

TERRESTRIAL ECOLOGY ASSESSMENT FOR TUTUKA POWER STATION DISPOSAL SITE EXTENSION

Submitted to:

Zitholele Consulting (Pty) Ltd P O Box 6002 Halfway House 1685

REPORT

A world of capabilities delivered locally

Report Number: 12500-9610-1

Distribution:

1 Copy - Zitholele Consulting

1 Copy - Golder Associates Library

Executive Summary

Zitholele Consulting appointed Golder Associates Africa (Pty) Ltd (GAA) Ecology Division to conduct the baseline ecological studies and ecological impact assessment for the planned extension of the existing waste disposal site at Tutuka Power Station, *circa* 20 km north-west of the town of Standerton in the Mpumalanga Province, South Africa.

The terms of reference for the Terrestrial Ecosystems Specialist Study are:

- To conduct a flora and fauna study of the site;
- To conduct a survey of threatened species (Red Data fauna and flora species) of the proposed affected study site;
- To conduct a fauna habitat assessment (including habitat potentially suitable for threatened species);
- To provide an indication of the relative conservation importance and ecological function of the study site;
- To assess the condition of the plant communities on the study site; and
- To assess the impacts of the proposed activity on the species and ecological integrity and processes of the study site.

In order to obtain a comprehensive understanding of the dynamics of communities and the status of endemic, rare or threatened species in any area, vegetation and faunal assessments should always consider investigations at different time scales (across seasons/years) and through replication. However, due to time and budget constraints, such long-term studies are not feasible and conclusions will be based on a single seasonal sampling bout undertaken in January 2010.

The physiognomy of the area is characterized by the dominance of the herbaceous component consisting predominantly of grass species, while the woody stratum is very poorly represented. This is very much what would be expected in this area due to the area falling withing the Grassland Biome and Soweto Highveld Grassland vegetation type. A pristine species composition would dictate a slightly more diverse herbaceous stratum, but the occurrent species rather than the species diversity in this area are more obvious indicators of the historical impacts on the area.

Forbs and other herbs are moderately represented, but the dominance of many of these species also indicates the degraded status of the vegetation community. This is especially visible in the north-western quarter of the study area. A total of 58 plant species were identified during the site investigation. Herbs and graminoids (grasses) dominate the composition.

The following vegetation communities were identified during the study, and are named according to the area in which they occur, physiognomy and/or dominant floral species occurring within the vegetation communities:

- Themeda triandra grassland;
- Themeda Hyparrhenia mixed grassland ;
- Natural Riparian Wetland;
- Artificial wetland associated with diggings;
- Existing waste disposal site.

No Red Data species were recorded during the 2010 survey. According to the Mpumalanga Parks and Tourism Authority (MPTA) records only two Red Data plant species have been recorded in the 2629CC grid square and both of these species were found more than 20 km away from the study area.

A total of 34 arthropods, 3 reptiles, 4 amphibians, 31 birds and 4 mammal species were recorded during the 2010 surveys.

Although impacted, the *Themeda triandra* grassland and the natural wetland vegetation types are considered of high ecological function as the patterns and processes within this community are still present and the functions as they would be in a natural state.

The *Themeda-Hyparrhenia* grassland vegetation type can be considered as being of moderate ecological status as some of the patterns and processes in these areas have been diminished or eliminated by anthropogenic impacts. Further extensive impacts in these areas could cause rapid and perhaps irreversible degradation of these areas.

The artificial wetlands and existing waste disposal areas have low ecological function due to anthropogenic impacts. Natural patterns and processes in these areas have been severely reduced or, in extreme cases, almost completely eliminated. These areas can be considered as irreversibly or close to irreversibly degraded. Further impacts in these areas are unlikey to cause further degradation with regard to the vegetation, but some effects of degradation such as the invasion of exotic species may infiltrate the surrounding vegetation types.

The areas with high conservation importance are the *Themeda triandra* grassland and the natural wetland vegetation types due to the fact that these areas are the least impacted areas. These vegetation types also have far higher levels of biodiversity than the surrounding areas and the likelihood of Red Data species occurring in these areas is also considered moderate.

The *Themeda-Hyparrhenia* grassland vegetation type (which includes the previously cultivated areas and road reserves) can be considered as being of moderate conservation importance as, although invaded by some exotic species and disturbed in some areas, these vegetation types support a large number of species and are not severely degraded. The existence of Red Data in this community cannot be excluded outright and therefore in line with the precautionary principle these communities were classified as being of moderate conservation importance.

Due to the severely impacted state of the artificial wetlands and existing disposal area, these areas were classified as being of low conservation importance. These areas are however in close proximity to the areas of high conservation importance thereby creating edge effects into the areas of high conservation importance through a number of ecological (invasion of exotics, erosion etc.) and anthropogenic factors. These factors all reduce the connectivity of the areas of high conservation importance.

Table of Contents

1.0	INTRODUCTION				
2.0	PROJECT DESCRIPTION				
	2.1.1	Background and location			
3.0	TERMS OF REFERENCE				
4.0	AIMS A	AND OBJECTIVES			
5.0					
	5.1	Flora Component			
	5.2	Fauna Component			
	5.3	Limitations to the study			
6.0		DDOLOGY			
	6.1	General floristic attributes			
	6.2	Red Data floral assessment			
	6.3	Floristic sensitivity analysis			
	6.4	General faunal attributes			
	6.4.1	Arthropoda	-		
	6.4.2	Reptilia	7		
	6.4.3	Amphibia	7		
	6.4.4	Avifauna (birds)	7		
	6.4.5	Mammalia	7		
	6.5	Red Data faunal assessment	7		
	6.6	Biodiversity impact evaluations	8		
	6.6.1	Assessment of significance	8		
	6.6.2	Development of mitigation measures	10		
7.0	THE B	IOPHYSICAL ENVIRONMENT	10		
	7.1	Location	10		
	7.2	Overview of the Highveld Grassland Ecoregion	12		
	7.2.1	Biodiversity Features	12		
	7.2.2	Current Status	13		
	7.2.3	Types and Severity of Threats	13		
	7.3	Vegetation and Associated Factors	14		

	7.3.1	Vegetation Type	14
	7.3.1.1	Soweto Highveld Grassland	14
	7.3.1.2	Distribution	14
	7.3.1.3	Vegetation and Landscape Features	14
	7.3.1.4	Geology and Soils	14
	7.3.1.5	Climate	14
	7.3.1.6	Important Taxa	14
	7.3.1.7	Conservation	15
8.0	FLORA	AL ASSESSMENT	1
	8.1	Floral Species Composition	1
	8.2	Vegetation Communities	15
	8.2.1	Themeda triandra grassland	17
	8.2.1.1	Sensitivity aspects	19
	8.2.2	Themeda – Hyparrhenia mixed grassland	20
	8.2.2.1	Sensitivity aspects	2
	8.2.3	Natural riparian wetland	22
	8.2.3.1	Sensitivity aspects	23
	8.2.4	Artificial wetland associated with diggings	24
	8.2.4.1	Sensitivity aspects	26
	8.2.5	Existing waste disposal site	26
	8.2.5.1	Sensitivity aspects	27
	8.3	Red Data Floral Assessment	28
9.0	FAUNA	AL ASSESSMENT	29
	9.1	Recorded Faunal Species	29
	9.1.1	Arthropoda	29
	9.1.2	Reptilia	30
	9.1.3	Amphibia	30
	9.1.4	Aves	3 ²
	9.1.5	Mammalia	32
	9.2	Red Data Faunal Species	33
10.0	ECOLO	DGICAL FUNCTION	33
11.0	CONSI	ERVATION IMPORTANCE	34
12 0	BIODIV	/FRSITY IMPACT ASSESSMENT	36

TABLES Table 1: Rating of ecological function and conservation importance	13.0 DISCUSSION	43
Table 1: Rating of ecological function and conservation importance	14.0 REFERENCES	44
Table 1: Rating of ecological function and conservation importance		
Table 2: Consequence and probability ranking	TABLES	
Figure 3: Map indicating the study area and associated vegetation communities. Table 3: List of floral species occurring in the Themeda triandra grassland vegetation community Table 4: Growth forms of species occurring in the Themeda – Hyparrhenia mixed grassland vegetation community Table 6: List of floral species occurring in the Themeda – Hyparrhenia mixed grassland vegetation community Table 6: Growth forms of species occurring in the Natural Riparian Wetland vegetation community Table 7: List of floral species occurring in the Natural Riparian Wetland vegetation community Table 9: List of floral species occurring in the artificial wetland vegetation community Table 9: List of floral species occurring in the artificial wetland vegetation community Table 10: Growth forms of species occurring in the artificial wetland vegetation community Table 11: List of floral species occurring in the existing waste disposal site Table 12: Growth forms of species occurring in the existing waste disposal site Table 13: Arthropod species recorded during the 2010 surveys Table 14: Reptile species recorded during the 2010 survey Table 15: Amphibian species recorded during the 2010 survey Table 16: Avifaunal species recorded during the 2010 survey Table 17: Mammal species recorded during the 2010 survey Table 18: Biodiversity impact evaluation FIGURES Figure 2: Regional location of the study area and associated vegetation communities. Figure 3: Map indicating the study area and associated vegetation communities. Figure 4: Conservation status of the study area and associated vegetation communities. Figure 5: Locations of recorded Red Data species in relation to the study area Figure 6: Ecological function of the study area	Table 1: Rating of ecological function and conservation importance	6
Table 3: List of floral species occurring in the Themeda triandra grassland vegetation community	Table 2: Consequence and probability ranking	g
Table 4: Growth forms of species occurring in the Themeda triandra grassland vegetation community Table 5: List of floral species occurring in the Themeda – Hyparrhenia mixed grassland vegetation community. Table 6: Growth forms of species occurring in the Themeda – Hyparrhenia mixed grassland vegetation community. Table 7: List of floral species occurring in the Natural Riparian Wetland vegetation community. Table 8: Growth forms of species occurring in the Natural Riparian Wetland vegetation community. Table 9: List of floral species occurring in the artificial wetland vegetation community. Table 10: Growth forms of species occurring in the artificial wetland vegetation community. Table 11: List of floral species occurring in the existing waste disposal site. Table 12: Growth forms of species occurring in the existing waste disposal site. Table 13: Arthropod species recorded during the 2007 surveys. Table 14: Reptile species recorded during the 2010 survey. Table 15: Amphibian species recorded during the 2010 survey. Table 16: Avifaunal species recorded during the 2010 survey. Table 17: Mammal species recorded during the 2010 survey. Table 18: Biodiversity impact evaluation. FIGURES Figure 1: Study area encompassing the proposed extension of the waste disposal site. Figure 2: Regional location of the study area and associated vegetation communities. Figure 4: Conservation status of the study area according to the Mpumalanga Parks and Tourism Association (MTPA, 2005). Figure 5: Locations of recorded Red Data species in relation to the study area.	Figure 3: Map indicating the study area and associated vegetation communities	17
Table 5: List of floral species occurring in the <i>Themeda – Hyparrhenia</i> mixed grassland vegetation community	Table 3: List of floral species occurring in the <i>Themeda triandra</i> grassland vegetation community	18
Table 6: Growth forms of species occurring in the Themeda – Hyparrhenia mixed grassland vegetation community	Table 4: Growth forms of species occurring in the Themeda triandra grassland vegetation community	19
Community	Table 5: List of floral species occurring in the <i>Themeda – Hyparrhenia</i> mixed grassland vegetation community	20
Table 8: Growth forms of species occurring in the Natural Riparian Wetland vegetation community. Table 9: List of floral species occurring in the artificial wetland vegetation community. Table 10: Growth forms of species occurring in the artificial wetland vegetation community. Table 11: List of floral species occurring in the existing waste disposal site. Table 12: Growth forms of species occurring in the existing waste disposal site. Table 13: Arthropod species recorded during the 2007 surveys. Table 14: Reptile species recorded during the 2010 survey. Table 15: Amphibian species recorded during the 2010 survey. Table 16: Avifaunal species recorded during the 2010 survey. Table 17: Mammal species recorded during the 2010 survey. Table 18: Biodiversity impact evaluation. FIGURES Figure 1: Study area encompassing the proposed extension of the waste disposal site. Figure 2: Regional location of the study area and associated vegetation communities. Figure 4: Conservation status of the study area according to the Mpumalanga Parks and Tourism Association (MTPA, 2005). Figure 5: Locations of recorded Red Data species in relation to the study area Figure 6: Ecological function of the study area.		21
Table 9: List of floral species occurring in the artificial wetland vegetation community	Table 7: List of floral species occurring in the Natural Riparian Wetland vegetation community	22
Table 10: Growth forms of species occurring in the artificial wetland vegetation community	Table 8: Growth forms of species occurring in the Natural Riparian Wetland vegetation community	23
Table 11: List of floral species occurring in the existing waste disposal site	Table 9: List of floral species occurring in the artificial wetland vegetation community	25
Table 12: Growth forms of species occurring in the existing waste disposal site Table 13: Arthropod species recorded during the 2007 surveys. Table 14: Reptile species recorded during the 2010 survey. Table 15: Amphibian species recorded during the 2010 survey. Table 16: Avifaunal species recorded during the 2010 survey. Table 17: Mammal species recorded during the 2010 survey. Table 18: Biodiversity impact evaluation. FIGURES Figure 1: Study area encompassing the proposed extension of the waste disposal site Figure 2: Regional location of the study area Figure 3: Map indicating the study area and associated vegetation communities. Figure 4: Conservation status of the study area according to the Mpumalanga Parks and Tourism Association (MTPA, 2005) Figure 5: Locations of recorded Red Data species in relation to the study area. Figure 6: Ecological function of the study area.	Table 10: Growth forms of species occurring in the artificial wetland vegetation community	25
Table 13: Arthropod species recorded during the 2007 surveys	Table 11: List of floral species occurring in the existing waste disposal site	26
Table 14: Reptile species recorded during the 2010 survey	Table 12: Growth forms of species occurring in the existing waste disposal site	27
Table 15: Amphibian species recorded during the 2010 survey	Table 13: Arthropod species recorded during the 2007 surveys	29
Table 16: Avifaunal species recorded during the 2010 survey	Table 14: Reptile species recorded during the 2010 survey	30
Table 17: Mammal species recorded during the 2010 survey	Table 15: Amphibian species recorded during the 2010 survey	31
Figure 1: Study area encompassing the proposed extension of the waste disposal site	Table 16: Avifaunal species recorded during the 2010 survey	31
Figure 1: Study area encompassing the proposed extension of the waste disposal site	Table 17: Mammal species recorded during the 2010 survey	33
Figure 1: Study area encompassing the proposed extension of the waste disposal site	Table 18: Biodiversity impact evaluation	36
Figure 2: Regional location of the study area	FIGURES	
Figure 3: Map indicating the study area and associated vegetation communities	Figure 1: Study area encompassing the proposed extension of the waste disposal site	2
Figure 4: Conservation status of the study area according to the Mpumalanga Parks and Tourism Association (MTPA, 2005)	Figure 2: Regional location of the study area	11
(MTPA, 2005) Figure 5: Locations of recorded Red Data species in relation to the study area Figure 6: Ecological function of the study area.	Figure 3: Map indicating the study area and associated vegetation communities	17
Figure 6: Ecological function of the study area.		24
	Figure 5: Locations of recorded Red Data species in relation to the study area	28
Figure 7: Conservation importance of the study area.	Figure 6: Ecological function of the study area.	34
	Figure 7: Conservation importance of the study area.	35

APPENDICES APPENDIX A

DOCUMENT LIMITATIONS

APPENDIX B

FLORAL SPECIES OCCURRING IN THE STUDY AREA

APPENDIX C

SOUTHERN AFRICAN HERPETAFAUNA, REPTILES PREVIOUSLY RECORDED IN THE 2629CC GRID SQUARE ARE HIGHLIGHTED

APPENDIX D

SOUTHERN AFRICAN AMPHIBIAN SPECIES, SPECIES RECORDED IN THE 2629CC GRID SQUARE ARE HIGHLIGHTED

APPENDIX E

AVIFAUNAL SPECIES KNOWN TO OCCUR IN THE 2629CC GRID SQUARE

APPENDIX F

Southern African mammals, species known to occur in the 2629CC grid square are highlighted

1.0 INTRODUCTION

Zitholele Consulting appointed Golder Associates Africa (Pty) Ltd (GAA) Ecology Division to conduct the baseline ecological studies and ecological impact assessment for the planned extension of the existing waste disposal site at Tutuka Power Station, *circa* 20 km north-west of the town of Standerton in the Mpumalanga Province, South Africa.

2.0 PROJECT DESCRIPTION

2.1 Background and location

Eskom is currently operating the Tutuka Power Station as part of its electricity generation network. Throughout the operational life of the Power Station, general waste, inclusive of garden waste and building rubble, is generated. This waste is disposed of in an authorised general waste disposal site within the Tutuka Power Station premises.

The current waste disposal site also provides disposal services to New Denmark Colliery, Thuthukani Township, Tutuka Power Station, selected contractors and some neighbouring farmers. This particular disposal site has, subsequent to its establishment, reached its capacity, and as of the end of October 2008, the waste has been transported to a waste disposal site at Kriel town, which is approximately 200 km away. The associated transportation costs are high and therefore an alternative, sustainable, means of waste disposal needs to be put in place.

To minimise the operational costs of the waste disposal, potential sites have been identified within the Tutuka Power Station premises, one of which is located immediately adjacent (contiguous) to the existing waste disposal site and would result in an extension of the existing domestic waste disposal site. Another proposed alternative to provision of disposal space was an amendment to the height limitation of the current waste disposal site. As a means to comply with the necessary legal requirements, the new / extended waste disposal site and waste disposal activities must be appropriately designed and licensed, in line with the requirements of the EIA and NEMWA legislation. The operators of Tutuka Power Station intend to increase the size of the waste disposal area situated to the west of the Tutuka power station from its present size of 3.2 ha to encompass a total land area of 10 - 15 ha. The area will also include other infrastructure such as roads and fences, for this reason an area of *circa* 48 ha was encompassed within the study area, which is shown in Figure 1.

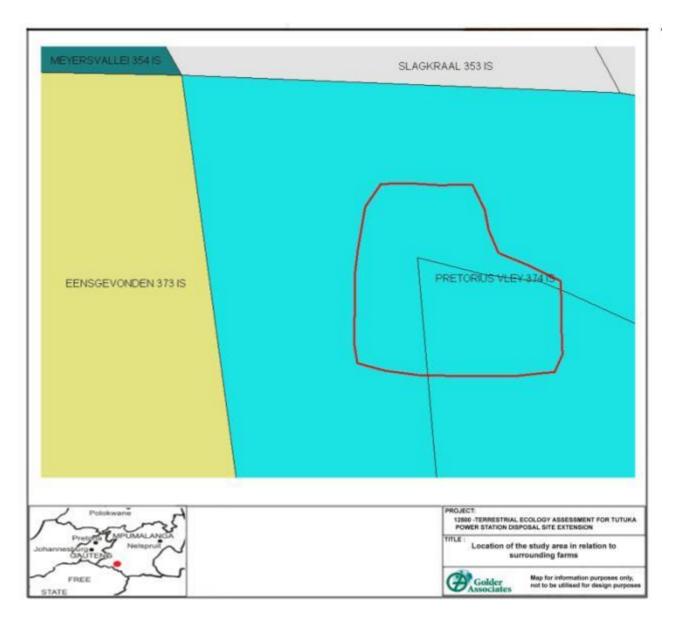


Figure 1: Study area encompassing the proposed extension of the waste disposal site.

3.0 TERMS OF REFERENCE

The terms of reference for the terrestrial ecosystems specialist study are:

- To conduct a flora and fauna study of the site;
- To conduct a survey of threatened species (Red Data fauna and flora species), of the proposed affected study site;
- To conduct a fauna habitat assessment (including habitat potentially suitable for threatened species);
- To provide an indication of the relative conservation importance and ecological function of the study site.
- To assess the condition of the plant communities on the study site; and

To assess the impacts of the proposed activity on the species and ecological integrity and processes of the study site.

4.0 AIMS AND OBJECTIVES

The aims and objectives of the assessment of the impact on flora and fauna are:

- To present the client with broad descriptions of floristic and fauna elements occurring within the study area and to highlight sensitive biological and environmental attributes that may be adversely affected by the proposed development;
- To provide a broad description of the ecology of the site and surrounding areas;
- To identify and describe the biodiversity patterns at community and ecosystem level (plant and animal communities in the vicinity and threatened/vulnerable species and ecosystems), species level (Red Data Book species, presence of alien species) and significant landscape features;
- To make general comment on how biodiversity processes would be affected; and
- To identify potential impacts and make recommendations to prevent or mitigate these impacts.

5.0 SCOPE OF WORK

5.1 Flora Component

The scope of work compromises the following tasks:

- Conduct an initial desktop review of vegetation likely to occur on-site;
- Develop a species list of Red Data and protected plants according to the relevant literature for the IUCN and southern Africa;
- Conduct a detailed wet season survey (using standard scientific methodology), in order to:
 - Identify general vegetation types and communities on-site;
 - Identify dominant plant species;
 - Record Red Data and protected species;
 - Identify invader or exotic species;
 - Identify flora species with potential medicinal, cultural or commercial importance;
 - Identify sensitive landscapes and habitats including wetland and riparian habitats as these are often intricately linked to the surrounding terrestrial habitats;
 - Identify possible impacts of the proposed development during the operation of the mine.

5.2 Fauna Component

The tasks for the fauna component comprise the following:

- Conduct initial desktop review of fauna species likely to occur on-site
- Develop a species list of Red Data and protected animals according to the Southern African and IUCN protected and Red Data species lists

- Conduct a detailed wet season survey (using standard scientific methodology), in order to:
 - Identify terrestrial fauna linked to veld types and vegetation communities on-site, including:
 - Identify the dominant fauna species on-site, as well as invertebrates;
 - Record Red Data and protected fauna species;
 - Identify any exotic species; and
 - Identify possible impacts of the proposed development.

5.3 Limitations to the study

In order to obtain a comprehensive understanding of the dynamics of communities and the status of endemic, rare or threatened species in any area, vegetation and faunal assessments should always consider investigations at different time scales (across seasons/years) and through replication. However, due to time and budget constraints, such long-term studies are not feasible and conclusions will be based on a single seasonal sampling bout undertaken in January 2010. Problems with this method include the following:

- Longer term temporal changes in biodiversity are not taken into account during annual sampling bouts;
 and
- Variations in biodiversity due to longer term temporal animal movements, such as migrations, are not taken into account.

The report is based on the following assumptions:

- The accuracy of GPS points taken in the field is within 15m.
- The accuracy of delineations carried out on satellite imagery/digital orthophotos, is limited by the level of accuracy at which the client supplies them. GAA was not responsible for geo-rectifying imagery.
- Delineations and related spatial data generated by GAA can be supplied in GIS (shapefile) format only and will be for use in conceptual planning purposes only and not detailed design.
- The assessment of the impact of past activities on the ecosystems will be based on professional judgement.
- Historical data relating to terrestrial ecosystems provided to GAA by the client is assumed to be correct.
- Data and information obtained through official documents or websites, peer reviewed scientific articles and previous ecological studies are assumed to be correct.
- No review or correction of any data obtained by any means, other than the study itself, will be undertaken by GAA.
- It is noted that unusual environmental conditions (such as unusual high or low rainfall) may cause unusual states of biodiversity during the period of study, which may not normally exist.

