

Ms Nompumelelo Simelane Nkangala District P.O Box 437 MIDDLEBERG

1050

By email: Simelanenl@nkangaladm.gov.za

Date:

09 October 2023

Enquiries: S Chokoe Tel +27 13 647 6970

Dear Ms. Nompumelelo Simelane

Ref: Kendal Power Station AEL (17/4/AEL/MP312/11/15)

KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF JULY 2023.

This is a monthly report required in terms of Section 7.4 in the Kendal Power Station's Atmospheric Emission License. The emissions are for Eskom Kendal Power Station.

Compiled by:

Irene Motswenyane

ENVIRONMENTAL OFFICER- KENDAL POWER STATION

Date: 09 /10/2023

Supported by:

Solly Chokoe

ENVIRONMENTAL MANAGER- KENDAL POWER STATION

Date: 09/10/2023

Generation Division (Kendal Power Station) N12 Balmoral Off Ramp, Emalahleni Private Bag x7272, Emalahlani 1035 SA Tel +27 13 647 6970 Fax +27 13 647 6904 www.eskom.co.za

KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF 2023 JULY

Verified by:
Jacob Zwane BOILER ENGINEERING: SENIOR SYSTEM ENGINEER- KENDAL POWER STATION
Validated by:
Tendani Rasivhetshele BOILER ENGINEERING MANAGER-KENDAL POWER STATION
Supported by:
Malibongwe Mabizela ENGINEERING MANAGER-KENDAL POWER STATION Date: 18 10 2023
Approved by:
Kobus Steyn GENERAL MANAGER-KENDAL POWER STATION Date: 20047023

KENDAL POWER STATION MONTHLY EMISSIONS REPORT Atmospheric Emission License 17/4/AEL/MP312/11/15

1 RAW MATERIALS AND PRODUCTS

Raw Materials	Raw Material Type	Units	Maximum Permitted Consumption Rate	Consumption Rate Jul-2023
and	Coal	Tons	2 260 000	764 043
Products	Fuel Oil	Tons	5 000	11343.880
	Product / By-Product	Units	Maximum Production	
Production	Name		Capacity Permitted	Rate Jul-2023
Production Rates	Name Energy	GWh	Capacity Permitted 3 062.304	Rate Jul-2023 1 243.968
	Name		Capacity Permitted	Rate Jul-2023

2 ENERGY SOURCE CHARACTERISTICS

Coal Characteristic	Units	Stipulated Range	Monthly Average Content	
CV Content	MJ/kg	16-24 (MJ/kg)	17.340	
Sulphur Content	%	<1 (%)	0.850	
Ash Content	%	40 (%)	36.460	

3 EMISSION LIMITS (mg/Nm³)

Associated Unit/Stack	PM	SO ₂	NOx
Unit 1	100	3500	1100
Unit 2	100	3500	1100
Unit 3	100	3500	1100
Unit 4	100	3500	1100
Unit 5	100	3500	1100
Unit 6	100	3500	1100

4 ABATEMENT TECHNOLOGY (%)

Associated Unit/Stack	Technology Type	Efficiency Jul-2023	Technology Type	SO ₃ Utilization Jul-2023
Unit 1	ESP + SO ₁	Off-line	SO ₃	39.2%
Unit 2	ESP + SO;	96.098%	SO ₃	50.3%
Unit 3	ESP + SO;	99.618%	SO ₃	0.0%
Unit 4	ESP + SO,	Off-line	SO ₁	Off-line
Unit 5	ESP + SO ₃	97.324%	SO,	28.4%
Unit 6	ESP + SO ₁	99.034%	SO ₁	2.8%

SO3 plant for Unit 3 was in service and was injecting as required however the station was unable to archive the information to our Pl system. It is the failure of the stations very old and obsolete windows 97 SCADA system which the station is looking to replace during the next GO outage on unit 3.

Note: ESP plant does not have bypass mode operation, hence plant 100% Utilised.

SO3 plant on hold mode due to aux steam temp low, So3 plant off due to the inlet steam temp low, SO3 plant tripped due to low back end temps, SO3 plant on hold mode sulphur flow meter faulty reading, SO3 plant off, DHP PLC off, SO3 plant heater that fail to reset.

