Geotechnical and Thermal Report

PHASE 2 REPORT FOR:

GEOTECHNICAL ASSESSMENT AND THERMAL INVESTIGATION AT THE MATIMBA POWER STATION ASH DISPOSAL FACILITY, LEPHALALE, LIMPOPO PROVINCE

Prepared by:

Jeffares & Green (Pty) Ltd

P.O. Box 38561 PINELANDS 7405

Prepared for:

SSI Engineers and Environmental Consultants (Pty) Ltd t/a Royal HaskoningDHV

PO Box 25302 MONUMENT PARK 0105

Contact Person: Mr Richard Emery

Contact Person: Mrs Prashika Reddy

 Tel:
 021 532 0940

 Fax:
 021 532 0950

 Email:
 emeryr@jgi.co.za

Tel: 012 367 5800 Email: <u>prashika.reddy@rhdhv.com</u> www.rhdhv.co.za

VERIFICATION PAGE

TITLE :

PHASE 2 REPORT FOR: GEOTECHNICAL ASSESSMENT AND THERMAL INVESTIGATION AT THE MATIMBA POWER STATION ASH DISPOSAL FACILITY, LEPHALALE, LIMPOPO PROVINCE

JGI NO. :	DATE :		REPORT STATUS :				
3145	05-06-	2015	FINAL				
CARRIED OUT BY :		COMMISSIONE	D BY :				
Jeffares & Green (Pty) Ltd. Cape	Town	Royal Haskoning) DHV				
PO Box 38561							
PINELANDS		PO Box 25302					
7430		Monument Park					
Tel (021) 532-0940							
Fax (021) 532-0950		Tel : 021 863 28	10				
Email: emeryr@jgi.co.za		Email: Prashika.	Reddy@rhdhv.com				
AUTHOR :		CLIENT CONTA	CT PERSONS :				
Richard Emery		Prashika Reddy					

SYNOPSIS :

The report details Phase 2 of the Geotechnical Assessment and Thermal Investigation. The activities carried out include the site visit, on-site analysis of ash pile, establishment of geothermal testing stations, readings of geothermal activity, sampling of material for laboratory testing, final full assessment report.

KEY WORDS:

Geotechnical, Thermal, Temperature, Monitoring, Matimba, Ash Landfill

© COPYRIGHT: Jeffares & Green (Pty) Ltd. QUALITY VERIFICATION

This report has been prepared under the controls established by a quality management system that meets the requirements of ISO9001: 2008 which has been independently certified by DEKRA Certification under certificate number 90906882

Verification	Capacity	Name	Signature	Date
By Author	Design Engineer	L Wallace	o de salter	05-06-2015
Checked by	Discipline Head	R Emery	Africa)	05-06-2015
Authorised by	Discipline Head	R Emery	Hurry)	05-06-2015

Table of Contents

1.	THIS REPORT4
2.	THERMAL INVESTIGATION5
	2.1 Literature Review
	2.2 On-site Thermal Investigation
3.	GEOTECHNICAL ASSESSMENT17
	3.1 Disclaimer
	3.2 On-site Investigations
	3.3 Sampling and Laboratory Testing22
	3.4 Founding Conditions
	3.5 Slope Stability Modelling
	3.2.1 Design Parameters
	3.2.2 Assessment A
	3.2.3 Assessment B
	3.2.4 Existing ADF Settlement
4.	CONCLUSION
	4.1 Thermal Investigation
	4.2 Geotechnical Slope Stability Assessment
5.	References
AF	PENDIX A

LIST OF FIGURES

Figure 1 - Thermal Test Station Locations (Aerial imagery by Google Maps, 2013)	7
Figure 2 - Establishing Borehole	8
Figure 3 - Borehole Test Station Complete	8
Figure 4 - Sinking Borehole Shaft	8
Figure 5 - Borehole Samples for Soils Testing	9
Figure 6 - Initial Temperature Readings from Borehole Test Station	9
Figure 7 - Excavation of Trench to Establish Thermal Test Station 4	10
Figure 8 - Placement of Thermal Probes into	10
Figure 9 – Final Positioning of Thermal Test Station 4	10
Figure 10 – Temperatures recorded at Logging Station 1 (Borehole 1)	13
Figure 11 - Temperatures recorded at Logging Station 2 (Borehole 2)	14
Figure 12 - Temperatures recorded at Logging Station 3 (Borehole 3) Error! Bookmark n	ot defined.
Figure 13 - Temperatures recorded at Logging Station 4 (New Ash Pile)	16
Figure 14 - Trial Pit Locations for Geotechnical Assessment	18
Figure 15 - Obtaining an undisturbed sample of Ash	20
Figure 16 – Ash Trial Pit Sampling	20
Figure 17 - Sealing an undisturbed soil sample with wax	20
Figure 18 - TLB and engineer enroute to a trial pit on-site	21
Figure 19 - Undisturbed sample of ash for testing	21
Figure 20 - Graphical Representation of Slope Stability Analyses	26
Figure 21 - Proposed Basal Lining System incorporated into the Analyses	27
Figure 22 - Block Failure for Assessment A with a slope gradient of 1V:2.2H	29
Figure 23 - Block Failure for Assessment A with a slope gradient of 1V:1H	
Figure 24 – Circular Slip Failure for Assessment A with a slope gradient of 1V:2H	31
Figure 25 – Circular Slip Failure for Assessment A with a slope gradient of 1V:1H	32
Figure 26 - Block Failure for Assessment B with a slope gradient of 1V:2H	33
Figure 27 – Circular Slip Failure for Assessment B with a slope gradient of 1V:2H	

1. THIS REPORT

This element of the Works towards licencing the continuous-ash disposal facility for Matimba Power Station involves the assessment of the existing ash pile - thermal (geothermal) investigation and geotechnical assessment.

This is a stand-alone element of Work towards the greater purpose of licencing the continuous-ash disposal facility for Matimba Power Station.

This stand-alone element of Work is divided into two Phases:

Phase 1: Site visit, on-site analysis of ash pile, establishment of geothermal testing stations, initial readings of geothermal activity, sampling of material for laboratory testing, interim report.

Phase 2: Receipt of test results from soils laboratory, analysis of results, modelling of geotechnical characteristics of ash material, summary of geothermal testing, final report.

This Report covers both Phases and provides the conclusive analysis of the above.

The purpose of this Phase 2 report is to report on the findings of the geotechnical assessment and thermal investigation that was carried out at the existing Matimba Power Station Ash Disposal Facility (ADF) in Lephalale, Limpopo in February 2014 and the assessment thereof. The report presents the results from the soil laboratory testing and on-going thermal monitoring program setup at the existing Matimba Power Station ADF.

The results presented in this report will motivate the technical aspects of the conceptual engineering design feeding into the waste license application.

The works were approved by Royal Haskoning DHV as an extension of the existing terms of reference on the 21 January 2014.

2. THERMAL INVESTIGATION

2.1 Literature Review

The combustion of coal for electricity generation results in the generation of coal ash waste or coal combustion products (CCPs).

CCPs are typically divided into four separate by-product types (Environmental Protection Agency, 2013):

- Fly Ash
- Bottom Ash
- Boiler Slag
- Flue gas desulphurisation gypsum

The characteristics and physical properties of CCPs vary in size, shape and chemical composition based on the chemical nature of the raw material (coal) from which the CCP is derived and the process by which the coal is processed and the subsequent CCPs collected. These varying characteristics and properties determine the possible beneficial re-uses of the CCP. Examples of beneficial use are using CCPs as a replacement for natural building materials (such as sand, gravel or gypsum) or as a cement substitute in concrete mix designs (Environmental Protection Agency, 2013).

Hydration of pozzolans within fly ash has been shown to be an exothermic reaction. The heat of hydration has been used in the concrete industry to predict heat build-up in large scale concrete construction (Hasset and Eylands, 1997).

Limited literature is available when it comes to predicting heat build-up in a waste disposal facility that receives a homogenous Ash Waste as a singular waste.

The content of Calcium Oxide (CaO) present in a source of fly ash is seen as an indicator to the cementitious nature of the fly ash and results in a difference in the heat of hydration (Blondin et al., 1999).

ASTM C618 defines two classes of Fly Ash namely Class C and Class F. Class F fly ashes are generally low Calcium, typically less than 10% CaO, while Class C fly ashes typically have a CaO concentration in the order of 10% - 30%.

Chemical testing undertaken on Ash Waste from the Matimba Ash Disposal facility in May 2012 shows the <u>CaO concentration to be between 3.9% and 4.6%</u>.

This low concentration presents a lower potential for the hydration of available pozzolans within the ash waste and could result in a lower heat of hydration and subsequent lower temperature build up within the waste pile.

Yoshisa and Rowe (2003) modelled heat transport in a general domestic waste landfill due to conduction and water flow. The equation applied to model this heat transport is a one dimensional heat equation which has been seen as sufficient in this case due to landfills generally being much larger in surface area than in height (Rowe and Hoor, 2009).

Yoshida and Rowe (2003) presented observed temperatures versus temperatures calculated from the heat transport equation at a landfill in Tokyo that received both general and ash waste. The paper shows a strong correlation between observed and calculated values and the landfill is shown to reach average internal temperatures in the region of 60 °C over 20 years.

Programming a computer simulation model to predict theoretical temperature values for the Matimba Ash Disposal facility, falls outside of the scope of this thermal investigation. This thermal investigation comprises conducting an on-site thermal investigation to compare temperatures at the base of the existing ADF against the figures presented in the limited literature that is available.

Variables from the heat modelling equation by Yoshida and Rowe (2003) were obtained as part of the testing schedule undertaken at the soils laboratory. This was done in order to carry out a rudimentary comparison of the ash waste at Matimba against the available literature. The results of the thermal conductivity testing are shown in **Table 1**.

SAMPLE ¹	SAMPLE DESCRIPTION	MOISTURE (%)	THERMAL CONDUCTIVITY (J/ms.K)	SPECIFIC HEAT (J/kg.K)
	Dry	-	0.140	742
BOREHOLE 1	In-Situ Moisture	14.5	0.548	1304
	Saturated	19.7	0.661	1625
	Dry	-	0.128	670
BOREHOLE 2	In-Situ Moisture	15.1	0.563	1218
	Saturated	18.1	0.620	1545
	Dry	-	0.130	748
BOREHOLE 3	In-Situ Moisture	13.3	0.547	1299
	Saturated	16.7	0.598	1237

Table 1: Thermal Conductivity of Ash Waste at Matimba

When comparing the thermal conductivity and specific heat of the Matimba Ash Waste against the values presented, it is noted that both the thermal conductivity and the specific heat of the Matimba Ash Waste are lower than in the example presented by Yoshida and Rowe (2003).

Due to the low concentration of CaO (free lime) and the lower thermal conductivity and specific heat of the Ash waste, it is anticipated that the on-site thermal investigation will measure temperatures well below 60 °C and this is confirmed below in Figure 10 to Figure 13.

The original results of the thermal conductivity and moisture content testing are attached under $\ensuremath{\textbf{Appendix A}}$

¹ Each sample was taken from a composite ash waste sample from between 10m to 25m deep from each borehole.

2.2 On-site Thermal Investigation

The initial phase of the thermal investigation was completed on site towards the end of February 2014.

The investigation entailed establishing four monitoring stations that were to carry out continuous temperature monitoring (for a defined period of time) of the existing ash waste landfill at varying depths within the ash pile using equipment and thermoprobes sourced from Onset instrumentation. Each test station had the ability to monitor four temperature probes at each station.

The first three test stations were setup by using a borehole drilling rig to drill through ash placed within the past two years (based on indications from Eskom site staff) until such time as the underlying in-situ ground level was reached. Two thermal probes were placed at 5m and 10m deep from surface level respectively. The deepest probe was placed at the bottom of the ash pile and the final probe was placed 5m up from the deepest probe (i.e. the two deep probes were placed at approximately 35m and 40m deep from surface level respectively). See table 4 below.

The fourth thermal test station was setup by placing two thermal probes into the advancing ash face in order to monitor the development of heat in freshly placed ash. The final two probes in test station four were left on the surface of the landfill to monitor ambient temperatures experienced over the monitoring period.

Figure 1 shows the location of the four thermal test stations relative to the Matimba Ash Landfill.

Figure 2 through to **Figure 9** present captioned photos depicting the various stages of the on-site work that was undertaken for the Thermal Investigation.

Figure 1 - Thermal Test Station Locations (Aerial imagery by Google Maps, 2013)

Figure 2 - Establishing Borehole

Figure 4 - Sinking Borehole Shaft

Figure 3 - Borehole Test Station Complete

Figure 5 - Borehole Samples for Soils Testing

Figure 6 - Initial Temperature Readings from Borehole Test Station

Matimba Ash Disposal Facility Geotechnical Assessment and Thermal Investigation Report (Phase 2 Report)

Figure 8 - Placement of Thermal Probes into Advancing Ash Pile

Figure 7 - Excavation of Trench to Establish Thermal Test Station 4

Figure 9 – Final Positioning of Thermal Test Station 4

Jeffares & Green oversaw the continuous thermal monitoring of the four test stations from the 28th February 2014 to the 30 April 2014. The thermal logging instrumentation has remained installed at the logging stations and the instrumentation was left to continue capturing thermal data. Since reporting on the initial thermal monitoring, J&G obtained the data from the ongoing monitoring up to February 2015. The data from 28th February 2014 to 4th February 2015 is presented below.

We experienced disturbances with the recordings due to the storm damage that occurred during the excessive rainfall that was experienced in the region in March 2014, which resulted in some stations going offline for a period. We further experienced technical difficulties for brief instances at logging station 1, 3 and 4 (shown in the graphical representations below). Despite the setbacks, we have recorded good, reliable results.

Table 2 presents a tabulated summary of the four temperature logging stations including maximum and minimum temperatures recorded during the on-site temperature monitoring.

The loggers were set to record temperature every minute for the entire duration of the investigation. *Figure 10* through to *Figure 14* show a graphical representation of the recorded temperature data for the four respective logging stations.

Large datasets for the thermal monitoring were obtained by recording temperatures at one minute intervals over the monitoring period. Due to the monitoring disturbances and technical challenges, the datasets showed occasional reading of obvious outliers' thus, minimal statistical manipulation was necessary to present the data as shown below. The maximum recorded temperature (Not considered a gross outlier due to technical fault) across all four logging stations did not exceed 48 °C. The standard deviation for thermoprobes that did not experience technical disruptions was less than 2 °C which has given further confidence in the results.

Table 2: Summary of Temperature Monitoring undertaken at the Matimba Ash Disposal Facility

Logging	Nature of	Estimated Time		Probe	e Depth		Minimum	Maximum	0
station	Logging Station	Placement	Probe 1	Probe 2	Probe 3	Probe 4	Temp	Temp	Comments
1	Borehole	1 - 1.5 years	5m	10m	43m	48m	27.9 <i>°</i> C	39.8℃	 Weather Damage experienced at the end of March. Thermocouple (TC) 3 had a technical malfunction at the end of April.
2	Borehole	1.5 - 2.5 Years	5m	10m	43m	48m	31 ℃	40.12 <i>°</i> C	- Thermocouple (TC) 3 showed irregular temperature oscillations from the beginning of the investigation.
3	Borehole	1 - 1.5 Years	5m	10m	40m	45m	21 <i>°</i> C	41.2 <i>°</i> C	 Logging station went offline from the beginning to the middle of March due to weather damage.
4	New Ash Waste Pile	Newly Placed Ash	Landfill Surface	Landfill Surface	15m (offline)	30m	36.5℃	48.0℃	 Two TCs were placed into the advancing Ash Pile. One of the TC went offline post placement and is not shown in this report. Temperatures recorded at the Landfill Surface were not included for presenting the Maximum and Minimum temperatures.

