| Bottle | STN | Lat       | Long      | Exact Time | COMMENTS (if RBR      |
|--------|-----|-----------|-----------|------------|-----------------------|
| #      | #   |           |           | HH:MM:SS   | profile is taken etc) |
| 1      | 30m | 34 42.603 | 19 30.668 | 10.10      | Depth: 4m             |
| 2      | 30m | 34 42.603 | 19 30.668 | 10.13      | Depth: 12m            |
| 3      | 30m | 34 42.603 | 19 30.668 | 10.15      | Depth: 20m            |
| 4      | 30m | 34 42.603 | 19 30.668 | 10.19      | Depth: 28m            |
| 5      | 10m | 34 43.186 | 19 33.637 | 10.54      | Depth: 4m             |
| 6      | 10m | 34 43.186 | 19 33.637 | 10.56      | Depth: 8m             |
| 7      | 1   | 34 43.190 | 19 33.611 | 10.58      | Depth: 4m             |
| 8      | 2   | 34 43.161 | 19 33.591 | 11.01      | Depth: 4m             |
| 9      | 3   | 34 43.124 | 10 33.584 | 11.04      | Depth: 4m             |
| 10     | 4   | 34 43.097 | 19 33.577 | 11.06      | Depth: 4m             |
| 11     | 5   | 34 43.081 | 19 33.541 | 11.08      | Depth: 4m             |

## Table 9 – Measurement locations – water samples.

# 4. **OPERATIONS**

# 4.1 SUMMARY OF EVENTS

Recovery of the instruments were undertaken on March 3<sup>rd</sup> 2009 and redeployment on March 7<sup>th</sup> 2009.

# 4.2 INSTRUMENT CONFIGURATIONS

Configurations were as per specifications.

Note: Biofouling plates have been installed on frame to avoid third party interference (as of May 2009).



# 5. DATA QUALITY CONTROL

# 5.1 ADCP

Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further.

# 5.1.1 Current processing

- The record was truncated to exclude times pre and post deployment.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 29' W for the 10m ADCP and 25° 28' W for the 30m ADCP.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 1).
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.

# 5.1.2 Wave processing

Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:

- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 29' W for the 10m ADCP and 25° 28' W for the 30m ADCP.
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.





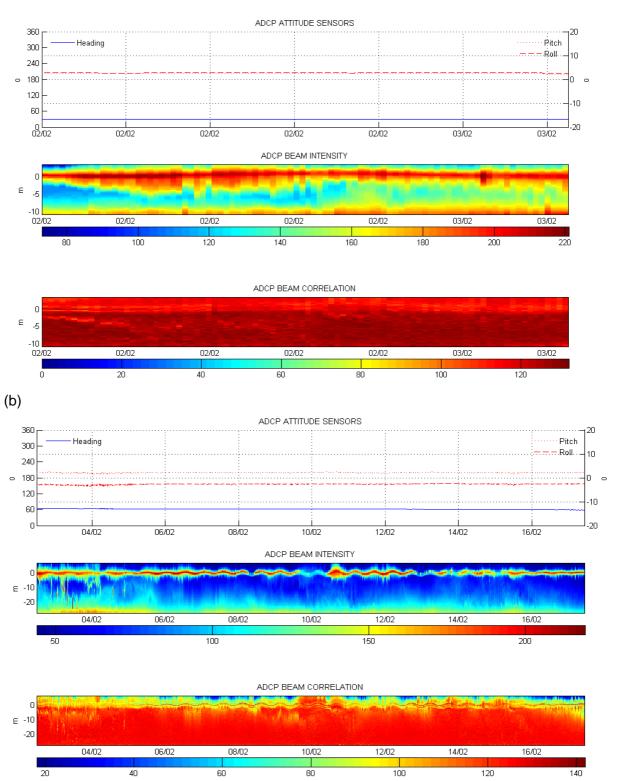



Figure 1: Attitude data for (a) 10m ADCP and (b) 30m ADCP.



# 5.2 RBR-CT LOGGER

The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.

- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.

# 5.3 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- Atmospheric sea level pressure correction was applied.
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is -1.649m.
- Finally the data was averaged over a 10-minute period.

### 5.4 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Recovery of the plates was not scheduled for service visit 8.

# 5.5 WATER SAMPLE.

Water samples were collected during this service and sent to the CSIR for analysis.



## 6. DATA PRESENTATION AND DISCUSSION

The eighth set of oceanographic data collected off the coast of Bantamsklip for the period between February 2<sup>nd</sup> and March 3<sup>rd</sup> 2009 has been presented in this report. Data obtained from the 10m and 30m ADCPs, the surface and bottom RBR-CT loggers and the tide gauge have been supplied to PRDW and are briefly presented here.

The average surface flow for the 10m ADCP was  $0.15 \text{ms}^{-1}$ , decreasing to  $\sim 0.04 \text{ms}^{-1}$  at ~10m depth. Average wave parameters of ~1.74m, ~11.4s and ~224° were recorded for Hs, Tp and Dp respectively. However, only one day worth of data was measured.

The average surface flow for the 30m ADCP was  $0.16ms^{-1}$ , decreasing to  $\sim 0.04ms^{-1}$  at  $\sim 27m$  depth. Average wave parameters of  $\sim 1.7m$ ,  $\sim 11.2s$  and  $\sim 220^{\circ}$  were recorded for Hs, Tp and Dp respectively.

The temperature sensors on board the ADCPs and RBR loggers recorded reasonably similar values during the deployment period.



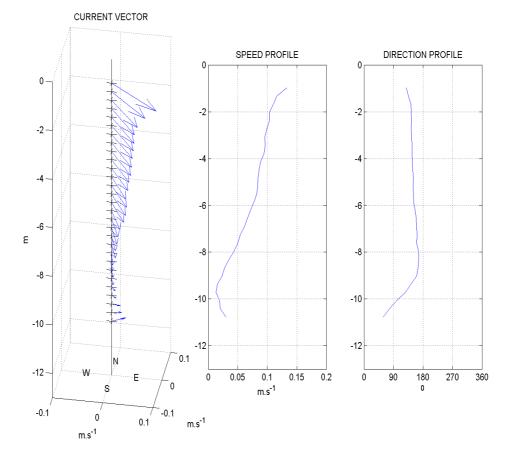



Figure 2: Mean profile plot for 10m ADCP.



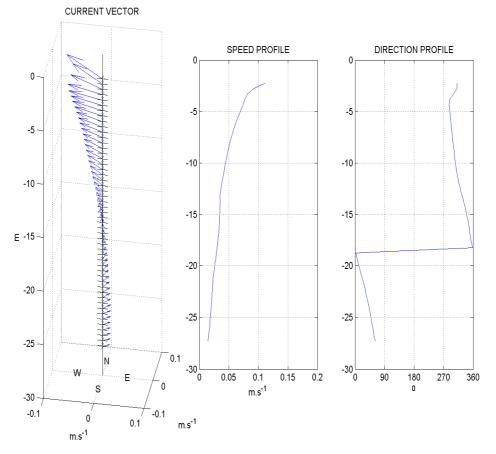



Figure 3: Mean profile plot for 30m ADCP.



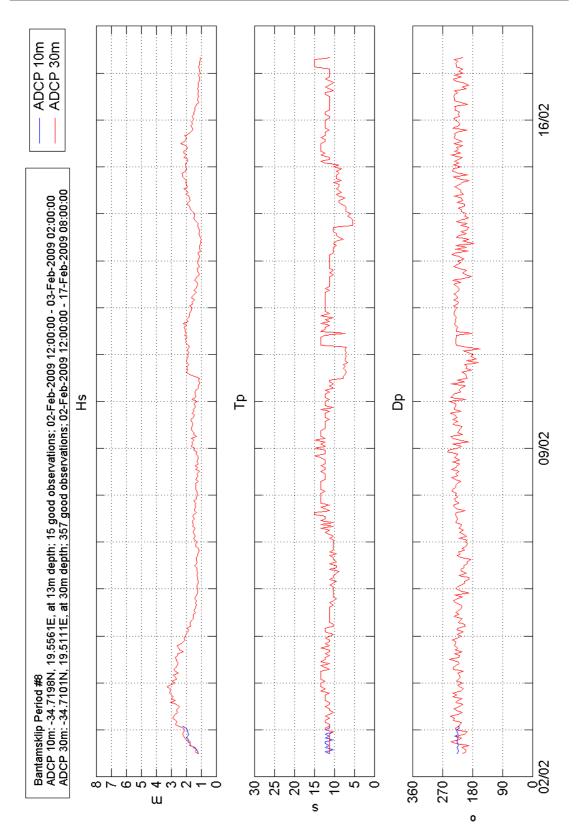



Figure 4: Time series of Hs, Tp (peak period) and Dp (Direction at Tp) from 10m and 30m ADCPs.



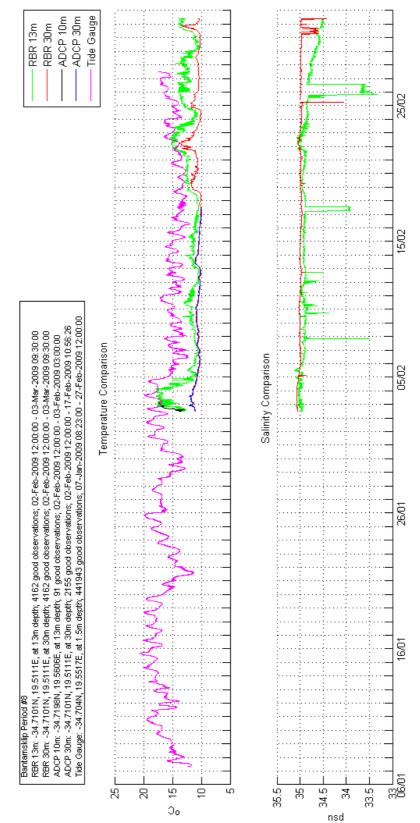



Figure 5: Time series of temperature and salinity from the RBR loggers and ADCPs.



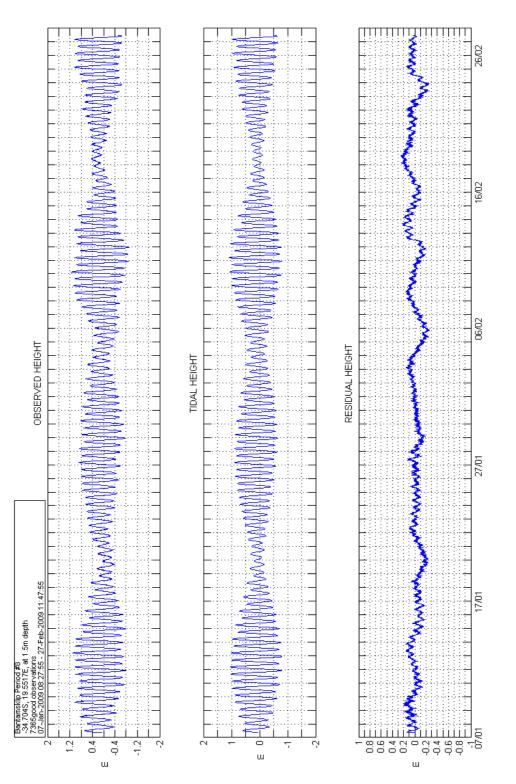



Figure 6: Tidal time series (a) observed height, (b) tidal height (tidal calculation follows the method of Foreman and uses the observed height as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)), (c) residual height.



### 7. INSTRUMENT PARTICULARS

### 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

10m ADCP.

#### 1 <u>RECOVERY</u> Site Name: <u>Bantamsklip 10 m site</u> Date: <u>3 March 2009</u>

| Instrument type and serial number                    | RDI                       | 10105 |                    |        |
|------------------------------------------------------|---------------------------|-------|--------------------|--------|
| Recovery date and time                               | <u>3 March 2009 11:29</u> |       |                    |        |
| Latitude (do not ignore - if same, please indicate)  |                           |       | 34                 | 43.186 |
| Longitude (do not ignore – if same, please indicate) |                           |       | 19 33.637          |        |
| Switch off date and time LT GMT                      |                           |       | 3 March 2009 18:56 |        |
| File size                                            |                           |       |                    | 6MB    |
| Was the data copied to memory card?                  |                           |       | Y*                 | N      |

### 2 <u>RE-DEPLOYMENT</u> Site Name: <u>Bantams 10 m site</u>. Date 7 March 2009

| Instrument type and serial number (do not ignore - | RDI | 10105   |         |
|----------------------------------------------------|-----|---------|---------|
| Install a new battery and/or check the voltage     |     |         | 1*44.7V |
| Frequency of unit being used                       |     | 600kHz  |         |
| Depth range                                        |     | 10m     |         |
| Number of bins (calculated automatically)          |     | 42      |         |
| Bin Size (calculated automatically)                |     | 0.35    |         |
| Wave burst duration                                |     | 40min   |         |
| Time between wave bursts                           |     | 60min   |         |
| Pings per ensemble                                 |     | 500     |         |
| Ensemble interval                                  |     | 10min   |         |
| Deployment duration                                |     | 13days  | 1       |
| Transducer depth                                   |     | 10m     |         |
| Any other commands                                 |     | minTP,R | 10      |
| Temperature                                        |     | 5       |         |
| Recorder size                                      | 20  | OMB     |         |

| Consequences of the      | sampling pa | rameters |       |               |
|--------------------------|-------------|----------|-------|---------------|
| First and last bin range |             |          | 1.41  | 15.76         |
| Battery usage            |             |          |       | 376Wh         |
| Standard deviation       |             |          |       | 1.08          |
| Storage space required   |             |          |       | 113MB         |
| Set the ADCP clock       | LT*         | GMT      | 6 Mar | ch 2009 21:30 |
| Run pre-deployment tests |             |          |       | Yes           |
| Name the ADCP deployment |             |          | B1003 |               |
| Deployme                 | ent details |          |       |               |

PRESTEDGE RETIEF DRESNER WIJNBERG



# LWANDLE TECHNOLOGIES (PTY) LTD

| Switch on date and time                                                                                      | L1                                                   | *                  | GMT      | 7 March 2009 08:0                                  |           |  |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|----------|----------------------------------------------------|-----------|--|
| Deployment date and time                                                                                     | LI                                                   | *                  | GMT      | 7 March 2009 10:50                                 |           |  |
| Deployment Latitude (do not ignore - if same, p                                                              | lease indica                                         | e indicate)        |          |                                                    | 34 43.186 |  |
| Deployment Longitude (do not ignore - if same,                                                               | Longitude (do not ignore - if same, please indicate) |                    |          | 19 33.637                                          |           |  |
| Site depth                                                                                                   | 10m                                                  | m Deployment depth |          |                                                    | 12.3m     |  |
| Acoustic release (1) serial number and release code                                                          |                                                      |                    |          |                                                    |           |  |
| Acoustic release (2) serial number and release code                                                          |                                                      |                    |          |                                                    |           |  |
| Argos beacon serial number                                                                                   |                                                      |                    |          |                                                    |           |  |
| Save <i>whp</i> , <i>dpl</i> and <i>scl</i> files in one folder (filename format: <i>serialnumber_date</i> ) |                                                      |                    | 2009/ADC | ns <u>3 March</u><br>P_newDeplo<br><u>s/</u> B1003 |           |  |

### 30m ADCP.

### 1 <u>RECOVERY</u> Site Name: Bantamsklip 30m site Date: 3 march 2009

| Instrument type and serial number                    | RDI                         | 11424 |                    |           |  |  |
|------------------------------------------------------|-----------------------------|-------|--------------------|-----------|--|--|
| Recovery date and time                               | covery date and time LT GMT |       |                    |           |  |  |
| Latitude (do not ignore – if same, please indicate)  |                             |       |                    | 42.601    |  |  |
| Longitude (do not ignore – if same, please indicate) |                             |       |                    | 19 30.691 |  |  |
| Switch off date and time LT GMT                      |                             |       | 3 March 2009 19:17 |           |  |  |
| File size                                            |                             |       | 1                  | 41MB      |  |  |
| Was the data copied to memory card?                  |                             |       | Y*                 | N         |  |  |

