

MAY 2022

1 RAW MATERIALS AND PRODUCTS

Raw Materials	Raw Material Type	Units	Maximum Permitted Consumption Rate	Consumption Rate May-2022		
and	Coal	Tons	2 260 000	955 276		
Products	Fuel Oil	Tons	5 000	1958,78		
	Product / By-Product Name	Units	Maximum Production Capacity Permitted	Production Rate May- 2022		
Production		Units MWh(MW)				
Production Rates	Name	Units	Capacity Permitted			

2 ENERGY SOURCE CHARACTERISTICS

Coal Characteristic	Units	Stipulated Range	Monthly Average Content
Sulphur Content	%	<1 (%)	0,800
Ash Content	%	40 (%)	32,870

3 EMISSION LIMITS (mg/Nm³)

Associated Unit/Stack	PM	SO₂	NOx
Unit 1	100	3500	1100
Unit 2	100	3500	1100
Unit 3	100	3500	1100
Unit 4	100	3500	1100
Unit 5	100	3500	1100
Unit 6	100	3500	1100

4 ABATEMENT TECHNOLOGY (%)

Associated Unit/Stack	Technology Type	Efficiency May-2022	Technology Type	Utlization May-2022	
Unit 1	ESP + SO 3	99,8%	SO3	0,0%	Unit 1, 2,3,4,5 & 6 sulphur
Unit 2	ESP + SO 3	Off-line	SO3	Off-line	utilization readings not
Unit 3	ESP + SO 3	99,9%	SO3	0,0%	available because KEPDAT
Unit 4	ESP + SO 3	99,4%	SO3	0,0%	A04 and KEPDATA05 failed. The hardware is
Unit 5	ESP + SO 3	99,5%	SO3	0,0%	being replaced
Unit 6	ESP + SO 3	99,7%	SO3	0,0%	beingrepiaced

Note : ESP plant does not have bypass mode operation, hence plant 100% Utilised.

5 MONITOR RELIABILITY (%)

Associated Unit/Stack	РМ	SO2	NO	02	
Unit 1	99,4	99,7	99,2	100,0	
Unit 2	Off-line	Off-line	Off-line	Off-line	
Unit 3	98,7	100,0	100,0	96,5	
Unit 4	99,5	99,1	97,2	70,6	
Unit 5	99,7	100,0	100,0	99,7	
Linit 6	90.1	99 Q	100.0	73.0	

 Unit 6
 90,1
 99,9
 100,0
 73,0

 Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO 2

Unit 3 and 6 O_2 monitor reliability low due to defective monitors

6 EMISSION PERFORMANCE

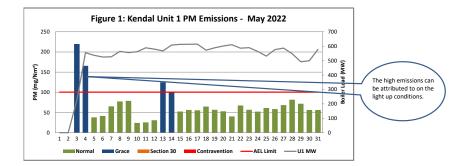
Table 6.1: Monthly tonnages for the month of May 2022						
Associated Unit/Stack	PM (tons)	CO2				
Unit 1	91,4	0	0	0		
Unit 2	Off-line	Off-line	Off-line	Off-line		
Unit 3	50,3	2 840	1 052	256 777		
Unit 4	228,8	3 924	992	223 751		
Unit 5	267,8	4 438	1 620	478 214		
Unit 6	148,5	3 601	1 490	292 020		
SUM	786,84	14 803	5 154	1 250 763		

Table 6.2: Operating days in compliance to PM AEL Limit - May 2022

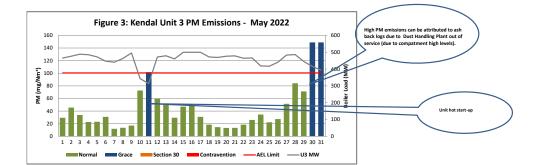
Associated Unit/Stack	Normal	Grace	Section 30	Contrave ntion	Total Exceedance	Average PM (mg/Nm ³)
Unit 1	25	4	0	0	4	59,9
Unit 2	Off-line	Off-line	Off-line	Off-line	Off-line	Off-line
Unit 3	28	3	0	0	3	40,5
Unit 4	25	2	0	4	6	167,3
Unit 5	24	4	0	3	7	137,5
Unit 6	26	3	0	2	5	73,4
SUM	128	16	0	9	25	

