LIDWALA CONSULTING ENGINEERS

ESKOM HENDRINA POWER STATION NEW ASH DISPOSAL FACILITY

WASTE ASSESSMENT

Report No.: JW175/14/E699 - Rev 00

September 2014

DOCUMENT APPROVAL RECORD

<u>Report No.: JW175/14/E699 - Rev 00</u>

ACTION	FUNCTION	NAME	DATE	SIGNATURE			
Prepared	Senior Scientist	Marius van Zyl	23 September 2014	Manff			
Reviewed	Senior Scientist	Leigh-Ann Potter	29 September 2014	Obter			
Approved	Senior Scientist	Marius van Zyl	23 September 2014	Manff			

RECORD OF REVISIONS AND ISSUES REGISTER

Date	Revision	Description	Issued to	Issue Format	No. Copies
29/09/2014	Rev A	Draft for internal review	Leigh-Ann Potter	Electronic	NA
29/09/2014	Rev 00	Draft for client comment	Danie Brummer	Electronic	NA

ASLP	Australian Standard Leaching Procedure					
DEA	Department of Environmental Affairs					
DWS	Department of Water and Sanitation					
DWAF	Department of Water Affairs and Forestry					
LC	Leach concentration in mg/ł					
LCT	Leach concentration threshold in mg/ł					
mg/kg	Milligram per kilogram					
mg/ℓ	Milligram per litre					
тс	Total concentration in mg/kg					
тст	Total concentration threshold in mg/kg					
TDS	Total dissolved salts					
μS/cm	Micro Siemens per centimetre					

Acronyms and abbreviations used in this document:

LIDWALA CONSULTING ENGINEERS

ESKOM HENDRINA POWER STATION NEW ASH DISPOSAL FACILITY

WASTE ASSESSMENT

REPORT NO: JW175/14/E699 - Rev 00

<u>CONTENTS</u>

1.	INTRODUCTION	1
1.1	Background	1
1.2	Objectives	
2.	WASTE CLASSIFICATION FOR LANDFILL DISPOSAL (DEA, 2013A)	2
2.1	Overview of Classification System	2
3.	WET ASH ASSESSMENT	4
3.1	Samples	4
3.2	Analyses Conducted	4
3.3	Ash Assessment	4
4.	DISCUSSION	9
5.	RECOMMENDATIONS	10
6.	REFERENCES	10

APPENDIXES

Appendix A Laboratory Certificates

List of Tables

Table 2-1:	Organic limits for wastes to be classified as Type 4 wastes
Table 3-1:	Corrected concentrations for ash sample based on percentage contribution of
	ash carrier water and ash content
Table 3-2:	De-ionised Water Leach Test and Total Concentration Results of Hendrina
	Power Station Ash versus LCT and TCT values7
Table 3-3:	Ash Seepage Water Concentration Results of Hendrina Power versus LCT
	values

List of Figures

Figure 4-1:	Class C landfill barrier system (DEA, 2013b)	10
-------------	--	----

ones & Wagener

Engineering & Environmental Consultants 59 Bevan Road PO Box 1434 Rivonia 2128 South Africa tel: 00 27 11 519 0200 www.jaws.co.za email: post@jaws.co.za

LIDWALA CONSULTING ENGINEERS

ESKOM HENDRINA POWER STATION NEW ASH DISPOSAL FACILITY

WASTE ASSESSMENT

<u>REPORT NO: JW175/14/E699 - Rev 00</u>

INTRODUCTION 1.

1.1 Background

Lidwala Consulting Engineers (Pty) Ltd (Lidwala) was appointed by Eskom to identify, investigate and license a new ash disposal facility (or an expansion of the existing system) for the existing Hendrina Power Station located close to Hendrina in Mpumalanga, South Africa. The Hendrina Power Station employs a wet ash disposal method. Fly ash (also termed ashing ash) is deposited during day time in order to develop the day walls, while coarse ash is deposited during night time.

Lidwala appointed Jones & Wagener (J&W) to conduct a waste assessment to determine the type of waste for disposal purposes. Assessment of the ash is required for two purposes, namely to:

- Correctly assess the ash and hence the new ash disposal facility for licensing and environmental authorisation purposes, and
- Assist in the development an appropriate barrier design system for the facility, • based on the outcome of the assessment of the ash.

For the assessment of the ash, a wet ash sample of the fly ash deposited onto the current waste disposal facility was used, as well as a seepage water sample. In addition, a dry fly ash and a coarse ash sample were also used.

1.2 **Objectives**

The objectives of this project were to classify the ash and seepage water in terms of the Department of Environmental Affairs' (DEA's) "National Norms and Standards for the Assessment of Waste for Landfill Disposal" (National Norms and Standards) of August 2013.

