

Matimba Power Station Emissions report

Matimba Power Station

Title: Matimba Power Station May 2022

emissions report

Document Identifier:

RP/247/022

Plant Location:

Emission management

Area of Applicability:

Matimba Power Station

Functional Area Applicability:

Environment

Revision:

1

Total Pages:

40

Report Date:

May 2022

Disclosure Classification:

Controlled

Compiled by

Functional Responsibility

Authorized by

WC Mocke

Environmental Officer

Date: 2022/07/06

MC Mamabolo

Environmental Manager

Date: 06/07/2022

Obakeng Mabotja General Manager

Date:

2022-07-07

Revision: 1

Page: 2 of 40

Content

			Page		
1.	Repo	ort Summary	4		
2.	Emis	ssion information	5		
	2.1	.1 Raw materials and products			
	2.2	Abatement technology	5		
	2.3	Energy source characteristics	6		
	2.4	Emissions reporting	6		
		2.4.1 Particulate Matter Emissions			
		2.4.2 Gaseous Emissions			
		2.4.3 Total Volatile Organic Compounds			
		2.4.4 Greenhouse gas (CO ₂) emissions			
	2.5	Daily power generated			
	2.6	Pollutant Tonnages			
	2.7	Reference values			
	2.8	Continuous Emission Monitors			
		2.8.1 Reliability			
		2.8.2 Changes, downtime and repairs			
	0.0	2.8.3 Sampling dates and times			
	2.9	Units Start-up information			
		Emergency generation Complaints register			
		Air quality improvements and social responsibility conducted			
	2.12	2.12.1 Air quality improvements			
		2.12.2 Social responsibility conducted			
	2 13	Ambient air quality monitoring			
		Electrostatic precipitator and Sulphur plant status			
3.		chments			
4.	•	ort Conclusion			
Tab	le 1: (Quantity of Raw Materials and Products used/produced for the month	5		
Tab	le 2: <i>I</i>	Abatement Equipment Control Technology Utilised	5		
Tab	le 3: I	Energy Source Material Characteristics	6		
Tab	le 4: 7	Total volatile compound estimates	24		
Tab	le 5: [Daily power generated per unit in MWh for the month of May 2022	25		
Tab	le 6: F	Pollutant tonnages for the month of May 2022	32		
Tab	le 7:	Reference values for data provided, May 2022	32		
Tab	le 8: <i>I</i>	Average percentage (%) availability of monitors for the month of May 20	2233		
Tab	le 9: \$	Start-up information	35		
Tab	le 10:	: Emergency generation	38		

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorised version on the system.

No part of this document may be reproduced without the expressed consent of the copyright holder, Eskom Holdings SOC Ltd.

Revision: 1

Page: **3 of 40**

Table 11: Complaints	38
Figures	
Figure 1: Particulate matter daily average emissions against emission limit for unit 1 for the month of May 2022	6
Figure 2: Particulate matter daily average emissions against emission limit for unit 2 for the month of May 2022	7
Figure 3: Particulate matter daily average emissions against emission limit for unit 3 for the month of May 2022	8
Figure 4: Particulate matter daily average emissions against emission limit for unit 4 for the month of May 2022	9
Figure 5: Particulate matter daily average emissions against emission limit for unit 5 for the month of May 2022	10
Figure 6: Particulate matter daily average emissions against emission limit for unit 6 for the month of May 2022	11
Figure 7: SO2 daily average emissions against emission limit for unit 1 for the month of May 2022	12
Figure 8: SO2 daily average emissions against emission limit for unit 2 for the month of May 2022	13
Figure 9: SO2 daily average emissions against emission limit for unit 3 for the month of May 2022	14
Figure 10: SO2 daily average emissions against emission limit for unit 4 for the month of May 2022	15
Figure 11: SO2 daily average emissions against emission limit for unit 5 for the month of May 2022	16
Figure 12: SO2 daily average emissions against emission limit for unit 6 for the month of May 2022	17
Figure 13: Figure 14: NOx daily average emissions against emission limit for unit 1 for the month of May 2022	18
Figure 15: NOx daily average emissions against emission limit for unit 2 for the month of May 2022	19
Figure 16: NOx daily average emissions against emission limit for unit 3 for the month of May 2022	20
Figure 17: NOx daily average emissions against emission limit for unit 4 for the month of May 2022	21
Figure 18: NOx daily average emissions against emission limit for unit 5 for the month of May 2022	22
Figure 19: NOx daily average emissions against emission limit for unit 6 for the month of May 2022	23
Figure 20: Unit 1 daily generated power in MWh for the month of May 2022	26
Figure 21: Unit 2 daily generated power in MWh for the month of May 2022	27
Figure 22: Unit 3 daily generated power in MWh for the month of May 2022	28
Figure 23: Unit 4 daily generated power in MWh for the month of May 2022	29
Figure 24: Unit 5 daily generated power in MWh for the month of May 2022	30
Figure 25: Unit 6 daily generated power in MWh for the month of May 2022	31

Revision: 1

Page: 4 of 40

1. Report Summary

Matimba Power Station was issued with an Atmospheric Emission License (H16/1/13-WDM05) in November 2021. The License requires the license holder to submit monthly reports to the Department. This report contains the required information as specified in the license for May 2022.

During the period under review, nine exceedances of the daily particulate matter emission limit (50mg/Nm³) occurred. An increase in SO_x emissions were observed however, no exceedances of the monthly SO_x limit (3500mg/Nm³) or the daily NO_x emission limit (750mg/Nm³) occurred.

More information regarding above mentioned issues is provided in the relevant sections within the report.

Revision: 1

Page: **5 of 40**

2. Emission information

2.1 Raw materials and products

Table 1: Quantity of Raw Materials and Products used/produced for the month

Raw Materials and Products used	Raw Material Type	Unit	Maximum Permitted Consumption Rate (Quantity)	Consumption Rate
	Coal	Tons/month	1 500 000	1 164 159
	Fuel Oil	Tons/month	1 200	956,288
Production Rates	Product/ By- Product Name	Unit	Maximum Production Capacity Permitted (Quantity)	Production Rate
	Energy	GWh	4 212.6	2128,709

The consumption rates for the month of May 2022 were within the permitted maximum limits.