### 2 <u>RE-DEPLOYMENT</u>

### Site Name: Bantams 30m site Date: 7 Mar 2009

| Instrument type and serial number (do not ignore - | RDI | 11424       |         |
|----------------------------------------------------|-----|-------------|---------|
| Install a new battery and/or check the voltage     |     |             | 1*44.7V |
| Frequency of unit being used                       |     | 600kHz      |         |
| Depth range                                        |     | <b>30m</b>  |         |
| Number of bins (calculated automatically)          |     | 69          |         |
| Bin Size (calculated automatically)                |     | 0.5         |         |
| Wave burst duration                                |     | 40min       |         |
| Time between wave bursts                           |     | 60min       |         |
| Pings per ensemble                                 |     | 250         |         |
| Ensemble interval                                  |     | 10min       |         |
| Deployment duration                                |     | 13days      |         |
| Transducer depth                                   |     | <b>30</b> m |         |
| Any other commands                                 |     | minTP,R     | 0       |
| Temperature                                        |     | 5           |         |
| Recorder size                                      | 200 | OMB         |         |

| Consequences of the sampling parameters |     |       |
|-----------------------------------------|-----|-------|
| First and last bin range                | 1.6 | 35.6  |
| Battery usage                           |     | 453Wh |
| Standard deviation                      |     | 1.08  |



| Storage space required                                         |                        |         |                     |         | 114MB                                     |  |
|----------------------------------------------------------------|------------------------|---------|---------------------|---------|-------------------------------------------|--|
| Set the ADCP clock                                             | LI                     | -*      | GMT 6 March 2009 21 |         |                                           |  |
| Run pre-deployment tests                                       | n pre-deployment tests |         |                     |         | yes                                       |  |
| Name the ADCP deployment                                       |                        |         |                     | B3003   |                                           |  |
| Deplo                                                          | oyment deta            | ails    |                     |         |                                           |  |
| Switch on date and time                                        | LI                     | LT* GMT |                     | 7 Marc  | h 2009 08:00                              |  |
| Deployment date and time                                       | LI                     | LT* GMT |                     |         | h 2009 10:00                              |  |
| Deployment Latitude (do not ignore - if same, please indicate) |                        |         |                     |         | 34 42.603                                 |  |
| Deployment Longitude (do not ignore - if same,                 | please indi            | cate)   |                     | 1       | 9 30.668                                  |  |
| Site depth                                                     | 30m                    | Deple   | oyment depth        |         | 31.6                                      |  |
| Acoustic release (1) serial number and release coc             | le                     | •       |                     |         |                                           |  |
| Acoustic release (2) serial number and release code            |                        |         |                     |         |                                           |  |
| Argos beacon serial number                                     |                        |         |                     |         | L.                                        |  |
| Save whp, dpl and scl files in one folder (filename f          | format: <b>seria</b>   | alnum   | ber_date)           | 2009/AC | ns 2 February<br>CP_newDeplo<br>les/B3001 |  |

### 7.2 RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT SHEETS

Surface.

### RECOVERY Site Name: Bantamsklip 30m site

Date: 3 March 2009

| Instrument type and serial number                                                                            | RBR<br>420ct  | 12994               |  |                              |
|--------------------------------------------------------------------------------------------------------------|---------------|---------------------|--|------------------------------|
| Recovery date and time                                                                                       | <u>3 Marc</u> | <u>h 2009 09:17</u> |  |                              |
| Latitude (do not ignore – if same, please indicate)                                                          | 34            | 42.605              |  |                              |
| Longitude (do not ignore - if same, please indicate)                                                         | 19 30.667     |                     |  |                              |
| Switch off date and time LT GMT                                                                              |               |                     |  | h 2009 20:01                 |
| File size                                                                                                    |               | 5KB                 |  |                              |
| Save <i>log</i> , <i>hex</i> and <i>dat</i> files in one folder (filename format: <b>serialnumber_date</b> ) |               |                     |  | ms 3 March<br>_RecoveredData |

#### **<u>RE-DEPLOYMENT</u>** Site Name:

#### Site Name: Bantamsklip 30m site Date: 7 March 2009

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 12994   |
|------------------------------------------------------------------------------|--------------|---------|
| Install a new battery and check the voltage                                  |              | 4* 3.2V |

#### Set up the sampling parameters

| Sampling period                |       | 10        | min      |
|--------------------------------|-------|-----------|----------|
| Averaging period               |       | 11        | min      |
| Expected deployment duration   |       | 30        | days     |
| Start of logging (date / time) | 7 Ma  | rch 2009  | 08:00:00 |
| End of logging (date / time)   | 15 Ap | oril 2009 | 12:00:00 |
| Memory usage                   |       |           | .4%      |
| Battery usage                  |       |           | 976mAH   |



#### **Deployment details**

| Deployment date and time                                          | LT*                                                            | GMT | 7 March 2009 10:00                                       |  |
|-------------------------------------------------------------------|----------------------------------------------------------------|-----|----------------------------------------------------------|--|
| Deployment Latitude (do not ignore - if same, please              | Deployment Latitude (do not ignore – if same, please indicate) |     |                                                          |  |
| Deployment Longitude (do not ignore - if same, plea               | se indicate)                                                   |     | 19 30.668                                                |  |
| Site name                                                         |                                                                |     | Batamsklip                                               |  |
| Site depth                                                        |                                                                |     | 30m                                                      |  |
| Deployment depth                                                  |                                                                |     | 13m                                                      |  |
| Acoustic release (1) serial number and release code               |                                                                |     |                                                          |  |
| Acoustic release (2) serial number and release code               |                                                                |     |                                                          |  |
| Argos beacon serial number                                        |                                                                |     |                                                          |  |
| Save <i>log</i> file (filename format: <i>serialnumber_date</i> ) |                                                                |     | Bantams 3 March<br>2009/RBR_RecoveredDat<br>a/012994.log |  |

#### Bottom.

### **<u>RE-DEPLOYMENT</u>** Site Name: Bantamsklip 30m site Date: 7 March 2009

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 15248    |
|------------------------------------------------------------------------------|--------------|----------|
| Install a new battery and check the voltage                                  |              | 3 * 3.2V |

#### Set up the sampling parameters

| Sampling period                |           | 10        | min      |
|--------------------------------|-----------|-----------|----------|
| Averaging period               |           | 1         | min      |
| Expected deployment duration   |           | 30        | days     |
| Start of logging (date / time) | 7 Ma      | rch 2009  | 08:00:00 |
| End of logging (date / time)   | 15 A      | pril 2009 | 12:00:00 |
| Memory usage                   | · · · · · |           | .4%      |
| Battery usage                  |           |           | 976mAH   |

#### **Deployment details**

| Deployment date and time                             | LT                         | GMT | 7 March 2009 10:00                                               |  |  |
|------------------------------------------------------|----------------------------|-----|------------------------------------------------------------------|--|--|
| Deployment Latitude (do not ignore - if same, please | 34 42.603                  |     |                                                                  |  |  |
| Deployment Longitude (do not ignore - if same, plea  | 19 30.668                  |     |                                                                  |  |  |
| Site name                                            |                            |     | Batamsklip                                                       |  |  |
| Site depth                                           | 30m                        |     |                                                                  |  |  |
| Deployment depth                                     |                            |     | 31.6m                                                            |  |  |
| Acoustic release (1) serial number and release code  |                            |     |                                                                  |  |  |
| Acoustic release (2) serial number and release code  |                            |     |                                                                  |  |  |
| Argos beacon serial number                           | Argos beacon serial number |     |                                                                  |  |  |
| Save log file (filename format: serialnumber_date)   |                            |     | Bantams 3 March<br>2009/RBR_RecoveredDat<br>a/ <b>015248.log</b> |  |  |



### 7.3 RBR TIDE GAUGE RECOVERY AND RE-DEPLOYMENT SHEETS

| RECOVERY Site Name: Bantamsklip Tidegauge Date: 3 March 2009                                                 |                |              |                    | <u>)9</u>                 |
|--------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------|---------------------------|
| Instrument type and serial number                                                                            | TGR<br>2050    | 13084        |                    |                           |
| Recovery date and time                                                                                       | <u>3 March</u> | n 2009 11:43 |                    |                           |
| Latitude (do not ignore – if same, please indicate)                                                          | 34 42.241      |              |                    |                           |
| Longitude (do not ignore – if same, please indicate)                                                         |                |              |                    | 33.101                    |
| Switch off date and time LT GMT                                                                              |                |              | 6 March 2009 20:06 |                           |
| File size                                                                                                    | 4              | 43KB         |                    |                           |
| Save <i>log</i> , <i>hex</i> and <i>dat</i> files in one folder (filename format: <b>serialnumber_date</b> ) |                |              |                    | TideGauge_013<br>06032009 |

### 2. <u>RE-DEPLOYMENT</u> Site Name: <u>Bantamsklip Tide Gauge</u> Date: <u>3 March 2009</u>

| Instrument type and serial number (do not ignore – if same, please indicate) | TGR<br>2050 | 13084    |
|------------------------------------------------------------------------------|-------------|----------|
| Install a new battery and check the voltage                                  |             | 2 * 3.28 |

#### Set up the sampling parameters

| Sampling period                |      | 10        | sec      |
|--------------------------------|------|-----------|----------|
| Averaging period               |      | 1         | sec      |
| xpected deployment duration 6  |      | 6 w       | veeks    |
| Start of logging (date / time) | 7 Ma | rch 2009  | 08:00:00 |
| End of logging (date / time)   | 30 A | pril 2009 | 12:00:00 |
| Memory usage                   |      |           | 33.5%    |
| Battery usage                  |      |           | 187mAH   |

| Deployment details                                             |                |     |         |                          |  |  |
|----------------------------------------------------------------|----------------|-----|---------|--------------------------|--|--|
| Deployment date and time                                       | LT             | GMT | 7 March | 2009 12:00               |  |  |
| Deployment Latitude (do not ignore – if same, please indicate) |                |     | 34      | 42.241                   |  |  |
| Deployment Longitude (do not ignore - if same, plea            | se indicate)   |     | 19      | 33.101                   |  |  |
| Site name                                                      |                |     | Bant    | amsklip                  |  |  |
| Site depth                                                     | 1.8m           |     |         | .8m                      |  |  |
| Deployment depth                                               | ployment depth |     | 1       | .7m                      |  |  |
| Acoustic release (1) serial number and release code            |                |     |         |                          |  |  |
| Acoustic release (2) serial number and release code            |                |     |         |                          |  |  |
| Argos beacon serial number                                     |                |     |         |                          |  |  |
| Save log file (filename format: serialnumber_date)             |                |     |         | ns 3 March<br>Guage_Data |  |  |



### 7.4 ADCP CONFIGURATION FILES

10m ADCP. CR1 CF11101 EA0 EB0 ED100 ES35 EX11111 EZ1111111 RI0 WA255 WB0 WD111100000 WF88 WN42 WP500 WS35 WV175 HD111000000 HB5 HP4800 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 TF09/03/07 08:00:00 CK CS ; ;Instrument ;Frequency = Workhorse Sentinel = 614400 = YES ;Water Profile = NO ;Bottom Track = NO ;High Res. Modes ;High Rate Pinging = NO ;Shallow Bottom Mode= NO = YES ;Wave Gauge = NO ;Lowered ADCP ;Beam angle = 20 ;Temperature = 5.00 ;Deployment hours = 312.00 ;Battery packs = 1 ;Automatic TP = NO ;Memory size [MB] = 2000 ;Saved Screen = 1 ; ;Consequences generated by PlanADCP version 2.04: ;First cell range = 1.41 m ;Last cell range = 15.76 m ;Max range = 35.28 m ;Standard deviation = 1.08 cm/s ;Ensemble size = 994 bytes ;Storage required = 113.20 MB (118698528 bytes) ;Power usage = 376.92 Wh ;Battery usage = 0.8 ;Samples / Wv Burst = 4800 ;Min NonDir Wave Per= 1.85 s



;Min Dir Wave Period= 2.49 s
;Bytes / Wave Burst = 374480
;
; WARNINGS AND CAUTIONS:
; Waves Gauge feature has to be installed in Workhorse to use
selected option.
; Advanced settings have been changed.

#### 30m ADCP.

CR1 CF11101 EA0 EB0 ED300 ES35 EX11111 EZ1111111 RI0 WA255 WB0 WD111100000 WF88 WN69 WP250 WS50 WV175 HD111000000 HB5 HP4800 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 TF09/03/07 08:00:00 CK CS ; = Workhorse Sentinel ;Instrument = 614400 ;Frequency ;Water Profile = YES = NO ;Bottom Track ;High Res. Modes = NO ;High Rate Pinging = NO ;Shallow Bottom Mode= NO = YES ;Wave Gauge ;Lowered ADCP = NO ;Beam angle = 20 = 5.00 ;Temperature = 312.00 ;Deployment hours ;Battery packs = 1 ;Automatic TP = NO = 2000 ;Memory size [MB] ;Saved Screen = 1 ; ;Consequences generated by PlanADCP version 2.04: ;First cell range = 1.60 m ;Last cell range = 35.60 m= 38.22 m;Max range

# LWANDLE TECHNOLOGIES (PTY) LTD



;Standard deviation = 0.86 cm/s ;Ensemble size = 1534 bytes ;Storage required = 114.16 MB (119709408 bytes) = 435.03 Wh ;Power usage = 1.0 ;Battery usage ;Samples / Wv Burst = 4800 ;Min NonDir Wave Per= 2.59 s ;Min Dir Wave Period= 4.31 s ;Bytes / Wave Burst = 374480 ; ; WARNINGS AND CAUTIONS: ; Waves Gauge feature has to be installed in Workhorse to use selected option. ; Advanced settings have been changed.

# **CERTIFICATE OF ANALYSIS**

Our ref: H:\USERS\MARLAB\REPORTS\Malr2948 Report Number: MALR2948 27 March 2009

Lwandle Technologies Gabriel Place 1 Gabriel Road Plumstead 7800

### Attention Dr Robin Carter CHEMICAL ANALYSIS: seawater samples (Order No.: Ben Schoeman)

Samples received: 17/03/09 Analysis completed: 23/03/09 Sample description: Seawater samples in sealed plastic bottles.

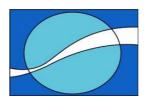
| Lab   | Sample | *Total Suspended Solids |
|-------|--------|-------------------------|
| No    | ld     | in mg/L                 |
| 35799 | B 1    | 2.3                     |
| 35800 | B2     | 2.6                     |
| 35801 | В 3    | 2.0                     |
| 35802 | B 4    | 0.5                     |
| 35803 | В 5    | 2.6                     |
| 35804 | B 6    | 2.8                     |
| 35805 | В7     | 3.0                     |
| 35806 | B 8    | 1.3                     |
| 35807 | В9     | 4.2                     |
| 35808 | B 10   | 5.7                     |
| 35809 | B 11   | 2.4                     |

Andrew Pascall MARINE ANALYTICAL SERVICES Laboratory Manager Sebastian Brown MARINE ANALYTICAL SERVICES Deputy Laboratory Manager

Page 1 of 1

• Method not included in the scope of accreditation.