/	
0	
23-01-1 28-01-1 02-02-1 06-02-1 11-02-1 11-02-1 25-02-1 02-03-1 11-03-1 11-03-1 11-03-1 25-03-1 25-03-1 25-03-1 13-04-1 13-04-1 13-04-1	

		_								_		
							_	_	_	_	_	
	-				_				-			
2014	2014	2015	2015	2015	2015	2015	2015	2015	2015	2015	2015	
4/12/	9/12/	3/01/	8/01/	3/01/	8/01/	3/01/	8/01/	2/02/	7/02/	2/02/	7/02/	
5	2	0	Ō	H	Ē	2	5	0	0	H	H	
4 -	40	m	De	ер								

l/2015	L/2015 -	L/2015 -	L/2015 -	L/2015 -	2/2015	2/2015	2/2015	
11/0	16/0	21/01	26/03	31/01	05/02	10/02	15/02	
De	ер							

3. GEOTECHNICAL ASSESSMENT

The following information was made available at the outset of the investigation:

- The report by Kai Batla Minerals Industry Consultants entitled, "Detailed Geotechnical Investigation for the Proposed Continuous Ash Disposal Facility for the Matimba Power Station in Lephalale, Limpopo Province, South Africa", dated 9th August 2013.
- Letter report by Jeffares & Green (Pty) Ltd, reference 3145\RE, entitled "Cost Implications for Updating the Terms of Reference – Matimba Ash Disposal", dated 19th December 2013.
- Various conceptual drawings and sections showing the proposed extent of extensions and raising.

3.1 Disclaimer

The interpretation of the overall geotechnical conditions across the site was based on observations and point information acquired from the respective investigation points. Subsurface geotechnical conditions intermediate to these have been inferred by extrapolation, interpolation and professional judgement. Consequently, whilst considered unlikely, there is a possibility of actual conditions encountered during construction being at a variance to those inferred and for this reason it is recommended that the services of an engineering geologist or geotechnical engineer be retained on an ad hoc basis during construction. The conditions prevailing beneath the existing ash discard dump and on the interface with the in-situ materials were also not revealed in detail by the scope of the investigations undertaken.

Consequently, whilst the information and interpretation made in this report are given in good faith as an indication of the geotechnical conditions and materials likely to be encountered, any interpretation and opinions expressed are given as a guideline only. There is no guarantee that the information given is totally representative of the entire area in every respect and no responsibility will be accepted for consequences arising out of the fact that actual conditions vary from those inferred. The contract specifications and drawings override this report, which is intended for information purposes only.

3.2 On-site Investigations

The on-site component of the geotechnical assessment was completed on-site by the end of February 2014.

The assessment involved the excavating and collecting of samples from 12 trial pits on-site. These trial pits were excavated in both in-situ soils surrounding the landfill site and in the existing Ash Landfill. The locations of the 12 trial pits are shown in **Figure 14**.

Sample material was collected from both the trial pits and the thermal monitoring boreholes. This material was catalogued and submitted to a soils laboratory in Pretoria on the 28 February 2014. A full set of the results of the soils testing are attached to **Appendix A**.

Figure 14 - Trial Pit Locations for Geotechnical Assessment (Aerial imagery by Google Maps, 2013)

Whilst absolute refusal of TLB excavation generally was not experienced, trial pits were terminated when excavation became difficult with concomitant slow advance to near refusal. **Table 3** summarises the depths at which the trial pits were terminated and the nature of the materials at the base of the trial pits.

Trial Pit No.	Depth of Termination	Material Description at Trial Pit Base
M1	2.4m	Top of weathered sandstone
M2	2.7m	Honeycomb textured ferricrete
M3	2.55m	Honeycomb textured ferricrete
M4	2.1m	Ferruginous silty sand
M5	2.1m	Ferruginous gravely clayey sand / nodular
		ferricrete
M6	1.4m	Ferruginous gravely clayey sand / nodular
		ferricrete
M7	2.3m	Nodular ferricrete
M8	2.3m	Ferruginous gravely clayey sand / nodular
		ferricrete
M9	1.3m	Ferruginous silty sand
M10	1.0m	Ferruginous silty sand
M11	3.5m	No refusal – ash
M12	3.3m	No refusal - ash

Table 3: Trial Pit Investigation Depths

The ash discard material was found to be consistent, both laterally and vertically. It is described in trial pits M11 and M12 and in the boreholes as slightly moist to moist, grey, very loose to loose, intact, low density, ash discard. It is a fine grained, non-cohesive material that categorises as sandy silt. Testing on the borehole samples indicated a moisture content range between 15% and 27%, which although erratic with no obvious trend, did generally indicated higher moisture contents at the higher depths. As drilling was by air percussion methods, cross sample contamination cannot be excluded and as a result the results may not be totally representative in every respect of actual conditions at the respective depth intervals. The boreholes were terminated on the ash / in-situ interface, indicated by coarser, more sandy and more cohesive material, but which due to staining by the ash was difficult to differentiate on colour.

Figure 15 through to **Figure 19** present captioned photos depicting the various stages of the on-site work that was undertaken for the Geotechnical Assessment.

Matimba Ash Disposal Facility Geotechnical Assessment and Thermal Investigation Report (Phase 2 Report)

Figure 16 – Ash Trial Pit Sampling

Figure 15 - Obtaining an undisturbed sample of Ash

Figure 17 - Sealing an undisturbed soil sample with wax

Figure 18 - TLB and engineer enroute to a trial pit on-site

Figure 19 - Undisturbed sample of ash for testing.

3.3 Sampling and Laboratory Testing

The following sampling and testing was undertaken:

	PIT	DEPTH (m)	TEST DESCRIPTION
M1		0 - 0.57	Sieve analysis to 0.075mm and Atterberg limits
		0.57 - 1.1	Sieve analysis to 0.075mm and Atterberg limits
		1.1 – 1.9	Sieve analysis to 0.075mm and Atterberg limits
M2		0.7 – 2.3	Sieve analysis to 0.075mm and Atterberg limits
M3		0.8 – 1.5	Sieve analysis to 0.075mm and Atterberg limits
		1.5 – 2.25	Sieve analysis to 0.075mm and Atterberg limits
		1.5 – 1.7	In-situ moisture content
		u/d block	In-situ density
		2.25 - 2.55	Sieve analysis to 0.075mm and Atterberg limits
M4		0.28 – 1.8	Sieve analysis to 0.075mm and Atterberg limits
		0.7 – 0.95	In-situ moisture content
		u/d block	In-situ density
			Collapse potential
			Shear box
M6		0.35 – 1.1	Sieve analysis to 0.075mm and Atterberg limits
		Disturbed &	In-situ moisture content
		u/d block	In-situ density
M9		0.15 – 0.75	Sieve analysis to 0.075mm and Atterberg limits
		0.75 – 1.3	Sieve analysis to 0.075mm and Atterberg limits
M12		0.3 – 3.3	Sieve & hydrometer analysis and Atterberg limits
Ash			Modified AASHTO moisture / density relationship
		0.7 – 0.95	In-situ moisture content
		u/d block	In-situ density
			Shear box
			Consolidation
Mixed			Mixed sample comprising equal proportions of
			M2 (0.7 – 2.3m), M3 (0.8 – 1.5m), M4 (0.28 – 1.8m) and M6
			(0.35 – 1.1m).
			Sieve & hydrometer analysis and Atterberg limits
			Modified AASHTO moisture / density relationship

Table 4: Schedule of Sampling and Laboratory Testing

In addition, samples were retrieved from the boreholes at 5m intervals for the determination of the insitu moisture content. One bulk sample was also retrieved from the lower half of each borehole for full grading analyses and Atterberg limits determinations. The laboratory test results are presented in **Appendix A**.

The results of the laboratory tests are summarised in Table 5 and Table 6.

The aeolian sand generally categorises as slightly silty sand of low plasticity.

The pedogenic materials are slightly clayey and gravely moderately dense materials of low to moderate plasticity

The ash discard is a fine grained, non-plastic, low density material that categorises as sandy silt.

Table 5: Summary of Material Properties

Trial	Depth (m)	Description	%	%	%	%	GM	LL	PI	LS
Pit			Gravel	Sand	Silt	Clay				%
No.										
M1	0 – 0.57	Aeolian silty sand	2	84	1	4	1.31	-	NP	0
	0.57 – 1.1	Aeolian silty sand	3	75	2	2	1.26	20	8	3
	1.1 – 1.9	Ferruginous clayey silty sand	46	35	1	9	1.92	28	12	6
M2	0.7 – 2.3	Aeolian silty sand	3	76	2	21	1.22	15	4	1.5
M3	0.8 – 1.5	Aeolian silty sand	1	80	1	9	1.26	15	5	2
	1.5 – 2.25	Ferruginous gravely silty sand	3	68	2	9	1.14	19	9	3.5
	2.25 – 2.55	Ferricrete	29	47	2	24	1.58	24	10	4
M4	0.28 - 1.8	Aeolian silty sand	2	66	3	2	1.06	23	10	4.5
M6	0.35 – 1.1	Aeolian silty sand	2	74	2	24	1.19	16	6	2.5
M9	0.15 – 0.75	Aeolian silty sand	2	77	2	!1	1.25	18	8	3
	0.75 – 1.3	Ferruginous silty sand	3	55	4	-2	0.95	35	13	6
Mix *		Aeolian silty sand	2	72	14	12	1.15	19	7	3
* Mixed	sample compris	sing equal proportions of M2 $(0.7 - 2.3)$	3m), M3 (0.8	8 – 1.5m), N	/14 (0.28 -	- 1.8m), N	/16 (0.35 –	1.1m)		
M12	0.3 – 3.3	Ash	1	29	70	0	0.37	-	NP	0
BH1	25 – 45	Ash	2	26	72	0	0.35	-	NP	0
BH2	24 – 45	Ash	1	29	70	0	0.34	-	NP	0
BH3	25 – 45	Ash	1	29	70	0	0.34	-	NP	0

Table 6: Summary of Material Geotechnical Characteristics

Trial Pit	Depth (m)	Description	Modified AASHTO		In-situ mc	In-situ γ kg/m³	Shear Box		Collapse Potential	Consolid- ation
No.			MDD kg/m³	OMC %	%		Φ (°)	C' (kPa)	%	m _v (m²/MN)
M3	1.5 – 1.7	Ferruginous gravely silty sand			4.6	1946				
M4	0.28 – 1.8	Aeolian silty sand			4.2	1859	32.8	5.8	14	
M6	0.35 – 1.1	Aeolian silty sand			3.6	1734				
Mix *		Aeolian silty sand	2120	8.1						
* Mixed	sample compri	ising equal proportions of M2 ($0.7 - 2$	2.3m), M3 (0.8 – 1.5r	n), M4 (0.2	8 – 1.8m), N	16 (0.35 -	- 1.1m)	•	
M12	0.3 – 3.3	Ash	1168	13.1	13.5	1109	33.6	2.9		20–100kPa 2.12x10 ⁻² 100–800kPa 6.33x10 ⁻⁵
BH1	5	Ash			22.5					
	10	Ash			23.2					
	15	Ash			24.8					
	20	Ash			18.8					
	25	Ash			20.0					
	30	Ash			18.8					
	35	Ash			18.2					
	40	Ash			17.5					
	45	Ash			22.3					
	47	Ash			16.0					

Table 6 (Continued): Summary of Material Geotechnical Characteristics

Trial	Depth	Description	Mod	lified	In-situ	In-situ ɣ	Shea	r Box	Collapse	Consolid-
Pit	(m)		AAS	нто	mc	kg/m³			Potential	ation
No.			MDD	OMC	%		Φ	C'	%	m _v
			kg/m³	%			(°)	(kPa)		(m²/MN)
BH2	5	Ash			18.5					
	10	Ash			17.6					
	15	Ash			18.2					
	20	Ash			17.9					
	25	Ash			17.1					
	30	Ash			18.3					
	35	Ash			17.5					
	40	Ash			18.4					
	45	Ash			27.0					
	48	Ash			15.8					
BH3	5	Ash			19.5					
	10	Ash			17.9					
	15	Ash			16.6					
	20	Ash			15.9					
	25	Ash			16.1					
	30	Ash			16.4					
	35	Ash			15.4					
	40	Ash			17.1					

Explanation of abbreviations and symbols used in Table 5 and Table 6:

GM = grading modulus

PI = plasticity index

MDD = maximum dry density

- In-situ mc = in-situ moisture content
- Φ = angle of internal friction (degrees)

 m_v = coefficient of volume compressibility

LL = liquid limit

LS = linear shrinkage

OMC = optimum moisture content

- In-situ χ = in-situ density
- c' = cohesion

3.4 Founding Conditions

It is assumed that the current practice of exploiting the in-situ materials from in front of the advancing face of the discard dump as capping will continue. The continued utilisation of these material is encouraged as it offers the following advantages:

- It provides a ready source of good quality capping materials.
- It increases the discard dump capacity.
- It provides enhanced founding on rock, both in terms of bearing capacity and stability.

Assuming the above implies that foundations will be developed in soft to medium hard rock sandstone / conglomeratic sandstone with an estimated allowable safe bearing pressure of the order of 800kPa to in excess of 1 000kPa, with relatively high degrees of shearing resistance.

3.5 Slope Stability Modelling

The slope stability assessment was broken into two separate analysis scenarios in order to assess the slope stability of the upgraded Ash Disposal Facility (ADF). The analyses were setup as a function of shear strength parameters and slope gradient. The analysis scenarios have been broken up as follows:

- Assessment A; The slope stability was assessed on a 70 m embankment consisting of the placement of a basal lining system at the bottom of the proposed ADF.
- Assessment B; The slope stability of the ash fill was assessed with the additional fill height of 35 m "piggy-backing" on the existing 45 m high ash waste landfill. The slope stability was modelled with the basal lining system between the new proposed ADF and existing ADF.

The assessments are represented graphically in **Figure 20**. The figure presents a typical cross-section through the ADF. The green profile line represents the existing ADF and natural ground level while the blue line represents the new ADF including piggy-backing over the existing facility.

Figure 20 - Graphical Representation of Slope Stability Analyses

3.2.1 Design Parameters

Soil Parameters

The shear strength parameters are taken from the values obtained from the Shearbox and In-situ density tests undertaken on ash waste from the existing ADF sampled during the site investigation.

Shear strength parameters in the analyses are shown in Table 7

Table /: Soll Shear Strendth Parameters	Table	oil Shear Stre	noth Parameters
---	-------	----------------	-----------------

Material	Unit weight (kN/m³)	Friction angle, φ' (°)	Cohesion, c ²
Ash	11	30	0
Sandstone/Siltstone/ Mudstone ³	19	32	0

Geosynthetic Barrier System Parameters

The effects of a geosynthetic barrier lining system were taken into account for the slope stability analyses. The proposed basal lining system utilised is shown in **Figure 21**.

Figure 21 - Proposed Basal Lining System incorporated into the Analyses

A database containing shear strength parameters at the interface of different geosynthetic lining materials and soil types was compiled by Koerner, G. & Narejo, D (2005). By comparing this database against historical data it was found that the most critical shear strength parameters will be found at the interface between the Geosynthetic Clay Liner (GCL) and the Cuspated Drain layers. <u>Typical Shear</u> <u>Strength Parameters</u> for the critical interfaces are given in **Table 8**.

Interface Type	Material 1	Material 2	Peak Friction Φ'	Peak Cohesion, c	Residual Friction Φ'	Residual Cohesion, c
Smooth/	Smooth	Cuspated		0 kPa	13°	0 kPa
Cuspated	Membrane	Drain	13.5°			
	Smooth	Geosynthetic	10.10		10.70	
Smooth/GCL	Membrane	Clay Liner	19.1°	0 кРа	12.7°	11.55 kPa

 Table 8: Typical Shear Strength Parameters

² Zero cohesion is taken as very conservative and has been assumed due to possible variability of the foundation material. The analysis shows that failure does not occur through the foundation material.