JONES & WAGENER (PTY) LTD REG NO. 1993/002655/07 VAT No. 4410136685

A Oosthuizen (Alternate) Pring BEng(Hons) MSAICE TECHNICAL DIRECTORS: PW Day Pring DEng HonSAICE PG Gage Pring Ceng BSc(Eng) GDE MSAICE Alstructe JR Shamrock Pring BEng(Hons) MSAICE M van Zyl PrSciNat BSc(Hons) MIWMSA MW Palmer Pring MSc(Eng) MSAICE TG I Roux Pring MSAICE M van Zyl PrSciNat BSc(Hons) MIWMSA MW Palmer Pring MSc(Eng) MSAICE TG I Roux Pring MSAICE AJ Bain Pring MSAICE AJ Bain Pring MSAICE M Rust Pring PhD MSAICE M van Zyl PrSciNat BSc(Hons) MIWMSA MW Palmer Pring MSc(Eng) MSAICE TG I Roux Pring MSAICE AJ Bain Pring MSAICE M Rust Pring PhD MSAICE M Theron Pring MSAICE ASSOCIATES: BR Antrobus PrSciNat BSc(Hons) MSAICE MSAICE PJJ Smit BEng(Hons) MSAICE MVMSA RA Nortjé Pring MSc(Eng) MSAICE MIWMSA GB Simpson Pring MEng MSAIAE MSAICE C Cilliers Pring BEng(Hons) MSAICE NW Nxumalo Pring BSc(Eng) MSAICE OCONSILITATION DA Konze Pring BEng(Hons) MSAICE MVMSA RA Nortjé Pring MSc(Eng) MSAICE MIWMSA GB Simpson Pring MEng MSAIAE MSAICE C Cilliers Pring BEng(Hons) MSAICE NW Nxumalo Pring BSc(Eng) MSAICE OCONSILITATION DA Konze Pring Pring Defing MSC(Eng) MSAICE MIWMSA GB Simpson Pring MEng MSAIAE MSAICE C Cilliers Pring BEng(Hons) MSAICE NW Nxumalo Pring BSc(Eng) MSAICE OCONSILITATION DA Konze Pring PSC(Frag) CONSILITATION DA Konze PFing MSC(Eng) MSAICE MIWMSA BB Simpson Pring MEng MSAIAE MSAICE C Cilliers Pring BEng(Hons) MSAICE NW Nxumalo Pring BSC(Eng) MSAICE OCONSILITATION DA Konze PFing BEng(Hons) MSAICE NW Nxumalo Pring MSC(Eng) MSAICE MIWMSA BB Simpson Pring MEng MSAIAE MSAICE C Cilliers Pring BEng(Hons) MSAICE NW Nxumalo Pring BSC(Eng) MSAICE OCONSILITATION DA Konze PFing BEng(Hons) MSAICE MWMSA BB Simpson Pring MEng MSAIAE MSAICE C Cilliers Pring BEng(Hons) MSAICE NW Nxumalo Pring BSC(Eng) MSAICE OCONSILITATION DA Konze PFing BEng(Hons) MSAICE MWMSA BB Simpson Pring MEng MSAIAE MSAICE C Cilliers Pring BEng(Hons) MSAICE NW Nxumalo Pring BSC(Eng) MSAICE OCONSILITATION DA Konze PFing BEng(Hons) MSAICE MWMSA BB Simpson Pring MEng MSAIAE MSAICE C Cilliers Pring BEng(Hons) MSAICE NW Nxumalo Pri

CONSULTANT: JA Kempe Preng BSc(Eng) GDE MSAICE AlStruct FINANCIAL MANAGER: HC Neveling BCom MBL TCESA SO9001 NOSA

DIRECTORS: GR Wardle (Chairman) PrEng MSc(Eng) FSAICE D Brink (CEO) PrEng BEng(Hons) FSAICE JP van der Berg PrEng PhD MEng FSAICE JE Glendinning PrSciNat MSc(Env Geochem) MSAIEG

2. WASTE CLASSIFICATION FOR LANDFILL DISPOSAL (DEA, 2013A)

2.1 Overview of Classification System

The new waste classification system, which replaced the Department of Water Affairs and Forestry's Minimum Requirements classification system on 23 August 2013, focuses on the long term storage (in excess of 90 days) and disposal of waste on land or waste disposal facilities. The system is based on the Australian State of Victoria's waste classification system for disposal, which uses the Australian Standard Leaching Procedure (ASLP) to determine the leachable concentrations (LCs) of pollutants (DEA, 2013a).

A number of leach solutions can be used. For waste to be disposed of with putrescible organic matter, an acetic acid leach solution is used. This leach solution is very similar to the US EPA TCLP leach solution used in the now outdated Minimum Requirements, except that the pH is 5.0, instead of pH 4.93. In cases where a waste has a high pH, and following an acid neutralisation capacity test, a pH 2.9 leach solution must be used.

In cases where non-organic waste, such as the ash, is to be co-disposed with other nonorganic wastes, a basic 0.10 M sodium tetraborate decahydrate (borax) solution of pH 9.2 ± 0.10 should be used in addition to the acetic acid leach (DEA, 2013a). The objective of the sodium tetraborate test is to identify contaminants that are leached above the various leachable concentration thresholds (LCTs) trigger values at a high pH.

For non-putrescible inorganic waste, such as the coal derived ash, to be disposed of without any other wastes (mono- disposal scenario), reagent water (distilled water) is used as a leach agent.

In addition to the above, the total concentrations (TCs) of the constituents of concern need to be determined and compared to specified total concentration threshold (TCT) values (DEA, 2013a).

The number of potentially hazardous substances in the new classification system has been significantly reduced from that listed in the old Minimum Requirements of 1998 and brought in line with the potentially hazardous substances being used in other parts of the world to classify waste for disposal purposes. However, if a generator is aware of a hazardous substance other than those listed by the DEA, they are obliged to indicate and analyse for this.

