

Ms Nompulelo Simelane

Nkangala District Municipality PO BOX 437 **Middelburg** 1050 Date:

26 February 2024

Enquiries:

Livhuwani Tshilate 017 615 2317

Ref: 17/4/AEL/MP312/11/09

Dear Ms. Simelane

KRIEL POWER STATION'S MONTHLY STACK EMISSIONS REPORT FOR THE MONTH OF JANUARY 2024

This serves as the monthly report required in terms of Section 7.4 in Kriel Power Station's Atmospheric Emission License 17/4/AEL/MP312/11/09. The emissions are for the month of January 2024. Verified emissions of particulates matter, SO_2 and NO_x (as NO_2) are also included.

Raw Materials and Products

Table 1: Quantity of Raw Materials and Products used/produced for the month of January 2024

Raw Materials and Products used	Raw Material Type	Units	Maximum Permitted Consumption / Rate (Quantity)	Consumption / Rate in Month of January 2024
uscu	Coal	Tons/month	1 227 600	335 290.000
	Fuel Oil	Tons/month	5 000	1 851.236
Production Rates	Product/ By- Product Name	Unit	Maximum Production Capacity Permitted (Quantity)	Production Rate in Month of January 2024
	Ash	Tons/month	not specified	177 821.477
	RE PM	kg/MWh	not specified	0.790

1/...

Abatement Technology

Table 2: Abatement Equipment Control Technology for January 2024.

		Actual Efficiency (%)	Utilisation
		January 2024	January 2024
Associated Unit/Stack	Technology Type		
Unit 1	ESP	Outage	0.00%
Unit 2	ESP	99.16%	97.55%
Unit 3	ESP	98.61%	97.43%
Unit 4	ESP	Outage	Outage
Unit 5	ESP	98.92%	100.00%
Unit 6	ESP	Outage	Outage

Energy Source Characteristics

Table 3: Energy Source Material Characteristics for the month of January 2024

Characteristic	Stipulated Range (Unit)	Monthly Average Content		
Sulphur Content	0.6-1.2 (%)	0.760		
Ash Content	27-32 (%)	23.1		

Monthly Monitor Reliability

Associated Unit/Stack	PM (%)	SOx (%)	NOx (%)
North	90.58	83.64	85.50
South	96.91	67.41	70.98

Emissions Reporting

Table 6.5: Graph Legend Description

Condition	Colour	Description
Normal		Emissions below Emission Limit Value (ELV)
Grace		Emissions above the ELV during grace period
Section 30		Emissions above ELV during a NEMA S30 incident
Contravention		Emissions above ELV but outside grace or S30 incident conditions

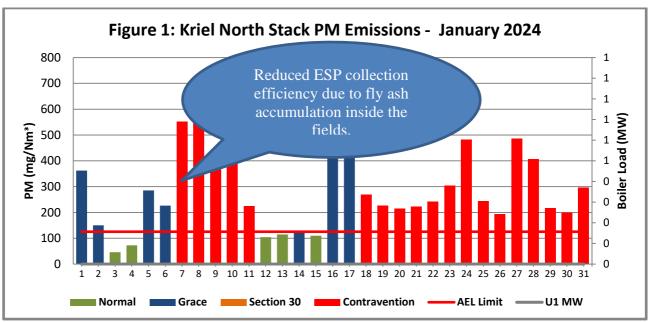


Figure 1: PM emissions for the month of January 2024 against emission limit for the North Stack. Monthly average was 296.1 mg/Nm3.

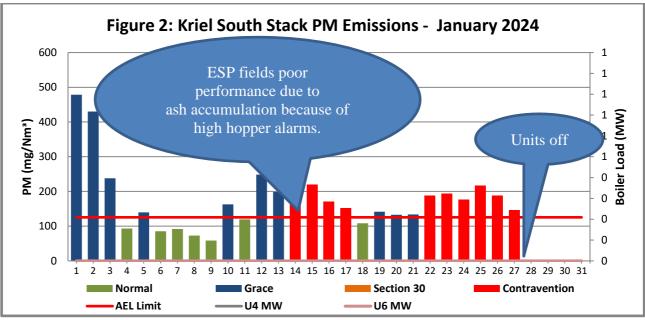


Figure 2: PM emissions for the month of January 2024 against emission limit for the South Stack. Monthly average was 177.5 mg/Nm3.

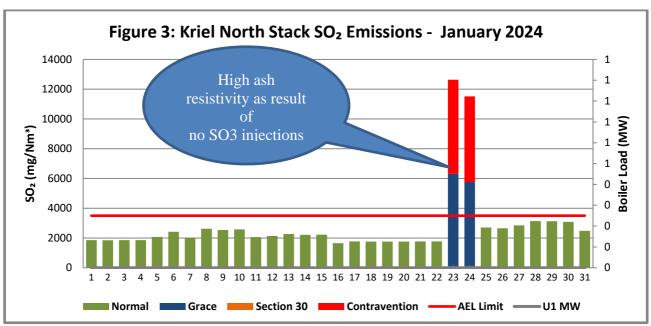


Figure 3. SO₂ emissions for the month of January 2024 against emission limit for the North Stack. The SOx Limit is 3500mg/Nm3.