# LWANDLE DATA REPORT

# **BANTAMSKLIP SITE – TURBIDITY DATA**

# PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



# PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



28 August 2009

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD

1<sup>st</sup> floor Gabriel Place, 1 Gabriel Road, Plumstead, 7800, South Africa

Co Reg. No. 2003/015524/07



## TABLE OF CONTENTS

| 1. | INTRODUCTION                      | 3 |
|----|-----------------------------------|---|
| 2. | DATA AND METHOD                   | 4 |
| 3. | DATA PRESENTATION AND DISCUSSION. | 5 |



### 1. INTRODUCTION

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents the turbidity data calculated for the Bantamsklip site for the period  $27^{th}$  March 2008 –  $3^{rd}$  March 2009.



### 2. DATA AND METHOD.

The turbidity values were derived using the ADCP data collected at the Bantamsklip 10m site as well as the water samples collected during the service visits. The *ViSea Plume Detection Toolbox* enables one to quantify suspended sediment from ADCP backscatter data. The reflections of the acoustic signals from particles in the water column provide an indication about the presence of suspended sediment concentration (SSC). Calibration measurements are provided from water samples collected. The conversion method takes into account the influences on sound absorption by variable sediment concentrations in different layers. The accuracy of the output is strongly influenced by the quality and number of the calibration measurements available.

### Methods:

- 1. Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves.
- 2. Current data were then loaded into the ViSea toolbox.
- 3. Water sample collected during service visits were used for calibration.

| Lab<br>No | Sample<br>Id | Date     | Total Suspended<br>Solids in mg/L | Lat       | Long      |
|-----------|--------------|----------|-----------------------------------|-----------|-----------|
| 37078     | BTMS-S5-4m   | 12/07/08 | 1.99                              | 34.43.187 | 19.33.635 |
| 37079     | BTMS-S5-8m   | 12/07/08 | 6                                 | 34.43.187 | 19.33.635 |
| 34237     | BTMS-S5-2m   | 05/08/08 | 1.8                               | 34.43.187 | 19.33.635 |
| 34238     | BTMS-S6-4m   | 05/08/08 | 1.5                               | 34.43.187 | 19.33.635 |
| 34239     | BTMS-S7-6m   | 05/08/08 | 1.98                              | 34.43.187 | 19.33.635 |
| 34240     | BTMS-S8-8m   | 05/08/08 | 2                                 | 34.43.187 | 19.33.635 |
| 35248     | B5-4m        | 05/12/08 | 3                                 | 34.43.190 | 19.33.611 |
| 35249     | B6-8m        | 05/12/08 | 4                                 | 34.43.161 | 19.33.591 |

# Table 1: Water samples, analysed at the CSIR, were collected during service visits4a, 4b, and 7a. These values were used for calibration.



### 3. DATA PRESENTATION AND DISCUSSION.

The backscatter coefficients are calculated by means of calibration with reference measurements.

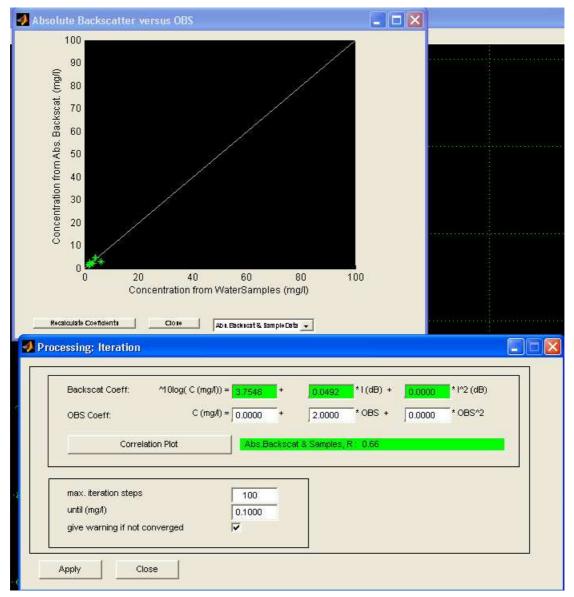



Figure 1: (a) the relation between the SSC reference measurements and SSC calculated from the absolute backscatter from the selected beam 1. (b) The optimisation of the calculated SSC is achieved after a maximum of 100 iterations within 0.01 mg/L accuracy.

The resulting correlation coefficient is 0.66. The following figures show the suspended sediment concentrations (mg/L) for the period 27<sup>th</sup> March 2008 - 3<sup>rd</sup> March 2009.



LWANDLE TECHNOLOGIES (PTY) LTD

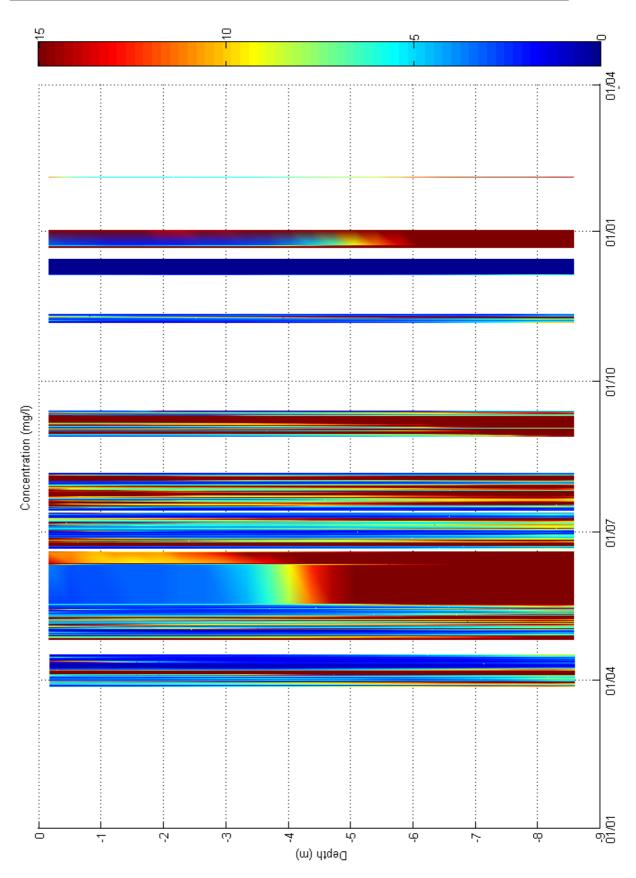
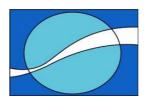



Figure 2: Turbidity concentrations (mg/l) at the Bantamsklip 10m ADCP site from March 2008 to March 2009.



Over a period  $27^{th}$  March  $2008 - 3^{rd}$  March 2009, 14 water samples were taken at the 10m ADCP site. Some of these samples could not be used for the correlation. These include 4 samples taken with no ADCP correspondence and 2 samples deemed wrong as a result of laboratory errors. The higher the number of usable water samples the better the correlation.




# LWANDLE DATA REPORT

# **BANTAMSKLIP SITE – DEPLOYMENT NINE**

# PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



# PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



28 August 2009

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD Unit 13 Constantiaberg Business Park, 31 Princess Vlei Road, Diep River, 7800, Cape Town, South Africa

Co Reg. No. 2003/015524/07



### TABLE OF CONTENTS

| 1. | DISCL | AIMER                                     | 3  |
|----|-------|-------------------------------------------|----|
| 2. | EXEC  | UTIVE SUMMARY                             | 4  |
|    | 2.1   | DATA RETURN FOR BANTAMSKLIP SITE          | 7  |
| 3. | INTRO | DDUCTION                                  | 8  |
|    | 3.1   | PROJECT DESCRIPTION                       | 8  |
|    | 3.2   | MEASUREMENT LOCATION                      | 8  |
| 4. | OPER  | ATIONS                                    | 9  |
|    | 4.1   | SUMMARY OF EVENTS                         | 9  |
|    | 4.2   | INSTRUMENT CONFIGURATIONS                 | 9  |
| 5. | DATA  | QUALITY CONTROL                           | 10 |
|    | 5.1   | ADCP                                      | 10 |
|    |       | 5.1.1 Current processing                  | 10 |
|    |       | 5.1.2 Wave processing                     | 10 |
|    | RBR-0 | CT LOGGER                                 | 12 |
|    | 5.2   | TIDE GAUGE                                | 12 |
|    | 5.3   | BIOFOULING                                | 12 |
|    | 5.4   | WATER SAMPLE                              | 12 |
| 6. | DATA  | PRESENTATION AND DISCUSSION               | 13 |
| 7. | INSTR | UMENT PARTICULARS                         | 20 |
|    | 7.1   | ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS   | 20 |
|    | 7.2   | RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT |    |
|    |       | SHEETS                                    | 22 |
|    | 7.3   | RBR TIDE GAUGE RECOVERY AND RE-DEPLOYMENT |    |
|    |       | SHEETS                                    | 24 |
|    | 7.4   | ADCP CONFIGURATION FILES                  | 25 |





#### 1. DISCLAIMER

The data is this report will undergo additional quality control procedures by Prestedge Retief Dresner Wijnberg (PRDW). For this reason no data in this report should be used for design purposes and only quality controlled data provided by PRDW should be used.



### 2. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 9 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -11.1        | 0.1073                           | 0.0402                            | 0.0219                           | 0.0346                                | 57.12                     |
| -10.7        | 0.1066                           | 0.0354                            | 0.0196                           | 0.0284                                | 62.56                     |
| -10.4        | 0.0946                           | 0.0335                            | 0.0174                           | 0.0253                                | 57.66                     |
| -10.0        | 0.0757                           | 0.0323                            | 0.0157                           | 0.0195                                | 53.94                     |
| -9.7         | 0.0956                           | 0.0327                            | 0.0167                           | 0.0163                                | 58.96                     |
| -9.3         | 0.1015                           | 0.0332                            | 0.0198                           | 0.0136                                | 53.78                     |
| -9.0         | 0.1173                           | 0.0353                            | 0.0215                           | 0.0112                                | 52.51                     |
| -8.6         | 0.1256                           | 0.0356                            | 0.0226                           | 0.0087                                | 70.11                     |
| -8.3         | 0.1139                           | 0.0376                            | 0.0231                           | 0.0086                                | 83.45                     |
| -7.9         | 0.1118                           | 0.0396                            | 0.0216                           | 0.0077                                | 94.71                     |
| -7.6         | 0.1112                           | 0.0397                            | 0.0221                           | 0.0081                                | 102.39                    |
| -7.2         | 0.1034                           | 0.0398                            | 0.0221                           | 0.0085                                | 105.52                    |
| -6.9         | 0.1131                           | 0.0383                            | 0.0222                           | 0.0098                                | 114.79                    |
| -6.5         | 0.0981                           | 0.0378                            | 0.0213                           | 0.0098                                | 118.55                    |
| -6.2         | 0.0949                           | 0.0377                            | 0.0201                           | 0.0118                                | 112.18                    |
| -5.8         | 0.1018                           | 0.0359                            | 0.0208                           | 0.012                                 | 120.11                    |
| -5.5         | 0.0943                           | 0.0362                            | 0.0209                           | 0.0113                                | 136.48                    |
| -5.1         | 0.1079                           | 0.0358                            | 0.0198                           | 0.0118                                | 151.68                    |
| -4.8         | 0.1128                           | 0.0385                            | 0.0214                           | 0.0132                                | 165.27                    |
| -4.4         | 0.1028                           | 0.042                             | 0.0234                           | 0.0128                                | 187.51                    |
| -4.1         | 0.1178                           | 0.0475                            | 0.0249                           | 0.0151                                | 207.48                    |
| -3.7         | 0.1284                           | 0.0515                            | 0.0266                           | 0.0178                                | 225.84                    |
| -3.4         | 0.1386                           | 0.0562                            | 0.0304                           | 0.0223                                | 241.99                    |
| -3.0         | 0.1426                           | 0.059                             | 0.0334                           | 0.0252                                | 249.22                    |
| -2.7         | 0.1501                           | 0.0658                            | 0.0353                           | 0.0311                                | 252.78                    |
| -2.3         | 0.1804                           | 0.0726                            | 0.0405                           | 0.0289                                | 261.38                    |
| -2.0         | 0.2267                           | 0.0825                            | 0.0497                           | 0.028                                 | 296.43                    |
| -1.6         | 0.2909                           | 0.1068                            | 0.0613                           | 0.0423                                | 339.73                    |
| -1.3         | 0.3846                           | 0.1175                            | 0.0692                           | 0.0479                                | 352.84                    |

Table 1 – Current flow summary for 10m ADCP

## Table 2 – Waves summary for 10m ADCP

|        | Max    | Min    | Mean   | Std   |
|--------|--------|--------|--------|-------|
| Hs (m) | 2.49   | 1.55   | 0.78   | 0.59  |
| Tp (s) | 17.00  | 10.05  | 4.50   | 2.92  |
| Dp (°) | 238.50 | 218.94 | 184.50 | 10.56 |



|              | Table 5 – Current now summary for 50m ADCP |                                   |                                  |                                          |                              |  |
|--------------|--------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|------------------------------|--|
| Depth<br>(m) | Max speed<br>(ms <sup>-1</sup> )           | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean<br>speed (ms <sup>-1</sup> ) | Vector mean<br>direction (°) |  |
| -28.1        | 0.2032                                     | 0.0274                            | 0.0176                           | 0.0022                                   | 312.01                       |  |
| -27.6        | 0.1490                                     | 0.0286                            | 0.0178                           | 0.0028                                   | 323.18                       |  |
| -27.1        | 0.1539                                     | 0.0307                            | 0.0192                           | 0.0031                                   | 327.65                       |  |
| -26.6        | 0.2511                                     | 0.0321                            | 0.0214                           | 0.0038                                   | 323.45                       |  |
| -26.1        | 0.2301                                     | 0.0344                            | 0.0222                           | 0.0038                                   | 320.21                       |  |
| -25.6        | 0.2418                                     | 0.0365                            | 0.0228                           | 0.0041                                   | 312.72                       |  |
| -25.1        | 0.2147                                     | 0.0383                            | 0.0240                           | 0.0038                                   | 294.94                       |  |
| -24.6        | 0.2275                                     | 0.0405                            | 0.0246                           | 0.0034                                   | 302.45                       |  |
| -24.1        | 0.2197                                     | 0.0416                            | 0.0250                           | 0.0034                                   | 288.33                       |  |
| -23.6        | 0.2473                                     | 0.0430                            | 0.0268                           | 0.0029                                   | 268.01                       |  |
| -23.1        | 0.2519                                     | 0.0444                            | 0.0271                           | 0.0033                                   | 249.49                       |  |
| -22.6        | 0.2383                                     | 0.0453                            | 0.0271                           | 0.0030                                   | 235.12                       |  |
| -22.1        | 0.2543                                     | 0.0463                            | 0.0269                           | 0.0028                                   | 227.72                       |  |
| -21.6        | 0.2820                                     | 0.0473                            | 0.0274                           | 0.0024                                   | 202.59                       |  |
| -21.1        | 0.2883                                     | 0.0479                            | 0.0264                           | 0.0020                                   | 164.72                       |  |
| -20.6        | 0.2992                                     | 0.0490                            | 0.0266                           | 0.0023                                   | 160.26                       |  |
| -20.1        | 0.2872                                     | 0.0489                            | 0.0268                           | 0.0028                                   | 153.74                       |  |
| -19.6        | 0.2869                                     | 0.0488                            | 0.0270                           | 0.0031                                   | 146.70                       |  |
| -19.1        | 0.2613                                     | 0.0490                            | 0.0264                           | 0.0034                                   | 129.81                       |  |
| -18.6        | 0.2523                                     | 0.0494                            | 0.0263                           | 0.0036                                   | 113.54                       |  |
| -18.1        | 0.2318                                     | 0.0493                            | 0.0262                           | 0.0033                                   | 100.35                       |  |
| -17.6        | 0.2102                                     | 0.0488                            | 0.0264                           | 0.0039                                   | 88.58                        |  |
| -17.1        | 0.2134                                     | 0.0490                            | 0.0259                           | 0.0054                                   | 71.68                        |  |
| -16.6        | 0.1956                                     | 0.0493                            | 0.0268                           | 0.0067                                   | 60.38                        |  |
| -16.1        | 0.1993                                     | 0.0497                            | 0.0268                           | 0.0071                                   | 54.77                        |  |
| -15.6        | 0.2001                                     | 0.0504                            | 0.0272                           | 0.0088                                   | 46.17                        |  |
| -15.1        | 0.2179                                     | 0.0512                            | 0.0279                           | 0.0094                                   | 44.99                        |  |
| -14.6        | 0.2377                                     | 0.0513                            | 0.0287                           | 0.0106                                   | 44.71                        |  |
| -14.1        | 0.2372                                     | 0.0516                            | 0.0287                           | 0.0116                                   | 42.61                        |  |
| -13.6        | 0.2588                                     | 0.0527                            | 0.0297                           | 0.0120                                   | 39.95                        |  |
| -13.1        | 0.2458                                     | 0.0528                            | 0.0305                           | 0.0121                                   | 38.15                        |  |
| -12.6        | 0.2348                                     | 0.0531                            | 0.0311                           | 0.0116                                   | 36.11                        |  |
| -12.1        | 0.2447                                     | 0.0542                            | 0.0327                           | 0.0106                                   | 28.13                        |  |
| -11.6        | 0.2644                                     | 0.0546                            | 0.0333                           | 0.0105                                   | 20.84                        |  |
| -11.1        | 0.2691                                     | 0.0552                            | 0.0330                           | 0.0104                                   | 12.73                        |  |
| -10.6        | 0.2945                                     | 0.0558                            | 0.0334                           | 0.0100                                   | 5.72                         |  |
| -10.1        | 0.2979                                     | 0.0562                            | 0.0337                           | 0.0093                                   | 349.63                       |  |
| -9.6         | 0.2900                                     | 0.0580                            | 0.0344                           | 0.0090                                   | 337.26                       |  |
| -9.1         | 0.2715                                     | 0.0608                            | 0.0358                           | 0.0093                                   | 313.86                       |  |
| -8.6         | 0.2710                                     | 0.0628                            | 0.0376                           | 0.0108                                   | 298.47                       |  |
| -8.1         | 0.2574                                     | 0.0655                            | 0.0390                           | 0.0129                                   | 283.48                       |  |
| -7.6         | 0.2518                                     | 0.0686                            | 0.0408                           | 0.0150                                   | 276.91                       |  |
| -7.1         | 0.2717                                     | 0.0716                            | 0.0438                           | 0.0171                                   | 269.61                       |  |