Once the analytical results are known, the waste is classified in line with the following approach:

- Wastes with any element or chemical substance concentration above the LCT3 or TCT2 values (LC >LCT3 or TC>TCT2) are Type 0 Wastes. Type 0 wastes (extremely hazardous waste), require treatment/stabilisation before disposal¹;
- Wastes with any element or chemical substance concentration above the LCT2 but below LCT3 values, or above the TCT1 but below TCT2 values (LCT2<LC ≤ LCT3 or TCT1<TC ≤ TCT2), are Type 1 Wastes (highly hazardous waste, which must be disposed of on a Class A landfill constructed with the most conservative barrier system);
- Wastes with any element or chemical substance concentration above the LCT1 but below the LCT2 values and all concentrations below the TCT1 values (LCT1 < LC ≤ LCT2 and TC ≤ TCT1) are Type 2 Wastes (moderate hazardous waste, which must be disposed of on a Class B landfill);

Jones & Wagener (Pty) Ltd

^{1 1}If the TC of a chemical substance is >TCT2, and the concentration cannot be reduced to below the TCT2 limit, but the LC <LCT3, the waste is considered a Type 1 Waste

- Wastes with any element or chemical substance concentration above the LCT0 but below LCT1 values and all concentrations below the TCT1 values (LCT0 < LC ≤ LCT1 and TC \leq TCT1) are Type 3 Wastes (low hazardous waste, which must be disposed of on a Class C landfill);
- Wastes with all elements and chemical substance concentration levels for metal ions and inorganic anions below the LCT0 and TCT0 values (LC \leq LCT0 and TC \leq TCT0), as well as below the limits for organics and pesticides as in , are Type 4 Wastes (near inert wastes, which must be disposed of on sites with some base preparation, but no formal barrier system):

Chemical Substances in Waste	Total Concentration (mg/kg)							
Organic constituents								
otal organic carbon (TOC)	30 000 (3%)							
enzene, toluene, ethyl benzene and xylenes (BTEX)	6.0							
olychlorinated Biphenyls (PCBs)	1.0							
ineral Oil (C10 to C40)	500							
Pesti	cides							
drin + Dieldrin	0.050							
DT + DDD + DDE	0.050							
4-D	0.050							
nlordane	0.050							
eptachlor	0.050							

Table 2-1: Organic limits for wastes to be classified as Type 4 wastes

- Wastes with all element or chemical substance leachable concentration levels for metal ions and inorganic anions below or equal to the LCTO limits are considered to be Type 3 waste, irrespective of the total concentration of elements or chemical substances in the waste, provided that:
 - All chemical substance concentration levels are below the total concentration limits for organics and pesticides in the Table 2-1;
 - The inherent physical and chemical character of the waste is stable and will not change over time; and,
 - The waste is disposed of to landfill without any other waste.
- Wastes with the TC of an element or chemical substance above the TCT2 limit, and where the concentration cannot be reduced to below the TCT2 limit, but the LC for the particular element or chemical substance is below the LCT3 limit, the waste is considered to be Type 1 Waste.

3. WET ASH ASSESSMENT

3.1 Samples

Initially four samples were collected for from the existing Hendrina Power Station ash disposal facility for analysis on 15 July 2014. One sample was collected from the ash water discharge pipe, while three samples were collected from the ash water seepage discharge pipes at the toe of the ash disposal facility.

Additional dry ash samples, fly and coarse ash, were collected on 28 August 2014 as the wet ash sample collected on 15 July 2014 did not contain sufficient ash solids in order to conduct the required TCs.

3.2 Analyses Conducted

Waterlab (Pty) Ltd in Pretoria conducted the following analytical work on the ash water sample.

- · Separation of the solid ash fraction from the wet ash sample collected and determination of the percentage solids;
- Distilled water leach followed by ICP-OES analysis of the leach solution for the metals of concern. The total dissolved salts, chloride, sulfate, nitrate and fluoride concentrations were also determined from the distilled water leach solution;
- Aqua regia digestion of a solid sample and determination of the metals of concern in the solution by ICP-OES;
- Chromium VI determination;
- Paste pH of the ash sample;
- Final pH values of the leach solution.

The three ash water seepage samples collected at the toe of the existing ash disposal facility were combined to form a composite sample. The composite sample was then analysed for the inorganic chemical constituents listed in the National Norms and Standards.

An analysis of organic constituents was not performed on the samples as it is highly unlikely that any organics of concern will be present in the ash when being disposed of. Cyanide was also not analysed for.

The laboratory certificates are attached as Appendix A.

3.3 Ash Assessment

Coal Derived Ash

In order to determine the classification of the wet ash, the percentage contributions of the concentrations of the constituents in the liquid fraction and the distilled water leach concentrations were calculated based on the percentage liquids to solids - see Table 3-1. The corrected concentrations were then used for the assessment of the ash - see Table 3-2.

