

Phumudzo Thivhafuni Limpopo Department of Economic Environment and Tourism Private Bag 9484 POLOKWANE 0700 E-mail: <u>ThivhafuniPO@ledet.gov.za</u> Date: 09 June 2020

Enquiries: Matlaleng Mamabolo Tel: 014 763 8084

Cc: Stanley Koenaite Waterberg District Municipality E-mail: <u>skoenaite@waterberg.gov.za</u>

Cc: Joshua Hlapa Lephalale Local Municipality E-mail: joshua.hlapa@lephalale.gov.za

Ref: (12/4/12L-W4/A3)

Dear Mrs Thivhafuni

MATIMBA POWER STATION'S MONTHLY EMISSIONS REPORT FOR THE MONTH OF APRIL 2020

This serves as the monthly report required in terms of Section 7.7.1 in Matimba Power Station's Atmospheric Emission License 12/4/12L-W4/A3.

Eskom Holdings SOC Ltd Reg No 2002/015527/30

Raw Materials and Products

Raw Materials and Products	Raw Material Type	Unit	Maximum Permitted Consumption Rate (Quantity)	Consumption Rate
useu	Coal	Tons/month	1 500 000	692 005
	Fuel Oil	Tons/month	1 200	237.564
Production Rates	Product/ By- Product Name	Unit	Maximum Production Capacity Permitted (Quantity)	Production Rate
	Energy	GWh	4 212.6	1482.587

Table 1: Quantity of Raw Materials and Products used/produced for the month.

Abatement Technology

 Table 2: Abatement Equipment Control Technology utilise.

Associated Unit	Technology Type	Actual Utilisation (%)
Unit 1	Electrostatic Precipitator	99.958
Unit 2	Electrostatic Precipitator	99.943
Unit 3	Electrostatic Precipitator	99.937
Unit 4	Electrostatic Precipitator	99.908
Unit 5	Electrostatic Precipitator	99.976
Unit 6	Electrostatic Precipitator	99.935

Associated Unit	Technology Type	Actual Utilisation (%)
Unit 1	SO₃ Plant	93
Unit 2	SO₃ Plant	100
Unit 3	SO₃ Plant	100
Unit 4	SO₃ Plant	100
Unit 5	SO₃ Plant	100
Unit 6	SO₃ Plant	90

Energy Source Characteristics

 Table 3: Energy Source Material Characteristics.

	Characteristic	Stipulated Range (Unit)	Monthly Average Content
Coal burned	Sulphur Content	0.8-1.6%	1.34
	Ash Content	30-40%	32.83

Emissions Reporting

Unit 1 particulate emissions

Graph 1: Particulate matter daily average emissions against emission limit for unit 1 for the month of April 2020

Interpretation:

Unit 2 particulate emissions

Graph 2: Particulate matter daily average emissions against emission limit for unit 2 for the month of April 2020

Interpretation:

Unit 3 particulate emissions

Graph 3: Particulate matter daily average emissions against emission limit for unit 3 for the month of April 2020

Interpretation:

Unit 4 particulate emissions

Graph 4: Particulate matter daily average emissions against emission limit for unit 4 for the month of April 2020

Interpretation:

Unit 5 particulate emissions

Graph 5: Particulate matter daily average emissions against emission limit for unit 5 for the month of April 2020

Interpretation:

Unit 6 particulate emissions

Graph 6: Particulate matter daily average emissions against emission limit for unit 6 for the month of April 2020

Interpretation:

Unit 6 exceeded the Daily average for Particulate Matter on the 7th of April 2020. The exceedance was due to a breakdown on the Sulphur plant. The exceedance stayed within the 48hour grace period and was investigated to prevent re-occurrence.

Unit 1 SO₂ emissions

Graph 7: SO_2 daily average emissions against emission limit for unit 1 for the month of April 2020

Interpretation:

All daily averages below SO2 emission limit of 3500 mg/Nm3.

Unit 2 SO₂ emissions

Graph 8: SO₂ daily average emissions against emission limit for unit 2 for the month of April 2020

Interpretation:

Increased emissions from the 23rd to the 29th was due to a faulty monitor. Service provider was contacted and monitor was repaired.

Unit 3 SO₂ emissions

Graph 9: SO₂ daily average emissions against emission limit for unit 3 for the month of April 2020

Interpretation:

Increased emissions on the 23rd of April 2020 due to a faulty monitor. The monitor was repaired and emission readings normalised.

Unit 4 SO₂ emissions

Graph 10: SO_2 daily average emissions against emission limit for unit 4 for the month of April 2020

Interpretation:

All daily averages below SO2 emission limit of 3500 mg/Nm3.

Unit 5 SO₂ emissions

Graph 11: SO_2 daily average emissions against emission limit for unit 5 for the month of April 2020

Interpretation:

The SO₂ daily average of 3500mg/Nm³ was exceeded from the 1st until the 6th, the 8th until the 10th from the 13th until the 19th, the 22nd, and the 28th until the 30th of April 2020. This lead to a monthly average of 3587 mg/Nm³ which exceeds the monthly average limit of 3500mg/Nm³.