2.2 Abatement technology

Table 2: Abatement Equipment Control Technology Utilised

Associated Unit	Technology Type	Minimum utilisation (%)	Efficiency (%)
Unit 1	Electrostatic Precipitator	100%	99,9%
Unit 2	Electrostatic Precipitator	100%	99,9%
Unit 3	Electrostatic Precipitator	100%	99,9%
Unit 4	Electrostatic Precipitator	100%	99,9%
Unit 5	Electrostatic Precipitator	100%	99,9%
Unit 6	Electrostatic Precipitator	100%	99,9%
Associated	Technology Type	Minimum utilisation	Actual Utilisation (%)
Unit		(%)	
Unit 1	SO₃ Plant	100%	93,66%
Unit 2	SO ₃ Plant	100%	99,86%
Unit 3	SO₃ Plant	100%	98,37%
Unit 4	SO ₃ Plant	100%	100%
Unit 5	SO₃ Plant	100%	99,32%
Unit 6	SO₃ Plant	100%	97,20%

Flue gas conditioning plant availability was below the required 100% for unit 1, unit 2, unit 3, unit 5 and unit 6 due to unexpected breakdowns and low loads. The defects were addressed, and the plants are operational.

Revision: 1

Page: 6 of 40

2.3 Energy source characteristics

Table 3: Energy Source Material Characteristics.

	Characteristic	Stipulated Range (Unit)	Monthly Average Content
Cool burned	Sulphur Content	1.6%	1,14%
Coal burned	Ash Content	40%	35,30%

Energy source characteristics remained within the ranges stipulated in the license.

2.4 Emissions reporting

2.4.1 Particulate Matter Emissions

Unit 1 Particulate Emissions

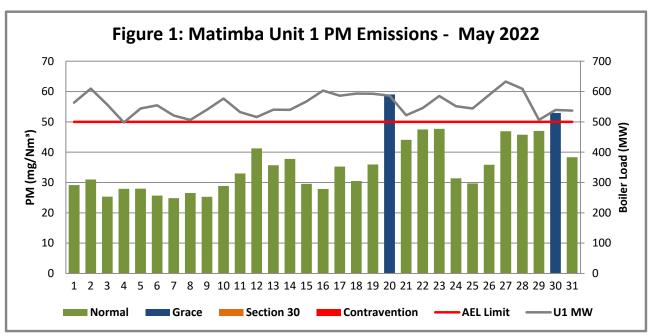


Figure 1: Particulate matter daily average emissions against emission limit for unit 1 for the month of May 2022

Interpretation:

Unit 1 Particulate matter exceeded the daily limit of 50 mg/Nm³ on 20 May 2022 and 30 May 2022. The exceedances were due to breakdowns on the flue gas conditioning plant and the ash removal system. The defective plants were repaired, and the exceedance remained within the 48-hour grace period.

Revision: 1

Page: **7 of 40**

Unit 2 Particulate Emissions

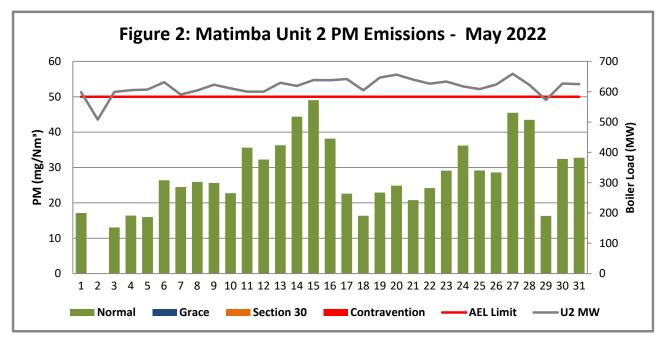


Figure 2: Particulate matter daily average emissions against emission limit for unit 2 for the month of May 2022

Interpretation:

All daily averages below Particulate matter emission daily limit of 50 mg/Nm³.

Revision: 1

Page: 8 of 40

Unit 3 Particulate Emissions

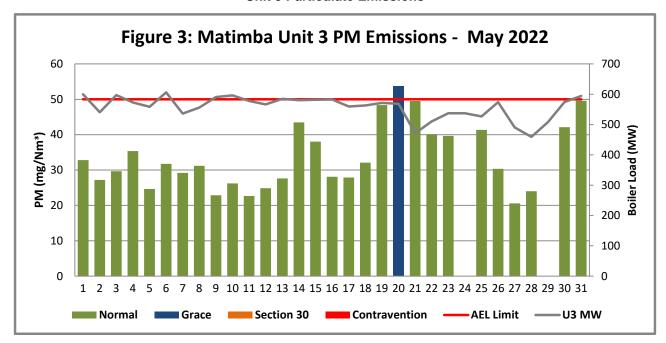


Figure 3: Particulate matter daily average emissions against emission limit for unit 3 for the month of May 2022

Interpretation:

Unit 3 Particulate matter exceeded the daily limit of 50 mg/Nm³ on 20 May 2022. The exceedance was due to breakdowns on the ash removal system. The defective plants were repaired, and the exceedance remained within the 48-hour grace period.

Revision: 1

Page: 9 of 40

Unit 4 Particulate Emissions

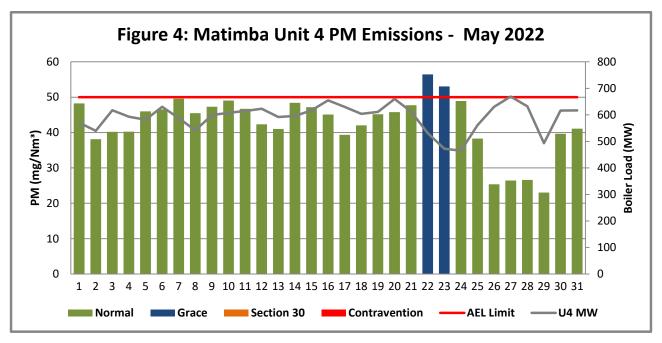


Figure 4: Particulate matter daily average emissions against emission limit for unit 4 for the month of May 2022

Interpretation:

Unit 4 exceeded the 50 mg/Nm³ limit on 22 May 2022 and 23 May 2022. The exceedances were due to breakdowns on the ash removal system. The defective plants were repaired, and the exceedance remained within the 48-hour grace period.

