

Mrs Mpho Nembilwi Nkangala District P O Box 437 MIDDLEBERG 1050 By email\_nembilwim@nkangaladm.gov.za' Date 07 September 2020

Enquiries E Madike Tel +27 13 647 9199

Dear Mrs Mpho Nembilwi

Ref Kendal Power Station AEL (17/4/AEL/MP312/11/15)

## KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF JUNE 2020

This is a monthly report required in terms of Section 7.4 in the Kendal Power Station's Atmospheric Emission License. The emissions are for Eskom Kendal Power Station.

Note: This report was reviewed by Ebrahim Patel from Eskom Generation Division | Asset Management | Mechanical Engineering Centre of Excellence | Air Pollution Control

Compiled by:

Tshilidzi Vilane

**ENVIRONMENTAL OFFICER-KENDAL** 

Date: 07/09/2020

Verified by:

SENIOR TECHNICIAN BOILER ENGINEERING- KENDAL

Date: 07/09/2020

# KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF JUNE 2020

Validated by:

Tendanı Rasıvhetshele

Robinstslan 2

**ACTING BOILER ENGINEERING MANAGER-KENDAL** 

Date 08/09/2020

Supported by:

Maliborigwe Mabizela

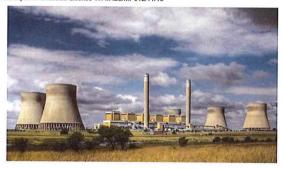
ACTING ENGINEERING MANAGER-KENDAL

Approved by

ACTING GENERAL MANAGER-KENDAL

Date 08/09/2020

14/09/2020


Date



JUNE 2020

ESKOM

KENDAL POWER STATION MONTHLY EMISSIONS REPORT
Atmospheric Emission License 17/4/AEL/MP312/11/15



# 1 RAW MATERIALS AND PRODUCTS

| Raw<br>Materials    | Raw Material Type    | Units | Consumption Rate<br>Jun-2020 |
|---------------------|----------------------|-------|------------------------------|
| and                 | Coal Tons            |       | 909 009                      |
| Products            | Fuel Oil             | Tons  | 1663.11                      |
|                     | Deaduct / Du Deaduct |       | DEPT. CONT. TO SERVICE       |
|                     | Product / By-Product | Units | Production Rate Jun-         |
| Production          | Name                 |       | 2020                         |
| Production<br>Rates | Name<br>Energy       | Units |                              |
|                     | Name                 |       | 2020                         |

## 2 ENERGY SOURCE CHARACTERISTICS

| Coal Characteristic | Units | Stipulated<br>Range | Monthly Average Content |  |
|---------------------|-------|---------------------|-------------------------|--|
| Sulphur Content     | %     | 0.7 TO >1<br>(%)    | 0.770                   |  |
| Ash Content         | %     | 30 TO >40<br>(%)    | 30.640                  |  |

## 3 EMISSION LIMITS (mg/Nm³)

| Associated<br>Unit/Stack | РМ  | SOx  | NOx  |
|--------------------------|-----|------|------|
| Unit 1                   | 100 | 3500 | 1100 |
| Unit 2                   | 100 | 3500 | 1100 |
| Unit 3                   | 100 | 3500 | 1100 |
| Unit 4                   | 100 | 3500 | 1100 |
| Unit 5                   | 100 | 3500 | 1100 |
| Unit 6                   | 100 | 3500 | 1100 |

## 4 ABATEMET TECHNOLOGY (%)

| Associated<br>Unit/Stack | Technology Type       | Efficiency<br>Jun-2020 | Technology Type | Utlization Jun-2020                   |
|--------------------------|-----------------------|------------------------|-----------------|---------------------------------------|
| Unit 1                   | ESP + SO <sub>3</sub> | 99.9%                  | so,             | 100.0%                                |
| Unit 2                   | ESP + SO,             | 99.8%                  | so,             | 98.8%                                 |
| Unit 3                   | ESP + SO;             | 99.4%                  | SO,             | 62.7%                                 |
| Unit 4                   | ESP + SO <sub>3</sub> | 99.1%                  | SO,             | 96.0%                                 |
| Unit 5                   | ESP + SO;             | Unit off               | so,             | Unit off                              |
| Unit 6                   | ESP + SO <sub>3</sub> | 98.8%                  | so,             | Data not available (PI server frozen) |

