PROPOSED ESKOM LANDFILL SITE, LEPHALALE, LIMPOPO PROVINCE

ECOLOGICAL ASSESSMENT (FINAL REPORT)

Prepared for:

Envirolution Consulting

Unit 25 Sunninghill Office Park 4 Peltier Road Sunninghill 2157

Tel: (011) 844 4999 Fax: (011) 234 0007

Compiled by:

Lukas Niemand Pr.Sci.Nat. Pachnoda Consulting cc

88 Rubida Street Murrayfield X1 Pretoria

Tel: (012) 365 2546 Fax: (012) 365 3217 E-mail: lukas@pachnoda.co.za

April 2009

TABLE OF CONTENTS

LIST OF FIGURES	. 111
LIST OF TABLES	. IV
LIST OF APPENDICES	. IV
1. INTRODUCTION	1
1.1 TERMS OF REFERENCE	1
1.2 BACKGROUND	2
2. BACKGROUND INFORMATION	2
2.1 LOCATION	2
2.2 LAND USE AND EXISTING INFRASTRUCTURE	2
2.3 BIOPHYSICAL DESCRIPTION	2
2.3.1 Climate	2
2.3.2 Geology and Soils	2
2.3.3 Regional Vegetation Description	3
3. METHODOLOGY	8
3.1 VEGETATION SURVEY	8
3.1.1 Baseline vegetation description	8
3.1.2 Method of analysis	9
3.2 FAUNAL SURVEY	9
3.2.1 Mammals	9
3.2.2 Avifauna	10
3.2.3 Herpetofauna	10
3.2.4 Invertebrates	11
3.3 ECOLOGICAL SENSITIVITY	11
3.3.1 Ecological Function	11
3.3.2 Conservation Importance	11
3.3.3 Sensitivity Scale	11
3.4 LIMITATIONS	12
4. RESULTS AND DISCUSSION	16
4.1 VEGETATION UNITS	16
4.2 RED DATA PLANT ASSESSMENT	24
4.3 PROTECTED PLANT SPECIES	25
4.4 MEDICINAL PLANT SPECIES	26
4.5 DECLARED WEEDS AND INVADER PLANTS	27
4.6 BIOGEOGRAPHICALLY IMPORTANT TAXA AND ENDEMIC (INCLUDING NE	AR-
ENDEMIC) TAXA	28
4.7 MAMMALS	28
4.7.1 Observed and Expected Richness	28
4.7.2 Red listed, "near-threatened" and "data deficient" species	29
4.8 HERPETOFAUNA	30
4.9 AVIFAUNA	30
4.9.1 Observed and Expected Richness	30
4.9.2 Red listed species	31

4.10	INVERTEBRATES	32
4.10.1	Species of conservation concern	32
4.11	ECOLOGICAL SENSITIVITY (FIGURE 17)	33
4.11.1	Areas of Medium Ecological Sensitivity	33
4.11.2	Areas of Medium-Low Ecological Sensitivity	33
4.11.3	Areas of Low Ecological Sensitivity	34
5. IMPAC	CT ASSESSMENT & RECOMMENDATIONS	36
5.1 I∧	PACT ASSESSMENT	36
5.1.1	Construction Impacts: Vegetation	36
5.1.2	Construction Impacts: Fauna	37
5.1.3	Operational Impacts: Vegetation	38
5.1.4	Operational Impacts: Fauna	39
5.2 R	ECOMMENDATIONS AND SUGGESTED MITIGATION MEASURES	40
6. REFE	RENCES	41
7. APPE	NDICES	44

LIST OF FIGURES

Figure 1: A locality map illustrating the geographic position of the study site
Figure 3: The spatial position of the study site and the regional vegetation types as defined by Mucina & Rutherford (2006)
Figure 4: A map of the study site boundary illustrating the geographic placement of 21 sampling plots to assist with a baseline vegetation description (Google Earth, 2009)
Figure 5: A map of the study site boundary illustrating the geographic placement of 5 small mammal trapping stations and an infrared digital camera (Google Earth, 2009)
Figure 6: An example of a small mammal (live) trap used during the assessment 15
Figure 7: A dendrogram based on a cluster analysis of the sampled plots. a – <i>Cenchrus ciliaris</i> grassland, b – <i>Indigofera daleoides</i> – <i>Digitaria eriantha</i> shrub, c – <i>Acacia mellifera</i> – <i>Melhania acuminata</i> thornveld and <i>Acacia tortilis</i> –
Enneapogon cenhroides woodland 17
Figure 8: A non-metric Multidimensional Scaling ordination of the sampled plots illustrating: a – <i>Cenchrus ciliaris</i> grassland, b – <i>Indigofera daleoides – Digitaria eriantha</i> shrub, c – <i>Acacia mellifera – Melhania acuminata</i> thornveld and <i>Acacia tortilis – Enneapogon cenhroides</i> woodland. Please note that the samples are fairly scattered in space (hence the high stress value) due to the rather small sample size.
Figure 9: A map illustrating the vegetation units on the study site. Please note that the <i>Indigofera daleoides – Digitaria eriantha</i> shrub is embedded within the
<i>Acacia tortilis – Enneapogon cenhroides</i> woodland unit
Figure 10: <i>Cenhrus ciliaris</i> grassland
Figure 11: Indigofera daleoides – Digitaria eriantha shrub
Figure 12: Acacia mellifera – Melhania acuminata thornveld
Figure 13: Acacia tortilis – Enneapogon cenhroides woodland
Figure 14: A series of photographs illustrating some of the mammalian taxa observed on the study site: (a) a <i>Sylvicapra grimmia</i> (Common Duiker) captured by means of an infrared camera, (b) <i>Sylvicapra grimmia</i> (Common Duiker) droppings and (c) a <i>Crocidura</i> sp. nr. <i>C. hirta</i> (Musk Shrew) individual captured from trapping station 1
Figure 15: A sensitivity map of the study site based on the vegetation aspects 35

LIST OF TABLES

Table 1: A list of the characteristic plant species for each stratum (e.g. grass, forb &
woody layer) representing Limpopo Sweet Bushveld (Mucina & Rutherford,
2006)
Table 2: Modified Braun-Blanquet cover classes (Mueller-Dombois & Ellenberg,
Table 2. Distant along reserved of from the vegetation write
Table 3: Protected plant species recorded from the vegetation units
study site
Table 5: A list of medicinal species observed on the study site (according to Van Wyk
et al., 1997). Important (heavily utilised) species are highlighted in grey
Table 6: An inventory of mammalian taxa observed from the study site. 28
Table 7: Red Data Bird species assessment (according to Harrison et al., 1997;
Barnes, 2000) and an indication of their likelihood of occurrence,
Table 8: A list of invertebrate taxa of conservation concern likely to occur on the
study site. All species are protected by Schedule B1 of the list of threatened and
protected invertebrate species issued in terms of Section 56(1) of the National
Environmental Management: Biodiversity Act. 2004
Table 9: An impact assessment table summarising the potential construction impacts
and the vegetation units $WOM - Without mitigation; WM - With mitigation 37$
Table 10: An impact accomment table summarising the potential construction
impacts on the found assemblance WOM Without mitigation. WM With
impacts on the raunal assemblages. WOW – Without mitigation; WM – With
Table 11: An impact assessment table summarising the potential operational impacts
on the vegetation units. WOM – Without mitigation; WM – With mitigation 39
Table 12: An impact assessment table summarising the potential operational impacts
on the faunal community. WOM – Without mitigation; WM – With mitigation 40

LIST OF APPENDICES

1. INTRODUCTION

The increase in human demand for space and life-supporting resources resulted in a rapid loss of natural open space in South Africa. When open space systems are rezoned for development, indigenous fauna and flora are replaced by exotic species and converted to sterile landscapes with no dynamic propensity or ecological value (Wood *et al.*, 1994). Additionally, residential and golf course development have rarely focussed on decisive planning to conserve natural environments, while little thought was given to the consequences on the ecological processes of development in highly sensitive areas.

Transformation and fragmentation are not the only results of unplanned and intended developments, the loss of ecosystem functioning and ultimately the local extinction of species can also result. Therefore, careful planning will not only preserve rare and endemic fauna and flora, but also the ecological integrity of ecosystems on the landscape level, which is imperative for the continuation of natural resources, such as fossil fuels, water and soils with high agricultural potential.

In 1992, the Convention of Biological Diversity, a landmark convention, was signed by more than 90 % of all members of the United Nations. The enactment of the National Environmental Management Biodiversity Act, 2004 (Act No. 10 of 2004), together with the abovementioned treaty, focuses on the preservation of all biological diversity in its totality, including genetic variability, natural populations, communities, ecosystems up to the scale of landscapes. Hence, the local and global focus changed to the sustainable utilisation of biological diversity.

1.1 Terms of Reference

The terms of reference for this assessment are as follows:

- To provide a description of the vegetation units on the study site;
- To provide a faunal survey (with emphasis on mammals and birds) of the study site;
- To conduct a survey of threatened, "near-threatened", endemic and conservation important species (Red Data scan) on the proposed study site;
- To conduct a faunal habitat assessment (including habitat suitable for potential threatened, "near-threatened", endemic and conservation important species);
- To provide an indication of the relative conservation importance and ecological function of the study site (to be incorporated into a sensitivity map); and
- To provide recommendations and potential impacts based on the proposed development, if ecologically viable.

1.2 Background

Pachnoda Consulting cc was appointed by Envirolution Consulting (Pty) Ltd as an independent ecological specialist to evaluate the ecological importance and function of an area located within the limits of the Matimba power station (on the Farm Grootestryd 465 LQ) for the proposed Eskom Landfill EIA located near Lephalale, Limpopo Province (Figure 1).

The size of the property is approximately 29.62 ha in extent of which approximately 5 ha are required for the landfill site. Figure 2 shows three options (each 5 ha in extent) to be evaluated during this assessment, of which one which will be recommended (see recommendations).

2. BACKGROUND INFORMATION

2.1 Location

The study site is located within the site boundary of the existing Matimba power station (Figure 1) approximately 15 km west of the town of Lephalale, Limpopo Province.

2.2 Land Use and existing infrastructure

The site is currently vacant and situated adjacent to a dysfunctional and rehabilitated landfill site.

2.3 Biophysical Description

2.3.1 Climate

The area experiences summer rainfall with very dry winters. The summer rainfall averages between 350-500 mm/yr and the mean recorded minimum and maximum temperatures range from 2.1°C to 38.2°C for December and June respectively (Mucina and Rutherford, 2006).

2.3.2 Geology and Soils

The underlying geology consists primarily of sedimentary deposits such as arenite, shale, mudstone and coal of the Karoo Supergroup.

The majority of the site consists of freely drained red-yellow apedal soils with a high base status. The soil texture is uniform and fairly deep (> 300 mm).

2.3.3 Regional Vegetation Description

The study site corresponds to the Savanna Biome and more particularly to the Central Bushveld Bioregion as defined by Mucina & Rutherford (2006). The proposed development comprehends an ecological type known Limpopo Sweet Bushveld (Figure 3 & Table 1).

(a) Limpopo Sweet Bushveld: This vegetation type extends from the lower reaches of the Crocodile and Marico Rivers down to the Limpopo River valley and into Botswana on the other side of the border. It is predominantly located on extensive plains that are irregularly interspersed by tributaries of the Limpopo River. It is a short, open woodland dominated by Acacia mellifera and Dichrostachys cinerea as well as taller tree species such as A. erioloba, A nigrescens and Terminalia sericea.