## Table 3 – Current flow summary for 30m ADCP

# LWANDLE TECHNOLOGIES (PTY) LTD



|      | 1      | 1      |        |        |        |
|------|--------|--------|--------|--------|--------|
| -6.6 | 0.2969 | 0.0758 | 0.0474 | 0.0202 | 263.98 |
| -6.1 | 0.3094 | 0.0810 | 0.0505 | 0.0232 | 260.77 |
| -5.6 | 0.3256 | 0.0873 | 0.0543 | 0.0265 | 260.53 |
| -5.1 | 0.3525 | 0.0943 | 0.0591 | 0.0281 | 263.54 |
| -4.6 | 0.3372 | 0.1007 | 0.0623 | 0.0312 | 268.70 |
| -4.1 | 0.3592 | 0.1071 | 0.0649 | 0.0336 | 275.24 |
| -3.6 | 0.3482 | 0.1113 | 0.0673 | 0.0386 | 285.23 |
| -3.1 | 0.4004 | 0.1211 | 0.0702 | 0.0462 | 305.96 |
| -2.6 | 0.3920 | 0.1393 | 0.0702 | 0.0612 | 319.81 |

## Table 4 – Waves summary for 30m ADCP

|        | Max    | Min    | Mean   | Std   |
|--------|--------|--------|--------|-------|
| Hs (m) | 3.48   | 1.71   | 0.80   | 0.57  |
| Tp (s) | 15.00  | 10.90  | 4.80   | 2.32  |
| Dp (°) | 240.53 | 207.45 | 157.53 | 16.35 |

Table 5 – Water temperature and salinity summary (surface, 13m)

| Parameter        | Mean  | Max   | Min   |
|------------------|-------|-------|-------|
| Temperature (°C) | 12.17 | 16.34 | 9.95  |
| Conductivity     | 39.89 | 44.11 | 37.51 |
| Salinity (psu)   | 34.73 | 35.01 | 33.76 |

| Parameter        | Mean  | Max   | Min   |
|------------------|-------|-------|-------|
| Temperature (°C) | 10.48 | 14.90 | 9.81  |
| Conductivity     | 38.47 | 42.81 | 37.81 |
| Salinity (psu)   | 34.91 | 35.00 | 34.65 |



### 2.1 DATA RETURN FOR BANTAMSKLIP SITE.

| Bantams P09       | 29 January 2008 –<br>15 January 2009 | 15 January 2009 –<br>3 April 2009 | 7 March 2009 –<br>3 April 2009 |
|-------------------|--------------------------------------|-----------------------------------|--------------------------------|
| Btm RBR Salinity  | 54                                   | 73                                | 100                            |
| Surf RBR Salinity | 70                                   | 73                                | 100                            |
| 10m ADCP Current  | 33                                   | 6                                 | 11                             |
| 10m ADCP Wave     | 33                                   | 6                                 | 11                             |
| 30m ADCP Current  | 28                                   | 30                                | 29                             |
| 30m ADCP Wave     | 25                                   | 30                                | 29                             |
| Tide              | 35                                   | 91                                | 100                            |
| Temp-Btm RBR      | 62                                   | 73                                | 100                            |
| Temp-Surf RBR     | 77                                   | 73                                | 100                            |
| Temp-10m ADCP     | 33                                   | 6                                 | 11                             |
| Temp-30m ADCP     | 34                                   | 30                                | 29                             |
| Tide Temperature  | 10                                   | 91                                | 100                            |
| 30m Temperature   | 76                                   | 73                                | 100                            |
| 10m Temperature   | 86                                   | 73                                | 100                            |

## Table 7 – Data Return (%).



### 3. INTRODUCTION

### 3.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents waves, currents, temperature and salinity data collected at Bantamsklip station for the period March  $7^{th}$  – April  $3^{rd}$  2009 (Period 8). Service of the instruments was undertaken during April  $3^{rd}$  –  $4^{th}$  2009.

### 3.2 MEASUREMENT LOCATION

The deployment location of the instruments is given in Table 8 and a location of waters samples taken on April 4<sup>th</sup> is given in Table 9.

| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | 34.7040       | 19.5517        |
| 10m ADCP    | 34.7198       | 19.5606        |
| Biofouling  | 34.7198       | 19.5614        |
| 30m ADCP    | 34.7101       | 19.5111        |
| T&C mooring | 34.7101       | 19.5111        |

### Table 8 – Measurement locations

| Bottle<br># | STN<br># | Lat       | Long      | Exact Time<br>HH:MM:SS | COMMENTS (if<br>RBR profile is<br>taken etc) |
|-------------|----------|-----------|-----------|------------------------|----------------------------------------------|
| 1           | 30m      | 34 42.603 | 19 30.668 | 13:38                  | Depth: 4m                                    |
| 2           | 30m      | 34 42.603 | 19 30.668 | 13:43                  | Depth: 12m                                   |
| 3           | 30m      | 34 42.603 | 19 30.668 | 13:46                  | Depth: 20m                                   |
| 4           | 30m      | 34 42.603 | 19 30.668 | 13:49                  | Depth: 28m                                   |
| 5           | 10m      | 34 43.186 | 19 33.637 | 14:23                  | Depth: 4m                                    |
| 6           | 10m      | 34 43.186 | 19 33.637 | 14:25                  | Depth: 8m                                    |
| 7           | 1        | 34 43.190 | 19 33.611 | 14:34                  | Depth: 4m                                    |
| 8           | 2        | 34 43.161 | 19 33.591 | 14:37                  | Depth: 4m                                    |
| 9           | 3        | 34 43.124 | 10 33.584 | 14:41                  | Depth: 4m                                    |
| 10          | 4        | 34 43.097 | 19 33.577 | 14:44                  | Depth: 4m                                    |
| 11          | 5        | 34 43.081 | 19 33.541 | 14:46                  | Depth: 4m                                    |

### Table 9 – Measurement locations – water samples.

### 4. OPERATIONS

### 4.1 SUMMARY OF EVENTS

Recovery of the instruments were undertaken on April 3<sup>rd</sup> 2009 and redeployment on April 4<sup>th</sup> 2009. The 30m ADCP frame was moved to 34.71005°S, 19.51113°E

An attempt to recover the biofouling was made on April 3<sup>rd</sup> 2009. They were installed 6 months earlier.

#### 4.2 INSTRUMENT CONFIGURATIONS

Configurations were as per specifications.

Note: Biofouling plates have been installed on frame to avoid third party interference (as of May 2009).

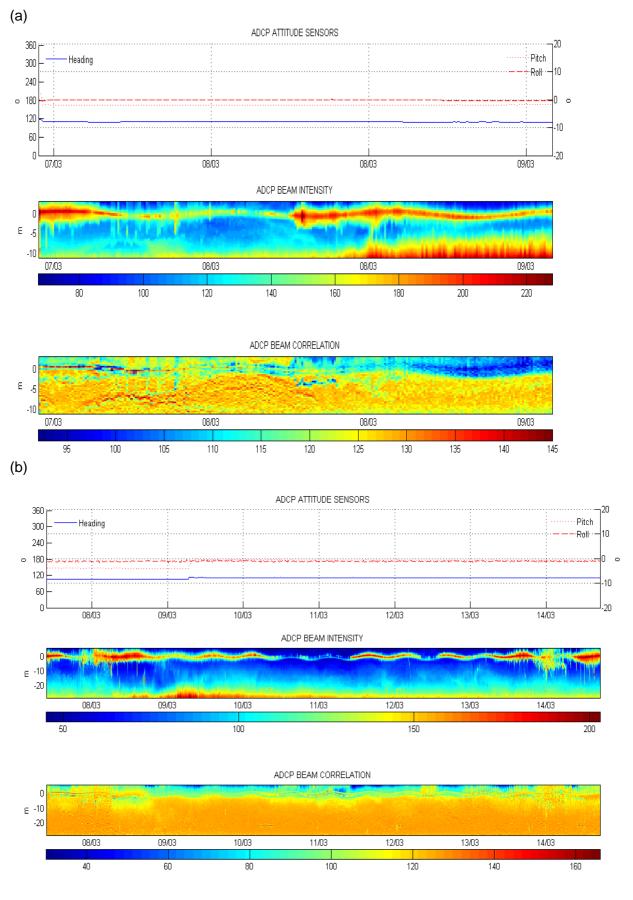


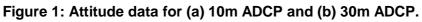
## 5. DATA QUALITY CONTROL

### 5.1 ADCP

Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further.

### 5.1.1 Current processing


- The record was truncated to exclude times pre and post deployment.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 30' W for the 10m ADCP and 25° 28' W for the 30m ADCP.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 1).
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.


### 5.1.2 Wave processing

Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:

- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 30' W for the 10m ADCP and 25° 28' W for the 30m ADCP.
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.









### **RBR-CT LOGGER**

The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.

- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.

### 5.2 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- Atmospheric sea level pressure correction was applied.
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is -1.649m.
- Finally the data was averaged over a 10-minute period.

### 5.3 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Recovery of the biofouling plates was undertaken on April 3<sup>rd</sup> 2009.

### 5.4 WATER SAMPLE.

Water samples were collected during this service and sent to the CSIR for analysis.





### 6. DATA PRESENTATION AND DISCUSSION

Biofouling recovery:

The line attaching the buoy to the biofouling plates was severed and the buoy was missing. It is suspected that the buoy was stolen by fishermen. The divers were able to locate one set of biofouling plates (consisting of 3 plates) which were lying on the sea bed. The plates were covered with sand resulting in an inaccurate description of the plates. Most of the biomass that had accumulated on the plates had disappeared and only one of the plates had a small quantity of shells attached to the PVC. A sample of the shells was detached from the PVC and placed in a specimen jar filled with seawater, 5ml Formaldehyde and a teaspoon of Calcium Carbonate (labelled 1B). There was very little in terms of Fauna and one type of worm specie was identified and placed in a specimen jar filled with seawater, 5ml Formaldehyde and a teaspoon of Calcium Carbonate (labelled 2B). No Flora was identified on the plate. Pictures were taken of the individual plates and measurements of the growth were done. The growth was insignificant due to the location of the plates on the ocean floor and the greatest amount of growth was <1mm in certain areas (see photographs).



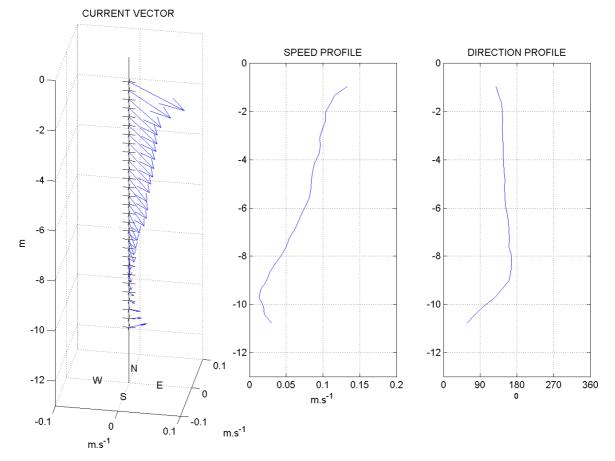



Figure 2: Mean profile plot for 10m ADCP.

14





Figure 3: Mean profile plot for 30m ADCP.



# LWANDLE TECHNOLOGIES (PTY) LTD

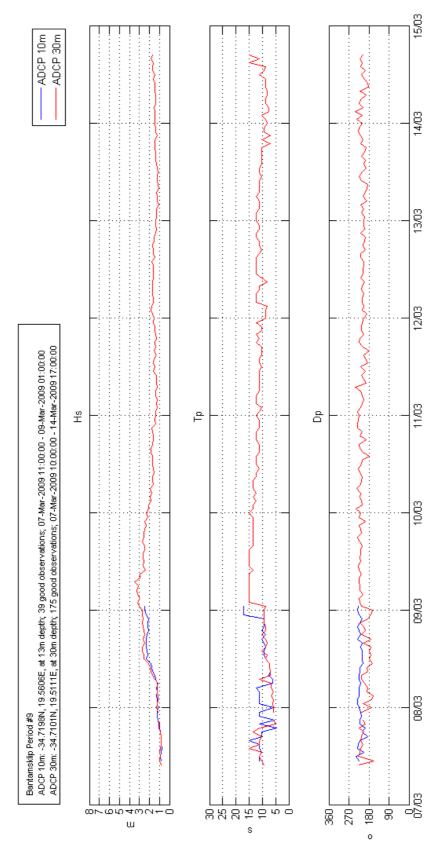



Figure 4: Time series of Hs, Tp and Dp from 10m and 30m ADCPs.