Revision: 1

Page: **10 of 40**

Unit 5 Particulate Emissions

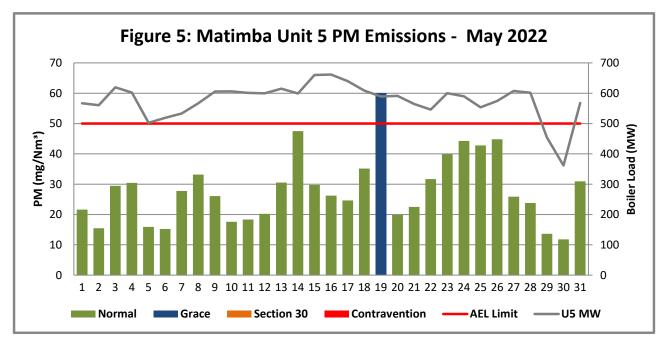


Figure 5: Particulate matter daily average emissions against emission limit for unit 5 for the month of May 2022

Interpretation:

Unit 5 exceeded the 50 mg/Nm³ limit on 19 May 2022. The exceedance was due to breakdowns on the ash removal system. The defective plants were repaired, and the exceedance remained within the 48-hour grace period.

Revision: 1

Page: 11 of 40

Unit 6 Particulate Emissions

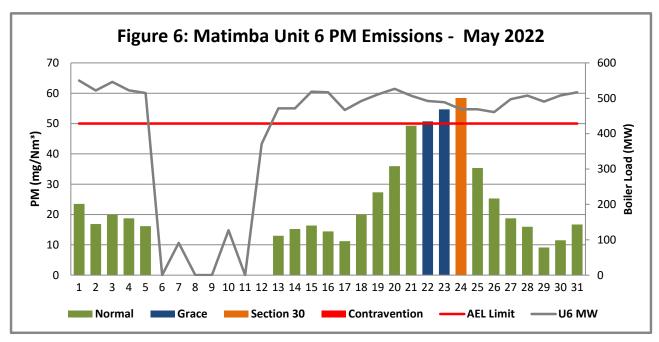


Figure 6: Particulate matter daily average emissions against emission limit for unit 6 for the month of May 2022

Interpretation:

Unit 6 exceeded the 50 mg/Nm³ limit on 22, 23 and 24 May 2022. The 48-hour grace period was exceeded on 24 May 2022 and a section 30 notification was sent to the department on 25 May 2022. The exceedance was due to breakdowns on the ash removal system. These breakdowns resulted in an ash backlog within the flue gas stream reducing the effectiveness on the electrostatic precipitators and therefore increasing particulate matter emissions. The defective plants were repaired, and the emissions returned to below the limit on 25 May 2022.

Revision: 1

Page: **12 of 40**

2.4.2 Gaseous Emissions

Unit 1 SO₂ Emissions

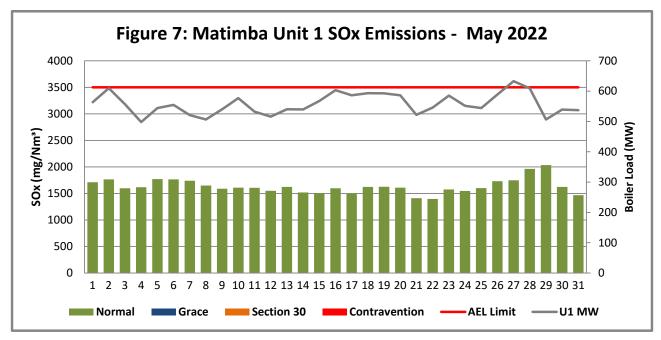


Figure 7: SO2 daily average emissions against emission limit for unit 1 for the month of May 2022 Interpretation:

All daily averages below SO₂ emission monthly limit of 3500 mg/Nm³.

•

Revision: 1

Page: **13 of 40**

Unit 2 SO₂ Emissions

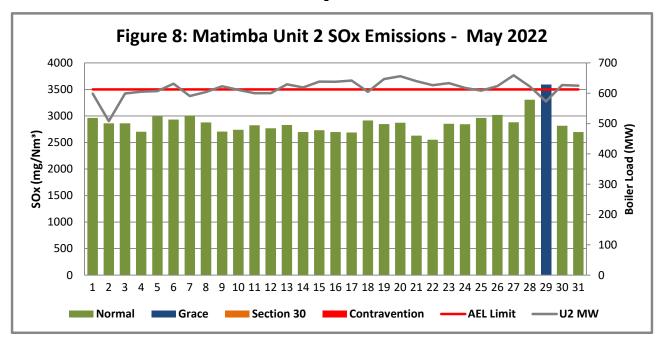


Figure 8: SO2 daily average emissions against emission limit for unit 2 for the month of May 2022

Interpretation:

Unit 2 experienced increased SO_2 emissions on 29 May 2022. The increased emissions were due to an increase in sulphur content of the coal as well as an increase in the oxygen within the flue gas stream. SO_2 emission monthly limit of 3500 mg/Nm³ was not exceeded with a monthly average of 2860,6 mg/Nm³.

Revision: 1

Page: **14 of 40**

Unit 3 SO₂ Emissions

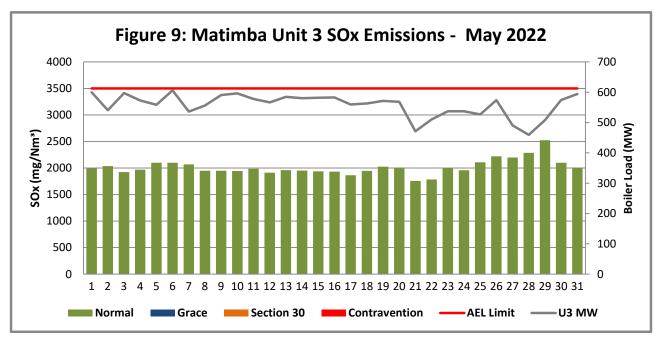


Figure 9: SO2 daily average emissions against emission limit for unit 3 for the month of May 2022 Interpretation:

All daily averages below SO₂ emission monthly limit of 3500 mg/Nm³.

