

Dr Patience Gwaze National Air Quality Officer Department of Forestry, Fisheries and the Environment 473 Steve Biko Street, Arcadia, Pretoria 0001 Date: 26 April 2024 Enquiries: Lesiba Kgobe Tel: 013 699 7817

By email: pgwaze@dffe.gov.za

Cc: dmakhubele@dffe.gov.za simelanenl@nkangaladm.gov.za

Dear Dr Gwaze,

MARCH 2024 MONTHLY PROGRESS REPORT ON THE POSTPONEMENT OF MINIMUM EMISSION STANDARD CONDITIONS FOR KUSILE POWER STATION: REF: LSA223027

ESKOM WAS ISSUED A MINIMUM EMISSION STANDARDS (MES) POSTPONEMENT IN RESPECT OF KUSILE'S SO₂ LEVELS BY THE DFFE ON 5 JUNE 2023. THE VARIED ATMOSPHERIC EMISSION LICENCE (AEL) WAS ISSUED BY THE NKANGALA DISTRICT MUNICIPALITY ON 13 JUNE 2023. BOTH THE MES APPROVAL AND THE AEL ALLOW ESKOM TO OPERATE THE TEMPORARY STACKS WITHOUT FGD. THE APPROVALS ARE ISSUED SUBJECT TO SEVERAL CONDITIONS, INCLUDING THAT ESKOM IMPLEMENT MEASURES TO MINIMISE THE IMPACT ON HUMAN HEALTH.

This letter provides an update on key issues, including specific reporting requirements identified by the authorities in the various approvals for the Kusile temporary stacks project. Monitoring and mitigation is being implemented as far as practical in line with the programme in the Kusile Power Station Temporary Stack Monitoring Framework approved by the authorities on 18 September 2023.

As an initial point, I would like to confirm that no exceedances of the stack or ambient trigger level conditions were recorded during March 2024.

- 1. Progress of repairs of permanent stacks for the duration of the operation of the temporary stacks.
 - I. The target date for the recovery of the West stack remains 31 December 2024.
 - II. Unit 1 and Unit 3 slurry cleaning completed.

Generation Division – Coal New Build Unit Management Department (Kusile Power Station) R545 Kendal/Balmoral Road, Haartebeesfontein Farm, Witbank Postnet Suite 283 Private Bag X 7297 Witbank 1035 SA Tel+27 13 693 4320 Fax +27 86 768 3030 www.eskom.co.za

Eskom Holdings SOC Ltd Reg No 2002/015527/30

MONTHLY PROGRESS REPORTS ON THE POSTPONEMENT OF MINIMUM EMISSION STANDARD CONDITIONS FOR KUSILE POWER STATION: REF: LSA223027

- III. Alimak operation is not possible during windy conditions and wind direction can result in flue gas contamination at the top of the stack from units 1 or 3 preventing safe access to the stack.
- IV. Flue cleaning has been suspended and will commence once 55m level platform and K1 lobster are secured to 90m level platform since lobster 3 moved while cleaning causing 55m level to be unstable.
- V. The Permanent Stack recovery progress report is attached (Annexures A1 and A2).

2. Temporary Stack Emission Monitoring

Continuous Emission Monitoring (CEMS):

- I. Unit 1, 2 and 3 CEMS are installed and commissioned.
- II. The retrofitting of Unit 1 and 3 reports from Sep until Dec 2023 had been completed and reports are in the process of been resubmitted to the authority/ies and published on Eskom portal.
- III. Unit 2 PM spot checks was done on the 23 February 2024 and report received on 06 March 2024 (Annexure B).
- IV. Unit 2 correlation test is planned to be completed by 02 05 May 2024, delay for the test was due to load restriction caused by challenges on milling plant. The Unit was off on 17 March 03 April 2024 for boiler tube leak repair.
- V. Unit 2 emission reports will be retrofitted upon finalization of correlation test and implementation of correlation curves.

Stack Performance:

- I. The Kusile Monthly Emission report for March 2024, which includes emission data for Units 1,2, 3 and 4 is attached **(Annexure C)**.
- II. Upon retrofitting the emission reports after correlation curves had been implemented, the station noted exceedances of particulate emission (PM) daily averages on Unit 1 and 3 during the period of October, November, and December 2023. The investigation was undertaken to determine the causes of the exceedances. The investigation also identified the measures and recommendations to be put in place to prevent similar re-occurrences in the future. The detailed investigation report is attached (Annexure E).
- III. Based on the available data information, all Kusile units operated in compliance with the AEL emission limits for PM, NOx or SO₂ during March 2024.
- IV. Fall out dust (fugitive dust) reports are submitted to the licensing authority on or before 30th of every month as per Atmospheric Emission License condition.

3. Health Screening for the increased SO₂ emission and associated health impacts

- I. Communication system is developed to enable communication with the health ambassadors in the various receptor areas. An Excel spreadsheet of ambassadors with names, contact details and areas they represent is readily available.
- II. An SMS system had been developed. The contact details of ambassadors have been loaded on the SMS system and they are grouped according to receptor areas.
- III. A toll-free line is in the final stage of establishment for community members who would like to call in with concerns (for heath related information)
- IV. Engagement with specific businesses in the area is taking and will continue and progress reported in the proceeding months.

MONTHLY PROGRESS REPORTS ON THE POSTPONEMENT OF MINIMUM EMISSION STANDARD CONDITIONS FOR KUSILE POWER STATION: REF: LSA223027

V. The surrounding business are planned to be visited for engagement and awareness (feedback will be shared in the proceeding months).

4. Occupational Health and Hygiene status

4.1. Continuous SO₂ Perimeter Monitoring:

- I. Weekly monitoring of the plant's perimeter for SO₂ surges were conducted throughout March 2024.
- II. SO₂ levels along the perimeter remained below detection levels, meeting the statutory requirement of 0.5 ppm OEL-STEL/C.

4.2. Continuous Personal Exposure Sampling:

- I. BOP & FGD Controllers and an FGD Senior Plant Operator underwent personal exposure sampling for SO₂ during March 2024.
- II. Their exposure levels were consistently below detection levels and compliant with the statutory requirement of 0.5 ppm OEL-STEL/C.

Table: Personal Exposure Sulphur Dioxide Concentration for March 2024

Month	Number of samples	Areas Sampled	Designation	Concentration (ppm)	Status	Comment(s)
March 2024	1	FGD	Controller	< 0,5	Complaint	Concentrations below OEL.
March 2024	1	FGD	Senior Plant Operator	< 0,5	Complaint	Concentrations below OEL.
March 2024	1	BOP	Controller	< 0,5	Complaint	Concentrations below OEL.

4.3. Conclusion:

Our continuous SO2 perimeter monitoring, and personal exposure sampling generally indicated compliance with regulatory limits with no ongoing issues. We will continue to monitor and investigate any anomalies to ensure the safety and well-being of both our workers and the surrounding community.

5. Stakeholder Engagement Plan and Status

Stakeholders	Method of engagement	Involvement	Status
Employees	Awareness sessions	 Once a 	Completed
	Leadership briefings (GM's	month	
	address)	 Every Friday 	
	Employee engagements	Monthly	
Local Municipalities	Face-to-face meeting Once a quarter		May/June 2024
 Emalahleni 			
 Victor Khanye 			
 Bronkhorstspruit 			
Media	Advert	When required	Eskom media
 Emalahleni FM 	Print		desk to publish
 Witbank News 			

1

MONTHLY PROGRESS REPORTS ON THE POSTPONEMENT OF MINIMUM EMISSION STANDARD CONDITIONS FOR KUSILE POWER STATION: REF: LSA223027

6. Ambient Air Quality Monitoring

- I. To better assess compliance with national ambient air quality standards, identify potential sources of pollution, protect public health and the environment and establish a baseline for future mitigation measures Eskom has installed additional ambient air quality monitoring stations at Balmoral and Wilge. The existing air quality monitoring stations (Kendal, Phola and Chicken Farm) will complement the additional monitoring sites to reduce uncertainties and improve the understanding of air quality issues in the area.
- II. The Balmoral and Wilge monitoring stations are equipped to monitor ambient concentrations of sulphur dioxide (SO₂) continuously. In addition, meteorological parameters of wind velocity, wind direction and ambient temperature, humidity, ambient pressure and rainfall, amongst others, are also recorded.
- III. The following parameters, nitrogen dioxide (NO2), ozone (O3) and fine particulate matter of particulate size <10µm and particulate size <2.5µm in diameter (PM10 and PM2.5) will be monitored from 01 April 2024.
- IV. The data for this reporting period (01 31 March 2024) were analysed for ambient SO2 as monitored at Balmoral, Chicken Farm, Phola and Wilge air quality monitoring stations. The Particulate Matter and NO2 data were further analysed for Chicken Farm and Phola.
- V. Full dynamic calibration audits are carried out on the gas analysers (SO₂, NO₂ and O₃ analysers) quarterly and particulate matter analysers are calibrated every six months. All calibration results and certificates are filed in the laboratory for assessment purposes. Inter-laboratory calibrations are routinely carried out with other accredited laboratories, to enhance quality control.
- VI. There were no exceedances of the ambient SO2 limits recorded for all the monitoring stations during the monitoring period under review. There were fourteen (14) exceedances of the PM2.5 daily limit of 40 µg/m3 recorded at the Chicken Farm monitoring station.
- VII. There were no events that triggered the notification of stakeholders in terms of the agreed AEGL recorded in March 2024.