³ The proposed ADF is assumed to be founded on sandstone. Conservative shear strength parameters were selected and are presented here.

Based on the values above, the shear strength parameters for the smooth/cuspated interface were brought into the slope stability analyses as a thin band material denoted as "Basal Lining System" in the outputs from the computer modelling software. <u>This material band was assumed to have a unit weight of 15 kN/m³</u>.

3.2.2 Assessment A

For this analysis it was assumed that the water table is situated at the foundation level of the proposed ADF. The stability of the slope was assessed assuming that both block failure and circular slip failure is a probability.

Block Failure

Figure *22*. The results of the analysis indicate that the slope will have suitable long term stability at a slope angle of approximately 22° (1V:2.5H) with an estimated Factor of Safety (FoS) of 1.43. Realistically, when depositing ash with the stacker spreader conveyor, the material would most likely settle at angle close to the friction angle of approximately 30°. However, this will mean that at the slope face the risk is high for small local failures to occur.

Figure 22 - Block Failure for Assessment A with a slope gradient of 1V:2.2H

Figure *23* illustrates the results of numerous slope stability analyses at various angles of block failures and shows that increasing the angle of the slope will result in A FoS less than one. <u>The results prove</u> that the slope angle should remain lower than 1V:2H in order to reach suitable long term stability.

Figure 23 - Block Failure for Assessment A with a slope gradient of 1V:1H

Figure 24 shows the results of a circular failure analysis a slope gradient of 26° (1V:2H). The results show that the slope may reach suitable stability at a slope gradient of approximately 1V:2H. The FoS was found to be 1.4. The probability for sloughing to occur is significant, with a FoS of 1.2.

1V:2H is close to the angle of repose, thus it is expected that sloughing would occur. <u>The results indicate</u> that the risk for global circular failure to occur is negligible.

Figure 24 – Circular Slip Failure for Assessment A with a slope gradient of 1V:2H

Figure 25 depicts the results of a slope stability analysis with a slope gradient of 1V:1H. From the results it was found that the FoS is less than one. Therefore the assumption can be made that a 1V:1H slope is too steep to establish sufficient stability.

Figure 25 – Circular Slip Failure for Assessment A with a slope gradient of 1V:1H

3.2.3 Assessment B

Assessment B is aimed at assessing the stability of the slope as a function of the slope gradient when the existing ADF is upgraded to accommodate an increased height of 35 m. This assessment was also aimed at establishing the influence of the Basal Lining System on the slope stability when constructed on the slope of the existing ADF, prior to the placement of the new ash material.

Stability analyses were done to assess a block failure and circular failure mechanisms.

Block Failure

Figure 26 illustrates the results of a slope stability analysis at a final height of approximately 75 m. The

model is constructed with a basal lining system at the foundation level and at the top of the existing ADF. The basal lining is represented as a blue line and denotes the interface between old and new Ash Disposal Facilities showing the extent of the piggy-backing over the existing facility.

The FoS was found to be 1.4 for a slope gradient of 1V:2H.

Figure 26 - Block Failure for Assessment B with a slope gradient of 1V:2H

Circular failure

The slope was also assessed to determine the FoS of the ash slope to resist a circular failure mechanism at a slope gradient of 1V:2H. The results of the assessment are shown in

Figure *27.* The analysis shows that the \underline{FoS} is 1.22 and increases considerably as the slope angle decreases. The results show that the slope will stabilise at the natural repose angle.

Figure 27 – Circular Slip Failure for Assessment B with a slope gradient of 1V:2H

3.2.4 Existing ADF Settlement

The ash material, whilst being fine grained, is non-plastic with zero clay content. This implies it to be relatively free draining so allowing the dissipation of excess pore pressure build-up. The material is unlikely to undergo long term consolidation and settlement is expected to take place rapidly during the construction. The ash material was found to be very consistent and the material characteristics do not indicate a likelihood for excessive differential settlements in the existing discard facility, which is considered to have already taken place.

The "piggy-backing" of the new facility on top of the existing facility is not expected to bring about excessive differential settlements that could compromise stability or the integrity of the separator basal lining between the existing and the new.

4. CONCLUSION

4.1 Thermal Investigation

A review of the thermal conductivity variables against values from the literature review lead to the assumption that temperatures within the disposal facility should be lower than those predicted by Yoshida and Rowe (2003).

The temperature monitoring program undertaken at the ADF under consideration has shown that temperatures within the ash waste do not exceed 43°C. These recorded temperatures are in line with the temperatures from facilities receiving general municipal solid waste.

Both the literature review and on-site investigation indicate that the ash waste at Matimba poses no additional threat to the basal lining system when taking the thermal resistivity of the design into account.

4.2 Geotechnical Slope Stability Assessment

The slope stability analyses for both Assessment A and Assessment B shows that the gradient of proposed ADF should not exceed 1V:2H (26°). The ash waste material is shown to stabilise at the natural angle of repose (approximately 30°).

When the ash is placed with the stacker spreader conveyor system it will settle close to its friction angle value of approximately 30° as seen in current operations. <u>Post placement manipulation of the ash-waste is NOT seen as a requirement in maintaining a stable side slope for the new proposed ADF.</u>

Steeper slope angles steeper than 1V:2H may be achieved at a low embankment height but will not be sustainable as the embankment height increases and are subsequently not recommended.

The analysis confirms that the concept of developing the new ADF over the existing ADF through the concept of piggy-backing over the existing facility DOES NOT pose any additional risks in terms of slope stability and differential settlement.

5. References

Blondin, J., Iribarne, A., Iribane, J., Anthony, E.J. (1999) Hydration of combustion ashes – a chemical and physical study. 1999 International Ash Symposium, Centre for applied Energy Research, University of Kentucky

Da Silva, T., Shamrock, S.R. 2013. *Temperature considerations in geomembrane lined ash deposition facilities.* Johannesburg IWMSA Landfill 2013 Conference.

Department of Environmental Affairs, 2012a. Draft Standard for Assessment of Waste for Landfill Disposal (Draft) GNR 613 of 2013. Pretoria: DEA.

Department of Environmental Affairs, 2012b. *Waste Classification and Management Regulations (Draft) GNR 614 of 2012.* Pretoria: DEA.

Department of Environmental Affairs, 2012c. *Standard Disposal of Waste to Landfill (Draft) GNR 615 of 2012.* Pretoria: DEA.

Department of Water Affairs and Forestry, 1998a. *Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste.* Pretoria: DWAF.

Department of Water Affairs and Forestry, 1998b. *Minimum Requirements for Waste Disposal by Landfill: Second Edition 1998.* Pretoria: DWAF.

Hardin, C. & Perrotta, N., 2011. *Operations and Maintenance Guidelines for Coal Ash Landfills.* Denver, CO, USA, World of Coal Ash (WOCA) Conference.

Hasset, D. & Eylands, K., 1997. Heat of hydration of fly ash as a Predictive Tool. *Elsevier Science Ltd*, 76(8), pp. 807-809.

Hoor, A., 2012. *Effect of Temperature on the Service-life of Landfill Liners and Potential Temperature Control Strategies.* Lima, Peru, Second Pan American Geosynthetics Conference and Exhibition.

Kim, B., Prezzi, M. & Salgado, R., 2005. Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Embankments. *Journal of Geotechnical and Geoenvironmental Engineering*, pp. 914-924.

Rowe, K. & Islam, M., 2009. Impact of landfill liner time – temperature history on the service life of HDPE. *Elsevier,* Volume Waste Management 29, pp. 2689-2699.

Rowe, R., 2005. Long-term performance of contaminant barrier systems. *Geotechnique*, 55(9), pp. 631-678.

US Environmental Protection Agency, 2013. *Industrial Materials Recycling - Coal Combustion Products.* [Online] Available at: <u>http://www.epa.gov/wastes/conserve/imr/ccps/</u> [Accessed 02 August 2013].

Wallace, L. 2013. Addressing the design challenges around the construction of coal ash landfills - A South African perspective. Johannesburg IWMSA Landfill 2013 Conference.

Yoshida, H. & Rowe, R., 2003. *Consideration of Landfill Liner Temperature.* Caligari, Italy, 9th International Waste Management and Landfill Symposium.

Koerner, G. & Narejo, D., 2005. *Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-soil interfaces*, Geosynthetic Research Institute, GRI Report #30.

APPENDIX A

CLIENT	:	JEFFARES & GREEN
PROJECT	:	MATIMBA POWER STATION
PROJECT NO.	:	S14-0264
DATE	:	20/03/2014

THERMAL CONDUCTIVITY

Soillab No.	Sample No.	Moisture %	Thermal Conductivity (K) W/m.K	Thermal Resistivity (p) °C.cm/W	Volumetric Specific heat (c) mJ/m ^{3.} K	Thermal Diffusivity (D) mm ² /s
	BH01 DRY	-	0.140	712.5	0.866	0.162
S14-0264-14	BH01 IN-SITU MOISTURE	14.5	0.548	182.4	1.523	0.362
	BH01 SATURATED	19.7	0.661	151.3	1.897	0.352
	BH02 DRY	-	0.128	783.1	0.782	0.163
S14-0264-15	BH02 IN-SITU MOISTURE	15.1	0.563	178.0	1.422	0.397
	BH02 SATURATED	18.1	0.620	161.4	1.804	0.344
	BH03 DRY	-	0.130	770.6	0.873	0.149
S14-0264-16	BH03 IN-SITU MOISTURE	13.3	0.547	182.9	1.517	0.362
	BH03 SATURATED	16.7	0.598	167.6	1.444	0.425

SOILLAB

(PTY) ITD

Reg flo 1971/000112/07

230 Albertus Street La Montagne 0184 Tel (012) 481-3801

P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

0264-01

Central Coal Laboratory

TEST REPORT

Attention	Rai	mahlari	Report Refe	erence
Client Name	Ma	timba Power Station	COA2012-0	10149
Address	Priv	vate Bag 215	Date	2012/05/16
	Elis	sras	Tel. No.	+27 11 629 5430
	055	55	Fax. No.	+27 86 664 8568
Fax	014	1 763 8059		
Telephone	014	1 763 8404		
Report Title	Matimba	FA and CA		
	Unit 2 an	d Unit3 February 2012		
	These re	sults are reported on an air dried basis.		
Number of Sa	amples	5		
Description of	of Sample	s		
Date Receive	d	2012/05/15		
Date Reporte	d			
Task Comme	ents			

Approved By :

Patrick Musie Senior Technician (Coal & X-Ray)

Date :

Lower Germiston Road Cleveland 2022 Private Bag 40175 Cleveland 2022 SA Tel +27 11 629 5430 Fax +27 86 664 8568 maria.kgaphola@eskom.co.za Eskom Holdings Reg No 2002/015527/06

Central Coal Laboratory	Report Reference	
Test Report	COA2012-010149	
Sample ID 3793324	WMCC-2012-05-15/4395	
Matimba FA Unit2		
Fly ash		
Component	Unit	Value
Elemental Analysis		
SiO2	%	60.6
AI2O3	%	23.3
Fe2O3	%	7.5
TiO2	%	1.4
P2O5	%	0.38
СаО	%	3.4
MgO	%	0.8
Na2O	%	0.0
K2O	%	0.5
SO3	%	0.3
MnO	%	0.00

Sample ID 3793325	WMCC-2012-05-15/4396	
Fly ash		
Component	Unit	Value
Elemental Analysis		
SiO2	%	59.5
AI2O3	%	24.8
Fe2O3	%	7.0
TiO2	%	1.2
P2O5	%	0.30
СаО	%	3.9
MgO	%	0.0
Na2O	%	0.0
К2О	%	0.6
SO3	%	0.2
MnO	%	0.24

Sample ID 3793326 Matimba CA Unit2 Coarse ash	WMCC-2012-05-15/4397	
Component	Unit	Value
Elemental Analysis		
SiO2	%	57.2
AI2O3	%	21.0
Fe2O3	%	7.7
TiO2	%	1.2
P2O5	%	0.23

Central Coal Laboratory	Report Reference	
Test Report	COA2012-010149	
Sample ID 3793326	WMCC-2012-05-15/4397	
Matimba CA Unit2		
Coarse ash		
Component	Unit	Value
Elemental Analysis		
CaO	%	3.6
MgO	%	0.9
Na2O	%	0.0
K2O	%	1.2
SO3	%	0.0
MnO	%	0.00

Sample ID 3793327	WMCC-2012-05-15/4398	
Matimba CA Unit3		
Coarse asn	11-24	Mahua
Component	Unit	value
Elemental Analysis		
SiO2	%	58.5
AI2O3	%	21.0
Fe2O3	%	7.3
TiO2	%	1.3
P2O5	%	0.00
СаО	%	2.9
MgO	%	0.7
Na2O	%	0.0
К2О	%	0.5
SO3	%	0.0
MnO	%	0.00

Sample ID 3793328 Matimba Bock	WMCC-2012-05-15/4399	
rock		
Component	Unit	Value
Elemental Analysis		
SiO2	%	45.5
AI2O3	%	25.8
Fe2O3	%	7.6
TiO2	%	1.6
P2O5	%	0.42
СаО	%	2.5
MgO	%	0.0
Na2O	%	0.0
K2O	%	0.7
SO3	%	5.8

Central Co	al Laboratory	Report Reference	
Test	Report	COA2012-010149	
Sample ID 37933	328	WMCC-2012-05-15/4399	
Matimba Rock			
rock			
Component		Unit	Value
Elemental Analysis			
MnO		%	0.00

The analysis was performed using the following methods:

Elemental Analysis

ESKOM METHOD No 121

Not Accredited

Tests marked "Not SANAS accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Opinions and interpretations expressed herein are outside the scope of SANAS accredition.

The results contained in this report only pertain to the sample submitted. If you rely on the information and data contained in this report you are responsible for ensuring by independent verification the accuracy or completeness of the sample submitted.