Revision: 1

Page: **15 of 40**

Unit 4 SO₂ Emissions

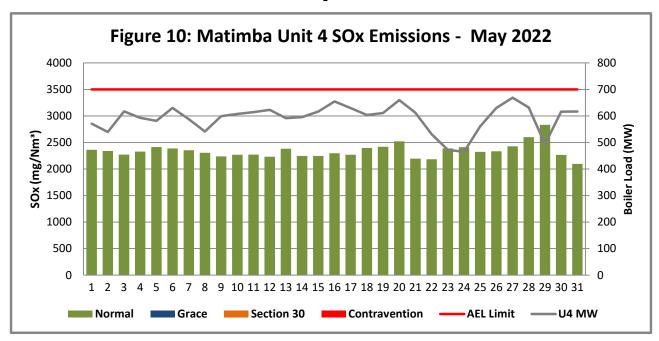


Figure 10: SO2 daily average emissions against emission limit for unit 4 for the month of May 2022 Interpretation:

All daily averages below SO₂ emission monthly limit of 3500 mg/Nm³.

Revision: 1

Page: **16 of 40**

Unit 5 SO₂ Emissions

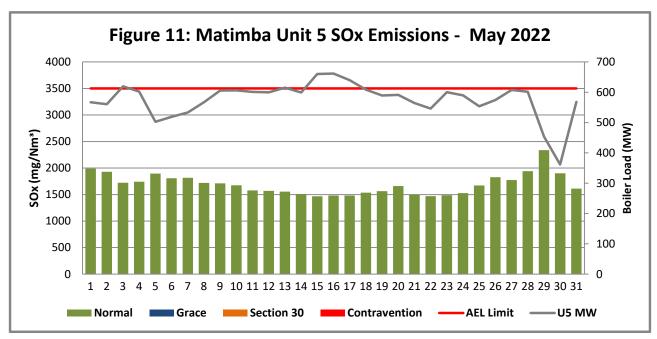


Figure 11: SO2 daily average emissions against emission limit for unit 5 for the month of May 2022 Interpretation:

All daily averages below SO₂ emission monthly limit of 3500 mg/Nm³.

Revision: 1

Page: **17 of 40**

Unit 6 SO₂ Emissions

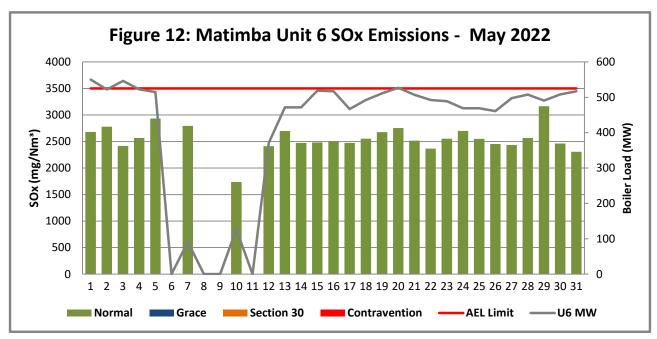


Figure 12: SO2 daily average emissions against emission limit for unit 6 for the month of May 2022 Interpretation:

All daily averages remained below SO₂ emission monthly limit of 3500 mg/Nm³.

٠

Revision: 1

Page: **18 of 40**

Unit 1 NO_x Emissions

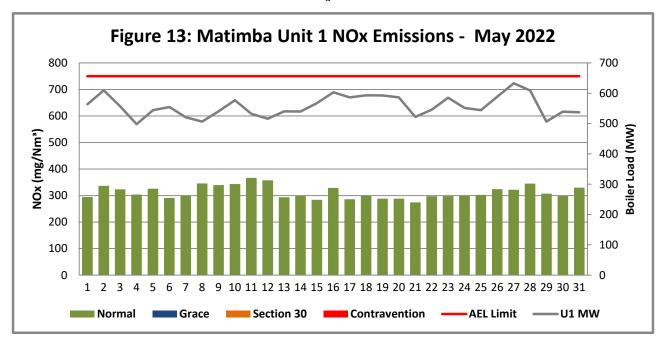


Figure 13: Figure 14: NOx daily average emissions against emission limit for unit 1 for the month of May 2022

Interpretation:

All daily averages below NOx emission limit of 750 mg/Nm³.

Revision: 1

Page: 19 of 40

Unit 2 NO_x Emissions

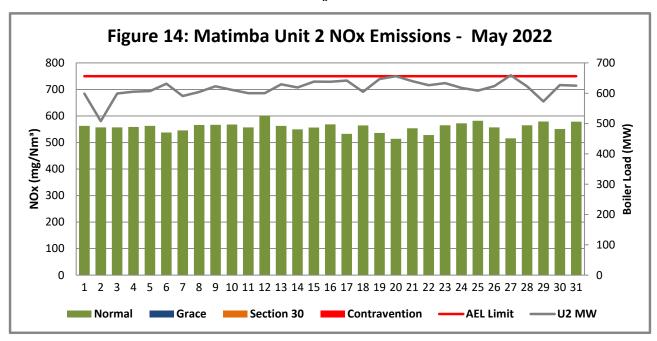


Figure 15: NOx daily average emissions against emission limit for unit 2 for the month of May 2022 Interpretation:

All daily averages below NOx emission limit of 750 mg/Nm³.

Revision: 1

Page: 20 of 40

Unit 3 NO_x Emissions

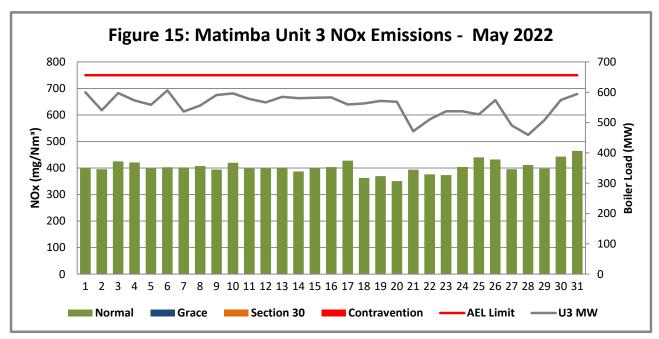


Figure 16: NOx daily average emissions against emission limit for unit 3 for the month of May 2022 Interpretation:

All daily averages below NOx emission limit of 750 mg/Nm³.

