

Ms Nompulelo Simelane Nkangala District Municipality

PO BOX 437 Middelburg

1050

Date:

24 January 2024

Enquiries:

Livhuwani Tshilate 017 615 2317

Ref: 17/4/AEL/MP312/11/09

Dear Ms. Simelane

KRIEL POWER STATION'S MONTHLY STACK EMISSIONS REPORT FOR THE MONTH OF DECEMBER 2023

This serves as the monthly report required in terms of Section 7.4 in Kriel Power Station's Atmospheric Emission License 17/4/AEL/MP312/11/09. The emissions are for the month of December 2023. Verified emissions of particulates matter, SO_2 and NO_x (as NO_2) are also included.

Raw Materials and Products

Table 1: Quantity of Raw Materials and Products used/produced for the month of December 2023

Raw Materials and Products used	Raw Material Type	Units	Maximum Permitted Consumption / Rate (Quantity)	Consumption / Rate in Month of December 2023
uscu	Coal	Tons/month	1 227 600	673 566.200
	Fuel Oil	Tons/month	5 000	3 126.785
Production Rates	Product/ By- Product Name	Unit	Maximum Production Capacity Permitted (Quantity)	Production Rate in Month of December 2023
	Ash	Tons/month	not specified	177 821.477
	RE PM	kg/MWh	not specified	0.790

1/...

Abatement Technology

Table 2: Abatement Equipment Control Technology for December 2023.

		Actual Efficiency (%)	Utilisation
		December 2023	December 2023
Associated Unit/Stack	Technology Type		
Unit 1	ESP	99.94%	0.00%
Unit 2	ESP	99.13%	98.91
Unit 3	ESP	98.61%	95.28%
Unit 4	ESP	Outage	Outage
Unit 5	ESP	98.59%	100.00%
Unit 6	ESP	Outage	Outage

Energy Source Characteristics

Table 3: Energy Source Material Characteristics for the month of December 2023

Characteristic	Stipulated Range (Unit)	Monthly Average Content		
Sulphur Content	0.6-1.2 (%)	0.760		
Ash Content	27-32 (%)	26.400		

Monthly Monitor Reliability

Associated Unit/Stack	PM (%)	SOx (%)	NOx (%)
North	65.62	90.71	94.37
South	36.71	100.00	100.00

Emissions Reporting

Table 6.5: Graph Legend Description

Condition	Colour	Description
Normal		Emissions below Emission Limit Value (ELV)
Grace		Emissions above the ELV during grace period
Section 30		Emissions above ELV during a NEMA S30 incident
Contravention		Emissions above ELV but outside grace or S30 incident conditions

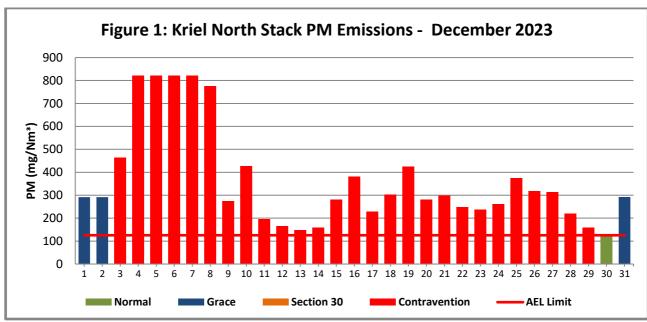


Figure 1: PM emissions for the month of December 2023 against emission limit for the North Stack. Monthly average was 361.5 mg/Nm3.

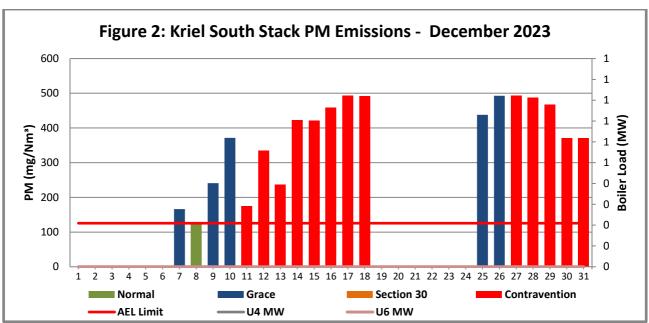


Figure 2: PM emissions for the month of December 2023 against emission limit for the South Stack. Monthly average was 371.5 mg/Nm3.