The high palatability of the graminoid composition makes this vegetation type very suitable for game farming practices. The Limpopo Sweet Bushveld is Least Threatened and extensive in geographic coverage. It is however poorly conserved (e.g. D'Nyala Nature Reserve) even though it straddles many privately owned game farms. It is transformed by cultivation, but future threats include the mining of coal.

Table 1 summarises a list of plant species characteristic of the Limpopo Sweet Bushveld.

Table 1: A list of the characteristic plant species for each stratum (e.g. grass, forb & woody layer) representing Limpopo Sweet Bushveld (Mucina & Rutherford, 2006).

Limpopo Sweet Bushveld				
Grassy Layer	Forb Layer	Woody Layer		
Digitaria eriantha subsp.	Succulents: Kleinia fulgens,	Trees: Acacia robusta, Acacia burkei,		
eriantha, Enneapogon	Plectranthus neochilus	Acacia erubescens, Acacia fleckii,		
cenchroides, Eragrostis	Non-succulents: Acanthosicyos	Acacia nilotica, Acacia senegal var.		
lehmanniana, Panicum	naudini subsp. transvaalense,	rostrata, Albizia anthelmintica,		
coloratum, Schmidtia	Hemizygia elliottii, Hermbstaedtia	Boscia albitrunca, Combretum		
pappophoroides, Aristida	odorata, Felicia muricata,	apiculatum, Terminalia sericea.		
congesta, Cymbopogon	Indigofera daleoides.	Tall shrubs: Catophractes alexandri,		
nardus, Eragrostis pallens,		Dichrostachys cinerea, Phaeoptilum		
Eragrostis rigidior,		spinosum, Rhigozum obovatum,		
Eragrostis trichophora,		Cadaba aphylla, Combretum		
lschaemum afrum,		hereroense, Commiphora		
Panicum maximum, Setaria		pyracanthoides, Ehretia rigida subsp.		
vertcillata, Stipagrostis		rigida, Euclea undulata, Grewia flava,		
uniplumis, Urochloa		Gymnosporia senegalensis.		
mosambicensis.		Low shrubs: Acacia tenuispina,		
		Commiphora africana, Gossypium		
		herbaceum subsp. africanum,		
		Leucosphaera bainesii.		

Figure 1: A locality map illustrating the geographic position of the study site.

Figure 2: A map illustrating the spatial distribution of the three options (each approximately 5 ha in extent) to be evaluated during the assessment.

Figure 3: The spatial position of the study site and the regional vegetation types as defined by Mucina & Rutherford (2006).

3. METHODOLOGY

A baseline vegetation and faunal investigation was undertaken during the 16th of January 2009 and from the 6th to the 7th of April 2009 to evaluate the structure, composition and conservation value of the vegetation and faunal assemblages on the study site.

3.1 Vegetation Survey

3.1.1 Baseline vegetation description

- Data collection was primarily plot-based and consisted of 21 vegetation samples (Figure 4). The sampling plot size was standardised at 100 m². A sample entailed the compilation of a list of plant taxa, where each taxon was assigned an estimate (usually a cover-abundance estimate). Therefore, a vegetation sample can be seen as a simplified model of the vegetation stand. The species composition, as well as the mean percentage cover of each species per sampling plot was measured. Percentage cover was not measured precisely, but was placed in one of seven categories by a visual estimate as described by Braun-Blanquet (in Mueller-Dombois & Ellenberg, 1974; see Table 2). For comparison purposes, both the natural vegetation as well as rehabilitated areas was sampled; and
- Random transect walks were conducted to ensure sampling of less abundant or localised species and to assist with the compilation of a species inventory.

Class	Range of cover (%)	Mean
5	75-100	87.5
4	50-75	62.5
3	25-50	37.5
2b	12.5-25	18.75
2a	5-12.5	8.75
1	1-5	2.5
	<1	0.1
r	<<1	0.01

Table 2: Modified Braun-Blanquet cover classes (Mueller-Dombois & Ellenberg, 1974).

In addition, the following parameters were also documented to aid the vegetation survey:

• All plant taxa were identified to species level where possible. Scientific names follow Germishuizen & Meyer (2003);

- The growth form of each plant species (a measure of structural diversity) and an indication of its perenniality;
- A survey of threatened and endemic taxa, including taxa of conservation concern;
- The identification of plant species protected by provincial and national legislation;
- A survey of plant species with medicinal or cultural value; and
- The identification of declared weeds and invader species as promulgated under the amended regulations (Regulation 15) of the Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983).

3.1.2 Method of analysis

- A cluster analysis (based on calculated similarity coefficients and groupaverage linkages; Clarke & Warwick, 1994) of measured cover estimates for the different plant species were used to classify vegetation units. A cluster analysis is used to assign associations between samples with the aim to objectively delineate groups or assemblages. Therefore, sampling entities that group together (being more similar) are believed to have similar compositions. The results of a clustering process are represented by a dendrogram and by similar non-parametric ordination techniques using nonmetric multidimensional scaling (MDS). The data matrix (in this case columns being sampling plots and rows being the recorded cover estimate for each species) was subjected to square root transformation to allow for only common species to participate in the overall similarity analysis. The transformed data matrix was then converted to a similarity matrix consisting of Bray-Curtis coefficients prior to the cluster procedure. The software package PRIMER for Windows, Ver 5.2.2, was used during the analysis; and
- The percentage contribution (%) of each plant taxon as well as the consistency (calculated as the similarity coefficient/standard deviation) of its contribution within each vegetation grouping was calculated according to Clarke & Warwick (1994). Those species with high consistencies and percentage contributions were considered to be typical (or representative) for the given vegetation unit.

3.2 Faunal Survey

3.2.1 Mammals

 Mammals were identified by visual sightings through random transect walks and by means of an infrared-triggered digital camera. In addition, mammals were also identified by means of spoor, droppings, roosting sites or likely habitat types;

- The mammal survey was augmented by means of a small mammal trapping session. Five (5) trapping stations (Figure 5 & 6) were placed among natural and rehabilitated vegetation assemblages. Each trapping station consisted of 12 traps spaced 10 m apart. The traps, based on the 'Sherman Trap' design, were baited with a mixture of peanut butter, raisins and rolled oats; and
- The conservation status of mammal taxa was based on Friedmann & Daly (2004). The mammalian nomenclature was based on Skinner & Chimimba (2005).

3.2.2 Avifauna

- Birds were identified by means of random transect walks while covering as much of the study site as possible. Species, where necessary, were verified using Roberts Birds of Southern Africa, VIIth ed. (Hockey *et al.*, 2005);
- Birds were also identified by means of their calls and other signs such as nests, discarded egg shells (Tarboton, 2001) and feathers;
- The bird survey was also informed through data of the South African Bird Atlas and verified by Harrison *et al.* (1997). Reporting rates were used for bird species recorded for the quarter degree grid cell (QDGC) 2327DA. Reporting rates were calculated as the total number of observer cards on which the species was recorded during the southern African bird atlas project expressed as a percentage of the total number of cards submitted for the particular QDGC. The reporting rate statistic provides a "snapshot" of the thoroughness of which the QDGC was surveyed between the periods of 1987 – 1991; and
- The conservation status of bird species was chosen according to Barnes (2000).

3.2.3 Herpetofauna

• Possible burrows, or likely reptile habitat (termitaria, stumps or rocks) were inspected for any inhabitants. Amphibians were also identified by their vocalisations (if any) and through likely habitat types (e.g. water features, drainage lines, etc.). However, the current assessment focussed largely on a desktop review.

3.2.4 Invertebrates

• The invertebrate survey was limited to the presence of conservationdependant taxa, in particular that of scorpions and mygalomorph (e.g. baboon spider taxa) species. The presence of these was verified by intensive searching for burrows from likely habitat types or by means of rock turning.

3.3 Ecological Sensitivity

The ecological sensitivity of any piece of land is based on its inherent ecosystem service (e.g. wetlands) and overall preservation of biodiversity.

3.3.1 Ecological Function

Ecological function relates to the degree of ecological connectivity between systems within a landscape matrix. Therefore, systems with a high degree of landscape connectivity amongst one another are perceived to be more sensitive and will be those contributing to ecosystem service (e.g. wetlands) or overall preservation of biodiversity.

3.3.2 Conservation Importance

Conservation importance relates to species diversity, endemism (unique species or unique processes) and the high occurrence of threatened and protected species or ecosystems protected by legislation.

3.3.3 Sensitivity Scale

- High Sensitive ecosystems with either low inherent resistance or low resilience towards disturbance factors or highly dynamic systems considered being important for the maintenance of ecosystem integrity. Most of these systems represent ecosystems with high connectivity with other important ecological systems OR with high species diversity and usually provide suitable habitat for a number of threatened or rare species. These areas should be protected;
- Medium These are slightly modified systems which occur along gradients of disturbances of low-medium intensity with some degree of connectivity with other ecological systems OR ecosystems with intermediate levels of species diversity but may include potential ephemeral habitat for threatened species; and
- Low Degraded and highly disturbed/transformed systems with little ecological function and are generally very poor in species diversity (most species are usually exotic or weeds).

3.4 Limitations

In order to obtain a comprehensive understanding of the dynamics of the floral and faunal communities on the study site, as well as the status of endemic, rare or threatened species in any area, ecological assessments should always consider investigations at different time scales (across seasons/years) and through replication. However, due to time constraints such long-term studies were not feasible.

Figure 5: A map of the study site boundary illustrating the geographic placement of 5 small mammal trapping stations and an infrared digital camera (Google Earth, 2009).

Figure 6: An example of a small mammal (live) trap used during the assessment.

4. **RESULTS AND DISCUSSION**

4.1 Vegetation Units

The composition and distribution of the vegetation units on the study site were a consequence of a combination of factors simulated by past disturbances and rehabilitation efforts. Therefore, based on the cluster analysis, the study site is represented by two major communities (Figure 7, 8 & 9):

- (1) *Rehabilitated vegetation* associated with an old landfill site and dominated by the grass *Cenchrus ciliaris*.
- (2) *Mixed woodland* dominated by various microphyllous tree species (mainly *Acacia*) with a mid-successional graminoid layer.

Eskom Landfill Site

Figure 7: A dendrogram based on a cluster analysis of the sampled plots. a – *Cenchrus ciliaris* grassland, b – *Indigofera daleoides* – *Digitaria eriantha* shrub, c – *Acacia mellifera* – *Melhania acuminata* thornveld and *Acacia tortilis* – *Enneapogon cenhroides* woodland.

Eskom Landfill Site

Figure 8: A non-metric Multidimensional Scaling ordination of the sampled plots illustrating: a – *Cenchrus ciliaris* grassland, b – *Indigofera daleoides* – *Digitaria eriantha* shrub, c – *Acacia mellifera* – *Melhania acuminata* thornveld and *Acacia tortilis* – *Enneapogon cenhroides* woodland. Please note that the samples are fairly scattered in space (hence the high stress value) due to the rather small sample size.

(a) Rehabilitated Areas

1. Cenchrus ciliaris grassland.

(b) Mixed Woodland

.

- 2. Indigofera daleoides Digitaria eriantha shrub;
- 3. Acacia mellifera Melhania acuminata thornveld; and
- 4. Acacia tortilis Enneapogon cenhroides woodland

Appendix 1 provides a list of plant taxa recorded from the study site.

Figure 9: A map illustrating the vegetation units on the study site. Please note that the *Indigofera daleoides – Digitaria eriantha* shrub is embedded within the *Acacia tortilis – Enneapogon cenhroides* woodland unit.