Monitoring Stations	10-min average	Date	Hourly average	Date	Daily average	Date
Balmoral	ND	2	ND		ND	
Chicken Farm	103.6	31/03/2024 09:10	70.9	13/03/2024 15:00	18.9	26/03/2024
Phola	116.1	12/03/2024 10:20	106.0	12/03/2024 12:00	22.6	26/03/2024
Wilge	80.8	1303/2024 11:50	65.2	13/03/2024 15:00	18.4	26/03/2024

Table 1 Highest SO₂ concentrations recorded (in ppb)

VIII. Good representative percentage data was recovered for all the parameters monitored during the monitoring period under review at the monitoring stations with the exceptions of few parameters at Phola, Chicken Farm and Balmoral respectively. The pollutant and meteorological data for Balmoral were low due to power interruptions in the area. The data for PM2.5 and PM10 were not recorded at the Phola monitoring station due to faulty instruments. The data for PM10 was not recorded at Chicken Farm monitoring station due to faulty instrument. The data for SO2 was not recorded at the Balmoral monitoring station due to faulty instrument and power interruptions at site.

MONTHLY PROGRESS REPORTS ON THE POSTPONEMENT OF MINIMUM EMISSION STANDARD CONDITIONS FOR KUSILE POWER STATION: REF: LSA223027

- IX. The raw monitoring data, downloaded at 1-minute averages, is available in real-time to the DFFE-managed South African Air Quality Information System (SAAQIS) since the 14th of December 2023 for all Eskom air quality monitoring sites.
- Х. The detailed February 2024 Kusile ambient monitoring report is attached (Annexure D).

7. Poultry Health Monitoring

- A service provider had been appointed for Kendal Poultry monitoring per the condition of environmental authorisation (record of decision) and the MES approval. Execution of the monitoring is on hold due to the outbreak of Avian Influenza.
- 11. Eskom Kusile representatives met with Kendal Poultry representative on the 19 March 2024, they indicated that they are concluding testing with State veterinary and will update Eskom once all process had been finalized to commence with monitoring.

8. Animal Health Monitoring

- I. Eskom has reached an agreement with Topigs and GHB farms regarding animal/pig health monitoring on 13 March 2024.
- 11. Monitoring has commenced and the results with be shared in the upcoming progress reporting updates.

9. Emergency preparedness and response

- There has been no incidence of exceedance that required emergency response from I. Kusile Power Station, however the Emergency Response Team (ERT) remain on high alert.
- 11. The ERT is in regular communication with Emalahleni Local Municipality Emergency Services as per the Mutual Aid Agreement.
- Emalahleni Local Municipality Emergency Services representatives in Disaster 111. Management, Fire and Emergency Services, and Environment were added in Kusile Power Station Distribution List for regular updates.
- All other Service Level Agreement (SLA's) with relevant stakeholder (Kendal Power IV. Station) remain in force for duration of the temporal stack.

In conclusion, I believe the above illustrates that Eskom is committed to complying with the conditions of the approvals granted with respect to the Kusile temporary stacks. Eskom is implementing measures to ensure that it understands its impact and can limit its operations' environmental and health impact. Further, where full implementation of the conditions is not yet completed, Eskom is working with relevant stakeholders with focus to ensure the remaining issues are resolved as soon as possible.

I hope the above is in order. Please contact our team if you require any further information.

Yours sincerely

Christopher Nani ACTING GENERAL MANAGER **KUSILE POWER STATION** DATE: 29/4 1024

MONTHLY PROGRESS REPORTS ON THE POSTPONEMENT OF MINIMUM EMISSION STANDARD CONDITIONS FOR KUSILE POWER STATION: REF: LSA223027

List of annexures

Annexure A1 and A2: Kusile West Chimney Recovery Project – March 2024 Annexure B: Kusile Power Station Unit 2 PM Spot checks report – March 2024 Annexure C: Kusile Monthly Emission Report – March 2024 Annexure D: Kusile Ambient Air Quality Report – March 2024 Annexure E: Detail investigation report of PM exceedances

Dr P. Gwaze National Air Quality Officer Department of Forestry, Fisheries and Environment Private Bag X 447 PRETORIA 0001 Date: 09 April 2024

Enquiries: S Mahlangu Tel: 013 699 7097

Monthly Progress Report for Kusile Power Station West Stack Recovery April 2024:

#	Head Frame for Flue Cleaning	Status	Start Date	End Date
1.	Installation	100%	10 Jan 2024	9 March 2024
	Secure Lobster Bends			
2	Secure Lobster bend K2-3	100%	12 Feb 2024	11 March 2024
	Cleaning Lobster bend 3	100%	11 March 2024	14 March 2024
	Cleaning Lobster bend 2	100%	13 March 2024	16 March 2024
	Secure 55 Platform to 90 ML			
	Secure the 3 main beams to 90ML X 6 brackets, 6 chain blocks slings	100%	23 March 2024	10 April 2024
	Secure Lobster Bend K1			
	Secure the Lobster 1 to 90ML X 6 brackets, 6 chain blocks 6 lifting lugs and slings.	60%	3 April 2024	16 April 2024
	Vertical Flue Cleaning unit 3			
	Clean vertical flue unit 3	0%	17 April 2024	29 May 2024
	Clean vertical flue unit 2	0%	30 May 2024	11 July 2024
	Clean vertical flue unit 1	0%	12 July 2024	16 August 2024

NOTES:

West Stack:

• The target date for the recovery of the West stack remains the 31 December 2024.

Risks:

• Alimak operation is not possible during windy conditions and wind direction can result in flue gas contamination at the top of the stack from units 1 or 3 preventing safe access to the stack.

Re-sequencing of the Schedule:

 Flue cleaning has been suspended and will commence once 55m level platform and K1 lobster are secured to 90m level platform since lobster 3 moved while cleaning causing 55m level to be unstable. Trust, you find the above in order.

Kind Regards,

Zandi Shange

General Manager - Kusile Power Station Project

Generation Division - Group Capital Kusile Power Station Project R545 Kendal/Balmoral Rd Haartebeesfontein Farm Witbank Postnet Suite 46 Emalahleni 1035 SA Tel +27 13 699 7097 <u>www.eskom.co.za</u> Eskom Holdings SOC Ltd Reg No 2002/015527/30

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

SICK Automation Southern Africa (PTY) Ltd *Attention: Mr Austin Mzimela* P.O. Box 430 Florida Hills 1748 Gauteng

Date

Your Reference

Our Reference

Enquiries

06 March 2024

Order No. PO80596 Q2024 02 02KNM RMNR027(0) MN Radebe Cell: 076 547 8394 e-mail: <u>Mxolisi@inthuu.co.za</u>

REPORT – 2024/03/05/RMNR027(0) PARTICULATE MATTER MEASUREMENTS ON UNIT 2 FLUE AT KUSILE POWER STATION.

Herewith the report for the particulate matter measurements which was conducted on Unit 2 flue at Kusile Power Station. The measurements were conducted on the 23rd of February 2024.

The report is only applicable for PM measurements.

We thank you for the opportunity to be of service and trust that your requirements have been interpreted correctly. If you have any queries, please contact us at the above numbers, we will gladly assist.