6.0 METHODOLOGY

In order to enable characterisation of the environment, as well as of floral and faunal species that may be impacted on by the proposed mining activities, faunal and floral groups were investigated. These species were then later used to determine the possible magnitude of the impact of the proposed activities. The groups of species investigated included:

- Vegetation
- Arthropoda
- Avifauna
- Mammals
- Herpetofauna (Reptiles)
- Amphibia

All methods used were based on standard scientific investigative techniques. The "Precautionary Principle" was applied in this assessment (COMEST, 2005). According to Raffensperger & Tickner (1999), the precautionary principle is a moral and political principle which states that if an action or policy might cause severe or irreversible harm to the public or to the environment, in the absence of a scientific consensus that harm would not ensue, the burden of proof falls on those who would advocate taking the action. The principle implies that there is a responsibility to intervene and protect the public from exposure to harm where scientific investigation discovers a plausible risk in the course of having screened for other suspected causes. The protections that mitigate suspected risks can be relaxed only if further scientific findings emerge that more robustly support an alternative explanation. In some legal systems, as in the law of the European Union, the precautionary principle is also a general and compulsory principle of law.

6.1 General floristic attributes

The vegetation assessment was based on a variation of the Braun-Blanquet method whereby vegetation is stratified by means of aerial/satellite imagery with physiognomic characteristics as a first approximation. Based on a RGB colour composite a supervised classification was done using 14 colour classes, these classes were run through a Spectral Angle Mapper (SAM) algorithm to produce the classified image. The image was subsequently analysed and compared with "ground-truthing" sample areas in the study area to test the validity of the image analysis. These representative areas were then surveyed by means of line-point transects for grasses, sedges and forbs, as well as belt transects for shrubs and trees. Data obtained from these surveys, were then subject to analysis in order to establish differences or similarities between observed units. Flora and fauna surveys were conducted in January 2010 and cognisance was taken of the following environmental attributes and general information:

- Biophysical environment (geology, topography, aspect, slope etc.);
- Regional vegetation;
- Current status of habitats;
- Red Data habitat suitability;
- Digital photographs;
- GPS reference points;
- Phytoscociological data accumulated include the following:
- Plant species and growth forms;

- Dominant plant species;
- Cover abundance values; and
- Samples or digital images of unidentified plant species.

Three survey plots were identified within each of the vegetation types identified within the study area, giving a total of 9 sites in which vegetation surveys were conducted. Originally 20 random plots per community were selected using the aerial photography. These sites were then reduced in order to select three sufficiently spaced random plots within each community. In these plots 3x50 m belt transects were conducted in order to determine the diversity and abundance of tree and shrub species. Three 50 m point transects were conducted in order to determine the herbaceous species (graminoids, cyperoids and herbs) diversity and abundance. The desktop analysis of data was used to establish differences or similarities between vegetation communities, which were then described in terms of floristic species composition as well as driving environmental parameters. Results and species lists provided should be interpreted with the above mentioned survey limitations in mind.

6.2 Red Data floral assessment

Baseline PRECIS data for the 2629CC quarter degree grid square, was compared to the Mpumalanga Province Protected and Red Data plant species list to compile a list of Red Data plant species that may potentially occur within the study area.

A survey of this kind (instantaneous sampling bout or "snapshot" investigation) poses severe limitations to the identification of Red Data plant species. Therefore, emphasis was placed on the identification of habitat that would be suitable for sustaining Red Data plant species, by associating available habitat to known habitat requirements of Red Data plant species.

6.3 Floristic sensitivity analysis

Floristic sensitivity analysis was determined by subjectively assessing the ecological function and conservation importance of the vegetation, as defined in Table 1.

Table 1: Rating of ecological function and conservation importance.

	Ecological function	Conservation importance
High	Sensitive ecosystems with either low inherent resistance or resilience towards disturbance factors or highly dynamic systems considered to be stable and important for the maintenance of ecosystems integrity (e.g. pristine grasslands, pristine wetlands and pristine ridges).	Ecosystems with high species richness and usually provide suitable habitat for a number of threatened species. Usually termed 'no-go' areas and unsuitable for development, and should be protected.
Medium	Relatively important ecosystems at gradients of intermediate disturbances. An area may be considered of medium ecological function if it is directly adjacent to sensitive/pristine ecosystem.	Ecosystems with intermediate levels of species diversity without any threatened species. Low-density development may be allowed, provided the current species diversity is conserved.
Low	Degraded and highly disturbed systems with little or no ecological function.	Areas with little or no conservation potential and usually species poor (most species are usually exotic).

6.4 General faunal attributes

6.4.1 Arthropoda

Arthropods were surveyed by means of setting out pitfall traps, in selected areas within the various vegetation communities, and intensive transects making use of visual identification. Capture of species on the wing was also undertaken in order to aid identification, and this was done by means of sweep-netting. Identification of species was done to the lowest possible taxonomic level using Picker, *et al* (2002).

Suitable habitat was identified for scorpions, spiders and butterflies in order to select areas in which to sample by means of pitfall traps and visual identification, as well as to determine the possibility of the occurrences of Red Data or protected species of these taxa.

6.4.2 Reptilia

Suitable areas were identified and sampled using active search and capture methods. Searches were concentrated in rocky areas and disused ant hills were investigated for the presence of snakes. Snakes and other reptiles were identified visually and only captured if visual identification was hampered by swift-moving snakes or if the snake was obscured from view. Branch (1996) was used as an identification guide, where necessary.

6.4.3 Amphibia

Suitable areas for frogs were sampled by means of active search and capture and acoustic identification methods, especially at night when highest amphibian activity was expected. Areas were also netted for tadpoles and amphibian species identified by means of tadpoles. Carruthers (2001) was used to confirm identification where necessary.

6.4.4 Avifauna (birds)

Avifauna were surveyed by means of transects, point counts and visual identification and the calls of bird species were used to identify species. Where possible, visual identification was used to confirm call identification. Bird ranges were confirmed using Harrison, *et al* (1997a and b).

6.4.5 Mammalia

Visual sightings and ecological indications were used to identify the small mammal inhabitants of the study area. Scats were collected and used for identification of small nocturnal mammals. Stuart and Stuart (1993) and Smithers (1992) were used for identification purposes.

6.5 Red Data faunal assessment

The following parameters were used to assess the probability of occurrence of each Red Data species:

Habitat requirements (HR): Most Red Data animals have very specific habitat requirements and the presence of these habitat characteristics in the study area was evaluated.

Habitat status (HS): The status or ecologigal condition of available habitat in the area was assessed. Often a high level of habitat degradation prevalent in a specific habitat will negate the potential presence of Red Data species (this is especially evident in wetland habitats).

Habitat linkage (HL): Movement between areas for breeding and feeding forms an essential part of the existence of many species. Connectivity of the study area to surrounding habitat and the adequacy of these linkages are evaluated for the ecological functioning of Red Data species within the study area.

Probability of occurrence is presented in four categories, namely:

- Low;
- Medium;

- High; and
- Recorded.

In order to assess the status of Red Data fauna species in the study area, the following sources were used:

- South African Red Data Book Reptiles and Amphibians (Branch, 1998).
- Red Data Book of the Mammals of South Africa (EWT, 2004).
- South African Red Data Book Butterflies (Henning, S.F. and Henning, G.A, 1989).
- IUCN Red List Categories and Criteria (IUCN, 2008).
- IUCN Red List of Threatened Species (IUCN, 2008).
- Atlas and Red Data Book of the Frogs of South Africa (Minter, Burger, Harrison, Braack, Bishop and Kloepfer, 2004).
- South African Red Data Book Terrestrial Mammals (Smithers, 1986).

6.6 Biodiversity impact evaluations

Any development in a natural or semi-natural system will impact on the environment, usually with adverse effects. This phase of the study assessed the significance of potential impacts of current and proposed future activities at the study site on the receiving wetland environment of the study area, and was intended to achieve the following:

- Describe and assess future impacts arising from activities on the fauna and flora of the wetlands of the study area.
- Recommend mitigation measures to address significant impact.
- Identify aspects which may require further study.

6.6.1 Assessment of significance

From a technical, conceptual or philosophical perspective the focus of impact assessment ultimately narrows down to a judgment on whether the predicted impacts are significant or not (DEAT, 2002). The concept of significance is at the core of impact identification, prediction, evaluation and decision-making (DEAT, 2002). The determination of significant impacts relates to the degree of change in the environmental resource measured against some standard or threshold (DEAT, 2002). This requires a definition of the magnitude, prevalence, duration, frequency and likelihood of potential change (DEAT, 2002). The following criteria have been proposed by the Department of Environmental Affairs and Tourism (DEAT, 2002) for the description of the magnitude and significance of impacts (DEAT, 2002).

The *consequence* of impacts can be derived by considering the following criteria:

- Extent or spatial scale of the impact.
- Intensity or severity of the impact.
- Duration of the impact.
- Potential for mitigation.
- Acceptability.
- Degree of certainty/probability.

- Status of the impact.
- Legal Requirements.

Describing the potential impact in terms of the above criteria provides a consistent and systematic basis for the comparison and application of judgments (DEAT, 2002). Calculation of the severity of the impact is based on the Department of Environmental Affairs' guideline document on EIA Regulations, April 1998.

Significance of Impact = Consequence (magnitude + duration + spatial scale) x Probability

Magnitude relates to how severe the impact is. Duration relates to how long the impact may be prevalent for and the spatial scale relates to the physical area that would be affected by the impact. Having ranked the severity, duration and spatial scale using the criteria outlined in Table 2 the overall consequence of impact can be determined by adding the individual scores assigned in the severity, duration and spatial scale. Overall probability of the impacts must then be determined. Probability refers to how likely it is that the impact may occur.

Table 2: Consequence and probability ranking.

Magnitude/Severity	Duration	Spatial Scale	Probability
10 - Very high/don't know	5 - Permanent	5 - International	5 - Definite/don't know
8 - High	4 - Long-term (impact ceases after operational life)	4 - National	4 - Highly probable
6 - Moderate	3 - Medium-term (5-15 years)	3 - Regional	3 - Medium probability
4 - Low	2 - Short-term (0-5 years)	2 - Local	2 - Low probability
2 - Minor	1 - Immediate	1- Site only	1 - Improbable
0 - None			0 - None

The maximum value, which can be obtained, is 100 significance points (SP). Environmental effects are rated as either of **High, Moderate, Low** or **No Impact** significance on the following basis:

SP>60 Indicates high environmental significant	ınce
--	------

SP 30 to 60
 Indicates moderate environmental significance

SP<30 Indicates low environmental significance</p>

SP = 0 Indicated no environmental impact

The descriptors for the ratings (DEAT, 2002) are as follows:

High Of the highest order possible within the bounds of impacts that could occur, There is

no possible mitigation that could offset the impact, or mitigation is difficult.

Moderate Impact is real, but not substantial in relation to other impacts that might take effect

within the bounds of those that could occur. Mitigation is both feasible and fairly

easily possible

Low Impact is of a low order and therefore likely to have little real effect. Mitigation is

either easily achieved or little mitigation is required, or both.

No impact Zero Impact

6.6.2 Development of mitigation measures

The quantitative accuracy and precision of impact predictions is particularly important for prescribing mitigation measures (DEAT, 2002). This is especially important for those impacts, pollutants or resources that require the setting of a site-specific discharge limit or need to be within legislated standards (DEAT, 2002). A common approach to describing mitigation measures for critical impacts is to specify a range of targets with predetermined acceptable range and an associated monitoring and evaluation plan (DEAT, 2002).

To ensure successful implementation, mitigation measures should be unambiguous statements of actions and requirements that are practical to execute (DEAT, 2002). A summary of the different approaches used to prescribe and design mitigation measures follows:

Avoidance Mitigation by not carrying out the proposed action.

Minimisation Mitigation by scaling down the magnitude of a development, re-orienting the layout

of the project or employing technology to limit the undesirable environmental impact.

Rectification Mitigation through the restoration of environments affected by the action.

Reduction Mitigation by taking maintenance steps during the course of the action.

7.0 THE BIOPHYSICAL ENVIRONMENT

7.1 Location

The proposed development is located approximately 20 km north-east of Standerton in the Mpumalanga Province, South Africa (Figure 2). The operations are situated on the property of the Eskom Tutuka power station. The regional location of the study area is shown in Figure 2. This area falls within the Soweto Highveld Grassland vegetation type which, in turn, falls within the Grassland Biome (Figure 3).

The Grassland Biome is found chiefly on the high central plateau of South Africa, and the inland areas of KwaZuluNatal and the Eastern Cape. The topography is mainly flat and rolling, but includes the escarpment itself. Altitude varies from near sea level to 2 850 m above sea level.

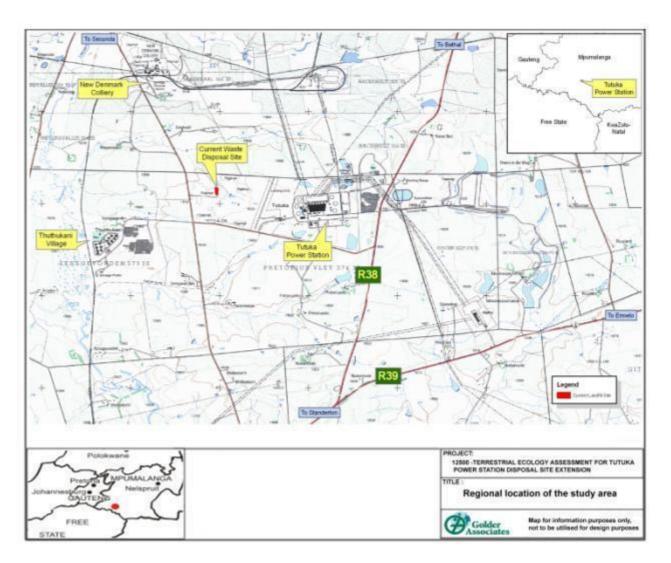


Figure 2: Regional location of the study area.

Grasslands (also known locally as Grassveld) are dominated by a single layer of grasses. The amount of cover depends on rainfall and the degree of grazing. Trees are absent, except in a few localized habitats. Geophytes (bulbs) are often abundant. Frosts, fire and grazing maintain the grass dominance and prevent the establishment of trees.

There are two categories of grass plants: sweet grasses have a lower fibre content, maintain their nutrients in the leaves in winter and are therefore palatable to stock. Sour grasses have a higher fibre content and tend to withdraw their nutrients from the leaves during winter so that they are unpalatable to stock. At higher rainfall and on more acidic soils, sour grasses prevail, with 625 mm per year taken as the level at which unpalatable grasses predominate. C4 ("warm season") grasses dominate throughout the biome, except at the highest altitudes where C3 ("cold season") grasses become prominent.

Grass plants tolerate grazing, fire, and even mowing, well: most produce new stems readily, using a wide variety of strategies. Overgrazing tends to increase the proportion of pioneer, creeping and annual grasses, and it is in the transition zones between sweet and sour grass dominance that careful management is required to maintain the abundance of sweet grasses. The Grassland Biome is the mainstay of dairy, beef and wool production in South Africa. Pastures may be augmented in wetter areas by the addition of legumes and sweet grasses.

The Grassland Biome is the cornerstone of the maize crop, and many grassland types have been converted to this crop. Sorghum, wheat and sunflowers are also farmed on a smaller scale.

Urbanization is a major additional influence on the loss of natural areas - the Witwatersrand is centred in this biome. The Grassland Biome is considered to have an extremely high biodiversity, second only to the Fynbos Biome. Rare plants are often found in the grasslands, especially in the escarpment area. These rare species are often endangered, comprising mainly endemic geophytes or dicotyledonous herbaceous plants. Very few grasses are rare or endangered. The scenic splendour of the escarpment region attracts many tourists.

7.2 Overview of the Highveld Grassland Ecoregion

The ecoregion draws its name from the high interior plateau known as the Highveld, and the expansive cover of species-rich communities of grasses. The ecoregion is bordered by the Drakensberg in the east, the arid Karoo and Kalahari in the west, and the low-lying bushveld to the north. The Highveld Plateau is fairly flat with elevations varying from 1,400 m to 1,800 m. The flat topography means that the landscape is traversed by many meandering rivers, with the grassland community historically playing an important role in natural water purification of the westward flowing rivers that originate on the Drakensberg escarpment (Davies and Day 1998). The functioning of this ecosystem has been disrupted in many areas by water transfer projects that have been built to supply greater Johannesburg with water (Davies and Day 1998).

The dominant vegetation comprises grasses, with geophytes and herbs also being well represented. Dominant and diagnostic grass species are *Hyparrhenia hirta* and *Sporobolus pyramidalis*. Non-grassy trees and forbs include *Acacia sieberiana*, *Rhus rehmanniana*, *Walafrida densiflora*, *Spermacoce natalensis*, *Kohautia cynanchica*, and *Phyllanthus glaucophyllus* (Bredenkamp et al. 1989; Coetzee et al. 1993; Eckhardt et al. 1993; Fuls et al. 1993; Cowling et al. 1997).

Relatively high rainfall maintains the grasslands during the summer months, with the mean annual range between 400 to 900 mm. Mean maximum temperatures range from 21 to 24 °C, and mean minimums range from 3 to 6 °C, with temperatures sometimes reaching 38 °C in the summer and –11 °C in the winter. Summer rainfall is not evenly distributed throughout the region, resulting in several different habitat types. Differences in habitat types are further accentuated by the variable soil characteristics of the region. Over most of the area sandstones and shales of the Karoo sequence are dominant. Deep red sand-loam soils dominate towards the cooler and wetter northeast, and transition to shallower lithosols in the extreme northeast (Low and Rebelo 1998).

Some dissention surrounds the number of diagnostic habitat types that comprise Highveld Grasslands. Several authors (White 1983; Acocks 1988; Low and Rebelo 1998) prefer detailed subdivision, and others advocate the aggregation of habitat types (Rutherford and Westfall, 1986). Here, the Highveld Grassland ecoregion is divided into three habitat types: (1) Kalahari/Karoo-highveld transition zone; (2) sweet grasslands; and (3) sour grasslands (see also Harrison et al. 1997). In the western half of the ecoregion, a gradual transition occurs from the Karoo/Kalahari-highveld transition zone to the grassland habitats of the Highveld. Shrubs and trees grow in the transition zone, although grasses still dominate. This ecotone borders the sweet grasslands, which occur predominately in areas with lower rainfall (Rutherford and Westfall 1986).

7.2.1 Biodiversity Features

Although highly fragmented, the Highveld contains the greatest expanse of remaining grassland in southern Africa. Analyses of pollen spores from the Winterberg escarpment suggest that grasses have dominated the floral community since at least the early Holocene (Meadows and Meadows 1988; Meadows and Linder 1993). At times, Highveld grassland types have expanded or contracted in response to climate change. During the Quaternary, grassland expanded in response to glacial events to the north. Global climate change may again alter the ecotonal nature of the Karoo/Kalahari-highveld grassland in the extreme west of the ecoregion, with arid-adapted species of the Karoo/Kalahari ecoregions encroaching onto sweet grassland. Despite the severely degraded nature of the once pristine Highveld Grassland, this ecoregion provides the

last remaining stronghold of several grassland species that have suffered major reductions in abundance in the grassland biome e.g. the Blue crane (*Anthropoides paradisea*) (Allan 1992).

Bird species richness is relatively high within this ecoregion (Harrison et al. 1997). However, Botha's lark (*Spizocorys fringillaris*) is the only bird species strictly endemic to the ecoregion, where it inhabits heavily grazed grassland. An additional six species of birds are near-endemics including Whitewinged flufftail (*Sarothrura ayresii*), Blue korhaan (*Eupodotis caerulescens*), Southern whitebellied korhaan (*Eupodotis cafra*), Rudd's lark (*Heteromirafra ruddi*), Melodious lark (*Mirafra cheniana*), Buff-streaked chat (*Oenanthe bifasciatai*), and Yellow-breasted pipit (*Hemimacronyx chloris*) (Harrison et al. 1997).

This ecoregion contains a higher number of mammals, although only the Orange mouse (*Mus orangiae*) is restricted to the ecoregion, and the Rough-haired golden mole (*Chrysospalax villosa*) is near-endemic. The ecoregion also supports populations of several large mammal species, some of which are rare in southern Africa (Stuart and Stuart 1995). Among these are the Brown hyena (*Hyaena brunnea*), African civet (*Civettictis civetta*), Leopard (*Panthera pardus*), Sable (*Hippotragus niger*), Pangolin (*Manis temminckii*), Honey badger (*Mellivora capensis*), Striped weasel (*Poecilogale albinucha*), Aardwolf (*Proteles cristatus*), Oribi (*Ourebia ourebi*), and Mountain zebra (*Equus zebra hartmannae*). Herds of large mammals, including Black wildebeest (*Connochaetes gnou*) and White rhino (*Ceratotherium simum*), used to occur here, but were extirpated by early settlers.

Relatively few reptile species occur within the ecoregion, mainly due to its cool climate. However, the ecoregion supports some of Africa's most characteristic reptile species, including Nile crocodile (*Crocodylus niloticus*), African rock-python (*Python sebae*), Water monitor (*Varanus niloticus*) and Rock monitor (*Varanus exanthematicus albigularis*). There are also two strict endemic reptiles: Giant girdled lizard (*Cordylus giganteus*), and *Agama distanti* (Branch 1998). Several additional reptile species are near-endemics, including Drakensberg rock gecko (*Afroendura niravia*), Giant spinytail lizard (*Cordylus giganteus*), and Breyer's whiptail (*Tetrodactylus breyeri*) (Branch 1998). Twenty-nine amphibians occur within the ecoregion but none are endemic (Passmore and Carruthers 1995).

7.2.2 Current Status

The grassland habitat that has remained in a near-pristine state is found mostly in nature reserves. The main protected areas are Valei, Nooitgedacht Dam, Bronkhortspruitdam, Vaal Dam, Willem Pretorius, Rustfontein Dam and Koppies Dam Nature Reserves, and the Ermelo Game Park. Together with a number of smaller reserves, these currently conserve only 0.5 percent of the ecoregion. Even the areas of grassland habitat that have remained in a near-natural state are declining steadily in area and quality. The present state of fragmentation, together with anthropogenic changes planned for the coming years may lead to the extinction or near-extinction of some larger animal species, such as the Blue crane (*Anthropoides paradisea*) (Allan 1992).

7.2.3 Types and Severity of Threats

The Highveld Grassland has suffered extensive degradation. Because it is one of the best areas for farming in South Africa, large tracts of land have already been converted to agriculture, mainly for corn production. Urban expansion, fire, and overgrazing have led to increased fragmentation, as has coal mining and afforestation for stands of exotic trees, especially by species of *Eucalyptus* (Low and Rebelo, 1998; Cowling et al. 1997). Over several hundred years, particularly around towns, planted wattle (*Acacia mearnsii*) has become invasive, and is prone to rapid expansion up river watersheds. In the future, expanded surface activity associated with mining below the grassland may become a greater concern as companies develop new technology to make deep mining of coal more profitable (Mallett 1999).

The Highveld plays an important role in natural water purification, as the peat formed here has been shown to filter out 90 percent of the harmful chemicals in herbicides. Peat is also useful in absorbing various other pollutants, as a source of fuel, in horticulture, and for medicinal purposes. In South Africa, where clean water resources are already particularly valuable, this natural filter is being extracted from the Highveld at an unprecedented rate. Approximately 60 percent of locally extracted peat is used to grow mushrooms, while the remaining 40 percent comprises "environmentally friendly" potting soil and compost. Peat has an

extremely slow regeneration rate, increasing between 0.7 mm to 1.2 mm per year depending on environmental conditions (Dada 1999). Given its slow formation process, it is unlikely this resource will recover from the damage caused by its rapid removal. Hence, the Highveld's role as a natural filtration element for scarce water resources could be threatened. The preservation of this resource is imperative, and could be fulfilled by moderating or halting the harvesting of peat.