End of Report

Central Coal Laboratory

TEST REPORT

Attention	Ramahlari	Report Refe	erence
Client Name	Matimba Power Station	COA2012-01	10147
Address	Private Bag 215	Date	2012/05/16
	Elisras	Tel. No.	+27 11 629 5430
	0555	Fax. No.	+27 86 664 8568
_			
Fax	014 763 8059		
Telephone	014 763 8404		
Report Title	Matimba Unit2 and 3		
	February 2012		
	These results are reported on an air dried basis.		
Number of Sa	mples 2		
Description o	f Samples		
Date Receive	2012/05/15		
Date Reported	t de la constante de		
Task Comme	nts		

Approved By :

Patrick Musie Senior Technician (Coal & X-Ray)

Date :

Lower Germiston Road Cleveland 2022 Private Bag 40175 Cleveland 2022 SA Tel +27 11 629 5430 Fax +27 86 664 8568 maria.kgaphola@eskom.co.za Eskom Holdings Reg No 2002/015527/06

Sample ID 3793054 WMCC-2012-05-15/4392 Matimba Unit 2 February 2012 Component Unit Value Analytical Moisture % 2.7 Ash % 34.8 Volatile Matter % 25.6 Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 9 Fe2O3 % 60.5 9 TiO2 % 0.00 60.00 CaO % 0.18 9 P205 % 0.01 10 Na2O % 0.25 2.9	Central Coal Laboratory Test Report	Report Reference COA2012-010147	
Matimba Unit 2 February 2012 Unit Value Analytical Moisture % 2.7 Ash % 34.8 Volatile Matter % 25.6 Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis 8 60.5 SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 0.00 CaO % 0.00 K2O % 0.01 Na2O % 0.02 MnO % 0.25 Ash Fusion Temperature °C 1380 H	Sample ID 3793054	WMCC-2012-05-15/4392	
February 2012 Unit Value Analytical Moisture % 2.7 Ash % 34.8 Volatile Matter % 25.6 Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis 20.26 SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 0.00 CaO % 4.6 MgO % 0.01 Na2O % 0.00 K2O % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1350 Flow Temperature °C 1450 <th>Matimba Unit 2</th> <th></th> <th></th>	Matimba Unit 2		
Component Unit Value Analytical Moisture % 2.7 Ash % 34.8 Volatile Matter % 25.6 Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis 8 64.5 SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.0 Na2O % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 2.9 <td< th=""><th>February 2012</th><th></th><th></th></td<>	February 2012		
Analytical Moisture % 2.7 Ash % 34.8 Volatile Matter % 25.6 Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 2.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.25 Ash Fusion Temperature C 1350 Softening Temperature C 1380 Hemisphere Temperature C 1450	Component	Unit	Value
Analytical Moisture % 2.7 Ash % 34.8 Volatile Matter % 25.6 Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.25 Ash Fusion Temperature % 2.9 MnO % 0.25 Ash Fusion Temperature ℃			
Ash % 34.8 Volatile Matter % 25.6 Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 60.5 MgO % 1.8 P2O5 % 0.00 CaO % 1.0 Na2O % 1.0 Na2O % 2.9 MnO % 2.9 MnO % 2.9 MnO % 0.25 Ash Fusion Temperature C 1380 <	Analytical Moisture	%	2.7
Volatile Matter % 25.6 Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 2.37 Oxygen (by difference) % 2.37 Oxygen (by difference) % 2.37 SiO2 % 6.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 60.5 Al2O3 % 0.00 CaO % 4.6 MgO % 0.00 CaO % 4.6 MgO % 0.0 0.0 0.0 0.0 K2O % 1.0 Na2O % 0.25 Ash Fusion Temperature C 1350 <td>Ash</td> <td>%</td> <td>34.8</td>	Ash	%	34.8
Fixed Carbon (by difference) % 36.9 Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis 8 SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 60.5 MgO % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1350 Softening Temperature °C 1350 Flow Temperature °C 1410	Volatile Matter	%	25.6
Carbon % 47.04 Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 9 Fe2O3 % 60.5 9 TiO2 % 0.00 21.9 Fe2O3 % 0.00 20.26 MgO % 0.00 20.26 MgO % 0.00 20.26 MgO % 0.00 20.26 K2O % 0.00 20.26 MnO % 0.25 36.4 MnO % 0.25 20.26 Ash Fusion Temperature °C 1350 Softening Temperature °C 1380 Hemisphere Temperature	Fixed Carbon (by difference)	%	36.9
Hydrogen % 2.73 Nitrogen % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis 5 5 SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.29 MnO % 2.9 MnO % 0.25 Ash Fusion Temperature ℃ 1350 Softening Temperature ℃ 1380 Hemisphere Temperature ℃ 1410<	Carbon	%	47.04
Nitrogen % 0.94 Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 60.5 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.00 K2O % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1410	Hydrogen	%	2.73
Total Sulphur % 0.78 Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis 502 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.00 K2O % 2.9 MnO % 0.25 Ash Fusion Temperature C 1380 Softening Temperature C 1380 Hemisphere Temperature C 1410 Flow Temperature C 1410	Nitrogen	%	0.94
Carbonate % 2.37 Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature C 1380 Softening Temperature C 1380 Hemisphere Temperature C 1410 Flow Temperature C 1410	Total Sulphur	%	0.78
Oxygen (by difference) % 8.64 Gross Calorific Value MJ/kg 20.26 Elemental Analysis 502 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 0.0 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature C 1350 Softening Temperature C 1380 Hemisphere Temperature C 1410 Flow Temperature C 1450	Carbonate	%	2.37
Gross Calorific Value MJ/kg 20.26 Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 0.00 CaO % 0.00 CaO % 0.00 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1450	Oxygen (by difference)	%	8.64
Elemental Analysis SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1450	Gross Calorific Value	MJ/kg	20.26
SiO2 % 60.5 Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 0.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1450	Elemental Analysis		
Al2O3 % 21.9 Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature C 1350 Softening Temperature C 1380 Hemisphere Temperature C 1410 Flow Temperature C 1450	SiO2	%	60.5
Fe2O3 % 5.9 TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1450	AI2O3	%	21.9
TiO2 % 1.8 P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1450	Fe2O3	%	5.9
P2O5 % 0.00 CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 0.0 K2O % 0.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature C 1350 Softening Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1450	TiO2	%	1.8
CaO % 4.6 MgO % 1.0 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature °C 1350 Softening Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1450	P2O5	%	0.00
MgO % 1.0 Na2O % 0.0 K2O % 1.1 SO3 % 2.9 MnO % 0.25 Ash Fusion Temperature C 1350 Deformation Temperature °C 1380 Hemisphere Temperature °C 1410 Flow Temperature °C 1450	CaO	%	4.6
Na2O%0.0K2O%1.1SO3%2.9MnO%0.25Ash Fusion Temperature°CDeformation Temperature°C1350Softening Temperature°C1380Hemisphere Temperature°C1410Flow Temperature°C1450	MgO	%	1.0
K2O%1.1SO3%2.9MnO%0.25Ash Fusion Temperature°CDeformation Temperature°CSoftening Temperature°CSoftening Temperature°CHemisphere Temperature°CFlow Temperature°C1450	Na2O	%	0.0
SO3%2.9MnO%0.25Ash Fusion Temperature°CDeformation Temperature°C1350Softening Temperature°C1380Hemisphere Temperature°C1410Flow Temperature°C1450	К2О	%	1.1
MnO%0.25Ash Fusion Temperature°C1350Deformation Temperature°C1380Softening Temperature°C1410Hemisphere Temperature°C1450	SO3	%	2.9
Ash Fusion TemperatureDeformation Temperature°CSoftening Temperature°CHemisphere Temperature°CFlow Temperature°C1450	MnO	%	0.25
Deformation TemperatureC1350Softening TemperatureC1380Hemisphere TemperatureC1410Flow TemperatureC1450	Ash Fusion Temperature		
Softening TemperatureC1380Hemisphere TemperatureC1410Flow TemperatureC1450	Deformation Temperature	C	1350
Hemisphere TemperatureC1410Flow TemperatureC1450	Softening Temperature	C	1380
Flow Temperature °C 1450	Hemisphere Temperature	C	1410
	Flow Temperature	C	1450

Sample ID 3793055 Matimba Unit 3 February 2012	WMCC-2012-05-15/4393	
Component	Unit	Value
Analytical Moisture	%	3.0
Ash	%	36.3
Volatile Matter	%	24.4
Fixed Carbon (by difference)	%	36.3
Carbon	%	44.58

Central Coal Laboratory Test Report	Report Reference COA2012-010147	
Sample ID 3793055	WMCC-2012-05-15/4393	
Matimba Unit 3		
February 2012		
Component	Unit	Value
Hydrogen	%	2.85
Nitrogen	%	0.92
Total Sulphur	%	0.86
Carbonate	%	2.27
Oxygen (by difference)	%	8.26
Gross Calorific Value	MJ/kg	20.04
Elemental Analysis		
SiO2	%	60.5
AI2O3	%	21.9
Fe2O3	%	5.9
TiO2	%	1.8
P2O5	%	0.00
CaO	%	4.6
MgO	%	1.0
Na2O	%	0.0
K2O	%	1.1
SO3	%	2.9
MnO	%	0.25
Ash Fusion Temperature		
Deformation Temperature	Ĵ	1330
Softening Temperature	C	1360
Hemisphere Temperature	C	1390
Flow Temperature	Ĵ	1400

The analysis was performed using the following methods:

Analytical Moisture	ESKOM METHOD No 103 Rev 2	Not Accredited
Ash	ESKOM METHOD No 101 Rev 1	Not Accredited
Volatile Matter	ESKOM METHOD No 102 REV 1	Not Accredited
Fixed Carbon	ESKOM METHOD No 128 REV 1	Accredited
Carbon, Nitrogen, Hydrogen	ESKOM METHOD No 118 REV 1	Not Accredited
Carbonate	ESKOM METHOD No 100	Not Accredited
Total Sulphur	ESKOM METHOD No 104 REV 1	Not Accredited
Oxygen (Difference)	ESKOM METHOD No 132 REV 1	Not Accredited
Gross Calorific Value	ESKOM METHOD No 105 REV 1	Not Accredited
Elemental Analysis	ESKOM METHOD No 121	Not Accredited
Ash Fusion	ESKOM METHOD No 125	Not Accredited

The analysis was performed using the following methods:

Ash Fusion

ESKOM METHOD No 125

Not Accredited

Tests marked "Not SANAS accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Opinions and interpretations expressed herein are outside the scope of SANAS accredition.

The results contained in this report only pertain to the sample submitted. If you rely on the information and data contained in this report you are responsible for ensuring by independent verification the accuracy or completeness of the sample submitted.

End of Report

Moisture Content

Project:	Matimba Power Station
Client:	Jeffares & Green
Soillab Job Nr:	G14-0028

Sample Nr:	Depth:	Moisture
	m	%
BH01	5	22.5
BH01	10	23.2
BH01	15	24.8
BH01	20	18.8
BH01	25	20.0
BH01	30	18.8
BH01	35	18.2
BH01	40	17.5
BH01	45	22.3
BH01	47	16.0
BH02	5	18.5
BH02	10	17.6
BH02	15	18.2
BH02	20	17.9
BH02	25	17.1
BH02	30	18.3
BH02	35	17.5
BH02	40	18.4
BH02	45	27.0
BH02	48	15.8
BH03	5	19.5
BH03	10	17.9
BH03	15	16.6
BH03	20	15.9
BH03	25	16.1
BH03	30	16.4
BH03	35	15.4
BH03	40	17.1

Comments:

Test method:	ASTM D7263-09
Operator:	MM
Checked:	TG
Approved:	TG

VKE CENTRE, 230 Albertus Street La Montagne, Pretoria, 0184

P O Box 72928, Lynnwood Ridge, South Africa, 0040 Tel: (+27) (12) 481 3815

Email: Tinus.Grobler@smec.com www.soillab.co.za

	Royal Haskoning DHV Matimba Power Station Ash Discard Dump	LEGEND Sheet 1 of 1
terratest Geotechnical & Environmental Consultants		JOB NUMBER: 3145
000	GRAVEL	{SA02}
	o GRAVELLY	{SA03}
	SAND	{SA04}
	SANDY	{SA05}
	SILT	{SA06}
	SILTY	{SA07}
	CLAYEY	{SA09}
· · · · · · · · · · · · · · · · · · ·		{SA11}
• •	FERRICRETE NODULES	{SA24}
Name	UNDISTURBED SAMPLE	{SA37}
Name 👝	DISTURBED SAMPLE	{SA38}
2	ROOTS	{SA40}
CONTRACTOR : MACHINE : DRII I FD BY ·	INCLINATION : DIAM : DATE ·	ELEVATION : X-COORD : Y-COORD :
PROFILED BY : TYPE SET BY : B. Nev	DATE : viton DATE : 30/05/2014 13:37 TA4 SET TEXT : 0100TBI 010445TBI 00/0	LEGEND SUMMARY OF SYMBOLS

	Royal Haskoning DH Matimba Power Stati	IV on Ash Discar	d Dump		HOLE No: TP M1 Sheet 1 of 1
terratest Geotechnical & Environmental					JOB NUMBER: 3145
Consultants	Scale 1:20 0.00.57m ┏.		0.00	Dry, brown to loose, open with quartz colluvium / aeo	o light reddish brown, voided, SILTY SAND gravel inclusions, lian. Roots.
	0.571.1m 🍝		0.57	Dry becoming brown blotch orange, loose open voided quartz grave Occasional roo	slightly moist, reddish ed light yellow and to medium dense, SILTY SAND with inclusions, aeolian. ots.
	1.11.9m • -			Slightly moist blotched grey medium dens slightly ferrug SAND contair packed, mat pebbles, pedo	at top becoming moist, at top becoming moist, be, intact with voids, inous CLAYEY SILTY ing numerous, densely rix supported, quartz genic.
			1.90	Slightly moist, and orange, m intact, ferrugir GRAVEL (cla pebbles in a pedogenic / pe	grey blotched yellow edium dense to dense, ious CLAYEY SANDY ast supported quartz clayey sand matrix), ibble marker.
		· · · · · · · · · · · · · · · · · · ·	2.70	Pinkish bro (oxidation), h rock SANDST	wn stained orange ighly weathered, soft ONE.
			-	NOTES	
			1)	No water see	bage observed.
			2)	No refusal, b near refusal.	out difficult excavation /
			3)	Disturbed sa 0.00.57m, 0.8	mples taken between 571.1m and 1.11.9m.
CONTRACTOR : MACHINE : CAT 428E TLB DRILLED BY :	INCLIN	ATION : DIAM : DATE :		El	.EVATION : X-COORD : 23d42'52.8" S Y-COORD : 27d35'35.4" F
PROFILED BY : T. Speirs		DATE : 25-26 F	eb 2014		HOLE No: TP M1
I YPE SET BY : B. Newton SETUP FILE : BH1TT-A4.SET		DATE: 30/05/20 TEXT: C\DOTPI	14 13:37 LOT\3145TPL	_0G(2).TXT	

	Royal Haskoning DHV Matimba Power Station Ash Discard Dump)	HOLE No: TP M2 Sheet 1 of 1
cerratest otechnical & environmental consultante			JOB NUMBER: 3145
	Scale 87 0 0.00 1.20 1 0 0.00 52 0 0	Dry, light incipiently op with occas inclusions, co	reddish brown, loose, en voided, SILTY SAND sional quartz gravel Illuvium / aeolian. Roots.
	0.72.3m	Dry, reddish medium den SAND, aeolia At bottom be blotched grey	orange blotched yellow, se, open voided, SILTY an. Roots. ecomes ferruginous and /.
		Dry, grey blo dense to coalesced / indurated, (honeycombe Occasional tr	tched black and orange, very dense, intact, partially indurated to FERRICRETE ed), pedogenic. ee roots at the top.
	2.70	NOTES	
		1) No water see	epage observed.
		2) No refusal, near refusal.	but difficult excavation /
		3) Disturbed s 0.72.3m.	ample taken between
CONTRACTOR :	INCLINATION :		ELEVATION :
MACHINE : CAT 428E TLB DRILLED BY : PROFILED BY : T. Spoirs	DIAM : DATE : DATE : 25-26 Eab 201	4	x-coord : 23d42'27.7" S y-coord : 27d35'43.0" E
TYPE SET BY : B. Newton	DATE : 20-20 FED 2014 DATE : 30/05/2014 13:37 TEXT : CIDOTPL 01/3445		HOLE No: TP M2

	Royal Haskoning DH Matimba Power Statio	/ on Ash Discard Dump		HOLE No: TP M3 Sheet 1 of 1
terratest Geotechnical & Environmental				JOB NUMBER: 3145
Consultants	Scale 1:20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dry, light rec roots, open vo quartz grave aeolian. Roots	ldish brown, loose, with bided, SILTY SAND with I inclusions, colluvial / s.
	[.	07 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1	Slightly mo	vist, reddish brown
	0.81.5m • ·		loose, open with quartz gr	voided, SILTY SAND avel inclusions, aeolian.
	1.51.7m ∎- -	1: 0; 1 0 1 0 1: 0; 1 1: 0; 1 1: 0; 1 1: 0; 1 0; 1 0; 1 0 1: 1 0; 1 0	Dry, grey orange, den voids, ferrugir	blotched yellow and se, intact with open hous GRAVELLY SILTY
	1.52.25m • .		SAND, pedog	enic.
	2.252.55m	2.25	Dry, grey blo dense to ver to hon FERRICRETE	tched black and orange, y dense, intact, nodular eycomb textured E, pedogenic.
		2.00	NOTES	
			1) No water see	page observed.
			2) No refusal, b	ut slow advance of TLB.
			3) Disturbed sa 0.81.5m, 2.252.55m.	amples taken between 1.52.25m and
			4) Undisturbed 1.51.7m.	sample taken between
CONTRACTOR : MACHINE : CAT 428E TLB DRILLED BY :	INCLINA	L TION : DIAM : DATE :	E	LEVATION : X-COORD : 23d43'08.6" S Y-COORD : 27d35'43.8" E
PROFILED BY : T. Speirs		DATE : 25-26 Feb 2014		HOLE No: TP M3
SETUP FILE : BH1TT-A4.SET		TEXT : C\DOTPLOT\31451	PLOG(2).TXT	