Based on the results obtained from the distilled water leach and total concentration analyses performed on the ash, the ash sample was assessed as a Type 3 waste requiring disposal on a waste disposal facility with a Class C barrier system provided there are no site specific risks that require a more conservative barrier system (DEA, 2013b). A Class C barrier system is the least stringent composite barrier system for

Jones & Wagener (Pty) Ltd

waste disposal facilities. The Type 3 waste classification was the result of the LC value of aluminium, boron, chromium VI, molybdenum Total Dissolved Salts (TDS) and sulfate concentrations exceeding their respective LCT0 values. In addition, the TCT0 values for arsenic, barium, copper, lead and nickel were also exceeded. Aluminium was added as one of the elements to be considered in the assessment due to aluminium silicates occurring in coal derived ashes. The same rules were used to establish the LCT for aluminium as per the National Norms and Standards, i.e., the SANS 241 drinking water standards were used as a basis for establishing the LCT value². In addition, the calcium, magnesium, sodium and potassium concentrations were also determined should the Department of Water and Sanitation request that the Relative Abundance of Monovalent and Divalent Cations (RMD) ratio be determined. The RMD will only be required should geosynthetic clay liners be considered for the barrier system of the new ash disposal facility.

Ash Seepage Water

The ash seepage water reporting to the base of the ash disposal facility represents the actual threat to the receiving environment, especially the surface and groundwater. The ash seepage water was assessed as a Type 3 waste. The chemical constituents resulting in this outcome are aluminium, boron, TDS and sulfate - see Table 3-3.

² Aluminium is not considered a toxic element, but at concentrations above 0.50 mg/*ℓ*, aesthetic impacts may occur.

Table 3-1: Corrected concentrations for ash sample based on percentage contribution of ash carrier water and ash content

	HENDRINA POWER STATION ASH											
Percentage solids	2.90%											
			WATER LEAG	СН								
		Solid Phase		-	Water Phase		Leach Concentratio					
Element/Compound	mg/l	Contribution Factor	Corrected concentration in mg/୧	mg/ℓ	Contribution Factor	Corrected concentration in mg/&	mg/ℓ					
Al, Aluminium	0.649	2.90%	0.019	0.336	97.10%	0.326	0.345					
As, Arsenic	0.005	2.90%	0.000	0.005	97.10%	0.005	<0.010					
B, Boron	0.179	2.90%	0.005	1.19	97.10%	1.16	1.161					
Ba, Barium	0.261	2.90%	0.008	0.462	97.10%	0.449	0.456					
Ca, Calcium	46	2.90%	1.334	596	97.10%	579	580					
Cd, Cadmium	0.0015	2.90%	0.000	0.0025	97.10%	0.002	<0.005					
Co, Cobalt	0.0125	2.90%	0.000	0.0125	97.10%	0.012	<0.025					
Cr, Chromium - total	0.130	2.90%	0.004	0.088	97.10%	0.085	0.089					
Cr VI, Chromium VI	0.138	2.90%	0.004	0.088	97.10%	0.085	0.089					
Cu, Copper	0.0125	2.90%	0.000	0.0125	97.10%	0.012	<0.025					
Hg, Mercury	0.0005	2.90%	0.000	0.0005	97.10%	0.000	<0.001					
K, Potassium	0.5	2.90%	0.015	51	97.10%	49.521	49.5					
Mg, Magnesium	1	2.90%	0.029	1.00	97.10%	0.971	1.000					
Mn, Manganese	0.0125	2.90%	0.000	0.0125	97.10%	0.012	<0.025					
No, Molydenum	0.036	2.90%	0.001	0.891	97.10%	0.865	0.866					
Na, Sodium	2	2.90%	0.058	154	97.10%	149.534	150					
Ni, Nickel	0.0125	2.90%	0.000	0.0125	97.10%	0.012	<0.025					
Pb, Lead	0.005	2.90%	0.000	0.0100	97.10%	0.010	<0.020					
Sb, Antimony	0.005	2.90%	0.000	0.005	97.10%	0.005	<0.010					
Se, Selenium	0.005	2.90%	0.000	0.01	97.10%	0.010	0.010					
/, Vanadium	0.105	2.90%	0.003	0.0125	97.10%	0.012	<0.025					
Zn, Zinc	0.0125	2.90%	0.000	0.0125	97.10%	0.012	<0.025					
DS, Total dissolved solids	174	2.90%	5.046	2332	97.10%	2264	2269					
Cl, Chloride	2.5	2.90%	0.073	156	97.10%	151	152					
50 ₄ , Sulphate	44	2.90%	1.276	709	97.10%	688	690					
NO ₃ , Nitrate	0.1	2.90%	0.003	2.7	97.10%	2.62	2.6					
F, Fluoride	0.1	2.90%	0.003	1.4	97.10%	1.36	1.4					