Revision: 1

Page: 21 of 40

Unit 4 NO_x Emissions

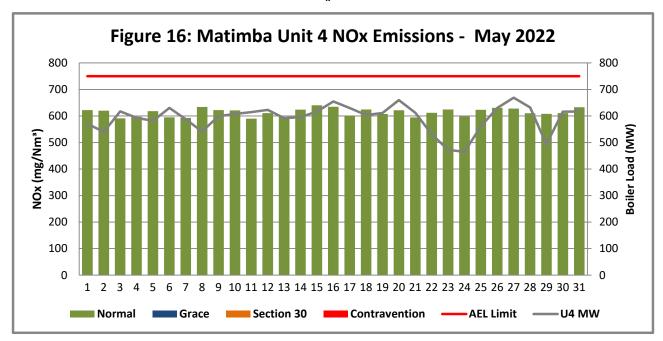


Figure 17: NOx daily average emissions against emission limit for unit 4 for the month of May 2022 Interpretation:

All daily averages below NOx emission limit of 750 mg/Nm³.

Revision: 1

Page: **22 of 40**

Unit 5 NO_x Emissions

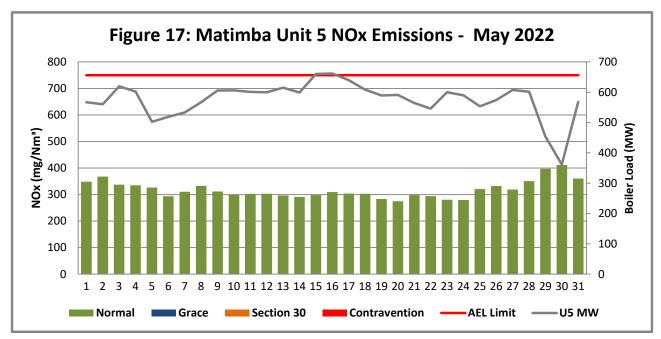


Figure 18: NOx daily average emissions against emission limit for unit 5 for the month of May 2022 Interpretation:

All daily averages below NOx emission limit of 750 mg/Nm³.

Revision: 1

Page: 23 of 40

Unit 6 NO_x Emissions

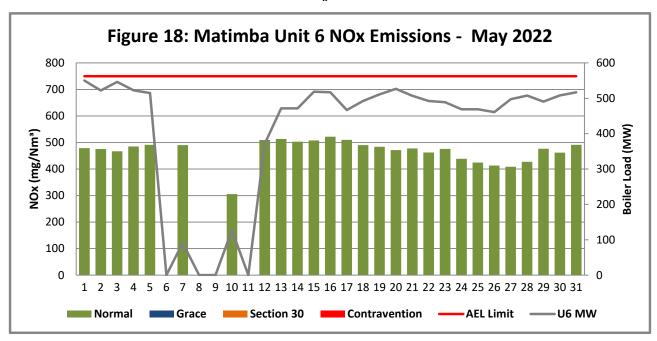


Figure 19: NOx daily average emissions against emission limit for unit 6 for the month of May 2022 Interpretation:

All daily averages below NOx emission limit of 750 mg/Nm³.

Revision: 1

Page: 24 of 40

2.4.3 Total Volatile Organic Compounds

Table 4: Total volatile compound estimates

CALCULATION OF EMISSIONS OF TOTAL VOLATILE COMPOUNDS FROM FUEL OIL STORAGE TANKS*

Date:	Tuesday, 14 June 2022		
Station: Matimba Power Station			
Province:	Limpopo Province		
Tank no.	1-4		
Description:	Outdoor fuel oil storage tank		
Tank Type: Vertical fixed roof (vented to atmosphere)			
Material stored:	Fuel Oil 150		

MONTHLY INPUT DATA FOR THE STATION

Please only insert relevant monthly data inputs into the <u>blue cells</u> below Choose from a dropdown menu in the <u>green cells</u>

The total VOC emissions for the month are in the <u>red cells</u>

IMPORTANT: Do not change any other cells without consulting the AQ CoE

MONTH:	May		
GENERAL INFORM	ATION:	Data	Unit
Total number of fue	el oil tanks:	4	NA
Height of tank:		13,34	m
Diameter of tank:		9,53	m
Net fuel oil through	put for the month:	<u>956,288</u>	
Molecular weight of	the fuel oil:	166,00	Lb/lb-mole
METEROLOGICAL	DATA FOR THE MONTH	Data	Unit
Daily average ambie	ent temperature	19,51	°C
Daily maximum amb	pient temperature	28,42	°C
Daily minimum amb	ient temperature	12,06	°C
Daily ambient temp	erature range	15,04	°C
Daily total insolatio	n factor	3,91	kWh/m²/day
Tank paint colour		<u>Grey/medium</u>	NA
Tank paint solar ab	sorbtance	0,68	NA
FINAL OUTPUT:		Result	Unit
Breathing losses:		0,54	kg/month
Working losses:		0,03	3 kg/month
TOTAL LOSSES (T	otal TVOC Emissions for the month):	0,57	kg/month
	1 11 1 1 1 1 1	110551 45 40 0 41 5 4 6	

*Calculations performed on this spreadsheet are taken from the USEPA AP-42- Section 7.1 Organic Liquid Storage Tanks - January 1996. This spreadsheet is derived from materials provided by Jimmy Peress, PE, Tritech Consulting Engineers, 85-93 Chevy Chase Street, Jamaica, NY 11432 USA, Tel - 718-454-3920, Fax - 718-454-6330, e-mail - PeressJ@nyc.rr.com.

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorised version on the system.

No part of this document may be reproduced without the expressed consent of the copyright holder, Eskom Holdings SOC Ltd.

Revision: 1

Page: **25 of 40**

2.4.4 Greenhouse gas (CO₂) emissions

CO₂ emissions are reported in terms of the Greenhouse gas reporting regulations (GN 43712, GNR. 994/2020) and are not included in the monthly AEL compliance report.