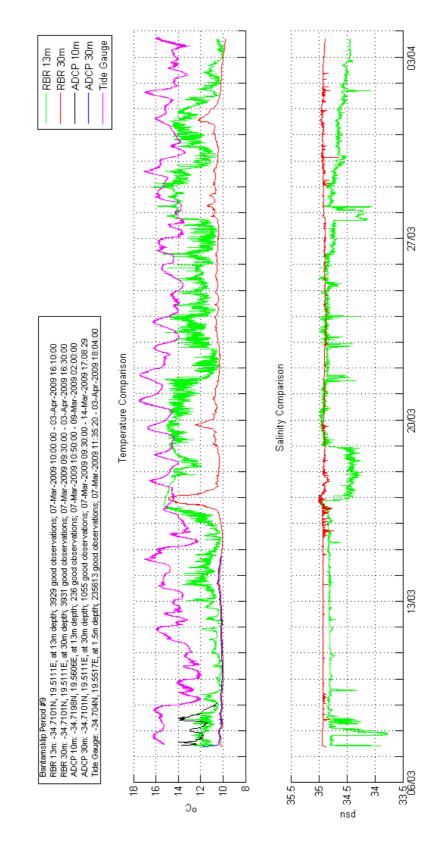



Figure 5: Time series of temperature and salinity from the RBR loggers and ADCPs.



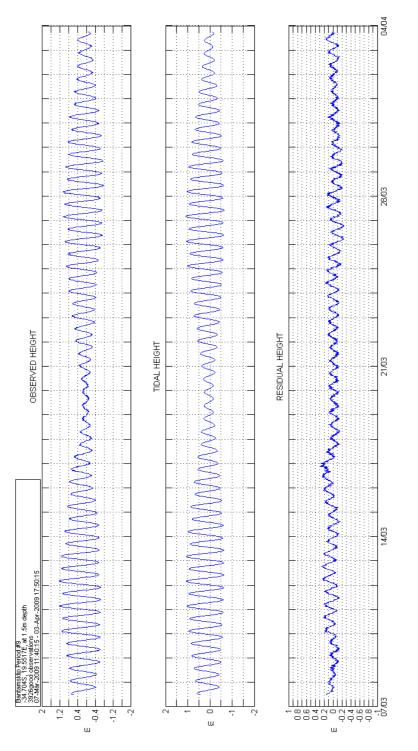



Figure 6: Tidal time series (a) observed height, (b) tidal height (tidal calculation follows the method of Foreman and uses the observed height as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)), (c) residual height.





Figure 7



Figure 8



## 7. INSTRUMENT PARTICULARS

### 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

#### 10m ADCP.

1

#### RECOVERY Site Name: Bantamsklip 10 m site Date: 3 April 2009

| Instrument type and serial number                    |                                    |     | RDI                       | 10105      |  |
|------------------------------------------------------|------------------------------------|-----|---------------------------|------------|--|
| Recovery date and time                               | LT                                 | GMT | <u>3 April 2009 17:15</u> |            |  |
| Latitude (do not ignore - if same, please indicate)  | ignore – if same, please indicate) |     |                           | 34 43.186  |  |
| Longitude (do not ignore – if same, please indicate) |                                    |     | 19 33.637                 |            |  |
| Switch off date and time                             | LT                                 | GMT | 4 April 2009 07:15        |            |  |
| File size                                            |                                    |     | 15.6N                     | 1B (B1003) |  |
| Was the data copied to memory card?                  |                                    |     | Y*                        | N          |  |

#### 2 <u>RE-DEPLOYMENT</u> Site Name: Bantams 10m site Date: 4 April 2009

| Instrument type and serial number (do not ignore - | RDI         | 11424      |         |  |
|----------------------------------------------------|-------------|------------|---------|--|
| Install a new battery and/or check the voltage     |             |            | 1*44.7V |  |
| Frequency of unit being used                       |             | 600kHz     |         |  |
| Depth range                                        |             | <b>30m</b> |         |  |
| Number of bins (calculated automatically)          |             | <b>69</b>  |         |  |
| Bin Size (calculated automatically)                |             | 0.5        |         |  |
| Wave burst duration                                | 40min       |            |         |  |
| Time between wave bursts                           |             | 60min      |         |  |
| Pings per ensemble                                 |             | 250        |         |  |
| Ensemble interval                                  |             | 10min      |         |  |
| Deployment duration                                |             | 13days     |         |  |
| Transducer depth                                   | depth 30m   |            |         |  |
| Any other commands                                 | minTP,RI0   |            | 10      |  |
| Temperature                                        |             | 5          |         |  |
| Recorder size                                      | 1000MB Sn#9 |            |         |  |

Consequences of the sampling parameters

|                                                                 |            | 31    |              |                    |               |
|-----------------------------------------------------------------|------------|-------|--------------|--------------------|---------------|
| First and last bin range                                        |            |       |              |                    | 35.6          |
| Battery usage                                                   |            |       | <u>.</u>     |                    | 435Wh         |
| Standard deviation                                              |            |       |              |                    | 1.08          |
| Storage space required                                          |            |       |              |                    | 114MB         |
| Set the ADCP clock                                              | L          | T*    | GMT          | 4 Apr              | il 2009 09:25 |
| Run pre-deployment tests                                        |            |       |              |                    | yes           |
| Name the ADCP deployment                                        |            |       |              | B3004              |               |
| Deplo                                                           | oyment det | ails  |              |                    |               |
| Switch on date and time                                         | L          | T*    | GMT          | 4 Apr              | il 2009 09:25 |
| Deployment date and time LT* GMT                                |            |       |              | 4 April 2009 13:00 |               |
| Deployment Latitude (do not ignore – if same, please indicate)  |            |       |              | 34 42.603          |               |
| Deployment Longitude (do not ignore - if same, please indicate) |            |       | 19 30.668    |                    |               |
| Site depth                                                      | 30m        | Deple | oyment depth |                    | 31.6          |

Acoustic release (1) serial number and release code



| Acoustic release (2) serial number and release code                            |          |                                        |
|--------------------------------------------------------------------------------|----------|----------------------------------------|
| Argos beacon serial number                                                     |          |                                        |
| Save whp, dpl and scl files in one folder (filename format: serialnumber_date) | dep/ADCI | 4 April 2009<br>P_newDeploy<br>s/B3004 |

### 30m ADCP.

| 1 <u>RECOVERY</u> Site Name: Bantamsklip 30m site Date: 3 April 2009 |     |       |                |                   |  |
|----------------------------------------------------------------------|-----|-------|----------------|-------------------|--|
| Instrument type and serial number                                    | RDI | 11424 |                |                   |  |
| Recovery date and time                                               | LT  | GMT   | <u>3 April</u> | <u>2009 16:34</u> |  |
| Latitude (do not ignore – if same, please indicate)                  |     |       |                | 34 42.603         |  |
| Longitude (do not ignore – if same, please indicate)                 |     |       | 19 30.668      |                   |  |
| Switch off date and time                                             | LT  | GMT   | 4 April        | 2009 07:00        |  |
| File size                                                            |     |       | 159M           | B (B3003)         |  |
| Was the data copied to memory card?                                  |     |       | Y*             | N                 |  |

#### Site Name: Bantams 30 m site. Date 4 April 2009 **RE-DEPLOYMENT**

| 2 <u>RE-DEPLOYMENT</u> Site Name: <u>Bantams 30 m site</u> . Date 4 April 2009 |                          |             |         |  |
|--------------------------------------------------------------------------------|--------------------------|-------------|---------|--|
| Instrument type and serial number (do not ignore -                             | if same, please indicate | ) RDI       | 10105   |  |
| Install a new battery and/or check the voltage                                 |                          |             | 1*44.7V |  |
| Frequency of unit being used                                                   |                          | 600kHz      | 2       |  |
| Depth range                                                                    |                          | 10m         |         |  |
| Number of bins (calculated automatically)                                      |                          | 42          |         |  |
| Bin Size (calculated automatically)                                            |                          | 0.35        |         |  |
| Wave burst duration                                                            |                          | 40min       |         |  |
| Time between wave bursts                                                       |                          | 60min       |         |  |
| Pings per ensemble                                                             |                          | 500         |         |  |
| Ensemble interval                                                              |                          | 10min       |         |  |
| Deployment duration                                                            |                          | 13days      |         |  |
| Transducer depth                                                               |                          | <b>10</b> m |         |  |
| Any other commands                                                             |                          | minTP,R     | 10      |  |
| Temperature                                                                    |                          | 5           |         |  |
| Recorder size                                                                  | 1000                     | MB Sn#10    |         |  |

#### Consequences of the sampling parameters

| First and last bin range                                        |                      |       |     |           | 15.76           |  |
|-----------------------------------------------------------------|----------------------|-------|-----|-----------|-----------------|--|
| Battery usage                                                   |                      | 376Wh |     |           |                 |  |
| Standard deviation                                              |                      | 1.08  |     |           |                 |  |
| Storage space required                                          |                      |       |     |           | 113MB           |  |
| Set the ADCP clock LT* GMT                                      |                      |       |     |           | oril 2009 09:20 |  |
| Run pre-deployment tests                                        |                      | Yes   |     |           |                 |  |
| Name the ADCP deployment                                        |                      |       |     |           | B1004           |  |
| Deplo                                                           | oyment de            | ails  |     |           |                 |  |
| Switch on date and time                                         | L                    | T*    | GMT | 4 Ap      | oril 2009 09:20 |  |
| Deployment date and time LT* GMT                                |                      |       |     |           | oril 2009 14:20 |  |
| Deployment Latitude (do not ignore - if same, p                 | lease indic          | ate)  |     | 34 43.186 |                 |  |
| Deployment Longitude (do not ignore - if same, please indicate) |                      |       |     | 19 33.637 |                 |  |
| Site depth                                                      | 10m Deployment depth |       |     |           | 12.3m           |  |
| Acoustic release (1) serial number and release co               | de                   |       |     |           |                 |  |



| Acoustic release (2) serial number and release code                            |                                                           |
|--------------------------------------------------------------------------------|-----------------------------------------------------------|
| Argos beacon serial number                                                     |                                                           |
| Save whp, dpl and scl files in one folder (filename format: serialnumber_date) | Bantams 4 April 2009<br>dep/ADCP newDeploy<br>Files/B1004 |

## 7.2 RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT SHEETS

#### Surface.

2009

| Instrument type and serial number                         |                      |           |                    | 12994                       |  |
|-----------------------------------------------------------|----------------------|-----------|--------------------|-----------------------------|--|
| Recovery date and time                                    | LT                   | GMT       | 3 April 2009 16:34 |                             |  |
| Latitude (do not ignore - if same, please indicate)       |                      |           | 34 42.605          |                             |  |
| Longitude (do not ignore – if same, please indicate)      |                      |           | 19 30.667          |                             |  |
| Switch off date and time                                  | LT                   | GMT       | 4 April :          | 2009 08:57                  |  |
| File size                                                 |                      |           |                    |                             |  |
| Save log, hex and dat files in one folder (filename forma | at: <b>serialnum</b> | ber_date) |                    | ms 3 April<br>RecoveredData |  |

#### 2 <u>RE-DEPLOYMENT</u> 2009

#### Site Name: Bantamsklip 30m site Date: 4 April

| 2000                                                                         |       |         |
|------------------------------------------------------------------------------|-------|---------|
| Instrument type and serial number (do not ignore – if same, please indicate) | RBR   | 12994   |
|                                                                              | 420ct |         |
| Install a new battery and check the voltage                                  |       | 4* 3.2V |

#### Set up the sampling parameters

| Sampling period                |       | 10min    |          |
|--------------------------------|-------|----------|----------|
| Averaging period               |       | 1min     |          |
| Expected deployment duration   |       | 30days   |          |
| Start of logging (date / time) | 4 Арі | ril 2009 | 09:14:20 |
| End of logging (date / time)   | 2 Jur | ne 2009  | 12:00:00 |
| Memory usage                   |       |          | .4%      |
| Battery usage                  |       |          | 950mAH   |

#### **Deployment details**

| Deployment date and time                             | LT*        | GMT | 4 April 2009 13:00 |
|------------------------------------------------------|------------|-----|--------------------|
| Deployment Latitude (do not ignore - if same, please | 34 42.605  |     |                    |
| Deployment Longitude (do not ignore - if same, plea  | 19 30.667  |     |                    |
| Site name                                            | Batamsklip |     |                    |
| Site depth                                           | 30m        |     |                    |
| Deployment depth                                     | 13m        |     |                    |
| Acoustic release (1) serial number and release code  |            |     |                    |
| Acoustic release (2) serial number and release code  |            |     |                    |
| Argos beacon serial number                           |            |     |                    |



Save log file (filename format: serialnumber\_date) Bantams 4 April 2009 dep/RBR\_TideGauge\_ne wDeployLogs/20090404.1 og

#### Bottom.

| 1. <u>RECOVERY</u> Site Name: Bantamsklip 3                                    | ECOVERY Site Name: Bantamsklip 30m site Date: 3 |     |                    | Ð                             |  |
|--------------------------------------------------------------------------------|-------------------------------------------------|-----|--------------------|-------------------------------|--|
| Instrument type and serial number                                              | RBR 15248<br>420ct                              |     |                    |                               |  |
| Recovery date and time                                                         | Recovery date and time LT GMT                   |     |                    |                               |  |
| Latitude (do not ignore – if same, please indicate)                            | 34 42.601                                       |     |                    |                               |  |
| Longitude (do not ignore – if same, please indicate)                           |                                                 |     |                    | 19 30.691                     |  |
| Switch off date and time                                                       | LT                                              | GMT | 4 April 2009 08:59 |                               |  |
| File size                                                                      | 88KB                                            |     |                    |                               |  |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |                                                 |     |                    | ams 3 April<br>_RecoveredData |  |

#### 2. <u>RE-DEPLOYMENT</u> Site Name: Bantamsklip 30m site Date: 4 April 2009

| Instrument type and serial number (do not ignore – if same, please indicate) | RBR<br>420ct | 15248    |
|------------------------------------------------------------------------------|--------------|----------|
| Install a new battery and check the voltage                                  |              | 3 * 3.2V |

#### Set up the sampling parameters

| Sampling period                |       | 10       | min      |
|--------------------------------|-------|----------|----------|
| Averaging period               |       | 1r       | nin      |
| Expected deployment duration   |       | 300      | days     |
| Start of logging (date / time) | 4 Ap  | ril 2009 | 09:15:30 |
| End of logging (date / time)   | 2 Jur | ne 2009  | 12:00:00 |
| Memory usage                   |       |          | .4%      |
| Battery usage                  |       |          | 950mAH   |

#### **Deployment details**

| Deployment date and time                                          | LT        | GMT | 4 April 2009 13:00                                                                          |  |
|-------------------------------------------------------------------|-----------|-----|---------------------------------------------------------------------------------------------|--|
| Deployment Latitude (do not ignore - if same, please              | 34 42.603 |     |                                                                                             |  |
| Deployment Longitude (do not ignore - if same, plea               | 19 30.668 |     |                                                                                             |  |
| Site name                                                         |           |     | Batamsklip                                                                                  |  |
| Site depth                                                        |           |     | 30m                                                                                         |  |
| Deployment depth                                                  |           |     | 31.6m                                                                                       |  |
| Acoustic release (1) serial number and release code               |           |     |                                                                                             |  |
| Acoustic release (2) serial number and release code               |           |     |                                                                                             |  |
| Argos beacon serial number                                        |           |     |                                                                                             |  |
| Save <i>log</i> file (filename format: <b>serialnumber_date</b> ) |           |     | Bantams 4 April 2009<br>dep/RBR_TideGauge_ne<br>wDeployLogs/ <b>20090404.I</b><br><b>og</b> |  |