5 MONITOR RELIABILITY (%)

Associated Unit/Stack	PM	SO ₂	NO	O2
Unit 1	55.8	90.3	93.1	97.6
Unit 2	51.6	94.0	94.6	0.0
Unit 3	45.0	100.0	100.0	86.7
Unit 4	OFF	OFF	OFF	OFF
Unit 5	98.7	99.7	100.0	100.0
Unit 6	93.1	68.7	67.1	100.0

Unit 6 93.1 68.7 67.1 100.0

Note: Nox emissions is measured as No In PPM. Final Nox value is expressed as total NO 2

Note: Unit 1, 2 and 3 dust monitors realiability is low due to monitors maxing out. Unit 2 02, Unit 6 Sox, Nox and 02 monitors reliability low due to defective monitors

6 EMISSION PERFORMANCE

Table 6.1: Monthly tonnages for the month of July 2023

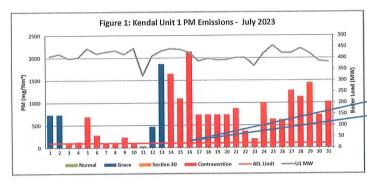
Associated Unit/Stack	PM (tons)	SO ₂ (tons)	NO _x (tons)
Unit 1	0.0	3 508	1 372
Unit 2	1 444.3	1 769	690
Unit 3	184.3	2 344	825
Unit 4	OFF	OFF	OFF
Unit 5	1 456.1	2 097	813
Unit 6	308.0	1 289	742
SUN	3 392.69	11 008	4 442

Table 6.2: Operating days in compliance to PM AEL Limit - July 2023

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average PM (mg/Nm²)
Unit 1	1	4	0	26	30	735.8
Unit 2	0	4	0	20	24	1 262.1
Unit 3	0	4	0	19	23	171.6
Unit 4	OFF	OFF	OFF	OFF	OFF	OFF
Unit 5	0	2	0	24	26	941.9
Unit 6	0	6	0	17	23	393.0
SIIM	1	20	0	106	126	

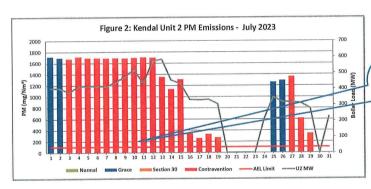
Table 6.3: Operating days in compliance to SO₂ AEL Limit - July 2023

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average SO ₂ (mg/Nm³)
Unit 1	31	0	0	0	0	1 760.4
Unit 2	26	0	0	0	0	1 910.1
Unit 3	26	0	0	0	0	1 973.2
Unit 4	OFF	OFF	OFF	OFF	OFF	OFF
Unit 5	28		0	0	0	1 830.0
Unit 6	27	0	0	0	0	1 346.7
SUM		0	0	0	0	

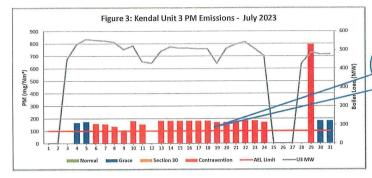

Table 6.4: Operating days in compliance to NOx AEL Limit - July 2023

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average NOx (mg/Nm²)
Unit 1	31	0	0	0	0	695.9
Unit 2	26	0	0	0	0	733.0
Unit 3	26	0	0	0	0	689.0
Unit 4	OFF	OFF	OFF	OFF	OFF	OFF
Unit 5	28	0	0	0	0	705.5
Unit 6	27	0	0	0	0	770.6
SUM		0	0	0	0	

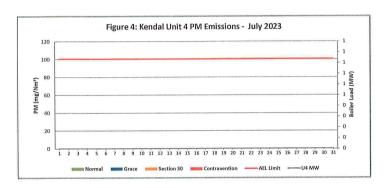
Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO 2

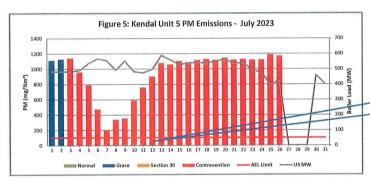

Table 6.5: Legend Description

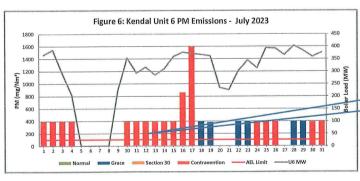
Condition	Colour	Description
Normal	GREEN	Emissions below Emission Limit Value (ELV)
Grace	BLUE	Emissions above the ELV during grace period
Section 30	ORANGE	Emissions above ELV during a NEMA S30 incident
Contraventio	RED	Emissions above ELV but outside grace or S30 incident conditions


High emissions can be attributed to Primary conveyor 11 chocked, SO3 plant on hold mode due to aux steam temp low, Unit on Teuel oil support, Precip chain con12 chocked at the drive and speed switch faulty. Precip conv 21 chocke, DHP stopped due to comp level high. Hopper knife gates closed.