It is suspected that the exceedances are due to an increase in the sulphur content of the coal used in the combustion process. The exceedances will be thoroughly investigated to determine the root cause.

Unit 6 SO₂ emissions

Graph 12: SO_2 daily average emissions against emission limit for unit 6 for the month of April 2020

Interpretation:

All daily averages below SO2 emission limit of 3500 mg/Nm3.

Unit 1 NO_x emissions

Graph 13: NO_x daily average emissions against emission limit for unit 1 for the month of April 2020

Interpretation:

Unit 2 NO_x emissions

Graph 14: NO_x daily average emissions against emission limit for unit 2 for the month of April 2020

Interpretation:

Unit 2 exceeded the NO_x daily average due to a faulty monitor. The monitor was repaired and emission readings returned to below the daily limit.

Unit 3 NO_x emissions

Graph 15: NO_x daily average emissions against emission limit for unit 3 for the month of April 2020

Interpretation:

Unit 4 NO_x emissions

Graph 16: NO_x daily average emissions against emission limit for unit 4 for the month of April 2020

Interpretation:

Unit 5 NO_x emissions

Graph 17: NO_x daily average emissions against emission limit for unit 5 for the month of April 2020

Interpretation:

Unit 6 NO_x emissions

Graph 18: NO_x daily average emissions against emission limit for unit 6 for the month of April 2020

Interpretation:

Unit 6 exceeded the daily average NO_x limit on the 1st, 3rd, 5th to 15th, 18th to 20th, 23rd and 27th of April 2020. The exceedances are being investigated in order to determine the root cause.

Date	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
2020/04/01	11727.73	11903.47	12191.13	10244.93	12311.60	11606.47
2020/04/02	13497.67	13143.53	13672.80	0.00	13448.70	12953.53
2020/04/03	14680.67	13561.13	14754.27	0.00	14962.20	14728.87
2020/04/04	14108.73	13498.00	13792.40	0.00	14063.20	11729.00
2020/04/05	12260.47	12238.33	11646.93	0.00	11919.10	11979.27
2020/04/06	12994.47	12551.33	12801.40	0.00	13203.70	12786.60
2020/04/07	11776.47	11848.47	11659.13	0.00	12191.30	11654.07
2020/04/08	12196.67	13100.67	13504.47	0.00	13549.30	13241.40
2020/04/09	12951.40	12647.13	12828.13	0.00	12902.10	12704.40
2020/04/10	12098.53	12092.80	11976.33	0.00	11999.90	11885.87
2020/04/11	11434.27	11752.00	11858.20	0.00	12155.40	11894.60
2020/04/12	11109.07	12250.13	12130.07	0.00	12519.10	12174.07
2020/04/13	13159.73	12559.07	12775.20	0.00	13215.30	12789.53
2020/04/14	12891.53	12414.47	12314.60	0.00	12543.60	12212.67
2020/04/15	10034.13	12766.60	13452.27	0.00	12876.50	12890.40
2020/04/16	0.00	10723.13	10536.80	0.00	10770.20	10289.67
2020/04/17	0.00	10218.67	10330.33	0.00	10506.10	10087.73
2020/04/18	0.00	11697.00	11914.27	0.00	11461.20	11706.27
2020/04/19	0.00	11386.13	11122.93	0.00	10909.50	10913.13
2020/04/20	0.00	11772.00	11684.27	0.00	11772.30	11561.73
2020/04/21	0.00	12793.20	12407.80	0.00	12515.10	12769.20
2020/04/22	0.00	13223.27	12165.07	0.00	13563.40	13310.20
2020/04/23	0.00	13010.93	0.00	0.00	13780.30	13266.53
2020/04/24	0.00	12276.80	0.00	0.00	12548.60	12489.73
2020/04/25	0.00	12795.33	0.00	0.00	10935.50	12613.53
2020/04/26	0.00	13013.87	0.00	0.00	13374.60	13096.67
2020/04/27	0.00	14110.67	0.00	0.00	14701.90	15011.87
2020/04/28	0.00	13743.20	0.00	0.00	14209.70	15837.40
2020/04/29	0.00	13063.40	6396.07	0.00	15348.10	15883.27
2020/04/30	0.00	13910.00	15161.87	0.00	15108.80	15027.34

 Table 4: Daily power generated per unit in MWh for the month of April 2020

Graph 19: Unit 1 daily generated power in MWh for the month of April 2020

Graph 20: Unit 2 daily generated power in MWh for the month of April 2020

Graph 21: Unit 3 daily generated power in MWh for the month of April 2020

Graph 22: Unit 4 daily generated power in MWh for the month of April 2020

Graph 23: Unit 5 daily generated power in MWh for the month of April 2020

Graph 24: Unit 6 daily generated power in MWh for the month of April 2020

Associated Unit/Stack	PM (tons)	SO ₂ (tons)	NO _x (tons)
Unit 1	9.6	2 740.9	358.0
Unit 2	26.6	7 489.0	2 415.6
Unit 3	23.2	3 963.5	662.5
Unit 4	1.2	157.4	26.6
Unit 5	11.6	6 544.5	827.5
Unit 6	31.5	5 819.3	1 405.2
SUM	103.6	26 714.6	5 695.4

 Table 5: Pollutant tonnages for the month of April 2020

Table 6: Reference values for data provided.