#### 7.3 **RBR TIDE GAUGE RECOVERY AND RE-DEPLOYMENT SHEETS**

#### 1. RECOVERY Site Name: Bantamsklip Tidegauge

#### 2009

Date: 3 April

| 2000                                                                           |                    |       |  |                              |  |
|--------------------------------------------------------------------------------|--------------------|-------|--|------------------------------|--|
| Instrument type and serial number                                              | TGR<br>2050        | 13084 |  |                              |  |
| Recovery date and time                                                         | 3 April 2009 18:00 |       |  |                              |  |
| Latitude (do not ignore - if same, please indicate)                            | 34 42.241          |       |  |                              |  |
| Longitude (do not ignore – if same, please indicate)                           |                    |       |  | 19 33.101                    |  |
| Switch off date and time LT GMT                                                |                    |       |  | 2009 09:03                   |  |
| File size                                                                      | 5                  | 207KB |  |                              |  |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |                    |       |  | s 3 April 2009<br>Guage_Data |  |

#### 2. Site Name: Bantamsklip Tide Gauge Date: 4 April 2009 RE-DEPLOYMENT

| Instrument type and serial number (do not ignore – if same, please indicate) | TGR<br>2050 | 13084    |
|------------------------------------------------------------------------------|-------------|----------|
| Install a new battery and check the voltage                                  |             | 2 * 3.28 |

### Set up the sampling parameters

| Sampling period                |       | 10       | sec      |
|--------------------------------|-------|----------|----------|
| Averaging period               |       | 1 sec    |          |
| Expected deployment duration   |       | 6 w      | eeks     |
| Start of logging (date / time) | 4 Ap  | ril 2009 | 09:12:40 |
| End of logging (date / time)   | 2 Jur | ne 2009  | 12:00:00 |
| Memory usage                   |       |          | 36%      |
| Battery usage                  |       |          | 204mAH   |

## **Deployment details**

| Deployment date and time                                          | LT        | GMT                                                                                  | 4 April 2009 15:00 |  |
|-------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------|--------------------|--|
| Deployment Latitude (do not ignore - if same, please              | 34 42.241 |                                                                                      |                    |  |
| Deployment Longitude (do not ignore - if same, plea               | 19 33.101 |                                                                                      |                    |  |
| Site name                                                         |           |                                                                                      | Bantamsklip        |  |
| Site depth                                                        |           |                                                                                      | 1.8m               |  |
| Deployment depth                                                  |           |                                                                                      | 1.7m               |  |
| Acoustic release (1) serial number and release code               |           |                                                                                      |                    |  |
| Acoustic release (2) serial number and release code               |           |                                                                                      |                    |  |
| Argos beacon serial number                                        |           |                                                                                      |                    |  |
| Save <i>log</i> file (filename format: <i>serialnumber_date</i> ) |           | Bantams 4 April 2009<br>dep/RBR_TideGauge_ne<br>wDeployLogs/ <b>20090404.I</b><br>og |                    |  |



### 7.4 ADCP CONFIGURATION FILES

#### 10m ADCP

CR1 CF11101 EA0 EB0 ED100 ES35 EX11111 EZ1111111 ri0 WA255 WB0 WD111100000 WF88 WN42 WP500 WS35 WV175 HD111000000 HB5 HP4800 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 CK CS ; ;Instrument = Workhorse Sentinel ;Frequency = 614400 ;Water Profile = YES ;Bottom Track = NO = NO ;High Res. Modes ;High Rate Pinging = NO ;Shallow Bottom Mode= NO = YES ;Wave Gauge = NO ;Lowered ADCP = 20 ;Beam angle = 5.00 ;Temperature ;Deployment hours = 312.00 = 1 ;Battery packs ;Automatic TP = NO ;Memory size [MB] = 1000 ;Saved Screen = 1 ;Consequences generated by PlanADCP version 2.04: ;First cell range = 1.41 m
;Last cell range = 15.76 m
;Max range = 35.28 m ;Standard deviation = 1.08 cm/s ;Ensemble size = 994 bytes ;Storage required = 113.20 MB (118698528 bytes) = 376.92 Wh ;Power usage ;Battery usage = 0.8 ;Samples / Wv Burst = 4800



```
;Min NonDir Wave Per= 1.85 s
;Min Dir Wave Period= 2.49 s
;Bytes / Wave Burst = 374480
;
;
; WARNINGS AND CAUTIONS:
; Waves Gauge feature has to be installed in Workhorse to use
selected option.
; Advanced settings have been changed.
```

#### 30m ADCP

CR1 CF11101 EA0 EB0 ED300 ES35 EX11111 EZ1111111 RI0 WA255 WB0 WD111100000 WF88 WN69 WP250 WS50 WV175 HD111000000 HB5 HP4800 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 CK CS ; = Workhorse Sentinel ;Instrument = 614400 ;Frequency ;Water Profile = YES ;Bottom Track = NO ;High Res. Modes = NO ;High Rate Pinging = NO ;Shallow Bottom Mode= NO ;Wave Gauge = YES ;Lowered ADCP = NO = 20 ;Beam angle = 5.00 ;Temperature ;Deployment hours = 312.00 ;Battery packs = 1 ;Automatic TP = NO ;Memory size [MB] = 1000;Saved Screen = 1 ; ;Consequences generated by PlanADCP version 2.04: ;First cell range = 1.60 m ;Last cell range = 35.60 m= 38.22 m;Max range ;Standard deviation = 0.86 cm/s



;Ensemble size = 1534 bytes ;Storage required = 114.16 MB (119709408 bytes) ;Power usage = 435.03 Wh = 1.0 ;Battery usage ;Samples / Wv Burst = 4800 ;Min NonDir Wave Per= 2.59 s ;Min Dir Wave Period= 4.31 s ;Bytes / Wave Burst = 374480 ; ; WARNINGS AND CAUTIONS: ; Waves Gauge feature has to be installed in Workhorse to use selected option. ; Advanced settings have been changed.

# **CERTIFICATE OF ANALYSIS**

Our ref: H:\USERS\MARLAB\REPORTS\Malr2971 Report Number: MALR2971 17 April 2009

Lwandle Technologies Gabriel Place 1 Gabriel Road Plumstead 7800

# Attention Dr Robin Carter CHEMICAL ANALYSIS: seawater samples (Order No.: PRDW)

Samples received: 15/04/09 Analysis completed: 16/04/09 Sample description: Seawater samples in sealed plastic bottles.

| Lab   | Sample | Total Suspended Solids |
|-------|--------|------------------------|
| No    | ld     | in mg/L                |
| 35976 | B1     | 9                      |
| 35977 | B2     | 2                      |
| 35978 | B3     | 2                      |
| 35979 | B4     | 3                      |
| 35980 | B5     | 16                     |
| 35981 | B6     | 10                     |
| 35982 | B7     | 9                      |
| 35983 | B8     | 2                      |
| 35984 | B9     | 12                     |
| 35985 | B10    | 11                     |
| 35986 | B11    | 3                      |

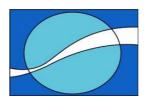
Andrew Pascall MARINE ANALYTICAL SERVICES Laboratory Manager Sebastian Brown MARINE ANALYTICAL SERVICES Deputy Laboratory Manager

Page 1 of 1

• Method not included in the scope of accreditation.

This report relates only to the samples actually supplied to the Division of Water, Environment and Forestry Technology. The Division does not accept responsibility for any matters arising from the further use of these results. This certificate shall not be




# LWANDLE DATA REPORT

# **BANTAMSKLIP SITE – DEPLOYMENT TEN**

# PREPARED FOR PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD



# PREPARED BY LWANDLE TECHNOLOGIES (PTY) LTD



28 August 2009

Job No: LT-JOB-50

Directors: C.P. Matthysen, M. Majodina, B.J. Spolander

LWANDLE TECHNOLOGIES (PTY) LTD Unit 13 Constantiaberg Business Park, 31 Princess Vlei Road, Diep River, 7800, Cape Town, South Africa

Co Reg. No. 2003/015524/07



# TABLE OF CONTENTS

| 1. | DISCL | MER                                       |    |  |  |  |
|----|-------|-------------------------------------------|----|--|--|--|
| 2. | EXEC  | UTIVE SUMMARY                             | 4  |  |  |  |
|    | 2.1   | DATA RETURN FOR BANTAMSKLIP SITE.         | 7  |  |  |  |
| 3. | INTRO | DDUCTION                                  | 8  |  |  |  |
|    | 3.1   | PROJECT DESCRIPTION                       | 8  |  |  |  |
|    | 3.2   | MEASUREMENT LOCATION                      | 8  |  |  |  |
| 4. | OPER  | ATIONS                                    | 9  |  |  |  |
|    | 4.1   | SUMMARY OF EVENTS                         | 9  |  |  |  |
|    | 4.2   | INSTRUMENT CONFIGURATIONS                 | 9  |  |  |  |
| 5. | DATA  | QUALITY CONTROL                           | 10 |  |  |  |
|    | 5.1   | ADCP                                      | 10 |  |  |  |
|    |       | 5.1.1 Current processing                  | 10 |  |  |  |
|    |       | 5.1.2 Wave processing                     | 10 |  |  |  |
|    | 5.2   | RBR-CT LOGGER                             | 12 |  |  |  |
|    | 5.3   | TIDE GAUGE                                | 12 |  |  |  |
|    | 5.4   | BIOFOULING                                | 12 |  |  |  |
|    | 5.5   | WATER SAMPLE                              | 12 |  |  |  |
| 6. | DATA  | PRESENTATION AND DISCUSSION               | 13 |  |  |  |
| 7. | INSTR | UMENT PARTICULARS                         | 18 |  |  |  |
|    | 7.1   | ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS   | 18 |  |  |  |
|    | 7.2   | RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT |    |  |  |  |
|    |       | SHEETS                                    | 20 |  |  |  |
|    | 7.3   | RBR TIDE GAUGE RECOVERY AND RE-DEPLOYMENT |    |  |  |  |
|    |       | SHEETS                                    | 21 |  |  |  |
|    | 7.4   | ADCP CONFIGURATION FILES                  | 22 |  |  |  |





#### 1. DISCLAIMER

The data is this report will undergo additional quality control procedures by Prestedge Retief Dresner Wijnberg (PRDW). For this reason no data in this report should be used for design purposes and only quality controlled data provided by PRDW should be used.



### 2. EXECUTIVE SUMMARY

First order statistics of the data collected at Bantamsklip during deployment 10 are presented in this section together with an indication of the data return achieved.

| Depth<br>(m) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean speed (ms <sup>-1</sup> ) | Vector mean direction (°) |
|--------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|---------------------------|
| -10.8        | 0.3152                           | 0.0563                            | 0.0378                           | 0.0470                                | 19.85                     |
| -10.4        | 0.2730                           | 0.0523                            | 0.0355                           | 0.0425                                | 17.73                     |
| -10.1        | 0.2743                           | 0.0502                            | 0.0340                           | 0.0388                                | 13.25                     |
| -9.7         | 0.2806                           | 0.0481                            | 0.0335                           | 0.0359                                | 10.01                     |
| -9.4         | 0.2938                           | 0.0469                            | 0.0326                           | 0.0333                                | 9.14                      |
| -9.0         | 0.2935                           | 0.0466                            | 0.0327                           | 0.0307                                | 6.11                      |
| -8.7         | 0.3294                           | 0.0460                            | 0.0335                           | 0.0283                                | 5.40                      |
| -8.3         | 0.3183                           | 0.0458                            | 0.0331                           | 0.0263                                | 4.93                      |
| -8.0         | 0.3245                           | 0.0465                            | 0.0331                           | 0.0252                                | 2.64                      |
| -7.6         | 0.2872                           | 0.0459                            | 0.0328                           | 0.0218                                | 359.81                    |
| -7.3         | 0.2830                           | 0.0461                            | 0.0329                           | 0.0197                                | 355.68                    |
| -6.9         | 0.2853                           | 0.0459                            | 0.0326                           | 0.0177                                | 351.70                    |
| -6.6         | 0.2868                           | 0.0466                            | 0.0324                           | 0.0152                                | 349.80                    |
| -6.2         | 0.2648                           | 0.0469                            | 0.0329                           | 0.0138                                | 339.83                    |
| -5.9         | 0.2825                           | 0.0475                            | 0.0332                           | 0.0118                                | 324.45                    |
| -5.5         | 0.2734                           | 0.0491                            | 0.0333                           | 0.0106                                | 312.33                    |
| -5.2         | 0.2668                           | 0.0502                            | 0.0336                           | 0.0096                                | 297.27                    |
| -4.8         | 0.2710                           | 0.0514                            | 0.0345                           | 0.0104                                | 274.39                    |
| -4.5         | 0.2923                           | 0.0532                            | 0.0350                           | 0.0108                                | 258.58                    |
| -4.1         | 0.2822                           | 0.0560                            | 0.0353                           | 0.0122                                | 244.24                    |
| -3.8         | 0.2616                           | 0.0593                            | 0.0362                           | 0.0140                                | 237.07                    |
| -3.4         | 0.2524                           | 0.0628                            | 0.0365                           | 0.0154                                | 242.91                    |
| -3.1         | 0.2655                           | 0.0700                            | 0.0412                           | 0.0175                                | 256.74                    |
| -2.7         | 0.2778                           | 0.0731                            | 0.0426                           | 0.0161                                | 268.04                    |
| -2.4         | 0.2938                           | 0.0749                            | 0.0435                           | 0.0168                                | 288.33                    |
| -2.0         | 0.2823                           | 0.0743                            | 0.0426                           | 0.0167                                | 304.47                    |
| -1.7         | 0.2524                           | 0.0782                            | 0.0444                           | 0.0140                                | 313.70                    |
| -1.3         | 0.2495                           | 0.0890                            | 0.0473                           | 0.0190                                | 359.25                    |

Table 1 – Current flow summary for 10m ADCP

# Table 2 – Waves summary for 10m ADCP

|        | Max    | Min    | Mean   | Std  |
|--------|--------|--------|--------|------|
| Hs (m) | 2.82   | 0.81   | 1.64   | 0.57 |
| Tp (s) | 19.60  | 6.90   | 11.79  | 2.02 |
| Dp (°) | 248.48 | 184.48 | 214.91 | 8.47 |