1. *Cenchrus ciliaris* grassland

This unit is located along the slopes of the old landfill site (Figure 10). It could be described as a monospecific grassland layer dominated by *Cenchrus ciliaris* that was artificially planted during the rehabilitation phase of the old landfill site.

Cenchrus ciliaris	4.30	92.65	77.50
Status:	Artificial – used during	g past rehabilitation efforts	3
Corresponding options:	B, albeit marginal		
Ecological Importance:	Low conservation imp	portance	
Plot #:	18, 20, 21, 14, 15		

Figure 10: Cenhrus ciliaris grassland.

2. Indigofera daleoides – Digitaria eriantha shrub

This unit is patchily distributed on the study site and corresponds to localised disturbances within the *Acacia tortilis – Enneapogon cenhroides* mixed woodland unit (Figure 11). It is therefore not possible to map this unit based on its scattered distribution. Structurally it conforms to an open shrub with a dense forb and grassy cover.

	Consistency % Con	% Contribution	Average Abundance
i ypical species			(mean cover/plot)
Indigofera daleoides	2.29	34.98	38
Digitaria eriantha	1.09	13.07	13.52
Grewia monticola	1.02	11.7	13.5
Stipagrostis uniplumis	0.64	9.55	16.77
Terminalia sericea	0.58	4.4	4
Aristida stipitata	0.8	4	1.52
Combretum apiculatum	0.62	3.7	1.5
Vernonia staehelinoides	1.12	3.38	1.06
Aristida congesta congesta	0.65	2.54	1.04
Dichrostachys cinerea	7.64	2.42	0.1
Hibiscus cannabinus	1.14	1.51	0.56

Status:	Disturbed mixed woodland
Corresponding options:	A, B & C
Ecological Importance:	Medium-low conservation importance
Plot #:	4, 2, 7, 10, 11

Figure 11: Indigofera daleoides – Digitaria eriantha shrub.

3. Acacia mellifera – Melhania acuminata thornveld

This unit is located on the eastern part of the study site and corresponds to areas that were previously cleared of natural vegetation (Figure 12). It therefore represents a transient composition, consisting mainly of a dense woody canopy of microphyllous taxa pertaining to the genus *Acacia*. The graminoid and forb layers are poorly defined and consequently poor in species richness.

Typical species	Consistency	% Contribution	Average Abundance
	Consistency		(mean cover/plot)
Melhania acuminata	-	42.73	28.13
Acacia mellifera	-	29.19	8.75
Acacia tortilis	-	15.6	2.5
Grewia monticola	-	3.12	1.3

Status:	Transient microphyllous woodland
Corresponding options:	A
Ecological Importance:	Low conservation importance
Plot #:	16, 17

Figure 12: Acacia mellifera – Melhania acuminata thornveld.

4. Acacia tortilis – Enneapogon cenhroides woodland

This unit provides an example of the natural vegetation characteristics pertaining to the region. It is essentially an open *Acacia tortilis* and *Grewia monticola* woodland of which the basal layer was dominated by secondary graminoid taxa such as *Urochloa mosambicensis*, *Enneapogon cenchroides* and *Cenchrus ciliaris* (Figure 13). The latter species was established during the rehabilitation of the former landfill site. Other noteworthy woody species include *Combretum apiculatum*, *Acacia mellifera*, *Terminalia sericea*, *Grewia flava* and *Acacia erioloba*. Typical forb species include *Indigofera daleoides*, *Tephrosia purpurea*, *Waltherica indica* and *Melhania acuminata*.

The composition is typical of the regional vegetation type and comprises of a number of tree species protected by national legislation (e.g. *Acacia erioloba, Sclerocarya birrea, Combretum imberbe* and *Boscia albitrunca*). However, these occurred as individuals (as opposed to populations) within a confined (or enclosed) area. Secondly, these tree species are all regionally widespread on farms adjacent to the Matimba power station. Although it is anticipated that some individuals of these (if not all) are likely to become lost or removed during the construction phase, effort should be put in place to conserve at least the tall specimens of *Acacia erioloba* (corresponding to option C).

	Consistency	% Contribution	Average Abundance
i ypical species			(mean cover/plot)
Enneapogon cenhroides	1.15	25.69	25.84
Acacia tortilis	0.84	13.3	7.37
Melinis repens	0.53	12.65	12.54
Aristida canescens	0.47	6.62	8.63
Eragrostis lehmanniana	0.75	5.9	2.54
Grewia monticola	0.45	5.65	9.61
Panicum maximum	0.52	4.86	3.22
Aristida adscensionis	0.5	3.93	1.82
Solanum panduriforme	0.63	2.84	1.56
Acacia mellifera	0.41	2.43	5.44
Melhania acuminata	0.58	2.03	1.29
Cenchrus ciliaris	0.24	1.71	4.19
Tephrosia purpurea	0.81	1.58	2.14
Grewia flava	0.82	1.41	0.07
• · · ·			

Status:	Natural open woodland	
Corresponding options:	A, B & C	
Ecological Importance:	Medium conservation importance	
Plot #:	1, 3, 5, 6, 8, 9, 12, ,13, 19	

Figure 13: Acacia tortilis – Enneapogon cenhroides woodland.

4.2 Red Data Plant Assessment

South Africa has been recognised globally as having a remarkable plant diversity with high levels of endemism. Almost ten percent of the earth's plants are found within South Africa approximating 23 420 species (Golding, 2002). Of the 948 taxa assessed, 414 species that are 'threatened with extinction, while 270 of these have populations with extremely localised geographic distributions (Golding, 2002).

In terms of conserving biodiversity, there has been a shift towards focussing on ecosystems and landscapes (habitats¹) rather than efforts in conserving specific

¹ Habitats normally comprise several biotopes or areas of uniformity (Davies & Day, 1998).

species. This is the case due to the variety of living organisms, which make up ecosystems relying on suitable habitats to which they have become adapted over long periods of time. Habitat degradation is one of the main reasons for species becoming extinct in a particular area. However, it can be viewed that threatened species are seen as indicators of the overall health of an ecosystem and serve, with varying degrees of success, as 'umbrellas' for the protection of other organisms as well as ecosystems (Hilton-Taylor, 1996; 2000). According to Hilton-Taylor (1996) threatened species can be seen as biodiversity attention grabbers. The Threatened Plant Species Programme (TSP) is currently revising all threatened plant species assessments made by Craig Hilton-Taylor (1996) using IUCN Red Listing Criteria modified from Davis *et al.* (1986).

However, no threatened, "near-threatened" or any "rare and declining" species as listed by the TSP are expected to occur on the study site. The PRECIS database (SANBI) supported the absence of Red Data species based on the quarter-degree grid squares corresponding to the study site.

4.3 **Protected Plant Species**

One species was observed and listed as protected (see Table 3) under Schedule 12 of the Limpopo Environmental Management Act (No 7 of 2003).

Species	Status on study site	Vegetation Unit
Spirostachys africana (Euphorbiaceae) – tree	Localised	Mainly recorded from the old
		landfill site (probably
		implants used during
		rehabilitation)

Table 3: Protected plant species recorded from the vegetation units.

A permit is required to remove or disturb a protected plant. It is recommended that protected plants in danger of becoming destroyed during the construction phase be removed prior to the commencement of construction activities and translocated to suitable habitat, or used during the rehabilitation phase.

Four tree species (Table 4) appear on the national list of declared protected tree species as promulgated by the National Forests Act, 1998 (No 84 of 1998). The main reasons for this list are to provide strict protection to certain species while others require control over harvesting and utilisation.

These species occur widely throughout the study site and is by no means restricted in range. In addition, these species are not threatened (not Red Data listed), but should be considered during the development phase of the project based on their legal status. In terms of the National Forests Act of 1998, a licence should be granted by the Department of Water Affairs and Forestry (or a delegated authority) prior to the removal, damage or destruction of any individual. Therefore, such activities (as mentioned above) should be directed to the responsible Forestry official in each province or area (please contact Mr D. Mavhungu at Private Bag X2413, Louis Trichardt, 0920 or (015) 516 0201 or e-mail him at <u>mavhunguD@dwaf.gov.za</u>).

Table 4: Protected tree species recorde	d from the vegetation	units identified	from the
study site.			

Status on study site	Vegetation Unit
Widespread	A. tortilils – E. cenchroides
	mixed woodland
Widespread	A. tortilils – E. cenchroides
	mixed woodland
Localised	A. tortilils – E. cenchroides
	mixed woodland
Localised	A. tortilils – E. cenchroides
	mixed woodland
	C. ciliaris grassland
	(implanted)
	Status on study site Widespread Widespread Localised Localised

4.4 Medicinal Plant Species

It is estimated that the Southern African subcontinent holds approximately 24 300 plant taxa (Arnold & De Wet, 1993), an estimated 10 % of the world's flora. In addition, South Africa is home to a diversity of cultural groups all of which utilises plant species for some purpose.

A number of these species are highly prized for their traditional healing properties, especially for "muthi" (they have ethnomedicinal value). It is estimated that more than 28 million people in South Africa consume about 19 500 tonnes of plant material per annum (Mander, 1998). For example, certain popularly traded species have become over-exploited and are now rare or extinct in the wild. This has resulted in the forced use of alternative species and a geographical shift in the harvesting pressure of previously unexploited areas. Although most of these plant species are regionally widespread and abundant, some of the more sought-after plant resources are currently declining and should be envisaged as priority conservation entities. Table 5 lists those species considered to be of economical or cultural value (according to Van Wyk *et al.*, 1997).

Species	Parts used	Treatment			
Elephantorrhiza elephantina	Rhizomes	Treatment of a wide range of ailments including diarrhoea and dysentery			
Euclea undulata	Roots	Used as a remedy for headaches and toothaches.			
Sclerocarya birrea subsp. caffra	Bark and fruit	Treatment of various ailments, including malaria. Fruit rich in Vitamin C.			
Terminalia sericea	Roots	An infusion is made to treat pneumonia and wounds.			
Ziziphus mucronata	Roots, leaves and bark	Treatment of respiratory ailments.			

Table 5: A list of medicinal species observed on the study site (according to Van Wyk *et al.*, 1997). Important (heavily utilised) species are highlighted in grey.

4.5 Declared Weeds and Invader Plants

Invaders and weed species are plants that invade natural or semi-natural habitats; especially areas disturbed by humans and are commonly known as environmental weeds. Weeds that invade severely disturbed areas are known as ruderal and agrestal weeds. Most of these weeds are annuals colonising waste sites and cultivated fields. These weeds only persist on recently disturbed areas and seldom invade established areas (Henderson, 2001).

Declared weeds and invaders have the tendency to dominate or replace the canopy or herbaceous layer of natural ecosystems, thereby transforming the structure, composition and function of natural ecosystems.

The amended Regulations (Regulation 15) of the Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983) identify three categories of problem plants:

- Category 1 plants may not occur on any land other than a biological control reserve and must be controlled or eradicated. Therefore, no person shall establish, plant, maintain, propagate or sell/import any category 1 plant species.
- Category 2 plants are plants with commercial application and may only be cultivated in demarcated areas (such as biological control reserves) otherwise they must be controlled.
- Category 3 plants are ornamentally used plants and may no longer be planted, except those species already in existence at the time of the commencement of the regulations (30 March 2001), unless they occur within 30 m of a 1:50 year floodline and must be prevented from spreading.

The study site was relatively free of declared invader and weed species except for the occasional occurrence of annual and ruderal species such as *Bidens bipinnata* and *Tagetes minuta*. *Achyranthes aspera* was the only declared weed observed from

the mixed woodland units while the invader *Nicotiana galuca* was observed from the old landfill site.