	Royal Haskoning DHV Matimba Power Station Ash Discard Dump		HOLE No: TP M4 Sheet 1 of 1
terratest Geotechnicaleuronmental		[JOB NUMBER: 3145
Consultants	Scale 2011 0.00	Slightly moist loose, open colluvium. Roo	, light reddish brown, voided, SILTY SAND, ts.
	$0.7-0.95m \blacksquare 0.28$ $0.28-1.8m \blacksquare 0.28$	Dry, dark re yellow, media almost dense SAND with qu aeolian. Roots	ddish brown speckled um dense becoming , open voided, SILTY uartz gravel inclusions, at top.
		Dry, reddish o speckled black to incipiently SILTY SAND inclusions, aec	orange blotched yellow , medium dense, intact voided, ferruginous) with quartz gravel plian / pedogenic.
		NOTES	
		I) No water seep	bage observed.
		2) No refusal.	
		3) Undisturbed s 0.70.95m.	sample taken between
		4) Disturbed sa 0.281.8m	mple taken between
		5) Roots and approximately	termites in the top 0.8-1.0m.
CONTRACTOR : MACHINE : CAT 428E TLB	INCLINATION : DIAM :	EL	EVATION : X-COORD : 23d42'18.0" S
PROFILED BY : PROFILED BY : T. Speirs	DATE : 25-26 Feb 2014]	HOLE No: TP M4
TYPE SET BY : B. Newton SETUP FILE : BH1TT-A4.SET	DATE : 30/05/2014 13:37 TEXT : C\DOTPLOT\3145T	PLOG(2).TXT	

	Royal Haskoning DHV Matimba Power Station Ash Discard Dump		HOLE No: TP M5 Sheet 1 of 1
terratest Geotechnical & Environmental			JOB NUMBER: 3145
Consultants	Scale S_{1}^{2} O_{1}^{2} O_{1}^{2} O_{2}^{1} O_{2}^{1} O_{2}^{2}	Dry, light r incipiently voi quartz gravel aeolian. Roots	eddish brown, loose, ded, SILTY SAND with inclusions, colluvium /
		Dry, dark re yellow and or dense, open with quartz gra Roots.	ddish brown speckled range, loose to medium voided, SILTY SAND avel inclusions, aeolian.
		Dry to slightly orange, grey dense, i GRAVELLY pedogenic.	/ moist, blotched light and yellowish grey, ntact, ferruginous CLAYEY SAND,
		As above with nodules.	black nodular ferricrete
	2.10		
		NOTES	
		1) No water see	page observed.
		TLB at the bot	tom.
CONTRACTOR : MACHINE : CAT 428E TLB DRILLED BY : PROFILED BY : T. Speirs	INCLINATION : DIAM : DATE : DATE : 25-26 Feb 2014	El	LEVATION : X-COORD : 23d42'56.2" S Y-COORD : 27d36'08.3" E
TYPE SET BY : B. Newton	DATE : 30/05/2014 13:37		HOLE No: TP M5
SEIUP FILE : BH111-A4.SEI	IEXT: C\DUTPLUT\3145T	PLUG(2).TXT	

Ri M	oyal Haskoning DHV atimba Power Station Ash Dis	card Dump	HOLE No: TP M6 Sheet 1 of 1
terratest otechnical & Environmental			JOB NUMBER: 3145
Consultants	0.351.1m	0.00 Dry, li top incipie with colluv 0.35 Dry, speck at the open quart: Roots	ight reddish brown, very loose a becoming loose, with roots ently open voided, SILTY SANE quartz gravel inclusions rium / aeolian. Roots. reddish brown speckled yellow cled and blotched orange, loose e top becoming medium dense voided, SILTY SAND with z gravel inclusions, aeoliar s at the top.
		1.10 Slight speck voide CLAY partia FERF 1.40	ly moist, grey blotched orang led black, dense, occasionall d, ferruginous GRAVELL YEY SAND with coalesced lly indurated nodula RICRETE, pedogenic.
		NOTE	ES
		1) No w	ater seepage observed.
		2) No r at the	efusal, but slow advance of TL bottom.
		3) Undi 0.35	sturbed sample taken betwee
		4) Distu 0.35	urbed sample taken betwee -1.1m.
CONTRACTOR : MACHINE : CAT 428E TLB DRILLED BY :	INCLINATION : DIAM : DATE :		ELEVATION : X-COORD : 23d43'34.4' Y-COORD : 27d36'03.9'
		C Lab 0044	

Royal Haskoning DHV

Matimba Power Station Ash Discard Dump

HOLE No: TP M7

Sheet 1 of 1

Royal Haskoning DHV Matimba Power Station Ash Discard Dump

HOLE No: TP M8 Sheet 1 of 1

Γ

chnical & Environmental Consultants				JOB NUMBER: 3143
		0.00	Topsoil stripp the surface reddish brow voided, SILT gravel inclusi Roots.	ed. Thin layer of ash on underlain by dry, light vn, loose, incipiently Y SAND with quartz ons, colluvium / aeolian.
			Dry, dark re yellow and o dense, open with quartz gra Roots.	eddish brown speckled range, loose to medium voided, SILTY SAND avel inclusions, aeolian.
		1.20	Dry to slightl orange, grey dense, GRAVELLY pedogenic.	y moist, blotched light and yellowish grey, intact, ferruginous CLAYEY SAND,
	0	2 20		
	0.00	2.00	As above wit nodules.	h black FERRICRETE
			NOTES	
			1) No water see	page observed.
		2	2) No refusal excavation at	, but difficult TLB the bottom.
CONTRACTOR : IN MACHINE · CAT 428E TI B	ICLINATION :		E	LEVATION : X-COORD 23d43'08 4" S
DRILLED BY: DROCH ED BY: T Spoirs	DATE :	Eab 2014		Y-COORD : 27d36'17.4" E
TYPE SET BY : B. Newton	DATE : 20-20 DATE : 30/05/20)14 13:37		HOLE No: TP M8
SETUP FILE : BH1TT-A4.SET	TEXT : C\DOTF	PLOT\3145T	PLOG(2).TXT	

D06C JGI

CONTRACTOR :

	Royal Haskoning DH\ Matimba Power Statio	V on Ash Discard Dump		HOLE No: TP M9 Sheet 1 of 1
terratest Geotechnical & Environmental Consultante				JOB NUMBER: 3145
Consultants	Scale 1:20 0.150.75	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dry, light redo SILTY SANI gravel inclusi Dry, dark r orange, medi SILTY SAN inclusions, ae	dish brown, loose, intact, D with scattered quartz ons, colluvium. Roots eddish brown blotched um dense, open voided, D with quartz gravel eolian. Roots at the top.
	0.751.3m 🄶 -	0.75 0.75 0.75 0.75	Dry, reddish grey and yello ferruginous S gravel inclusi	brown blotched orange, ow, dense, open voided, SILTY SAND with quartz ons, pedogenic.
			NOTES	
			1) No water see	epage observed.
			2) No refusal.	amples taken between
			0.150.75 an	d 0.751.3m.
CONTRACTOR : MACHINE : CAT 428E T	INCLINA	L TION : DIAM :	E	ELEVATION : X-COORD : 23d43'18.8" S
DRILLED BY : PROFILED BY : T. Speirs		DATE : DATE : 25-26 Feb 2014		Y-COORD : 27d36'28.4" E
TYPE SET BY : B. Newton SETUP FILE : BH1TT-A4.SE	Т	DATE : 30/05/2014 13:37 TEXT : C\DOTPLOT\3145T	PLOG(2).TXT	HOLE NO. IF WIJ

	Royal Haskoning DHV Matimba Power Station Ash Discard Dump		HOLE No: TPM10 Sheet 1 of 1
terratest Geotechnical & Environmental Consultants			JOB NUMBER: 3145
	Scale 1.20 6 6 6 6 6 6 6 6 6 6 6 6 6	Dry, brown to loose, intact w SAND with s inclusions, coll Dry, dark occasional ye dense, open with quartz grave not grey sp intact, (voide clayey SILT quartz grave nodules, pa indurated, ped NOTES 1) No water see 2) No refusal, excavation at the second	o light reddish brown, vith visible voids, SILTY scattered quartz gravel luvium. reddish brown with ellow specks, medium voided, SILTY SAND avel inclusions, aeolian. moist, blotched orange eckled black, dense, d), ferruginous slightly Y SAND containing end FERRICRETE rtially coalesced to logenic. page observed. but difficult TLB the bottom.
CONTRACTOR : MACHINE : CAT 428E TLB DRILLED BY ·	INCLINATION : DIAM : DATE ·	El	LEVATION : X-COORD : 23d43'24.7" S Y-COORD : 27d36'16 5" F
PROFILED BY : T. Speirs	DATE : 25-26 Feb 2014		HOLE No: TPM10
SETUP FILE : BH1TT-A4.SET	TEXT : C\DOTPLOT\3145T	PLOG(2).TXT	

	Royal Haskoning DHV Matimba Power Station Ash Discard Dump		HOLE No: TP M11 Sheet 1 of 1
terratest Geotechnical & Environmental Computation			JOB NUMBER: 3145
	Scale 1.20 0.00 0.20	Slightly moist speckled ye GRAVELLY (capping). Slightly mois loose, intact, lo NOTES 1) No water see 2) No refusal.	JOB NUMBER: 3145 , reddish orange-brown illow, loose, intact, SILTY SAND, fill t, grey, very loose to ow density, ash discard. page observed.
CONTRACTOR : MACHINE : CAT 428E TLB	INCLINATION : DIAM :	E	LEVATION : X-COORD : 23d42'16.1" S
DRILLED BY : PROFILED BY : T. Speirs	<i>DATE :</i> <i>DATE :</i> 25-26 Feb 2014		Y-COORD : 27d36'28.4" E HOLE No: TP M11
TYPE SET BY : B. Newton SETUP FILE : BH1TT-A4.SET	DATE : 30/05/2014 13:37 TEXT : C\DOTPLOT\3145T	PLOG(2).TXT	

Soillah sam	J. Inle no				⊢	6	14-024	34-12		-					-			PP	0		
Denth (m)	ihie IIO.				<u> </u>	3	03-020	/-+-⊺∠ २.२		-					-				B N		
Deptil (III)							0.3 - C	5.5 S												NU.	
Material							GHT G								-					•	
Description	า					AS	H + QL	JARTZ	Z											_	
							SANE	ΟY												Р	
							SIL	Г								e	60 -			Т	ĺ
Moisture (%)															F	50 -				
Dispersion (%)																				
SCREEN AN	NALYSIS	3(%)	PAS	SING	5) (1	ГМН	1 1 A1	(a) &	A5)							ample 5	10 -			+	
	63.0 mr	m					100)								hole a	30 -			+	
	53.0 mr	m					100)								≥ 50	- 02				
	37.5 mr	m					100)								ΞÎ	-				
	26.5 mr	n					100)								1	0 -			\downarrow	
	19.0 mr	n 					100)							1						
	13.2 mr	m					100	,									0			_	
	4.75 mr	n					100)									0)		10	
	2.00 mr	n					99														
	0.425 m	m					94														
	0.075 M	111			1		70								1						
HYDROMET	TER ANA	\LYSI	S (%	6 PA	SSI	ING) (TMI	H 1 A	6)												
	0.040 m	m					45								1						
	0.027 m	m					36														
	0.013 m	m					17								1						
	0.005 m	m					4										60	Г			•
	0.002 m	m					0			L					-		50				
% Clay							0								1		50	1			
% Silt					<u> </u>		59			_					-		40				
% Sand							40								-	ě	40				
% Gravel							1								-	tylne	30				
ATTERBER	G LIMITS	S (TM	IH 1	A2 -	A4))										lastic					
Liquid Limit																•	20				
Plasticity Inc	lex						NP														
Linear Shrin	kage (%))					0.0										10				
Grading Mod	dulus						0.38	3										1			
Uniformity co	cefficient	t					7										0	<u> </u>		<u> </u>	
Coefficient o	f curvatu	ure					1.0											υ	1	U	
Classificatio	n						A-4 (0)							4						
Unified Clas	sification	1			-		ML			-					-						
Chart Refere	ence						<u></u> .	<u> </u>		-	ů ů		A]						
100 -		,																			
																-	\mathbb{H}	$+\!\!+$	+	_	
															1						
80 -											\parallel	\parallel		\angle				Щ			
00																					
												H	1								
ing											X										
sg 60 -		$\left \right $	+	++	++	\parallel		-			H	++		+	+	+	$\left \right $	++	╢		
d %																					
tive																					
- 40 -				\parallel	\parallel	_		-	И	-	\parallel	\parallel						\parallel	#		
Ö									1												
								/													
20 -				\square	\parallel	11	$-\!/$	_		\downarrow	\parallel	\parallel						\parallel	\parallel		
							×									1					

PROJECT : MATIMBA POWER STATION JOB No. : S14-0264 DATE : 13/03/2014

PLASTICITY CHART

MATIMBA POWER STATION

MOISTURE/DENSITY RELATIONSHIP @ MOD AASHTO COMPACTIVE EFFORT (TMH 1 A7)

SAMPLE NO.:	M12 (S14-0264-12)
Maximum dry density (kg/m ³):	1168
Optimum moisture content(%):	13.1

DRY DENSITY (kg/m³)

NOTE:

	230 Albertus Street	P O Box 72928
	La Montagne 0184	Lynnwood Ridge 0040
Reg No 1971/000112/07	Tel (012) 481-3999	Fax (012) 481-3812