| Depth<br>(m) | Max speed<br>(ms <sup>-1</sup> ) | Mean speed<br>(ms <sup>-1</sup> ) | Std speed<br>(ms <sup>-1</sup> ) | Vector mean<br>speed (ms <sup>-1</sup> ) | Vector mean<br>direction (°) |
|--------------|----------------------------------|-----------------------------------|----------------------------------|------------------------------------------|------------------------------|
| -28.1        | 0.1677                           | 0.0253                            | 0.0231                           | 0.0046                                   | 144.42                       |
| -27.6        | 0.1867                           | 0.0273                            | 0.0251                           | 0.0056                                   | 145.84                       |
| -27.1        | 0.1946                           | 0.0293                            | 0.0265                           | 0.0085                                   | 153.27                       |
| -26.6        | 0.1993                           | 0.0317                            | 0.0296                           | 0.0085                                   | 164.05                       |
| -26.1        | 0.2147                           | 0.0320                            | 0.0305                           | 0.0095                                   | 168.31                       |
| -25.6        | 0.2403                           | 0.0332                            | 0.0303                           | 0.0099                                   | 163.00                       |
| -25.1        | 0.2557                           | 0.0344                            | 0.0292                           | 0.0111                                   | 161.76                       |
| -24.6        | 0.2549                           | 0.0365                            | 0.0289                           | 0.0126                                   | 160.08                       |
| -24.1        | 0.2383                           | 0.0366                            | 0.0286                           | 0.0136                                   | 155.06                       |
| -23.6        | 0.2551                           | 0.0373                            | 0.0289                           | 0.0143                                   | 151.30                       |
| -23.1        | 0.3236                           | 0.0380                            | 0.0320                           | 0.0154                                   | 150.12                       |
| -22.6        | 0.3880                           | 0.0391                            | 0.0346                           | 0.0167                                   | 148.42                       |
| -22.1        | 0.4207                           | 0.0390                            | 0.0361                           | 0.0159                                   | 144.80                       |
| -21.6        | 0.4559                           | 0.0392                            | 0.0365                           | 0.0158                                   | 142.96                       |
| -21.1        | 0.4891                           | 0.0403                            | 0.0396                           | 0.0155                                   | 135.72                       |
| -20.6        | 0.5272                           | 0.0408                            | 0.0430                           | 0.0165                                   | 133.10                       |
| -20.1        | 0.5700                           | 0.0420                            | 0.0447                           | 0.0168                                   | 124.90                       |
| -19.6        | 0.5675                           | 0.0437                            | 0.0448                           | 0.0183                                   | 115.84                       |
| -19.1        | 0.5739                           | 0.0455                            | 0.0456                           | 0.0183                                   | 105.07                       |
| -18.6        | 0.5824                           | 0.0485                            | 0.0458                           | 0.0209                                   | 95.59                        |
| -18.1        | 0.5767                           | 0.0521                            | 0.0462                           | 0.0234                                   | 90.07                        |
| -17.6        | 0.5652                           | 0.0537                            | 0.0475                           | 0.0281                                   | 84.70                        |
| -17.1        | 0.5533                           | 0.0565                            | 0.0486                           | 0.0322                                   | 83.45                        |
| -16.6        | 0.5374                           | 0.0587                            | 0.0485                           | 0.0353                                   | 79.55                        |
| -16.1        | 0.5127                           | 0.0610                            | 0.0473                           | 0.0369                                   | 80.24                        |
| -15.6        | 0.4832                           | 0.0639                            | 0.0466                           | 0.0400                                   | 77.75                        |
| -15.1        | 0.4719                           | 0.0673                            | 0.0485                           | 0.0426                                   | 79.66                        |
| -14.6        | 0.4609                           | 0.0688                            | 0.0475                           | 0.0438                                   | 79.80                        |
| -14.1        | 0.4466                           | 0.0710                            | 0.0474                           | 0.0465                                   | 80.24                        |
| -13.6        | 0.4508                           | 0.0721                            | 0.0481                           | 0.0485                                   | 82.62                        |
| -13.1        | 0.4125                           | 0.0734                            | 0.0474                           | 0.0502                                   | 83.95                        |
| -12.6        | 0.4275                           | 0.0721                            | 0.0494                           | 0.0507                                   | 85.17                        |
| -12.1        | 0.4153                           | 0.0736                            | 0.0501                           | 0.0534                                   | 90.14                        |
| -11.6        | 0.3717                           | 0.0727                            | 0.0487                           | 0.0542                                   | 92.20                        |
| -11.1        | 0.3724                           | 0.0729                            | 0.0488                           | 0.0555                                   | 94.80                        |
| -10.6        | 0.3338                           | 0.0727                            | 0.0480                           | 0.0559                                   | 96.30                        |
| -10.1        | 0.3206                           | 0.0731                            | 0.0482                           | 0.0574                                   | 96.59                        |
| -9.6         | 0.3274                           | 0.0722                            | 0.0457                           | 0.0568                                   | 98.64                        |
| -9.1         | 0.3344                           | 0.0745                            | 0.0461                           | 0.0586                                   | 97.17                        |
| -8.6         | 0.3229                           | 0.0739                            | 0.0448                           | 0.0601                                   | 96.65                        |
| -8.1         | 0.3029                           | 0.0736                            | 0.0423                           | 0.0613                                   | 91.92                        |
| -7.6         | 0.2959                           | 0.0732                            | 0.0424                           | 0.0605                                   | 89.64                        |
| -7.1         | 0.2814                           | 0.0754                            | 0.0396                           | 0.0614                                   | 88.01                        |

# Table 3 – Current flow summary for 30m ADCP



| -6.6 | 0.2850 | 0.0786 | 0.0431 | 0.0615 | 86.94 |
|------|--------|--------|--------|--------|-------|
| -6.1 | 0.2920 | 0.0826 | 0.0467 | 0.0637 | 83.65 |
| -5.6 | 0.2922 | 0.0861 | 0.0481 | 0.0677 | 82.03 |
| -5.1 | 0.2982 | 0.0898 | 0.0478 | 0.0716 | 80.71 |
| -4.6 | 0.2704 | 0.0913 | 0.0437 | 0.0743 | 76.87 |
| -4.1 | 0.2712 | 0.0937 | 0.0467 | 0.0777 | 75.08 |
| -3.6 | 0.2733 | 0.1001 | 0.0459 | 0.0838 | 72.23 |
| -3.1 | 0.3700 | 0.1117 | 0.0491 | 0.0955 | 66.68 |
| -2.6 | 0.3729 | 0.1469 | 0.0641 | 0.1320 | 56.26 |
| -2.1 | 0.3989 | 0.1651 | 0.0646 | 0.1513 | 59.00 |

# Table 4 – Waves summary for 30m ADCP

|        | Max    | Min    | Mean   | Std   |
|--------|--------|--------|--------|-------|
| Hs (m) | 1.43   | 0.90   | 1.09   | 0.12  |
| Tp (s) | 15.00  | 6.20   | 11.65  | 1.63  |
| Dp (°) | 237.52 | 167.52 | 204.62 | 21.36 |

# Table 5 – Water temperature and salinity summary (bottom, 30m)

| Parameter        | Mean  | Мах   | Min   |
|------------------|-------|-------|-------|
| Temperature (°C) | 11.19 | 15.52 | 9.86  |
| Conductivity     | 39.16 | 43.66 | 37.87 |
| Salinity (psu)   | 34.92 | 35.21 | 34.50 |



# 2.1 DATA RETURN FOR BANTAMSKLIP SITE.

| Bantams P10       | 29 January 2008 –<br>15 January 2009 | 15 January 2009 –<br>6 May 2009 | 4 April 2009 –<br>6 May 2009 |
|-------------------|--------------------------------------|---------------------------------|------------------------------|
| Btm RBR Salinity  | 54                                   | 81                              | 100                          |
| Surf RBR Salinity | 70                                   | 52                              | 0                            |
| 10m ADCP Current  | 33                                   | 13                              | 30                           |
| 10m ADCP Wave     | 33                                   | 13                              | 30                           |
| 30m ADCP Current  | 28                                   | 24                              | 9                            |
| 30m ADCP Wave     | 25                                   | 24                              | 9                            |
| Tide              | 35                                   | 94                              | 100                          |
| Temp-Btm RBR      | 62                                   | 81                              | 100                          |
| Temp-Surf RBR     | 77                                   | 52                              | 0                            |
| Temp-10m ADCP     | 33                                   | 13                              | 30                           |
| Temp-30m ADCP     | 34                                   | 24                              | 9                            |
| Tide Temperature  | 10                                   | 94                              | 100                          |
| 30m Temperature   | 76                                   | 81                              | 100                          |
| 10m Temperature   | 86                                   | 61                              | 30                           |

# Table 6 – Data Return (%).



# 3. INTRODUCTION

## 3.1 **PROJECT DESCRIPTION**

Lwandle Technologies (Pty) Ltd has been contracted by Prestedge Retief Dresner Wijnberg (PRDW) for oceanographic measurements in connection with the Eskom preliminary site safety report. Oceanographic data is required as input to the coastal engineering studies for a proposed new nuclear power station at three potential sites, Koeberg, Bantamsklip and Thyspunt. This data will be measured for a period of 31 months.

This report presents waves, currents, temperature, salinity and tide data collected at Bantamsklip station for the period April  $4^{th}$  – May  $6^{rd}$  2009 (Period 10). Service of the instruments was undertaken during May  $6^{th}$  and  $23^{rd}$  2009.

## 3.2 MEASUREMENT LOCATION

| Instrument  | Latitude (°S) | Longitude (°E) |
|-------------|---------------|----------------|
| Tide Gauge  | 34.7040       | 19.5517        |
| 10m ADCP    | 34.7198       | 19.5606        |
| Biofouling  | 34.7198       | 19.5614        |
| 30m ADCP    | 34.7101       | 19.5111        |
| T&C mooring | 34.7101       | 19.5111        |

#### Table 7 – Measurement locations

## 4. **OPERATIONS**

### 4.1 SUMMARY OF EVENTS

Recovery of the instruments was undertaken on May 6<sup>th</sup> 2009. The 10 m RBR was not recovered (s/n 12994). Redeployment of 10 m ADCP (s/n 10117) and tide gauge was done on May 23<sup>rd</sup> 2009.

#### 4.2 INSTRUMENT CONFIGURATIONS

Configurations were as per specifications.



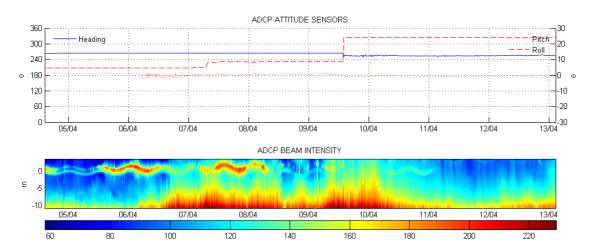
# 5. DATA QUALITY CONTROL

# 5.1 ADCP

Raw binary files were processed using the WavesMon software to separate the data into two components: currents and waves. Matlab was then used to process the data further.

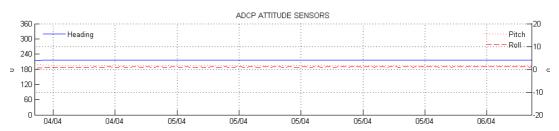
## 5.1.1 Current processing

- The record was truncated to exclude times pre and post deployment.
- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 31' W for the 10m ADCP and 25° 29' W for the 30m ADCP.
- A flag was imposed on all data within 6% of the waters surface due to side lobe interference. The distance to the water surface was based on the ADCP's pressure sensor.
- Checks were then run searching for any outliers in the velocity data. This was automated within a routine that compared the median of 5 values to the centre point. A tolerance of 0.2ms<sup>-1</sup> was allowed. Outliers identified by this method were then visually examined and flagged.
- Checks were then run searching for repeated values in the velocity and direction data. This was automated within a routine that searched for 3 identical consecutive values.
- The ADCP attitude data (heading, pitch and roll) were examined (Figure 1). For the 10m ADCP, the roll sensor jumped to above 20° on the 9<sup>th</sup> April and remained at that new level. The roll cut off was relaxed from 22° to 30° for the 10m ADCP to account for this jump.
- Finally, all flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.

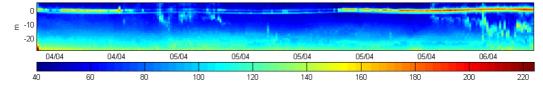

## 5.1.2 Wave processing

Wave parameters Hs (significant wave height), Tp (period of peak energy) and Dp (direction with peak energy at Tp) as well as the full wave directional spectra were then imported into Matlab for further processing:

- Directions were adjusted from magnetic to true north using a magnetic variation of 25° 31' W for the 10m ADCP and 25° 29' W for the 30m ADCP.
- Significant wave height data below 0m were removed and replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.




(a)




ADCP BEAM CORRELATION 0 Ε -5 -10 07/04 08/04 09/04 05/04 06/04 10/04 11/04 12/04 13/04 20 40 60 80 100 120 140 0

(b)



ADCP BEAM INTENSITY



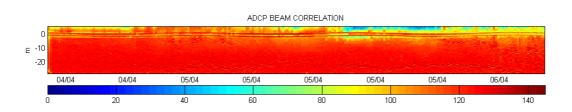



Figure 1: Attitude data for (a) 10m ADCP and (b) 30m ADCP.



# 5.2 RBR-CT LOGGER

The conductivity and temperature data were exported directly from the RBR software into Matlab for further processing.

- The record was truncated to exclude times pre and post deployment.
- The conductivity and temperature data were used to derive salinity according to the 1978 UNESCO algorithm.

## 5.3 TIDE GAUGE

The RBR software was used to convert and export water level data to a Matlab format. The data were then imported into Matlab for further processing:

- The record was truncated to exclude times pre and post deployment.
- Atmospheric sea level pressure correction was applied.
- Checks were then run searching for any outliers in the height data. This was automated within a routine that compared the median of 3 values to the centre point. A tolerance of 0.3m was allowed.
- Checks were then run searching for repeated values in the height data. This was automated within a routine that searched for 3 identical consecutive values.
- Data below 0m and above 10m (operating range of sensor) were flagged.
- All flagged data were replaced with the Matlab NaN symbol, ensuring that they would be excluded from all further processing.
- The data was then adjusted referenced to the Land Levelling Datum. The distance between top of the stilling well and the LLD is -1.649m.
- Finally the data was averaged over a 10-minute period.

## 5.4 BIOFOULING.

The following standard procedure is followed:

- The biofouling plates are retrieved.
- Photographs of the plate and prominent features are taken.
- Biofouling 'thickness' at 3 or 4 locations on the plates are measured.
- The Biofouling organisms present on the plates are gently scraped into plastic bag and transferred in water to the sample bottle.
- Formaldehyde is used to get a final 2-4% strength solution and 1 or 2 CaC03 chips are added.
- Sample bottles are stored upright in the dark.

Recovery of plates was not undertaken during this service visit

## 5.5 WATER SAMPLE.

No water samples were taken



## 6. DATA PRESENTATION AND DISCUSSION

The 10m ADCP attitude sensor showed a roll exceeding the acceptable 20° threshold starting from around mid-day on April 9<sup>th</sup> until the 13<sup>th</sup>. This threshold has been relaxed to 30° and data is presented here but flagged as potentially doubtful.

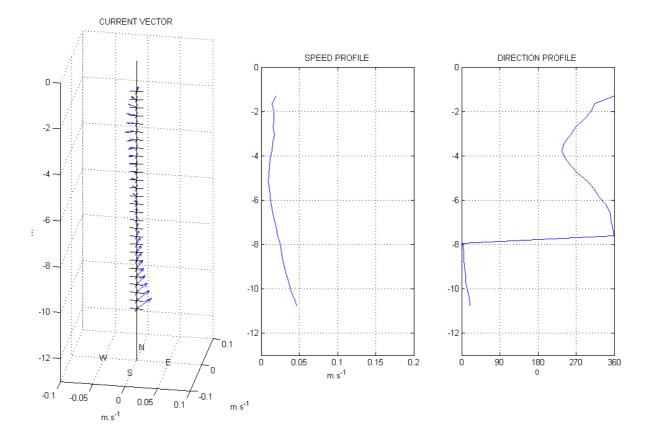



Figure 2: Mean profile plot for 10m ADCP.



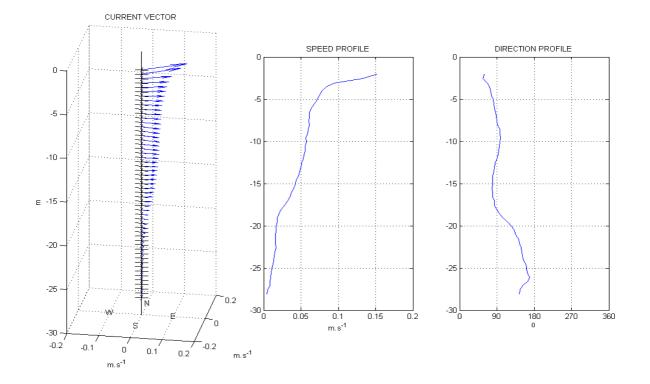



Figure 3: Mean profile plot for 30m ADCP.