4.6 Biogeographically important taxa and Endemic (including Nearendemic) Taxa

According to Mucina & Rutherford (2006), an important central bushveld endemic found within this region is *Piaranthus atrosanguineus*, a succulent stapeliad. It is scantily distributed along the Limpopo River valley from Gaborone in Botswana eastwards to Zeerust and northwards to Lephalale and into areas north of the Soutpansberg (Bruyns, 2005).

It has been located in *Acacia-Grewia* bushveld, growing specifically under heavily grazed *Acacia tortillis* individuals. It was not recorded on the study site.

4.7 Mammals

4.7.1 Observed and Expected Richness

37 mammalian species could occur on the study site (Appendix 2) of which 10 were confirmed during the site visit (Table 6 & Figure 14).

It appears that the most dominant mammalian taxa pertain to the Order Rodentia and include *Tatera leucogaster* (Bushveld Gerbil), *Cryptomys hottentotus* (Common Mole-rat), *Hystrix africaeaustralis* (Cape Porcupine) and *Pedetes capensis* (Springhare).

Scientific Name	Vernacular Name	Observation Indicators	Observed Habitat
Aethomys ineptus	Tete Veld Rat	Trapped	Fairly common from the study site.
		(Trapping station	
		1)	
Crocidura sp. nr. C.	Musk Shrew	Trapped	Fairly common from most habitat types
hirta		(Trapping Station	on the study site.
		1)	
Cryptomys hottentotus	Common Molerat	Soil heaps	Dominant and widespread.
Hystrix africaeaustralis	Cape Porcupine	Excavations &	Widespread.
Munaos munao	Banded Mongoose	Visual sightings	Mainly present from the A tortilis-F
mangoo mango	Danada mengeece	vieuen eightinge	cenchroides woodland.
Pedetes capensis	Sprinhare	Droppings &	Widespread on sandy soils.
		burrows	
Potamochoerus	Bushpig	Visual sightings	Mainly present from the A. tortilis-E.
larvatus			cenchroides woodland.
Saccostomus	Pouched Mouse	Dead individual	Mainly present from the A. tortilis-E.
campestris			cenchroides woodland.

Scientific Name	Vernacular Name	Observation Indicators	Observed Habitat
Sylvicapra grimmia	Common Duiker	Camera, spoor and droppings	Mainly present from the <i>A. tortilis-E.</i> cenchroides woodland.
Tatera leucogaster	Bushveld Gerbil	Burrows & trapped (Trapping station 2, 3 & 4)	Widespread on sandy soils.

Figure 14: A series of photographs illustrating some of the mammalian taxa observed on the study site: (a) a *Sylvicapra grimmia* (Common Duiker) captured by means of an infrared camera, (b) *Sylvicapra grimmia* (Common Duiker) droppings and (c) a *Crocidura* sp. nr. *C. hirta* (Musk Shrew) individual captured from trapping station 1.

4.7.2 Red listed, "near-threatened" and "data deficient" species

The study site provides potential habitat for one (1) "Near-threatened" species and five (5) "Data Deficient" species. Red list categories were chosen according to Friedmann & Daly (2004).

1. South African Hedgehog (<u>Atelerix frontalis</u>) - "Near-threatened"

This species occurs in a wide variety of habitat types, which makes prediction regarding its habitat requirements very difficult. It adapts readily to urban

environments and is frequently encountered in urban gardens (Skinner & Smithers, 1990; Skinner & Chimimba, 2005), although illegal hunting, habitat transformation to make way for agricultural land, and hard-surfaced infrastructure have contributed towards population declines across its distribution range.

The South African Hedgehog is highly likely to occur on the study site based on its preference for dry open habitat types. Hedgehogs will readily adapt to most types of development, if emphases is placed on preserving the natural function and connectivity of their preferred habitat type.

2. Data Deficient taxa

The shrew taxa (genus *Crocidura*), *Tatera leucogaster* (Bushveld Gerbil), *Lemniscomys rosalia* (Single-striped Grass Mouse) and *Elephantulus brachyrhynchus* (Short-snouted Elephant-shrew) and all classified as "Data Deficient" and most of these could occur on the study area. For example, the genus *Tatera* often colonises disturbed areas and was abundant on the study site. However, these species are perceived to be relatively widespread and abundant, but current modifications of suitable habitats and the paucity of scientific information on meta-population demographics place them in the "Data Deficient" category.

4.8 Herpetofauna

Although a number of reptile and amphibian species are expected to occur on the study site, the current survey did not pretentiously focus on this rather cryptic group. Few species were observed during the survey and include widespread taxa such as *Schismaderma carens* (Red Toad), *Naja mossambica* (Mozambique Spitting Cobra), *Agama aculeata distanti* (Ground Agama), *Panaspis wahlbergii* (Wahlberg's Snake-eyed Skink), *Lygodactylus capensis* (Cape Dwarf Gecko) and *Heliobolus lugubris* (Bushveld Lizard).

Currently, none of the frog species likely to occur are Red listed (Minter *et al.*, 2004), although the *Python natalensis* (Southern African Python) could occur. The latter species is currently classified as "Vulnerable" (Branch, 1988) and has a distribution range sympatric to that of the study site.

4.9 Avifauna

4.9.1 Observed and Expected Richness

A total of 216 bird species could occur on the study (Appendix 3) of which 100 were recorded during the two site visits. According to the South African Bird Atlas Project (SABAP1) (Harrison *et al.*, 1997), a total of 289 bird species have been recorded from the quarter degree grid cell (QDGC) 2327DA corresponding to that of the study site.

4.9.2 Red listed species

According to the South African Bird Atlas Project, a total of 13 Red listed species have been recorded from the QDGC 2327DA. Table 7 provides an indication of their occurrence to utilise the study site based on their breeding, roosting and foraging requirements. However, the Atlas data should be used with caution since the observations were made by the lay person. This means that some areas were less sampled than other areas, with the possibility that unknown Red listed populations could have been overlooked in the past for reasons such as popularity (areas frequently visited due to the bird compositions they hold) or due to restricted access. Many of the species as listed under Table 7 are in fact vagrants or irregular visitors (e.g. *Terathopius ecaudatus* Bateleur, *Aquila rapax* Tawny Eagle and *Polemaetus bellicosus* Martial Eagle) to the study site.

Scientific Name	Common Name	Conservation Probability of		Habitat
Scientific Name	Common Mame	Status	Occurrence	Παυιιαι
Aquila rapax	Tawny Eagle	Vulnerable	Vagrant to study	Lowveld and
			site	Kalahari savanna,
				especially game
				farming areas and
				reserves.
Ardeotis kori	Kori Bustard	Vulnerable	Unlikely to occur	Arid open lowland
				savanna and karroid
				shrub.
Buphagus	Red-billed Oxpecker	Near-threatened	Co-occur with larger	Bushveld areas with
erythrorhynchus			bovine game and	game and livestock.
			cattle; absent from	
			study site	
Ciconia nigra	Black Stork	Near-threatened	Vagrant to study	Wetlands, pans in
			site	lowland regions.
Glareola nordmanni	Black-winged	Near-threatened	Vagrant to study	Open grassland and
	Pratincole		site	arable land near
a <i>u</i>				wetlands
Gyps africanus	White-backed	Vulnerable	Irregular visitor –	Breed on tall, flat-
	Vulture		unlikely to breed on	topped trees.
0		M 1	study site	Devidence
Gyps coprotneres	Cape vulture	Vuinerable	Irregular visitor –	Breeds on steep
			unlikely to breed on	south- and east-
			study site	facing cliffs;
				toraging nabitat
Lantantikua	Marahay Stark	Near threatened	Irragular visitar ta	Valles.
crumoniforuo	IVIAI ADOU SLOIK	iveal-threatened	atudy aita	
Crumennerus			Siduy Sile	savaillia lu
			5	wetlands, pans and

Table 7: Red Data Bird species assessment (according to Harrison *et al.,* 1997; Barnes, 2000) and an indication of their likelihood of occurrence.

Concernation Drobability of				
Scientific Name	Common Name	Conservation	Probability of	Habitat
		Status	Occurrence	
				floodplains –
				dependant of game
				farming areas.
Mycteria ibis	Yellow-billed Stork	Near-threatened	Unlikely to occur	Wetlands, pans and
				flooded grassland.
Polemaetus	Martial Eagle	Vulnerable	Irregular visitor to	Varied, from open
bellicosus			study site	karroid shrub to
				lowland savanna.
Saggitarius	Secretarybird	Near-threatened	Probably absent	Open woodland and
serpentarius			from study site	savannoid
				grassland.
Terathopius	Bateleur	Vulnerable	Irregular visitor to	Lowveld and
ecaudatus			study site	Kalahari savanna;
			-	mainly on game
				farms and reserves.
Torgos tracheliotos	Lappet-faced	Vulnerable	Irregular visitor –	Lowveld and
	Vulture		likely to be vagrant	Kalahari savanna;
			to the study site	mainly on game
			-	farms and reserves.

4.10 Invertebrates

4.10.1 Species of conservation concern

A number of invertebrate taxa are currently protected by Schedule B1 of the list of threatened and protected species issued in terms of Section 56(1) of the National Environmental Management: Biodiversity Act, 2004 and likely to occur on the study site.

Table 8 provides a list of species of conservation concern and their respective probabilities of occurrence.

Table 8: A list of invertebrate taxa of conservation concern likely to occur on the study site. All species are protected by Schedule B1 of the list of threatened and protected invertebrate species issued in terms of Section 56(1) of the National Environmental Management: Biodiversity Act, 2004.

Scientific Name	Common Name	Conservation Status	Probability of Occurrence	Habitat
Mantichora sp.	Monster Tiger Beetle	Protected	Confirmed.	Aggressive predator on sandy plains.
Opistacanthus asper		Protected	Likely to occur.	Arboreal, partial towards <i>Acacia nigrescens</i> .
Opistophthalmus "wahlbergii"	Burrowing Scorpion	Protected	Confirmed.	Sandy plains.

Scientific Name	Commo	n Name	Conservation Status	Probability of Occurrence	Habitat
Opistophthalmus glabrifrons	Burrowing	Scorpion	Protected	High – could occur.	Sandy to loamy soils.
Opistophthalmus carinatus	Burrowing	Scorpion	Protected	High – could occur.	Sandy soils along rocks or on plains.
Ceratogyrus darlingi	Horned Spider	Baboon	Protected	High – could occur.	Sandy soils.

There are currently no Red List butterfly species likely to occur on the study site.

4.11 Ecological Sensitivity (Figure 15)

The study site shows an absence of highly sensitive areas since it is already fragmented by numerous linear features (e.g. roads, fences and conveyors), all disrupting the natural migration of larger faunal species. In addition, neighbouring activities associated with the power station have all contributed towards disrupting the ecological connectivity of the woodland units with that of adjacent woodland types.

4.11.1 Areas of Medium Ecological Sensitivity

The following vegetation units were considered to be of medium ecological importance:

- Acacia tortilis Enneapogon cenhroides woodland; and
- Indigofera daleoides Digitaria eriantha shrub

The composition of these units was floristically more diverse when compared to the other units. They were particularly rich in woody taxa and two of the few units hosting more than one protected tree species. In addition, although not of primary condition, the former unit shared many floristic similarities with that of the regional type, namely the Limpopo Sweet Bushveld. It therefore represents a "snapshot" of the regional vegetation type.

In addition, both units host a higher richness of faunal taxa in comparison to the other units due to an improved structural and vertical heterogeneity.

4.11.2 Areas of Medium-Low Ecological Sensitivity

The following vegetation unit was considered to be of medium-low ecological importance:

• Acacia mellifera – Melhania acuminata thornveld.