7.3 Vegetation and Associated Factors

7.3.1 Vegetation Type

According to Mucina and Rutherford (2006), the study area falls, entirely, within the Soweto Highveld Grassland vegetation type.

Soweto Highveld Grassland

VT52 *Themeda* veld (Turf Highveld) 56% (Ackocks 1953).LR 35 Moist Clay Highveld Grassland (51%) (Low & Rebelo 1996)

Distribution

Mpumalanga, Gauteng (and to a very small extent also in neighbouring Free State and North-West) Province: in a broad band roughly delimited by the N1 road between Ermelo and Johannesburg in the north, Perdekop in the southeast and the Vaal River (border with the Free State) in the south. It extends further westwards along the southern edge of the Johannesburg Dome (including part of Soweto) as far as the vicinity of Randfontein. In southern Gauteng it includes the surrounds of Vanderbijlpark and Vereeniging as well as Sasolburg in the northern Free State. Altitude 1420 – 1760m (Mucina and Rutherford, 2006).

Vegetation and Landscape Features

Gently to moderately undulating landscape on the Highveld plateau supporting short to medium-high, dense, tufted grassland dominated almost entirely by *Themeda triandra* and accompanied by a variety of other grasses such as *Elionurus muticus*, *Eragrostis racemosa*, *Heteropogon contortus* and *Tristachya leucothrix*. In places not disturbed, only scattered small wetlands, narrow stream alluvia, pans and occasional ridges or rocky outcrops interrupt the continuous grassland cover (Mucina and Rutherford, 2006).

Geology and Soils

Shale, sandstone or mudstone of the Madzaringwe Formation (Karoo Supergroup) or the intrusive Karoo Suite dolerites which feature prominently in the area. In the south, the Volksrust Formation (Karoo Supergroup) is found and in the west, the rocks of the older Transvaal, Ventersdorp and Witwatersrand Supergroups are most significant. Soils are deep, reddish on flat plains and are typically Ea, Ba and BB land types (Mucina and Rutherford, 2006).

Climate

Summer-rainfall region (Mean Annual Precipitation 662 mm). Cool-temperature climate with thermic continentality (high extremes between maximum summer and minimum winter temperatures, frequent occurrence of frost, large thermic diurnal differences, especially in autumn and spring (Mucina and Rutherford, 2006).

Important Taxa

Graminoids: Andropogon appendiculatus (d), Brachiaria serrata (d), Cymbopogon pospischilii (d), Cynodon dactylon (d), Elionurus muticus (d), Eragrostis capensis (d), E. chloromelas (d), E. curvula (d), E. plana (d), E. planiculmis (d), E. racemosa (d), Heteropogon contortus (d), Hyparrhenia hirta (d), Setaria nigrirostris (d), S. sphacelata (d), Themeda triandra (d), Tristachya leucothrix (d), Andropogon schirensis, Aristida adscensionis, A. biartita, A. congesta, A. junciformis subsp. galpinii, Cymbopogon caesius, Digitaria diagonalis, Diheteropogon amplectens, Eragrostis micrantha, E. superba, Harpochloa falx, Microchloa caffra, Paspalum dilatatum, Herbs: Hermannia depressa (d), Acalypha angustata, Berkheya setifera, Dicoma anomala, Euryops gilfillanii, Geigeria aspera var. aspera, Graderia subintegra, Haplocarpha scaposa, Helichrysum miconiifolium, H. nudifolium var. nudifolium, H. rugulosum, Hibiscus pusillus, Justicia

anagalloides, Lippia scaberrima, Rynchosia effusa, Schistostephium crataegifolium, Selago densiflora, Senecio coronatus, Vemonia oligocephala, Wahlenbergia undulata. Geophytic Herbs: Haemanthus humilis subsp. hirsutus, H. montanus. Herbaceous Climber: Rynchosia totta. Low Shrubs: Anthospermum hispidulum, A. rigidum subsp. pumilum, Berkheya annectens, Felicia muricata, Ziziphus zeyheriana (Mucina and Rutherford, 2006).

Conservation

This vegetation type is considered endangered with a target 24%. Only a handful of patches statutorily conserved (Waldrift, Krugersdorp, Leeuwkuil, Suikerbosrand, Rolfe's Pan Nature Reserves) or privately conserved (Johanna Jacobs, Tweefontein, Gert Jacobs, Nikolaas and Avalon Nature Reserves, Heidelberg Natural Heritage Site). Almost half of the area already transformed by cultivation, urban sprawl, mining and building of road infrastructure. Some areas have been flooded by dams, (Grootdraai, Leeukuil, Trichardtsfontein, Vaal, Willem Brummer) Erosion is generally very low (93%) (Mucina and Rutherford, 2006).

8.0 FLORAL ASSESSMENT

8.1 Floral Species Composition

PRECIS information presented by SANBI indicates the presence of 70 species for the quarter degree grid square 2629CC in which the study area is situated (Appendix B). The floristic species diversity of the study area can be considered moderate for the region. A total of 58 species were identified during the site investigation (Appendix B). This relatively low diversity alludes to the general absence of topographical and environmental diversity that result in the development of various communities and hence diverse species composition. The moderate diversity also alludes to previous disturbance in the area by farming activities as well as the use of soil material from the borrow pits within the study area.

A plant species list is provided in Appendix B, this list includes all species known to occur in the relevant grid square (2629CC) based on the Precis Data, but also includes species recorded that were not present in the Precis database. Appendix B also indicates which species were recorded during the surveys. Although the plant species diversity may appear moderate, it is relatively low when compared to the total number of species known to occur in the area. It must be noted, however, that the species recorded in the grid square range over a number of different vegetation communities, of which only five were recorded within the study

Grass species within the study area show moderate to high diversity, indicating some historical grazing pressure. The river and temporal wetland to the north-east as well as the borrow pits in the north-west show a significant increase in hydrophilic species, although the borrow pit area shows severe colonisation by invasive species, mainly *Datura ferox*.

Although a large proportion of the species recorded are indigenous there were a large number of exotic species occurring in the area. In areas of higher anthropogenic disturbances, exotic species become more prevalent.

8.2 Vegetation Communities

The study area is characterised by very clayey, black vertic or near vertic, mostly of montmorillonitic clays. A river and associated temporal wetland runs across the north-eastern corner of the study area. Rocky outcrops appear absent from the area and a large portion of the study area is characterised by borrow pits which have been colonised by some wetland vegetation, due to the fact that they are inundated during the wet season. Natural topography of the area is relatively flat, sloping slightly downhill towards the river and associated wetland to the north-east of the study area. Anthropogenic disturbance has altered the natural topography in the north-western quarter of the study area where, what appears to be borrow pits, cause large depressions. Grass species within the study area show moderate to high diversity, indicating some historical grazing pressure. The river and temporal wetland to the north-east as well as the borrow pits in the

north-west show a significant increase in hydrophilic species, although the borrow pit area shows severe colonisation by invasive species, mainly *Datura ferox*.

Based on physiognomy, moisture regime, rockiness, slope and soil properties, four vegetation communities were recognised (Figure 3). Although these communities were recorded as such, there is some variation within these communities, due to influences such as historical overgrazing and other anthropogenic impacts.

The vegetation is representative of the regional vegetation with some variation due to slope, moisture, soil type and anthropogenic disturbance. Management (mainly in the sense of causing disturbance) in the area has a significant effect on determining the status of the grassland.

The physiognomy of the area is characterized by the dominance of the herbaceous component (>80%) consisting predominantly of grass species, while the woody stratum is very poorly represented (<10%). This is very much what would be expected in this area due to the area falling withing the Grassland Biome and Soweto Highveld Grassland vegetation type. A pristine species composition would dictate a slightly more diverse herbaceous stratum, but the occurrent species rather than the species diversity in this area are a more obvious indicator of the historical impacts of the area.

Forbs and other herbs are moderately represented (38%), but the dominance of many of these species also indicates the degraded status of the vegetation. This is especially visible in the north-western quarter of the study area. A total of 58 plant families were identified during the site investigation. Herbs (53%) and Graminoids (43%) (grasses) dominate the composition.

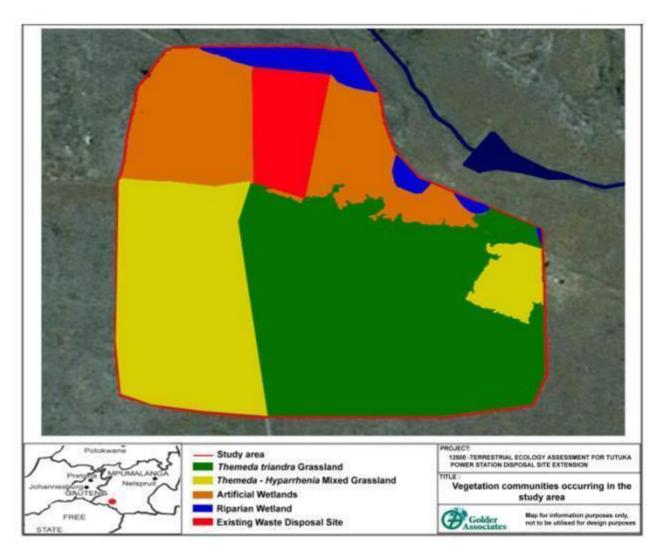


Figure 3: Map indicating the study area and associated vegetation communities.

The following vegetation communities (Figure 3) were identified during the study, and are named according to the area in which they occur, physiognomy and/or dominant floral species occurring within the vegetation communities:

- Themeda triandra grassland;
- Themeda Hyparrhenia mixed grassland;
- Natural Riparian Wetland;
- Artificial wetland associated with diggings;
- Existing waste disposal site.

8.2.1 Themeda triandra grassland

This vegetation community covers the majority of the study area and occurs mostly in the south-eastern quarter of the study area. The substrate of this vegetation community, although no geological studies were done as part of the ecological study, can be characterised as dark clay by visual observation for the purpose of this study.

The most common grasses on the plains belong to the genera *Themeda, Eragrostis, Heteropogon, Aristida, Digitaria, Tristachya and Elionurus*. A number of herbs, especially *Asteraceae* are also found. Invasive species occurring in this area are, *inter alia, Cirsium vulgare* and *Datura ferox*.

Woody species are absent throughout the entire study area, but woody species are expected in this vegetation type although these are often dominated by exotics such as Eucalyptus spp and *Acacia mearnsii*.

A total of 30 plant species were found to occur in this vegetation community (Table 3). Of these species 13 were classified as graminoids and 16 as herbs. Furthermore, one climber was also identified. The *Themeda triandra grassland* vegetation community is dominated by grass species and woody layers are greatly reduced when compared with other vegetation types, this is however characteristic of communities in the grassland biome.

Table 3: List of floral species occurring in the Themeda triandra grassland vegetation community.

Family	Naturalised	Species	Lifecycle	Growth forms
ACANTHACEAE		Chaetacanthus costatus	Annual	Herb
ACANTHACEAE		Crabbea acaulis	Annual	Herb
ANTHERICACEAE		Chlorophytum fasciculatum	Perennial	Herb
ASTERACEAE		Berkheya onopordifolia	Perennial	Herb
ASTERACEAE		Berkheya pinnatifida	Perennial	Herb
ASTERACEAE		Pseudognaphalium luteo-album	Annual	Herb
ASTERACEAE		Schistostephium crataegifolium	Perennial	Herb
CONVOLVULACEAE		Evolvulus alsinoides.	Annual	Herb
EUPHORBIACEAE		Chamaesyce inaequilatera	Perennial	Herb
LAMIACEAE		Salvia repens	Perennial	Herb
MALVACEAE		Hermannia depressa	Perennial	Herb
MALVACEAE	*	Hibiscus trionum	Annual	Herb
POACEAE		Aristida bipartita	Annual	Graminoid
POACEAE		Aristida congesta	Annual	Graminoid
POACEAE		Cynodon dactylon	Perennial	Graminoid
POACEAE		Digitaria eriantha	Perennial	Graminoid
POACEAE		Elionurus muticus	Perennial	Graminoid
POACEAE		Eragrostis curvula	Perennial	Graminoid
POACEAE		Eragrostis racemosa	Perennial	Graminoid
POACEAE		Heteropogon contortus	Perennial	Graminoid
POACEAE		Leersia hexandra	Perennial	Graminoid
POACEAE		Panicum coloratum	Annual	Graminoid
POACEAE		Setaria sphacelata	Annual	Graminoid
POACEAE		Themeda triandra	Annual	Graminoid
POACEAE		Hyparrhenia hirta	Perennial	Graminoid
SCROPHULARIACEAE		Jamesbrittenia aurantiaca	Perennial	Herb
ASTERACEAE	*	Cirsium vulgare	Annual	Herb

Family	Naturalised	Species	Lifecycle	Growth forms
SOLANACEAE	*	Solanum sisymbriifolium	Perennial	Herb
VERBENACEAE	*	Verbena bonariensis	Annual	Herb
CONVOLVULACEAE	*	Ipomoea purpurea	Annual	Climber

The area is currently grazed by cattle. No utilisation of tree and plant species for fuel, crafts or medicinal/traditional purposes was evident during the survey, However this does probably occur due to the close proximity of the township to the west of the study area. Grazing pressure in this vegetation community can be considered as low to moderate.

No Red Data species were recorded during the study although the habitat is considered moderately suitable for the presence of Red Data species. This vegetation type is well represented in the region.

Table 4: Growth forms of species occurring in the *Themeda triandra* grassland vegetation community.

Growth form	Number	Percentage
Herb	16	53.3
Geophyte	0	0.0
Succulent	0	0.0
Hydrophyte	0	0.0
Parasite	0	0.0
Cyperoid	0	0.0
Helophyte	0	0.0
Shrub	0	0.0
Graminoid	13	43.3
Climber	1	3.3
Total	30	100.0

Sensitivity aspects

- This variation is situated within a very large habitat type making it a less important area for conservation of biodiversity;
- The vegetation of the area is moderately disturbed;
- Species diversity is moderate;
- Floristic status of this variation is moderate;
- Suitability of Red Data flora and faunal species is moderate;
- No floral Red Data species were recorded during the survey, but the possibility of Red Data species occurring in this vegetation type cannot be ruled out;
- Likely impacts on the vegetation will be insignificant to moderately significant on a local scale;
- Ecological function of this community is high; and
- The Conservation importance of this community is moderate to high due possibility of occurrence of Red Data species or protected species.

8.2.2 Themeda – Hyparrhenia mixed grassland

The disturbed grassland or other disturbed areas such as road reserves or fallow fields, not cultivated for some years, are usually *Hyparrhenia* dominated. However, while *Hyparrhenia* – is present in this vegetation unit, it is not dominant. This grassland is a result of historical disturbance as a result of over-grazing, sand mining and crop cultivation. This grassland mostly has low species richness, with only a few other species able to establish or survive in the shade of the dense sward of taller grass. Most of these species are relict pioneers or early seral species. The most prominent species include the grasses *Cynodon dactylon*, *Eragrostis plana*, *E. racemosa*, *E. curvula and E. capensis*. Herbaceous species such as *Anthospermum rigidum*, *Conyza podocephala*, *Crabbea angustifolia and Helichrysum rugulosum* are present. Alien species such as *Verbena bonariensis* have also invaded this vegetation unit.

The area delineated as *Themeda – Hyparrhenia* mixed grassland occurs to the far eastern and western parts of the study area. The substrate of this area does not differ from the surrounding areas and, although no geological studies were done as part of this specific study, is characterised by dark clay. The area is currently grazed by cattle, although the most perturbation of the area is due to the area being used for the purposes of crop cultivation, grazing or sand mining at some stage in the past. A number of exotic species occur in this area, but for the most part do not dominate the vegetation communities. Many of the species occurring in this vegetation type are similar to that of the surrounding grassland, but the occurrence of these species is greatly reduced due to historic perturbation.

A total of 25 plant species were recorded in this vegetation community. Of these 13 species were classified as grasses, 11 as herbs, 7 and one as a climber. This site was also the site at which the highest number of annual species was recorded due to the fact that competition in the previously cleared areas is lower than that in the other vegetation types.

The area has been considerably impacted upon by previous management practises, and although the invasion of exotic species is limited, a considerable amount of species diversity change is evident.

Diveristy is poor in this vegetation type, indicating that the area has been extensively disturbed in recent times. The species composition of this vegetation community is presented in Table 5. This community can be described as secondary vegetation.

Invasive species occurring in this area are, inter alia, Verbena bonariensis, Bidens pilosa and Tagetes minuta

Table 5: List of floral species occurring in the *Themeda – Hyparrhenia* mixed grassland vegetation community.

Family	Naturalised	Species	Lifecycle	Growth forms
ASTERACEAE		Berkheya pinnatifida	Perennial	Herb
FABACEAE		Trifolium africanum var. africanum	Perennial	Herb
MALVACEAE		Hermannia depressa	Perennial	Herb
MALVACEAE	*	Hibiscus trionum	Annual	Herb
POACEAE		Aristida bipartita	Annual	Graminoid
POACEAE		Aristida congesta	Annual	Graminoid
POACEAE		Brachiaria serrata	Perennial	Graminoid
POACEAE		Cynodon dactylon	Perennial	Graminoid
POACEAE		Elionurus muticus	Perennial	Graminoid
POACEAE		Eragrostis chloromelas	Perennial	Graminoid
POACEAE		Eragrostis curvula	Perennial	Graminoid

Family	Naturalised	Species	Lifecycle	Growth forms
POACEAE		Heteropogon contortus	Perennial	Graminoid
POACEAE		Panicum coloratum	Annual	Graminoid
POACEAE		Setaria nigrirostris	Annual	Graminoid
POACEAE		Setaria sphacelata	Annual	Graminoid
POACEAE		Themeda triandra	Annual	Graminoid
POACEAE		Hyparrhenia hirta	Perennial	Graminoid
SOLANACEAE	*	Datura stramonium	Annual	Herb
ASTERACEAE	*	Cirsium vulgare	Annual	Herb
SOLANACEAE	*	Solanum sisymbriifolium	Perennial	Herb
VERBENACEAE	*	Verbena bonariensis	Annual	Herb
VERBENACEAE	*	Verbena brasiliensis	Annual	Herb
CONVOLVULACEAE	*	Ipomoea purpurea	Annual	Climber
ASTERACEAE	*	Bidens pilosa	Annual	Herb
ASTERACEAE	*	Tagetes minuta	Annual	Herb

Grazing pressure in this vegetation community can be considered as moderate. No Red Data species were recorded during the study, and the habitat is considered unsuitable for the presence of Red Data species. This vegetation type is well represented in the general region.

Table 6: Growth forms of species occurring in the *Themeda – Hyparrhenia* mixed grassland vegetation community.

Growth form	Number	Percentage
Herb	11	44
Geophyte	0	0
Succulent	0	0
Hydrophyte	0	0
Parasite	0	0
Cyperoid	0	0
Helophyte	0	0
Shrub	0	0
Graminoid	13	52
Climber	1	4
Total	25	100

Sensitivity aspects

- This variation is situated within a very small area;
- The vegetation of the area is highly disturbed, and can be classified as secondary vegetation;
- Species diversity is low;

- Floristic status of this variation is low;
- Suitability for Red Data flora and faunal species is low;
- No Red Data floral species were recorded and it is unlikely that Red Data species will be present in this vegetation community;
- Likely impacts on the vegetation will be insignificant on a local scale;
- Ecological function of this community is moderate to low; and
- Conservation importance of this community is moderate to low.

8.2.3 Natural riparian wetland

Wetland and riparian communities are seasonally wet areas that occur in sandy areas where water seeps into low lying drainage lines after rains. In this study such a wetland was found to the north-east of the study area. These areas are usually covered by hygrophytes such as sedges and reeds. The dominant sedge in the study area is *Cyperus fastigiatus*. Sometimes bulrush (*Typha capensis*) and reeds (*Phragmites australis*) also occur.

Wetlands are of a more permanent nature and occur in low-lying areas such as tributaries of streams and rivers. Wetlands are typically found in flat landscapes or shallow depressions filled with (temporary) water bodies supporting zoned systems of aquatic and hydrophillous (water loving) vegetation of temporarily flooded grasslands and ephemeral herblands. Typical plants are the *Crinum bulbispermum*, *Typha capensis* and reeds *Phragmites australis*, sedges such as the *Cyperus and Bulbostylis* genera also occur. These wetlands are one of the most sensitive vegetation units found in the region and have been extensively modified by mining and industrial activities in the region.

A total of 20 plant species were recorded in this vegetation community. Of these species 7 were classified as grasses, 4 as sedges and 8 as herbs. The grass layer is species poor and contains relatively low biomass possibly due to historic overgrazing and the competition by hardier species.

The species composition of this vegetation community is presented in Table 7. Although not very high in species diversity, possibly due to overgrazing, the community is representative of this type of vegetation. This vegetation community can be considered as an example of lightly disturbed natural vegetation.

Invasive species occurring in this area make up 40% of the total number of species, but are ,however, not high in abundance and are, *inter alia*, *Cirsium vulgare*, *Datura ferox* and *Xanthium strumarium*.

Table 7: List of floral species occurring in the Natural Riparian Wetland vegetation community.

Family	Naturalised	Species	Lifecycle	Growth forms
ASTERACEAE		Berkheya pinnatifida	Perennial	Herb
CYPERACEAE		Abildgaardia ovata	Perennial	Cyperoid
CYPERACEAE		Bulbostylis contexta	Annual	Cyperoid
CYPERACEAE		Bulbostylis humilis	Annual	Cyperoid
CYPERACEAE		Cyperus fastigiatus	Perennial	Cyperoid
POACEAE		Brachiaria serrata	Perennial	Graminoid
POACEAE		Cynodon dactylon	Perennial	Graminoid
POACEAE		Microchloa caffra	Annual	Graminoid
POACEAE		Panicum coloratum	Annual	Graminoid
POACEAE		Setaria incrassata	Annual	Graminoid

Family	Naturalised	Species	Lifecycle	Growth forms
POACEAE		Setaria sphacelata	Annual	Graminoid
POACEAE		Hyparrhenia hirta	Perennial	Graminoid
POLYGONACEAE	*	Persicaria amphibia	Perennial	Hydrophyte
SOLANACEAE	*	Datura ferox	Annual	Herb
SOLANACEAE	*	Datura stramonium	Annual	Herb
ASTERACEAE	*	Cirsium vulgare	Annual	Herb
SOLANACEAE	*	Solanum sisymbriifolium	Perennial	Herb
VERBENACEAE	*	Verbena bonariensis	Annual	Herb
ASTERACEAE	*	Tagetes minuta	Annual	Herb
ASTERACEAE	*	Xanthium strumarium	Annual	Herb

Grazing pressure in this vegetation community can be considered as historically average to high, due to the accessibility of the area, as well as proximity to permanent water and the palatability of the vegetation itself. At present the area does not appear to be overgrazed.

No Red Data species were recorded during the study. This habitat is considered moderately suitable for the presence of Red Data species. This vegetation type is well represented in the general region.

Table 8: Growth forms of species occurring in the Natural Riparian Wetland vegetation community.

Growth form	Number	Percentage
Herb	8	40
Geophyte	0	0
Succulent	0	0
Hydrophyte	1	5
Parasite	0	0
Cyperoid	4	20
Helophyte	0	0
Shrub	0	0
Graminoid	7	35
Climber	0	0
Total	20	100

Sensitivity aspects

- The vegetation of the area is lightly disturbed;
- Species diversity is low;
- Floristic status of this vegetation community is moderate;
- Suitability for Red Data flora and faunal species is moderate;
- No floral Red Data species were recorded during the study;
- Likely impacts on the vegetation will be moderately significant on a local scale;

- Ecological function of this community is high although some degradation, due to overgrazing and other anthropogenic impacts, has occurred; and
- The conservation importance of this community is high as this vegetation community is characterised as a wetland community.