Yours faithfully Inthuu Measurements CC

R Nare

A Vorster

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Stack tester AV Makama	(Signature) (Signature) MN Radebe (Project Leader)			Issued by: (Signature) R Nare (Technical Signatory)	Accepted by: (Signature) A Mzimela (Project Manager)	
		R	E	PORT		
CUSTC	OMER	:	SIC AFF	K AUTOMATION SO RICA (PTY) LTD	UTHERN	
OPERATING COMPANY		:	KUSILE POWER STATION			
LOCAT	LOCATION :		MPUMALANGA			
TYPE (MEASU	OF JREMENT	:	PAI	RTICULATE MATTER	R	
TITLE :		:	PARTICULATE MATTER MEASUREMENTS ON UNIT 2 FLUE AT KUSILE POWER STATION.			
PROJECT No.		:	Q2024 02 02KNM			
ORDER No :		:	PO80596			
REPOR	RT No.	:	202	4/03/05/RMNR027(0)		
REPORT DATE :			06 I	MARCH 2024		

COPYRIGHT ON THIS DOCUMENT IS RESERVED. PUBLICATION OR DISSEMINATION OF ITS CONTENTS WITHOUT WRITTEN PERMISSION IS NOT ALLOWED.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231

Index						
Index Summary Glossary 1. Measurement Objective 2. Plant Description and Materials Handled 3. Description of the Measurement Site 4. Measurement and Analytical Methods and Apparatus 5. Plant Operating Conditions during the Measurements 6. Properties of Management Paculta and Discussion	Page 3 4 5 6 6 7 8 9 9					
6. Presentation of Measurement Results and Discussion 9 Appendices 1 A. Plant Parameters 1 B. Particulate Matter Curves 1 C. Nozzle Checklist 2 D. Measurements Quality Control Plan 2 E. Equipment Calibration Records 3 F. Monitor Calibration Certificate 5						
 Revisions Distribution List 	56 56					
Summary:Customer:Kusile Power Station Unit 2 – Temporary StackPlantUnit 2 – Temporary StackOperating Times:24 hoursEmission Source:Power Generation - Fossil Fuel BoilersListed Activity:Subcategory 1.1: Solid Fuel Combustion InstallationsMeasured Components:Particulate MatterDate of Measurement: 23^{rd} of February 2024Emission Source No.:Unit 2 Flue						
Inthuu Measurements CC Name and Address of 2/410 Seventh Road Measurement Service Bredell A.H Provider Kempton Park 1619						

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Measurement Summary

The summary table below gives statistics for the valid PM and velocity measurements.

Measured Component	Unit of Measurements	Min	Мах	Ave
Particulate Matter	[mg/Nm ³ (d)] @ 10% O ₂	44,4	64,8	52,9
Particulate Matter	mg/Am ³ (w)	26,1	38,0	31,0
Particulate Matter	mg/Am ³ (d)	28,1	40,9	33,3

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

GLOSSARY

Some of the following abbreviations were used in the text, figures and tables:

PM	Particulate Matter
AMS	Automated Measurement System
SRM	Standard Reference Method
CEM	Continuous Emission Monitor
PJFF	Pulse Jet Fabric Filter plant
BMCR	Boiler Maximum Continuous Rating
°C	Degrees Celsius
Pa (g)	Gauge pressure in Pascal
kPa (abs)	Absolute pressure in kilo Pascal
% v/v	Percentage on a Volume-by-Volume basis
Am ³	Actual Cubic Metres
Nm ³	Normal Cubic Metres
Am ³ (w)	Actual Cubic Metres on a wet basis
Nm ³ (w)	Normal Cubic Metres on a wet basis
Am ³ (d)	Actual Cubic Metres on a dry basis
Nm ³ (d)	Normal Cubic Metres on a dry basis
g/s	Grams per second
mg/s	Milligrams per second
dP	Differential pressure
AO	Analogue Output
AEL	Atmospheric Emission Limit
SL	Scattered Light

- **'Actual'** refers to the measured temperature and pressure conditions of the gases in the duct.
- 'Normal' or 'Standard' refers to the actual conditions being normalised to 0 °C and 101,325 kPa.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

1 MEASUREMENT OBJECTIVE

Kusile Power Station has installed an Automated Measuring Systems (AMS) for the monitoring of particulate matter emissions in compliance with the National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004).

Inthuu Measurements CC was contracted by Sick Automation, to perform particulate matter measurements on the temporary stack of Unit 2. The customer requested that a backfitting curve is provided from the three PM tests that were conducted until full PM correlation is conducted.

The measurements will provide results to be used by the station to determine a temporary linear regression allowing the reporting of emissions from an Automated Measurement System (AMS). Constants are derived from the gravimetric measurements by a Standard Reference Method (SRM) and the corresponding AMS signal.

Measurements were conducted on the 23rd of February 2024.

2 PLANT DESCRIPTION AND MATERIALS HANDLED

Kusile Power Station currently operates five coal-fired power generation units (Units 1, 2, 3, 4 and 5). Units 6 is still under construction. Each unit consists of a steam driven turbine and a boiler supplying steam. The boilers are specially designed to burn low grade coal, which contains high percentages of ash and sulphur.

The units are equipped with both particulate matter and gaseous abatement technologies. Kusile uses Pulse Jet Fabric Filter Plants (PJFFPs) to remove particulates from the boiler waste gases. Units 4, 5 and 6 are equipped with a Flue-Gas Desulfurization (FGD) plant to reduce Sulphur dioxide emissions (SO2) from the flue gases. Units 1, 2 and 3 are currently equipped with temporary stacks as their FGD plants are currently under maintenance. In addition to gaseous emission abatement, the boiler is also equipped with low NOx burners and overfire Air to reduce Nitrogen monoxide and Nitrogen dioxide emissions.

Currently, no further emission abatement technology is implemented at Kusile Power Station.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

3 DESCRIPTION OF MEASUREMENT SITE

Measurements were conducted on Unit 2 Temporary Stack.

The stack consists of a steel outer windshield. The height of the stack is approximately 116m and it has 12 platforms, with Platform 12 being the last one.

The gaseous and the particulate AMSs are positioned at the sixth platform and measurements also took place on the sixth platform. Both the sampling ports and the monitors are positioned at a height above the floor such that neither the ports nor the alignment of the instruments are influenced by the expansion and contraction of the flue when the boiler is switched on or off.

Unit 2 has four purpose-built ports. A maximum of two ports are accessible for measurements because the other two ports are used for monitors probes. Ports used to conduct measurements are positioned at 90 degrees to each other and only a radius of each port was sampled.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

4 MEASUREMENT AND ANALYTICAL METHODS AND APPARATUS

Compound	Method	Comment
Velocity	Based on USEPA Method 2 - Velocity - Pitot tube	Std-type Pitot.
Particulate Matter	Based on ISO 9096: 2003 Stationary source emissions - Manual Determination of mass concentration of particulate matter.	
Low Mass Concentrations	Based on BS EN 13284-1: 2002 Stationary source emissions — Determination of low range mass concentration of dust — Part 1: Manual gravimetric method	Based on ISO 9096 with additional requirements on the filter preparation and procedures before and after the tests.
Combustion Gases		
Oxygen (O2)	Based on USEPA Method 3A - Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyser Procedure)	Electrochemical cell measuring principle
Moisture (H ₂ O)	Based on USEPA Method 4- Determination of moisture content in stack gases	
Correlation Function	VDI 2066, Part 4	Giving the 75% Tolerance and 95% Confidence bands.
Report Format	BS EN 15259:2007 - Air quality. Measurement of stationary source emissions. Measurement strategy, measurement planning, reporting and design of measurement sites	

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

5 PLANT OPERATING CONDITION DURING THE MEASUREMENTS

The operation of the plant was set up by Kusile Power Station and tested by Inthuu Measurements personnel. Normal operating conditions were maintained for the duration of the survey.

The station provided an achievable maximum load of 580MW during the measurements.

5.1 WASTE GAS CLEANING

Kusile Power Station employs Pulse Jet Fabric Filter Plants (PJFFPs) for gas cleaning in terms of particulate matter. Unit 4, 5 & 6 are equipped with Flue-Gas Desulfurization (FGD) plant to remove Sulphur dioxide (SO₂) from the flue gases. In addition to gaseous emission abatement, the boiler is equipped with of low NOx burners and over-fire Air to reduce Nitrogen monoxide and Nitrogen dioxide emissions.

The coal which was burnt during the test period was the normal supply.

Additional operating data is tabulated in the Appendices.

6 PRESENTATION OF MEASUREMENT RESULTS AND DISCUSSION

Plant parameters were provided for the duration of each test and the data is tabulated in **Appendix A**.

The PM correlation function is provided in Appendix B.

<u>Appendix C</u> shows the checklist of nozzles used during the measurements. Measurements quality control plan records are attached in <u>Appendix D</u>.

Inthuu Measurements ensures that equipment used for the measurements are calibrated and comply with the quality standard before commencing with the measurements. Reference equipment is calibrated by SANAS accredited laboratories. <u>Appendix E</u> shows the calibration information for the equipment used for the measurements.

The monitor calibration certificate is attached in <u>Appendix F</u> once received to show that the monitor was calibrated before the measurements.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

6.1 EVALUATION OF THE OPERATING CONDITIONS DURING THE MEASUREMENTS

Table 6.1.1: Boiler Load, Total Air Flow and Gas Volume Flow

`Test No.:	Boiler Load	Standard deviation of Boiler load	Total Air Flow	Standard deviation of Total Air flow	Measured Gas flow	Measured Gas flow	Measured Gas flow
	MW	MW	kg/s	kg/s	[Nm ³ /s (d)] at 10% O ₂	Am³/s (w)	Am³/s (d)
1	579,4	1,0	682,5	2,3	738,27	1265,52	1180,69
2	579,4	0,6	683,9	2,0	748,54	1276,86	1187,23
3	579,7	0,6	677,8	3,2	758,44	1290,46	1199,55

Table 6.1.1 shows the boiler load, total air flow and gas flow rate at various load.