This unit was not considered to be pristine, and occurred on areas where previous disturbances took place in the past (such bush clearing). It provided potential ephemeral foraging habitat for a number of faunal species.

4.11.3 Areas of Low Ecological Sensitivity

The following vegetation unit was considered to be of low ecological importance:

• Cenchrus ciliaris grassland.

This unit was disturbed or transformed, and was composed of typical pioneer/midsuccessional species or taxa, many with annual life histories. These species were considered transient and ecologically redundant.

Figure 15: A sensitivity map of the study site based on the vegetation aspects.

5. IMPACT ASSESSMENT & RECOMMENDATIONS

5.1 Impact Assessment

5.1.1 Construction Impacts: Vegetation

Impact 1 – *Clearing of vegetation.* The development will result in the clearing of a large proportion of vegetation to accommodate the proposed landfill site and associated infrastructure.

In addition, decommissioning (and rehabilitation efforts) of the landfill site will result in the establishment of vegetation that is atypical of the region. This is clearly illustrated by the floristic composition on the current (and derelict) landfill area which was basically merely "stabilised" through the planting of a single graminoid species. Included were a number of tree species which were uncommon or rare from the adjacent vegetation communities (e.g. *Spirostachys africana, Acacia burkei* and *Dodonaea angustifolia*). It is also anticipated that the low representation in plant species diversity as evidenced by prior rehabilitation techniques, the occurrence of non-native plant species and the change in structural diversity will result in a corresponding change in the faunal diversity.

Impact 2 – *Loss of conservation important plant taxa.* It is possible that sensitive species (e.g. medicinal species and those protected by provincial legislation) may become lost during the construction phase. In addition, the anticipated increase in anthropogenic activities could lead to the uncontrolled and unsustainable harvesting of sensitive/medicinal plant species (by both the labour force and residents).

Impact 3 – *Establishment of alien and invader taxa*. The clearing of vegetation will leave bare patches of soil, thereby enhancing the colonisation by ruderal weeds (mostly annual weeds) or declared alien species that will prohibit the natural succession during rehabilitation activities. Such soil disturbances (as well as the inappropriate handling of topsoil) could enhance the establishment or spread of *Melia azedarach* and *Nicotiana glauca* to natural systems adjacent of the development.

Issue	Nature	Extent	Duration	Intensity	Probability	Potential		'No go' areas
						Significan	ce	
						WOM	WM	
Impact	C. ciliaris grassland	Local	Permanent	Low	Probable	Low	N/a	-
1								
	A. mellifera-M.	Local	Permanent	Medium	Highly probable	Medium	Low	-
	acuminata							
	thornveld							
	I. daleoides-D.	Local	Permanent	Medium	Highly probable	Medium	Low	-
	<i>eriantha</i> shrub							

Ecological Report

	A. tortilis-E.	Local	Permanent	High	Highly probable	Medium	Low	-
	cenchroides							
	woodland							
Impact	Loss conservation	Local	Permanent	Medium	Definite	High	Medium	-
2	important taxa							
Impact	Establishment of	Regional	Long-term	Medium	Highly probable	Medium	Low	-
3	alien & invader							
	taxa							

Table 9: An impact assessment table summarising the potential construction impacts on the vegetation units. WOM – Without mitigation; WM – With mitigation.

5.1.2 Construction Impacts: Fauna

Birds in general, are highly mobile and therefore able to vacate areas should adverse environmental conditions prevail. Therefore, direct impacts on adult mortality are less likely to occur, although indirect impacts will have severe consequences on the "fitness" (e.g. the ability of a species to reproduce) of these species. Likely examples include habitat loss and disturbances preventing individuals from breeding successfully. Persistent disturbances across extended temporal scales will eventually affect any population's ability to sustain itself, and will more than likely result in total abandoning of a particular area.

Species most likely to be affected are either K-selected species or habitat specialists. K-selected species are mostly long-lived species with slow reproductive rates while habitat specialists are those restricted to a particular type of microhabitat or niche, being it structurally, altitudinal or floristic. Most of these species are threatened, "near-threatened" or Red Listed, and therefore of conservation importance.

As with the birds, most mammal species are likely to vacate areas when environmental conditions become unfavourable. However, those species most likely to be affected will include subterranean species, species requiring large home ranges or habitat specialists (such as *Opistophthalmus* scorpions). Once again, continual disturbances across both temporal and spatial scales will discourage the colonisation of most species.

Impact 1 - *Loss of habitat.* A number of habitat types will be completely removed and transformed to new habitat types consisting of monospecific grasslands (e.g. *Cenchrus ciliaris* grassland). Species most likely to be affected will include habitat specialists or stenotopic taxa (e.g. *Ceratogyrus* spiders, *Opistophthalmus* scorpions and *Mantichora* beetles).

Species that will benefit from the development, more so from the creation of artificial grasslands and bare patches of soil, will include common species such as the Common

Mole-rat (*Cryptomys hottentotus*), Bushveld Gerbil (*Tatera leucogaster*) and Cape porcupine (*Hystrix africaeaustralis*).

Impact 2 - *Disturbance caused during construction activities*. Although almost all faunal species are to be affected by disturbances, it will be the larger mammal species (e.g. ungulates) and those requiring larger home ranges that will be affected.

Other possible disturbances include killing and snaring of mammal and reptile species by labour and residents.

Impact 3 – *Loss of taxa of conservation concern.* It is anticipated that many stenotopic and fossorial taxa of conservation concern will become lost during earth-moving activities associated with the construction of the landfill site.

Issue	Nature	Extent	Duration	Intensity	Probability	Potential		'No go' areas
						Significan	ce	
						WOM	WM	
Impact	Loss of habitat	Local	Permanent	High	Definite	High	Medium	-
1								
Impact	Disturbances	Regional	Long-term	High	Definite	Medium	Low	-
2								
Impact	Loss of taxa of	Local	Permanent	High	Definite	High	Medium	-
3	conservation							
	concern							

Table 10: An impact assessment table summarising the potential construction impacts on the faunal assemblages. WOM – Without mitigation; WM – With mitigation.

5.1.3 Operational Impacts: Vegetation

Impact 1 - *Loss of conservation important plant taxa.* It is possible that sensitive species (e.g. medicinal species and those protected by provincial legislation) may become lost during the operation phase due to an anticipated increase of anthropogenic activities that could lead to the uncontrolled and unsustainable harvesting of sensitive/medicinal plant species (by both the labour force and residents).

Impact 2 - *Establishment of alien and invader taxa*. The continual clearing of vegetation and disturbances to the soil surface will facilitate the colonisation by ruderal weeds (mostly annual weeds) or declared alien species that will prohibit the natural succession during rehabilitation activities.

Issue	Nature		Extent	Duration	Intensity	Probability	Potential Significan	ce	'No go' areas
							WOM	WM	
Impact	Loss	of	Local	Long-term	Medium	Probable	Medium	Low	-

Ecological Report

1	conservation							
	important plant							
	taxa							
Impact	Establishment of	Regional	Long-term	High	Definite	Medium	Low	-
2	alien & invader							
	taxa							

Table 11: An impact assessment table summarising the potential operational impacts on the vegetation units. WOM – Without mitigation; WM – With mitigation.

5.1.4 Operational Impacts: Fauna

Impact 1 – *Disturbances*. Similar to Section 5.1.2: Impact 2.

Impact 2 – *Changes in community structure*. It is believed that the densities of certain opportunistic species (mainly bird species) could increase tenfold due to the establishment of a landfill site. These taxa could easily out-compete other less resilient taxa in the area. For example, it is believed that the densities of Pied Crows (*Corvus albus*) are likely to increase in the region. These species are aggressive competitors, which will eventually compete with other raptors in the area, leading to an imbalance in the natural food chain.

Impact 3 – *Potential introduction of alien species*. Typical landfill environments provide the ideal breeding and roosting habitat for alien or introduced mammalian taxa. It is possible that the landfill site could provide the ideal nucleus for the proliferation of invader species such as *Mus musculus* (House Mouse), *Rattus rattus* (Brown Rat), domestic dogs and cats. In addition, many of these species could be host to a number of parasite species or vectors of foreign diseases that could spread to the local indigenous mammal populations – sometimes with disastrous consequences. These species could competitively exclude the indigenous fauna or they could prey on the indigenous taxa, thereby inducing imbalances in the natural food chain. Although many of these species are only able to survive in close association with humans, some are known to take up residence in the field.

Issue	Nature	Extent	Duration	Intensity	Probability	Potential		'No go' areas
						Significan	ce	
	•					WOM	WM	
Impact	Disturbances	Regional	Long-term	Medium	Highly probable	Medium	Low	-
1								
Impact	Changes in	Regional	Long-term	High	Highly probable	High	Medium	-
2	community							
	structure							
Impact	Potential	Local	Long-term	High	Highly probable	High	Medium	-
3	introduction of alien							
	species							

Table 12: An impact assessment table summarising the potential operational impacts on the faunal community. WOM – Without mitigation; WM – With mitigation.

5.2 Recommendations and suggested mitigation measures

- Option A is preferred since it corresponded to vegetation units (e.g. the Acacia mellifera Melhania acuminata thornveld) of secondary successional stage that is reminiscent of past perturbations. Therefore, where possible, development should be restricted to disturbed areas;
- The development should strive to promote connectivity between the Acacia tortilis – Enneapogon cenhroides woodland habitat types. Therefore, natural corridors must be retained where possible to promote the movement of fauna, especially during the construction and operational phase when a high rate of natural disruption is expected;
- The extent of the construction site should be demarcated on site layout plans (preferably on disturbed areas such as the *Cenchrus ciliaris* grassland unit), and no construction personnel or vehicles may leave the demarcated area except those authorised to do so. Those areas surrounding the construction site that are not part of the demarcated development area should be considered as "no-go" areas for employees, machinery or even visitors;
- The impact on natural habitat types can never be completely ameliorated if development proceeds, but can be minimized. Where natural habitat types are to be transformed, especially the *Acacia tortilis – Enneapogon cenhroides* woodland areas, consideration should be given to the quality of the habitat based on the presence of micro-habitats and areas of high quality must be conserved;
- Intentional killing of invertebrates and herpetofauna should be avoided by means of awareness programmes presented to the labour force. The labour force should be made aware of the conservation issues pertaining to the taxa occurring on the study site;
- Any taxa, especially those of conservation concern (as indicated in this document) exposed during the construction activities should be captured for later release or translocation to adjacent suitable habitat;
- A monitoring and eradication programme should be put in place whereby the distribution and abundance of alien and invader fauna are monitored through fixed trapping points. The monitoring programme should be part of the operational EMP;
- All construction activities must be limited to daylight hours;
- All geophytes (if any) and medicinal species (from affected vegetation units) must be removed with the necessary permits and established in a nursery. After construction, the species must be re-planted during the rehabilitation phase. A *management plan* (to be compiled by the ECO) should be implemented to ensure

proper establishment of *ex situ* individuals, and should include a monitoring programme for at least two years after re-establishment (to ensure successful translocation);

- Rehabilitation should consist of indigenous species only, and preferably of species native to the study site and immediate surroundings. The species selected should strive to represent habitat types typical of the ecological landscape prior to construction. Rehabilitation should strive to increase spatial habitat heterogeneity. A monitoring programme should be implemented to evaluate the success of rehabilitation and to take necessary action if required;
- *Post-decommissioning rehabilitation and landscaping* along the edges of the landfill site should provide for high structural diversity (mosaic of plant species and grasses). Edges should be curvilinear, complex and soft, but should refrain from straight, simple or hard edges. This will ensure increased movement of fauna across edges and not along edges. Landscaping guidelines should strive to follow ecological principles as set out by Dramstad *et al.*, 1996); and
- It is recommended that a monitoring programme be implemented to enforce continual eradication of alien and invasive plant species.