8.2.4 Artificial wetland associated with diggings

These isolated patches of standing water appear to be seasonal and therefore only form after good rainfall events within manmade excavations. They can currently be regarded as artificial wetlands, but interpretations from historic aerial photographs may contribute to a better understanding of their nature and origin. Artificial wetlands are any type of wetland constructed by man. The main type of wetland included in this group is dams and weirs. These wetlands are not included in the definition of a wetland as supplied by DWAF (DWAF 2003a), it is however included under the RAMSAR wetland definition. This area appears in the Mpumalanga Parks and Tourism Association Conservation Plan as an important and necessary area. This area is, however, heavily disturbed and dominated by exotic species, mainly *Datura ferox* which forms dense stands in the area. Very little natural vegetation occurs in this area and the few indigenous species are pioneer grasses and some annual species. This area may have been mistakenly identified as a wetland area from aerial or satellite photographs during the compilation of the MTPA C-plan. Species include *Bulbostylis contexta, Cyperus fastigiatus, Aristida bipartita, Panicum coloratum, Hyparrhenia hirta, Datura ferox, Datura stramonium, Cirsium vulgare, Solanum sisymbriifolium, Verbena bonariensis, Cannabis sativa and <i>Xanthium strumarium*.

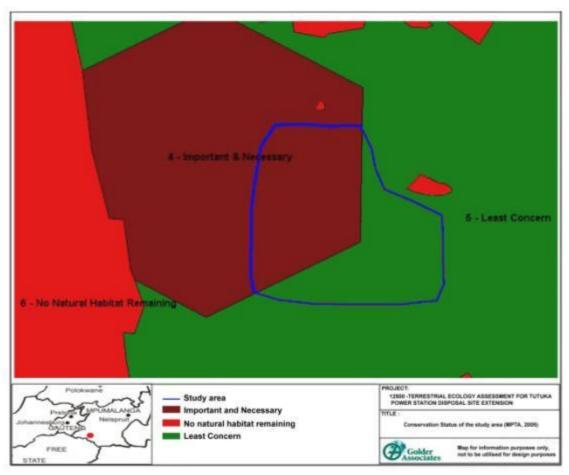


Figure 4: Conservation status of the study area according to the Mpumalanga Parks and Tourism Association (MTPA, 2005)

The area has been considerably perturbed by historical impacts, and is severely invaded by exotic species type.

A total of only 14 plant species were recorded in this vegetation community, indicating the inhibiting effect of the previous impacts and exotic species in this vegetation community. Of these species, 3 were classified as grasses, 2 as cyperoids and 9 as herbs.

The species composition of this vegetation community is presented in Table 9.

Table 9: List of floral species occurring in the artificial wetland vegetation community.

Family	Naturalised	Species	Lifecycle	Growth forms
CYPERACEAE		Bulbostylis contexta	Annual	Cyperoid
CYPERACEAE		Cyperus fastigiatus	Perennial	Cyperoid
POACEAE		Aristida bipartita	Annual	Graminoid
POACEAE		Panicum coloratum	Annual	Graminoid
POACEAE		Hyparrhenia hirta	Perennial	Graminoid
SOLANACEAE	*	Datura ferox	Annual	Herb
SOLANACEAE	*	Datura stramonium	Annual	Herb
ASTERACEAE	*	Cirsium vulgare	Annual	Herb
SOLANACEAE	*	Solanum sisymbriifolium	Perennial	Herb
VERBENACEAE	*	Verbena bonariensis	Annual	Herb
CANNABACEAE	*	Cannabis sativa	Annual	Herb
ASTERACEAE	*	Bidens pilosa	Annual	Herb
ASTERACEAE	*	Tagetes minuta	Annual	Herb
ASTERACEAE	*	Xanthium strumarium	Annual	Herb

Grazing pressure in this vegetation community was low, due to the unpalatability of the species occurring in the area, as well as the fact that pressure in the general area is greatly reduced from the historical impact, although the area may have been under very high grazing pressure in the past.

No Red Data species were recorded during the study. The habitat is considered poorly suited for the presence of Red Data species; therefore it is highly unlikely that any Red Data species occur within this vegetation community.

Table 10: Growth forms of species occurring in the artificial wetland vegetation community.

Growth form	Number	Percentage
Herb	9	64.3
Geophyte	0	0.0
Succulent	0	0.0
Hydrophyte	0	0.0
Parasite	0	0.0
Cyperoid	2	14.3
Helophyte	0	0.0
Shrub	0	0.0
Graminoid	3	21.4

March 2010 Report No. 12500-9610-1

Growth form	Number	Percentage
Climber	0	0.0
Total	14	100.0

Sensitivity aspects

- This vegetation community is situated within a severely impacted habitat type making it unimportant for conservation of biodiversity;
- Disturbance in this vegetation type is, and has historically been, severe;
- Species diversity is low;
- Floristic status of this vegetation community is very low;
- Suitability for Red Data flora and faunal species is low;
- No floral Red Data species are likely to occur in this vegetation community;
- Impacts of the development on this vegetation community will be insignificant;
- Ecological function of this community is low;
- The conservation importance of this community is low.

8.2.5 Existing waste disposal site

The existing waste disposal site was only scanned for the presence of Red Data species and protected species and a short list made of observed species. The reason for this is that this area can be considered as completely transformed and therefore not part of the natural vegetation of the area. The fact that this area is currently impacted in the same way that the future development will impact the surrounding area leads to the natural conclusion that this area cannot be further impacted by the development.

The area is considered as completely transformed by historical impacts, and is severely invaded by exotic vegetation species.

A total of only 15 plant species were found to occur in this vegetation community, indicating the inhibiting effect of the previous impacts and exotic species in this vegetation community. Of these species, 3 were classified as grasses, 3 as cyperoids and 9 as herbs.

It was difficult to identify dominant species in this vegetation community as no particular species, or group of species dominate the area. Six of the nine species recorded in this vegetation community are exotic, further alluding to the disturbed nature of this area.

Table 11: List of floral species occurring in the existing waste disposal site.

Family	Naturalised	Species	Lifecycle	Growth forms
ASTERACEAE		Berkheya pinnatifida	Perennial	Herb
ASTERACEAE		Schistostephium crataegifolium	Perennial	Herb
GISEKIACEAE		Gisekia pharnacioides var. pharnacioides	Annual	Herb
POACEAE		Aristida bipartita	Annual	Graminoid
POACEAE		Aristida congesta	Annual	Graminoid
POACEAE		Cynodon dactylon	Perennial	Graminoid

Family	Naturalised	Species	Lifecycle	Growth forms
POACEAE		Heteropogon contortus	Perennial	Graminoid
POACEAE		Panicum coloratum	Annual	Graminoid
POACEAE		Hyparrhenia hirta	Perennial	Graminoid
SOLANACEAE	*	Datura ferox	Annual	Herb
ASTERACEAE	*	Cirsium vulgare	Annual	Herb
SOLANACEAE	*	Solanum sisymbriifolium	Perennial	Herb
CANNABACEAE	*	Cannabis sativa	Annual	Herb
ASTERACEAE	*	Bidens pilosa	Annual	Herb
ASTERACEAE	*	Tagetes minuta	Annual	Herb

Present grazing pressure in this vegetation community can be considered as low, with the area being utilised as a waste disposal site and few if any palatable species occurring there. The grasses that do occur in this area are also sparse making this area unattractive for any grazers in the area.

No Red Data species were recorded during the study and, due to transformation of the habitat, it is considered poorly suited for Red Data species.

Table 12: Growth forms of species occurring in the existing waste disposal site.

Growth form	Number	Percentage
Herb	9	60
Geophyte	0	0
Succulent	0	0
Hydrophyte	0	0
Parasite	0	0
Cyperoid	0	0
Helophyte	0	0
Shrub	0	0
Graminoid	6	40
Climber	0	0
Total	15	100

Sensitivity aspects

- The vegetation of the area can be considered as completely transformed;
- Low species diversity;
- Floristic status of this vegetation community is low;
- Suitability of Red Data flora and faunal species is low;
- If impacts were to occur in this vegetation type they would be insignificant as the area is currently impacted by a similar activity;
- Ecological function of this community is low;

The Conservation importance of this community is low.

8.3 Red Data Floral Assessment

The Red Data plant species list for the 2629CC grid square obtained from the Mpumalanga Tourism and Parks Agency MPTA, shows only one species of concern recorded in the relevant grid square. The species recorded is the Near –threatened *Gladiolus robertsoniae* which was recorded on the farm Grootverlangen 409 IS which is approximately 21 km from the study site and at the Vaal Station in Standerton itself, approximately 20 km from the study site (Figure 5). This species was not found within the study area but, although very unlikely its presence cannot be dismissed based on a single survey of the area.

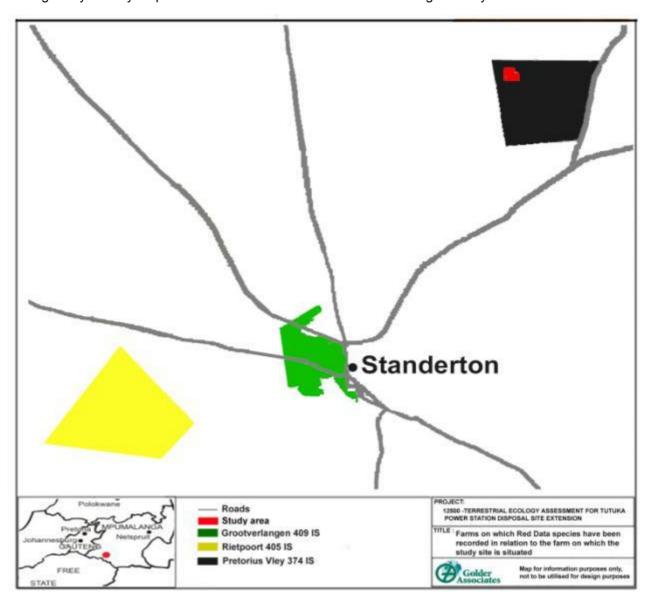


Figure 5: Locations of recorded Red Data species in relation to the study area.

9.0 FAUNAL ASSESSMENT

The faunal assessment was conducted in January 2010.

9.1 Recorded Faunal Species

9.1.1 Arthropoda

A total of 34 arthropods were recorded during the aurvey and are listed in (Table 13). Only 1 species of Lepidoptera (Table 13) was recorded and 31 species of other arthropods. The low floral diversity in the majority of the area as well as the late season survey may be responsible for reduced arthropod diversity during the time of the survey. All of the species recorded during the survey were common savanna species and are not restricted in terms of habitat or distribution.

Table 13: Arthropod species recorded during the 2007 surveys.

Superclass	Class	Order	Family	Genus	Species	Common Name
Insecta	Insecta	Isoptera	Termitidae	Trinervitermes		
				Amitermis	hastatus	
		Mantodea	Hymenopodidae	Harpagomantis	tricolor	
			Mantidae	Sphodromantis	gastrica	
		Dermaptera	Libiduridae	Labidura	riparia	
		Orthoptera	Bradyporidae	Hetrodes	pupus	
			Tettigonidae	Phaneroptera		
			Gryllidae	Gryllus	bimaculatus	
			Pamphagidae	Hoplolopha		
			Pyrgomorphidae	Phymateus	morbillosus	
			Acrididae	Acrida	acuminata	
				Locustana	pardalina	
		Hemiptera	Reduviidae	Etrichodia	crux	
			Alydidae	Mirperus	faculus	
			Pyrrhocoridae	Scantius	fosteri	
			Nemopteridae	Nemia	costalis	
		Coleoptera				
			Melirydae			
			,	Melyris		
			Tennebrionidae	Psammodes	striatus	
				Stenocara	dentata	
		Diptera	Tabanidae	Tabanus	taeniatus	
			Bombyliidae	Exoprosopa		
			Calliphoridae	Chrysomya	chloropyga	
				Chrysomya	albiceps	
		Lepidoptera	Saturniidae	Bunaea	alcinoe	

Superclass	Class	Order	Family	Genus	Species	Common Name
		Hymenoptera	Apidae	Apis	mellifera	
			Formicidae	Tetraponera		
				Messor	capensis	
				Camponotus	fulvopilosus	
		Scorpiones	Buthidae			
		Araneae	Arachnidae			
Myriapodia						Centipede
						Millipede

9.1.2 Reptilia

A total of 38 reptile species are known to occur within the study area (Appendix C). Of these 38 species, only one, *Homoroselaps lacteus*, is listed as a Red Data species, this species is also not listed nationally, but is recorded according to the MPTA species listings as Near-threatened. Eight of the 38 possibly occurring species 10 are listed as endemic (Appendix C). Only three reptilian species were recorded during the 2010 surveys (Table 14). None of the recorded species are restricted in terms of habitat and distribution, or classified as Red Data Species. It is likely that more species could occur in the area but due to the shy nature of the taxon it is usually impossible to record all taxon in an area during a study of as limited time as this. The confidence in the data collected during this study is such that it is felt that it accurately indicates the majority of the species occurring in this specific study area. It is therefore unlikely that, even with a longer term study, many more species of reptiles would be recorded.

Table 14: Reptile species recorded during the 2010 survey.

All species without a category are shown as Not Listed (NL)

BIOLOGICAL NAME	COMMON NAME	RED DATA STATUS		
Lamprophis fuliginosus	Brown House Snake	NL		
Bitis arietans	Puff Adder	NL		
Mabuya striata	Striped Skink	NL		
The relevant IUCN status categories	are:			
Critically Endangered (CR)				
Endangered (EN)				
Vulnerable (VU)				
Near Threatened (NT)				
Data Deficient (DD)				

9.1.3 Amphibia

Least Concern (LC)

A total of 16 amphibian species are known to occur within the region in which the study was conducted (Appendix D). Of these 16 species, none are listed as a Red Data species. Of the 16 possibly occurring species, ten are listed as endemic (Appendix D). None of the recorded species is restricted in terms of habitat and distribution (Table 15); none are classified as Red Data Species. Four species of amphibians were recorded as occurring within the study area these are listed in Table 15. These species are not

restricted in terms of habitat or distribution and none of the species recorded are classified as Red Data species.

Table 15: Amphibian species recorded during the 2010 survey.

SPECIES	ENDEMIC STATUS	RED DATA STATUS
Schismaderma carens	0	NL
Kassina senegalensis	0	NL
Afrana fuscigula	1	NL
Bufo garmani	0	NL

Species list for the region spanning South Africa, Lesotho and Swaziland. Endemic status:

0 indicates no endemism to southern Africa

1 indicates endemism to southern Africa:

2 indicates endemism to the region (South Africa, Lesotho and Swaziland).

The relevant IUCN status categories are:

Critically Endangered (CR)

Endangered (EN)

Vulnerable (VU)

Near Threatened (NT)

Data Deficient (DD)

Least Concern (LC)

All species without a category are shown as Not Listed (NL)

9.1.4 Aves

A number of species of birds are known to occur in the grid square in which the study area is situated (Appendix E). Thirty species were recorded in the study area during the survey (Table 16). Although this is a considerable number of species, it is less than one third of the 368 species known to occur in the grid square. The bird community in the study area is dominated by grassland bird species, especially, graivorous grass nesting species. The reason for this is that the habitat is most suited for these species and the absence of tree and shrub nesting can be attributed to the lack of the vegetation growth forms in the area. Of the 30 recorded species, three are listed as Red Data species (Table 16). With the exception of waterfowl, waders and other species associated with waterbodies or rivers, bird guilds are well distributed indicating good diversity of habitat in the study area as a whole.

Table 16: Avifaunal species recorded during the 2010 survey.

Roberts No.	Common Name	Biological Name	Red Data Status
62	Heron Grey	Ardea cinerea	
71	Egret Cattle	Bubulcus ibis	
94	Ibis Hadeda	Bostrychia hagedash	
255	Plover Crowned	Vanellus coronatus	
258	Plover Blacksmith	Vanellus armatus	
356	Dove Namaqua	Oena capensis	
493	Lark Monotonous	Mirafra passerina	
494	Lark Rufousnaped	Mirafra africana	

Roberts No.	Common Name	Biological Name	Red Data Status				
497	Lark Fawncoloured	Mirafra africanoides					
498	Lark Sabota	Mirafra sabota					
507	Lark Redcapped	Calandrella cinerea					
589	Chat Familiar	Cercomela familiaris					
595	Chat Anteating	Myrmecocichla formicivora					
601	Robin Cape	Cossypha caffra					
615	Robin Kalahari	Cercotrichas paena					
664	Cisticola Fantailed	Cisticola juncidis					
665	Cisticola Desert	Cisticola aridulus					
681	Neddicky	Cisticola fulvicapillus					
713	Wagtail Cape	Motacilla capensis					
716	Pipit Grassveld	Anthus cinnamomeus					
723	Pipit Bushveld	Anthus caffer					
743	Tchagra Threestreaked	Tchagra australis					
760	Starling Wattled	Creatophora cinerea					
764	Starling Glossy	Lamprotornis nitens					
779	Sunbird Marico	Nectarinia mariquensis					
803	Sparrow Cape	Passer melanurus					
804	Sparrow Southern Greyheaded	Passer diffusus					
814	Weaver Masked	Ploceusvelatus					
824	Bishop Red	Euplectes orix					
826	Bishop Golden	Euplectes afer					
The relevant l	UCN status categories are:						
Critically Enda	angered (CR)						
Endangered (EN)						
Vulnerable (V	Vulnerable (VU)						
Near Threater	ned (NT)						
Data Deficien	t (DD)						

9.1.5 Mammalia

Least Concern (LC)

Three hundred and ninety-nine indigenous mammal species occur in southern Africa (Appendix F), of these 66 species historically occur in the region in which the study area occurs. Of these 16 species are locally extinct and only four species were recorded during the survey. Of the remaining 46 species, 16 have a high probability of occurrence, 8 have a moderate probability of occurrence and 22 a low probability of occurrence. Many of these species are restricted in range to formally and informally protected areas.

Mammal species diversity was low with only four species recorded (Table 17). The reasons for the low mammalian species diversity may be degradation of habitat in the study area due to anthropogenic impacts

such as grazing, overutilisation of natural resources and the disposal of waste. *Mus musculus* and *Rattus* rattus were not recorded. These species are often attracted to waste disposal areas and may be present in the area.

All the mammal species found during the study are common species that occur in a wide range of habitats, none of the species recorded are classified as Red Data species.

Table 17: Mammal species recorded during the 2010 survey.

BIOLOGICAL NAME	COMMON NAME	RED DATA					
Lepus saxatillis	Scrub Hare	NL					
Hystrix africaeaustralis	Cape Porcupine	NL					
Rhabdomys pumilio	Four-striped Grass Mouse	NL					
Mastomys natalensis	Natal Multimammate Mouse	NL					
The relevant IUCN status categories are:							
Critically Endangered (CR)							
Endangered (EN)							
Vulnerable (VU)							
Near Threatened (NT)							
Data Deficient (DD)							
Least Concern (LC)							
All species without a category are show	n as Not Listed (NL)						

9.2 Red Data Faunal Species

According to the Red Data faunal species data from the MPTA only one Red Data faunal species has been recorded in the 2629CC quarter degree square and that is *Homoroselaps lacteus* (Spotted harlequin snake). This species was however recorded on the farm Rietpoort 405 IS approximately 29 km from the site (Figure 5), and probability of occurrence in the study area is considered low.

10.0 ECOLOGICAL FUNCTION

The precautionary principle was applied throughout the determination of the ecological function of the vegetation types and in instances where the ecological function was found to be borderline between two categories; the community was classified in the higher category.

The variations in ecological function occurring within the study site are shown in Figure 6. Although impacted, the *Themeda triandra* grassland and the natural wetland vegetation types are considered of high ecological function as the patterns and processes within this community are still present and they function as they would in a natural state.

The *Themeda-Hyparrhenia* grassland vegetation type can be considered as being of moderate ecological status as some of the patterns and processes in these areas have been diminished or eliminated by anthropogenic impacts. Further extensive impacts in these areas could cause rapid and perhaps irreversible degradation of these areas.

The artificial wetlands and existing disposal areas have low ecological function due to anthropogenic impacts. Natural patterns and processes in these areas have been severely reduced or, in extreme cases, almost completely eliminated. These areas can be considered as irreversibly or close to irreversibly degraded. Further impacts in these areas are unlikey to cause further degradation with regard to the vegetation, but some effects of degradation such as the invasion of exotic species may infiltrate the surrounding vegetation types.

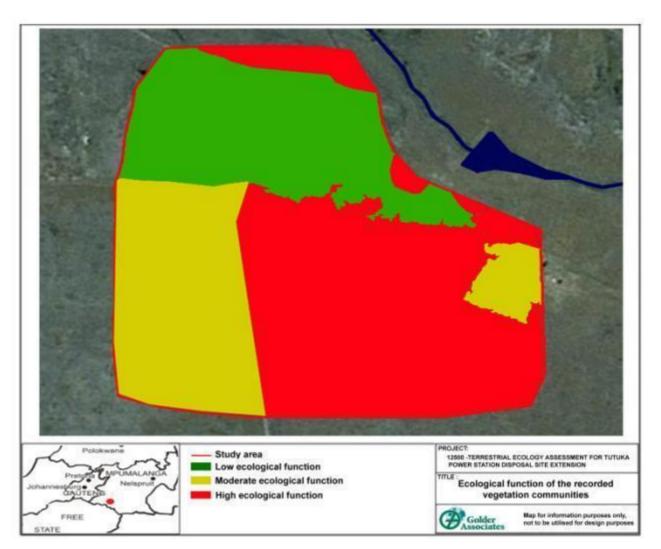


Figure 6: Ecological function of the study area.

11.0 CONSERVATION IMPORTANCE

The precautionary principle was applied throughout the determination of the conservation importance of the vegetation types and in instances where the conservation importance was found to be borderline between two categories; the community was classified in the higher category

The variation in conservation importance of the different vegetation types within the study area is shown in Figure 7. The areas with high conservation importance are the *Themeda triandra* grassland and the natural wetland vegetation types; due to the fact that these areas are the least impacted areas. These vegetation types also have higher levels of biodiversity than the surrounding areas and the likelihood of Red Data species occurring in these areas is considered moderate.

The *Themeda-Hyparrhenia* grassland (which includes the previously cultivated areas and road reserves) can be considered as being of moderate conservation importance as, although invaded by some exotic species and disturbed in some areas, these vegetation types support a large number of species and are not severely degraded. The existence of Red Data in this community cannot be excluded outright and therefore in line with the precautionary principle these communities were classified as being of moderate conservation importance (Figure 7).

Due to the severe impacts, the artificial wetlands and existing disposal areas are classified as being of low conservation importance. These areas are in close proximity to areas of high conservation importance thereby creating edge effects into the areas of high conservation importance through a number of ecological (invasion of exotics, erosion etc.) and anthropogenic factors. These factors all reduce the connectivity of the areas of high conservation importance.

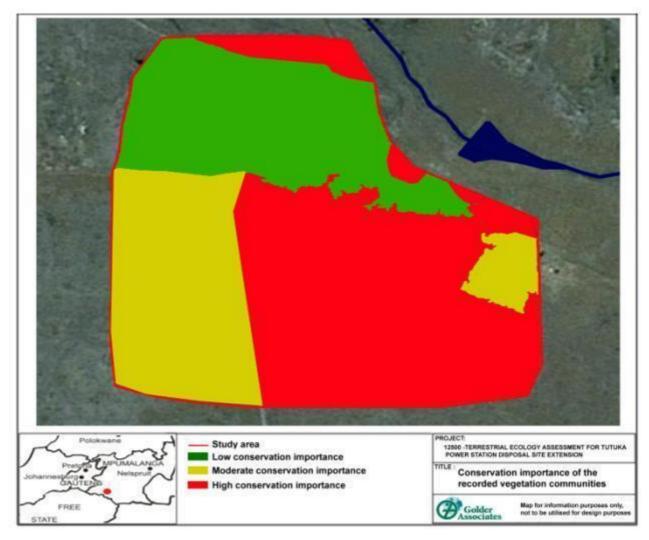


Figure 7: Conservation importance of the study area.