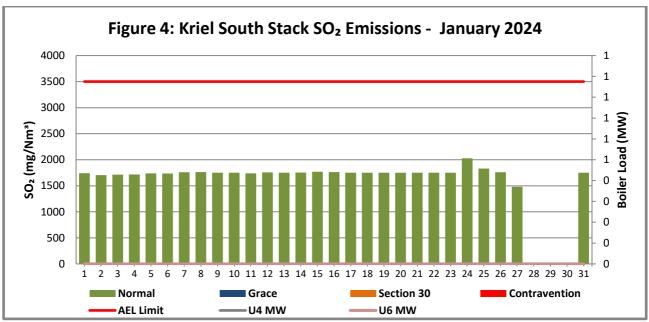


Figure 4. SO₂ emissions for the month of January 2024 against emission limit for the South Stack. The SOx Limit is 3500mg/Nm3.

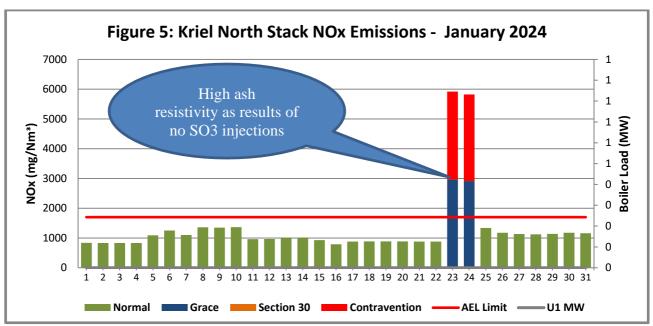


Figure 5. NO_2 emissions for the month of January 2024 against emission limit for the North Stack. The NOx Limit is 1600mg/Nm3.

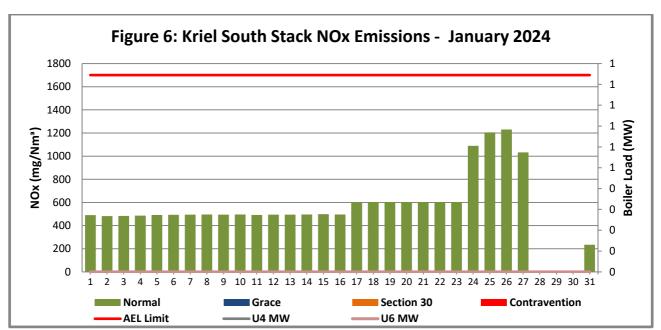


Figure 6. NO_2 emissions for the month of January 2024 against emission limit for the South Stack. The NOx Limit is 1600mg/Nm3.

Table 4: Monthly tonnages for the month January 2024

Unit	PM (tons)	SO ₂ (tons)	NO ₂ (tons)
SUM	861.8	8 322.3	3 579.0

Table 5: Each unit and respective days operating under normal operation and section 30 days respectively.

Table 5.1: Operating days in non-compliance to PM AEL Limit – January 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Monthly Contravention Limit Averag Exceedance	
North	05	07	0	19	26	296.1
South	07	10	0	10	20	177.5

Table 5.2: Operating days in compliance to SOx AEL Limit - January 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average SOx (mg/Nm³)
North	29	2	0	2	4	2 482.3
South	28	0	0	0	0	1 750.5

Table 5.3: Operating days in compliance to NOx AEL Limit – January 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average NOx (mg/Nm³)
North	29	2	0	2	4	1 159.6
South	28	0	0	0	0	603.6

Light up information

Table 6: PM Start-up information for the month of January 2024

North Stack	Ε	Event 1	Eve	Event 2		Event 3		ent 4
Unit No.	no event		Unit 2		Unit 2		Unit 2	
Breaker Open (BO)			BO previously	BO previously	9:20 am	2024/01/10	BO previously	BO previously
Draught Group (DG) Shut Down (SD)			n/a	n/a	10:05 pm	2024/01/10	n/a	n/a
BO to DG SD (duration)		DD:HH:MM	n/a	DD:HH:MM	00:12:45	DD:HH:MM	n/a	DD:HH:MM
Fires in time			8:15 pm	2024/01/03			4:10 pm	2024/01/19
Synch. to Grid (or BC)			6:45 am	2024/01/04			1:40 am	2024/01/20
Fires in to BC (duration)		DD:HH:MM	00:10:30	DD:HH:MM		DD:HH:MM	00:09:30	DD:HH:MM
Emissions below limit from BC (end date)			not > limit	not > limit			not > limit	not > limit
Emissions below limit from BC (duration)		DD:HH:MM	n/a	DD:HH:MM		DD:HH:MM	n/a	DD:HH:MM