6. **REFERENCES**

Arnold, T.H. & De Wet, B.C. 1993. Plants of southern Africa: names and distribution. *Memoirs of the Botanical Survey of South Africa*. No. 62.

Barnes, K.N. 2000. *The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland*. BirdLife South Africa, Johannesburg.

Branch, W. R. 1988. *South African Red Data Book – Reptiles and Amphibians*. South African National Scientific Programmes Report No. 151.

Bruyns, P.V. 2005. *Stapeliads of Southern African and Madagascar*. Vol 2. Umdaus Press, Hatfield.

Clarke, K.R. & Warwick, R.M. 1994. *Changes in marine communities: An approach to statistical analysis and interpretation*. Natural Environmental Research Council, United Kingdom.

Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983).

Convention on Biological Diversity. Signed 1993 and ratified 2 November 1995.

Davies, B. & Day, J. 1998. *Vanishing Waters*. University of Cape Town Press, Cape Town.

Ecological Report

Davis, S.D., Droop, S.J.M., Gregerson, P., Henson, L., Leon, C.J., Vila-Lobos, J.L., Synge, H. & Zantovska, J. 1986. *Plants in danger: what do we know*? IUCN, Gland.

Dramstad, W.E., Olson, J.D. & Forman, R.T.T. 1996. *Landscape Ecology Principles in Landscape Architecture and Land-Use Planning*. Havard University Graduate School of Design, Island Press and the American Society of Landscape Architects.

Friedmann,Y. & Daly, B. 2004. *Red Data Book of the Mammals of South Africa: A Conservation Assessment*. CBSG South Africa, Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust, South Africa.

Germishuizen, G. & Meyer, N.L. (eds.). 2003. Plants of Southern Africa: an annotated checklist. *Strelitzia* 17, SANBI, Pretoria.

Golding, J. 2002. Southern African Plant Red Data Lists. *South African Botanical Diversity Network Report no 14.* SABONET. Pretoria

Hanski, I. & Cambeford, Y. 1991. *Dung beetle ecology*. Princeton University Press, Princeton.

Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V. & Brown, C.J. (eds.). 1997. *The Atlas of Southern African Birds. Vol. 1 & 2*. BirdLife South Africa, Johannesburg.

Henderson, L 2001. *Alien Weeds and Invasive Plants: a complete guide to declared weeds and invaders in South Africa.* ARC Publications. Pretoria.

Hilton-Taylor, C. 1996. Red Data List of southern African plants. *Strelitzia 4*. National Botanical Institute, Pretoria.

Hilton-Taylor, C. 2000. The IUCN/SSC Red List Program: Toward the 2000 IUCN Red List of Threatened Species. *Species* 33: 21-29.

Hockey, P.A.R., Dean, W.R.J. & Ryan, P.G. (eds.) 2005. *Roberts – Birds of Southern Africa*, VIIth ed. The Trustees of the John Voelker Bird Book Fund, Cape Town.

Limpopo Environmental Management Act, 2003 (Act No. 7 of 2003).

Mander, M. 1998. The marketing of medicinal plants in South Africa: a case study in *KwaZulu-Nata*l. FAO of the UN, Rome.

Minter, L.R., Burger, M., Harrison, J.A., Braack, H.H., Bishop, P.J. & Kloepfer, D. 2004. *Atlas and Red data Book of the Frogs of South Africa, Lesotho and Swaziland*. SI/MAB Series #9. Smithsonian Institution, Washington, D.C.

Mucina, L. & Rutherford, M.C. (eds). 2006. *The vegetation map of South Africa, Lesotho and Swaziland. Strelitzia 19,* South African National Biodiversity Institute.

Mueller-Dombois, D.S. & Ellenberg, H. 1974. *Aims and Methods of Vegetation Ecology*. Wiley, New York.

National Environmental Management Biodiversity Act, 2004 (Act No. 10 of 2004).

National Forests Act, 1998 (Act No. 84 of 1998).

Skinner, J.D. & Chimimba, C.T. (Revisers). 2005. Mammals of the Southern African Subregion. Cambridge University Press, London.

Skinner, J.D. & Smithers, R.H.N. 1990. *The Mammals of the Southern African Subregion*. University of Pretoria, Pretoria, RSA.

Tarboton, W. 2001. *A guide to the Nests & Eggs of Southern African Birds*. Struik Publishers, Cape Town.

Threatened Species Programme. 2007. *Interim Red Data List of South African Plant Species*. Produced in collaboration with the National Botanical Institute (NBI), NORAD and the Department of Environmental Affairs and Tourism (DEAT).

Van Wyk, B-E, Van Oudtshoorn, B & Gericke, N. 1997. *Medicinal Plants of South Africa*. Briza Publications, Pretoria.

Wood, J., Low, A.B., Donaldson, J.S., & Rebelo, A.G. 1994. *Threats to plant species through urbanisation and habitat fragmentation in the Cape Metropolitan Area, South Africa.* In: Huntley, B.J. (Ed.) Botanical Diversity in Southern Africa. National Botanical Institute, Pretoria.

7. APPENDICES

Appendix 1: A list of plant species observed on the study site. *- Exotic species.

Scientific Name	Vernacular Name	Family	Growth Form
Abutilon austro-africanum		Malvaceae	Perennial Herb
Acacia burkei	Black Monkey Thorn	Mimosaceae	Tree
Acacia caffra	Common Hook-thorn	Mimosaceae	Tree
Acacia erioloba	Camel Thorn	Mimosaceae	Tree
Acacia erubescens	Blue Thorn	Mimosaceae	Tree
Acacia grandicornuta	Horned Thorn	Mimosaceae	Tree
Acacia hebeclada		Mimosaceae	Tree
Acacia mellifera subsp. detinens	Black Thorn	Mimosaceae	Tree
Acacia nigrescens	Knobthorn	Mimosaceae	Tree
Acacia nilotica subsp. kraussiana	Scented-pod Thorn	Mimosaceae	Tree
Acacia tortilis subsp. heteracantha	Umbrella Thorn	Mimosaceae	Tree
Acalypha glabrata		Euphorbiaceae	Shrub
Acanthosicyos naudinianus	Gemsbok Cucumber	Cucurbitaceae	Perennial Trailing Herb
Achyranthes aspera*	Burrweed	Amaranthaceae	Perennial Herb
Acrotome hispida		Lamiaceae	Perennial Herb
Agathisanthemum bojeri		Rubiaceae	Perennial Herb
Aristida adscensionis	Annual Three-awn	Poaceae	Annual Tufted Grass
Aristida canescens	Pale Three-awn	Poaceae	Perennial Tufted Grass
Aristida congesta subsp. barbicollis	Spreading Three-awn	Poaceae	Perennial Tufted Grass
Aristida congesta subsp. congesta	Tassel Three Awn	Poaceae	Perennial Tufted Grass
Aristida stipitata subsp. graciliflora	Long-awned Grass	Poaceae	Perennial Tufted Grass
Asparagus buchananii		Asparagaceae	Perennial Herb
Barleria galpinii		Acanthaceae	Perennial Herb
Bauhinia petersiana	Cofee Neat's Foot	Fabaceae	Shrub
Becium filamentosum		Lamiaceae	Perennial Herb
Bidens bipinnata*	Spanish Blackjack	Asteraceae	Annual Herb

Scientific Name	Vernacular Name	Family	Growth Form
Blepharis saxatilis		Acanthaceae	Perennial Herb
Boscia albitrunca	Sheperd-tree	Capparaceae	Tree
Boscia foetida subsp. rehmanniana	Bushveld Shepard-tree	Capparaceae	Tree
Catophractes alexandri	Tumpeter-thorn	Bignoniaceae	Shrub
Cenchrus ciliaris	Foxtail Buffalo Grass	Poaceae	Perennial Tufted Grass
Chloris pycnothrix		Poaceae	Perennial Tufted Grass
Cleome angustifolia		Capparaceae	Annual Herb
Coccinia sessilifolia		Cucurbitaceae	Perennial Twining Herb
Combretum apiculatum subsp. apiculatum	Red Bushwillow	Combretaceae	Tree
Combretum hereroense	Russet Bushwillow	Combretaceae	Tree
Combretum imberbe	Leadwood	Combretaceae	Tree
Commelina africana	Yellow Commelina	Commelinaceae	Perennial Spreading Herb
Commelina benghalensis	Benghal Commelina	Commelinaceae	Perennial Herb
Commelina cf. rogersii (?)		Commelinaceae	Perennial Herb
Commiphora pyracanthoides	Firethorn Corkwood	Burseraceae	Shrub
Cucumis metuliferus		Cucurbitaceae	Perennial Twining Herb
Cucumis zeyheri		Cucurbitaceae	Perennial Twining Herb
Cyperus sp.		Cyperacae	Perennial Graminoid
Cyphostemma simulans		Vitaceae	Perennial Twining Herb
Dicoma anomala		Asteraceae	Perennial Herb
Dichrostachys cinerea subsp. cinerea	Small-leaved Sickle-bush	Mimosaceae	Tree
Digitaria eriantha	Common Finger Grass	Poaceae	Perennial Graminoid
Dodonaea angustifolia	Narrow-leaved Sand-olive	Sapindaceae	Shrub
Eheretia rigida	Puzzle Bush	Boraginaceae	Tree
Elephantorrhiza elephantina	Elandsbean	Fabaceae	Perennial Suffrutex
Enneapogon cenchroides	Nine-awned Grass	Poaceae	Annual Tufted Grass
Eragrostis lehmanniana	Lehmann's Love Grass	Poaceae	Perennial Tufted Grass
Eragrostis pallens	Broom Love Grass	Poaceae	Perennial Tufted Grass
Euclea crispa		Ebenaceae	Tree
Euclea undulata		Ebenaceae	Tree
Euphorbia inaequilatera var. inaequilatera		Euphorbiaceae	Annual Herb
Eustachys paspaloides	Brown Rhodes Grass	Poaceae	Perennial Tufted Grass

Scientific Name	Vernacular Name	Family	Growth Form
Evolvulus alsinoides		Convolvulaceae	Perennial Herb
Felicia mossamedensis	Yellow Felicia	Asteraceae	Perennial Herb
Flaveria bidentis*		Asteraceae	Annual Herb
Gardenia volkensii		Rubiaceae	Shrub
Gossypium herbaceum subsp. africanum	Wild Cotton	Malvaceae	Perennial Herb
Grewia bicolor	White-leaved Raisin	Tiliaceae	Shrub
Grewia flava	Velvet Raisin	Tiliaceae	Shrub
Grewia flavescens var. flavescens	Sandpaper Raisin	Tiliaceae	Shrub
Grewia monticola	Grey Raisin	Tiliaceae	Shrub
Grewia retinervis	Kalahari Raisin	Tiliaceae	Shrub
Heliotropium ciliatum		Boraginaceae	Perennial Herb
Hemizygia cf. elliottii		Lamiaceae	Perennial Herb
Hermannia glandulifera		Sterculiaceae	Perennial Herb
Heteropogon contortus	Spear Grass	Poaceae	Perennial Tufted Grass
Hibiscus calyphyllus	Wild Stockrose	Malvaceae	Perennial Herb
Hibiscus cannabinus		Malvaceae	Annual Herb
Hibiscus meeusei		Malvaceae	Perennial Herb
Hibiscus trionum		Malvaceae	Annual Herb
Hirpicium bechuanense		Asteraceae	Perennial Herb
Indigofera daleoides		Fabaceae	Perennial Herb
Indigofera newbrowniana		Fabaceae	Perennial Herb
Ipomoea bathycolpos		Convolvulaceae	Perennial Herb
Ipomoea magnusiana	Small Pink Ipomoea	Convolvulaceae	Perennial Herb
Justicia flava		Acanthaceae	Perennial Herb
Kyphocarpa angustifolia	Sliky Burweed	Amaranthaceae	Perennial Herb
Lagerra decurrens	Wolbos	Asteraceae	Shrub
Maytenus undata	Koko Tree	Celastraceae	Tree
Melhania acuminata		Sterculiaceae	Perennial Herb
Melhania rehmannii		Sterculiaceae	Perennial Herb
Melinis repens	Natal Red Top	Poaceae	Annual Tufted Grass
Merremia palmata		Convolvulaceae	Perennial Herb
Neorautanenia amboensis		Fabaceae	Perennial Herb