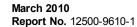
12.0 BIODIVERSITY IMPACT ASSESSMENT

Table 18: Biodiversity impact evaluation.

		Themeda triandra Grassland						
	Impacts	Themeda triandra Grassland	Impact before mitigation	Reasoning	Mitigation	Impact after mitigation	Reasoning	
	% of total area impacted	<30%						
Waste Site	Type of impacts	Clearing of vegetation	High	This vegetation type comprises the highest conservation importance and ecological integrity of all the vegetation types in the study area. Vegetation removal must therefore be considered as a high impact.	Keep vegetation clearing to a minimum, translocation of any protected species that may occur in the area will have to be investigated.	Low	No destruction of protected species, very little loss of vegetation.	
	water Habit spillia	Reduction of subterranean water flow	Moderate	The topography slopes slightly downward towards the floodplain. Compaction of soil may reduce subterranean water flow	Minimum compaction of the soil will reduce the impact the compaction has on the subterranean water flow.	Low	Minimal affect on subterranean flow	
		Habitat degradation due to spilliage of harmful or toxic substance.	High	Due to the protected species occurring in the area, spillage of toxic substances must be assumed to have a high impact.	Special precautions must be put in place in order to reduce the probability of spillage. Action plans need to be put in place in order to effectively clean up spills.	Low	Minimised pollution through good management	

		Disturbance of biodiversity due to vibration and noise.	High	The vegetation type in this area is limited and differs significantly from the surrounding vegetation types. It can therefore be assumed to harbour significantly different fauna species. If these species are excluded from this area due to noise and vibration there is no similar vegetation for them to migrate to.	Unneccessary noise must be kept to a minimum, precautions can be put in place to minimise vibration and noise during construction	Moderate	Noise and vibration are unlikely to be greatly reduced during construction but postconstruction noise and vibration can be reduced.
		Habitat degradation due to dust blown from exposed ground.	Moderate	Dust may affect vegetation including protected species, but the soil type in this region is less prone to causing dust than in other regions.	Measure such as wetting of roads and work areas can keep dust production to a minimum	Low	Dust can be controlled effectively
		Inhibition of local migration routes due to obstruction by infrastructure	Moderate	Infrastructure will hamper the migration routes of fauna especially smaller faunal species	Build infrastructure so as to have a minimal effect migration routes	Low	Wth no obstructions migration routes will not be significantly affected
	% of total area impacted	<10%					
Roads	Type of impacts	Clearing of vegetation	High	This vegetation type comprises the highest conservation importance and ecological integrity of all the vegetation types in the study area. Vegetation removal must therefore be considered as a high impact.	Use existing roads and keep the construction of roads to a minimum	Low	Road construction kept to a minimum

Habitat degradation due to spilliage of harmful or toxic substance.	High	This vegetation type comprises the highest conservation importance and ecological integrity of all the vegetation types, spillage of toxic substances must be assumed to have a high impact.	Special precautions must be put in place in order to reduce the probability of spillage. Action plans need to be put in place in order to effectively clean up spills.	Low	Minimised pollution through good management
Disturbance of biodiversity due to vibration and noise.	High	This vegetation type comprises the highest conservation importance and ecological integrity of all the vegetation types and is most likely to harbour significantly different fauna species.	Unneccessary noise must be kept to a minimum, precautions can be put in place to minimise vibration and noise during construction	Moderate	Noise and vibration are unlikely to be greatly reduced during construction but postconstruction noise and vibration can be reduced.
Habitat degradation due to dust blown from exposed ground.	Moderate	Dust may affect vegetation including protected species, but the soil type in this region is less prone to causing dust than in other regions.	Measure such as wetting of roads and work areas can keep dust production to a minimum	Low	Dust can be controlled effectively
Effect on local migrations	Moderate	Roads are known to affect species during local migrations, due to mortalities when crossing roads to a larger extent than roads being a physical barrier to species	Care taken when driving on roads and a low speed limit on raods as well as the effective enforcement of the speed limit will limit this impact	Low	Implementation of recommended mitigation measures will greatly reduce the significance of this impact impact



		Increased access to previously inaccessable areas.	High	Roads are utilised by people in order to access previously inaccessible areas in order to utilise available resources. In areas which were previously inaccessible the impact of utilisation of flora and poaching of fauna can have significant effects.	Education of the workforce and a ban on hunting by the workforce as well as control of unauthorised access can reduce the impacts significantly. A ban on dogs in the area will also reduce poaching.	Low	Reduction of utilisation and poaching due to restrictive measures
				Themeda triar	ndra Grassland		
	Impacts	Themeda triandra Grassland	Impact before mitigation	Reasoning	Mitigation	Impact after mitigation	Reasoning
	% of total area impacted	<30%					
Waste Site	Type of impacts	Clearing of vegetation	Moderate	Although unlikely, this vegetation type may harbor Red Data or Protected species. Vegetation removal must therefore be considered as a high impact.	Keep vegetation clearing to a minimum, translocate any protected species that may occur in the area will have to be investigated.	Low	No destruction of protected species, very little loss of vegetation.
		Reduction of subterranean water flow	Moderate	The topography slopes slightly downward towards the floodplain. Compaction of soil may reduce subterranean water flow	Minimum compaction of the soil will reduce the impact the compaction has on the subterranean water flow.	Low	Minimal affect on subterranean flow

		Habitat degradation due to spillage of harmful or toxic substance.	Moderate	Due to the possible impacts of harmful substance on species occurring in the area, spillage of toxic substances must be assumed to have a moderate impact.	Special precautions must be put in place in order to reduce the probability of spillage. Action plans need to be put in place in order to effectively clean up spills.	Low	Minimised pollution through good management
		Disturbance of biodiversity due to vibration and noise.	Low	It is unlikely that any protected or red data faunal species occur in this area that will be significantly affected by noise.	Unneccessary noise must be kept to a minimum, precautions can be put in place to minimise vibration and noise during construction	Low	Noise and vibration are unlikely to be greatly reduced during construction but postconstruction noise and vibration can be reduced.
		Habitat degradation due to dust blown from exposed ground.	High	Dust may affect vegetation including protected species in surrounding areas, but the soil type in this region is less prone to causing dust than in other regions.	Measure such as wetting of roads and work areas can keep dust production to a minimum	Low	Dust can be controlled effectively
		Inhibition of local migration routes due to obstruction by infrastructure	Moderate	Infrastructure will hamper the migration routes of fauna especially smaller faunal species	Build infrastructure so as to have a minimal effect migration routes	Low	Wth no obstructions migration routes will not be significantly affected
	% of total area impacted	<10%					
Roads	Type of impacts	Clearing of vegetation	Moderate	Vegetation removal will completely transform existing habitats. Vegetation removal must therefore be considered as a moderate impact.	Use existing roads and keep the construction of roads to a minimum	Low	Road construction kept to a minimum

	Habitat degradation due to spilliage of harmful or toxic substance.	High	Spillage of toxic substances may affect surrounding areas and must be assumed to have a high impact.	Special precautions must be put in place in order to reduce the probability of spillage. Action plans need to be put in place in order to effectively clean up spills.	Low	Minimised pollution through good management
	Disturbance of biodiversity due to vibration and noise.	Moderate	Small mammals and birds may vacate the area due to the vibration and noise in the area and must therefore be considered as a moderate impact.	Unneccessary noise must be kept to a minimum, precautions can be put in place to minimise vibration and noise during construction	Low	Noise and vibration are unlikely to be greatly reduced during construction but postconstruction noise and vibration can be reduced.
	Habitat degradation due to dust blown from exposed ground.	Moderate	Dust may affect adjacent vegetation including protected species, but the soil type in this region is less prone to causing dust than in other regions.	Measure such as wetting of roads and work areas can keep dust production to a minimum	Low	Dust can be controlled effectively
	Effect on local migrations	Moderate	Roads are known to affect species during local migrations, due to mortalities when crossing roads to a larger extent than roads being a physical barrier to species	Care taken when driving on roads and a low speed limit on raods as well as the effective enforcement of the speed limit will limit this impact	Low	Implementation of recommended mitigation emasures will greatly reduce this impact

Increased access to previously inaccessal areas.	ole Moderate	Roads are utilised by people in order to access previously inaccessible areas in order to utilised these areas. In areas which were previously inaccessible the impact of utilisation of flora and poaching of fauna can have significant effects.	Education of the workforce and a ban on hunting by the workforce as well as control of unauthorised access can reduce the impacts significantly. Control of unauthorized firearms and dogs in the area will also reduce poaching.	Low	Reduction of utilisation and poaching due to restrictive measures
--	--------------	--	---	-----	---

13.0 DISCUSSION

The physiognomy of the area is characterized by the dominance of the herbaceous component consisting predominantly of grass species, while the woody stratum is very poorly represented. This is very much what would be expected in this area due to the area falling withing the Grassland Biome and Soweto Highveld Grassland vegetation type. A pristine species composition would dictate a slightly more diverse herbaceous stratum, but the occurrent species rather than the species diversity in this area are an obvious indicator of the historical impacts on the area.

Forbs and other herbs are moderately represented, but the dominance of many of these species also indicates the degraded status of the vegetation. This is especially visible in the north-western quarter of the study area. A total of 58 plant species were identified during the site investigation. Herbs and graminoids (grasses) dominate the composition.

The following vegetation communities (Figure 3) were identified during the study, and are named according to the area in which they occur, physiognomy and/or dominant floral species occurring within the vegetation communities:

- Themeda triandra grassland;
- Themeda Hyparrhenia mixed grassland ;
- Natural Riparian Wetland;
- Artificial wetland associated with diggings;
- Existing waste disposal site.

No Red Data plant species were recorded during the 2010 survey. According to the MPTA records only two Red Data plant species are known to occur in the 2629CC grid square and both of these species were found more than 20 km away from the study area.

A total of 34 arthropods, 3 reptiles, 4 amphibians, 31 birds and 4 mammal species were recorded during the 2010 surveys, None of these species are currently listed as Red Data species by the IUCN or as Protected species on a provincial level.

Although impacted, the *Themeda triandra* grassland and the natural wetland vegetation types are considered of high ecological function as the patterns and processes within this community are still present and the functions as they would in a natural state.

The *Themeda-Hyparrhenia* grassland vegetation type can be considered as being of moderate ecological status as some of the patterns and processes in these areas have been diminished or eliminated by anthropogenic impacts. Although impacts on the vegetation are envisaged to be insignificant on a local scale, due to the complex nature of ecological systems further extensive impacts in these areas could cause rapid and perhaps irreversible degradation of these areas.

The artificial wetlands and existing disposal areas have low ecological function due to anthropogenic impacts. Natural patterns and processes in these areas have been severely reduced or, in extreme cases, almost completely eliminated. These areas can be considered as irreversibly or close to irreversibly degraded. Further impacts in these areas are unlikely to cause further degradation with regard to the vegetation, but some effects of degradation such as the invasion of exotic species may infiltrate the surrounding vegetation types.

The areas with high conservation importance are the *Themeda triandra* grassland and the natural wetland vegetation types due to the fact that these areas are the least impacted areas. These vegetation types also have far higher levels of biodiversity than the surrounding areas and the likelihood of Red Data species occurring in these areas is considered moderate.

The *Themeda-Hyparrhenia* grassland vegetation type (which includes the previously cultivated areas and road reserves) can be considered as being of moderate conservation importance as, although invaded by some exotic species and disturbed in some areas, this vegetation types supports a large number of species and is not severely degraded. The existence of Red Data in this community cannot be excluded outright and therefore in line with the precautionary principle these communities were classified as being of moderate conservation importance.

Due to the severely impacted state of the the artificial wetlands and existing disposal areas, these areas were classified as being of low conservation importance. These areas are in close proximity to the areas of high conservation importance thereby creating edge effects into the areas of high conservation importance through a number of ecological (invasion of exotics, erosion etc.) and anthropogenic factors. These factors all reduce the connectivity of the areas of high conservation importance.

14.0 REFERENCES

ACOCKS, J.P.H. 1988. Veld Types of South Africa, 3rd Ed, Memoirs of the Botanical Survey of South Africa No. 57, Botanical Research Institute.

ALLAN, D.G. 1992. Distribution, relative abundance and habitat of the Blue Crane in the Karoo and the southwestern Cape. Proceedings of the first southern African crane conference. Pages 29-46 in D.J. Porter, editor. South African Crane Foundation, Durban.

BIRDLIFE INTERNATIONAL. 2000. Threatened Birds of the World. Lynx Edicions and BirdLife International, Barcelona and Cambridge, UK.

BRANCH, W. 1998. Field guide to snakes and other reptiles of southern Africa. Struik, Cape Town.

BRANCH, W.R. 1996. Snakes and other reptiles of Southern Africa, 2nd Edition. Struik. Cape Town

BRANCH, W.R. 1998. South African Red Data Book – Reptiles and Amphibians. National Scientific Programmes Report No 151.

BREDENKAMP, G.J., A.F. JOUBERT, and H. BEZUIDENHOUT. 1989. A reconnaissance survey of the vegetation of the Potchefstroom-Fochville-Parys area. South African Journal of Botany **55**: 199-206.

CARRUTHERS, V. 2001. Frogs and frogging in Southern Africa. 1st Edition. Struik, Cape Town.

COETZEE, J.P., G.J. BREDENKAMP and N. VAN ROOYEN. 1993. The sub-humid warm temperate mountain bushveld plant communities of the Pretoria-Witbank-Heidelberg area. South African Journal of Botany **59**: 623-632.

COWLING, R.M., D.M. RICHARDSON, and S.M. PIERCE. 1997. Vegetation of South Africa. Cambridge: Cambridge University Press.

DADA, R. 1999. How compost is killing the wetland. Africa News Service. March 5.

DAVIES, B. and J. DAY.1998. Vanishing Waters. University of Cape Town Press, Cape Town.

DEAT (Department of Environmental Affairs & Forestry) 2002. Specialist Studies, Information Series 4, Pretoria.

ECKHARDT, H.C., N.VAN ROOYEN, and G.J. BREDENKAMP. 1993. An overview of the vegetation of the Vrede-Memel warden area, north-eastern Orange Free State. South African Journal of Botany **59**: 391-400.

ENDANGERED WILDLIFE TRUST. 2004. Red Data Book of the Mammals of South Africa: A Conservation Assessment. CBSG Southern Africa, Parkview, South Africa.

FULS, E.R., G.J. BREDENKAMP, N. VAN ROOYEN, and G.K. THERON. 1993. The physical environment and major plant communities of the Heilbron-Lindley-Warden-Villiers area, northern Orange Free State. South African Journal of Botany **59**: 345-359.

HARRISON, J.A., ALLAN, D.G., UNDERHILL, L.G., HERREMANS, M., TREE, A.J., PARKER, V., BROWN, C.J. (Eds.) 1997a. The Atlas of southern African birds. Volume 1: Non-passerines. Johannesburg: Birdlife South Africa.

HARRISON, J.A., ALLAN, D.G., UNDERHILL, L.G., HERREMANS, M., TREE, A.J., PARKER, V., BROWN, C.J. (Eds.) 1997b. The Atlas of southern African birds. Volume 2: Passerines. Johannesburg: Birdlife South Africa.

HARRISON, J.A., D.G. ALLAN, L.G. UNDERHILL, M. HERREMANS, A.J. TREE, V. PARKER, and C.J. BROWN, editors. 1997. The atlas of southern African Birds Vols 1 and 2. BirdLife South Africa, Johannesburg.

HENDERSON, L. 2001 Alien weeds and invasive plants, Plant Protection Research Institute, ARC.

HENNING, S.F. & HENNING, G.A. 1989. South African Red Data Book – Butterflies. South African National Scientific Programmes Report No 158.

HILTON-TAYLOR, C. 2000. 2000 IUCN Red List of Threatened Species. IUCN, Gland, Switzerland and Cambridge, United Kingdom.

IUCN. 2001. IUCN Red List Categories and Criteria. In: Red Data Book of the Mammals of South Africa: A Conservation Assessment.

LEEMING, J. 2003. Scorpions of Southern Africa. Struik Publishers, Cape Town. Nature Conservation Ordinance of Transvaal, 1983 (No 12 of 1983).

List of Threatened Species. www.iucnredlist.org

LOW, A.B. and A.G. REBELO, 1998. Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, Pretoria. 2nd ed.

LOW, A.B., REBELO, T.C. 1998. Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism. Pretoria.

MALLETT, V. 1999. After Hours- Journey to the center of the earth. Business Day. July 16.

MEADOWS, M.E. and H.P. LINDER, 1993. A palaeoecological perspective on the origin of afromontane grasslands. Journal of Biogeography **20**: 345-355.

MEADOWS, M.E. and K.F. MEADOWS. 1988. Late Quaternary vegetation history of the Winterberg mountains, eastern Cape, South Africa. South African Journal of Science **84**: 253-259.

MINTER, L.R., BURGER, M., HARRISON, J.A., BRAACK, H.H., BISHOP, P.J. & Kloepfer, D., eds. 2004. Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. SI/MAB Series #9. Smithsonian Institution, Washington DC.

MUCINA, L. & RUTHERFORD, M.C. (Eds.). 2006. *Vegetation map of South Africa, Lesotho and Swaziland*. South African National Biodiversity Institute, Pretoria.

PASSMORE, N. and V. CARRUTHERS, 1995. South African Frogs: a complete guide. Witwatersrand University Press, Johannesburg.

PICKER, M., GRIFFITHS, C., WEAVING, A. 2002. Field Guide to Insects of South Africa. Struik. Cape Town

RUTHERFORD, M.C. and R.H. WESTFALL. 1986. Biomes of southern Africa – an objective categorization. Memoirs of the Botanical Survey of South Africa **54**: 1-98.

SIEGFRIED, W.R. 1992. Conservation status of the South African endemic avifauna. South African Journal of Wildlife Research 22: 61-64.

SKINNER, J.D., SMITHERS, R.H.N. 1990. The Mammals of the Southern African Subregion. University of Pretoria, Pretoria, RSA.

SMITHERS, R.H.N. 1986. South African Red Data Book – Terrestrial Mammals. South African National Scientific Programmes Report No 125.

SMITHERS, R.H.N. 1992. Land Mammals of Southern Africa. Southern Book Publishers Pty Ltd. Halway House

Stuart, C. and T. Stuart.1995. Field Guide to the Mammals of Southern Africa. Struik, Cape Town

STUART, C., STUART, t. 1993. Mammals of Southern Africa, 3rd Edition. Struik Cape Town

VAN OUDTSHOORN, F. 1999. Guide to grasses of southern Africa. 1st Edition. Briza Pretoria

VAN WYK, B. VAN WYK, P. 1997. Field Guide to Trees of southern Africa. 1st Edition. Struik. Cape Town Volume 7: Aquatic Ecosystems

WHITE F. 1983. The Vegetation of Africa, a descriptive memoir to accompany the UNIESCO/AETF AT/UNSO Vegetation Map of Africa (3 Plates, Northwestern Africa, Northeastern Africa, and Southern Africa.,1:5,000,000). Paris: UNESCO

Please note reference books, field guides and guidelines not necessarily referenced in the text but used during fieldwork and in the compilation and structure of the report have also been included in this reference list.

GOLDER ASSOCIATES AFRICA (PTY) LTD

A Hudson K de Wet Terrestrial Ecologist Reviewer

AH/KdW/AH

Reg. No. 2002/007104/07

Directors: FR Sutherland, AM van Niekerk, SAP Brown, L Greyling, SM Manyaka

g:\projects\12500 - flora and fauna specialist studies for eskom tutuka\reports\12500-9610-1.docx

APPENDIX A DOCUMENT LIMITATIONS

DOCUMENT LIMITATIONS

This Document has been provided by Golder Associates Africa Pty Ltd ("Golder") subject to the following limitations:

- i) This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- ii) The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.
- iii) Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- iv) In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- v) Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- vi) Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.
- vii) The Client acknowledges that Golder may have retained sub-consultants affiliated with Golder to provide Services for the benefit of Golder. Golder will be fully responsible to the Client for the Services and work done by all of its sub-consultants and subcontractors. The Client agrees that it will only assert claims against and seek to recover losses, damages or other liabilities from Golder and not Golder's affiliated companies. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any legal recourse, and waives any expense, loss, claim, demand, or cause of action, against Golder's affiliated companies, and their employees, officers and directors.
- viii) This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

GOLDER ASSOCIATES AFRICA (PTY) LTD

APPENDIX B

FLORAL SPECIES OCCURRING IN THE STUDY AREA

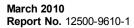
Family	Naturalised	Species	Lifecycle	Growth forms
ACANTHACEAE		Chaetacanthus costatus	Annual	Herb
ACANTHACEAE		Crabbea acaulis	Annual	Herb
AMARYLLIDACEAE		Boophone disticha	Perennial	Geophyte
ANTHERICACEAE		Chlorophytum fasciculatum	Perennial	Herb
ASPHODELACEAE		Aloe ecklonis	Perennial	Succulent
ASPHODELACEAE		Kniphofia albescens	Perennial	Succulent
ASPHODELACEAE		Kniphofia typhoides	Perennial	Succulent
ASTERACEAE		Berkheya onopordifolia	Perennial	Herb
ASTERACEAE		Berkheya pinnatifida	Perennial	Herb
ASTERACEAE		Pseudognaphalium luteo-album	Annual	Herb
ASTERACEAE		Schistostephium crataegifolium	Perennial	Herb
ASTERACEAE	*	Cirsium vulgare	Annual	Herb
ASTERACEAE	*	Bidens pilosa	Annual	Herb
ASTERACEAE	*	Tagetes minuta	Annual	Herb
ASTERACEAE	*	Xanthium strumarium	Annual	Herb
AZOLLACEAE	*	Azolla filiculoides	Perennial	Hydrophyte
CANNABACEAE	*	Cannabis sativa	Annual	Herb
CONVOLVULACEAE	*	Cuscuta campestris	Annual	Parasite
CONVOLVULACEAE		Evolvulus alsinoides.	Annual	Herb
CONVOLVULACEAE	*	Ipomoea purpurea	Annual	Climber
CYPERACEAE		Abildgaardia ovata	Perennial	Cyperoid
CYPERACEAE		Bulbostylis contexta	Annual	Cyperoid
CYPERACEAE		Bulbostylis humilis	Annual	Cyperoid
CYPERACEAE		Cyperus fastigiatus	Perennial	Cyperoid
CYPERACEAE		Cyperus semitrifidus	Perennial	Cyperoid