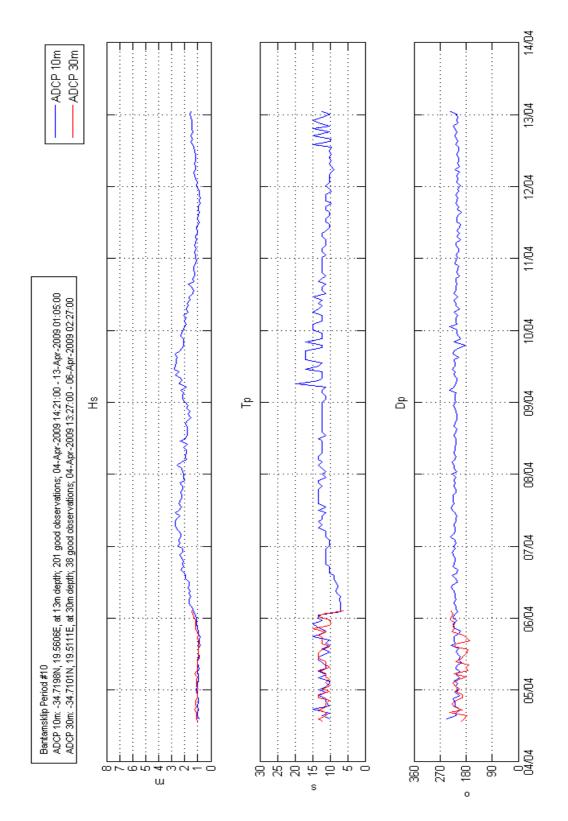



Figure 4: Time series of Hs, Tp and Dp from 10m and 30m ADCPs.



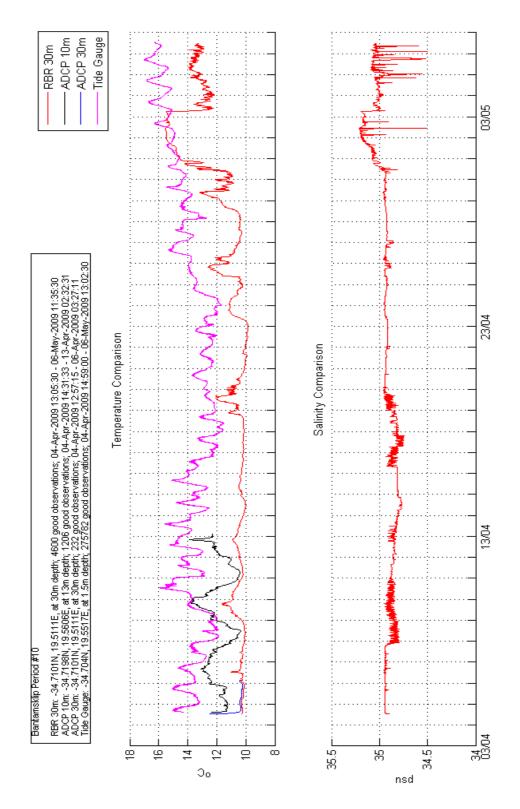



Figure 5: Time series of temperature and salinity from the RBR loggers and ADCPs.



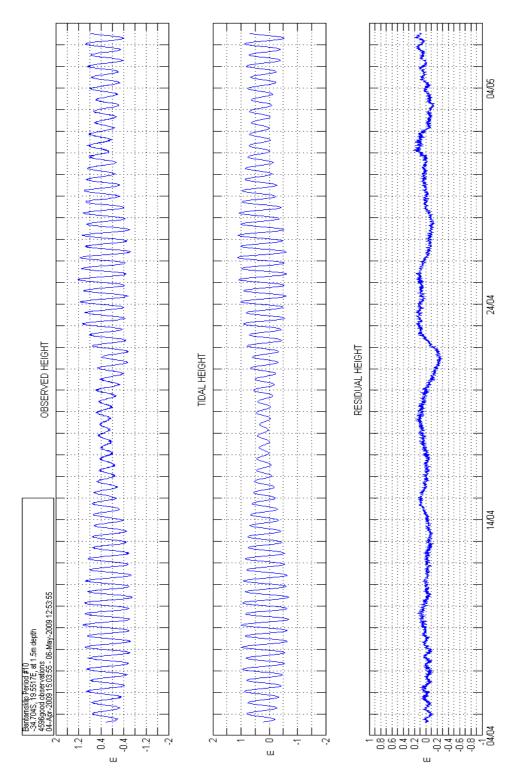



Figure 6: Tidal time series (a) observed height, (b) tidal height (tidal calculation follows the method of Foreman and uses the observed height as input (*R. Pawlowicz, B. Beardsley, and S. Lentz, "Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE", Computers and Geosciences 28 (2002), 929-937*)), (c) residual height.



## 7. INSTRUMENT PARTICULARS

### 7.1 ADCPS RECOVERY AND RE-DEPLOYMENT SHEETS

#### 10m ADCP.

1

#### RECOVERY Site Name: Bantamsklip 10 m site Date: 6 May 2009

| Instrument type and serial number                    | RDI                             | 11424 |    |                  |  |
|------------------------------------------------------|---------------------------------|-------|----|------------------|--|
| Recovery date and time                               | <u>6 May 2009 12:40</u>         |       |    |                  |  |
| Latitude (do not ignore - if same, please indicate)  |                                 |       |    | 43.186           |  |
| Longitude (do not ignore – if same, please indicate) |                                 |       |    | 19 33.637        |  |
| Switch off date and time                             | Switch off date and time LT GMT |       |    | 7 May 2009 08:02 |  |
| File size                                            |                                 |       |    | (B1004)          |  |
| Was the data copied to memory card?                  |                                 |       | Y* | N                |  |

#### 2 <u>RE-DEPLOYMENT</u> Site Name: Bantams 10m site Date: 23 May 2009

| Instrument type and serial number (do not ignore – if same, please indicate) RDI 10117 |                              |           |          |
|----------------------------------------------------------------------------------------|------------------------------|-----------|----------|
| Install a new battery and/or check the voltage                                         |                              |           | 1*44.7V  |
| Frequency of unit being used                                                           |                              | 600kHz    | <u>.</u> |
| Depth range                                                                            |                              | 42m       |          |
| Number of bins (calculated automatically)                                              |                              | 42        |          |
| Bin Size (calculated automatically)                                                    | matically) 0.35              |           |          |
| Wave burst duration                                                                    |                              | 40min     |          |
| Time between wave bursts                                                               | me between wave bursts 60min |           |          |
| Pings per ensemble                                                                     | ensemble 500                 |           |          |
| Ensemble interval                                                                      |                              | 10min     |          |
| Deployment duration                                                                    |                              | 13days    |          |
| Transducer depth                                                                       | Transducer depth 10m         |           |          |
| Any other commands                                                                     |                              | minTP,RI0 |          |
| Temperature                                                                            | 5                            |           |          |
| Recorder size                                                                          | 1 * !GB Sn#8                 |           |          |

Consequences of the sampling parameters

| Consequences                                                   | or the ball | sinig pai | amotoro      |              |              |  |
|----------------------------------------------------------------|-------------|-----------|--------------|--------------|--------------|--|
| First and last bin range                                       |             |           |              | 1.41         | 15.76        |  |
| Battery usage                                                  |             |           |              |              | 376Wh        |  |
| Standard deviation                                             |             |           |              |              | 1.08         |  |
| Storage space required                                         |             |           |              |              | 113MB        |  |
| Set the ADCP clock                                             |             | LT*       | GMT          | 22 Ma        | y 2009 21:20 |  |
| Run pre-deployment tests                                       |             |           |              |              | yes          |  |
| Name the ADCP deployment                                       |             |           |              | B1005        |              |  |
| Dep                                                            | loyment de  | tails     |              |              |              |  |
| Switch on date and time                                        |             | LT*       | GMT          | <b>22 Ma</b> | y 2009 21:20 |  |
| Deployment date and time                                       |             | LT*       | GMT          | 23 Ma        | y 2009 11:10 |  |
| Deployment Latitude (do not ignore – if same, please indicate) |             |           |              | 34 43.186    |              |  |
| Deployment Longitude (do not ignore - if same                  | , please in | dicate)   |              | 19           | 9 33.637     |  |
| Site depth                                                     | 30m         | Deplo     | oyment depth |              | 12.3         |  |

Acoustic release (1) serial number and release code



| Acoustic release (2) serial number and release code                            |         |                                                      |
|--------------------------------------------------------------------------------|---------|------------------------------------------------------|
| Argos beacon serial number                                                     |         |                                                      |
| Save whp, dpl and scl files in one folder (filename format: serialnumber_date) | dep/ADC | <u>23 May 2009</u><br>P_newDeploy<br><u>s/</u> B1005 |

#### 30m ADCP.

## 1 RECOVERY Site Name: Bantamsklip 30m site Date: 6 May 2009

| Instrument type and serial number                    |                                 |  |           | 10105             |  |
|------------------------------------------------------|---------------------------------|--|-----------|-------------------|--|
| Recovery date and time                               | LT GMT                          |  |           | <u>2009 12:00</u> |  |
| Latitude (do not ignore – if same, please indicate)  |                                 |  | 34 42.601 |                   |  |
| Longitude (do not ignore – if same, please indicate) |                                 |  |           | 19 30.691         |  |
| Switch off date and time                             | Switch off date and time LT GMT |  |           | 2009 07:54        |  |
| File size                                            |                                 |  | 16M       | B (B3004)         |  |
| Was the data copied to memory card?                  |                                 |  | Y*        | N                 |  |

May 23<sup>rd</sup>: Stainless steel frame at the 30m Site was found with 3 of the 6 legs broken – No re-deployment of the ADCP or the RBR loggers.



#### 7.2 RBR-CT LOGGERS RECOVERY AND RE-DEPLOYMENT SHEETS

Surface.

May 6<sup>th</sup>: During recovery, the RBR on the mooring line (s/n 12994) was missing.

May 23<sup>rd</sup>: Stainless steel frame at the 30m Site was found with 3 of the 6 legs broken – No re-deployment of the ADCP or the RBR loggers.

#### Bottom.

| 1 <u>RECOVERY</u>                                                              | Site Name: Bantamsklip 30m site |    |                                             | Date 6 May2009          |  |
|--------------------------------------------------------------------------------|---------------------------------|----|---------------------------------------------|-------------------------|--|
| Instrument type and serial number                                              |                                 |    | RBR<br>420ct                                | 15248                   |  |
| Recovery date and time                                                         |                                 | LT | GMT                                         | <u>6 May 2009 12:00</u> |  |
| Latitude (do not ignore – if same, please indicate)                            |                                 |    | 34 42.601                                   |                         |  |
| Longitude (do not ignore – if same, please indicate)                           |                                 |    | 19 30.691                                   |                         |  |
| Switch off date and time                                                       |                                 | LT | GMT                                         | 19 May 2009 19:22       |  |
| File size                                                                      |                                 |    | 119KB                                       |                         |  |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |                                 |    | Bantams 6 May 2009<br>rec/RBR_RecoveredData |                         |  |

May 23<sup>rd</sup>: Stainless steel frame at the 30m Site was found with 3 of the 6 legs broken – No re-deployment of the ADCP or the RBR loggers.



# 7.3 RBR TIDE GAUGE RECOVERY AND RE-DEPLOYMENT SHEETS

| 1. <u>RECOVERY</u> Site Name: Ban                                              | Site Name: Bantamsklip Tidegauge |     |                                          | Date <u>6 May 2009</u> |  |  |
|--------------------------------------------------------------------------------|----------------------------------|-----|------------------------------------------|------------------------|--|--|
| Instrument type and serial number                                              |                                  |     | TGR<br>2050                              | 13084                  |  |  |
| Recovery date and time                                                         | LT                               | GMT | <u>6 May 2009 13:00</u>                  |                        |  |  |
| Latitude (do not ignore – if same, please indicate)                            |                                  |     | 34 42.241                                |                        |  |  |
| Longitude (do not ignore – if same, please indicate)                           |                                  |     | 19 33.101                                |                        |  |  |
| Switch off date and time                                                       | LT                               | GMT | 19 May 2009 19:26                        |                        |  |  |
| File size                                                                      |                                  |     | 8433KB                                   |                        |  |  |
| Save log, hex and dat files in one folder (filename format: serialnumber_date) |                                  |     | Bantams 6 May 2009<br>rec/TideGuage_Data |                        |  |  |

### 2. <u>RE-DEPLOYMENT</u> Site Name: Bantamsklip Tide Gauge Date: 23 May 2009

| Instrument type and serial number (do not ignore – if same, please indicate) | TGR<br>2050 | 13084    |
|------------------------------------------------------------------------------|-------------|----------|
| Install a new battery and check the voltage                                  |             | 2 * 3.28 |

#### Set up the sampling parameters

| Sampling period                |      | 10       | ) sec    |
|--------------------------------|------|----------|----------|
| Averaging period               |      | 1        | sec      |
| Expected deployment duration   |      | 6 v      | veeks    |
| Start of logging (date / time) | 22 N | lay 2009 | 21:53:50 |
| End of logging (date / time)   | 5 Au | g 2009   | 12:00:00 |
| Memory usage                   |      |          | 46%      |
| Battery usage                  |      |          | 258mAH   |

| Deployment date and time                                          | LT | GMT                                                                                 | 23 May 2009 11:35 |  |
|-------------------------------------------------------------------|----|-------------------------------------------------------------------------------------|-------------------|--|
| Deployment Latitude (do not ignore – if same, please indicate)    |    |                                                                                     | 34 42.241         |  |
| Deployment Longitude (do not ignore – if same, please indicate)   |    |                                                                                     | 19 33.101         |  |
| Site name                                                         |    |                                                                                     | Bantamsklip       |  |
| Site depth                                                        |    |                                                                                     | 1.8m              |  |
| Deployment depth                                                  |    |                                                                                     | 1.7m              |  |
| Acoustic release (1) serial number and release code               |    |                                                                                     |                   |  |
| Acoustic release (2) serial number and release code               |    |                                                                                     |                   |  |
| Argos beacon serial number                                        |    |                                                                                     |                   |  |
| Save <i>log</i> file (filename format: <b>serialnumber_date</b> ) |    | Bantams 23 May 2009<br>dep/RBR_TideGauge_ne<br>wDeployLogs/ <b>20090522.I</b><br>og |                   |  |



## 7.4 ADCP CONFIGURATION FILES

#### 10m ADCP

CR1 CF11101 EA0 EB0 ED100 ES35 EX11111 EZ1111111 RI0 FD WA255 WB0 WD111100000 WF88 WN42 WP500 WS35 WV175 HD111000000 HB5 HP4800 HR01:00:00.00 HT00:00:00.50 TE00:10:00.00 TP00:00.50 CK CS ; ;Instrument = Workhorse Sentinel ;Frequency = 614400;Water Profile = YES ;Bottom Track = NO ;High Res. Modes = NO ;High Rate Pinging = NO ;Shallow Bottom Mode= NO ;Wave Gauge = YES = NO ;Lowered ADCP = 20 ;Beam angle = 5.00 ;Temperature ;Deployment hours = 312.00 ;Battery packs = 1 ;Automatic TP = NO ;Memory size [MB] = 1000 ;Saved Screen = 3 ;Consequences generated by PlanADCP version 2.04: ;First cell range = 1.41 m ;Last cell range = 15.76 m
;Max range = 35.28 m ;Standard deviation = 1.08 cm/s ;Ensemble size = 994 bytes ;Storage required = 113.20 MB (118698528 bytes) = 376.92 Wh ;Power usage ;Battery usage = 0.8 ;Samples / Wv Burst = 4800



;Min NonDir Wave Per= 1.85 s
;Min Dir Wave Period= 2.49 s
;Bytes / Wave Burst = 374480
;
;
; WARNINGS AND CAUTIONS:
; Waves Gauge feature has to be installed in Workhorse to use
selected option.
; Advanced settings have been changed.

#### 30m ADCP

May 23<sup>rd</sup>: Stainless steel frame at the 30m Site was found with 3 of the 6 legs broken – No re-deployment of the ADCP or the RBR loggers.