Compound / Parameter	Units of Measure	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Oxygen	%	6.79	7.23	7.94	10.53	8.69	9.53
Moisture	%	4.48	3.55	3.53	4.40	4.04	4.41
Velocity	m/s	23.4	29.1	23.1	25.6	24.7	27.1
Temperature	°C	139.7	129.4	133.7	133.4	127.6	124.9
Pressure	mBar	933.4	932.9	932.4	931.1	927.7	922.8

Start-up information.

Table 7: Start-up information

Unit	3	
Fires in	07H19	2020-04-29
Synchronization with Grid	12H14	2020-04-29
Emissions below limit	13H00	2020-04-29
Fires in to synchronization	4.916	Hours
Synchronization to < Emission limit	0.767	Hours

Emergency Generation

 Table 8: Emergency Generation.

	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Emergency Generation hours declared by national Control	63	111	76	0	111	111
Emergency Hours declared including hours after stand down	75	135	92	0	135	135
Days over the Limit during Emergency Generation	0	0	0	0	0	0

Complaints Register

Table 9: Complaints.

Source Code/ Name	Root Cause Analysis	Calculation of Impacts/ emissions associated with the incident	Dispersion modeling of pollutants where applicable	Measures implemented to prevent reoccurrence	Date by which measure will be implemented
None					

 Table 10: Total volatile compound estimates.

ALCULATION OF EMISSIONS OF TOTAL VOLATILE COMPOUNDS FROM FUEL OIL STORAGE TANK

Date:	Friday, 03 July 2020			
Station:	Matimba Power Station			
Province:	Limpopo Province			
Tank no.	1-4			
Description:	Outdoor fuel oil storage tank			
Tank Type:	Vertical fixed roof (vented to atm	osphere)		
Material stored:	Fuel Oil 150			
	MONTHLY INPUT DAT	A FOR THE S	TATION	
Pleas	se only insert relevant monthly o Choose from a dropdown	data inputs in menu in the	to the <u>blue cells</u> green cells	below
	The total VOC emissions for t	he month are	in the <u>red cells</u>	
IMP	ORTANT: Do not change <u>any</u> othe	er cells without	consulting the A	Q CoE
MONTH:	April			
GENERAL INFORM	IATION:		Data	Unit
Total number of fuel oil tanks:			4	NA
Height of tank:			13,34	m
Diameter of tank:			9,53	m
Net fuel oil throughput for the month:			237,564	tons/month
Molecular weight o	f the fuel oil:		166,00	Lb/lb-mole
METEROLOGICAL	DATA FOR THE MONTH		Data	Unit
Daily average ambi	ent temperature		20,60	°C
Daily maximum am	bient temperature		27,37	°C
Daily minimum amb	pient temperature		13,11	°C
Daily ambient temp	erature range		10,46	°C
Daily total insolation	on factor		3,84	kWh/m²/day
Tank paint colour			<u>Grey/medium</u>	NA
Tank paint solar ab	sorbtance		0,68	NA
FINAL OUTPUT:			Result	Unit
Breathing losses:			0,48	kg/month
Working losses:		0,01 kg/month		
TOTAL LOSSES (Total TVOC Emissions for the month): 0,49 kg/month			kg/month	
*Calculations performed on this spreadsheet are taken from the USEPA AP-42- Section 7.1 Organic Liquid Storage Tanks - January 1996. This spreadsheet is derived from materials provided by Jimmy Peress, PE, Tritech Consulting Engineers, 85-93 Chevy Chase Street, Jamaica, NY 11432 USA. Tel - 718-454-				

3920, Fax - 718-454-6330, e-mail - PeressJ@nyc.rr.com.

Associated Unit/Stack	РМ	SO2	NO	CO2
Unit 1	100.0	100.0	100.0	100.0
Unit 2	100.0	99.7	99.6	79.4
Unit 3	100.0	89.3	87.4	87.4
Unit 4	100.0	100.0	100.0	100.0
Unit 5	100.0	100.0	100.0	100.0
Unit 6	100.0	100.0	100.0	100.0

Table 11: Average % availability of monitors for the month of April 2020.

Ambient Air quality Monitoring

The Ambient air quality monitoring report for April 2020 is not yet available. This is due to the prohibition of traveling for non-essential services in order to stop the spread of the COVID -19 virus. The report will be provided as soon as it is available.