Family	Naturalised	Species	Lifecycle	Growth forms
EUPHORBIACEAE		Chamaesyce inaequilatera	Perennial	Herb
FABACEAE		Trifolium africanum var. africanum	Perennial	Herb
GISEKIACEAE		Gisekia pharnacioides var. pharnacioides	Annual	Herb
GREYIACEAE		Greyia sutherlandii	Perennial	Shrub
IRIDACEAE		Gladiolus robertsoniae	Perennial	Geophyte
JUNCACEAE		Juncus dregeanus subsp. dregeanus	Perennial	Helophyte
LAMIACEAE		Salvia repens	Perennial	Herb
MALVACEAE		Hermannia depressa	Perennial	Herb
MALVACEAE	*	Hibiscus trionum	Annual	Herb
MALVACEAE		Sida rhombifolia	Annual or biennial	Herb
POACEAE		Eragrostis plana	Perennial	Graminoid
POACEAE		Alloteropsis semialata	Perennial	Graminoid
POACEAE		Aristida bipartita	Annual	Graminoid
POACEAE		Aristida congesta	Annual	Graminoid
POACEAE		Brachiaria eruciformis	Annual	Graminoid
POACEAE		Brachiaria serrata	Perennial	Graminoid
POACEAE		Catalepis gracilis	Perennial	Graminoid
POACEAE		Chloris virgata	Perennial	Graminoid
POACEAE		Cynodon dactylon	Perennial	Graminoid
POACEAE		Digitaria eriantha	Perennial	Graminoid
POACEAE		Digitaria ternata	Perennial	Graminoid
POACEAE		Elionurus muticus	Perennial	Graminoid
POACEAE		Eragrostis capensis	Perennial	Graminoid
POACEAE		Eragrostis chloromelas	Perennial	Graminoid
POACEAE		Eragrostis curvula	Perennial	Graminoid
POACEAE		Eragrostis planiculmis	Perennial	Graminoid

Family	Naturalised	Species	Lifecycle	Growth forms
POACEAE		Eragrostis racemosa	Perennial	Graminoid
POACEAE		Heteropogon contortus	Perennial	Graminoid
POACEAE		Leersia hexandra	Perennial	Graminoid
POACEAE		Microchloa caffra	Annual	Graminoid
POACEAE		Panicum coloratum	Annual	Graminoid
POACEAE		Panicum schinzii	Annual	Graminoid
POACEAE		Setaria incrassata	Annual	Graminoid
POACEAE		Setaria nigrirostris	Annual	Graminoid
POACEAE		Setaria sphacelata	Annual	Graminoid
POACEAE		Themeda triandra	Annual	Graminoid
POACEAE		Hyparrhenia hirta	Perennial	Graminoid
POLYGONACEAE	*	Persicaria amphibia	Perennial	Hydrophyte
RUBIACEAE		Anthospermum pumilum	Perennial	Herb
SCROPHULARIACEAE		Jamesbrittenia aurantiaca	Perennial	Herb
SOLANACEAE	*	Datura ferox	Annual	Herb
SOLANACEAE	*	Datura stramonium	Annual	Herb
SOLANACEAE	*	Solanum sisymbriifolium	Perennial	Herb
VERBENACEAE	*	Verbena bonariensis	Annual	Herb
VERBENACEAE	*	Verbena brasiliensis	Annual	Herb

APPENDIX C

SOUTHERN AFRICAN HERPETAFAUNA, REPTILES PREVIOUSLY RECORDED IN THE 2629CC GRID SQUARE ARE HIGHLIGHTED



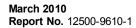
ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Homopus femoralis	Greater Padloper	E		
				Homopus areolatus	Parrot-beaked Tortoise	E		
				Homopus boulengeri	Karooor Boulenger's Padloper	E		
				Homopus signatus	Speckled Padloper	E		
				Homopus bergeri	Nama or Berger's Padloper	E		
		Testudinae		Geochelone pardalis	Leopard Tortoise			
		restudinae		Chersina angulata	Angulate Tortoise	E		
				Psammobates oculifer	Serrated or Kalahari Tent Tortoise	Е		
			Psammobates geometricus	Geometric Tortoise	E			
				Psamobates tentorius	Tent Tortoise	E		
				Kinixys belliana	Bell's Hinged Tortoise			
Chelonii		Trionychidae		Kinixys natalensis	Natal Hinged Tortoise	Ш		
Cheloniii				Trionyx triunguis	Nile Soft-shelled Terrapin			
				Cycloderma frenatum	Zambezi Soft-shelled Terrapin			
		Emydidae		Trachemys scripta	American Red-eared Terrapin	Introduced		
				Pelomedusa subrufa	Marsh or Helmeted Terrapin			
				Pelusios sinuatus	Serrated Hinged Terrapin			
				Pelusios subniger	Pan Hinged Terrapin			
	Pleurodira	Pelomedusidae		Pelusios bechuanicus	Okavango Hinged Terrapin			
				Pelusios rhodesianus	Mashona Hinged Terrapin			
				Pelusios castanoides	Eastern Hinged Terrapin			

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Ramphotyphlops braminus	Flower-pot Snakes	Introduced		
				Typhlops obtusus	Slender Blind Snake			
				Typhlops fornasinii	Fornasini's Blind Snake	E		
		Tryphlopidae		Typhlops boylei	Boyle's Blind Snake	Е		
		Пуртпортае		Typhlops bibronii	Bibron's Blind Snake	E		
				Typhlops lalandei	Delalande's Blind Snake	E		
				Typhlops schinzi	Beaked Blind Snake	E		
				Typhlops schleglii	Schlegel's Blind Snake			
				Leptotyphlops longicaudus	Lont-tailed Thread Snake			
		Leptotyphlopidae		Leptotyphlops nigricans	Black Thread Snake			
				Leptotyphlops gracilior	Slender Thread Snake	E		
				Leptotyphlops conjunctus	Cape Thread Snake			
Squamata	Serpentes (Ophidia)			Leptotyphlops scutifrons	Peter's Thread Snake			
- q				Leptotyphlops telloi	Tello's Thread Snake	Е		
				Leptotyphlops distanti	Distant's Thread Snake	E		
				Leptotyphlops occidentalis	Western Thread Snake	E		
				Leptotyphlops labialis	Damara Thread Snake	E		
		Boidae		Python anchietae	Anchieta's Dwarf Python			
				Python sebae	African Rock Python		VU	
				Lycodonomorphus laevissimus	Dusky-bellied Water Snake	E		
				Lycodonomorphus leleupi	Mulanje Water Snake			
		Colubridae	Boadontinae	Lycodonomorphus rufulus	Common Brown Water Snake	E		
				Lycodonomorphus whytii	Whyte's Water Snake			
				Lamprophis fuliginosus	Brown House Snake			

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Lamprophis inornatus	Olive House Snake	E		
				Lamprophis guttatus	Spotted House Snake	E		
				Lamprophis aurora	Aurora House Snake	Е		
				Lamprophis fiskii	Fisk's House Snake	E		
				Lamprophis fuscus	Yellow-bellied House Snake	Е		
				Lamprophis swazicus	Swazi Rock Snake	Е		
				Lycophidion capense	Cape Wolf Snake			
				Lycophidion variegatum	Variegated Wolf Snake	Е		
				Lycophidion hellmichi	Hellmich's Wolf Snake			
				Lycophidion semiannule	Eastern Wolf Snake			
				Cryptolycus nanus	Dwarf Wolf Snake	Е		
				Mehelya capensis	Cape File Snake			
				Mehelya vemayi	Angola File Snake			
				Mehelya nyassae	Black File Snake			
				Duberria lutrix	Common Slug Eater			
				Duberria variegata	Variegated or Spotted Slug Eater	Е		
				Pseudoaspis cana	Mole Snake			
				Natriciteres variegata	Forest Marsh Snake			
				Natriciteres olivacea	Olive Marsh Snakes			
				Limnophis bicolor	Striped Swamp Snake			
				Pythonodipsas carinata	Western Keeled Snake			
				Amplorhinus multimaculatus	Many-spotted Snake	E		
				Prosymna janii	Mozambique Shovel- snout	E		
				Prosymna sundevali	Sundevall's Shovel- snout	Е		
				Prosymna bivittata	Two-striped Shovel- snout	Е		

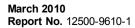
ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Prosymna angolensis	Angola Shovel-snout			
				Prosymna frontalis	South-western Shovel-snout			
				Prosymna ambigua	East African Shovel- snout			
				Prosymna visseri	Visser's Shovel-snout			
				Hemirhagerrhis nototaenia	Bark or Mopane Snake			
				Rhamphiophis oxyrhynchus	Rufus Beaked Snake			
				Dipsina multimaculata	Dwarf Beaked Snake	Е		
				Dromphis lineatus	Lined Olympic Snake			
				Psammophylax rhombeatus	Spotted or Rhombic Skaapsteker			
				Psammophylax tritaeniatus	Striped Skaapsteker			
				Psammophylax variabilis	Grey-bellied Grass Snake			
				Psammophis trigrammus	Western Sand Snake			
			Psammophinae	Psammophis notostictus	karoo Sand or Whip Snake			
				Psammophis leightoni	Cape, Namib and Fork-marked Sand Snake			
				Psammophis jallae	Jalla's Sand Snake			
				Psammophis subtaeniatus	Stripe-bellied Sand Snake			
				Psammophis angolensis	Dwarf Sand Snake			
				Psammophis siblians	Leopard and Short snouted Grass snakes			
				Psammophis phillipsii	Olive Grass Snake			
			_	Psammophis crucifer	Cross-marked or Montane Grass Snake	E		
			Atractaspidinae	Atractaspis bibronii	Southern or Bibron's Burrowing Asp			

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Atractaspis congica	Eastern Congo Burrowing Asp			
				Atractaspis duerdeni	Duerden's Burrowing Asp	E		
				Aparallactus lunulatus	Reticulated Centipede Eater			
				Aparallactus guentheri	Black Centipede Eater			
				Aparallactus capensis	Cape Centipede Eater			
				Aparallactus nigriceps	Mozambique Centipede Eater	E		
				Macrelaps microlepdotus	Natal Black Snake	E		
				Amblyodipsas concolor	Natal Purple-glossed Snake	E		
				Amblyodipsas polylepis	Common Purple- glossed Snake			
				Amblyodipsas microphthalma	Eastern Purple- glossed of White- lipped Snake	Е		
				Amblyodipsas ventrimaculata	Kalahari Purple- glossed Snake			
				Chilorhinophis gerardi	Gerard's Black and Yellow Burrowig Snake			
				Homoroselaps lacteus	Spotted Harlequin Snake	Е		
				Homoreselaps dorsalis	Striped Harlequin Snake	E		
				Xenocalamus sabiensis	Sabi Quill-snouted Snake	E		
				Xenocalamus transvaalensis	Transvaal Quill- snouted Snake	E	DD	
				Xenocalamus bicolor	Bicoloured Quill- snouted Snake			



ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Xenocalamus mechowii	Elongate Quill-snouted Snake			
				Meizodon semiomatus	Semiornate Snake			
				Philothamnus semivariegatus	Spotted Bush Snake			
				Philothamnus omatus	Ornate Bush Snake			
				Philothamnus angolensis	Western Green Snake			
				Philothamnus hoplogaster	Green Water Snake			
				Philothamnus natalensis	Natal Green Snake	E		
				Dasypeltis scabra	Common or Rhombic Egg Eater			
				Dasypeltis inomata	Southern Brown Egg Eater	E		
				Dasypeltis medici	East African Egg Eater			
				Crotaphopeltis hotamboeia	Herald or Red-lipped Snake			
				Crotaphopeltis barotseensis	Barotse Water Snake			
				Telescopus semiannulatus	Eastern Tiger Snake			
				Telescopus beetzii	Namib Tiger Snake	E		
				Dipsadoboa aulica	Cross-barred or Marbled Tree Snake			
				Dispholidus typus	Boomslang			
				Thelotornis capensis	Bird or Twig Snake			
				Aspidelaps lubricus	Coral Snake			
				Aspidelaps scutatus	Shield-nosed Snake	Е		
		Elanidae	Najinae	Elapsoidea guentheri	Gunther's Garter Snake			
		Elapidae	Najinae -	Elapsoidea semiannulata	Angolan and Boulenger's Garter Snakes			
				Elapsoidea sunevalli	Sundevall's Garter	E		

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
					Snake			
				Naja haje	Egyptian Cobra			
				Naja melanoleuca	Forest Cobra			
				Naja nivea	Cape Cobra	E		
				Naja mossambica	Mozambique Spitting Cobra (M'fezi)			
				Naja nigricollis	Black-necked Spitting Cobra			
				Hemachatus heamachatus	Rinkhals	E		
				Dendroaspis polylepis	Black Mamba			
				Dendroaspis angusticeps	Green Mamba			
			Causinae	Causus rhombeatus	Common or Rhombic Night Adder			
				Causus defilippii	Snouted Night Adder			
				Bitis arietans	Puff Adder			
				Bitis gabonica	Gaboon Adder			
				Bitis atropos	Berg Adder	E		
				Bitis cornuta	Many-horned Adder	Е		
				Bitis caudalis	Horned Adder			
			Viperinae	Bitis xeropaga	Desert Mountain Adder	E		
				Bitis inomata	Plain Mountain Adder	Е		
				Bitis shneideri	Namaqua Dwarf Adder	E		
				Bitis peringueyi	Peringuey's Adder			
				Atheris superciliaris	Lowland Swamp Adder			
				Chirindia langi	Lang's Round-headed Worm Lizard	E		
	Amphisbaenia	Amphisbaenidae		Chirindia swynnertoni	Swynnerton's Round- headed Worm Lizard			
				Zygaspis violacea	Violet Round-headed Worm Lizard	E		



ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded	
				Zygaspis quadrifrons	Kalahari Round- headed Worm Lizard				
				Zygaspis niger	Black Round-headed Worm Lizard				
				Monopeltis anchietae	Angolan Spade- snouted Worm Lizard				
				Monopeltis leonhardi	Leonhard's Spade- snouted Worm Lizard	Е			
				Monopeltis zambezensis	Zambezi Spade- snouted Worm Lizard				
				Monopeltis capensis	Cape Spade-snouted Worm Lizard				
				Monopeltis sphenorhyncus	Slender Spade- snouted Worm Lizard				
				Dalophia pistillum	Blunt-tailed Worm Lizard				
				Dalophia longicauda	Long-tailed Worm Lizard				
				Acontias breviceps	Short-headed Legless Skink	E			
					Acontias gracilicauda	Thin-tailed Legless Skink	E		
				Acontias lineatus	Striped Legless Skink	E			
				Acontias litoralis	Coastal Legless Skink	E			
	Sauria			Acontias meleagris	Cape Legless Skink	E			
		Scincidae	Acontiinae	Acontias plumbeus	Giant Legless Skink	Е			
	(Lacertillia)			Acontias percivali	Percival's Legless Skink				
				Acontophiops lineatus	Woodbush Legless Skink	Е			
			Typhlosaurus aurantiacus	Golden Blind Legless Skink	Е				
				Typhlosaurus braini	Brain's Blind Legless	E			

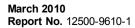
ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
					Skink			
				Typhlosaurus caecus	Cuvier's Blind Legless Skink	E		
				Typhlosaurus cregoi	Cregoi's Blind Legless Skink	E		
				Typhlosaurus gariepensis	Gariep Blind Legless Skink	E		
				Typhlosaurus lineatus	Stiped Blind Legless Skink			
				Typhlosaurus Iomii	Lomi's Blind Legless Skink	E		
				Typhlosaurus meyeri	Meyer's Blind Legless Skink	E		
				Typlosaurus vermis	Boulenger's Blind Legless Skink	E		
				Proscelotes arnoldi	Arnold's Skink			
				Scelotes anguina	Algoa Dwarf Burrowing Skink	E		
				Scelotes arenicula	Zululand Dwarf Burrowing Skink	E		
				Scelotes bidigittatus	Lowveld Dwarf Burrowing Skink	Е		
				Scelotes bipes	Silvery Dwarf Burrowing Skink	E		
			Scincinae	Scelotes sexlineatus	Striped Dwarf Burrowing Skink	E		
				Scelotes brevipes	Hewitt's Dwarf Burrowing Skink	E		
				Scelotes caffer	Cape Dwarf Burrowing Skink	E		
				Scelotes capensis	Western Dwarf Burrowing Skink	E		
				Scelotes gronovii	Gronovi's Dwarf Burrowing Skink	E		

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Scelotes guentheri	Gunther's Dwarf Burrowing Skink	E		
				Scelotes inornatus	Smith's Dwarf Burrowing Skink	E		
				Scelotes kasneri	Kasner's Dwarf Burrowing Skink	E		
				Scelotes limpopoensis	Limpopo Dwarf Burrowing Skink	E		
				Scelotes mira	Montane Dwarf Burrowing Skink	E		
				Sepsina alberti	Albert's Burrowing Skink	Е		
				Sepsina angolensis	Angola Burrowing Skink			
				Typhlacontias bogerti	Bogert's Burrowing Skink			
				Typhlacontias brevipes	FitzSimons's Burrowing Skink			
				Typhlacontias gracilis	Kalahari Burrowing Skink			
				Cryptoblepharus boutonii	Bouton's Skink			
				Lygosoma afer	Mozambique Writhing Skink			
			Lygosomatiinae	Lygosoma sundevallii	Sundevall's Writhing Skink			
				Mabuya acutilabris	Wedge-snouted Skink			
				Mabuya binotata	Ovambo Tree Skink			
				Mabuya boulengeri	Boulenger's Skink			
				Mabuya capensis	Cape Skink			
				Mabuya chimbana	Chimbana Skink			
				Mabuya hoeschi	Hoesch's Skink			
				Mabuya homalocephala	Red-sided Skink	E		
				Mabuya quinquetaeniata	Five-lined or Rainbow			

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
					Skink			
				Mabuya lacertiformis	Bronze Rock Skink			
				Mabuya laevis	Angolan Blue-tailed Skink			
				Mabuya maculilabris	Speckled-lipped Skink			
				Mabuya megalura	Grass-top Skink			
				Mabuya occidentalis	Western Three-striped Skink			
				Mabuya spilogaster	Kalahari Tree Skink			
				Mabuya striata	Striped Skink			
				Mabuya sulcata	Western Rock Skink			
				Mabuya varia	Variable Skink			
				Mabuya variegata	Variegated Skink			
				Panaspis wahlbergii	Walberg's Snake-eyed Skink			
				Aporosaura anchietae	Shovel-snouted Lizard			
				Heliobolus lugubris	Bushveld Lizard			
				Holaspis guentheri	Blue-tailed Tree Lizard			
				Ichnotropis capensis	Cape Rough-scaled Lizard			
				Ichnotropis grandiceps	Caprivi Rough-scaled Lizard	E		
		Lacertidae		Ichnotropis squamulosa	Common Rough- scaled Lizard			
				Lacerta australis	Southern Rock Lizard	E		
				Lacerta rupicola	Soutpansberg Rock Lizard	E		
				Meroles ctenodactylus	Smith's Desert Lizard	E		
				Meroles cuneirostris	Wedge-snouted Desert Lizard	E		
				Meroles knoxii	Knox's Desert Lizard	E		
				Meroles micropholidotus	Small-scaled Desert	E		

Golder

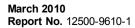
ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
					Lizard			
				Meroles reticulatus	Reticulated Destert Lizard			
				Meroles suborbitalis	Spotted Desert Lizard	E		
				Nucras caesicaudata	Blue-tailed Sandveld Lizard	E		
				Nucras intertexta	Spotted Sandveld Lizard	E		
				Nucras Ialandii	Delalande's Sandveld Lizard	E		
				Nucras taeniolata	Ornate Sandveld Lizard			
				Nucras tessellata	Striped Sandveld Lizard			
				Pedioplanis breviceps	Short-headed Sand Lizard	E		
				Pedioplanis burchelli	Burchell's Sand Lizard	E		
				Pedioplanis laticeps	Cape Sand Lizard	E		
				Pedioplanis lineoocellata	Spotted Sand Lizard	E		
				Pedioplanis namaquensis	Namaqua Sand Lizard			
				Pedioplanis undata	Western Sand Lizard			
				Pedioplanis sp.	Husab Sand Lizard	E		
				Tropidosaura essexi	Essex's Mountain Lizard	E		
				Tropidosaura cottrelli	Cottrell's Mountain Lizard	E		
				Tropidosaura gularis	Cape Mountain Lizard	E		
				Tropidosaura montana	Common Mountain Lizard	E		
				Angolosaurus skoogi	Desert Plated Lizard			
		Cordylidae	Gerrhosaurinae	Cordylosaurus subtessellatus	Dwarf Plated Lizard			



ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Gerrhosaurus flavigularis	Yellow-throated Plated Lizard			
				Gerrhosaurus major	Rough-scaled Plated Lizard			
				Gerrhosaurus multineatus	Kalahari Plated Lizard			
				Gerrhosaurus nigrolineatus	Black-lined Plated Lizard			
				Gerrhosaurus typicus	Namaqua Plated Lizard	E		
				Gerrhosaurus validus	Giant Plated Lizard			
				Tetradactylus africanus	African Long-tailed Seps	E		
				Tetradactylus breyeri	Breyer's Long-tailed Seps	E		
				Tetradactylus eastwoodae	Eastwood's Long- tailed Seps	E		
				Tetradactylus seps	Short-legged Seps	Е		
				Tetradactylus tetradactylus	Common Long-tailed Seps	E		
				Charmaesaura aenea	Transvaal Grass Lizard	E		
				Charmaesaura anguina	Cape Grass Lizard			
				Charmaesaura macrolepis	Large-scaled Grass Lizard			
			Cordylingo	Cordylus campbelli	Campbell's Girdled Lizard	E		
			Cordylinae	Cordylus cataphractus	Armadillo Girdled Lizard	E		
				Cordylus coeruleopunctatus	Blue-spotted Girdled Lizard	E		
				Cordylus cordylus	Cape Girdled Lizard	E		
				Cordylus giganteus	Giant Girdled Lizard or Sungazer	E		

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Cordylus lawrenci	Lawrence's Girdled Lizard	E		
				Cordylus macropholis	Large-scaled Girdled Lizard	E		
				Cordylus mclachlani	McLachlan's Girdled Lizard	E		
				Cordylus minor	Dwarf Girdled Lizard	E		
				Cordylus namaquensis	Namaqua Girdled Lizard	E		
				Cordylus peersi	Peers's Girdled Lizard	Е		
				Cordylus polyzous	Karoo Girdled Lizard	Е		
				Cordylus jordani	Jordan's Girdled Lizard	Е		
				Codylus pustulatus	Herero Girdled Lizard	E		
				Codylus rhodesianus	Zimbabwe Girdled Lizard	E		
				Cordylus tasmani	Tasman's Girdled Lizard	Е		
				Cordylus tropidostermum	Tropical Girdled Lizard			
				Cordlus vittifer	Transvaal Girdled Lizard			
				Cordylus warreni	Warren's Girdled Lizard	E		
				Platysaurus capensis	Cape Flat Lizard	Е		
				Platysaurus fitzsimonsi	FitzSimon's Flat Lizard	E		
				Platysaurus guttatus	Dwarf Flat Lizard	E		
				Platysaurus imperator	Emperor Flat Lizard	E		
				Platysaurus intermedius	Common Flat Lizard			
				Platysaurus ocellatus	Ocellated Flat Lizard	E		
				Platysaurus pungweensis	Pungwe Flat Lizard	E		
				Platysaurus relictus	Relict Flat Lizard	Е		
				Platysaurus torquatus	Striped Flat Lizard	-		
				Pseudocordylus capensis	Graceful Crag Lizard	E		