Elements & Chemical	Distilled	Hendrina Pov		ration		LCT0	ТСТО		LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
Substances	LC in mg/ℓ	TC in n		Limit of Report for LC		(mg/ℓ)	(mg/kg)		(mg/ℓ)	(mg/kg)		(mg/ℓ)	(mg/kg)		(mg/ℓ)	(mg/kg)	
A1	0.345	Fly Ash	Coarse Ash	(mg/ℓ)		0.000			45			20	_		400		
Al	<0.010	<4.00	<4.00	0.010		0.300	5.8	-	15	500		<u> </u>	500	1	120 4.0	2 000	4
As B	1.161	102	10	0.010		0.01	150	-	0.50	15 000	-		15 000		200	60 000	-
Ва	0.456	608	10	0.025		0.5 0.7	62.5	-	25 35	6 250	-	50 70	6 250		200	25 000	-
Са	580	000	144	0.025		0.7	02.0			0 230		10	0 250		200	23 000	
Cd	< 0.005	2.80	2.00	0.003		0.003	7.5	-	0.15	260		0.3	260		1.2	1 040	4
Co	<0.005	12	<10	0.005			50	-		5 000	-	50	5 000		200	20 000	-
	0.025	81	54	0.025		0.5 0.10	46 000	-	25 5	800 000	-	10			40	20 000	
Cr (total)	0.089	<5.00	54 <5.00	0.025				-	-		-		800 000		20	2 000	4
Cr(VI)	< 0.025	15	<5.00	0.010		0.05 2.0	6.5 16	-	2.5 100	500 19 500	-	<u>5.0</u> 200	500 19 500		800	2 000 78 000	- /
Cu	<0.025	10	×10			2.0	10		-	19 500			19 500			78 000	
Fe	<0.001	0.80	<0.40	0.025		0.006	0.93	-	100	160		200	160		800 2.4	640	4
Hg	49.5	0.80	<0.40	0.001		0.006	0.93		0.3	160		0.6	160		2.4	640	
K	1.00			0													
Mg	<0.025	270	98	2 0.025	Туре	0.5	1 000	Type	25	25 000	Туре	E0	25 000	Туре	200	100 000	Туре
Mn	0.866	<10	98 <10	0.025	pe 4	0.5 0.07	1 000 40	pe 3	25 3.5		N	50 7.0	1 000	<u>~</u>	200		pe u
Mo	150	< 10	<10	0.025	4 Waste	200	40	3 Waste	3.5 10 000	1 000	Waste	20 000	1 000	Waste	28 80 000	4 000	0 Waste
Na Ni	<0.025	40	32	0.025	ste	0.07	01	ste	-	10 600	ste		10 600	ste	28	42 400	ste
Pb	<0.023	40 <8.00	<8.00	0.025		0.07	91 20	-	3.5 0.5	1 900	-	7.0	1 900		4	7 600	- /
Sb	<0.020	<8.00 6.80	<8.00				10	-	1.0	75	-	ן ר	75		8	300	- /
	0.010	22	17	0.010		0.02	10	-	0.5	50	-	2	50		0 4	200	- 1
Se V	<0.025	19	<10	0.010		0.01	150	-	10		-	20	2 680		80		-
	<0.025	19	<10			0.2	150		10	2 680		20	2 000		00	10 720	
W	<0.025	57	24	0.025		5.0	240	-	250	160.000		500	160 000		2000	640.000	4
Zn	<0.025	57	24	0.025		5.0	240		250	160 000		500	160 000		2000	640 000	-
Inorganic Anions TDS	2 269			10		1 000			12 500			25 000			100 000		
Chloride	152			5		300			12 500			30 000			120 000		
	690			5 5		250			-						25 000		-
Sulfate as SO4	2.6								12 500			25 000					-
NO3 as N		4.47	70	0.2		11	400	-	550	40.000		1 100	40.000		4 400	40.000	4
Fluoride	1.4	147	72	0.2		1.5	100	-	75	10 000	-	50	10 000		600	40 000	-
Cyanide				0.05		0.07	14		3.5	10 500		7.0	10 500		28	42 000	
	Not applicable							_									
	Not analysed		<u></u>					_									
	LC > LCT3 or TC			4.184				-									
	$LCT2 < LC \le LC$							-									
	LCT1 <lc≤lc< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lc≤lc<>	· · · · · · · · · · · · · · · · · · ·						-									
	LCT0 < LC ≤ LC			/astes				-									
	LC ≤ LCT0 and	TC ≤ TCT0: Ty	pe 4 wastes														

Table 3-2: De-ionised Water Leach Test and Total Concentration Results of Hendrina Power Station Ash versus LCT and TCT values

 Table 3-3:
 Ash Seepage Water Concentration Results of Hendrina Power versus LCT values