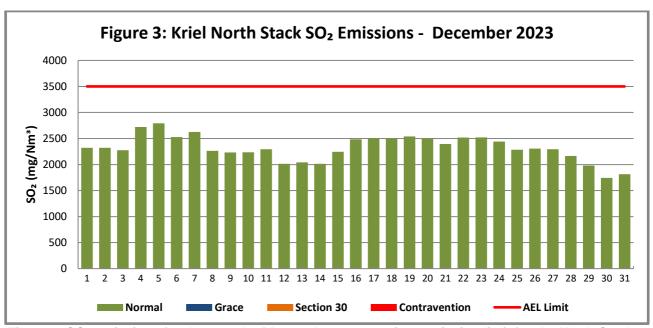


Figure 3. SO₂ emissions for the month of December 2023 against emission limit for the North Stack. The SOx Limit is 3500mg/Nm3.

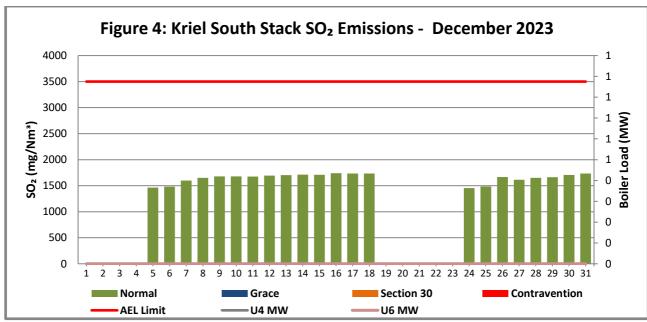


Figure 4. SO_2 emissions for the month of December 2023 against emission limit for the South Stack. The SOx Limit is 3500mg/Nm3.

Figure 5. NO_2 emissions for the month of December 2023 against emission limit for the North Stack. The NOx Limit is 1600mg/Nm3.

Figure 6. NO₂ emissions for the month of December 2023 against emission limit for the South Stack. The NOx Limit is 1600mg/Nm3.

Table 4: Monthly tonnages for the month December 2023

Unit	PM (tons)	SO ₂ (tons)	NO ₂ (tons)
SUM	961.0	5 973.3	2 506.2

Table 5: Each unit and respective days operating under normal operation and section 30 days respectively.

Table 5.1: Operating days in non-compliance to PM AEL Limit – December 2023

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Monthly Limit Exceedance	Average PM (mg/Nm³)	
North	01	03	0	27	30	361.5	
South	01	05	0	12	18	371.5	

Table 5.2: Operating days in compliance to SOx AEL Limit - December 2023

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average SOx (mg/Nm³)
North	31	0	0	0	0	2 320.0
South	22	0	0	0	0	1 646.5

Table 5.3: Operating days in compliance to NOx AEL Limit – December 2023

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average NOx (mg/Nm³)
North	31	0	0	0	0	1 082.5
South	22	0	0	0	0	465.3

Light up information

Table 6: PM Start-up information for the month of December 2023

North Stack	Ε	Event 1	Event 2		Event 3		Event 4	
Unit No.		Unit 1	U	nit 2	Unit 2		Unit 2	
Breaker Open (BO)			11:05 pm	2023/12/07	BO previously	BO previously	7:35 pm	2023/12/27
Draught Group (DG) Shut Down (SD)			12:40 pm	2023/12/08	n/a	n/a	8:10 am	2023/12/28
BO to DG SD (duration)		DD:HH:MM	00:13:35	DD:HH:MM	n/a	DD:HH:MM	00:12:35	DD:HH:MM
Fires in time					7:55 pm	2023/12/13		
Synch. to Grid (or BC)					10:50 am	2023/12/14		
Fires in to BC (duration)		DD:HH:MM		DD:HH:MM	00:14:55	DD:HH:MM		DD:HH:MM
Emissions below limit from BC (end date)					12:00 am	2024/01/03		
Emissions below limit from BC (duration)		DD:HH:MM		DD:HH:MM	19:13:10	DD:HH:MM		DD:HH:MM

North StackCont.	Ev	rent 1	Event 2		Event 3		Event 4	
Unit No.	Unit 3		Ur	nit 3	U	nit 3	Unit 3	
Breaker Open (BO)	1:45 am	2023/12/17	BO previously	BO previously	5:50 am	2023/12/26	BO previously	BO previously
Draught Group (DG) Shut Down (SD)	5:40 am	2023/12/17	n/a	n/a	7:50 am	2023/12/26	n/a	n/a
BO to DG SD (duration)	00:03:55	DD:HH:MM	n/a	DD:HH:MM	00:02:00	DD:HH:MM	n/a	DD:HH:MM
Fires in time			2:50 pm	2023/12/17			4:55 pm	2023/12/26
Synch. to Grid (or BC)			8:15 pm	2023/12/17			1:00 am	2023/12/27
Fires in to BC (duration)		DD:HH:MM	00:05:25	DD:HH:MM		DD:HH:MM	00:08:05	DD:HH:MM
Emissions below limit from BC (end date)			not > limit	not > limit			not > limit	not > limit
Emissions below limit from BC (duration)		DD:HH:MM	n/a	DD:HH:MM		DD:HH:MM	n/a	DD:HH:MM