General

Name and reference number of the monitoring method used:

- 1. Particulate and gas monitoring according to standards
 - a. BS EN 14181:2004 Quality Assurance of Automated Measuring Systems
 - b. ESKOM internal standard 240-56242363 Emissions Monitoring and Reporting Standard

Sampling locations:

- 1. Stack one
 - a. Particulates:
 - i. S23^o 40' 2.8" E027^o 36' 34.8" 175m from ground level and 75m from the top.
 - b. Gas:
 - i. S23^o 40' 2.8" E027^o 36' 34.8" 100m from ground level and 150m from the top.
 - c. Stack height
 - i. 250 meter consist of 3 flues
- 2. Stack two
 - a. Particulates:
 - i. S23^o 40' 14.8" E027^o 36' 47.5" 175m from ground level and 75m from the top.
 - b. Gas:
 - i. S23^o 40' 14.8" E027^o 36' 47.5" 100m from ground level and 150m from the top.
 - c. Stack height
 - i. 250 meter consist of 3 flues

Unit 1

- 1. Zero out of 32 precipitator fields is out of service.
- 1. No abnormalities on the SO₃ plant. Preventative maintenance done during the month.

Unit 2

- 1. Four out of 32 precipitator fields is out of service. Repairs will be done during the next opportunity outage.
- 2. No abnormalities on the SO₃ plant. Preventative maintenance done during the month.

Unit 3

- 1. Two out of 32 precipitator fields is out of service. Repairs will be done during the next opportunity outage.
- 2. No abnormalities on the SO3 plant. Preventative maintenance done during the month.

Unit 4

1. Unit on outage.

Unit 5

- 1. All precipitator fields in service.
- 2. No abnormalities on the SO₃ plant.

Unit 6

- 1. Three out of 32 precipitator fields is out of service. Repairs will be done during the next opportunity outage.
- 2. No abnormalities on the SO₃ plant. Preventative maintenance done during the month.

SO3 common plant

1. No abnormalities on the sulphur storage plant.

CEMs

1. No adjustments done on the CEMs. Calibration is done every second week.

Particulate monitors

2. No downtime or repairs done on the particulate monitors.

Air quality improvements

1. None

Social responsibility conducted

No campaigns conducted in April 2020

Sampling dates and times

1. Continuous

Attachments

None

The rest of the information demonstrating compliance with the emission license conditions is supplied in the annual emission report sent to your office.

Hoping the above will meet your satisfaction.

I hereby declare that the information in this report is correct.

Yours sincerely

2020/07/20

GENERAL MANAGER: MATIMBA POWER STATION

RESEARCH, TESTING AND DEVELOPMENT

SUSTAINABILITY DEPARTMENT

MARAPONG AIR QUALITY MONTHLY REPORT

APRIL 2020

EXECUTIVE SUMMARY

This monthly report covers the ambient air quality data as monitored at Marapong monitoring site in April 2020.

There were seven exceedances of the SO_2 national 10-minute limit and three exceedances of the SO_2 national hourly limit recorded during the monitoring period. There were no exceedances of the national ambient air quality limits of the other parameters monitored.

Ambient CO and NO₂ concentrations at Marapong monitoring site show influence of emissions from low level sources in the area, ambient $PM_{2.5}$ and PM_{10} show influence of emissions from both tall stack emitters and low level sources while ambient SO₂ concentrations show influence of emissions from tall stack emitters.

The average data recovery for the period was 87.3% and the station availability was 99.9%.

DISCLAIMER

It is certified that the data presented is, to the best of our knowledge, a true copy of the specified record and for the times and places indicated thereon, as held on file at Research, Testing and Development (RT&D). The user assumes the entire risk related to the use of this data. In no event will RT&D be liable to the user or to any third party for any direct, indirect, incidental, consequential, special or exemplary damages or profit resulting from any use or misuse of this data.

1. INTRODUCTION

At the request of Eskom Environmental Management, Research, Testing and Development Department (RT&D) commissioned an ambient air quality monitoring site at Marapong Township to assess impacts from Matimba Power Station and other pollution source emissions in the area.

The Marapong site is equipped for continuous monitoring of ambient concentrations of sulphur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), mercury (Hg) and fine particulate matter (FPM) of particulate sizes <10 μ m and <2.5 μ m in diameter (PM₁₀ and PM_{2.5}). In addition, meteorological parameters of wind velocity (WVL), wind direction (WDR) and ambient temperature (TMP) were also recorded.

Standard Specifications, Equipment/Techniques used for the measurement of SO₂, O_3 and NO_x conform to US-EPA equivalent method No EQSA-0486-060, EQOA-0880-047 and RFNA-1289-074 respectively.

This report has been compiled and submitted in accordance with the Conditional Authorisation issued in respect of The Construction of the Proposed Eskom Holdings Limited: Generation Division 4800MW Medupi Coal-Fired Power Station and Associated Infrastructure near Lephalale (Ref:12/12/20/695), especially in respect of condition 3.2.1 Air Quality Management. The results presented are compared to the National Air Quality Standards, as published in DEA discussion document, Ref: AQM&CC/24/10/07/4. In addition, this monitoring is undertaken as part of Eskom's Environmental Management Plan and to further validate the CALPUFF dispersion model that was utilized in the original EIA, but was consistently over predicting. The results of the study will be tested

for compliance against the national ambient air quality standards. The monitoring site is accredited by the South African National Accreditation System (SANAS).