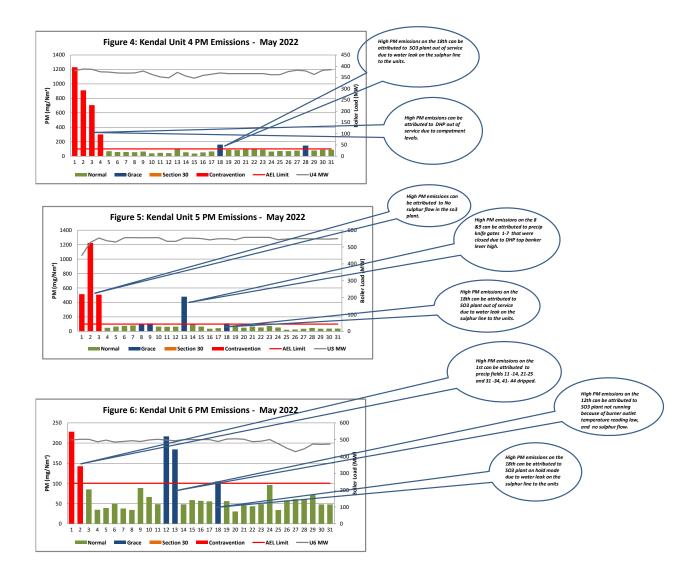
Table 6.3: Operating	a days in compliance to	SO ₂ AEL Limit - May 2022

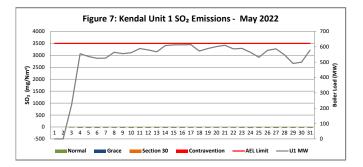
Associated Unit/Stack	Normal	Grace	Section 30	Contrave ntion	Total Exceedance	Average SOx (mg/Nm²)
Unit 1	29	0	0	0	0	-40,3
Unit 2	Off-line	Off-line	Off-line	Off-line	Off-line	Off-line
Unit 3	31	0	0	0	0	1 984,8
Unit 4	31	0	0	0	0	2 381,7
Unit 5	31	0	0	0	0	2 024,2
Unit 6	31	0	0	0	0	2 346,5
SUM	153	0	0	0	0	

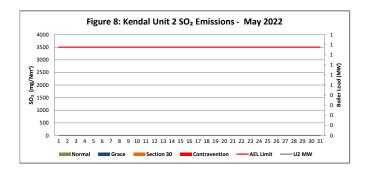

Table 6.4: Operating days in compliance to NOx AEL Limit - May 2022

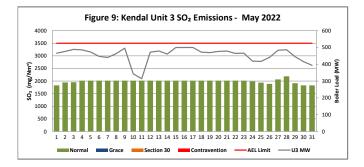
Associated Unit/Stack	Normal	Grace	Section 30	Contrave ntion	Total Exceedance	Average NOx (mg/Nm ³)
Unit 1	29	0	0	0	0	-12,6
Unit 2	0	Off-line	Off-line	Off-line	Off-line	Off-line
Unit 3	31	0	0	0	0	734,4
Unit 4	31	0	0	0	0	597,0
Unit 5	31	0	0	0	0	731,5
Unit 6	30	0	0	1	1	971,4
SLIM	450	0	0	4	1	

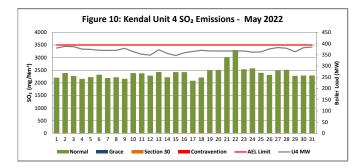

 SUM
 152
 0
 0
 1
 1

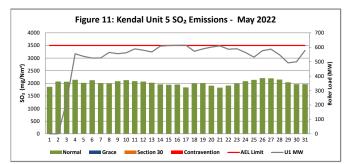

 Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO 2
 0
 0
 1
 1

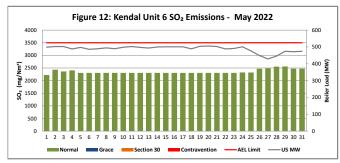

Table 6.5: Legend Description					
Condition	Colour	Description			
Normal		Emissions below Emission Limit Value (ELV)			
Grace		Emissions above the ELV during grace period			
Section 30		Emissions above ELV during a NEMA S30 incident			
Contravention		Emissions above ELV but outside grace or S30 incident conditions			