South Stack	Е	vent 1	Event 2		Event 3		Event 4	
Unit No.	no	event	Unit 5		Unit 5		no event	
Breaker Open (BO)			5:35 pm	2023/12/04	BO previously	BO previously	7:00 am	2023/12/07
Draught Group (DG) Shut Down (SD)			5:00 pm	2023/12/05	n/a	n/a	DG did not trip or SD	DG did not trip or SD
BO to DG SD (duration)		DD:HH:MM	00:23:25	DD:HH:MM	n/a	DD:HH:MM	n/a	DD:HH:MM
Fires in time					8:40 pm	2023/12/05		
Synch. to Grid (or BC)					2:25 am	2023/12/06		
Fires in to BC (duration)		DD:HH:MM		DD:HH:MM	00:05:45	DD:HH:MM		DD:HH:MM
Emissions below limit from BC (end date)					not > limit	not > limit		
Emissions below limit from BC (duration)		DD:HH:MM		DD:HH:MM	n/a	DD:HH:MM		DD:HH:MM

South StackCont.	L	Event 1	Ev	rent 2	Eve	ent 3	Ev	rent 4
Unit No.	n	o event	U	nit 5	Uı	nit 5	U	nit 6
Breaker Open (BO)			2:50 pm	2023/12/18	BO previously	BO previously	7:30 pm	2023/12/02
Draught Group (DG) Shut Down (SD)			1:35 am	2023/12/19	n/a	n/a	1:35 pm	2023/12/03
BO to DG SD (duration)		DD:HH:MM	00:10:45	DD:HH:MM	n/a	DD:HH:MM	00:18:05	DD:HH:MM

Fires in time			9:10 am	2023/12/24	
Synch. to Grid (or BC)			8:25 pm	2023/12/24	
Fires in to BC (duration)	DD:HH:MM	DD:HH:MM	00:11:15	DD:HH:MM	DD:HH:MM
Emissions below limit from BC (end date)			not > limit	not > limit	
Emissions below limit from BC (duration)	DD:HH:MM	DD:HH:MM	n/a	DD:HH:MM	DD:HH:MM

Complaints Register

Table 9: Complaints for the month of December 2023.

the incident applicable	Source Code/ Name Root Cause Analysis Calculation of Impacts/ emissions associated with Source Code/ Name Calculation of Impacts/ emissions associated with Source Code/ emissions associated emissions as the source Code/ emission as the source Code
-------------------------	--

There was no complaint related to air quality received during the month of December 2023.

General

The particulate matter (PM10) emissions on the North Common Stack exceeded the **monthly limit**; on average emissions figure of **361.5 mg/Nm³** while South Common Stack also exceeded the **monthly limit** on the recorded PM10 monthly average figure of **371.5 mg/Nm³**. The gaseous (NOx & SOx) emissions on the North and South common Stacks were within the **daily limit** during the month of December 2023; refer to graphs above.

NB: The rest of the information demonstrating compliance with the emissions license conditions is supplied in the annual emission reports sent to your office.

Kriel Power Station's List of NEMA Section 30 Incidents for 2023/2024 Financial Year

Month	Description of Section 30 Incidents - including the reference number	Root Cause (s)	Status of S30 Incident with DEFF (open or closed)	Remarks
April-2023	South Stack High Emissions	Unit 4 A EFP plant breakdown causing half load conditions, which calls for operating the unit with fuel oil support to badly impacting the stack emissions	Open	

May - 2023	North Stack High Emissions	Unit 4 A EFP plant breakdown causing half load conditions which calls for operating the unit with fuel oil support to badly impacting the stack emissions	Open
May - 2023	South Stack High Emissions	Unit 4 A EFP plant breakdown causing half load conditions which calls for operating the unit with fuel oil support to badly impacting the stack emissions	Open
June – 2023	North Stack High Emissions	Units operating at half load conditions which affects the sulphur dosing and causes the plant to operate with fuel oil support because of high turbine back pressure, low final feedwater temperature, high works power loss from high usage of electric feed pump and dust handling plant because of dust transportation resulting in high stack emissions	Open
June - 2023	South Stack High Emissions	Units operating at half load conditions which affects the sulphur dosing	Open