2.5 Daily power generated

Table 5: Daily power generated per unit in MWh for the month of May 2022

Date	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
2022/05/01	13465	9483	14320	13678	13398	13056
2022/05/02	14662	5525	12966	12929	13346	12405
2022/05/03	13350	14154	14252	14749	14758	13000
2022/05/04	11914	14300	13680	14141	14334	12416
2022/05/05	13039	14339	13296	13883	11942	6250
2022/05/06	13320	14916	14518	15118	12368	0
2022/05/07	12463	13927	12756	14022	12653	148,8
2022/05/08	12166	14271	13303	12973	13505	0
2022/05/09	12897	14941	14091	14299	14376	0
2022/05/10	13872	14767	14270	14560	14461	218,9
2022/05/11	12744	14537	13781	14655	14280	0
2022/05/12	12385	14563	13528	14890	14253	2714
2022/05/13	12927	14883	13960	14130	14671	11196
2022/05/14	12932	14613	13859	14211	14193	11190
2022/05/15	13580	15117	13883	14719	15686	12307
2022/05/16	14498	15033	13958	15636	15732	12308
2022/05/17	14040	15205	13330	15119	15285	11117
2022/05/18	14227	14279	13433	14419	14453	11665
2022/05/19	14143	15254	13635	14574	12294	12122
2022/05/20	11731	15516	13605	15775	14057	12516
2022/05/21	12491	15160	11250	14683	13426	12065
2022/05/22	13048	14794	12155	12697	13030	11691
2022/05/23	14036	15001	9266	11293	14191	11606
2022/05/24	13229	14594	11733	11124	14071	11135
2022/05/25	13001	14362	12533	13345	13117	11132
2022/05/26	14110	14714	13695	15068	13669	10939
2022/05/27	15176	15580	11777	15977	14443	11808
2022/05/28	14639	14744	10512	15138	14344	12063
2022/05/29	12154	13530	11376	11833	10870	11663
2022/05/30	12922	14809	13721	14732	8569	12051
2022/05/31	9951	14770	14154	14746	13509	12300