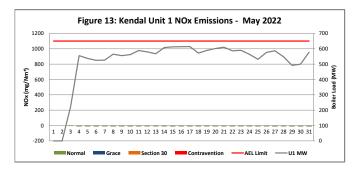




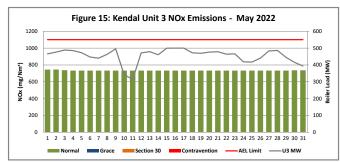


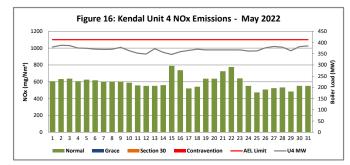


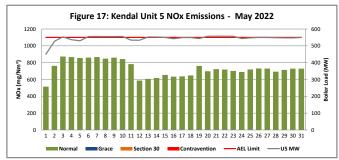


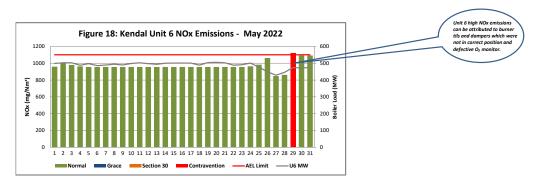












7 COMPLAINTS

There were no complaints for this months

Source Code / Name		Dispersion modeling of pollutants where applicable	Measures implemented to prevent reoccurrence

ADDENDUM TO MONTHLY EMISSIONS REPORT

Abatement Technology-Table 4

In order to achieve the required operational dust removal efficiency based on measured values, several assumptions such as Coal ash content (%) and burnt rate mass

P Fly : Coarse ash ratio of 80:20 - 80% of fly-ash mass obtained from burnt coal goes to ESP

Measurement of dust emission by Dust Monitor over a period of time (monthly)

Operational Dust Removal Efficiency

$\eta = (1 - (Output/Input)) \times 100$

η = 1 - (DustEmissionFromAQR ReportDustMonitor(tons) X 100 (CoalBurnt(tons)*%AshContent*80%)

Monitor Reliability-Table 5

In terms of the minimum emissions standard, the requirement is that a monitor should be 80% reliable on a monthly average. The monitor reliability refers to data reliability because the assumed value of 98% reliability is compared to the dust concentration signal. If the dust concentration signal is above 98% opacity, the data information is no longer reliable because the monitor reading is out of its maximum reading range. The data reliability looks at how many times did the dust concentration signal go above 98% over a period of time e.g 24hours The formula is as follows:

= (1 - (count hours above 98%/24hours))x 100

Emissions Performance:

- > Average velocity values from the latest correlation report were used on the gaseous emissions on Unit 1, 2, 3, 4 due to defective CEMS monitors and velocity correction factors were set M=1 and C=0
- > Avarage emissions for Unit 3 and 6 SO2, NOx, CO2, moisture and Unit 6 flow was used from the QAL2 parallel report due to defective
- monitors. Avarage emissions for Unit 4 on the 15th and 16th SOx and NOx was used from QAL2 and flow from the 2020 Correlation report.
- > Unit 6 high NOx emissions can be attributed to burner tils and dampers are not in correct position.

> Unit 2 was still offload during this month for Genera Overhaul (GO).

Unit 1

Findings: The high emissions can be attributed to on the light up conditions. Resolution:

Unit 3

Findings: The high emissions can be attributed to Unit hot start-up, ash back logs Dust Handling Plant out of service, due to compatment levels high.

Resolution: The DHP was returned back to service after repairs

Unit 4

Findings: High PM emissions can be attributed to DHP out of service due to compatment levels and SO3 plant out of service due to water leak on the sulphur line to the units. Resolution: The plant was repaired

Unit 5

Findings: High PM emissions can be attributed to DHP standing due to compatments that were full, SO3 plant out of service due to water leak on the sulphur line to the units, precip field 11 kept on tripping , on the 8th & 9th precip knife gages 1-7 were closed due to DHP top bunker lever high.

Resolution: The DHP was returned back to service after repairs

Unit 6 Findings: High PM emissions on the 1st can be attributed to precip fields 11-14, 21-25 and 31-34, 41- 44 dripped. On the 12th can be attributed to SO3 plant not running because of burner outlet temperature reading low, and no sulphur flow. On the 18th can be attributed to SO3 plant on hold mode due to water leak on the sulphur line to the units. Resolutions: Plant was repaired