		and causes the	
		plant to	
		operate	
		with fuel oil	
		support because	
		of high turbine	
		back pressure,	
		low final feedwater	
		temperature, high	
		works power loss	
		from high usage of	
		electric feed pump	
		and dust handling	
		plant because of	
		dust transportation	
		resulting in high	
Luky 2022	North Ctook High	stack emissions The north stack	
July - 2023	North Stack High Emissions		
	EIIIISSIUIIS	emissions daily average has	
		significantly	
		reduced as results	
		of shutting of unit	
		2 outage for the	
		planned GO	
		outage. However,	
		due to the	
		isolation of cooling	
		tower number 2	
		for the cooling	
		tower fills	
		replacement	
		project, unit 3 is	
		operating at low	
		loads to	
		condenser	
		vacuum high. The	
		half load	
		conditions mean	
		supporting the unit	
		with oil burners to	
		support	
		combustion and	
		sulphur trioxide	
		(SO3) not in service. The south	
		stack PM	
		emission daily	
		average has	
		significantly	
		reduced since	
		synchronisation of	
	l .	5)omomodion of	

		units from half
		station shutdown.
Aug - 2023	North Stack High	The north stack
	Emissions	emissions
		exceedance was
		due to RH1 and
		RH2 poor field
		performance (high
		spark rates) which resulted in
		ESP reduced
		collection
		efficiency. The
		reduced field
		performance on
		the first field was
		as results
		of high hoppers,
		which resulted
		from an ash
		backlog on the
		dust handling
Son 2022	North Stock High	plant. The North Stack
Sep - 2023	North Stack High Emissions	emissions
	Lillissions	exceedance was
		due the increase
		of hopper alarms
		to 24 on Unit 1
		due to blow tanks
		which were not
		available. Blow
		tank 1 2 discharge
		seal was damaged and
		blow tank 1 2 was
		leaking on the
		vent.
		Consequently, the
		electrostatic
		precipitators
		(ESP)
		performance
		decreased
		because of accumulation
		inside the fields.
Oct - 2023	North Stack high	Requested grace
JOL LULU	Emissions	period to exceed
		the limit after the
		installation of New
		Abatement

		Tachnology LICTo
		Technology HFTs.
		The station will
		undertake new
		Correlation curve
		and back fit
		accordingly and
		report accurately.
Oct - 2023	South Stack High	The ESP fields
	Emissions	performance
		continued to
		deteriorate, with
		the collection
		efficiency below
		40%. It was noted
		that there was
		significant drop in
		fields performance
		on the RHS only.
		The RHS poor
		fields performance
		was as results of
		the failure of the
		DE rapping
		system. During
		commissioning of
		the 5B transformer
		which was
		replaced on the
		29th of September
		2023, the
		phasing was not
		verified, and motor
		directions checks
		were not
		conducted
		thereafter. This
		then resulted in
		motor rotating
		in the wrong
		directions and
		consequently the
		failure of torque
		insulators which
		rendered most DE
		rappers not
		available. It should
		be noted there
		were other causes
		that contributed to
		the high
		emissions, this
		includes the
	l	

saturation of the ID fans and poor dust handling plant availability as results of failure of the overland conveyors and blow tanks. Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical components
and poor dust handling plant availability as results of failure of the overland conveyors and blow tanks. Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
handling plant availability as results of failure of the overland conveyors and blow tanks. Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
availability as results of failure of the overland conveyors and blow tanks. Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
results of failure of the overland conveyors and blow tanks. Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
the overland conveyors and blow tanks. Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
Nov - 2023 North High Stack Emissions It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
Emissions loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
Emissions loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
& 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical
crushing and bearing seizure due to inadequate oil in the mechanical
bearing seizure due to inadequate oil in the mechanical
due to inadequate oil in the mechanical
oil in the mechanical
mechanical
components
· · · · · · · · · · · · · · · · · · ·
during operation.
Due to a decrease
in the volumetric
flow rate from the
compressors, the
dry dust pipes and
collecting vessels
experienced
blockages.
Nov - 2023 South High Stack PM emissions
Emissions daily average
increased due to
hopper alarms
which resulted
from
unstable
conveying air from
time to time. The
effect of unstable
conveying air
resulted in
sustained hopper
alarms that failed
to clear. As result
there was a high
ash accumulation
and hang ups
inside the fields.
The hang ups

		bridged the Discharge electrode and Collecting Electrodes plates which results in arcing and undervoltage trips. The high ash accumulation further affected the CE rapping system. The ash accumulation and hang ups resulted in a drop in ESP collection efficiency to below 30 % and consequently high PM emissions.	
Dec - 2023	North High Stack Emissions	Accumulation of hopper levels when the ash discharge rate from the fly ash hopper is lower than the rate at which ash accumulates within the fly ash hopper. This issue stemmed from the loss of two main electric conveying air compressors, namely Demag 5 & 6.	
Dec - 2023	South High Stack Emissions	Compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical components during operation. Due to a decrease in the volumetric flow rate from the compressors, the dry dust pipes and	

	collecting vessels experienced blockages.	
Jan - 2024		
Feb - 2024		
Mar - 2024		