North StackCont.	Event 1		Event 2		Event 3		Event 4	
Unit No.	U	Init 3	no event		Uı	nit 3	Unit 3	
Breaker Open (BO)	3:35 am	2024/01/01			9:25 am	2024/01/09	BO previously	BO previously
Draught Group (DG) Shut Down (SD)	1:35 pm	2024/01/02			4:05 pm	2024/01/09	n/a	n/a
BO to DG SD (duration)	01:10:00	DD:HH:MM		DD:HH:MM	00:06:40	DD:HH:MM	n/a	DD:HH:MM
Fires in time							7:15 pm	2024/01/09
Synch. to Grid (or BC)							3:00 am	2024/01/10
Fires in to BC (duration)		DD:HH:MM		DD:HH:MM		DD:HH:MM	00:07:45	DD:HH:MM
Emissions below limit from BC (end date)							not > limit	not > limit
Emissions below limit from BC (duration)		DD:HH:MM		DD:HH:MM		DD:HH:MM	n/a	DD:HH:MM

South Stack	Е	vent 1	Ev	ent 2	Event 3		Е	vent 4
Unit No.	no	o event	Unit 5		Unit 5		no event	
Breaker Open (BO)			2:05 am	2024/01/27	BO previously	BO previously		
Draught Group (DG) Shut Down (SD)			2:25 pm	2024/01/27	n/a	n/a		
BO to DG SD (duration)		DD:HH:MM	00:12:20	DD:HH:MM	n/a	DD:HH:MM		DD:HH:MM
Fires in time					11:25 am	2024/01/31		
Synch. to Grid (or BC)								
Fires in to BC (duration)		DD:HH:MM		DD:HH:MM		DD:HH:MM		DD:HH:MM
Emissions below limit from BC (end date)					not > limit	not > limit		
Emissions below limit from BC (duration)		DD:HH:MM		DD:HH:MM		DD:HH:MM		DD:HH:MM

South StackCont.	Event 1		Event 2		Event 3		Event 4	
Unit No.	no event		no event		no event		no event	
Breaker Open (BO)								
Draught Group (DG) Shut Down (SD)								
BO to DG SD (duration)	DD:HF	I:MM	DD:HH	H:MM		DD:HH:MM		DD:HH:MM
Fires in time								
Synch. to Grid (or BC)								
Fires in to BC (duration)	DD:HF	I:MM	DD:HH	H:MM		DD:HH:MM		DD:HH:MM
Emissions below limit from BC (end date)								

Emissions below limit from BC	DD:HH:MM	DD:HH:MM	DD:HH:MM	DD:HH:MM
(duration)				

Complaints Register

Table 9: Complaints for the month of January 2024.

Source Code/ Name	Root Cause Analysis	Calculation of Impacts/ emissions associated with the incident	Dispersion modeling of pollutants where applicable	Measures implemented to prevent reoccurrence	Date by which measure will be implemented	
There wa	There was no complaint related to air quality received during the month of January 2024.					

General

The particulate matter (PM10) emissions on the North Common Stack exceeded the **monthly limit**; on average emissions figure of **296.1 mg/Nm³** while South Common Stack also exceeded the **monthly limit** on the recorded PM10 monthly average figure of **177.5 mg/Nm³**. The gaseous (NOx & SOx) emissions on the North Stack exceeded on the 23 and 24 January 2024, while the South Stacks was within the **daily limit** during the month of January 2024; refer to graphs above.

NB: The rest of the information demonstrating compliance with the emissions license conditions is supplied in the annual emission reports sent to your office.

Kriel Power Station's List of NEMA Section 30 Incidents for 2023/2024 Financial Year

Month	Description of Section 30 Incidents - including the reference number	Root Cause (s)	Status of S30 Incident with DEFF (open or closed)	Remarks
April-2023	South Stack High Emissions	Unit 4 A EFP plant breakdown causing half load conditions, which calls for operating the unit with fuel oil support to badly impacting the stack emissions	Open	
May - 2023	North Stack High Emissions	Unit 4 A EFP plant breakdown causing half load conditions which calls for operating the unit with fuel oil support to badly impacting	Open	

		the stack		
May - 2023	South Stack High Emissions	emissions Unit 4 A EFP plant breakdown causing half load conditions which calls for operating the unit with fuel oil support to badly impacting the stack emissions	Open	
June – 2023	North Stack High Emissions	Units operating at half load conditions which affects the sulphur dosing and causes the plant to operate with fuel oil support because of high turbine back pressure, low final feedwater temperature, high works power loss from high usage of electric feed pump and dust handling plant because of dust transportation resulting in high stack emissions	Open	
June - 2023	South Stack High Emissions	Units operating at half load conditions which affects the sulphur dosing and causes the plant to operate with fuel oil support because of high turbine back pressure, low final feedwater temperature, high works power loss	Open	