6.2 EVALUATION OF MEASUREMENT RESULTS

`Test No.:	Boiler Load	Average face velocity	Nozzle diameter
	MW	cm/s	mm
1	579,4	4,9	4,0
2	579,4	4,9	4,0
3	579,7	4,9	4,0

Table 6.2.1 shows the average face velocity for the three conducted tests. The average face velocity for all the three tests was 4,9 cm/s.

The Eskom Standard states that the minimum filtration face velocity should be in accordance with the filter manufacturer's recommendation. Before a test is conducted, a nozzle is selected to comply with the average face velocity as per the manufacturer's filter pressure drop requirement. The nozzle size selection is based on the average velocity in the stack which is determined prior to the measurements being conducted. Nozzle size of 4,0 mm was used for all the tests.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Table 6.2.2: Measured Dust Concentration, Isokineticity and Monitor Output

`Test No.:	Boiler Load	Measured Dust Concentration	Measured Dust Concentration	Measured Dust Concentration	Dust Emissions	% Isok
	MW	mg/Nm ³ (d) at 10% O ₂	mg/Am ³ (w)	mg/Am ³ (d)	Raw Scattered Light	%
1	579,4	49,4	28,8	30,9	0,8	99
2	579,4	64,8	38,0	40,9	1,2	100
3	579,7	44,4	26,1	28,1	1,0	101

Table 6.2.2 shows the measured dust concentration, isokineticity by Inthuu and analogue output signals from the monitor.

Three tests were conducted, and they were all used to generate a Backfitting curve. Backfitting curve is valid for a period of 3 months and full PM correlation must be conducted after this period.

Table 6.2.2 shows that monitor output for dust emissions was reading low values than anticipated. These values are ideally not a true reflection of the plant conditions hence they do not correspond to the measured dust concentration and boiler load. It is advised that the monitor be check and calibrated so that the measurements may be repeated.

The percentage isokineticity was between 99% and 101% for all tests. This complies with the Eskom Monitoring and Reporting Standard requirement of isokineticity ranging between 95% and 105%.

The particulate emission function yields the emission in $[mg/Nm^3 (d) \text{ at } 10\% O_2]$ corrected for temperature, pressure, moisture, and oxygen. Alternative curves are provided in mg/Am³ (w) and mg/Am³ (d)

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

6.3 SUMMARY OF RESULTS

a) Particulate Concentrations

Three tests were conducted, and all tests were used to generate a Backfitting curve. The emission concentrations for the selected tests ranged between 44,4 and $64,8mg/Nm^{3}(d)$ at 10% O₂, 26,1 and $38,0mg/Am^{3}(w)$, 28,2 and $40,9mg/Am^{3}(d)$

I. <u>Measurement results: Scattered light parameters on DCS "As Found"</u> [mg/Nm³ (d) at 10% O₂]

E, y = 53,1887SL - 0,01

II. <u>Measurement results: Scattered light parameters on DCS "As Found"</u> <u>mg/Am³ (w)</u>

E, y = 31,1696SL - 0,01

III. <u>Measurement results: Scattered light parameters on DCS "As Found"</u> <u>mg/Am³ (d)</u>

E, y = 33,5005SL - 0,02

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

6.4 Detailed Results of Particulate Matter Measurements

Customer		SICK Automation		
Unit No.		Unit 2		
Location		Temporary Stack		
Test No.		1	2	3
Stack tester:		AVM	AVM	AVM
Date	dd-mm-yy	2024/02/23	2024/02/23	2024/02/23
Start Time	HH:mm:ss	10:10:00	11:46:00	13:17:00
End Time	HH:mm:ss	11:23:00	12:56:00	14:28:00
Sampling time	Minutes	64	64	64
Boiler load	MW	579	579	580
Comprehensive Summary				
Duct dimensions:	1			
Duct Inside diameter	m	7,000	7,000	7,000
Duct area	m ²	38,48	38,48	38,48
Sampling plane:				
Number of Traverses	-	2	2	2
Number of points per traverse	-	4	4	4
Sampling time per point	Minutes	8	8	8
Ambient temperature	°C	27,5	30,3	33,9
Equipment data:				
Pitot tube format		L-Type	L-Type	L-Type
Nozzle diameter	mm	4,0	4,0	4,0
Consumables data:		r	-	
Thimbles used		SCV16	SCV17	SCV18
Measured data:				
Gas Temperature	°C	139,3	139,4	141,4
Barometric pressure	kPa	85,2	85,2	85,0
Duct pressure	Pa (g)	-273,3	-336,6	-359,1
Duct pressure	kPa (abs)	84,9	84,8	84,6
Moisture Mass	g	47,0	50,0	51,0
Moisture	%v/v	6,7	7,0	7,0
Oxygen	%	8,6	8,5	8,4
Velocity	m/s	32,9	33,2	33,5
Gas Volume Flow (QactWet)	Am³/s	1265,5	1276,9	1290,5
Gas Volume Flow (QactDry)	Am ³ /s	1180,7	1187,2	1199,5
Gas Volume Flow (Qnw)	Nm ³ /s	702,6	707,8	710,4
Gas Volume Flow (Qnd)	Nm ³ /s	655,5	658,1	660,3
Gas Volume Flow (Ond 10%O ₂)	Nm ³ /s	738 3	748 5	758.4
Gas flow rate	ka/c	904.2	902.2	905.6
Gas donsity in duct	kg/3	0.7	0.7	0.7
	kg/m	0,7	0,7	0,7
Sampled gas temperature (to)		27,8	30,3	34,4
Dust mass	mg	45,3	60,8	42,7
Gas volume Sampled (vact)	Am ² (w)	1,5728	1,6002	1,63/3
Gas Volume Sampled (Vnw)	Nm [°] (w)	0,8733	0,8870	0,9013
Gas Volume Sampled (Vad)	Am ³ (d)	1,4675	1,4879	1,5220
Gas Volume Sampled (Vnd)	Nm ³ (d)	0,8148	0,8248	0,8378
Sampling rate per traverse	Am ³ /h (d)	0,6879	0,6975	0,7134
Dust Concentration	mg/Am ³ (w)	28,8	38,0	26,1
Dust Concentration	$mg/Nm^3(w)$	51.9	68 5	47 4
Dust Concentration	$m_{\sigma}/\Lambda m^{3}(d)$	30.9	40.9	28.1
Dust Concentration	(a)	50,5	40,3	20,1
	mg/Nm² (d)	55,6	/3,/	51,0
Correction factor (10% O ₂)		0,9	0,9	0,9
Dust Concentration Normalised to 10% O ₂	mg/Nm ³ (d) @ 10% O ₂	49,4	64,8	44,4
Dust Outlet Dust Flowrate	mg/s	36435,4	48509,9	33676,0
Moisture Concentration	g/Nm ³ (d)	57,7	60,6	60,9
Average Face velocity	cm/s	4,9	4,9	4,9
Isokineticity	%	99	100	101
Average O/M Signal	SL	0,8	1,2	1,0

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

APPENDIX A

Plant Parameters

A.1: Plant Parameters AveragesA.2: Plant Parameters Standard Deviation

RMNR027(0) Kusile U2 PM Measurements

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

A.1: Plant Parameters Averages

Description	Unite	Tost 1	Tost 2	Tost 3
		10301	10312	1015.0
SO ₂	mg/ Nm	1745,0	1775,3	1815,9
NO	mg/Nm³	308,0	318,8	320,7
NO ₂	mg/Nm ³	0,3	0,2	-0,1
Nox	mg/Nm ³	471,7	488,2	490,4
NO ₂	mg/Nm ³	0,3	0,2	-0,1
Nox	mg/Nm ³	471,7	488,2	490,4
TEMP	0C	142,0	142,9	144,2
stack O2	Vol %	6,6	6,5	6,4
02	Vol %	6,6	6,5	6,4
Velocity	m/s	31,2	22,3	41,7
Load MW	MW	579,4	579,4	579,7
steam flow	Kg/s	471,6	472,2	474,3
air flow	Kg/s	682,5	683,9	677,8
LH O ₂	%	6,1	6,0	5,9
RH O ₂	%	5,9	5,8	5,7
LH Air heater temp	0C	142,4	142,6	143,8
RH Air heater temp	0C	126,9	128,8	129,6
Mill 10	RPM	6,9	7,0	6,9
Mill 20	RPM	7,2	7,3	7,2
Mill 30	RPM	6,6	6,7	6,6
Mill 40	RPM	0,0	0,0	0,0
Mill 50	RPM	0,0	0,0	0,0
LH FFP DP	kPa	1,6	1,6	1,6
RH FFP DP	kPa	1,4	1,3	1,3
Monitor Output	SL	0,8	1,2	1,0