2. SITE LOCATION

The monitoring site is located in Marapong at co-ordinates: S23° 39' 21.8" E27° 37' 41.3" and was commissioned in September 2006 (Figure 1).

Figure 1: Marapong air quality monitoring site in relation to Matimba Power Station and other pollution sources.

3. DATA RECOVERY

The SANAS guideline figure of 90% per parameter monitored is used as a standard for representative data capture. This describes the required completeness of data set for the reporting of averages and is based on standard arithmetic calculations. The completeness calculations for data sets exclude zero and span data and times where service and/or maintenance is being conducted on the instruments in question.

Availability is a management definition related to system reliability. The availability target is not set in terms of data quality criteria and has no associated quality objectives. A target of 100% availability has been set for performance evaluation. Availability is reported as a measure of the percentage of time that electrical power was available to the monitoring station.

Table 1:	: Percentage	Data	Recovery	for A	pril 2020

Month	NO ₁	NO ₂	NO _x	O ₃	SGT	SO2	ТМР	WDR	WSP	WVL	PM _{2.5}	PM ₁₀	со	HG	HUM	Data Rec	Station Avail.
Apr	99.9	99.9	99.9	10.6	99.9	99.9	99.9	99.9	99.9	99.9	26.8	26.8	99.9	96.8	99.9	87.3	99.9

The average data recovery for the period was 87.3% and the station availability was 99.9%. The low data capture of 26.8% recorded for both $PM_{2.5}$ and PM_{10} analysers were because of the analyser pumps that ceased. There was only 10.6% data capture for ozone due to spurious data recorded. The site has not been visited the whole of April 2020 since the start of the national lockdown in March.

4. SUMMARY OF RESULTS FOR REPORTED PERIOD

Table 2 presents the National Ambient Air Quality Standards and Table 3 is a summary report presenting the highest mean concentrations and the number of exceedances above the respective national air quality standards for each measured parameter.

Pollutant	Unit	Period	Limit	Number of annual exceedances allowed	Source
Carbon Monoxide	ppm	1hr	26	88	DEA
Carbon Monoxide	ppm	8hr	8.7	11	DEA
PM ₁₀	µg/m³	24hr	75	4	DEA
PM ₁₀	µg/m³	1year	40	0	DEA
PM _{2.5}	µg/m³	24hr	40	4	DEA
PM _{2.5}	µg/m³	1year	20	0	DEA
Nitrogen dioxide	ppb	1year	21	0	DEA
Nitrogen dioxide	ppb	1hr	106	88	DEA
Ozone	ppb	8hr	61	11.	DEA
Sulphur dioxide	ppb	1hr	134	88	DEA
Sulphur dioxide	ppb	10min	191	526	DEA
Sulphur dioxide	ppb	24hr	48	4	DEA
Sulphur dioxide	ppb	1year	19	0	DEA

Table 2: National Ambient Air Quality Standards

Table 3: Summary report of parameters at Marapong monitoring site for April 2020

Pollutant	Highest Hourly Mean	No of Hourly National Limit Exceedances	Highest Daily Mean	No of Daily National Limit Exceedances	No of 8hr Moving Average Limit	Highest 10min Mean	No of 10min National Limit Exceedances
FPM (PM-2.5) by Beta gauge [ug/m^3]	47.3		15.7	0		62.2	
FPM (PM-10) by Beta gauge [ug/m^3]	85.8		35.5	0		95.6	
Nitric oxide [ppb]	78.4		13.1			128.5	
Nitrogen dioxide [ppb]	28.3	0	10.1			34.4	
Nitrogen oxide [ppb]	89.		20.2			139.6	
Ozone [ppb]	34.2		26.1		0	35.	
Sigma theta [deg]	49.9		27.4			80.	
Sulphur dioxide [ppb]	165.7	3	22.2	0		243.7	7
Ambient temperature [deg C]	42.1		31.7			44.	
Wind speed [m/s]	5.4		2.6			7.9	
Wind velocity [m/s]	5.		2.4			7.6	

There were seven exceedances of the SO_2 national 10-minute limit and three exceedances of the SO_2 national hourly limit recorded during the monitoring period.