Revision: 1

Page: 26 of 40

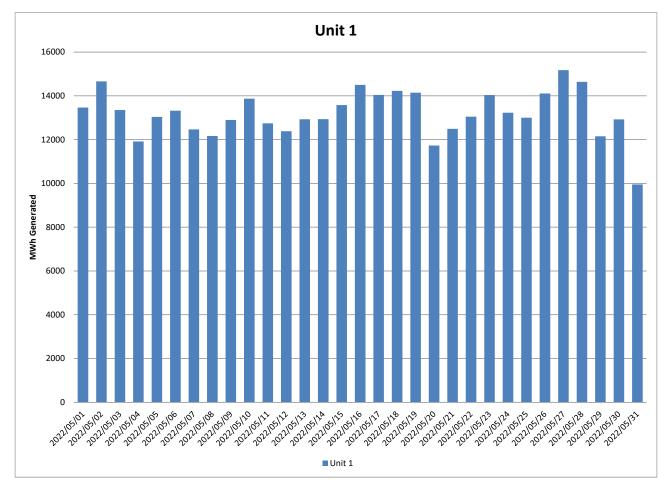


Figure 20: Unit 1 daily generated power in MWh for the month of May 2022

CONTROLLED DISCLOSURE

Revision: 1

Page: **27 of 40**



Figure 21: Unit 2 daily generated power in MWh for the month of May 2022

CONTROLLED DISCLOSURE

Revision: 1

Page: 28 of 40

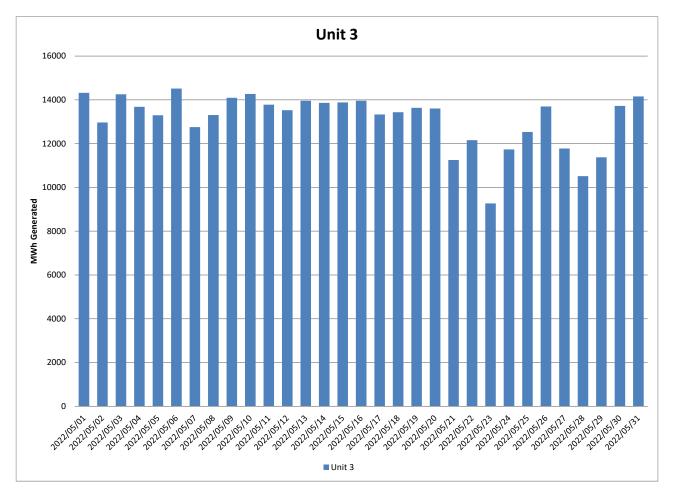


Figure 22: Unit 3 daily generated power in MWh for the month of May 2022

Revision: 1

Page: 29 of 40

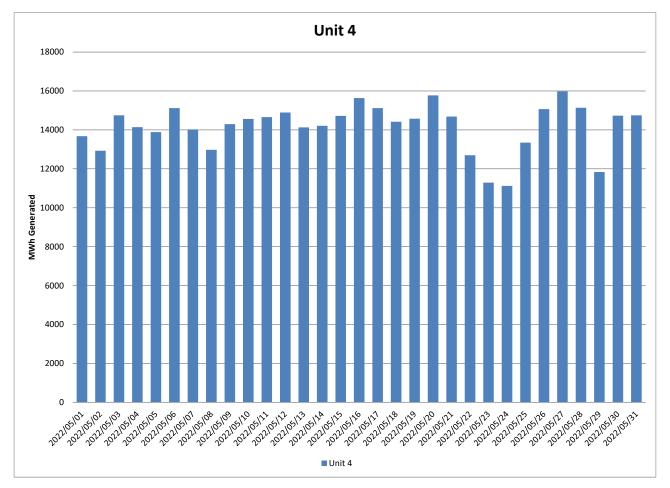


Figure 23: Unit 4 daily generated power in MWh for the month of May 2022

Revision: 1

Page: **30 of 40**

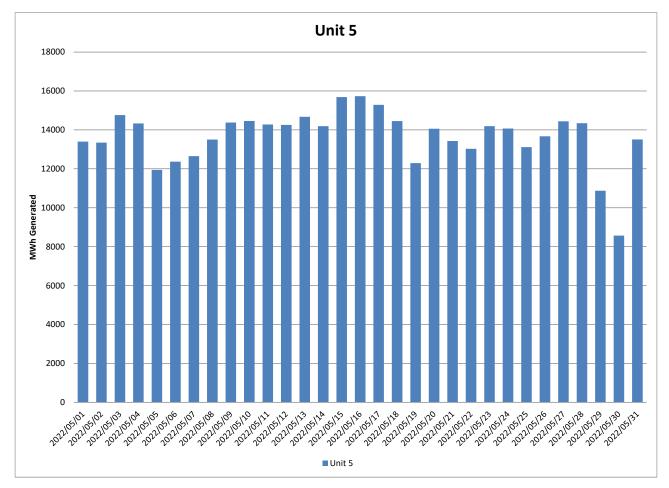


Figure 24: Unit 5 daily generated power in MWh for the month of May 2022

Revision: 1

Page: 31 of 40

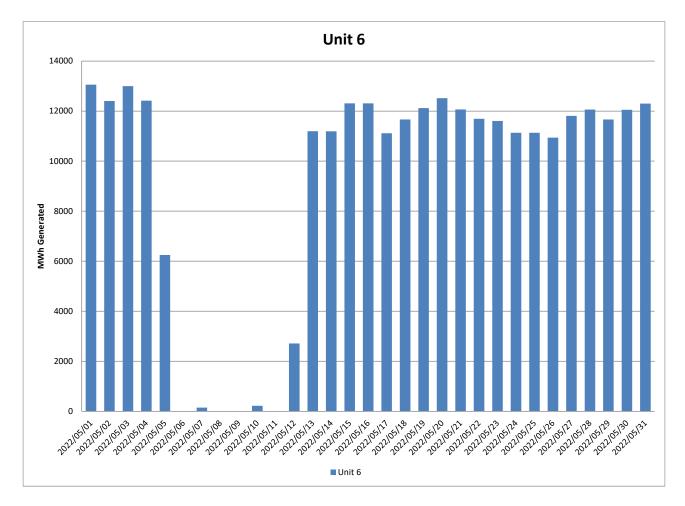


Figure 25: Unit 6 daily generated power in MWh for the month of May 2022

Revision: 1

Page: **32 of 40**

2.6 Pollutant Tonnages

The emitted pollutant tonnages for May 2022 are provided in table 6. Averaged values were used for CO_2 data for Unit 1 from 20 to 22 May 2022 and for Unit 6 from 1 to 7 May 2022, 12 to 17 May 2022 and 19 to 22 May 2022 due to the analyser being defective and providing unreliable data. CO_2 values for units 3, 4 and 5 were calculated per balance, using O_2 values, due to analyser providing unreliable data. Matimba is currently in the process of implementing recommended changes on gaseous emission analysers to improve the reliability of the data.

Table 6: Pollutant tonnages for the month of May 2022

Associated Unit/Stack	PM (tons)	SO ₂ (tons)	NO _x (tons)
Unit 1	75,8	3 778,8	722,5
Unit 2	59,0	9 166,7	1 787,7
Unit 3	62,1	5 219,7	1 047,1
Unit 4	81,6	4 996,0	1 311,3
Unit 5	55,8	3 633,3	684,7
Unit 6	35,3	3 951,8	726,2
SUM	369,6	30 746,2	6 279,4

2.7 Reference values

Table 7: Reference values for data provided, May 2022

Compound / Parameter	Units of Measure	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Oxygen	%	6,00	9,47	5,65	6,77	7,35	9,69
Moisture	%	4,74	4,86	5,19	3,87	5,31	2,96
Velocity	m/s	25,1	36,1	28,1	25,4	25,5	26,9
Temperature	°C	134,3	130,5	127,4	136,9	120,2	121,8
Pressure	mBar	934,7	1 193,7	918,0	903,6	928,9	926,2

Revision: 1

Page: **33 of 40**

2.8 Continuous Emission Monitors

2.8.1 Reliability

CO₂ monitor reliability for units 3, 4, 5 and 6 performed below the required 80% reliability as per the AEL. The monitors for these units were 100% available for May 2022 however the data received were removed and replaced with calculated values and averaged values due to data received from the monitors not being reliable.

Averaged values were used for CO_2 data for Unit 1 from 20 to 22 May 2022 and for Unit 6 from 1 to 7 May 2022, 12 to 17 May 2022 and 19 to 22 May 2022 due to the analyser being defective and providing unreliable data. CO_2 values for units 3, 4 and 5 were calculated per balance, using O_2 values, due to analyser providing unreliable data.

Table 8: Average percentage (%) availability of monitors for the month of May 2022.

Associated Unit/Stack	РМ	SO ₂	NO	CO ₂
Unit 1	100,0	100,0	98,8	97,0
Unit 2	100,0	92,3	92,3	92,3
Unit 3	100,0	100,0	100,0	0,0
Unit 4	100,0	100,0	100,0	0,0
Unit 5	100,0	100,0	100,0	0,0
Unit 6	100,0	100,0	100,0	45,4

Revision: 1

Page: **34 of 40**

2.8.2 Changes, downtime and repairs

Unit 1

- No adjustments done on the CEMs. Calibration of gaseous analysers is done every second week.
- No downtime or repairs done on the particulate monitors

Unit 2

- No adjustments done on the CEMs. Calibration of gaseous analysers is done every second week.
- No downtime or repairs done on the particulate monitors

Unit 3

- No adjustments done on the CEMs. Calibration of gaseous analysers is done every second week.
- No downtime or repairs done on the particulate monitors

Unit 4

- No adjustments done on the CEMs. Calibration of gaseous analysers is done every second week.
- No downtime or repairs done on the particulate monitors

Unit 5

- U No adjustments done on the CEMs. Calibration of gaseous analysers is done every second week.
- No downtime or repairs done on the particulate monitors

Unit 6

- No adjustments done on the CEMs. Calibration of gaseous analysers is done every second week.
- No downtime or repairs done on the particulate monitors

2.8.3 Sampling dates and times

Continuous

Revision:

Page: **35 of 40**

2.9 Units Start-up information

Table 9: Start-up information

Unit	1	
Fires in	2022/05/20	19h25
Synchronization with Grid	2022/05/20	22h36
Emissions below limit	2022/05/21	01h00
Fires in to synchronization	3,18	HOURS
Synchronization to < Emission limit	2,4	HOURS

Unit	1	
Fires in	2022/05/31	20h32
Synchronization with Grid	2022/05/31	22h34
Emissions below limit	2022/06/01	00h01
Fires in to synchronization	2,03	HOURS
Synchronization to < Emission limit	1,45	HOURS

Unit	2	
Fires in	2022/05/02	08h54
Synchronization with Grid	2022/05/02	12h54
Emissions below limit	2022/05/02	14h39
Fires in to synchronization	4	HOURS
Synchronization to < Emission limit	1,75	HOURS