Note: ESP plant does not have bypass mode operation, hence plant 100% Utilised

# 5 MONITOR RELIABILITY (%)

| Associated<br>Unit/Stack | PM       | SO <sub>2</sub> | NO       | Oı       |
|--------------------------|----------|-----------------|----------|----------|
| Unit 1                   | 100.0    | 12.2            | 12.2     | 0.0      |
| Unit 2                   | 99.9     | 0.0             | 0.0      | 0.0      |
| Unit 3                   | 58.9     | 16.9            | 17.6     | 0.0      |
| Unit 4                   | 89.3     | 0.0             | 0.0      | 0.0      |
| Unit 5                   | Unit off | Unit off        | Unit off | Unit off |
| Unit 6                   | 94.0     | 0.0             | 0.0      | 0.0      |

Unit 6 94.0 0.0 0.0 0.0 0.0 0.0 Note: Low gaseous monitor reliability is due to defective analysers as a result of unavailability of spares, Maintenance working on this issue.

## 6 EMISSION PERFORMANCE

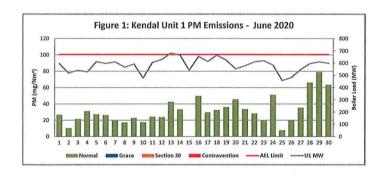
Table 6.1 Monthly tonnages for the month of June 2020

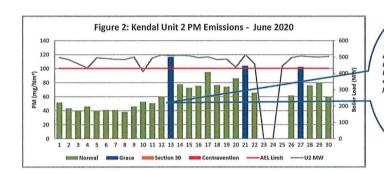
| Associated<br>Unit/Stack | PM (tons) | SO <sub>2</sub> (tons) | NO, (tons) |
|--------------------------|-----------|------------------------|------------|
| Unit 1                   | 60 8      | 3 884                  | 1 380      |
| Unit 2                   | 100 8     | 3 763                  | 1 663      |
| Unit 3                   | 297 3     | 2 343                  | 885        |
| Unit 4                   | 369 5     | 3 401                  | 1 169      |
| Unit 5                   | Unit off  | Unit off               | Unit off   |
| Unt 6                    | 414 9     | 5 992                  | 2 482      |
| SUN                      | 1 243 23  | 19 383                 | 7 579      |

Table 6.2 Operating days in compliance to PM AEL Limit - June 2020

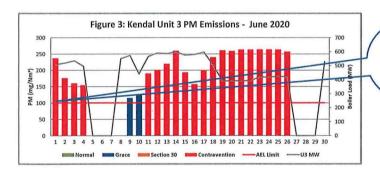
| Associated<br>Unit/Stack | Normal   | Grace    | Section 30 | Contraventi<br>on | Total Exceedance  |       |
|--------------------------|----------|----------|------------|-------------------|-------------------|-------|
| Unit 1                   | 29       | 0        | 0          | 0                 | 0                 | 32 6  |
| Unit 2                   | 24       | 3        | 0          | 0                 | 3                 | 65 9  |
| Unit 3                   | 0        | 2        | 0          | 20                | 22                | 215 6 |
| Unit 4                   | 1        | - 2      | 0          | 19                | 21                | 290 5 |
| Unit 5                   | Unit off | Unit off |            | Unit off          | Unit off Unit off |       |
| Unit 6                   | 0        |          | 0          | 30                | 30                | 228 6 |
| CHIL                     | 6.4      | -        |            | 69                | 76                |       |