Table 4: Exceedance table

			SO₂ 10-minut	e exceedance	es					
Pollutant	Limit	Year	Month	Day	Time		Conc. (ppb)		
SO ₂	191	2020	04	05	12:50		236.	1		
SO ₂	191	2020	04	05	13:00		243.	7		
SO ₂	191	2020	04	05	13:10		192.	6		
SO ₂	191	2020	04	05	13:20	217.6				
SO ₂	191	2020	04	30	13:30	199.2				
SO ₂	191	2020	04	30	13:40	236.2				
SO ₂	191	2020	04	30	13:50		230.	5		
			SO ₂ hourly	exceedances						
Pollutant	Limit	Year	Month	Day	Time	Conc.	WSP	WDR		
SO ₂	134	2020	04	05	13:00	165.7	0.33	SSE		
SO ₂	134	2020	04	05	14:00	150 0.32 S				
SO ₂	134	2020	04	30	14:00	165.3	0.63	NW		

Figure 2 shows the daytime and night-time wind roses for the reporting period. The centre of the wind rose depicts the position of the air quality monitoring station. The positions of the spokes in the polar diagram represent directions from which the wind was blowing. The length of the segment indicates the percentage of the time the wind blew from that direction and the speed in the various categories are denoted by colours and width.

The dominant wind directions during the daytime were north-east, east-north-east and north-northeast. During the night, the most frequent directions were east-north-east, east and north-east.

Figure 2: Wind roses at Marapong monitoring site during day and night hours

6. DISCUSSION OF POLLUTANTS

Emissions of primary pollutants such as PM_{10} , $PM_{2.5}$, SO_2 and NO_X from low level sources such as domestic combustion, motor vehicles and smouldering dumps are expected to impact at ground level more significantly during the evening and early morning hours as a result of temperature inversion. Emissions of such pollutants from tall stacks (power stations and other industries), are expected to have more significant impact at ground level during the day, due to atmospheric turbulence influences. O_3 and other oxidants are formed in polluted atmospheres as a result of a rather wide variety of photochemical reactions. A gradual increase of O_3 throughout the day is expected, peaking at mid-afternoon and then decaying once more during the night.

6.1. FINE PARTICULATE MATTER (PM10)

6.1.1 Source identification by PM₁₀ diurnal variations

Figure 3 shows the PM₁₀ hourly mean diurnal variation. Impact of emissions from low level sources such as motor vehicle emissions are shown in the morning and in the evening with peaks observed at 10:00 and 21:00, respectively and impact of emissions from tall stack emitters is shown with a minor peak observed at 14:00 during the day.

Figure 3: Diurnal variation by PM₁₀ (Mean concentrations = Blue line, Standard Deviation = Green line)

6.1.2. PM_{10} hourly mean event roses and tables.

Due to the low data capture of 26.8%, the 98th percentile hourly mean event roses could not be generated.

- 6.2. FINE PARTICULATE MATTER (PM_{2.5})
- 6.2.1 Source identification by PM_{2.5} diurnal variations

Figure 4 shows the $PM_{2.5}$ hourly mean diurnal variation. $PM_{2.5}$ levels are shown to be lower during the day and rise sharply in the afternoon peaking at 21:00 in the evening. This suggests that there is a low-level source of $PM_{2.5}$ or $PM_{2.5}$ formation in the evening. Impact from low level sources is shown in the morning with a peak between 02:00 and 03:00. The minor peak observed at 15:00 could be a contribution of emissions from tall stack emitters.

Figure 4: Diurnal variation by PM_{2.5} (Mean concentrations = Blue line, Standard Deviation = Green line)

6.2.2. $PM_{2.5}$ hourly mean event roses and tables.

Due to the low data capture of 26.8%, the 98th percentile hourly mean event roses could not be presented.

6.3 CARBON MONOXIDE (CO)

6.3.1 Source identification by CO diurnal variations

Figure 5 shows the CO hourly mean diurnal variation. CO levels are generally low during the day and are elevated at night peaking at 21:00. Elevation in CO levels is also noticeable with a peak at 08:00 in the morning. Both elevations could be attributed to low level source emissions such as domestic combustion from coal stoves and motor vehicles during morning and evening commuting of workers to/from work.

Figure 5: Diurnal variation by CO (Mean concentrations = Blue line, Standard Deviation = Green line)

The national ambient air quality hourly mean CO limit of 26 ppm was not exceeded during the period under review as shown in Figure 8 below.

Figure 6: CO hourly Concentrations Time Series

6.3.2 CO hourly mean event roses and tables.

The daytime and night-time event roses are presented in Figure 7 to indicate the wind directions from which the highest concentrations are derived.

The most dominant hourly mean concentrations above 0.33 ppm at Marapong monitoring site during the daytime period were recorded from south, south-south-west, south-west, west, west-north-west and north-north-east sectors. The most dominant night-time concentrations above 0.79 ppm (98th percentile value) were recorded from south-west, north-north-west, east-south-east, south-east, south-south-east and south-south-west sectors. CO emissions measured at the monitoring station could be from different sources such as veld fires, back-up power generators, lawn mowers, leaf blowers, undiluted car exhausts without catalytic converters, combustion of fossil fuels. Other sources of CO could be from combustion of fuels such as natural gas, fuel oils from local industries and coal, wood, charcoal burning and also waste burning from Marapong Township.