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

A.2: Plant Parameter Standard Deviations

Description	Units	Test 1	Test 2	Test 3
SO ₂	mg/Nm ³	27,7	29,4	44,4
NO	mg/Nm ³	4,1	4,2	4,9
NO ₂	mg/Nm ³	0,2	0,2	0,1
Nox	mg/Nm ³	6,6	6,1	7,5
NO ₂	mg/Nm ³	0,2	0,2	0,1
Nox	mg/Nm ³	6,6	6,1	7,5
TEMP	0C	0,5	0,4	0,2
stack O2	Vol %	0,1	0,1	0,1
02	Vol %	0,1	0,1	0,1
Velocity	m/s	8,9	16,6	1,3
Load MW	MW	1,0	0,6	0,6
steam flow	Kg/s	1,7	0,7	1,1
air flow	Kg/s	2,3	2,0	3,2
LH O ₂	%	0,1	0,1	0,1
RH O ₂	%	0,1	0,1	0,1
LH Air heater temp	OC	1,4	0,1	0,7
RH Air heater temp	0C	0,4	0,6	0,2
Mill 10	RPM	0,0	0,0	0,0
Mill 20	RPM	0,1	0,1	0,1
Mill 30	RPM	0,0	0,0	0,0
Mill 40	RPM	0,0	0,0	0,0
Mill 50	RPM	0,0	0,0	0,0
LH FFP DP	kPa	0,0	0,0	0,0
RH FFP DP	kPa	0,0	0,0	0,0
Monitor Output	SL	0,1	0,1	0,1

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

APPENDIX B

Particulate Matter Correlation Curves

Figure 1.1: "As Found" Backfitting Particulate Matter Curve [mg/Nm³(d) @ 10% O₂] Figure 1.2: "As Found" Backfitting Particulate Matter Curve [mg/Am³(w)] Figure 1.3: "As Found" Backfitting Particulate Matter Curve [mg/Am³(d)]

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Appendix C

Nozzle Checklist

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

()		17	
Inthuu Measurements MEASURE IT, MANAGE IT Tell: +27 (0)L0 054 5083 +27 (0)L0 054 5084 PRX: +27 (0)66 659 2231 Pipt 2/410, Seventh Road, Dredell A/H, Kempton Park, 1610 P.O. Dox 14769, Bredell, 1623	VAT No. 4960284350 Rag No. 2009/190265/23	Doc. No: Rev. No: Effective date: Page: Compiled by: Authorized by: Approved by:	INT-QMS-TS 02 1 2023/01/30 1 of 1 R Nare A Riekert
Customer : Kusive Unit 2 Technician : AV Maxama Measurements Type : P.M Vernier SN :			o ocheepers

Nozzle Verification

l Date I	Nozzle No	Diamaten A				
204/062	1	Diameter A	Dlameter B	Diameter C	Distant	
2024/02/25	4.0 mm	4.0 mm	14 amm	Diamoter C	Diameter D	Pass / Fall
2024/02/23	4.0 mm	4.0mm	11 in	t.omm	4.0 mm	NG CO
2024/02/23	11 amm	1 a la	_ttomm	4.0mm	4.0 10.11	1 de la composition de la comp
2024/02/08	LL C leave	4.0 mm	- 4.0 pm	4.0 mm	1. orin	23
00000	4.10 mm	4.0 mm	4.0 mm	1. 6 100 1	4.0 mm	Lyan T
				L. O mm	4.0 mm	Dall

RMNR027(0) Kusile U2 PM Measurements

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Appendix D

Measurements Quality Control Plan

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231

;	Refi: + 29 (0 + 22 (0 fax: + 27 (0	MEASU 010 054 5883 010 054 5883 010 054 5884	RE IT, MANA 2/410 Severith & Resultion Park, 1	GE IT		No. 1060254359		SICK	AUT	FOMA1 RICA	ION (PT	V SOL Y) Lto	JTHE	RN		MET	ΓH	IOD	(S):	BS BS	ISO 909 EN 1328	5:2003 4-1:200	02
Em			P.O. Dox 14769,	Brudeil, 1623	100	3 (240	The state	~							17	echnical P	roce	dure	TP-0	3 Parti	culate En	nission	
Leinb	ioyer/Co	ontractor:	Inthuu M	easureme	Inte	PH			JALI	IY CO	NTF	ROL P	LAN	1		Project N				Moas	urement		
Cont	ract No:				1	Plant:		Unit 2		Plant ID No	: Un	ut 2 Tom				- of a ct in		er:					
Purpo	se of S	urvey:	1.1.1.1.1.1.1		Order	Number:	PO805	96		Route	1	Temp	Jorary S	stack	D	ate: 2	024	/02/20	P a	ge 1			
1948	1		1	Parti	culate Mat	ter Emission S	pot Che	ck Meanur			aon:		7	Quality	Cor	ntrol Plan	No	QC	P9096				
Make a Monito	of		Model		Monitor	A STATES	1	- Theasure	ements.														
2.4.3.5			MODEL	1 34	Serial		Reflect	tor		Monitor	1.115		S		1.1	1.1.1.1.1					-		
Locatio	on:	Unit 2 To		-	1 MO.	1 1 1 1 1 1	Serial	No.		Control Serial N	Unit	1 . 1	12	Analog	ue			Range			Range		
1.5	1-		mporary Stack	Teste	-	AV MAR					J.		C	Dutput	1.			Output	2		Analog	gue d 3	
Step	1 .			1.1	1 2 2 4 4						1 12	Stack 1	Tester	2.26	1.23	Cu	etor	1.22	TANA 1	1. 5500	Loupe	<u> </u>	
	1		AC	uvity Des	cription			Sp	ecs/Pro	cedure/			1					nei	1997.04	Te	shnical 4	Signato	ory
1.00	10								Record	ing	Key	Sign	• т	ime	Sigr	nature	ें।	lime / Da	ate	Signat			2.1.1.1.1.1
	Rou	nd ducts in	iternal size	1.4.4	ug hiji kata su	diver the second		1												Signate	ile	Dime /	Date
1.01	Meas	ure Interna	diameter plus n	ecess if d	int hund		Date:	1-2024	102	122				1	8 . M								
1.02	Meas	ure recess			ast burden a	allows using La	ser	Laser		,		1.12					-						
1.04	Measu	re circumfe	evence					5m Tape				1	12	H66					1				-
1.05	Enter	all measure	d dimension inte	Samplin				25m Tap	e		R	155	312	HIC									+
.06	Check	if Duct spre	adsheet in Sam	Inling Prov	g Programn	ne					R	1K	-m	15							-+		
.07	Leader	E" proceed	, else measure :	again. If r	ramme sta	tes "TRUE"		(True)or F	alse	+	- R		SMU	30									
08	Clean F	Ports of all o	fuet democity		robiem per	sists, refer to P	roject			+	_R	100	124	133									
00	Rectan	gular duct	Information									VAP	124	35							-+		
11	Measure	internal w	dth of during					<u> </u>				12	124	57									
12 1	Measure	Internal de	anth plus					5m / 25m 7	200		.	1.00	1.11	1.000	· · ·								
3 1	feasure	recess	put plus recess				+	5m / 25m T	ane		R		1			T							
4 E	inter all	measured	timonei			-	int	5m Tape		$\leq \perp$	R			-				- 2,	-+-				
i c	fean Po	ts of all du	attension into S	ampling F	regramme	A	1151-		100		R										+		
M	ark the	probe	at deposits				++++	\sim			R		1										
C	noose th	e number o	Mennelland										1										
Ma	ark the p	robe accor	ding to in	ts. Verify	with Projec	t leader					1.1						1.1						
			ung to iso-kinet	ic samplin	g procedure	e		Non	2=1	+ pointy !	1	P	1244	10		. 1			-				<u></u>
		- C.									1 1	2112	0.1.	-							1		1