		from high usage of electric feed pump and dust handling plant because of dust transportation resulting in high
July - 2023	North Stack High Emissions	stack emissions The north stack emissions daily average has significantly reduced as results of shutting of unit 2 outage for the planned GO outage. However, due to the isolation of cooling tower number 2 for the cooling tower fills replacement project, unit 3 is operating at low loads to condenser vacuum high. The half load conditions mean supporting the unit with oil burners to support combustion and sulphur trioxide (SO3) not in service. The south stack PM emission daily average has significantly reduced since synchronisation of units from half
Aug - 2023	North Stack High Emissions	station shutdown. The north stack emissions exceedance was due to RH1 and RH2 poor field performance (high spark rates)

		which resulted in
		ESP reduced
		collection
		efficiency. The
		reduced field
		performance on
		the first field was
		as results
		of high hoppers, which resulted
		from an ash
		backlog on the
		dust handling
	N. (1. O(. 1.1); 1	plant.
Sep - 2023	North Stack High	The North Stack
	Emissions	emissions
		exceedance was
		due the increase
		of hopper alarms
		to 24 on Unit 1
		due to blow tanks
		which were not
		available. Blow
		tank 1 2 discharge
		seal was
		damaged and
		blow tank 1 2 was
		leaking on the
		vent.
		Consequently, the
		electrostatic
		precipitators
		(ESP)
		performance
		decreased
		because of
		accumulation
		inside the fields.
Oct - 2023	North Stack high	Requested grace
30. 2020	Emissions	period to exceed
		the limit after the
		installation of New
		Abatement
		Technology HFTs.
		The station will
		undertake new
		Correlation curve
		and back fit
		accordingly and
		report accurately.
Oct - 2023	South Stock High	The ESP fields
OCI - 2023	South Stack High	
	Emissions	performance

continued to deteriorate, with the collection efficiency below 40%. It was noted that there was significant drop in fields performance on the RHS only. The RHS poor fields performance was as results of the failure of the DE rapping system. During commissioning of the 5B transformer which was replaced on the 29th of September 2023, the phasing was not verified, and motor directions checks were not conducted thereafter. This then resulted in motor rotating in the wrong directions and consequently the failure of torque insulators which rendered most DE rappers not available. It should be noted there were other causes that contributed to the high emissions, this includes the saturation of the ID fans and poor dust handling plant availability as results of failure of the overland conveyors and blow tanks.

Nov - 2023 North High Stack It was due to the loss of two main	
electric conveying	
air compressors,	
namely Demag 5	
& 6. Both	
compressors	
experienced rotor	
crushing and	
bearing seizure	
due to inadequate	
oil in the	
mechanical	
components	
during operation.	
Due to a decrease	
in the volumetric	
flow rate from the	
compressors, the	
dry dust pipes and	
collecting vessels	
experienced	
blockages.	
Nov - 2023 South High Stack PM emissions	
Emissions daily average	
increased due to	
hopper alarms	
which resulted	
from	
unstable	
conveying air from	
time to time. The	
effect of unstable	
conveying air	
resulted in	
sustained hopper	
alarms that failed	
to clear. As result	
there was a high ash accumulation	
and hang ups	
inside the fields.	
The hang ups	
bridged the	
Discharge	
electrode and	
Collecting	
Electrodes plates	
which results in	
arcing and	
undervoltage trips. The high	

		ash accumulation further affected the CE rapping system. The ash accumulation and hang ups resulted in a drop in ESP collection efficiency to below 30 % and consequently high PM emissions.	
Dec - 2023	North High Stack Emissions	Accumulation of hopper levels when the ash discharge rate from the fly ash hopper is lower than the rate at which ash accumulates within the fly ash hopper. This issue stemmed from the loss of two main electric conveying air compressors, namely Demag 5 & 6.	
Dec - 2023	South High Stack Emissions	Compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical components during operation. Due to a decrease in the volumetric flow rate from the compressors, the dry dust pipes and collecting vessels experienced blockages.	
Jan - 2024	North High Stack Emissions	Reduced ESP collection efficiency due to fly ash accumulation inside the	

Jan - 2024	South High Stack Emissions	fields, Dust accumulation of the Discharge electrodes resulting in high spark rates and field tripping on undervoltage, and Failure of the 18A and 18B conveyor belt & failure of blow tanks to start due to ESP fields poor performance due to ash accumulation that occurred as results of high hopper	
Feb - 2024		alarms.	
Mar - 2024			