Figure 7: CO hourly mean 98th percentile event roses. Left - daytime (06:00-18:00) and right - night time (18:01-05:59)

Table 5: CO daytime hourly mean 98th percentile event table

Dir.	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve.	0	1	0	0	0	1	0	0	2	1	1	0	1	1	0	0
%	0	12.5	0	0	0	12.5	0	0	25	12.5	12.5	0	12.5	12.5	0	0

Table 6: CO night-time hourly mean 98th percentile event table

Dir.	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW
Eve.	0	0	0	0	0	1	1	1	0	1	3	0	0	0	0	1
%	0	0	0	0	0	12.5	12.5	12.5	0	12.5	37.5	0	0	0	0	12.5

6.4. SULPHUR DIOXIDE (SO₂)

6.4.1 Source identification by SO₂ diurnal variations

Figure 8 shows the SO_2 hourly mean diurnal variation. The graph shows that SO_2 levels are low in the morning and in the evening and higher during the day, with a peak recorded at 15:00 in the afternoon. This is a typical signature of a tall stack source and industrial activities during the day.

Figure 8: SO₂ diurnal variations (Mean concentrations = Blue line, Standard Deviation = Green line).

6.4.2 SO₂ daytime exceedance and night-time event roses and tables

The daytime exceedance and night-time event roses are presented in Figure 9 to indicate the wind directions from which the exceedances and the highest concentrations are derived.

There were three exceedances of the national SO_2 hourly limit of 134 ppb recorded from southsouth-east, south and west-north-west sectors. The most dominant night-time concentrations above 11.33 ppb (98th percentile value) were recorded from south-south-east, north-north-west, north, south and south-west sectors.

Figure 9: SO₂ hourly mean 98th percentile event roses. Left - daytime (06:00-18:00) and right - night time (18:01-05:59)

Table 7: SO ₂	a daytime ho	irly mean 98 ¹	th percentile	event table
--------------------------	--------------	---------------------------	---------------	-------------

Dir.	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW
Exc.	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0
%	0	0	0	0	0	0	0	33.33	33.33	0	0	0	0	33.33	0	0

Table 8: SO₂ night-time hourly mean 98th percentile event table

Dir.	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW
Eve.	1	0	0	0	0	0	0	3	1	0	1	0	0	0	0	2
%	12.5	0	0	0	0	0	0	37.5	12.5	0	12.5	0	0	0	0	25

6.5. NITROGEN DIOXIDE (NO₂)

6.5.1 Source identification by NO₂ diurnal variations

Figure 10 below shows the NO₂ hourly mean diurnal variation. The graph shows concentration peaks between 07:00 and 08:00 in the morning and between 20:00 and 21:00 in the evening which are indicative of low level source emissions on ambient NO₂ concentrations, such as early morning and evening emissions from vehicles transporting workers from/to Marapong Township to/from Medupi, Matimba power stations, Grootegeluk coal mine and other industries in the area. The NO₂ concentrations are low during midday and throughout the afternoon as a result of absence or minimal number of vehicles in the township at those times.

Figure 10: NO₂ diurnal variations (Mean concentrations = Blue line, Standard Deviation = Green line).

6.5.2. NO₂ hourly mean event roses and tables.

The daytime and night-time event roses are presented in Figure 11 to indicate the wind directions from which the highest concentrations are derived. The most dominant daytime concentrations above 13.50 ppb (98th percentile value) were from west-north-west, south, west and south-south-east sectors. The most dominant night-time concentrations above 19.27 ppb (98th percentile value) were recorded from south-south-east, south-south-west, south-west, north-north-west, east-south-east and south-east sectors. Traffic from Onverwacht and Marapong Township and trucks travelling to the municipal dump might have an influence in the NO₂ readings. There is a taxi rank and it is at a very close proximity to the monitoring site and Lowveld Bus Service just less than a kilometre to the east of the monitoring site. This could have an influence on the NO₂ readings.

Figure 11: NO₂ hourly mean 98th percentile event roses. Left - daytime (06:00-18:00) and right - night time (18:01-05:59)

Table 9: NO₂ day-time hourly mean 98th percentile event table

Dir.	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW
Eve.	0	0	0	0	0	0	0	1	2	0	0	0	1	3	0	0
%	0	0	0	0	0	0	0	14.29	28.57	0	0	0	14.29	42.86	0	0

Table 10: NO₂ night-time hourly mean 98th percentile event table

Dir.	Ν	NNE	NE	ENE	Ε	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve.	0	0	0	0	0	1	1	2	0	2	1	0	0	0	0	1
%	0	0	0	0	0	12.5	12.5	25	0	25	12.5	0	0	0	0	12.5

6.6. OZONE (O₃)

There was only 10.6% data recorded for ozone due to faulty analyser that was removed for repairs.

7. HISTORICAL CONCENTRATIONS

7.1. RECENT TRENDS

Time series graphs (Figures 12 - 17) for each pollutant with respect to the National Ambient Air Quality Standards are represented from the beginning of the previous year until the end of the current reporting period or since inception of the monitors. The resultant period may vary for each analyser, depending on when it was installed.