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Pseudocordylus langi	Lang's Crag Lizard	E		
				Pseudocordylus melantous	Drakensberg Crag Lizard	E		
				Pseudocordylus spinosus	Spiny Crag Lizard	E		
				Pseudocordylus microlepidotus	Cape Crag Lizard	E		
		Varanidae		Varanus exanthermaticus	Rock or White- throated Monitor			
				Varanus niloticus	Nile or Water Monitor			
				Agama aculeata	Ground Agama			
				Agama anchietae	Anchieta's Agama			
				Agama atra	Southern Rock Agama	E		
				Agama etoshae	Etosha Agama	E		
				Agama hispida	Spiny Agama	E		
		Agamidae		Agama Kirkii	Kirk's Rock Agama			
				Agama mossambica	Mozambique Agama			
				Agama planiceps	Namibian Rock Agama			
				Agama atricollis	Tree Agama			
				Bradypodion caffrum	Transkei Dwarf Chamaeleon	E		
				Bradypodion damaranum	Knysna Dwarf Chamaeleon	E		
				Bradypodion dracomontanum	Drakensberg Dwarf Chamaeleon	E		
		Chamaelaenidae		Bradypodion gutturale	Robertson Dwarf Chamaeleon	E		
		Chamaeleonidae		Bradypodion karroicum	Karoo Dwarf Chamaeleon	E		
				Bradypodion melanocephalum	Blackheaded Dwarf Chamaeleon	E		
				Bradypodion nemorale	Zululand Dwarf Chamaeleon	Е		



ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Bradypodion pumilum	Cape Dwarf Chamaeleon	E		
				Bradypodion seratoi	Serato's Dwarf Chamaeleon	E		
				Bradypodion taeniabronchum	Smith's Dwarf Chamaeleon	E		
				Bradypodion thamnobates	Natal Midlands Dwarf Chamaeleon	E		
				Bradypodion transvaalense	Transvaal Dwarf Chamaeleon	E		
				Bradypodion ventrale	Southern and Namaqua Dwarf Chamaeleons	E		
				Chamaeleo dilepis	Flap-neck Chamaeleon			
				Chamaeleo namaquesis	Namaqua Chamaeleon			
				Rhampholeon marshalli	Marshall's Leaf Chamaeleon	E		
				Afroedura africana	African Flat Gecko	E		
				Afroedura amatolica	Amatola Flat Gecko	E		
				Afroedura hawequensis	Hawequa Flat Gecko	E		
				Afroedura karroica	Karoo Flat Gecko	E		
				Afroedura nivaria	Mountain Flat Gecko	E		
				Afroedura pondolia	Pondo Flat Gecko	E		
		Gekkonidae		Afroedura tembulica	Tembe Flat Gecko	E		
				Afroedura tansvaalica Chrondrodactylus angulifer Colopus wahlbergii	Transvaal Flat Gecko			
					Giant Ground Gecko	E		
					Kalahari Ground Gecko	E		
				Hemidactylus mabouia	Moreau's Tropical House Gecko			
				Hemidactylus platycphalus	Flat-headed Tropical			

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
					House Gecko			
				Homopholis wahlbergii	Wahlberg's Velvet Gecko	E		
				Homopholis mulleri	Muller's Velvet Gecko			
				Kaokogecko vanzyli	Kaoko Web-footed Gecko			
				Lygodactylus angolensis	Angola Dwarf Gecko			
				Lygodactylus bernardi	Bernard's Dwarf Gecko			
				Lygodactylus bradfieldi	Bradfield's Dwarf Gecko			
				Lygodactylus capensis	Cape Dwarf Gecko			
				Lygodactylus chobiensis	Chobe Dwarf Gecko			
				Lygodactylus lawrencei	Lawrence's Dwarf Gecko			
				Lygodactylus methueni	Methuen's Dwarf Gecko	Е		
				Lygodactylus ocellatus	Spotted Dwarf Gecko	E		
				Lygodactylus stevensoni	Stevenson's Dwarf Gecko	E		
				Narudasia festiva	Festive Gecko	Е		
				Pachydactylus austeni	Austin's Gecko	E		
				Pachydactylus bicolor	Velvety Gecko	E		
				Pachydactylus bibronii	Bibron's Gecko			
				Pachydactylus capensis	Cape Gecko			
				Pachydactylus labialis	Western Cape Gecko	E		
				Pachydactylus caraculicus	Angolan Banded Gecko			
				Pachydactylus fasciatus	Banded Gecko	Е		
				Pachydactylus geitjie	Ocellated Gecko	Е		
				Pachydactylus kochii	Koch's Gecko			
				Pachydactylus laevigatus	Button-scaled Gecko			

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Pachydactylus maculatus	Spotted Gecko	E		
				Pachydactylus oculatus	Golden Spotted Gecko	E		
				Pachydactylus mariquensis	Marico Gecko	E		
				Pachydactylus namaquensis	Namaqua Gecko	E		
				Pachydactylus oreophilus	Kaokoveld Rock Gecko			
				Pachydactylus gaiasensis	Brandberg Gecko	Е		
				Pachydactylus punctatus	Speckled Gecko			
				Pachydactylus rugosus	Rough-scaled Gecko	E		
				Pachydactylus scutatus	Large-scaled Gecko			
				Pachydactylus serval	Western Spotted Gecko	E		
				Pachydactylus sansteyni	San Steyn's Gecko	Е		
				Pachydactylus tetensis	Tete Gecko			
				Pachydactylus tigrinus	Tiger Gecko	E		
				Pachydactylus tsodiloensis	Tsodilo Gecko	E		
				Pachydactylus weberi	Weber's Gecko	E		
				Palmatogecko rangei	Web-footed Gecko			
				Phelsuma ocellata	Namaqua Day Gecko	E		
				Phyllodactylus lineatus	Striped Leaf-toed Gecko	E		
				Phyllodactylus microlepidotus	Small-scaled Leaf-toed Gecko	E		
				Phyllodactylus peringueyi	Peringuey's Leaf-toed Gecko	E		
				Phyllodactylus pophyreus	Marble Leaf-toed Gecko	E		
				Ptenopus carpi	Carp's Barking Gecko	E		
				Ptenopus garrulus	Common Barking Gecko	E		

ORDER	SUBORDER	FAMILY	SUBFAMILY	BIOLOGICAL NAME	COMMON NAME	ENDEMIC	Red Data	Recorded
				Ptenopus kochi	Koch's Barking Gecko	Е		
				Rhoptropus afer	Namib Day Gecko			
				Rhoptropus bamardi	Barnard's Namib Day Gecko			
				Rhoptropus biporosus	Kaokoveld Namib Day Gecko	E		
				Rhoptropus boultoni	Boulton's Namib Day Gecko			
				Rhoptropus bradfield	Bradfield's Namib Day Gecko	E		
		Crocodylidae		Crocodylus niloticus	Nile Crocolile			

Species list for the region spanning South Africa, Lesotho and Swaziland. Endemic status:

E indicates no endemism to southern Africa

The relevant IUCN status categories are:

Critically Endangered (CR)

Endangered (EN)

Vulnerable (VU)

Near Threatened (NT)

Data Deficient (DD)

Least Concern (LC)

All species without a category are shown as Not Listed (NL)

Shaded species indicate species known to occur within the study area

APPENDIX D

SOUTHERN AFRICAN AMPHIBIAN SPECIES, SPECIES RECORDED IN THE 2629CC GRID SQUARE ARE HIGHLIGHTED

FAMILY	SPECIES	Endemic Status	Revised Status	Recorded
	Bufo amatolicus	2	NT	
	Bufo angusticeps	2	LC	
	Bufo fenoulheti	1	NL	
	Bufo gariepensis	2	NL	
	Bufo garmani	0	NL	
	Bufo gutturalis	0	NL	
	Bufo maculatus	0	NL	
5 () (Bufo pantherinus	2	EN	
Bufonidae	Bufo pardalis	2	LC	
	Bufo poweri	1	NL	
	Bufo rangeri	2	NL	
	Bufo robinsoni	2	DD	
	Bufo vertebralis	2	NL	
	Capensibufo rosei	2	VU	
	Capensibufo tradouwi	2	NL	
	Schismaderma carens	0	NL	
	Heleophryne hewitti	2	CR	
	Heleophryne natalensis	2	NL	
Heleophrynidae	Heleophryne purcelli	2	NL	
	Heleophryne Regis	2	NL	
	Heleophryne rosei	2	CR	
	Hemisus guineensis	0	NL	
Hemisotidae	Hemisus guttatus	2	NT	
	Hemisus marmoratus	0	NL	
	Afrixalus aureus	1	NL	
	Afrixalus delicatus	1	NL	
	Afrixalus fornasinii	0	NL	
	Afrixalus knysnae	2	DD	
	Afrixalus spinifrons	2	NL	
	Hyperolius argus	0	NL	
	Hyperolius horstockii	2	NL	
	Hyperolius marmoratus	0	NL	
Hyperoliidae	Hyperolius nasutus	0	NL	
	Hyperolius pickersgilli	2	EN	
	Hyperolius pusillus	0	NL	
	Hyperolius semidiscus	2	NL	
	Hyperolius tuberilinguis	0	NL	
	Kassina maculate	0	NL	
	Kassina senegalensis	0	NL	
	Leptopelis mossambicus	1	NL	
	Leptopelis natalensis	2	NL	

FAMILY	SPECIES	Endemic Status	Revised Status	Recorded
	Leptopelis xenodactylus	2	EN	
	Semnodactylus wealii	2	NL	
	Breviceps acutirostris	2	NL	
	Breviceps adspersus	0	NL	
	Breviceps fuscus	2	NL	
	Breviceps gibbosus	2	NT	
	Breviceps macrops	1	NT	
	Breviceps montanus	2	NL	
	Breviceps mossambicus	0	NL	
Microhylidae	Breviceps namaquensis	2	NL	
	Breviceps rosei	2	NL	
	Breviceps sp. (sopranus)	2	NL	
	Breviceps sylvestris	2	NT	
	Breviceps verrucosus	2	NL	
	Phrynomantis annectens	1	NL	
	Phrynomantis bifasciatus	0	NL	
	Xenopus gilli	2	EN	
Pipidae	Xenopus laevis	0	NL	
	Xenopus muelleri	0	NL	
	Anhydrophryne rattrayi	2	NT	
	Arthroleptella bicolor	2	NL	
	Arthroleptella drewesii	2	NT	
	Arthroleptella hewitti	2	NL	
	Arthroleptella lightfooti	2	NT	
	Arthroleptella ngongoniensis	2	CR	
	Arthroleptella landdrosia	2	NT	
	Arthroleptella villiersi	2	NL	
	Cacosternum boettgeri	1	NL	
Petropedetidae	Cacosternum capense	2	VU	
,	Cacosternum namaquense	2	NL	
	Cacosternum nanum	2	NL	
	Cacosternum striatum	2	DD	
	Microbatrachella capensis	2	CR	
	Natalobatrachus bonebergi	2	EN	
	Phrynobatrachus acridoides	0	NL	
	Phrynobatrachus mababiensis	0	NL	
	Phrynobatrachus natalensis	0	NL	
	Poyntonia paludicola	2	NT	
	Afrana angolensis	0	NL	
Ranidae	Afrana dracomontana	2	NL	
	Afrana fuscigula	1	NL	

March 2010

Report No. 12500-9610-1

FAMILY	SPECIES	Endemic Status	Revised Status	Recorded
	Afrana vandijki	2	DD	
	Amietia vertebralis	2	NL	
	Hildebrandtia ornata	0	NL	
	Ptychadena anchietae	0	NL	
	Ptychadena mascareniensis	0	NL	
	Ptychadena mossambica	0	NL	
	Ptychadena oxyrhynchus	0	NL	
	Ptychadena porosissima	0	NL	
	Ptychadena taenioscelis	0	NL	
	Ptychadena uzungwensis	0	NL	
	Pyxicephalus adspersus	0	NT	
	Pyxicephalus edulis	0	NL	
	Strongylopus bonaespei	2	NL	
	Strongylopus fasciatus	1	NL	
	Strongylopus grayii	2	NL	
	Strongylopus hymenopus	2	NL	
	Strongylopus springbokensis	2	DD	
	Strongylopus wageri	2	NT	
	Tomopterna cryptotis	0	NL	
	Tomopterna delalandii	2	NL	
	Tomopterna krugerensis	1	NL	
	Tomopterna marmorata	1	NL	
	Tomopterna natalensis	2	NL	
	Tomopterna tandyi	0	NL	
Rhacophoridae	Chiromantis xerampelina	0	NL	

Species list for the region spanning South Africa, Lesotho and Swaziland. Endemic status:

0 indicates no endemism to southern Africa

1 indicates endemism to southern Africa;

2 indicates endemism to the region (South Africa, Lesotho and Swaziland).

The relevant IUCN status categories are:

Critically Endangered (CR)

Endangered (EN)

Vulnerable (VU)

Near Threatened (NT)

Data Deficient (DD)

Least Concern (LC)

All species without a category are shown as Not Listed (NL)

Shaded species indicate species known to occur within the study area

APPENDIX E

AVIFAUNAL SPECIES KNOWN TO OCCUR IN THE 2629CC GRID SQUARE

Ref No	Common Name (English and Afrikaans)	Biological Name
245	Blacksmith Lapwing	Vanellus armatus
	(Bontkiewiet)	
84	Hadeda Ibis	Bostrychia hagedash
	(Hadeda)	
707	Common Fiscal	Lanius collaris
	(Fiskaallaksman)	
317	Laughing Dove	Streptopelia
	(Rooiborsduifie)	senegalensis
786	Cape Sparrow	Passer melanurus
	(Gewone Mossie)	
316	Cape Turtle-Dove	Streptopelia capicola
	(Gewone Tortelduif)	
803	Southern Masked-Weaver	Ploceus velatus
	(Swartkeelgeelvink)	
311	Speckled Pigeon	Columba guinea
	(Kransduif)	
502	Greater Striped Swallow	Hirundo cucullata
	(Grootstreepswael)	
940	Rock Dove	Columba livia
	(Tuinduif)	
808	Southern Red Bishop	Euplectes orix
	(Rooivink)	
61	Cattle Egret	Bubulcus ibis
	(Veereier)	
812	Yellow-crowned Bishop	Euplectes afer
	(Goudgeelvink)	
314	Red-eyed Dove	Streptopelia
	(Grootringduif)	semitorquata
96	Yellow-billed Duck	Anas undulata
	(Geelbekeend)	

Ref No	Common Name (English and Afrikaans)	Biological Name
242	Crowned Lapwing	Vanellus coronatus
	(Kroonkiewiet)	
734	Common Myna	Acridotheres tristis
	(Indiese Spreeu)	
784	House Sparrow	Passer domesticus
	(Huismossie)	
89	Egyptian Goose	Alopochen aegyptiacus
	(Kolgans)	
55	Black-headed Heron	Ardea melanocephala
	(Swartkopreier)	
385	Little Swift	Apus affinis
	(Kleinwindswael)	
130	Black-shouldered Kite	Elanus caeruleus
	(Blouvalk)	
192	Helmeted Guineafowl	Numida meleagris
	(Gewone Tarentaal)	
1104	Karoo Thrush	Turdus smithi
	(Geelbeklyster)	
818	Long-tailed Widowbird	Euplectes progne
	(Langstertflap)	
212	Red-knobbed Coot	Fulica cristata
	(Bleshoender)	
54	Grey Heron	Ardea cinerea
	(Bloureier)	
81	African Sacred Ibis	Threskiomis aethiopicus
	(Skoorsteenve�r)	
646	Levaillant's Cisticola	Cisticola tinniens
	(Vleitinktinkie)	
288	Grey-headed Gull	Larus cirrocephalus
	(Gryskopmeeu)	-

Ref No	Common Name (English and Afrikaans)	Biological Name
703	Cape Longclaw	Macronyx capensis
	(Oranjekeelkalkoentjie)	
860	Black-throated Canary	Crithagra atrogularis
	(Bergkanarie)	
119	Amur Falcon	Falco amurensis
	(Oostelike Rooipootvalk)	
846	Pin-tailed Whydah	Vidua macroura
	(Koningrooibekkie)	
185	Swainson's Spurfowl	Pternistis swainsonii
	(Bosveldfisant)	
564	Mountain Wheatear	Oenanthe monticola
	(Bergwagter)	
52	African Darter	Anhinga rufa
	(Slanghalsvo�l)	
686	Cape Wagtail	Motacilla capensis
	(Gewone Kwikkie)	
820	Red-headed Finch	Amadina erythrocephala
	(Rooikopvink)	
418	African Hoopoe	Upupa africana
	(Hoephoep)	
737	Cape Glossy Starling	Lamprotornis nitens
	(Kleinglansspreeu)	
88	Spur-winged Goose	Plectropterus gambensis
	(Wildemakou)	
50	Reed Cormorant	Phalacrocorax africanus
	(Rietduiker)	
780	White-browed Sparrow-Weaver	Plocepasser mahali
	(KoringvoëI)	
6	Little Grebe	Tachybaptus ruficollis
	(Kleindobbertjie)	

Ref No	Common Name (English and Afrikaans)	Biological Name
692	African Pipit	Anthus cinnamomeus
	(Gewone Koester)	
576	African Stonechat	Saxicola torquatus
	(Gewone Bontrokkie)	
390	Speckled Mousebird	Colius striatus
	(Gevlekte Muisvo�l)	
238	Three-banded Plover	Charadrius tricollaris
	(Driebandstrandkiewiet)	
85	African Spoonbill	Platalea alba
	(Lepelaar)	
495	White-throated Swallow	Hirundo albigularis
	(Witkeelswael)	
343	Red-chested Cuckoo	Cuculus solitarius
	(Piet-my-vrou)	
439	Crested Barbet	Trachyphonus vaillantii
	(Kuifkophoutkapper)	
504	South African Cliff-Swallow	Hirundo spilodera
	(Familieswael)	
797	Village Weaver	Ploceus cucullatus
	(Bontrugwewer)	
83	Glossy Ibis	Plegadis falcinellus
	(Glansibis)	
844	African Quailfinch	Ortygospiza atricollis
	(Gewone Kwartelvinkie)	
383	White-rumped Swift	Apus caffer
	(Witkruiswindswael)	
629	Zitting Cisticola	Cisticola juncidis
	(Landeryklopkloppie)	
581	Cape Robin-Chat	Cossypha caffra
	(Gewone Janfrederik)	

Ref No	Common Name (English and Afrikaans)	Biological Name
493	Barn Swallow	Hirundo rustica
	(Europese Swael)	
814	White-winged Widowbird	Euplectes albonotatus
	(Witvlerkflap)	
488	Red-capped Lark	Calandrella cinerea
	(Rooikoplewerik)	
631	Cloud Cisticola	Cisticola textrix
	(Gevlekte Klopkloppie)	
94	Cape Shoveler	Anas smithii
	(Kaapse Slopeend)	
392	Red-faced Mousebird	Urocolius indicus
	(Rooiwangmuisvo�I)	
97	Red-billed Teal	Anas erythrorhyncha
	(Rooibekeend)	
453	Red-throated Wryneck	Jynx ruficollis
	(Draaihals)	
47	White-breasted Cormorant	Phalacrocorax carbo
	(Witborsduiker)	
816	Fan-tailed Widowbird	Euplectes axillaris
	(Kortstertflap)	
805	Red-billed Quelea	Quelea quelea
	(Rooibekkwelea)	
223	Blue Korhaan	Eupodotis caerulescens
	(Bloukorhaan)	
250	African Snipe	Gallinago nigripennis
	(Afrikaanse Snip)	
843	Common Waxbill	Estrilda astrild
	(Rooibeksysie)	
522	Pied Crow	Corvus albus
	(Witborskraai)	

Ref No	Common Name (English and Afrikaans)	Biological Name
275	Spotted Thick-knee	Burhinus capensis
	(Gewone Dikkop)	
352	Diderick Cuckoo	Chrysococcyx caprius
	(Diederikkie)	
507	Common House-Martin	Delichon urbicum
	(Huisswael)	
189	Common Quail	Coturnix coturnix
	(Afrikaanse Kwartel)	
264	Wood Sandpiper	Tringa glareola
	(Bosruiter)	
545	Dark-capped Bulbul	Pycnonotus tricolor
	(Swartoogtiptol)	
490	Pink-billed Lark	Spizocorys conirostris
	(Pienkbeklewerik)	
1016	Mallard	Anas platyrhynchos
	(Groenkopeend)	
58	Great Egret	Egretta alba
	(Grootwitreier)	
210	Common Moorhen	Gallinula chloropus
	(Grootwaterhoender)	
102	Southern Pochard	Netta erythrophthalma
	(Bruineend)	
419	Green Wood-Hoopoe	Phoeniculus purpureus
	(Rooibekkakelaar)	
509	Brown-throated Martin	Riparia paludicola
	(Afrikaanse Oewerswael)	
635	Pale-crowned Cisticola	Cisticola cinnamomeus
	(Bleekkopklopkloppie)	
1172	Cape White-eye	Zosterops virens
	(Kaapse Glasogie)	

Ref No	Common Name (English and Afrikaans)	Biological Name
270	Black-winged Stilt	Himantopus himantopus
	(Rooipootelsie)	
361	Marsh Owl	Asio capensis
	(Vlei-uil)	
69	Black-crowned Night-Heron	Nycticorax nycticorax
	(Gewone Nagreier)	
866	Yellow Canary	Crithagra flaviventris
	(Geelkanarie)	
80	White Stork	Ciconia ciconia
	(Witooievaar)	
634	Wing-snapping Cisticola	Cisticola ayresii
	(Kleinste Klopkloppie)	
575	Anteating Chat	Myrmecocichla formicivora
	(Swartpiek)	rormicivora
100	White-faced Duck	Dendrocygna viduata
	(Nonnetjie-eend)	
506	Rock Martin	Hirundo fuligula
	(Kransswael)	
253	Little Stint	Calidris minuta
	(Kleinstrandloper)	
431	Black-collared Barbet	Lybius torquatus
	(Rooikophoutkapper)	
1035	Northern Black Korhaan	Afrotis afraoides
	(Witvlerkkorhaan)	
154	Steppe Buzzard	Buteo vulpinus
	(Bruinjakkalsvo∕₂l)	
305	Whiskered Tern	Chlidonias hybrida
	(Witbaardsterretjie)	
60	Yellow-billed Egret	Egretta intermedia
	(Geelbekwitreier)	

Ref No	Common Name (English and Afrikaans)	Biological Name
523	Cape Crow	Corvus capensis
	(Swartkraai)	
263	Common Greenshank	Tringa nebularia
	(Groenpootruiter)	
72	Hamerkop	Scopus umbretta
	(Hamerkop)	
122	Greater Kestrel	Falco rupicoloides
	(Grootrooivalk)	
179	Orange River Francolin	Scleroptila levaillantoides
	(Kalaharipatrys)	
4142	Southern Grey-headed Sparrow	Passer diffusus
	(Gryskopmossie)	
318	Namaqua Dove	Oena capensis
	(Namakwaduifie)	
650	Black-chested Prinia	Prinia flavicans
	(Swartbandlangstertjie)	
56	Goliath Heron	Ardea goliath
	(Reusereier)	
510	Banded Martin	Riparia cincta
	(Gebande Oewerswael)	
76	Yellow-billed Stork	Mycteria ibis
	(Nimmersat)	
168	Pallid Harrier	Circus macrourus
	(Witborsvleivalk)	
1	Common Ostrich	Struthio camelus
	(Volstruis)	
98	Cape Teal	Anas capensis
	(Teeleend)	
568	Capped Wheatear	Oenanthe pileata
	(Hoeveldskaapwagter)	

March 2010

Report No. 12500-9610-1

Ref No	Common Name (English and Afrikaans)	Biological Name
751	Malachite Sunbird	Nectarinia famosa
	(Jangroentjie)	
654	Spotted Flycatcher	Muscicapa striata
	(Europese VlieiÃ,¿Ã,½vanger)	
397	Malachite Kingfisher	Alcedo cristata
	(Kuifkopvisvanger)	
258	Common Sandpiper	Actitis hypoleucos
	(Gewone Ruiter)	
474	Spike-heeled Lark	Chersomanes
	(Vlaktelewerik)	albofasciata
123	Rock Kestrel	Falco rupicolus
	(Kransvalk)	
380	African Black Swift	Apus barbatus
	(Swartwindswael)	
359	Barn Owl	Tyto alba
	(Nonnetjie-uil)	
73	Marabou Stork	Leptoptilos crumeniferus
	(Maraboe)	
256	Ruff	Philomachus pugnax
	(Kemphaan)	
484	Chestnut-backed Sparrowlark	Eremopterix leucotis
	(Rooiruglewerik)	
503	Lesser Striped Swallow	Hirundo abyssinica
	(Kleinstreepswael)	
237	Kittlitz's Plover	Charadrius pecuarius
	(Geelborsstrandkiewiet)	
708	Red-backed Shrike	Lanius collurio
	(Rooiruglaksman)	
103	Maccoa Duck	Oxyura maccoa
	(Bloubekeend)	