Table 6.3 Operating days in compliance to SOx AEL Limit - June 2020

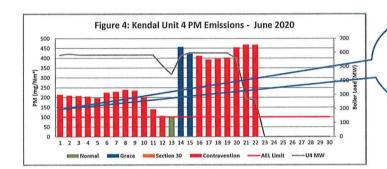

| Associated<br>Unit/Stack | Normal | Grace |   | 0 441 | Total Exceedance | Average SOx<br>(mg/Nm²) |
|--------------------------|--------|-------|---|-------|------------------|-------------------------|
| Unit 1                   | 30     | 0     | 0 | 0     | 0                | 1 925 3                 |
| Unit 2                   | 28     | n     | 0 | 0     | 0                | 2 458 1                 |
| Unit 3                   | 24     | 0     | 0 | 0     | 0                | 1 635 4                 |
| Unit 4                   | 22     | n     | 0 | o     | 0                | 2 661 2                 |
| Unit 5                   | - 22   | 0     | 0 | 0     | 0                |                         |
| Unit 6                   | 30     | 0     | 0 | 0     | 0                | 2 441 1                 |
| SUM                      |        |       |   | 0     | 0                |                         |


Table 6.4: Operating days in compliance to NOx AEL Limit - June 2020

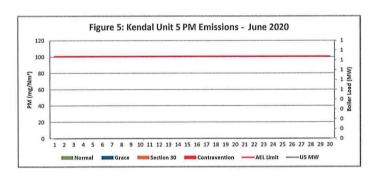
| Associated<br>Unit/Stack | Normal | Grace | Section 30 | Contraventi<br>on | Total Exceedance | Average NOx<br>(mg/Nm³) |
|--------------------------|--------|-------|------------|-------------------|------------------|-------------------------|
| Unit 1                   | 30     | 0     | 0          | 0                 | 0                | 684.0                   |
| Unit 2                   | 28     | 0     | 0          | . 0               | 0                | 1 086.3                 |
| Unit 3                   | 24     | 0     | 0          | 0                 | 0                | 617.6                   |
| Unit 4                   | 22     | 0     | 0          | 0                 | 0                | 914.4                   |
| Unit 5                   | 0      | 0     | 0          | 0                 | 0                |                         |
| Unit 6                   | 30     | 0     | 0          | 0                 | 0                | 1 011.4                 |
| SUM                      | 134    | 0     | 0          | 0                 | 0                |                         |

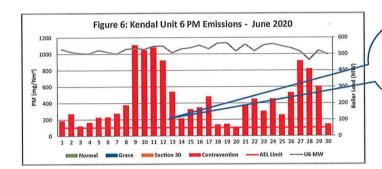

Table 6.5: Legend Description

| Condition    | Colour | Description                                                      |  |
|--------------|--------|------------------------------------------------------------------|--|
| Normal       |        | Emissions below Emission Limit Value (ELV)                       |  |
| Grace        | 8-1177 | Emissions above the ELV during grace period                      |  |
| Section 30   | 1000   | Emissions above ELV during a NEMA S30 incident                   |  |
| Contraventio |        | Emissions above ELV but outside grace or S30 incident conditions |  |

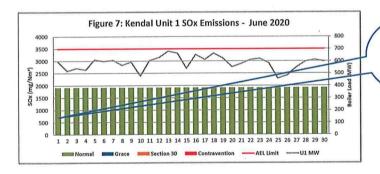




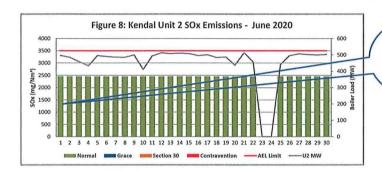


High PM emissions can be attributed to poor availability of Dust Handling Plant resulting to ash backlogs causing poor performance of the electrostatic precipitators fields.



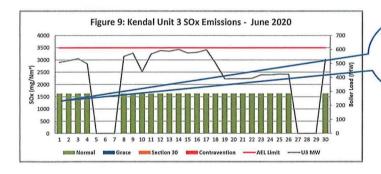

Unit 3 high PM emissions can be attributed to poor availability of Dust Handling Plant resulting to ash backlogs causing poor performance of the electrostatic precipitators fields.