Tell: +27 (0)10 054 5883 Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

"uhuhuh

+27 (0)10 054 5884

Page | 2

Testing Laboratory

11026

					Stack Te	ster		Customer		Technica	n signatory
tion:		Unit 2 Temporary Stack	Specs/Procedure/	Kev	Sign	Tio	ne	Signature	Time / Date	Signature	Time / Date
		Activity Description	Recording	62.50		11 월 21	0.811	1944 (1949) HU HU	The second second		
ep		이 같은 것은 것 같아요. 것 같아요. 같은 것은 것이 가지만 않는 것이다. 같은 것 같아요. 같이 것 같아요. 같이 같아요. 같이 같이 같아요. 같이 같아요. 같아요. 같아요. 같이 같아.	17 A 14 1 1 1		REC 200-00	12:50:37	244.044	1997 B. (1998)	ther back have	的话题的话题	양지가 한 감독을
	na state se s		· · · · · · · · · · · · · · · · · · ·	같은 문어 있		- 1		222		T	
	Samplin	a equipment set up	Done	s	Lante	14	101				
00	Level sa	mpling equipment	(00 de 4; 5325 64	58 _	1.0	114	20				
.01	Leverse	v Serial Number.	2010/01/594/02	R	1-1-	3116	.21				
.02	ISO-K BU	erial number.	2010/01/700/02	R	120	14:	28				
1.03	Probes	ena number.	2010/01/10/10		112	1241	H30				
4.04	Thermo	Scouple series realized	6	1	in	- 14	<u>† 1131</u>				
4.05	Pitot se	erial number	Consour +	S	12	13	40				+
4.06	Silica	gel scale señal humoci	Done	s	12	13	:48				+
4.07	Attach	vacuum pump	Done	1 s	12	13	:56				+
4.08	Attach	water trap and silica ger container	Done		112	114	1:02				1
4.09	Attack	impulse lines to sampling equipment	Done	1	1	38395	03905	言語的意思思		공기에 관심하다. 역사	(MARKA ARABA A
4.10	Attac	h impulse lines and sampling line to proce			102	210		1			
5.00	Leak	check on impulse lines	Drop in Pa: O HO		Ve		. ~~~				1
5.01	Perfe	orm leak check on static impulse line a teorid drop			10	>	E-22				
6.02	If dro	op < 200 Pa in 15 seconds then proceed, ese the total	Drop in Pa: O KPa		14		0,2				
5.02	Perf	orm leak check on Total impulse line & record drop in to est		<u> </u>	-+-72	-					
5.03		on < 200 Pa in 15 seconds then proceed, else fix leak	Drop in Pa: OKIG	R	10	2 10	5:23	4			
5.04	Bor	form leak check on O2 impulse line & record drop in 15 seconds		н				1000000000000	acourtee (08) (1998)	1997.232.232.010	001031434
5.05	S Per	con Pa in 15 seconds then proceed, else fix leak		김 영화	문화 관계를			2010 <u>2018, 2012</u>	all and being a little		
5.06	3 110	to my activity check on sampling line	Advance: 0.000	DW F	· VG	1	TAZ	Ч			
6.0	0 Pe	Horn vacuum check on sampling line & record advance in 60 seconds			4						
6.0	1 Pe	form vacuum cheen and in 60 seconds then proceed, else fix leak		2							
6.0)2 lfa	advance < 0.0000 m m									
Note	s:				5 - C						
+											

RMNR027(0) Kusile U2 PM Measurements

Page 25 of 56

+27 (0)10 054 5884 Fax: +27 (0)86 659 2231

Kempton Park, 1619 P.O. Box 14769, Bredell, 1623 Testing Laboratory 11026

"Inhalad

Page | 3

Location:	Unit 2 Temporary Stack			Stack Test	er	Cu	stomer	Technical Signatory		
Step	Activity Description	Specs/Procedure/ Recording	Key	Sign	Time	Signature	Time / Date	Signature	Time / Date	

7.00	Day No.:	10.00			Date:	2024	10212	3	1 1 7 1	1995 - S.	· ··· (500 B 200
7.01	Record the LAR o	r PTW No.							н	pp	8 Hoo			
7.02	All workers signed	Worker's re	gister						R	RE	8161			
7.03	Record Boiler load	d and operati	ng condition			5	801	Nu1	R	VID	9420			
7.04	Iso-k Box Serial N	0.				Cans	de-	4	R	122	9400			
7.05	Probe Serial No.					nelol	01/0	14/02	R	Var.	alls 1		•	
7.06	Thermocouple Se	rial No.				20/0/	01/0	P4/02		12	CIHOO			190.07 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10
7.07	O ₂ Analyser Seria	I No.				V230	DLF	34078		120	9 HOD			
7.08	Determine nozzle	size for the t	est			T	an		R	1200	9401	 		
7.09	Inspect Ports of d	ust deposits				De	one			12	9402			
	Fit correct	Test No	Nozzle No	Diameter	Diameter	Diameter	Dlameter	Pass / Fall					1	
	nozzie	1	4.0mm	4.0mm	4.0 mp	4.0mm	4.0 m	4 0-58		12	16408			
7.10	Enter diameter	2	4.0mm	4 onm	4.6 mm	4.0 mm	4.0 mm	pass	s	m	M H36			
	In Excel	3	4.0mm L	f.Omm	LEOMM	4.0mm	Lo.o ma	, pass	-	12	13408			
	If "Fail" use	4	1					1000		1000				
7.14	another nozzle	Filter F/B	UL OMM	4.0mm	U. O MM	14.0mm	4.0 m	y pay		12h	14436	 		
7.11	Run F/B (Insert to	deepest poil	and remove	prope – all	traverses)	L			s					
		Test No	Filter	Traverse	Filter	Traverse	Filter	Traverse			042m	 		
		- 1	501-16	5	SCU-IC	9 2	30			190	9120	 l		
	Fit filter &	2	SCU-IG	5	SCULT	18-				100	11231	 		
8.11	record number	3	pco-io	17	SCV-18	12			s	107	13104	 		
		Filtor E/P	COLIA	5	Sellia	1-2				2222	11.127			
		Rinso	SCV-1-1	- C	JC 0-1			CONTRACTOR DURING		00	141121	 		
		F/B No.	SOU-19		SCV-19	1				XX	14+140			
		Test No.	In	itial mass			Final mass	1		1		 		
	Weigh water	1	1455.00	5 145	5.00	1502	09 1	502.00		80	gun			
8.12	trap and Silica	2	1455.00	156	2.00	1612.0	9 16	12.09	s	120	11440			
	gel	3	1534.0	39157	4.09	1585.0	5a 15	8500		100	VZHIO			+
		4					2	-		1	2.110			

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Testing Laboratory 11026

"inhuhuh

Page |4

Location: Unit 2 Temporary Stack		Stack Test	er.	Cu	stomer	Technica	Il Signatory
Step Activity Description Specs/Procedure/ Recording	Key	Sign	Time	Signature	Time / Date	Signature	Time / Date

		Test No	Pressu	ure drop	Pass	/ Fail				 	
	Perform leak check on static impulse line & record drop in 15	1	ok	PB	Pa	S		XV?	9421		
8.13	seconds	2	OX	PB	pa	Q.	s	K	11441		
	If drop < 200 Pa in 15 seconds then proceed, else fix leak	3	0)	FPA	Pa	-9		P.	13412		
		4			`			-			
		Test No	Pressu	ure drop	Pass	/ Fail					
	Perform leak check on total impulse line & record drop in 15	1	OX	90	pa	S		N	gHII		
8.14	seconds	2	OX	PA	Pa	rss	s	V	้ แหน่ว		
	If drop < 200 Pa in 15 seconds then proceed, else fix leak	3	OK	PA	D D	255		12	13413		
		4			1						
		Test No	Pressu	ure drop	Pass	/ Fail					
	Perform leak check on O ₂ impulse line & record drop in 15	1	OK	PA	Po	S		VAC	9 H23		
8.15	seconds	2	OF	PA	pa	: 55'	s	YZ	11443		
	If drop < 200 Pa in 15 seconds then proceed, else fix leak	3	a k	PA	\$00	P		XO	13415		
		4				,		v			
	Derferen under etwalk en	Test No	Advance before test	Pass / Fail	Advance after test	Pass / Fail					
	sampling line & record advance	1	0,0005	8959	0,0005	pas]	SE	9440		
8.16	If advance < 0.0005 m2 in 60	2	0.0005	pass	0,0005	pas	s	X	11444		
	seconds then proceed, else fix	3	0,0005	pasi	0,0005	Past		12-	13415		
	Rodin	4	1			1					

+27 (0)10 054 5884 Fax: +27 (0)86 659 2231

Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

"inhuhuh

Testing Laboratory 11026

Page | 5

Location: Unit 2 Temporary Stack				Stack Tester		Customer		Technical Signatory		
Step		Activity Description	Specs/Procedure/ Recording	Key	Sign	Time	Signature	Time / Date	Signature	Time / Date