Ref No	Common Name (English and Afrikaans)	Biological Name
82	Southern Bald Ibis	Geronticus calvus
	(Kalkoenibis)	

APPENDIX F

SOUTHERN AFRICAN MAMMALS, SPECIES KNOWN TO OCCUR IN THE 2629CC GRID SQUARE ARE HIGHLIGHTED

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
	Chrysopalax trevelyani	Giant Golden Mole		0	EN
	Chrysopalax villosus	Rough-haired Golden Mole		0	VU
	Chryptochloris wintoni	De Winton's Golden Mole		0	CE
	Chryptochloris zyli	Van Zyl's Golden Mole		0	EN
	Chrysochloris asiatica	Cape Golden Mole		0	
	Chrysochloris visagiei	Visagie's Golden Mole		0	DD
	Eremitalpa granti	Grant's Golden Mole		0	
	Carpitalpa arendsi	Arend's Golden Mole		0	
CHRYSOCHLORIDAE	Chlorotalpa duthieae	Duthie's Golden Mole		0	NT
(Golden Moles)	Chlorotalpa sclateri	Sclater's Golden Mole		0	
	Calcochloris obtusirostris	Yellow Golden Mole		0	
	Neamblysomus gunningi	Gunning's Golden Mole		0	EN
	Neamblysomus julianae	Juliana's Golden Mole		0	VU
	Amblysomus corriae	Fynbos Golden Mole		0	NT
	Amblysomus septentrionalis	Highveld Golden Mole		1	NT
	Amblysomus hottentotus	Hottentot Golden Mole		0	
	Amblysomus marleyi	Marley's Golden Mole		0	NT
	Amblysomus robustus	Robust Golden Mole		0	NT
	Petrodromus tetradactylus	Four-toed Sengi		0	
	Macroscelides proboscideus	Round-eared Sengi		0	
MAGDOGGELIDIDAE	Elephantulus fuscus	Peters's Short-snouted Sengi		0	
MACROSCELIDIDAE (Sangia/Elaphant	Elephantulus brachyrhynchus	Short-snouted Sengi		0	
(Sengis/Elephant Shrews)	Elephantulus rupestris	Western Rock Sengi		0	
Officws)	Elephantulus intufi	Bushveld Sengi		0	
	Elephantulus myurus	Eastern Rock Sengi		1	
	Elephantulus edwardii	Cape Rock Sengi		0	
ERINACEIDAE (Hedgehogs)	Atelerix frontalis	Southern African Hedgehog		1	
SORICIDAE (Shrews)	Mysorex longicaudatus	Long-tailed Forest Shrew		0	VU
SUNICIDAE (SIIIEWS)	Mysorex cafer	Dark-footed Forest Shrew		0	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
	Mysorex sclateri	Sclater's Forest Shrew		0	NT
	Mysorex varius	Forest Shrew		0	
	Crocidura occidentalis (olivieri)	Giant Musk Shrew		0	
	Crocidura mariquensis	Swamp Musk Shrew		2	
	Crocidura fuscomurina	Tiny Musk Shrew		0	
	Crocidura maquassiensis	Maquassie Musk Shrew		0	
	Crocidura cyanea	Reddish-grey Musk Shrew		3	
	Crocidura silacea	Lesser Grey Musk Shrew		0	
	Crocidura flavescens	Greater Red Musk Shrew		0	
	Crocidura luna	Greater Grey-brown Musk Shrew		0	
	Crocidura hirta	Lesser Red Musk Shrew		0	
	Suncus lixus	Greater Dwarf Shrew		0	
	Suncus varilla	Lesser Dwarf Shrew		0	
	Suncus infinitesimus	Least Dwarf Shrew		0	
	Sylvisorex megalura	Climbing Shrew		0	
	Eidolon helvum	Straw-coloured Fruit-bat		0	NT
	Rousettus aegyptiacus	Egyptian Fruit-bat		0	
DTEDODODIDAE (Emilia	Lissonycteris angolensis	Bocage's Fruit-bat		0	
PTEROPODIDAE (Fruit Bats)	Epomophorus wahlbergi	Wahlberg's Epauletted Fruit-bat		0	
Dats)	Epomophorus gambianus	Gambian Epauletted Fruit-bat		0	
	Epomophorus angolensis	Angolan Epauletted Fruit-bat		0	
	Epomops dobsonii	Dobson's Fruit-bat		0	
EMBALLONURIDAE	Coleura afra	African Sheath-tailed Bat		0	
(Sheath-tailed and Tomb bats)	Taphozous mauriatianus	Mauritian Tomb Bat		0	
	Taphozous perforatus	Egyptian Tomb Bat		0	
LUDDOOLDEDIDAE	Hipposideros commersoni	Commerson's Leaf-nosed Bat		0	
HIPPOSIDERIDAE (Trident and Leaf-nosed	Hipposideros caffer	Sundevall's Leaf-nosed Bat		0	
Bats)	Cloeotis percivali	Short-eared Trident Bat		0	
- Dato)	Triaenops persicus	Persian Leaf-nosed Bat		0	
NYCTERIDAE (Slit-	Nycteris hispida	Hairy Slit-faced Bat		0	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
faced Bats)	Nycteris grandis	Large Slit-faced Bat		0	
	Nycteris woodi	Wood's Slit-faced Bat		0	
	Nycteris macrotis	Greater Slit-faced Bat		0	
	Nycteris thebiaca	Egyptian Slit-faced Bat		1	
	Nycteris vinsoni	Vinson's Slit-faced Bat		0	
	Rhinolophus hildebrandtii	Hildebrandt's Horseshoe Bat		0	
	Rhinolophus fumigatus	Ruppel's Horseshoe Bat		0	
	Rhinolophus clivosus	Geoffrey's Horseshoe Bat		1	
	Rhinolophus darlingi	Darling's Horseshoe Bat		1	
RHINOLOPHIDAE	Rhinolophus landeri	Lander's Horseshoe Bat		0	
(Horseshoe Bats)	Rhinolophus blasii	Peak-saddle Horseshoe Bat		0	
	Rhinolophus capensis	Cape Horseshoe Bat		0	
	Rhinolophus simulator	Bushveld Horseshoe Bat		0	
	Rhinolophus denti	Dent's Horseshoe Bat		0	
	Rhinolophus swinnyi	Swinny's Horseshoe Bat		0	
	Miniopterus inflatus	Greater Long-fingered Bat		0	
	Miniopterus fraterculus	Lesser Long-fingered Bat		0	
	Miniopterus schriebersii	Schrieber's Long-fingered Bat		1	
	Myotis welwitschii	Welwitch's Hairy Bat		0	
	Cistugo seabrai	Angolan Hairy Bat		0	
	Cistugo lesueri	Lesueur's Hairy Bat		0	
VECDEDTII IONIDAE	Myotis tricolor	Temminck's Hairy Bat		0	
VESPERTILIONIDAE (Vesper Bats)	Myotis bocagi	Rufous Hairy Bat		0	
(vesper bals)	Eptesicus hottentotus	Long-tailed Serotine Bat		0	
	Neoromicia capensis	Cape Serotine Bat		1	
	Neoromicia nanus	Banana Bat		0	
	Neoromicia rendalii	Rendall's Serotine Bat		0	
	Neoromicia zuluensis	Aloe Serotine Bat		0	
	Hypsugo anchietai	Anchieta's Pipistrelle		0	
	Pipistrellus hesperidus	African Pipistrelle		1	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
	Pipistrellus rusticus	Rusty Pipistrelle		0	
	Pipistrellus rueppelli	Ruppell's Pipistrelle		0	
	Glauconycteris variegata	Butterfly Bat		0	
	Laephotis namibensis	Namib Long-eared Bat		0	
	Laephotis botswanae	Botswana Long-eared Bat		0	
	Laephotis wintoni	De Winton's Long-eared Bat		0	
	Scotoecus albofuscus	Thomas's House Bat		0	DD
	Nicticeinops schlieffenii	Schlieffen's Bat		0	
	Scotophilus nigrita	Giant Yellow House Bat		0	
	Scotophilus dinganii	Yellow House Bat		0	
	Scotophilus viridus	Lesser Yellow House Bat		0	
	Kerivoula argentata	Damara Wooly Bat		0	
	Kerivoula lanosa	Lesser Wooly Bat		0	
	Otomops martiensseni	Large-eared Free-tailed Bat		0	
	Sauromys petrophyilus	Flat-headed Free-tailed Bat		0	
	Mormopterus acetabulosus	Natal Free-tailed Bat		0	
	Tadarida ventralis	African Free-tailed Bat		0	
	Tadarida aegyptiaca	Egyptian Free-tailed Bat		1	
	Tadarida lobata	Kenyan Big-eared Free-tailed Bat		0	
MOLOSSIDAE (Free-	Taradida fulminans	Madagascar Free-tailed Bat		0	
tailed Bats)	Chaerephon ansorgei	Ansorge's Free-tailed Bat		0	
	Chaerephon pumila	Little Free-tailed Bat		0	
	Chaerephon nigeriae	Nigerian Free-tailed Bat		0	
	Chaerephon chapini	Pale (Chapin's) Free-tailed Bat		0	
	Chaerephon bivittata	Spotted Free-tailed Bat		0	
	Mops condylurus	Angola Free-tailed Bat		0	
	Mops midas	Midas Free-tailed Bat		0	
OF DOODITUE OUD A F	Papio cynocephalus ursinus	Savanna Baboon		0	
CERCOPITHECIDAE (Baboons and Monkeys)	Cercopithecus pygerythrus	Vervet Monkey		0	
(Daboons and Monkeys)	Cercopithecus albogularis	Syke's Monkey		0	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
GALAGIDDAE (Galagos	Otolemur (Galago) crassicaudatus	Thick-tailed (Greater) Galago		0	
/ Bushbabies)	Galago moholi	Southern Lesser Galago		0	
	Galagoides granti	Grant's Galago		0	
MANIDAE (Pangolins)	Manis temminckii	Ground Pangolin		0	
	Lepus capensis	Cape Hare		0	
	Lepus saxatillis	Scrub Hare		4	
LEDODIDAE (Haras and	Pronolagus randensis	Jameson's Red Rock Rabbit		0	
LEPORIDAE (Hares and Rabbits)	Pronolagus crassicaudatus	Natal Red Rock Rabbit		0	
Rabbits)	Pronolagus saundersiae	Hewitt's Red Rock Rabbit		0	
	Pronolagus rupestris	Smith's Red Rock Rabbit		0	
	Bunolagus monticularis	Riverine Rabbit		0	CE
	Xerus inauris	Southern African Ground Squirrel		0	
	Xerus princeps	Damara Ground Squirrel		0	
	Heliosciurus mutabilis	Sun Squirrel		0	
SCIURIDAE (Squirrels)	Paraxerus palliatus	Red Bush Squirrel		0	
	Funisciurus congicus	Striped Tree Squirrel		0	
	Paraxerus cepapi	Tree Squirrel		0	
	Sciurus carolinensis	Grey Squirrel (Introduced)		0	
	Graphiurus ocularis	Spectacled Dormouse		0	
MVOVIDAE (Dorming)	Graphiurus platyops	Rock Dormouse		0	
MYOXIDAE (Dormice)	Graphiurus murinus	Woodland Dormouse		0	
	Graphiurus kelleni	Lesser Savanna Dormouse		0	
PEDETIDAE (Springhares)	Pedetes capensis	Springhare		3	
BATHYERGIDAE (Rodent Moles / Mole	Bathyergus suillus	Cape Dune Mole-rat		0	
	Bathyergus janetta	Namaqua Dune Mole-rat		0	
	Cryptomys hottentotus	Common (African) Mole-rat		2	
Rats)	Cryptomys damarensis	Damara Mole-rat		0	
	Cryptomys darlingi	Mashona Mole-rat		0	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
	Georychus capensis	Cape Mole-rat		0	
HYSTRICIDAE (Porcupine)	Hystrix africaeaustralis	Cape Porcupine		4	
THRYONOMYIDAE	Thryonomys swinderianus	Greater Cane-rat		0	
(Cane-rats)	Thryonomys gregorianus	Lesser Cane-rat		0	
PETROMURIDAE (Dassie Rat)	Petromus typicus	Dassie Rat		0	
	Zelotomys woosnami	Woosnam's Desert Mouse		0	
	Mystromys albicaudatus	White-tailed Mouse		0	EN
	Saccostomus campestris	Pouched Mouse		0	
	Cricetomys gambianus	Gambian Giant Rat		0	
	Steatomys pratensis	Fat Mouse		0	
	Steatomys parvus	Tiny Fat Mouse		0	
	Steatomys krebsii	Krebb's Fat Mouse		0	
	Dendromus nyikae	Nyika Climbing Mouse		0	
	Dendromus melanotis	Grey Climbing Mouse		3	
	Dendromus mesomelas	Brant's Climbing Mouse		0	
MURIDAE (Rats and	Dendromus mystacalis	Chestnut Climbing Mouse		0	
Mice)	Malacothrix typica	Gerbil Mouse		0	
iviloe)	Desmodillus auricularis	Cape Short-tailed Gerbil		0	
	Gerbillurus paeba	Hairy-footed Gerbil		0	
	Gerbillurus vallinus	Brush-tailed Hairy-footed Gerbil		0	
	Gerbillurus tytonis	Dune Hairy-footed Gerbil		0	
	Gerbillurus setzeri	Stezer's Hairy-footed Gerbil		0	
	Tatera leucogaster	Bushveld Gerbil		0	
	Tatera afra	Cape Gerbil		0	
	Tatera brantsii	Highveld Gerbil		3	
	Tatera inclusa	Gorongoza Gerbil		0	
	Acomys spinosissimus	Spiny Mouse		0	
	Acomys subspinosus	Cape Spiny Mouse		0	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
	Michaelamys namaquensis	Namaqua Rock Mouse		1	
	Michaelamys granti	Grant's Rock Mouse		0	
	Aethomys chrysophilus	Red Veld Rat		1	
	Aethomys silindensis	Silinda Rat		0	
	Aethomys ineptus	Tete Veld Rat		0	
	Aethomys namaquensis	Namaqua Rock Mouse		0	
	Dasymys incomtus	African Marsh Rat		0	
	Rhabdomys pumilio	Four-striped Grass Mouse		4	
	Lemniscomys rosalia	Single-striped Grass Mouse		0	
	Mus setzeri	Setzer's Pygmy Mouse		0	
	Mus triton	Grey-bellied Pygmy Mouse		0	
	Mus indutus	Desert Pygmy Mouse		0	
	Mus minutoides	Pygmy Mouse		3	
	Mus neavei	Neave's Pygmy Mouse		0	DD
	Mus orangiae	Free State Pygmy Mouse		0	
	Mus musculus*	House Mouse		3	
	Thallomys paedulcus	Acacia Rat		0	
	Thallomys nigricaudatus	Black-tailed Tree Rat		0	
	Grammomys dolichurus	Woodland Thicket Rat		0	
	Pelomys fallax	Creek Groove-toothed Rat		0	
	Mastomys natalensis	Natal Multimammate Mouse		3	
	Mastomys coucha	Southern Multimammate Mouse		0	
	Mastomys shortridgei	Shortridge's Mouse		0	DD
	Myomyscus verrauxii	Verraux's Mouse		0	
	Rattus rattus*	House Rat		3	
	Rattus norvegicus*	Brown Rat		0	
	Parotomys brantsii	Brants's Whistling Rat		0	
	Parotomys littledalei	Littledale's Whistling Rat		0	
	Otomys laminatus	Laminate Vlei Rat		0	
	Otomys angoniensis	Angoni Vlei Rat		3	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
	Otomys saundersiae	Saunders's Vlei Rat		0	
	Otomys irroratus	Vlei Rat		3	
	Otomys sloggetti	Sloggett's Rat		0	
	Otomys unisulcatus	Bush Karoo Rat		0	
	Petromyscus collinus	Pygmy Rock Mouse		0	
	Petromyscus barbouri	Barbour's Pygmy Rock Mouse		0	
	Petromyscus monticularis	Brukkaros Pygmy Rock Mouse		0	
	Petromyscus shortridgei	Shortridge's Pygmy Rock Mouse		0	
	Vulpes chama	Cape Fox		2	
CANIDAT (Favos	Otocyon megalotis	Bat-eared Fox		0	
CANIDAE (Foxes, Jackals, Wild Dog)	Canis mesomelas	Black-backed Jackal		3	
Jackais, Wild Dog)	Canis adustus	Side-strped Jackal		0	
	Lycaon pictus	Wild Dog	LE	0	EN
	Aonyx capensis	Cape Clawless Otter		3	
MUSTELIDAE (Otters,	Lutra maculicollis	Spoted-necked Otter		3	
Badger, Weasel &	Mellivora capensis	Honey Badger (Ratel)		0	
Polecat)	Poecilogale albinucha	African Striped Weasel		3	
	Ictonyx striatus	Striped Polecat		3	
	Mungos mungo	Banded Mongoose		0	
	Rhynchogale melleri	Meller's Mongoose		0	
	Bdeogale crassicauda	Bushy-tailed Mongoose		0	
	Paracynictis selousi	Selous's Mongoose		0	
	Galerella pulverulenta	Small Grey Mongoose		0	
HERPESTIDAE	Herpestes ichneumon	Large Grey Mongoose		0	
(Mongooses)	Gallerella sanguinea	Slender Mongoose		0	
	Attilax paludinosus	Water (Marsh) Mongoose		3	
	Helogale parvula	Dwarf Mongoose		0	
	Ichneumia albicauda	White-tailed Mongoose		3	
	Cynictis penicillata	Yellow Mongoose		3	
	Suricata suricatta	Suricate (Meerkat)		2	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
VIVERRIDAE (Genets &	Genetta genetta	Small-spotted Genet		2	
	Genetta maculata	Common Large-spotted Genet		0	
Civets)	Genetta tigrina	South African Large-spotted Genet		0	
	Civettictis civetta	African Civet		0	
NANDINIIDAE (Palm Civet)	Nandinia binotata	African Palm Civet		0	
LIVATAIDAT (Hygonga)	Crocuta crocuta	Spotted Hyaena	LE	0	
HYAENIDAE (Hyaenas)	Parahyaena brunnea	Brown Hyaena	LE	0	NT
PROTELIDAE (Aardwolf)	Proteles cristatus	Aardwolf		2	
	Felis silvestris lybica	African Wild Cat		2	
	Felis nigripes	Small Spotted Cat		1	VU
	Leptailurus serval	Serval		0	
FELIDAE (Cats)	Caracal caracal	Caracal		0	
	Acinonyx jubatus	Cheetah	LE	0	VU
	Panthera leo	Lion	LE	0	VU
	Panthera pardus	Leopard	LE	0	NT
ORYCTEROPODIDAE (Aardvark)	Orycteropus afer	Aardvark		3	
ELEPHANTIDAE (Elephant)	Loxodonta africana	African Elephant	LE	0	NT
	Procavia capensis	Rock Dassie (Hyrax)		1	
PROCAVIIDAE (Dassies	Procavia capensis welwitschii	Kaokoveld Rock Dassie (Hyrax)		0	
/ Hyrax)	Heterohyrax brucei	Yellow-spotted Rock Dassie (Hyrax)		0	
	Dendrohyrax arboreus	Tree Dassie (Hyrax)		0	
EQUIDAE (Zebras)	Equus zebra zebra	Cape Mountain Zebra		0	VU
	Equus zebra hartmannae	Hartman's Mountain Zebra		0	
	Equus quagga	Plains Zebra	LE	0	
RHINOCEROTIDAE	Diceros bicornis	Hook-lipped Rhinoceros	LE	0	CE
(Rhinoceroses)	Ceratotherium simum	Square-lipped Rhinoceros	LE	0	NT

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
SUIDAE (Pigs & Hogs)	Phacochoerus africanus	Common Warthog		0	
, , ,	Potamochoerus larvatus	Bushpig		0	
HIPPOPOTAMIDAE (Hippopotamuses)	Hippopotamus amphibius	Hippopotamus	LE	0	VU
GIRAFFIDAE (Giraffe)	Giraffa camelopardalis	Giraffe		0	
	Syncerus caffer	African Buffalo	LE	0	
	Tragelaphus oryx	Common Eland	LE	0	
	Tragelaphus strepsiceros	Greater Kudu		0	
	Tragelaphus angasii	Nyala		0	
	Tragelaphus spekei	Sitatunga		0	
	Tragelaphus scriptus	Bushbuck		0	
	Hippotragus equinus	Roan Antelope		0	
	Hippotragus niger	Sable Antelope		0	
	Oryx gazella	Gemsbok (Oryx)		0	
	Kobus ellipsiprymnus	Waterbuck		0	
	Kobus leche	Lechwe		0	
DOVIDAT (D. Hala 9	Kobus vardonii	Puku		0	
BOVIDAE (Buffalo & Antelopes)	Redunca fulvorufula	Mountain Reedbuck		0	
Antelopes)	Redunca arundinum	Common (Southern) Reedbuck	LE	0	
	Pelea capreolus	Grey Rhebok		0	
	Connochaetes gnou	Black Wildebeest	LE	0	
	Connochaetes taurinus	Blue Wildebeest	LE	0	
	Alcelaphus buselaphus	Red Hartbeest	LE	0	
	Alcelaphus lichtensteinii	Lichtenstein's Hartebeest		0	
	Damaliscus pygargus dorcas	Bontebok		0	
	Dameliscus pygargus phillipsi	Blesbok		0	
	Dameliscus lunatus	Tsessebe		0	
	Aepyceros melampus	Impala		0	
	Antidorcas marsupialis	Springbok	LE	0	
	Madoqua demarensis	Damara Dik-dik		0	

FAMILY	BIOLOGICAL NAME	COMMON NAME	LOCALLY EXTINCT	PROBABILITY	RED DATA
	Neotragus moschatus	Suni		0	
	Oreotragus oreotragus	Klipspringer		0	
	Raphicerus campestris	Steenbok		2	
	Ourebia ourebi	Oribi		0	
	Raphicerus melanotis	Cape Grysbok		0	
	Raphicerus sharpei	Sharpe's Grysbok		0	
	Cephalophus natalensis	Red Duiker		0	
	Cephalophus monticola	Blue Duiker		0	
	Sylvicapra grimmia	Common Duiker		2	
CERVIDAE (Deer)	Cervus dama	European Fallow Deer (Introduced)		0	

The relevant IUCN status categories are:

Critically Endangered (CR)

Endangered (EN)

Vulnerable (VU)

Near Threatened (NT)

Data Deficient (DD)

Least Concern (LC)

All species without a category are shown as Not Listed (NL)

Shaded species indicate species known to occur within the study area

Probability of occurrence categories are as follows:

0 = Highly improbable

1 = Low probability

2 = Moderate probability

3 = High probability

4 = Recorded

At Golder Associates we strive to be the most respected global group of companies specialising in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organisational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

solutions@golder.com www.golder.com

Golder Associates Africa (Pty) Ltd 25 Main Avenue Florida Roodepoort South Africa

T: [+27] (11) 672 0666