Sample No.			
Soillab sample no.	S14-0264-13		
Depth (m)			
Position	MIXED SAMPLES		
Vaterial	DARK BROWN		
Description	SAND		
	CLAYEY		60
	SAND		60 -
Aoisture (%)			50
Dispersion (%)			50 -
SCREEN ANALYSIS (% PASS	SING) (TMH 1 A1(a) & A5)	의 40 -
63.0 mm	100		<u>- 0</u> 30 -
53.0 mm	100		<u>ج</u> ۲
37,5 mm	100		<u>ہ</u> 20 -
26.5 mm	100		Ľ.
19.0 mm	100		10 -
13.2 mm	100		
4 75 mm	100		0 -
2.00 mm	98		
0.425 mm	61		
0.075 mm	26		
IYDROMETER ANALYSIS (%	PASSING) (TMH 1 A6)		
0.040 mm	18		
0.027 mm	16		
0.013 mm	15		60
0.005 mm	14		00
0.002 mm	12		
0.002 mm	12		50
0.002 mm	12 12		50
0.002 mm 6 Clay 6 Silt	12 12 10 70		50
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel	12 12 10 76 2		50 50 40 89 94
0.002 mm % Clay % Silt % Sand % Gravel ATTERBERG LIMITS (TMH 1 /	12 12 10 76 2 A2 - A4)		100 50 50 50 50 50 50 50 50 50 50 50 50 5
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / .iquid Limit	12 12 10 76 2 A2 - A4)		50 40 Jasticity Index 30 20
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / .iquid Limit Plasticity Index	12 12 10 76 2 A2 - A4) 19 7		50 40 40 20 20
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / iquid Limit Plasticity Index inear Shrinkage (%)	12 12 10 76 2 A2 - A4) 19 7 3.0		50 40 Lassicity Lassicity 20 10
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / iquid Limit Plasticity Index inear Shrinkage (%) Grading Modulus	12 12 10 76 2 A2 - A4) 19 7 3.0 1.15		50 40 Lassiticity Index 20 10
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / iquid Limit Plasticity Index inear Shrinkage (%) Grading Modulus Jniformity coefficient	12 12 10 76 2 A2 - A4) 19 7 3.0 1.15		50 40 Aigstraction
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / 1/ 2/asticity Index 	12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - -		50 40 Aigination Aigin
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / 2 lasticity Index inear Shrinkage (%) 3 rading Modulus Iniformity coefficient Coefficient of curvature Classification	12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0)		50 40 Augustic August
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Iniquid Limit Plasticity Index Inicar Shrinkage (%) Grading Modulus Uniformity coefficient Coefficient of curvature Classification Juified Classification	12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC		50 40 Au Au Au Au Au Au Au Au Au Au Au Au Au
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jniformity coefficient Coefficient of curvature Classification Jnified Classification Chart Reference	12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC		50 40 9 10 10 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / iquid Limit Plasticity Index inear Shrinkage (%) Grading Modulus Iniformity coefficient Coefficient of curvature Classification Jufied Classification Chart Reference	12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC		50 40 Lasticit Judex 10 0 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jniformity coefficient Coefficient of curvature Classification Jnified Classification Chart Reference	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC		50 40 Lasticit Index 10 0 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jniformity coefficient Coefficient of curvature Classification Jnified Classification Chart Reference	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC		50 40 Lagrandia 20 10 0 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jniformity coefficient Coefficient of curvature Classification Jnified Classification Chart Reference	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC - -		50 40 http://dex 20 10 0 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jniformity coefficient Coefficient of curvature Classification Dified Classification Chart Reference 100 80	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC - - -		50 40 10 10 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jinformity coefficient Coefficient of curvature Classification Jinified Classification Chart Reference	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC		50 40 40 10 10 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jinformity coefficient Coefficient of curvature Classification Jinfied Classification Chart Reference	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC - - - - - - - - - - - - -		50 40 tigital 10 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jinformity coefficient Coefficient of curvature Classification Jinfied Classification Chart Reference	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC - -		50 40 tigital 20 10 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / Liquid Limit Plasticity Index Linear Shrinkage (%) Grading Modulus Jniformity coefficient Coefficient of curvature Classification Dified Classification Chart Reference 100 80 60	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC - -		50 40 Pulling 10 0 10 0
0.002 mm % Clay % Silt % Sand % Gravel ATTERBERG LIMITS (TMH 1 / liquid Limit lasticity Index inear Shrinkage (%) 3rading Modulus Iniformity coefficient 20efficient of curvature 2lassification Jnified Classification Chart Reference 100 80 60 %	12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM & SC - - -		50 40 Lagrandia 20 10 0
0.002 mm % Clay % Silt % Sand % Gravel ATTERBERG LIMITS (TMH 1 / liquid Limit lasticity Index .inear Shrinkage (%) 3rading Modulus Jnified Classification Chart Reference 100 80 60 %	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM& SC - - -		50 40 Lagrandia 20 10 0
0.002 mm 6 Clay 6 Silt 6 Sand 6 Gravel ATTERBERG LIMITS (TMH 1 / iquid Limit lasticity Index inear Shrinkage (%) Frading Modulus Iniformity coefficient 20astification Janified Classification Chart Reference	12 12 12 10 76 2 A2 - A4) 19 7 3.0 1.15 - - A-2-4 (0) SM& SC - - - - - - - - - - - - -		50 40 x40 Lassicit 10 0

PROJECT : MATIMBA POWER STATION JOB No. : S14-0264 DATE : 13/03/2014

PLASTICITY CHART

DRY DENSITY (kg/m³)

MATIMBA POWER STATION

MOISTURE/DENSITY RELATIONSHIP @ MOD AASHTO COMPACTIVE EFFORT (TMH 1 A7)

SAMPLE NO.: IXED SAMPLES (S14-0264-13)

Maximum dry density (kg/m ³):	2120
Optimum moisture content(%):	8.1

NOTE:

MODS/0264-02

	230 Albertus Street	P O Box 72928
	La Montagne 0184	Lynnwood Ridge 0040
Reg No 1971/000112/07	Tel (012) 481-3999	Fax (012) 481-3812

Sample No.	S14 0004 44		4	
Soliab sample no.	014-U204-14		1	
Position	23 - 45 BH 1			DATE ·
Material	LIGHT GREY			DAIL .
Description	ASH +QUARTZITE			
				PO
	SANDY		60	
Maintana (0/)	SILT		60	
Dispersion (%)			50	
				D
SCREEN ANALYSIS (% PAS	SING) (TMH 1 A1(a) & A5)	ad 40	
00.0	100		es <u>a</u> 30	N
63.0 mm	100		od v	
37.5 mm	100		o 20	<u>├──</u> ┤ ┃
26.5 mm	100			
19.0 mm	100		10	+
13.2 mm	99			
4.75 mm	99		0	0 10
2.00 mm	98			5 10
0.425 mm	95			
0.075 mm	72			
HYDROMETER ANALYSIS (% PASSING) (TMH 1 A6)			
0.040 mm	45		-	
0.027 mm	36			
0.013 mm	17			
0.005 mm	8		60	
0.002 mm	0		-	
% Clay	0		50	
% Silt	61]	
% Sand	38		× 40	
% Gravel	2		Inde	
ATTERBERG LIMITS (TMH 1	A2 - A4)		asticity 05	
Liquid Limit			[™] 20	
Plasticity Index	NP]	
Linear Shrinkage (%)	0.0		10	
Grading Modulus	0.35]	
Uniformity coefficient	9		0	
Coefficient of curvature	1.3		1	u 10 :
Classification	A-4 (0)		4	
Unified Classification	ML		-	
Chart Reference	: <u></u> .	· · · · · · · ·		
100		<u></u>		
80				
<u>م</u>				
sa 60		+ 1/ + + + - + - + - + - + - + - + - + - +	+++	
e / /				
lativ		¥		
₹ 40 	++++++			
ರ				
20				
20				
	₹			

PROJECT : MATIMBA POWER STATION JOB No. : S14-0264 DATE : 13/03/2014

PLASTICITY CHART

	044,0004,45			<u>י</u> סר
Sollab sample no.	S14-0264-15		4 5	'R(
Depth (m)	24 -45		J	OF
Position	BH 2)A
Material	LIGHT GREY			
Description	ASH			
	SANDY			
	SILT		- ⁶⁰ T	-
Moisture (%) Dispersion (%)			50 -	
SCREEN ANALYSIS (% PAS	SING) (TMH 1 A1(a) & A5	i)	ਹ ਭ ੁ 40 –	
63.0 mm	100		- 05 e sar	
53.0 mm	100		A PC	
33.0 mm	100		5 20 -	
37.5 mm	100		Ē	
26.5 1111	100		10 -	
19.0 mm	100			
13.2 mm	100		0	
4.75 mm	100		0	
2.00 mm	99			
0.425 mm	97			
0.075 mm	70			
HYDROMETER ANALYSIS (% PASSING) (TMH 1 A6)			
0.040 mm	45		-	
0.027 mm	37			
0.013 mm	19			
0.005 mm	6		60 -	
0.002 mm	0			
	0	-	50 -	
	50		-	
% Slit	59		40 -	
% Sand % Gravel	40		- Yee	
ATTERBERG LIMITS (TMH 1	A2 - A4)	-1	- 05 asticity I	
Liquid Limit			ق ₂₀	
Plasticity Index	NP		-	
Linear Shrinkage (%)	0.0		10 -	
	0.0		-	
	0.34		- 1	
Uniformity coefficient	9		0	
Coefficient of curvature	1.1		- °	
Classification	A-4 (0)		_	
Unified Classification	ML		-	
Chart Reference	· · · · · · · ·			
100				
				Ħ
			<u> </u>	
80				\parallel
și și				
ё 60 		+ /		H
а %				
e k				
lati		📕		
₹ 40 				\mathbb{H}
បី 				

PROJECT : MATIMBA POWER STATION JOB No. : S14-0264 DATE : 13/03/2014

PLASTICITY CHART

S14-0264-16 25 - 45 BH 3 LIGHT GREY SH + QUARTZITE SANDY SILT MH 1 A1(a) & A5) 100		
25 - 45 BH 3 LIGHT GREY SH + QUARTZITE SANDY SILT MH 1 A1(a) & A5) 100		JC DA
BH 3 LIGHT GREY SH + QUARTZITE SANDY SILT MH 1 A1(a) & A5) 100		60 50 8 40
LIGHT GREY SH + QUARTZITE SANDY SILT MH 1 A1(a) & A5) 100		60 50 <u>8</u> 40
SH + QUARTZITE SANDY SILT MH 1 A1(a) & A5) 100		60 50 <u>8</u> 40
SANDY SILT MH 1 A1(a) & A5)		60
SANDY SILT MH 1 A1(a) & A5)		60 50 <u>8</u> 40
SILT MH 1 A1(a) & A5)		60 50 <u>9</u> 40
MH 1 A1(a) & A5)	1	50
MH 1 A1(a) & A5)	 ,	50
MH 1 A1(a) & A5)	1	<u> 원</u> 40 —
100		am
		- <u>a</u> 30 -
100		w h
100		<u>ت</u> 20
100		•
100		10
100		
100		o 📥 —
100		0
99		
97		
70		4
NG) (TMH 1 A6)		
45		
37		
19		
6		⁶⁰ T
0		
		50
0		
59		1
40		× 40
1		nde
		05 Plasticity
		20
NP		40
0.0		10
0.34		
9		o 🖬 —
1.1		0
A-4 (0)]
ML		
<u></u> .		
	100 100 100 100 99 97 70 NG) (TMH 1 A6) 45 37 19 6 0 59 40 1 0 59 40 1 1 NP 0.0 0.34 9 1.1 A-4 (0) ML	100 100 100 100 99 97 70 NG) (TMH 1 A6) 45 37 19 6 0