Scientific Name	Vernacular Name	Family	Growth Form
Nicotiana glauca*	Wild Tobacco	Solanaceae	Shrub
Nidorella resedifolia		Asteraceae	Annual Herb
Ochna pulchra	Peeling Plane	Ochnaceae	Tree
Ocimum gratissimum		Lamiaceae	Perennial Herb
Panicum maximum	Guinea Grass	Poaceae	Perennial Tufted Grass
Pavonia burchellii		Malvaceae	Perennial Herb
Pavonia transvaalensis		Malvaceae	Annual Herb
Peltophorum africanum	African-wattle	Caesalpiniaceae	Tree
Pentarrhinum insipidum	Donkieperske	Apocynaceae	Perennial Twining Herb
Pergularia daemia		Apocynaceae	Perennial Twining Herb
Perotis patens	Cat's Tail	Poaceae	Annual Tufted Grass
Pupalia lappacea	Forest Burr	Amaranthaceae	Annual Herb
Rhigozum obovatum	Pomegranate	Bignoniaceae	Shrub
Rhynchosia caribaea		Fabaceae	Perennial Twining Herb
Rhynchosia minima		Fabaceae	Perennial Twining Herb
Rhynchosia totta		Fabaceae	Perennial Twining Herb
Ruellia cf. patula		Acanthaceae	Perennial Herb
Sansevieria aethiopicus		Dracaenaceae	Perennial Herb
Schmidtia pappophoroides	Sand Quick	Poaceae	Perennial Tufted Grass
Sclerocarya birrea subsp. caffra	Marula	Anacardiaceae	Tree
Senna italica subsp. arachoides		Caesalpiniaceae	Perennial Herb
Sesamum triphyllum var. triphyllum	Wild Sesame	Pedaliaceae	Annual Herb
Sida cordifolia	Flannel Weed	Malvaceae	Perennial Herb
Solanum cf. tomentosum		Solanaceae	Perennial Herb
Solanum lichtensteinii	Grey Bitter-apple	Solanaceae	Shrub
Solanum panduriforme		Solanaceae	Perennial Herb
Spirostachys africana	Tamboti	Euphorbiaceae	Tree
Stipagrostis uniplumis	Silky Bushman Grass	Poaceae	Perennial Tufted Grass
Tagetes minuta*	Khaki Weed	Asteraceae	Annual Herb
Tarchonanthus camphoratus	Camphor Tree	Asteraceae	Shrub
Tephrosia elongata		Fabaceae	Perennial Herb
Tephrosia purpurea		Fabaceae	Perennial Herb

Scientific Name	Vernacular Name	Family	Growth Form
Terminalia sericea	Silver Cluster-leaf	Combretaceae	Tree
Tricholaena monachne	Blue-seed Grass	Poaceae	Perennial Tufted Grass
Tricliceras longipedunculatum		Turneraceae	Perennial Herb
Tylosema cf. esculentum	Gemsbok Bean	Fabaceae	Perennial Prostrate Herb
Urochloa mosambicensis	Bushveld Signal Grass	Poaceae	Perennial Tufted Grass
Vernonia staehelinoides	Blouteebossie	Asteraceae	Annual Herb
Vigna unguiculata		Fabaceae	Perennial Twining Herb
Waltheria indica	Meidebossie	Sterculiaceae	Perennial Herb
Zehneria scabra		Cucurbitaceae	Perennial Twining Herb
Ziziphus mucronata subsp. mucronata	Buffalo-thorn	Rhamnaceae	Tree

Appendix 2: A list of mammal species with distribution ranges that correspond to that of the study site. The table excludes any introduced game species. SA – South Africa. Conservation status chosen according to Friedmann & Daly (2004) and nomenclature according to Skinner & Chimimba (2005).

Scientific Name	Vernacular Name	Probability of Occurrence	e Habitat	Conservation Status
Aethomys ineptus	Tete Veld Rat	High, a widespread specie likely to occur.	s Rocky crevices and piles of boulders, varied vegetation types.	in Least Concern
Canis mesomelas	Black-Backed Jackal	Low, could occur.	Wide habitat tolerance; arid, savanna a well watered regions. Absent from forests	nd Least Concern
Cercopithecus pygerythrus	Vervet Monkey	Medium-High, could occur.	Savanna and forested areas.	Least Concern
Crocidura cyanea	Reddish-Grey Musk Shrew	High, a widespread specie that could occur.	s Dry terrain among rocks in dense scrub a grass, in moist places and in hedges. W vleis with good grass cover.	nd Data Deficient Vet
Crocidura fuscomurina	Tiny Musk Shrew	Medium, could occur.	Varied, a wide habitat tolerance.	Data Deficient
Crocidura hirta	Lesser Red Musk Shrew	High, likely to occur.	Moist savanna, especially near draina lines.	ge Data Deficient
Cryptomys hottentotus	Common Molerat	High, a very widesprea species.	d Wide diversity of substrates, from sandy s to heavier compacted types.	soil Least Concern
Dendromus melanotis	Grey Climbing Mouse	High, likely to occur.	Stands of tall grasses (e.g. <i>Hyparrhel</i> spp.) with bushes and other th vegetation.	<i>nia</i> Least Concern ick
Elephantulus brachyrhynchus	Short-snouted Elephant shrew	- Medium, could occur.	Mainly woodland areas with sandy soils.	Data Deficient
Galago moholi	Southern Lesser Galago	High, likely to occur.	Savanna woodland.	Least Concern

Scientific Name	Vernacular Name	Probability of Occurrence	e Habitat	Conservation Status
Galerella sanguinea	Slender Mongoose	High, a widespread species.	. Catholic habitat requirements, arid to mo mesic regions. Cover in the form of holes the ground, hollow logs or rocks a essential.	re Least Concern in re
Genetta genetta	Small-Spotted Genet	High, a widespread species likely to occur.	s Savanna, adapts well to rural gardens ar urban areas.	nd Least Concern
Genetta maculata	Common Large-Spot Genet	ed High, a widespread species likely to occur.	s Varied; adapts well to rural gardens ar urban areas.	nd Least Concern
Graphiurus murinus	Woodland Dormouse	High, likely to occur.	Woodland areas.	Least Concern
Hystrix africaeaustralis	Cape Porcupine	High, a widespread species.	. Catholic, but prefers broken country wi hills and rocks.	th Least Concern
Ictonyx striatus	Striped Polecat	High, likely to occur.	Varied, from forest to grassland.	Least Concern
Lemniscomys rosalia	Single-striped Mouse	High, likely to occur.	Tall grasslands.	Data Deficient
Lepus saxatilis	Shrub Hare	High, a widespread species.	Savanna woodland and scrub with gras	ss Least Concern
Mastomys choucha	Southern Multimamma Mouse	ate High, a widespread species likely to occur on the study site.	s Wide habitat tolerance. y	Least Concern
Mungos mungo	Banded Mongoose	High, likely to occur on the study site.	e Savannas.	Least Concern
Mus minutoides	Pygmy Mouse	High, likely to occur.	Savanna with good ground cover.	Least Concern
Neoromicia capensis	Cape Serotine Bat	High, a widespread species likely to occur	s Variable but prefers savanna. Common enters houses and readily visits lights.	ly Least Concern
Nycteris thebaica	Egyptian Slit-faced Bat	High, a widespread species.	 Varied. Will utilise nearby rock crevices ar manmade structures for day and nig roosts. 	nd Least Concern ht
Paraxerus cepapi	Tree Squirrel	High, likely to occur.	Savanna woodland.	Least Concern

Scientific Name	Vernacular Name	Probability of Occurrence	Habitat	Conservation Status
Pedetes capensis	Springhare	High, widespread and likely to occur.	y Arid bushveld on sandy soils.	Least Concern
Phacochoerus africanus	Common Warthog	Medium, a widespread species recorded from a woodland habitat types.	d Savanna areas with short grass cov Il surface water.	ver and Least Concern
Pipistrellus hesperidus	African Pipistrelle	High, likely to occur.	Savannas and urban areas v preference for riparian vegetation.	with a Least Concern
Potamochoerus larvatus	Bushpig	High, a widespread species recorded from thicket habita types.	s Mainly in forested and thicket areas. It	Least Concern
Rhabdomys pumilio	Striped Mouse	High, a widespread species likely to occur	s Grassland with good grass cover.	Least Concern
Saccostomus campestris	Pouched Mouse	High, likely to occur.	Catholic habitat requirements. Com sandy substrate with scrub bush or o open woodland.	mon in Least Concern cover in
Scotophilus dinganii	Yellow House Bat	High, a widespread species.	Woodland and savannah. Associate built-up areas.	ed with Least Concern
Steatomys pratensis	Fat Mouse	High, likely to occur.	A grassland and savanna species preference for riparian vegetation.	with a Least Concern
Sylvicapra grimmia	Common Duiker	High, a widespread species.	All biomes	Least Concern
Tadarida aegyptiaca	Egyptian Free-Tailed Bat	High, a widespread species likely to occur	s Cosmopolitan, occurring in all veç types.	getation Least Concern
Taphozous mauritianus	Mauritian Tomb Bat	High, likely to occur.	Savanna and urban areas.	Least Concern
Tatera leucogaster	Bushveld Gerbil	High, likely to occup disturbed areas on sand soils.	y Savanna on sandy soils. y	Data Deficient

Scientific Name	Vernacular Name	Probability of Occurrence	Habitat	Conservation Status
Thallomys paedulcus	Acacia Rat	High, likely to occur.	Widespread in savannas.	Least Concern

Appendix 3: A list of bird species likely to occur on the study site. Species highlighted in grey were confirmed. # refers to the new SA numbers. Nomenclature, scientific and colloquial names were used according to Hockey *et al.* (2005).