able 3-3: Ash Se	epage Water Con	icentration Resi	ults of Hendr	ina Pe	ower versus	LCT values										_
Elements & Chemical		drina Power Station Water: Composite San	nple		LCT0	тсто		LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
	Leach Concentration (LC) in mg/ℓ	Total Concentration (TC) in mg/kg	Limit of Report for LC (mg/ℓ)		(mg/ℓ)	(mg/kg)		(mg/ℓ)	(mg/kg)		(mg/ℓ)	(mg/kg)		(mg/ℓ)	(mg/kg)	
Al	0.479				0.300			15			30			120		
As	<0.010		0.010		0.01	5.8		0.50	500		1.0	500		4.0	2 000	
В	1.46		0.025		0.5	150		25	15 000		50	15 000		200	60 000	
Ва	0.090		0.025		0.7	62.5		35	6 250		70	6 250		280	25 000	
Са	201															
Cd	<0.005		0.003		0.003	7.5		0.15	260		0.3	260		1.2	1 040	
Со	<0.025		0.025		0.5	50		25	5 000		50	5 000		200	20 000	
Cr (total)	<0.025		0.025		0.10	46 000		5	800 000		10	800 000		40		
Cr(VI)	<0.010		0.010		0.05	6.5		2.5	500		5.0	500		20	2 000	
Cu	<0.025		0.025		2.0	16		100	19 500		200	19 500		800	78 000	
Fe	0.074		0.025		2.0			100		1	200			800		
Hg	<0.001		0.001		0.006	0.93		0.3	160		0.6	160		2.4	640	
K	28															
Mg	<2		2					-		I .						
Mn	0.340		0.025	Type 4 Waste	0.5	1 000	Type	25	25 000	Type 2 Waste	50	25 000	Туре	200	100 000	Type
Мо	0.990		0.025	e 4 \	0.07	40	e 3 \	3.5	1 000	e 2 \	7.0	1 000	e 1 \	28	4 000	e 0 \
Na	85			Was	200		3 Waste	10 000		Vas	20 000		1 Waste	80 000		0 Waste
Ni	<0.025		0.025	fe	0.07	91	fe	3.5	10 600	fe	7.0	10 600	fe	28	42 400	Ē
Pb	<0.020		0.010		0.01	20		0.5	1 900	-	1	1 900		4	7 600	-
Sb	<0.010		0.010		0.02	10		1.0	75	-	2	75		8	300	-
Se	<0.020		0.010		0.01	10		0.5	50	-	1	50		4	200	-
V	0.137		0.025		0.2	150		10	2 680	-	20	2 680		80	10 720	-
W			0.025					-								
Zn	<0.025	-	0.025		5.0	240		250	160 000		500	160 000		2000	640 000	1
Inorganic Anions													ĺ			
TDS	1 064		10		1 000			12 500			25 000		ĺ	100 000		
Chloride	76		5		300			15 000			30 000			120 000		
Sulfate as SO4	550		5		250			12 500			25 000			25 000		
NO3 as N	0.2		0.2		11			550			1 100			4 400		
Fluoride	0.2		0.2		1.5	100		75	10 000	-	50	10 000		600	40 000	1
Cyanide			0.05		0.07	14	_	3.5	10 500	-	7.0	10 500		28	42 000	-
	Not applicable		0.00		0.07	1		5.0		Γ		10000			12 000	
	Not analysed						_									
	LC > LCT3 or TC > TC	CT2: Type 0 Wastes					-									
		TCT1 < TC ≤ TCT2 : 1	Type 1 Wastes				_									
		$\frac{1001}{100} \le 1002 \cdot 1002 \cdot$					-									
		<u>d</u> TC ≤ TCT1: Type 3														
	$LC \le LCT0 \text{ and } TC \le$						-									
		1010. 19po - Wabieo														

4. <u>DISCUSSION</u>

Various classifications and assessments have been carried out on the Hendrina Power Station ash by others. These classifications did not exactly adhere to the procedures as stipulated in the National Norms and Standards and the Australian Standards as referred to in the National Norms and Standards. For instance in some instances not all the required inorganic leachable chemicals of concern as listed in the National Norms and Standards were analysed for and TCs were not determined. Although the assessments performed were not necessarily incorrect, there is a chance that the Department of Environmental Affairs and Department of Water and Sanitation (DWS) may reject the assessments on the basis that the minimum analyses were not carried out. This assessment report covers all the inorganic constituents requiring analysis as per the National Norms and Standards, and in addition, the correct procedures were followed, i.e., the liquid fraction was separated from the solid fraction and the two fractions were then analysed separately. In addition, some additional chemicals of interest were analysed for, such as aluminium, calcium, magnesium, potassium and sodium in order to calculate the Relative Abundance of Monovalent and Divalent Cations (RMD) ratio if so requested by the DWS. An analysis of organics were not carried out as it is highly unlikely that the wet ash will contain any organics due to the nature of the process.

When comparing the TDS values of the ash water sample with the seepage water, a significant reduction in the TDS occurs from the point where the ash carrier water is discharged on the beach of the ash disposal facility to where the water seeps out at the toe drains of the facility. J&W has observed similar reductions at other wet ash disposal facilities.

Based on the assessment carried out, the ash was assessed as a Type 3 waste requiring disposal on a waste disposal facility with a Class C barrier system. This barrier system is the least conservative composite barrier system currently accepted by the DWS – see **Figure 4-1**. As the ash seepage water has a low risk of impacting on the groundwater in the area (as was demonstrated by Infotox, Groundwater Square and Geostratum in their draft report Health-risk Based Assessment of the Hendrina Ash Dam Expansion Project, dated September 2013) (Van Niekerk et al, 2013) the installation of a Class C barrier system for the new wet ash disposal facility should be sufficient to protect the environment in the long term. A more conservative barrier system should, however, be considered for the return water dams.

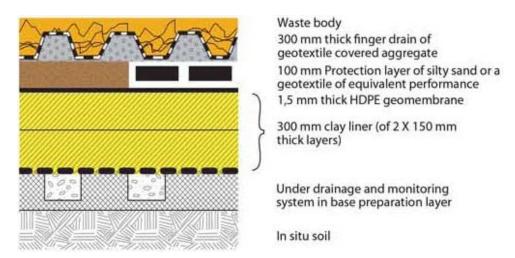


Figure 4-1: Class C landfill barrier system (DEA, 2013b)

5. <u>RECOMMENDATIONS</u>

The following recommendations are made:

- The intended barrier design of the new wet ash disposal facility for the Hendrina Power Station should be presented, discussed and agreed upon with the Department of Water and Sanitation prior to the design being submitted as part of the Waste Management Licence Application;
- A Class C barrier design, which is the barrier system recommended by J&W for the new wet ash disposal facility, should incorporate a drainage layer on top of the barrier system containing drainage pipes of adequate size, spacing and strength to ensure atmospheric pressure within the drainage application for the service life of the ash disposal facility as per the DEA's National Norms and Standards or as agreed with the Department of Water Affairs.