Test Start Time	Test No	Start Time	-							
	1	10409		PPD 10409						
	2	11445		LE UM45						
	3	13416	1	146 13416						
-	4		1							
Contact control room at the end of last test to inform of completion of survey Confirm return to normal operation		A 15H30	R	A 15430						
Rinse nozzle and sampling liner up to the filter. Record condition of nozzle	Test No	Record your assessment of nozzle, level of deposities. HOZZLE Still YOUND NOZZLE Still YOUND NOZZLE Still YOUND								
	1			11130						
	2			12401						
	3			DE 14H34						
	4									
Record Isokineticity	Test No	Isokineticity Pass / Fail	s							
	1	99.10% T-1 Pass		102 11432						
	2	99.9% T-2 pass		D 12 H 59						
	3	101,2% T-3 pass		144128						
	4									
Notes										
	Test Start Time Contact control room at the end of last test to inform of completion of survey Confirm return to normal operation Rinse nozzle and sampling liner up to the filter. Record condition of nozzle Record Isokineticity	Test No Test No Test No Test No Test No Contact control room at the end of last test to inform of completion of survey Confirm return to normal operation Rinse nozzle and sampling liner up to the filter. Record condition of nozzle Record Isokineticity Context No Context	Test No Start Time 1 10H09 2 11H45 3 13H16 4 4 Contact control room at the end of last test to inform of completion of survey Time: Confirm return to normal operation 75H30 Rinse nozzle and sampling liner up to the filter. Test No Record condition of nozzle 1 4 07Z1e 3 101,2% 4 1	Test No Start Time 1 10409 2 11445 3 13416 4 Contact control room at the end of last test to inform of completion of survey Confirm return to normal operation Time: 1 1 1 1 1 1 1 2 1 3 1 2 1 2 1 2 1 1 2 1 2 3 1 1 2 1 1 1 1 <t< td=""></t<>						

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

"inhuhuh

Testing Laboratory T1026

Page | 7

Location: Unit 2 Temporary Stack							Stack Tester		Customer		Technica	Technical Signatory		
Step	Step Activity Description			Specs/P Rec	Procedure/ ording	ĸ	ey	Sign	Time	Signature	Time / Date	Signature	Time / Date	
9.00	Site	De-establishment	a and a second second	Date	: 2024	102/	23	÷. ÷.	411		· · · · · · · · · · · · · · · · · · ·		eng aver	
9.01	Is the	e area clear of any equip	ment?		T Y	eS		s	120	15+140				
9.02	Is the	e area clear of any trippin	ng hazards?		9	cs		s ,	SX/	15441				
9.03	Is the	e area clear of any dome	stic waste?		\ \	105		s	N	715443				
9.04	Sign	off LAR/PTW			1 No	SS		R, W	D	15449				
9.05	Docu	ument review			Dor	ne	1	R	- Hi	15:24				
ADDITIONAL INFORMATION ON ABBREVIATIONS USED														
TOI: Temporary Operating Instruction					P-WCL:		F	Pre-Work Check List						
PSR:	PSR: Plant Safety Regulations					CM:			Contracts Manager					
LAR/PTW	r:	Local Access Register/	Permit to Work			QC:			Quality Control					
RP:		Responsible Person				QCP: Quality C			Quality Cont	Jality Control Plan				
AS:		Authorised Supervisor				AO: Analogue Output								
			Intervention	Pro	ject Lea	ct Leader Custom			mer Technical Signator		ignatory			
ь	REP		Legend:	Name	Sign	Date	e	Na	ame	Sign	Date	Name	e Sign	Date
.	GN Dietkeu		S – Surveillance (casual checks)		/								Į	
DATE	: 20 th	February 2024	W – Witness (stand by checks) H – Holding (move only on approval) R – Review (read and accent)	Mxolisi) F	05/03	/24							

. .

Reg No. 2009/190265/23

 Tell:
 +27 (0)10 054 5883
 2/410 Seventh Road, Bredell, 1619

 +27 (0)10 054 5884
 Kempton Park, 1619

 Fax:
 +27 (0)86 659 2231
 P.O. Box 14769, Bredell, 1623

Appendix E

Equipment Calibration Records

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

 Tell:
 +27 (0)10 054 5883
 2/410 Seventh Road, Bredell, 16

 +27 (0)10 054 5884
 Kempton Park, 1619

 Fax:
 +27 (0)86 659 2231
 P.O. Box 14769, Bredell, 1623
 Tell: +27 (0)10 054 5883

2/410 Seventh Road, Bredell, 1619

CERTIFICATE	\Box	60	Creative daygee
ANALYSIS CUSTOMER: Inthuu	Measurements CC	30	LD VEREENIGING RD ALRODE 1451
ORDER NO: P215002	5907	CERTIFICATE	IO.: p21F002206
COMPONENTS	REQUIRED	ANALYSED	UNCERTAINTY
02 N2 Analysis Method:	10.0% Balance Paramagnetic	10.2% N\Q	3%
	i. X		
ACTUAL VALUES IN VOL % N	ASS %		
T 20 °C 100 b	CY Min PRI AT	LINDER SIZE (2) 10 IMUM RELEASE ESSURE (kPa) 200 PRAGE TEMP: 5	20 50 OTH
Exp: 2024 March	h 10.	SHA	A

RMNR027(0) Kusile U2 PM Measurements

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

www.csir.co.za

Council for Scientific and Industrial Research Defence and Security Cluster Aeronautic Systems Impact Area Air Speed Calibration Wind Tunnel Building 13 Meiring Naude Road Brummena 0184 P O Box 395 Pretoris 0001 South Africa Tel +27 12 841 2064 Fax +27 12 349 1158

OF

CERTIFICATE

CALIBRATION

: Pitot	Tube
: Inthu	uu Measurements
: S Ty	pe
: 2021	/06/PTST15/01
: Inthu 2/41 Bred Kem 1619	uu Measurements 0 Seventh Road ell pton Park)
: 13 Ja	anuary 2023
	: Pitot : Inthu : S Ty : 2021 : Inthu 2/41 Bred Kem 1619 : 13 Ja

Calibrated by:	Checked by:	Authorised by:
Ismael Mashaba	Peter Skinner	Sarah Dikgale
Wind Tunnel Operator	CWT Facility Technical Expert	Technical Signatory
+27 12 841 2064	+27 12 841 4839	+27 12 841 4733
Date of Issue : 19 January 2023		Certificate Number: 2257/2023

6636-CWTQM-00013 Rev: 4 Page 1 of 4

May 2021

RMNR027(0) Kusile U2 PM Measurements

Page 33 of 56

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

CALIBRATION OF A PITOT TUBE

Serial No. 2021/06/PTST15/01

This calibration certificate documents the traceability to National Standards, which realises the physical units of measurement according to the international system of units.

Standards and Equipment used:

Description	Manufacturer	Model	Serial Number	Cal Certificate
Wind Tunnel	CSIR	Subsonic	DPSS ASC CWT	2017-005
Thermometer	Gold Brand	LIG	CSIR 92-93	308-33694
Water Manometer	Essen & Delft	11316	2648	M00074906
Barometer	Wilh Lambrecht KG Gotting en	610/470138	2606	M00077886
Digital Voltmeter	Agilent	34410A	MY53011342	115479-1
Hygrometer	Vaisala	HMW70Y	V1320030	HM\GC-4172

1. PROCEDURE AND SETTINGS

The instrument was calibrated in the calibration tunnel over one or more of the available ranges as required.

- The relevant calibration procedure is 6636-CWTQM-00027.
 The results are given in the table on page 3.
- (iii) The calibration equation is given on the graph on page 4.
- 2. ATMOSPHERIC CONDITIONS
- The calibration was performed in Pretoria at the following atmospheric conditions:
 - (i) Atmospheric pressure : 869.3 mbar
 - (ii) Atmospheric Temperature : 21.0 °C
- 3. RESULTS
 - The results given in this certificate were correct at the time of calibration and relate to UUT identified on this certificate.
 - (ii) The calibration is valid between 6.88 m/s to 34.4 m/s.
 - (iii) The reported uncertainties of measurement are based on a standard uncertainty multiplied by a coverage factor of k=2, which, unless specifically stated otherwise, provides a level of confidence of approximately 95 %. The uncertainty on page 3 includes the curve fit uncertainty for the calibrated instrument.
 - (iv) The relationship between airspeed and dynamic pressure is:

$$P_{d} = \frac{1}{2}\rho V^{2} \qquad V = \sqrt{\frac{2P_{d}}{\rho}}$$

Where Pd is dynamic pressure in Pa, is air density in kg/m3 at the measurement point and V is airspeed in m/s.

- (v) Dynamic pressure on the Pitot tube was measured with a calibrated water manometer.
 (vi) In service dynamic pressure must be measured with a calibrated pressure transducer with an uncertainty in pressure measurement of less than 4.5 Pa.
- (vii) To obtain measurements within the calibration accuracy, the calibration equation with the calibration coefficient of 0.85 given on the graph, must be used.
- (viii) The user is obliged to have the object re-calibrated at appropriate intervals.
- (ix) The instrument is suitable for calibration.