Ambient CO and NO₂ concentrations at the monitoring site are well within their national ambient limits with no exceedances from December 2018 until April 2020. The trends show higher concentrations during winter than summer. Ambient PM_{10} and $PM_{2.5}$ concentrations have exceeded their daily limits on several occasions during the period under review and show increase in winter and decrease in summer. The ambient SO₂ hourly limit has been exceeded several times during the period under review and there is no clear trends shown. There were no exceedances of the national SO₂ daily limit during the period under review. Ambient O₃ concentrations are higher in spring to summer months and lower in winter months. Gaps in the trend analysis are as a result of the instrument being out for service.

Figure 12: NO₂ Hourly Means

Figure 13: CO Hourly Means

Figure 14: SO₂ Hourly Means

Figure 15: PM_{2.5} Daily Means

Figure 16: PM₁₀ Daily Means

Figure 17: SO₂ Daily Means

7.2. MONTHLY MEANS FOR THE CURRENT CALENDAR YEAR 2020

Table 11: Month	ly Means for current	year 2020
-----------------	----------------------	-----------

Parameter measured	Jan	Feb	Mar	Apr
ΡΜ _{2.5} (μg/m ³	17.2	9.4	16.3	5.7
ΡΜ 10 (μg/m ³)	25.9	12.8	31.1	12.1
NO ₂ (ppb)	5.6	8.4	6	4.7
CO (ppb)	0.1	0.1	0.2	0.2
O ₃ (ppb)	27.6	24.2	23.3	23.7
SO ₂ (ppb)	3	4.4	4.6	4

ND = No Data

The above table shows the monthly mean concentrations of pollutants until April 2020.

Table 12: Number of exceedances of the National Ambient Air Quality Limits

	SO ₂ hourly	SO ₂ daily	NO ₂ hourly	PM ₁₀ daily	PM _{2.5} daily	O₃ 8-hourly	CO hourly	SO ₂ 10 minute
Jan 2020	0	0	0	0	0	0	0	0
Feb 2020	0	0	0	0	0	0	0	0
Mar 2020	0	0	0	0	1	0	0	1
Apr 2020	3	0	0	0	0	0	0	7
Total No. of Exceedances	3	0	0	0	1	0	0	8
Allowed no of exceedances	88	4	88	4	4	11	88	526

The numbers of exceedances of all national air quality limits are well below their respective allowed number of exceedances per year.

8. CONCLUSIONS

There were seven exceedances of the SO_2 national 10-minute limit and three exceedances of the SO_2 national hourly limit recorded during the monitoring period. There were no exceedances of the national ambient air quality limits of the other parameters monitored.

Ambient CO and NO₂ concentrations at Marapong monitoring site show influence of emissions from low level sources in the area, ambient $PM_{2.5}$ and PM_{10} show influence of emissions from both tall stack emitters and low level sources while ambient SO₂ concentrations show influence of emissions from tall stack emitters.

Report Compiled by: Abram Segopa

Reviewed and Authorised by:

Date of Issue: 10 Jul 2020

Bontle Moiloa Air Quality, Climate Change & Ecosystem Management CoE Research, Testing and Development (RT&D)

9. ABBREVIATIONS

DEA	Department of Environmental Affairs		
FPM	Fine particulate matter		
HG	Mercury		
HUM	Humidity		
NO ₁	Nitric oxide		
NO ₂	Nitrogen dioxide		
NOx	Oxides of nitrogen		
OZN / O ₃	Ozone		
CO	Carbon monoxide		
SGT	Sigma theta		
TMP	Ambient temperature		
WDR	Wind direction from true North		
WSP	Wind speed		
WVL	Wind velocity		
Ν	North		
NNE	North-north-east		
NE	North-east		
ENE	East-north-east		
E	East		
ESE	East-south-east		
SE	South-east		
SSE	South-south-east		
S	South		
SSW	South-south-west		
SW	South-west		
WSW	West-south-west		
W	West		
WNW	West-north-west		
NW	North-west		
NNW	North-north-west		
deg	Degree		
deg C	Degree Celsius		
µg/m³	Microgram per cubic meter		
m/s	Meters per second		
PM _{2.5}	Particulate matter < 2.5 microns in diameter		
PM ₁₀	Particulate matter < 10 microns in diameter		
ppb	Parts per billion		
ppm	Parts per million		
MWP	Megawatt Park		
RT&D	Research Testing and Development		

10. DISTRIBUTION LIST

Eskom Environmental Management Attention: Emile Marell	Medupi Power Station
Eskom Environmental Management Attention: Matlaleng Mamabolo	Matimba Power Station
Eskom Environmental Management Attention: Rosetta Rammutla	Medupi Power Station
Eskom Environmental Management Attention: Elmien Mocke	Matimba Power Station
CORPORATE SPECIALIST: ENVIRONMENTAL Attention: Dave Lucas Corporate Specialist	MWP
MANAGER: ENVIRONMENTAL MANAGEMENT Attention: Bryan McCourt Manager Air Quality CoE	MWP
Project File: Abram Segopa Senior Technician	RT&D