6. <u>REFERENCES</u>

- Department of Environmental Affairs, 2013a. National norms and standards for the assessment of waste for landfill disposal. R635 of 23 August 2013, Government Gazette 36784 of 23 August 2013, Government Printer, Pretoria.
- Department of Environmental Affairs, 2013b. National norms and standards for disposal of waste to landfill. R636 of 23 August 2013, Government Gazette 36784 of 23 August 2013, Government Printer, Pretoria.
- (iii) Van Niekerk, W., Fourie, M. H., Strydom, E., Botha, L. J., Fourie, J. P., 2013. Draft Report Health-risk Based Assessment of the Hendrina Ash Dam Expansion Project. Lidwala Consulting Engineers

Manff

Marius van Zyl

Leigh-Ann Potter

hur

John Glendinning Project Director for Jones & Wagener

29 September 2014 Document source: C:\Users\rofhiwa.JAWS.000\Desktop\E699_REP_R0_MvZ_LP_Hendrina_Ash_29Sept2014.docx Document template: repGen_14r1_TT

11

LIDWALA CONSULTING ENGINEERS

ESKOM HENDRINA POWER STATION NEW ASH DISPOSAL FACILITY

WASTE ASSESSMENT

Report: JW175/14/E699 - Rev 00

Appendix A

LABORATORY CERTIFICATES

WATERLAB (Pty) Ltd Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

Building D The Woods 41 De Havilland Cresent Persequor Techno Park Meiring Naudé Drive Pretoria V.À.T. No.: 4130107891 P.O. Box 283 Persequor Park, 0020 Tel: +2712 - 349 - 1066 Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

SANAS Accredited Testing Laboratory No. T0391

CERTIFICATE OF ANALYSES GENERAL WATER QUALITY PARAMETERS

Date received: 2014 - 07 - 18		Date co	mpleted: 2014 - 08 – 12		
Project number: 132 F	Report number: 4	7067 Order n	Order number: E699/MVZ/26587		
Client name: Jones & Wagner Cons	ulting Civil Engir	neers Contact	s Contact person: Mr. M van Zyl		
Address: PO Box 1434, Rivonia 212			e-mail: <u>vanzyl@jaws.co.za</u>		
Telephone: 011 519 0217 Facsimile: 011 519 0201 Mobile: 082 880 1250					
Analyses in mg/ℓ		Sample Identification			
(Unless specified otherwise)	Method Identification	HSW Composite	HWA1 Supernatant		
Sample Number		11436	11437		
pH – Value at 25°C	WLAB001	9.5	12.3		
Total Dissolved Solids at 180°C *	WLAB003	1 064	2 332		
Chloride as Cl	WLAB046	76	156		
Sulphate as SO₄	WLAB046	550	709		
Fluoride as F	WLAB014	0.2	1.4		
Nitrate as N	WLAB046	0.2	2.7		
Sodium as Na	WLAB015	85	154		
Potassium as K	WLAB015	28	51		
Calcium as Ca	WLAB015	201	596		
Magnesium as Mg	WLAB015	<2	<2		
Aluminium as Al	WLAB015	0.479	0.336		
Antimony as Sb *	WLAB015	<0.010	<0.010		
Arsenic as As *	WLAB015	<0.010	<0.010		
Barium as Ba *	WLAB015	0.090	0.462		
Boron as B *	WLAB015	1.46	1.19		
Cadmium as Cd	WLAB015	<0.005	<0.005		
Total Chromium as Cr	WLAB015	<0.025	0.088		
Hexavalent Chromium as Cr ⁶⁺ *	WLAB032	<0.010	0.088		
	Analyses continued on next page				

Ard van de Wetering

Technical Signatory

The information contained in this report is relevant only to the sample/samples supplied to **WATERLAB (Pty) Ltd.** Any further use of the above information is not the responsibility of **WATERLAB (Pty) Ltd.** Except for the full report, part of this report may not be reproduced without written approval of **WATERLAB (Pty) Ltd.** Details of sample conducted by Waterlab (PTY) Ltd according to WLAB/Sampling Plan and Procedures/SOP are available on request.

WATERLAB (Pty) Ltd Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

Building D The Woods 41 De Havilland Cresent Persequor Techno Park Meiring Naudé Drive Pretoria V.À.T. No.: 4130107891 P.O. Box 283 Persequor Park, 0020 Tel: +2712 - 349 - 1066 Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

SANAS Accredited Testing Laboratory No. T0391

CERTIFICATE OF ANALYSES GENERAL WATER QUALITY PARAMETERS

Date received: 2014 - 07 - 18		Date co	Date completed: 2014 - 08 - 12			
Project number: 132	Report number: 4	7067 Order i	Order number: E699/MVZ/26587			
Client name: Jones & Wagner C	• •					
Address: PO Box 1434, Rivonia		e-mail: <u>vanzyl@jaws.co.za</u>				
Telephone: 011 519 0217 Facsimile: 011 519 0201 Mobile: 082 880 1250						
Analyses in mg/ℓ (Unless specified otherwise)		Sample I	Sample Identification			
	Method Identification	HSW Composite	HWA1 Supernatant			
Sample Number		11436	11437			
Cobalt as Co	WLAB015	<0.025	<0.025			
Copper as Cu	WLAB015	<0.025	<0.025			
Iron as Fe	WLAB015	0.074	<0.025			
Lead as Pb	WLAB015	<0.020	<0.020			
Manganese as Mn	WLAB015	0.340	<0.025			
Mercury as Hg *	WLAB047	<0.001	<0.001			
Molybdenum as Mo *	WLAB015	0.990	0.891			
Nickel as Ni	WLAB015	<0.025	<0.025			
Selenium as Se *	WLAB015	<0.020	<0.020			
Vanadium as V *	WLAB015	0.137	<0.025			
Zinc as Zn	WLAB015	<0.025	<0.025			
% Balancing		90.4	95.8			

* = Not SANAS Accredited

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.