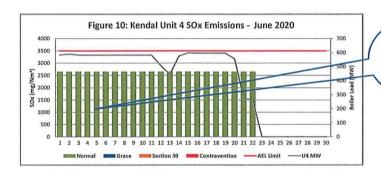

Unit 4 high PM emissions can be attributed to poor availability of Dust Handling Plant resulting to ash backlogs causing poor performance of the electrostatic precipitators fields.



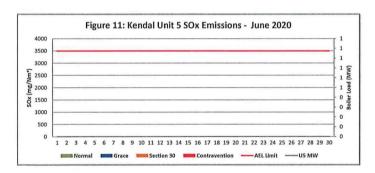


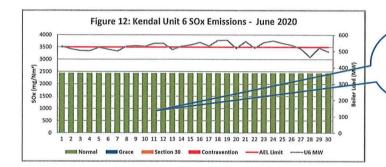


Unit 6 high PM emissions can be attributed to poor availability of Dust Handling Plant resulting to ash backlogs causing poor performance of the electrostatic precipitators fields.



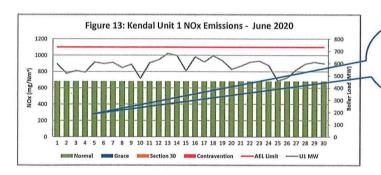

Note that gaseous emissions for unis 1 were manually entered using independant third party QAL2 parallel test reports due to defective CEMS monitors.



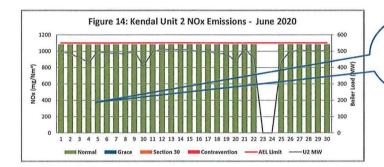

Note that gaseous emissions for unit 2 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.



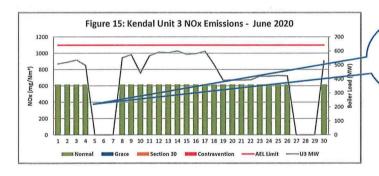

Note that gaseous emissions for unit 3 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.



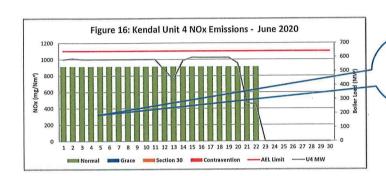

Note that gaseous emissions for unit 4 were manually entered using independant third party QAL2 parallel test reports due to defective CEMS monitors.



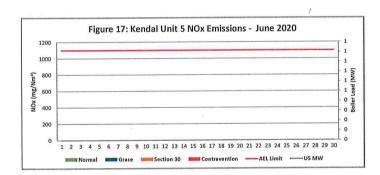


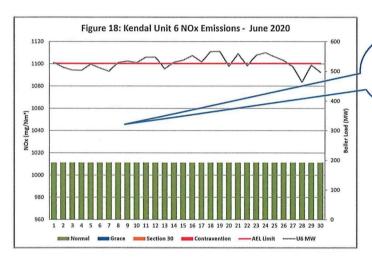


Note that gaseous emissions for unit 6 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.




Note that gaseous emissions for unit 1 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.




Note that gaseous emissions for unit 2 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.




Note that gaseous emissions for unit 3 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.



Note that gaseous emissions for unit 4 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.





Note that gaseous emissions for unit 6 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.

7 COMMENTS

Note that gaseous emissions for units 1,2,3, 4 & 6 were manually entered using Independant third party QAL2 parallel test reports due to defective CEMS monitors.

Unit 5 was still offload during the whole months of June 2020

Units 2,3,4 & 6 high PM emissions can be attributed to poor availability of Dust Handling Plant resulting to ash backlogs causing poor performance of the electrostatic precipitators fields.

Average SRM velocity values from the latest correlation report were used on the gaseous emissions on Unit 1, 2, 3 & 4 due to defective CEMS monitors and velocity correction factors were set M=1 and C=0 Average AMS velocity values from December 2019 correlation report were used for the gaseous emissions on unit 6 with the velocity correction factors

#### 8 COMPLAINTS

There were no complaints for the months of June 2020