#	Scientific Name	Colloquial Name
4	Dendroperdix sephaena	Crested Francolin
12	Pternistis natalensis	Natal Spurfowl
14	Pternistis swainsonii	Swainson's Spurfowl
16	Coturnix delegorguei	Harlequin Quail
20	Numida meleagris	Helmeted Guineafowl
41	Turnix sylvaticus	Kurrichane Buttonquail
45	Indicator indicator	Greater Honeyguide
46	Indicator minor	Lesser Honeyguide
49	Prodotiscus regulus	Brown-backed Honeybird
53	Campethera abingoni	Golden-tailed Woodpecker
57	Dendropicos fuscescens	Cardinal Woodpecker
58	Dendropicos namaquus	Bearded Woodpecker
65	Pogoniulus chrysoconus	Yellow-fronted Tinkerbird
67	Tricholaema leucomelas	Acacia Pied Barbet
68	Lybius torquatus	Black-collared Barbet
69	Trachyphonus vaillantii	Crested Barbet
71	Tockus erythrorhynchus	Red-billed Hornbill
73	Tockus leucomelas	Southern Yellow-billed Hornbill
76	Tockus nasutus	African Grey Hornbill
80	Upupa africana	African Hoopoe
81	Phoeniculus purpureus	Green Wood-Hoopoe
83	Rhinopomastus cyanomelas	Common Scimitarbill
85	Coracias garrulus	European Roller
86	Coracias caudatus	Lilac-breasted Roller
88	Coracias naevius	Purple Roller
94	Halcyon senegalensis	Woodland Kingfisher
96	Halcyon albiventris	Brown-hooded Kingfisher
97	Halcyon chelicuti	Striped Kingfisher

#	Scientific Name	Colloquial Name
100	Merops bullockoides	White-fronted Bee-eater
101	Merops pusillus	Little Bee-eater
102	Merops hirundineus	Swallow-tailed Bee-eater
107	Merops apiaster	European Bee-eater
108	Merops nubicoides	Southern Carmine Bee-eater
110	Colius striatus	Speckled Mousebird
111	Urocolius indicus	Red-faced Mousebird
112	Clamator jacobinus	Jacobin Cuckoo
113	Clamator levaillantii	Levaillant's Cuckoo
114	Clamator glandarius	Great Spotted Cuckoo
116	Cuculus solitarius	Red-chested Cuckoo
117	Cuculus clamosus	Black Cuckoo
119	Cuculus gularis	African Cuckoo
123	Chrysococcyx klaas	Klaas's Cuckoo
125	Chrysococcyx caprius	Diderick Cuckoo
131	Centropus burchellii	Burchell's Coucal
144	Cypsiurus parvus	African Palm-Swift
147	Apus apus	Common Swift
151	Apus affinis	Little Swift
152	Apus horus	Horus Swift
153	Apus caffer	White-rumped Swift
159	Corythaixoides concolor	Grey Go-away-bird
160	Tyto alba	Barn Owl
162	Otus senegalensis	African Scops-Owl
163	Ptilopsus granti	Southern White-faced Scops-Owl
165	Bubo africanus	Spotted Eagle-Owl
169	Glaucidium perlatum	Pearl-spotted Owlet
171	Asio capensis	Marsh Owl
172	Caprimulgus pectoralis	Fiery-necked Nightjar
176	Caprimulgus rufigena	Rufous-cheeked Nightjar
177	Caprimulgus europaeus	European Nightjar
179	Columba livia	Rock Dove

#	Scientific Name	Colloquial Name
180	Columba guinea	Speckled Pigeon
185	Streptopelia senegalensis	Laughing Dove
187	Streptopelia capicola	Cape Turtle-Dove
188	Streptopelia semitorquata	Red-eyed Dove
189	Turtur chalcospilos	Emerald-spotted Wood-Dove
192	Oena capensis	Namaqua Dove
193	Treron calvus	African Green-Pigeon
197	Lophotis ruficrista	Red-crested Korhaan
229	Pterocles bicinctus	Double-banded Sandgrouse
230	Pterocles burchelli	Burchell's Sandgrouse
272	Burhinus capensis	Spotted Thick-knee
291	Vanellus armatus	Blacksmith Lapwing
294	Vanellus senegallus	African Wattled Lapwing
297	Vanellus coronatus	Crowned Lapwing
300	Rhinoptilus chalcopterus	Bronze-winged Courser
303	Cursorius temminckii	Temminck's Courser
345	Aviceda cuculoides	African Cuckoo Hawk
346	Pernis apivorus	European Honey-Buzzard
348	Elanus caeruleus	Black-shouldered Kite
350	Milvus [migrans] parasitus	Yellow-billed Kite
361	Circaetus pectoralis	Black-chested Snake-Eagle
362	Circaetus cinereus	Brown Snake-Eagle
371	Polyboroides typus	African Harrier-Hawk
374	Melierax canorus	Southern Pale Chanting Goshawk
375	Melierax gabar	Gabar Goshawk
377	Accipiter badius	Shikra
378	Accipiter minullus	Little Sparrowhawk
382	Buteo vulpinus	Steppe Buzzard
391	Aquila spilogaster	African Hawk-Eagle
394	Aquila wahlbergi	Wahlberg's Eagle
407	Falco amurensis	Amur Falcon
440	Ardea melanocephala	Black-headed Heron

#	Scientific Name	Colloquial Name
443	Bubulcus ibis	Cattle Egret
457	Bostrychia hagedash	Hadeda Ibis
459	Threskiornis aethiopicus	African Sacred Ibis
534	Oriolus oriolus	Eurasian Golden Oriole
537	Oriolus larvatus	Black-headed Oriole
539	Dicrurus adsimilis	Fork-tailed Drongo
541	Terpsiphone viridis	African Paradise-Flycatcher
543	Nilaus afer	Brubru
544	Dryoscopus cubla	Black-backed Puffback
546	Tchagra senegalus	Black-crowned Tchagra
547	Tchagra australis	Brown-crowned Tchagra
551	Laniarius ferrugineus	Southern Boubou
552	Laniarius atrococcineus	Crimson-breasted Shrike
554	Telophorus sulfureopectus	Orange-breasted Bush-Shrike
558	Malaconotus blanchoti	Grey-headed Bush-Shrike
559	Prionops plumatus	White-crested Helmet-Shrike
565	Batis molitor	Chinspot Batis
571	Corvus albus	Pied Crow
573	Lanius collurio	Red-backed Shrike
575	Lanius minor	Lesser Grey Shrike
576	Lanius collaris	Common Fiscal
578	Eurocephalus anguitimens	Southern White-crowned Shrike
581	Campephaga flava	Black Cuckooshrike
586	Parus niger	Southern Black Tit
591	Parus cinerascens	Ashy Tit
598	Hirundo rustica	Barn Swallow
603	Hirundo dimidiata	Pearl-breasted Swallow
604	Hirundo cucullata	Greater Striped Swallow
605	Hirundo abyssinica	Lesser Striped Swallow
606	Hirundo semirufa	Red-breasted Swallow
610	Hirundo fuligula	Rock Martin
611	Delichon urbicum	Common House-Martin

#	Scientific Name	Colloquial Name
615	Pycnonotus tricolor	Dark-capped Bulbul
616	Pycnonotus nigricans	African Red-eyed Bulbul
639	Acrocephalus palustris	Marsh Warbler
644	Hippolais olivetorum	Olive-tree Warbler
645	Hippolais icterina	Icterine Warbler
647	Eremomela icteropygialis	Yellow-bellied Eremomela
650	Eremomela usticollis	Burnt-necked Eremomela
653	Sylvietta rufescens	Long-billed Crombec
655	Phylloscopus trochilus	Willow Warbler
661	Turdoides bicolor	Southern Pied Babbler
662	Turdoides jardineii	Arrow-marked Babbler
666	Parisoma subcaeruleum	Chestnut-vented Tit-Babbler
668	Sylvia borin	Garden Warbler
669	Sylvia communis	Common Whitethroat
671	Zosterops capensis	Cape White-eye
676	Cisticola chiniana	Rattling Cisticola
683	Cisticola tinniens	Levaillant's Cisticola
685	Cisticola fulvicapilla	Neddicky
687	Cisticola juncidis	Zitting Cisticola
688	Cisticola aridulus	Desert Cisticola
692	Prinia subflava	Tawny-flanked Prinia
693	Prinia flavicans	Black-chested Prinia
706	Camaroptera brevicaudata	Grey-backed Camaroptera
707	Calamonastes fasciolatus	Barred Wren-Warbler
710	Mirafra passerina	Monotonous Lark
712	Mirafra africana	Rufous-naped Lark
717	Calendulauda sabota	Sabota Lark
718	Calendulauda africanoides	Fawn-coloured Lark
733	Eremopterix leucotis	Chestnut-backed Sparrowlark
735	Calandrella cinerea	Red-capped Lark
749	Turdus libonyanus	Kurrichane Thrush
755	Bradornis mariquensis	Marico Flycatcher

#	Scientific Name	Colloquial Name
756	Melaenornis pammelaina	Southern Black Flycatcher
757	Sigelus silens	Fiscal Flycatcher
758	Muscicapa striata	Spotted Flycatcher
761	Myioparus plumbeus	Grey Tit-Flycatcher
767	Cossypha caffra	Cape Robin-Chat
768	Cossypha humeralis	White-throated Robin-Chat
776	Cercotrichas leucophrys	White-browed Scrub-Robin
777	Cercotrichas paena	Kalahari Scrub-Robin
782	Saxicola torquatus	African Stonechat
787	Oenanthe pileata	Capped Wheatear
792	Cercomela familiaris	Familiar Chat
800	Lamprotornis nitens	Cape Glossy Starling
804	Lamprotornis australis	Burchell's Starling
806	Cinnyricinclus leucogaster	Violet-backed Starling
808	Creatophora cinerea	Wattled Starling
810	Acridotheres tristis	Common Myna
818	Chalcomitra amethystina	Amethyst Sunbird
828	Cinnyris talatala	White-bellied Sunbird
832	Cinnyris mariquensis	Marico Sunbird
836	Bubalornis niger	Red-billed Buffalo-Weaver
837	Sporopipes squamifrons	Scaly-feathered Finch
838	Plocepasser mahali	White-browed Sparrow-Weaver
840	Ploceus intermedius	Lesser Masked-Weaver
846	Ploceus velatus	Southern Masked-Weaver
847	Ploceus cucullatus	Village Weaver
851	Anaplectes rubriceps	Red-headed Weaver
854	Quelea quelea	Red-billed Quelea
857	Euplectes orix	Southern Red Bishop
861	Euplectes albonotatus	White-winged Widowbird
867	Amandava subflava	Orange-breasted Waxbill
868	Ortygospiza atricollis	African Quailfinch
869	Amadina erythrocephala	Red-headed Finch

#	Scientific Name	Colloquial Name
870	Amadina fasciata	Cut-throat Finch
875	Estrilda erythronotos	Black-faced Waxbill
878	Estrilda astrild	Common Waxbill
880	Granatina granatina	Violet-eared Waxbill
881	Uraeginthus angolensis	Blue Waxbill
884	Pytilia melba	Green-winged Pytilia
886	Lagonosticta senegala	Red-billed Firefinch
889	Lagonosticta rhodopareia	Jameson's Firefinch
890	Spermestes cucullatus	Bronze Mannikin
893	Vidua chalybeata	Village Indigobird
897	Vidua regia	Shaft-tailed Whydah
898	Vidua macroura	Pin-tailed Whydah
899	Vidua paradisaea	Long-tailed Paradise-Whydah
901	Passer domesticus	House Sparrow
903	Passer melanurus	Cape Sparrow
904	Passer diffusus	Southern Grey-headed Sparrow
906	Petronia superciliaris	Yellow-throated Petronia
908	Motacilla capensis	Cape Wagtail
915	Macronyx capensis	Cape Longclaw
920	Anthus cinnamomeus	African Pipit
925	Anthus similis	Long-billed Pipit
929	Anthus caffer	Bushveld Pipit
935	Serinus atrogularis	Black-throated Canary
937	Serinus mozambicus	Yellow-fronted Canary
947	Emberiza impetuani	Lark-like Bunting
948	Emberiza tahapisi	Cinnamon-breasted Bunting
950	Emberiza flaviventris	Golden-breasted Bunting