Ard van de Wetering

Technical Signatory

The information contained in this report is relevant only to the sample/samples supplied to **WATERLAB (Pty) Ltd.** Any further use of the above information is not the responsibility of **WATERLAB (Pty) Ltd.** Except for the full report, part of this report may not be reproduced without written approval of **WATERLAB (Pty) Ltd.** Details of sample conducted by Waterlab (PTY) Ltd according to WLAB/Sampling Plan and Procedures/SOP are available on request.

WATERLAB (PTY) LTD Building D, The Woods, Persequor Techno Park, Merimg Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES EXTRACTIONS AS 4439.3

Date received:	18/07/2014		Date completed:	13/08/2014
Project number:	132 Report number: 47067		Order number:	
Client name:	Jones & Wagener		Contact person:	Marius van Zyl
Address:	PO Box 1434, Rivonia, 2128		Email:	vanzyl@jaws.co.za
	011 519 0200			

Analyses	HWA 1 ash			
Sample Number	11438			
TCLP / Borax / Distilled Water	Distilled Water			
Ratio	1:20			
Units	mg/ℓ	LCT0 mg/l		
Al, Aluminium	0.649			
As, Arsenic	<0.010	0.01		
B, Boron	0.179	0.5		
Ba, Barium	0.261	0.7		
Ca, Calcium	46			
Cd, Cadmium	<0.003	0.003		
Co, Cobalt	<0.025	0.5		
Cr _{Total,} Chromium Total	0.130	0.1		
Cr(VI), Chromium (VI)	0.138	0.05		
Cu, Copper	<0.025	2.0		
Hg, Mercury	<0.001	0.006		
K, Potassium	<1.0			
Mg, Magnesium	<2			
Mn, Manganese	<0.025	0.5		
Mo, Molybdenum	0.036	0.07		
Na, Sodium	2			
Ni, Nickel	<0.025	0.07		
Pb, Lead	<0.010	0.01		
Sb, Antimony	<0.010	0.02		
Se, Selenium	<0.010	0.01		
V, Vanadium	0.105	0.2		
Zn, Zinc	<0.025	5		
Inorganic Anions	mg/ℓ			
Total Dissolved Solids	174	1000		
Chloride as Cl	<5	300		
Sulphate as SO4	44	250		
Nitrate as N	<0.2	11		
Fluoride as F	<0.2	1.5		
рН	11.0			
Paste pH	Insufficient sample			
Moisture % after filtration	17			
Solid %	2.9			

WATERLAB (PTY) LTD

Building D, The Woods, Persequor Techno Park, Meiring Naudé Road, Pretoria Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES Digestion AS 4439.3

Date received:	01/09/2014		Date completed:	10/09/2014
Project number:	132	Report number: 47749	Report number: 47749 Order number:	
Client name:	Jones & Wagener		Contact person:	Marius van Zyl
Address:	PO Box 1434, Rivonia, 2128		Email:	vanzyl@jaws.co.za
Telephone:	011 519 0200		Cell:	

Analyses Sample Number	Hendrina Fly Ash Sample: 28 Aug 2014: HFA-1 15012		Hendrina Coarse Ash Sample: 28 Aug 2014: HCA-1 15013		
Digestion	Aqua	Aqua Regia		Aqua Regia	
Dry Mass Used (g)	0.	0.25		0.25	
Volume Used (mℓ)	1	100		100	
Units	mg/ℓ	mg/kg	mg/ℓ	mg/kg	
As, Arsenic	<0.010	<4.00	<0.010	<4.00	5.8
B, Boron	0.256	102	0.026	10	150
Ba, Barium	1.52	608	0.361	144	62.5
Cd, Cadmium	0.007	2.80	0.005	2.00	7.5
Co, Cobalt	0.030	12	<0.025	<10	50
Cr _{Total,} Chromium Total [s]	0.203	81	0.135	54	46000
Cr(VI), Chromium (VI) Total [s]		<5		<5	6.5
Cu, Copper	0.037	15	<0.025	<10	16
Hg, Mercury	0.002	0.8	<0.001	<0.4	0.93
Mn, Manganese	0.675	270	0.246	98	1000
Mo, Molybdenum	<0.025	<10	<0.025	<10	40
Ni, Nickel	0.100	40	0.081	32	91
Pb, Lead	<0.020	<8.00	<0.020	<8.00	20
Sb, Antimony	0.017	6.80	<0.010	<4.00	10
Se, Selenium	0.055	22	0.042	17	10
V, Vanadium	0.048	19	<0.025	<10	150
Zn, Zinc	0.142	57	0.060	24	240
Inorganic Anions	mg/ℓ	mg/kg	mg/ℓ	mg/kg	
Total Fluoride [s] mg/kg		147		72	100