CONTROLLED DISCLOSURE

Revision: 1

Page:

36 of 40

Unit	3	
Fires in	2022/05/24	00h18
Synchronization with Grid	2022/05/24	02h03
Emissions below limit	2022/05/24	03h00
Fires in to synchronization	1,75	HOURS
Synchronization to < Emission limit	0,95	HOURS

Unit	3	
Fires in	2022/05/28	23h00
Synchronization with Grid	2022/05/29	01h29
Emissions below limit	2022/05/29	01h29
Fires in to synchronization	2,48	HOURS
Synchronization to < Emission limit	0	HOURS

Unit	5	
Fires in	2022/05/19	19h49
Synchronization with Grid	2022/05/19	21h44
Emissions below limit	2022/05/19	23h00
Fires in to synchronization	1,92	HOURS
Synchronization to < Emission limit	1,27	HOURS

CONTROLLED DISCLOSURE

Revision: 1

Page: **37 of 40**

Unit	6	
Fires in	2022/05/07	08h07
Synchronization with Grid	2022/05/07	12h51
Emissions below limit	2022/05/07	12h51
Fires in to synchronization	4,73	HOURS
Synchronization to < Emission limit	0	HOURS

Unit	6	
Fires in	2022/05/10	16h43
Synchronization with Grid	2022/05/10	21h55
Emissions below limit	2022/05/10	22h01
Fires in to synchronization	5,2	HOURS
Synchronization to < Emission limit	0,1	HOURS

Unit	6	
Fires in	2022/05/12	09h47
Synchronization with Grid	2022/05/12	16h29
Emissions below limit	2022/05/12	16h29
Fires in to synchronization	6,7	HOURS
Synchronization to < Emission limit	0	HOURS

CONTROLLED DISCLOSURE

Revision: 1

Page: **38 of 40**

2.10 Emergency generation

Table 10: Emergency generation

	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Emergency Generation hours declared by national Control	459	517	465	517	499	433
Emergency Hours declared including hours after stand down	488	548	491	548	529	458
Days over the Limit during Emergency Generation	2	0	1	2	1	3

Unit 1 exceeded the 50mg/Nm³ limit for two days during emergency generation, on 20 and 30 May 2022. Unit 3 exceeded the 50mg/Nm³ limit for one day during emergency generation, on 20 May 2022. Unit 4 exceeded the 50mg/Nm³ limit for two days during emergency generation, on 22 and 23 May 2022. Unit 5 exceeded the 50mg/Nm³ limit for one day during emergency generation, 19 May 2022. Unit 6 exceeded the 50mg/Nm³ limit for three days during emergency generation, on 22, 23 and 24 May 2022.

2.11 Complaints register

Table 11: Complaints

Source Code/ Name	Root Cause Analysis	Calculation of Impacts/ emissions associated with the incident	Dispersion modelling of pollutants where applicable	Measures implemented to prevent reoccurrence	Date by which measure will be implemented
N/A					

2.12 Air quality improvements and social responsibility conducted

2.12.1 Air quality improvements

None

2.12.2 Social responsibility conducted

None

Revision: 1

Page: **39 of 40**

2.13 Ambient air quality monitoring

Four exceedances of the PM_{2.5} daily limit and ten exceedances for the PM₁₀ daily limit occurred during the period under review. The SO₂ national ambient air quality hourly standard was exceeded once and three exceedances of the SO₂ national ambient air quality 10-minute limit were recorded.

The average data recovery for the period was 60% and the station availability was 65.6%. The reason for low data recovery and low station availability is that there was a loss of data for 10 days which was caused by a faulty data logger battery charger.

Ambient NO₂, PM_{2.5} and PM₁₀ concentrations at Marapong monitoring site show influence of emissions from low level sources in the area and ambient SO₂ concentrations are contributed to by emissions from high level sources.

Detailed results can be found in Attachment 1, "Marapong Monthly Report_May 2022".

2.14 Electrostatic precipitator and Sulphur plant status

Unit 1

- 3 fields out of service, will be inspected next opportunity.
- No abnormalities on the SO3 plant. Preventative maintenance done during the month.

Unit 2

- All precipitator fields in service.
- No abnormalities on the SO3 plant. Preventative maintenance done during the month.

Unit 3

- All precipitator fields in service.
- Unit 3 Variable speed drive failed and was replaced.

Unit 4

- 1 field out of service, will be inspected next opportunity.
- No abnormalities on the SO3 plant. Preventative maintenance done during the month.

Unit 5

- 1 field out of service, will be inspected next opportunity.
- No abnormalities on the SO3 plant. Preventative maintenance done during the month.

Unit 6

- All precipitator fields in service.
- No abnormalities on the SO3 plant. Preventative maintenance done during the month.

SO3 common plant

No abnormalities on the sulphur storage plant.

CONTROLLED DISCLOSURE

Revision: 1

Page: 40 of 40

General

Name and reference number of the monitoring method used:

- 1. Particulate and gas monitoring according to standards
 - a. BS EN 14181:2004 Quality Assurance of Automated Measuring Systems
 - b. ESKOM internal standard 240-56242363 Emissions Monitoring and Reporting Standard

Sampling locations:

- 1. Stack one
 - a. Particulates:
 - i. S23° 40' 2.8" E027° 36' 34.8" 175m from ground level and 75m from the top.
 - b. Gas:
 - i. S23° 40' 2.8" E027° 36' 34.8" 100m from ground level and 150m from the top.
 - c. Stack height
 - i. 250 meter consist of 3 flues
- 2. Stack two
 - a. Particulates:
 - i. S23° 40' 14.8" E027° 36' 47.5" 175m from ground level and 75m from the top.
 - b. Gas:
 - i. S23° 40' 14.8" E027° 36' 47.5" 100m from ground level and 150m from the top.
 - c. Stack height
 - i. 250 meter consist of 3 flues

3. Attachments

Attachment 1 – Marapong Monthly Report_May 2022

Attachment 2 – Matimba Power Station Dust fallout monitoring report May 2022

4. Report Conclusion

The rest of the information demonstrating compliance with the emission license conditions is supplied in the annual emission report sent to your office.

Hoping the above will meet your satisfaction.

I hereby declare that the information in this report is correct.

Yours sincerely

GENERAL MANAGER: MATIMBA POWER STATION

CONTROLLED DISCLOSURE