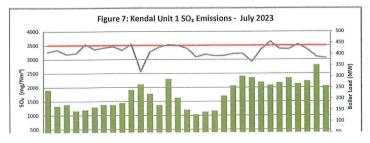
Unit 1 Monitor maxed out on the following days Unit 1 from the 1st - 3rd, 12th -21st and 26th - 31st.

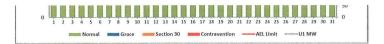

High emissions can be attributed to DHP tripped due to comp high level, So3 plant off due to the inlet steam temp low, So3 plant off due to the inlet steam temp low, So3 plant off due to the inlet steam temp low, DHP tripped due to comp high level. Hopper knife gate closed, precl chain conv 13 chocked, Preclp 13 tripped conveyor chocked. So3plant on hold mide sulphur flow meter faulty reading too Skieh.

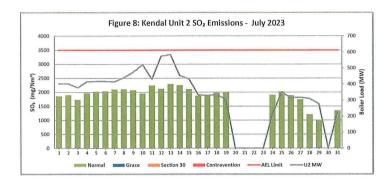

Unit 2 Monitor maxed out of the U2 on the 1st - 13th & 25th -28th.

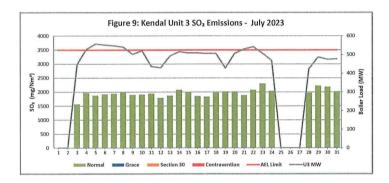

High PM emissions can be attributed to top bunker conveyor tripping - hopper knife gates closed on all precip conveyors. Precip conveyor 12 tripped and fails to start from the control room, Precip conveyor 24 tripped - Conveyor chocked, Foli oil usage - Unit light up (cold

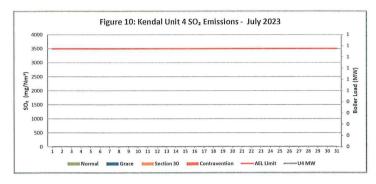
Unti 3 monitor maxed out on the 10th -11th, 13th - 24th and the 29th -31st.

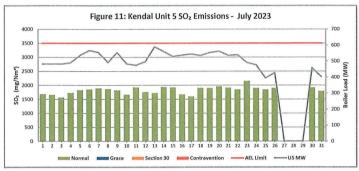


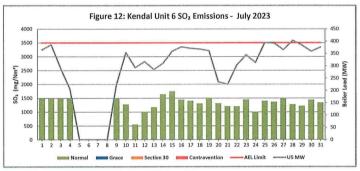

High PM emissions can be attributed to Precip chain conveyors tripping and chocking, SO3 plant tripped due to low back end temps, DHP stopped due to fualty comp, Knife gates closed.

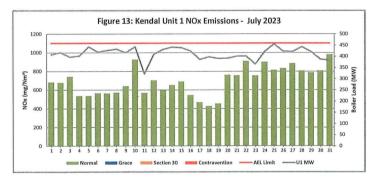


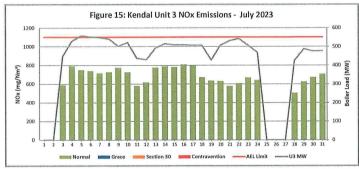

High PM emissions can be attributed to DHP tripped due to top bunkers high levels, fuel oil support, SO3 plant off, DHP PLC off. Fuel oil used to start up the unit. SO3 plant heater that fail to reset.

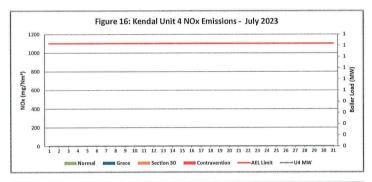

Unit 6 on the 2nd and the 18th -19th

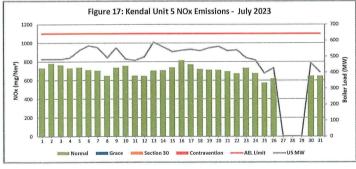


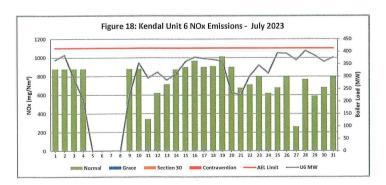












7 COMPLAINTS

There were no complaints for this months

Source Code / Name	Root Cause Analysis	Calculation of Impacts / emissions associated	Dispersion modeling of pollutants where applicable	Measures implemented to prevent reoccurrence