PROJECT : MATIMBA POWER STATION JOB No. : S14-0264 DATE : 13/03/2014

PLASTICITY CHART

Lab reference No. IJEF FARCES & GREEN (PTY) LTD Gustomer. Job Number ISH-4224 Costomer. JSEF ARKES & GREEN (PTY) LTD Gad Number Job Number ISH-4224 Sample Number S3079 S3081 S3081 S3082 S3083 S3084 Sample Number S3079 S3080 S3081 M1 M2 M3 M3 Sample Number S3079 S3080 S3081 S3081 S3082 S3083 S3084 Sample Number S3079 S3080 D57-11 D4K PROWN D4K PROWN SAND SAND D4K PROWN SAND <	SOIL ANALYSIS BY: SOILLAB (Pty) Ltd Pa					Page : 1			
Customer	Lab reference No : S14-0264					Date Printed : 20	14-04-01		
Job Description MATIMBA POWER STATION Contract Number ::::::::::::::::::::::::::::::::::::	Customer : JEFFA	ARES & GREEN (F	PTY) LTD	Jo	bb Number	: S14-0264			
Road Number i2014-03-27 SAMPLE DESCRIPTION Sample Position M1 Sample Position M1 Sample Position M3 M3 Sobe Sample Position 0 0.57 0.57 1.1 1.1.1.9 0.7.2.3 0.8-1.5 Dark BROWN SAND Dark BROWN SAND BROWN SAND BROWN SAND BROWN SAND SAND Dark BROWN SAND SAND BROWN SAND SAND BROWN SAND	Job Description: MATIMBA POWER STATION Contract Number :					.:			
SAMPLE DESCRIPTION Sample Number 53079 M1 53080 M1 53081 M1 53082 M1 53082 M2 53083 M3 53084 M3 Sample Number 0.0.57 Material Description DARK BROWN SAND 0.57-1.1 DARK RED BROWN SAND 1.1-1.9 DARK RED BROWN SAND 1.1-1.9 DARK RED BROWN SAND 1.1-1.9 DARK RED BROWN SAND D.7-2.3 DARK RED BROWN SAND DARK RED DARK RED DARK RED DARK RED SAND DARK RED SAND DARK RED SAND DARK RED SAND DARK RED DARK RED SAND DARK	Road Number			Date : 2014-03-27					
Sample Position 53081 M1 53080 M1 53081 M1 53082 M3 53082 M3 53083 M3 53084 M3 Sample Position 0-0.57 MAt size of boulder (nm) 0-0.57 DARK BROWN 0.57 - 1.1 DARK RED BROWN 1.1-1.9 LIGHT RED BROWN 0.8-1.5 DIGHT CRANGE CLAYEY 0.8-1.5 DARK RED BROWN 0.9-1.0 DID DID DID DID DID DID DID DID DID DI	SAMPLE DESCRIPTION								
Sample Position M1 M1 M1 M1 M2 M3 M3 Sample Depth (mm) 0-0.57 0.67-1.1 0.74.3 0.74.7 DARK BROWN SAND LIGHT ORANGE DARK RED DARK P	Sample Number	53079	53080	53081	53082	53083	53084		
Sample Depth (mm) 0-0.57 D.57-1.1 1.1-1.9 0.7-2.3 0.8-1.5 DARK BROWN SAND Max size of boulder (mm) -<	Sample Position	M1	M1	M1	M2	M3	M3		
Sample Depth (mm) 0-0.57 1.11-19 0.7-2.3 0.8-1.5 DARK BROWN Material Description DARK BROWN SAND LIGHT ORANGE LIGHT RED SAND DARK BROWN Max size of boulder (mn) -									
Material Description DARK BROWN SAND DARK RE BROWN SAND DARK RE BROWN SAND LIGHT GRANGE ERRICERET GRAVEL LIGHT RED SAND DARK RE BROWN Max size of boulder (mm) - <td< td=""><td>Sample Depth (mm)</td><td>0-0.57</td><td>0.57 -1.1</td><td>1.1-1.9</td><td>0.7-2.3</td><td>0.8-1.5</td><td>1.5-2.25</td></td<>	Sample Depth (mm)	0-0.57	0.57 -1.1	1.1-1.9	0.7-2.3	0.8-1.5	1.5-2.25		
SAND BROWN FERRICRETE CLXPEY GRAVEL SAND BROWN SAND Max size of boulder (mn) - </td <td>Material Description</td> <td>DARK BROWN</td> <td>DARK RED</td> <td>LIGHT ORANGE</td> <td>LIGHT RED</td> <td>DARK RED</td> <td>DARK BROWN</td>	Material Description	DARK BROWN	DARK RED	LIGHT ORANGE	LIGHT RED	DARK RED	DARK BROWN		
Max size of boulder (mm) SAND CLAYEY GRAVEL SAND Max size of boulder (mm) -<		SAND	BROWN	FERRICRETE	SAND	BROWN	SAND		
Max size of boulder (mm) - <td></td> <td></td> <td>SAND</td> <td>CLAYEY</td> <td></td> <td>SAND</td> <td></td>			SAND	CLAYEY		SAND			
Max size of boulder (mm) - <td></td> <td></td> <td></td> <td>GRAVEL</td> <td></td> <td></td> <td></td>				GRAVEL					
Max size of Doulder (mm) - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
SCREEN ANALYSE (* PASS) 100	Max size of boulder (mm)	-		-	-	-	-		
(5):00 mm 100 100 100 100 100 100 100 53:00 mm 100 <t< td=""><td>SCREEN ANALYSIS (% PASS)</td><td>100</td><td>400</td><td>100</td><td>100</td><td>400</td><td>100</td></t<>	SCREEN ANALYSIS (% PASS)	100	400	100	100	400	100		
B3:00 mm 100 100 100 100 100 100 37:50 mm 100 100 100 100 100 100 100 37:50 mm 100 100 100 100 100 100 100 13:00 mm 100 100 100 100 100 100 100 13:20 mm 100 100 100 100 100 100 100 100 4:750 mm 100	75,00 mm	100	100	100	100	100	100		
Dot Min Dot Dot <thdot< th=""> <thdot< <="" td=""><td>53.00 mm</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td></thdot<></thdot<>	53.00 mm	100	100	100	100	100	100		
22.50 mm 100 <td>37 50 mm</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td>	37 50 mm	100	100	100	100	100	100		
Toto Toto <thtoto< th=""> Toto Toto <tht< td=""><td>26.50 mm</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td></tht<></thtoto<>	26.50 mm	100	100	100	100	100	100		
13.20 Imm 100 </td <td>19.00 mm</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td>	19.00 mm	100	100	100	100	100	100		
4,750 mm 100 100 66 100 100 2,000 mm 98 97 54 97 99 9 0,425 mm 14 22 19 21 19 2 Coarse Sand 2,000-0,425 42 44 36 37 43 3 Coarse Fine Sd 0,425-0,250 16 15 11 15 16 1 Medium Fine Sd 0,425-0,250 16 15 11 15 16 1 Material <0,075	13.20 mm	100	100	.00	100	100	100		
2:000 mm 98 97 54 97 99 9 0.425 mm 57 55 35 60 56 6 0.075 mm 14 22 19 21 19 2 Coares Sand 2.00-0,425 42 44 36 37 43 3 Coares Fine Sd 0.425-0.250 16 15 11 15 16 1 Medum Fine Sd 0.250-0.150 13 9 8 11 10 Fine Fine Sand 0.075 14 23 35 22 20 3 Grading Modulus 1.31 1.26 1.92 1.22 1.26 1.1 Iquid Limit 20 28 15 15 1 Plasticity Index NP 8 12 4 5 Linear Shrinkage (%) 0.0 3.0 6.0 1.5 2.0 3. Classification - CRE/ A-24 (0) A-24 (0) A-24 (0)	4.750 mm	100	100	66	100	100	100		
0.425 mm 57 55 35 60 56 6 0.075 mm 14 22 19 21 19 2 SOLL MORTAR 2000-0,425 42 44 36 37 43 3 Coarse Fine Sd 0,425-0,250 16 15 11 15 16 1 Material <0,075	2.000 mm	98	97	54	97	99	97		
0.075 mm 14 22 19 21 19 2 SOIL MORTAR Coarse Sand 2,000-0,425 42 44 36 37 43 3 Coarse Sand 0,425-0,250 16 15 11 15 16 1 Medium FineS 40 0,250-0,150 13 9 8 11 10 1 Fine Fine Sand 0,150-0,075 14 23 35 22 20 3 CONSTANTS 14 23 35 22 20 3 3 CONSTAINTS 1.31 1.26 1.92 1.22 1.26 1.1 Liquid Limit 20 28 15 15 1 Plasticity Index NP 8 12 4 5 Linear Shrinkage (%) 0.0 3.0 6.0 1.5 2.0 3. Classification - TRB A-24 (0) A-24 (0) A-24 (0) A-24 (0) A-24 (0) A-24 (0) Mob	0,425 mm	57	55	35	60	56	60		
SOLL MORTAR Coarse Sand 2,000-0,425 42 44 36 37 43 3 Coarse Sand 2,000-0,425 16 15 11 15 16 1 Medium Fine Sd 0,425-0,250 16 15 11 15 16 1 Material c0.075 14 23 35 22 20 3 CONSTANTS Grading Modulus 1.31 1.26 1.92 1.22 1.26 1.1 Liquid Limit 20 28 15 15 1 1 Plasticity Index NP 8 12 4 5 1 Linear Shrinkage (%) 0.0 3.0 6.0 1.5 2.0 3. Sand Equivalent COLTO A-24 (0)	0,075 mm	14	22	19	21	19	29		
Coarse Sand 2,000-0,425 42 44 36 37 43 33 Coarse Fine Sd 0,425-0,250 16 15 11 15 16 1 Medium Fine Sd 0,250-0,150 13 9 8 11 10 1 Fine Fine Sand 0,150-0,075 15 9 10 15 111 1 Material <0,075	SOIL MORTAR								
Coarse Fine Sd 0,250,250 16 15 11 15 16 1 Medium Fine Sd 0,250,0150 13 9 8 11 10 Fine Fine Sand 0,150-0,075 14 23 35 22 20 3 Constraints 1 23 35 22 20 3 Grading Modulus 1.31 1.26 1.92 1.22 1.26 1.1 Liquid Limit 20 28 15 15 1	Coarse Sand 2,000-0,425	42	44	36	37	43	38		
Medium Fine Sad 0,250-0,75 13 9 8 11 10 Fine Fine Sand 0,150-0,075 15 9 10 15 11 1 Material <0,075	Coarse Fine Sd 0,425-0,250	16	15	11	15	16	11		
Fine Fine Sand 0,050,075 15 9 10 15 11 1 Material <0,075	Medium Fine Sd 0,250-0,150	13	9	8	11	10	9		
Material SU(7)5 14 23 35 22 20 3 CONSTANTS 1.31 1.26 1.92 1.22 1.26 1.1 Liquid Limit 20 28 15 15 1 Plasticity Index NP 8 12 4 5 Linear Shrinkage (%) 0.0 3.0 6.0 1.5 2.0 3. Sand Equivalent COLTO A-2-4 (0)	Fine Fine Sand 0,150-0,075	15	9	10	15	11	12		
CONSTANTS 1.31 1.26 1.92 1.22 1.26 1.1 Liquid Limit 20 28 15 15 1 Plasticity Index NP 8 12 4 5 Linear Shrinkage (%) 0.0 3.0 6.0 1.5 2.0 3. Sand Equivalent 0.0 3.0 6.0 1.5 2.0 3. Classification - TRB A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) Classification - COLTO A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) Classification - COLTO A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) Classification - COLTO Bornsity (kg/m³) 0.0 A-2-4 (0) A-2-4 (0) MOD AASHTO Max Dry Density (kg/m³) 0.0 A A A Modulding Moisture Cont (%) Dry Density (kg/m³) A A 100% Mod CBR/UCS A A A		14	23	35	22	20	30		
Grading Modulus 1.31 1.32 1.32 1.22 1.20 1.12 Liquid Limit NP 8 12 4 5 15 1 Plasticity Index NP 8 12 4 5 1	CONSTANTS Creding Medulue	1.21	1.00	1.00	1.00	1.00	4.44		
Liquid Linin 20 26 15 16	Liquid Limit	1.31	1.20	1.92	1.22	1.20	1.14		
Prestoly finitiage (%) Nr 0 12 4 5 3 Sand Equivalent 0.0 3.0 6.0 1.5 2.0 3. Classification - TRB A-2-4 (0) A-2-4 (0) A-2-6 (0) A-2-4 (0) A-2-4 (0) Classification - COLTO A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) CBR / UCS VALUES Image: Cold of the state of the stat	Plasticity Index	ND	20	20	15	15	19		
Sand Equivalent A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) Classification - COLTO A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) A-2-4 (0) CBR / UCS VALUES MOD. AASHTO MOD. AASHTO Moliding Moisture Cont (%) A-2-4 (0) A-2-4 (0) A-2-4 (0) Molding Moisture Cont (%) Molding Moisture Cont (%) A-2-4 (0) A-2-4 (0) Molding Moisture Cont (%) Mold Ashtro NRB Dry Density (kg/m³)	Linear Shrinkage (%)	0.0	30	6.0	15	20	35		
Classification - TRB A-2-4 (0) A-2-4 (0) A-2-6 (0) A-2-4 (0)	Sand Equivalent	0.0	0.0	0.0	1.0	2.0	0.0		
Classification - COLTO	Classification - TRB	A-2-4 (0)	A-2-4 (0)	A-2-6 (0)	A-2-4 (0)	A-2-4 (0)	A-2-4 (0)		
CBR / UCS VALUES MOD. AASHTO Max Dry Density (kg/m³) Optimum Moisture Cont (%) Moulding Moisture Cont (%) Moulding Moisture Cont (%) Dry Density (kg/m³) % of Max Dry Density % Swell NRB Dry Density (kg/m³) % of Max Dry Density 100% NRB CBR/UCS % Swell PROCTOR Øry Density (kg/m³) % Swell PROCTOR Øry Density (kg/m³) % of Max Dry Density 100% Proc CBR/UCS % Swell CBR / UCS VALUES 100% Mod AASHTO 98% Mod AASHTO	Classification - COLTO								
MOD. AASHTO Max Dry Density (kg/m³) Optimum Moisture Cont (%) Moulding Moisture Cont (%) Moulding Moisture Cont (%) Dry Density (kg/m³) % of Max Dry Density 100% Mod CBR/UCS % Swell NRB Dry Density (kg/m³) % of Max Dry Density 100% NRB CBR/UCS % Swell PROCTOR Dry Density (kg/m³) % of Max Dry Density 100% NRD CBR/UCS % Swell PROCTOR Dry Density (kg/m³) % of Max Dry Density 100% Proc CBR/UCS % Swell CBR / UCS VALUES 100% Mod AASHTO 98% Mod AASHTO	CBR / UCS VALUES								
Max Dry Density (kg/m³)	MOD. AASHTO								
Optimum Moisture Cont (%) Moulding Moisture Cont (%) Dry Density (kg/m³)	Max Dry Density (kg/m ³)								
Moulding Moisture Cont (%)	Optimum Moisture Cont (%)								
Dry Density (kg/m³)	Moulding Moisture Cont (%)								
% of Max Dry Density	Dry Density (kg/m ³)								
100% Mod CBR/UCS % Swell Dry Density (kg/m³) % of Max Dry Density 100% NRB CBR/UCS % Swell PROCTOR Dry Density (kg/m³) % of Max Dry Density % of Max Dry Density % Swell Dry Density (kg/m³) % Swell CBR / UCS VALUES 100% Mod AASHTO 98% Mod AASHTO	% of Max Dry Density								
70 Swell Image: Swell	100% Mod CBR/UCS								
NKB Dry Density (kg/m³) % of Max Dry Density 100% NRB CBR/UCS % Swell PROCTOR Dry Density (kg/m³) % of Max Dry Density 100% Proc CBR/UCS % Swell CBR / UCS VALUES 100% Mod AASHTO 98% Mod AASHTO	70 SWEII	1							
Dry Density (kg/m ³) % of Max Dry Density 100% NRB CBR/UCS % Swell Dry Density (kg/m ³) % of Max Dry Density 100% Proc CBR/UCS % Swell CBR / UCS VALUES 100% Mod AASHTO 98% Mod AASHTO									
% 01 Max Diy Density	Control Density (kg/m ²)								
% Swell									
PROCTOR Proctor Dry Density (kg/m³)	% Swell								
Dry Density (kg/m³)	BROCTOR								
% of Max Dry Density	Dry Density (kg/m ³)								
100% Proc ČBR/UCŠ	% of Max Dry Density								
% Swell	100% Proc CBR/UCS								
CBR / UCS VALUES 100% Mod AASHTO 98% Mod AASHTO	% Swell								
100% Mod AASHTO	CBR / UCS VALUES		in the provide the second s						
98% Mod AASHTO	100% Mod AASHTO						8		
	98% Mod AASHTO								
97% Mod AASHTO	97% Mod AASHTO								
95% Mod AASHTO	95% Mod AASHTO								
93% Mod AASHTO	93% Mod AASHTO								
90% Mod AASHTO	90% Mod AASHTO								
SUILLAB NO S14-0264-01 S14-0264-02 S14-0264-03 S14-0264-04 S14-0264-05 S14-0264-0	SOILLAB NO.	S14-0264-01	S14-0264-02	S14-0264-03	S14-0264-04	S14-0264-05	S14-0264-06		

SOILLAB

(PTY) ITD

Reg fo 1971/000112/07

230 Albertus Street La Montagne 0184 Tel (012) 481-3801 P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

SOIL ANALYSIS BY : SOILL	AB (Ptv) Ltd				D- 0		
Lab reference No: \$14-0264							
Customer	ARES & GREEN				Date Printed : 20	14-04-01	
Job Description MATIN	ARA DOWED STA		J	lob Number	: S14-0264		
Road Number	IDA FONER STA	TION	Contract Number:				
SAMPLE DESCRIPTION	1		L	Date	: 2014-03-27		
Sample Number	5200E	50000					
Sample Position	03065 M3	53086	53087	53088	53089		
	UND	IVI4	IM6	M9	M9		
Sample Depth (mm)	2 25-2 55	0.28-1.8	0 35 1 1	0.45.0.75	0.75 4.0		
Material Description	D/GREY	PALE RED	DARK RROWN	0.15-0.75	0.75-1.3		
	FERRICRETE	SAND	SAND		LIGHT ORANGE		
	SAND	er 1112	OAND	SAND	SANDY CLAY		
Max size of boulder (mm)	-	-	-		-		
SCREEN ANALYSIS (% PASS)	1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -						
75,00 mm	100	100	100	100	100		
63,00 mm	100	100	100	100	100		
53,00 mm	100	100	100	100	100		
37,50 mm	100	100	100	100	100		
20,50 mm	100	100	100	100	100		
13.20 mm	100	100	100	100	100		
4 750 mm	96	100	100	100	100		
-,750 mm	79	100	100	100	100		
0.425 mm	/1	98	98	98	97		
0.075 mm	47	64	59	56	66		
SOIL MORTAR	24	32	24	21	42		
Coarse Sand 2 000-0 425	35	25		10			
Coarse Fine Sd 0 425-0 250	30	35	41	43	32		
Medium Fine Sd 0.250-0.150	12	11	14	15	10		
Fine Fine Sand 0,150-0,075	11	13	9	10	/		
Material <0,075	34	32	24	22	8		
CONSTANTS							
Grading Modulus	1.58	1.06	1 19	1 25	0.05		
Liquid Limit	24	23	16	18	0.35		
Plasticity Index	10	10	6	8	13		
Linear Shrinkage (%)	4.0	4.5	2.5	3.0	60		
Sand Equivalent					0.0		
Classification - TRB	A-2-4 (0)	A-2-4 (0)	A-2-4 (0)	A-2-4 (0)	A-6 (2)		
Classification - COLTO							
CBR / UCS VALUES							
MOD. AASHTO							
Max Dry Density (kg/m ³)							
Optimum Moisture Cont (%)							
Involuting Moisture Cont (%)							
% of Max Day Days							
100% Mod CPP/UCS					-		
% Swell							
NRB							
Dry Density (ka/m ³)							
% of Max Dry Density						1	
100% NRB CBR/LICS							
% Swell						1	
PROCTOR							
Dry Density (ka/m ³)							
% of Max Dry Density		ţ					
100% Proc CBR/UCS							
% Swell							
CBR / UCS VALUES							
100% Mod AASHTO							
98% Mod AASHTO						1	
97% Mod AASHTO							
95% Mod AASHTO						1	
93% Mod AASHTO							
90% Mod AASHTO							
SOILLAB NO.	S14-0264-07	S14-0264-08	S14-0264-09	S14-0264-10	S14-0264-11		
		www.editer.com.com.com.com.com.com.com.com.com.com	and a second sec	and the second s		The second se	