Abatement Technology-Table 4

In order to achieve the required operational dust removal efficiency based on measured values, several assumptions such as ☑ Coal ash content (%) and burnt rate mass

☐ Fly: Coarse ash ratio of 80:20 - 80% of fly-ash mass obtained from burnt coal goes to ESP Measurement of dust emission by Dust Monitor over a period of time (monthly)

Operational Dust Removal Efficiency $\eta = (1 - (Output/Input)) \times 100$

 $\eta = 1 - \{DustEmissionFromAQR\ ReportDustMonitor(tons)\}\ X\ 100 \ (CoalBurnt(tons)*%AshContent*80%)$

Monitor Reliability-Table 5

In terms of the minimum emissions standard, the requirement is that a monitor should be 80% reliable on a monthly average. The monitor reliability refers to data reliability because the assumed value of 99.325% reliability is compared to the dust concentration signal. If the dust concentration signal is above 99.325% opacity, the data information is no longer reliable because the monitor reading is out of its maximum reading range. The data reliability looks at how many times did the dust concentration signal go above 98% over a

The formula is as follows:

= (1 – (count hours above 99.325%/24hours))x 100

- > Average velocity values from the latest correlation report were used on the gaseous emissions on Unit 1, 2,4,5 &6 due to defective CEMS monitors and velocity correction factors were set M=1 and C=0
- > Unit 5 Monitor still using the old monitor correlation. After new correlations are done, new correlation factors will be implemeted and backfitted to the date of monitor installation.
- > U1, 2, 3 and 6 monitors maxed out, meaning the emission were higher than what the monitor was correlated for. In which case we use surrogate values. This is attributted to abnormal plant conditions including no DHP and No SO3 plant during the period.
- > Please note the reported figures in tonnage calculation are an under estimate since the station did not use the Maxing out PM monitor quantification exercise which is the use of "surrogate values" on days when the monitor maxed out. The following are the days when the monitor was maxing out: Unit 1 from the 1st - 3rd, 12th -21st and 26th - 31st, Uo nthe 1st - 13th & 25th -28th, Unit 3 form the 10th - 11th, 13th - 24th and the 29th -31st, Unit 6 on the 2nd and the 18th -19th. Figures will be restated based on updated upset testing and surrogate value determination that Kendal will conduct in September- October.
- > Unit 6 O2 gas Monitor was defective, substituted with QAL 2 SRM value for for the entire month.
 > Unit 1 NOx on the 1st to the 11th, 21st -22nd,27th,30th,31st monitor was defective, data was deleted the tool will avarage itself.
- > Findings: The high emissions can be attributed to Primary conveyor 11 chocked, SO3 plant on hold mode due to aux steam temp low, Unit on Fuel oil support, Precip chain con12 chocked at the drive and speed switch faulty. Precip conv 21 chocke, DHP stopped due to comp level high. Hopper knife gates closed.

 Resolution: Plant repaired.

- Findings: The high emissions can be attributed to DHP tripped due to comp high level, So3 plant off due to the inlet steam temp low, DHP tripped due to comp high level. Hopper knife gate closed, preci chain conv 13 chocked, Precip 13 tripped conveyor chocked. SO3plant on hold mde sulphur flow meter faulty reading too high.

- ➤ Unit 3
 ➤ Findings: The high PM emissions can be attributed to top bunker conveyor tripping hopper knife gates closed on all precip conveyors. Precip conveyor 12 tripped and fails to start from the control room, Precip conveyor 24 tripped - Conveyor chocked, Foil oil usage - Unit light up (cold start).
- > Resolution: Paint repaired.
- ➤ Unit 4
- Findings: R
- > esolution: Plant repaired.
- Findings: High PM emissions can be attributed to Precip chain conveyors tripping and chocking, SO3 plant tripped due to low back end temps, DHP stopped due to fualty comp, Knife gates closed.

- ➤ Unit 6
 ➤ Findings: High PM emissions can be attributed to Precip chain conveyors tripping and chocking, SO3 plant tripped due to low back end temps, DHP stopped due to fualty comp, Knife gates closed.

 Resolution: Plant repaired.