SOILLAB

(PTI) ITD

Reg 80 1971/000112/07

230 Albertus Street La Montagne 0184 Tel (012) 481-3801 P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

VKE CENTRE Cor Albertus & Analees Street La Montagne, Pretoria, 0184

P O Box 72928,Lynnwood Ridge South Africa, 0040

Email: info@soillab.co.za

(PTY) LTD Tel (+27) (12) 481 3801 Fax 0867213827

Engineering Materials Laboratory

Registration Number: 1971/000112/07

VAT NO. 4490108588

JEFFARES GREEN P O BOX 2973 PRETORIA			Tax Invoice				
		-	Date			31/0	3/14
	0001		Page				1
			Document No			PTA03	3816
Account	Your Reference	Tax Exempt	Tax Reference	Sales	Code		
C00627	S14-0264 / JAG-009	Ν	4860118654				Exclusive
Code	Description	Qua	ntity Unit U	Init Price	Disc%	Tax	Nett Price
	ATTENTION: MR T S PROJECT: MATIMBA REQUESTED: 2014-0	PEIRS A POWER STATION 03-04					
3.1.1V 3.1.2V 3.1.8.1V 3.1.18V	Road Ind Sieve Anal t Found Ind Sieve Anal Max Dry Dens Opt Mo Thermal Conductivityr	to 0075mm Aberg Lim 1 to μ2 Aberg Limit bist Mod AASHTO resistivity	1.00 Test 5.00 Test 2.00 Test 9.00 Test	420.00 490.00 470.00 1 000.00		14.00% 14.00% 14.00% 14.00%	4 620.00 2 450.00 940.00 9 000.00
	IN ACCORDANCE W SCALE OF FEES OF	/ITH OUR 01.08.2013					
8	YOURS FAITHFULLY	(
	SOILLAB (PTY) LTD						

OUR BANKING DETAILS:	Sub Total		17 010.00
STANDARD BANK SILVERTON			
BRANCH CODE : 010545	Discount @	0.00%	0.00
ACCOUNT NO : 012409871	Amount Excl Ta	17 010.00	
PLEASE USE YOUR ACCOUNT NUMBER AS REFERENCE WHEN PAYING			
	Tax	2 381.40	
Note: All accounts that are not paid within 30 days of date of statement will			
be charged interest at the ruling prime bank rate plus 2%	Total		19 391.40
TEST REPORT: S14-0264

For: JEFFARES GREEN PO BOX 2973 PRETORIA 0001

For T0284

Attention: MR T SPEIRS

Your Reference: MATIMBA POWER STATION

Sampling Environmental conditions		Not Given		
Test(s) dates	2014-03-27	2014-03-13	2014-03-11	2014-03-20
Test(s) done at		Soillab	Pretoria	
Sampling method/Date		Client	Not Given	
Sample Condition/Description		Coilo	SIDO	
Test Method(s) used	TMH 1 A1(a)** - A5	TMH 1 A1(a)** - A6	TMH 1 A7	SANS 10198-5*
Date requested	2014-03-04			
Sample(s)	S14-0264-01 - 11	S14-0264-12 - 16	S14-0264-12 - 13	S14-0264-14 - 16

Note: **Used tap water to wash and not distilled water. * Not SANAS Accredited

IF van Zijl Mahager.

The results relate only to the items tested. Any opinions, comments and interpretations do not fall within the scope of SANAS accreditation. Test(s) marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

ì	
	an 1471 (1986) 120 a
230 Albertus Street La Montagne 0184	Tel (012) 481-3801

P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

Collapse Potential

Project:	Matimba Power Station
Client:	Jeffares and Green
Geolab Job Nr:	G14-0028
Test Method:	TMH 6 ST10 + Jennings

Results		
Collapse Potential	14.0	%

	_	
Load (kPa)	Height (mm)	Void Ratio
1.0	18.99	0.709
13.7	18.862	0.697
26.3	18.832	0.694
51.0	18.733	0.685
100.2	18.625	0.676
197.5	18.47	0.662
197.5	15.809	0.422 *
391.6	15.183	0.366

Sample Nr:	M4
Sample Depth:	0.28-1.8m
Date:	2014/05/16

Results

Sample	
Sampling Method:	Block
Disturbed/Undisturbed:	Undisturbed
Remoulded To:	NA

Sample Detail		
Initial Sample Height:	18.99	mm
Initial Sample Weight:	61.9	g
Initial Dry Density:	1550	kg/m³
Initial Moisture Content:	6.2	%
Final Moisture Content:	14.1	%
Final Saturation:	101.8	%
Specific Gravity:	2.65	Mg/m³

Comments:

* Water Added

Operator (Preperation):	MM
Operator (Equipment):	MM
Compiled By:	VS
Checked By:	TG
Approved By:	TG

Collapse Potential

Project:	Matimba Power Station
Client:	Jeffares and Green
Geolab Job Nr:	G14-0028
Test Method:	TMH 6 ST10 + Jennings

Results		
Collapse Potential	14.0	%

	_	
Load (kPa)	Height (mm)	Void Ratio
1.0	18.99	0.709
13.7	18.862	0.697
26.3	18.832	0.694
51.0	18.733	0.685
100.2	18.625	0.676
197.5	18.47	0.662
197.5	15.809	0.422 *
391.6	15.183	0.366

Sample Nr:	M4
Sample Depth:	0.28-1.8m
Date:	2014/05/16

Results

Sample	
Sampling Method:	Block
Disturbed/Undisturbed:	Undisturbed
Remoulded To:	NA

Sample Detail				
Initial Sample Height:	18.99	mm		
Initial Sample Weight:	61.9	g		
Initial Dry Density:	1550	kg/m³		
Initial Moisture Content:	6.2	%		
Final Moisture Content:	14.1	%		
Final Saturation:	101.8	%		
Specific Gravity:	2.65	Mg/m³		

Comments:

* Water Added

Operator (Preperation):	MM
Operator (Equipment):	MM
Compiled By:	VS
Checked By:	TG
Approved By:	TG

Oedometer

Project:Matimba Power stationClient:Jeffares and GreenGeolab Job Nr:G14-0028Test Method:TMH 6 ST10

Load (kPa)	Height (mm)	Void Ratio	
1.0	18.79	1.526	
1.0	18.81	1.529	
13.2	18.769	1.523	
25.9	18.732	1.518	
39.3	18.64	1.506	
100.0	18.457	1.481	
197.4	18.22	1.449	
397.1	18	1.420	
797.3	17.659	1.374	
197.4	17.715	1.381	
39.3	17.78	1.390	

Sample Nr:M12Sample Depth:0.7-0.45mDate:04 June 2014

Results

Sample	
Sampling Method:	Block
Disturbed/Undisturbed:	Undisturbed
Remoulded To:	NA

Sample Detail				
Initial Sample Height:	18.79	mm		
Initial Sample Weight:	39.9	g		
Initial Dry Density:	926	kg/m³		
Initial Moisture Content:	16.3	%		
Final Moisture Content:	53.9	%		
Final Saturation:	82.67	%		
Specific Gravity:	2.34	Mg/m³		

Comments:			

Operator (Preperation):	MM
Operator (Equipment):	MM
Compiled By:	VS
Checked By:	TG
Approved By:	TG

Version Nr:

Oedometer

Project:Matimba Power stationClient:Jeffares and GreenGeolab Job Nr:G14-0028Test Method:TMH 6 ST10

Load (kPa)	Height (mm)	Void Ratio	
1.0	18.79	1.526	
1.0	18.81	1.529	
13.2	18.769	1.523	
25.9	18.732	1.518	
39.3	18.64	1.506	
100.0	18.457	1.481	
197.4	18.22	1.449	
397.1	18	1.420	
797.3	17.659	1.374	
197.4	17.715	1.381	
39.3	17.78	1.390	

Sample Nr:M12Sample Depth:0.7-0.45mDate:04 June 2014

Results

Sample	
Sampling Method:	Block
Disturbed/Undisturbed:	Undisturbed
Remoulded To:	NA

Sample Detail				
Initial Sample Height:	18.79	mm		
Initial Sample Weight:	39.9	g		
Initial Dry Density:	926	kg/m³		
Initial Moisture Content:	16.3	%		
Final Moisture Content:	53.9	%		
Final Saturation:	82.67	%		
Specific Gravity:	2.34	Mg/m³		

Comments:			

Operator (Preperation):	MM
Operator (Equipment):	MM
Compiled By:	VS
Checked By:	TG
Approved By:	TG

Version Nr:

Project:	Matimba Power Station
Client:	Jeffares & Green
Geolab Job Nr:	G14-0028
Test Method:	BS1377-7: 1990

Results				
φ' = 32.8 °				
c' =	5.8	kPa		

Sample Nr:	M4
Sample Depth:	0.70-0.95m
Date:	04-Jun-14

Sample					
Sampling Method:	Block				
Disturbed/Undisturbed:	Undisturbed				
Remoulded To:	-				

Initial Sample Details	1	2	3	
Sample Length:	21	21	21	mm
Sample Diameter:	60	60	60	mm
Sample Volume:	59.38	59.38	59.38	cm ³
Sample Area:	28.3	28.3	28.3	cm²
Sample Weight:	116.4	116.4	116.2	g
Specific Gravity:		2.698		
Moisture Content:	3.6	2.8	3.9	%
Dry Density:	1795	1810	1787	kg/m³

Shear Stage	1	2	3	
Rate of Shear:	0.006	0.006	0.006	mm/min
Normal Stress:	74.3	149.8	299.8	kPa
Max Shear Stress:	55.2	99.7	199.5	kPa
Strain at Failure:	8.45	10.57	11.08	%

Final Sample Details	1	2	3	
Sample Weight:	128.5	127.8	125.8	g
Moisture Content:	14.9	13.4	12.9	%

Comments:			

Operator (Preperation):	MM
Operator (Equipment):	FC
Compiled By:	MG
Checked By:	TG
Approved By:	TG

Shearbox Test Graphs Matimba Power Station Sample Nr: M4 **Project: Client:** Jeffares & Green Sample Depth: 0.70-0.95m Geolab Job Nr: G14-0028 Date: 04-Jun-14 **Test Method:** BS1377-7: 1990 Sample Sampling Method: Block Results 32.8 ° Disturbed/Undisturbed: ф' = Undisturbed c' = 5.8 kPa Remoulded To:

Comments:	Operator (Preperation):	MM
	Operator (Equipment):	FC
	Compiled By:	MG
	Checked By:	TG
	Approved By:	TG

Version No: SB.03.02.03

Project:	Matimba Power Station
Client:	Jeffares & Green
Geolab Job Nr:	G14-0028
Test Method:	BS1377-7: 1990

Results				
φ' = 32.8 °				
c' =	5.8	kPa		

Sample Nr:	M4
Sample Depth:	0.70-0.95m
Date:	04-Jun-14

Sample	
Sampling Method:	Block
Disturbed/Undisturbed:	Undisturbed
Remoulded To:	-

Initial Sample Details	1	2	3	
Sample Length:	21	21	21	mm
Sample Diameter:	60	60	60	mm
Sample Volume:	59.38	59.38	59.38	cm ³
Sample Area:	28.3	28.3	28.3	cm²
Sample Weight:	116.4	116.4	116.2	g
Specific Gravity:	2.698			
Moisture Content:	3.6	2.8	3.9	%
Dry Density:	1795	1810	1787	kg/m³

Shear Stage	1	2	3	
Rate of Shear:	0.006	0.006	0.006	mm/min
Normal Stress:	74.3	149.8	299.8	kPa
Max Shear Stress:	55.2	99.7	199.5	kPa
Strain at Failure:	8.45	10.57	11.08	%

Final Sample Details	1	2	3	
Sample Weight:	128.5	127.8	125.8	g
Moisture Content:	14.9	13.4	12.9	%

Comments:			

Operator (Preperation):	MM
Operator (Equipment):	FC
Compiled By:	MG
Checked By:	TG
Approved By:	TG

Shearbox Test Graphs Matimba Power Station Sample Nr: M4 **Project: Client:** Jeffares & Green Sample Depth: 0.70-0.95m Geolab Job Nr: G14-0028 Date: 04-Jun-14 **Test Method:** BS1377-7: 1990 Sample Sampling Method: Block Results 32.8 ° Disturbed/Undisturbed: ф' = Undisturbed c' = 5.8 kPa Remoulded To:

Comments:	Operator (Preperation):	MM
	Operator (Equipment):	FC
	Compiled By:	MG
	Checked By:	TG
	Approved By:	TG

Version No: SB.03.02.03

Project:	Matimba Power Station	
Client:	Jeffares & Green	
Geolab Job Nr:	G14-0028	
Test Method:	BS1377-7: 1990	

Results			
ф' =	33.6	0	
c' =	2.9	kPa	

M12
0.70-0.95m
04-Jun-14

Sample	
Sampling Method:	Block
Disturbed/Undisturbed:	Undisturbed
Remoulded To:	-

Initial Sample Details	1	2	3	
Sample Length:	20.09	20.09	20.09	mm
Sample Diameter:	59.93	59.93	59.93	mm
Sample Volume:	56.67	56.67	56.67	cm³
Sample Area:	28.2	28.2	28.2	cm²
Sample Weight:	59.4	59.5	62.8	g
Specific Gravity:		2.34		
Moisture Content:	9.8	10.9	10.7	%
Dry Density:	849	842	895	kg/m³

Shear Stage	1	2	3	
Rate of Shear:	0.004	0.004	0.004	mm/min
Normal Stress:	74.4	150.0	299.4	kPa
Max Shear Stress:	56.1	97.2	204	kPa
Strain at Failure:	8.38	13.17	9.23	%

Final Sample Details	1	2	3	
Sample Weight:	84.6	82.9	82.2	g
Moisture Content:	62.2	60.0	48.9	%

Comments:			

Operator (Preperation):	MM
Operator (Equipment):	FC
Compiled By:	MG
Checked By:	TG
Approved By:	TG

Graphs

Project:	Sample N	a Power Station	M12
Client:	Sample Dept	res & Green	0.70-0.95m
Geolab Job Nr:	Dat	614-0028	04-Jun-14
Test Method:		377-7: 1990	
	Sample		
	Sampling Metho		Block
φ' =	Disturbed/Undisturbe	6 °	Undisturbed
c' =	Remoulded T	9 kPa	-
φ' = c' =	Sampling Metho Disturbed/Undisturbe Remoulded T	6 ° 9 kPa	B U -

Comments:	Operator (Preperation):	MM
	Operator (Equipment):	FC
	Compiled By:	MG
	Checked By:	TG
	Approved By:	TG

Project:	Matimba Power Station
Client:	Jeffares & Green
Geolab Job Nr:	G14-0028
Test Method:	BS1377-7: 1990

Results			
ф' =	33.6	0	
c' =	2.9	kPa	

M12
0.70-0.95m
04-Jun-14

Sample	
Sampling Method:	Block
Disturbed/Undisturbed:	Undisturbed
Remoulded To:	-

Initial Sample Details	1	2	3	
Sample Length:	20.09	20.09	20.09	mm
Sample Diameter:	59.93	59.93	59.93	mm
Sample Volume:	56.67	56.67	56.67	cm³
Sample Area:	28.2	28.2	28.2	cm²
Sample Weight:	59.4	59.5	62.8	g
Specific Gravity:		2.34		
Moisture Content:	9.8	10.9	10.7	%
Dry Density:	849	842	895	kg/m³

Shear Stage	1	2	3	
Rate of Shear:	0.004	0.004	0.004	mm/min
Normal Stress:	74.4	150.0	299.4	kPa
Max Shear Stress:	56.1	97.2	204	kPa
Strain at Failure:	8.38	13.17	9.23	%

Final Sample Details	1	2	3	
Sample Weight:	84.6	82.9	82.2	g
Moisture Content:	62.2	60.0	48.9	%

Comments:			

Operator (Preperation):	
Operator (Equipment):	FC
Compiled By:	MG
Checked By:	TG
Approved By:	TG

Graphs

Project:	<mark>r:</mark> M12
Client:	<mark>n:</mark> 0.70-0.95m
Geolab Job Nr:	e: 04-Jun-14
Test Method:	
	d: Block
φ' =	d: Undisturbed
c' =	o: -
φ' = c' =	d: B d: L o: -

Comments:	Operator (Preperation):	MM
	Operator (Equipment):	FC
	Compiled By:	MG
	Checked By:	TG
	Approved By:	TG