Calibrated by: 2010	Checked by:	Authorised by:
Ismael Mashaba	Peter Skinner	Sarah Dikgale
Wind Tunnel Operator	CWT Facility Technical Expert	Technical Signatory
+27 12 841 2064	+27 12 841 4839	+27 12 841 4733
Date of Issue : 19 January 2023		Certificate Number: 2257/2023

Page 2 of 4

6636-CWTQM-00013 Rev: 4

May 2021

RMNR027(0) Kusile U2 PM Measurements

Page 34 of 56

Tell: +27 (0)10 054 5883

2/410 Seventh Road, Bredell, 1619
 Tell:
 +27 (0)10 054 5883
 2/410 Seventh Road, Bredell, 16

 +27 (0)10 054 5884
 Kempton Park, 1619

 Fax:
 +27 (0)86 659 2231
 P.O. Box 14769, Bredell, 1623

CALIBRATION OF A PITOT TUBE Serial No. 2021/06/PTST15/01

No.	Indicated Airspeed (m/s)	True Airspeed (m/s)	Uncertainty (m/s)
1	8.9	6.9	0.8
2	11.6	9.3	0.7
3	17.7	14.2	0.7
4	23.5	19.2	0.7
5	29.2	24.2	0.8
6	35.1	29.3	1.0
7	41.1	34.4	1.1
8	35.1	29.3	0.9
9	29.2	24.2	0.8
10	23.4	19.2	0.7
11	17.6	14.2	0.7
12	11.6	9.3	0.7
13	8.6	6.9	0.9

Calibrated by: 2349	Checked by:	Authorised by:
Ismael Mashaba	Peter Skinner	Sarah Dikgale
Wind Tunnel Operator	CWT Facility Technical Expert	Technical Signatory
+27 12 841 2064	+27 12 841 4839	+27 12 841 4733
Date of Issue : 19 January 2023		Certificate Number: 2257/2023

Page 3 of 4

6636-CWTQM-00013 Rev: 4

May 2021

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

RMNR027(0) Kusile U2 PM Measurements

Page 36 of 56

VAT No. 4960254359 Reg No. 2009/190265 Reg No. 2009/190265/23

Tell: +27 (0)10 054 5883

2/410 Seventh Road, Bredell, 1619
 Tell:
 +27 (0)10 054 5883
 2/410 Seventh Road, Bredell, 16

 +27 (0)10 054 5884
 Kempton Park, 1619

 Fax:
 +27 (0)86 659 2231
 P.O. Box 14769, Bredell, 1623

DAS TOTAL QUALITY MANAGEMENT SYSTEM AERONAUTICS SYSTEMS CWT INSTRUMENT ACCEPTANCE FORM

OUR REF:	DATE:	30 Jan 2023
FROM:	FAX NO:	
	TEL NO:	
E-MAIL	CELL NO:	
SUBJECT:		
PAGES: 1 of 1		
Company: Eskom Koeberg Nuclear Pow	er Station	
Contact Person: Pumela Mangesi		
Item Description	Make & Model	Serial Number
L-TYPE Pitot-tube	SSteel	2013/01/PTC201/04
Condition of instrument:	Candition	
Delivery Method: Delivered by: <u>Av Mata kis</u> Accepted by: <u>Luda</u>	Signature:	1-2- Jouron

6636-CWTQM-00018 Rev: 2

January 2020

Page 1 of 1

Printed copies may be obsolete, validate prior to use

RMNR027(0) Kusile U2 PM Measurements

Tell: +27 (0)10 054 5883

 +27 (0)10 054 5883
 2/410 Seventh Road,

 +27 (0)10 054 5884
 Kempton Park, 1619

 +27 (0)86 659 2231
 P.O. Box 14769, Bread

 Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619 P.O. Box 14769, Bredell, 1623

MEASUREMENTS PERFORMED IN SANAS ACCREDITED CALIBRATION LABORATORY No 205

PRESSURE METROLOGY

CERTIFICATE OF CALIBRATION

Date of issue : 31/08/2023

2308P11648-3 Certificate No :

Technical Signatory

A Mathieson.

Page 1 of 2 pages.

The results of all measurements are traceable to the national measuring standards.

The values in this certificate are correct at the time of calibration. The results relate only to the measurement component of the instrument supplied. The results exclude the influence of any auxillary equipment that may be attached to the instrument. Subsequently the accuracy will depend on such factors as the care executed in the handling and use of the device, and the frequency of use. Recalibration should be performed after a period so chosen to ensure that the instrument's accuracy remains within the desired limits.

This certificate is issued in accordance with the conditions of the accreditation granted by the South African National Accreditation System (SANAS). It is a correct record of the measurements made. This certificate may not be reproduced other than in full except with prior written approval of the issuing laboratory. Legal liability shall be limited to the cost of recalibration and or certification, but the applicant indemnifies Unique Metrology (Pty) Ltd against any consequential or other loss.

The South African National Accreditation System (SANAS) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). This arrangement allows for the mutual recognition of technical test and calibration data by the member accreditation bodies worldwide. For more information on the Arrangement please contact www.ilac.org.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5883 2/410 Seventh Road, +27 (0)10 054 5884 Kempton Park, 1619 +27 (0)86 659 2231 P.O. Box 14769, Bree Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology

P O Box 145296 • Bracken Gardens • 1452 Tel: 011 626 3808 • Cell: 072 244 1371 • Fax: 086 610 4196 Web: www.unimet.co.za

CERTIFICATE OF CALIBRATION

Certificate Number Calibration of a Manufacturer & Type Serial Number Calibrated for Contact Details Procedure Number Date of Calibration Date of Issue

2

:

2

Page 2 of 2 pages. 2308P11648-3 Barometer Greisinger GPB2300 : 1404 : Inthuu Measurements, Kempton Park. : Alne Vorste : 53-128 : 28/08/2023 Alne Vorster, Tel: 010 054 5883. : 31/08/2023 Laboratory Environment : 19.6 °C Reference Standards : 205-S-01 Ruska, PPG 6200

S/N 39478

Reference Pressure	India mi	ation bar	Corre	ection bar
mbar	Rising	Falling	Rising	Falling
800	804	804	-4	-4
850	856	856	-6	-6
900	905	905	-5	-5
950	955	955	-5	-5
1000	1005	1005	-5	-5
1050	1055	1055	-5	-5
1150	1153	1153	-3	-3

The uncertainty of measurement is ± 2 mbar.

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, which unless specifically stated otherwise, provides a confidence level of 95%, in accordance with the Guide to the Expression of Uncertainty in Measurement, first edition, 1993.

*** End of Certificate ***

Comments -

None.

Calibrated by : D Wedderspoon

Technical Signatory

RMNR027(0) Kusile U2 PM Measurements

Tell: +27 (0)10 054 5883
 +27 (0)10 054 5883
 2/410 Seventh Road,

 +27 (0)10 054 5884
 Kempton Park, 1619

 +27 (0)86 659 2231
 P.O. Box 14769, Bred
 Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619 P.O. Box 14769, Bredell, 1623

MEASUREMENTS PERFORMED IN SANAS ACCREDITED CALIBRATION LABORATORY No 205

PRESSURE METROLOGY

CERTIFICATE OF CALIBRATION

Date of issue : 31/08/2023 Certificate No : 2308P1648-4

Technical Signatory

A Mathieson.

Page 1 of 2 pages.

The results of all measurements are traceable to the national measuring standards.

The values in this certificate are correct at the time of calibration. The results relate only to the measurement component of the instrument supplied. The results exclude the influence of any auxillary equipment that may be attached to the instrument. Subsequently the accuracy will depend on such factors as the care executed in the handling and use of the device, and the frequency of use. Recalibration should be performed after a period so chosen to ensure that the instrument's accuracy remains within the desired limits.

This certificate is issued in accordance with the conditions of the accreditation granted by the South African National Accreditation System (SANAS). It is a correct record of the measurements made. This certificate may not be reproduced other than in full except with prior written approval of the issuing laboratory. Legal liability shall be limited to the cost of recalibration and or certification, but the applicant indemnifies Unique Metrology (Pty) Ltd against any consequential or other loss.

The South African National Accreditation System (SANAS) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). This arrangement allows for the mutual recognition of technical test and calibration data by the member accreditation bodies worldwide. For more information on the Arrangement please contact www.ilac.org.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology

63 Charl Cillers Avenue • Alberton • 1449 P O Box 145296 • Bracken Gardens • 1452 Tel: 011 626 3808 • Cell: 072 244 1371 • Fax: 086 610 4196 Web: www.unimet.co.za

CERTIFICATE OF CALIBRATION

Certificate Number	2	23
Calibration of a	:	Ma
Manufacturer & Type	2	HK
Serial Number	2	20
Calibrated for	2	Int
Contact Details	2	Aln
Procedure Number	2	53-
Date of Calibration	2	30/
Date of Issue	2	31/
Laboratory Environment	2	19
Reference Standards	2	20

Page 2 of 2 pages. : 2308P1648-4 : Manometer : HK Instruments MM-5K : 2022/03/MM-K5/05 : Inthuu Measurements, Kempton Park. : Alne Vorster, Tel: 010 054 5883. : 53-129 : 30/08/2023 : 31/08/2023 : 31/08/2023 : 19.5 °C : 205-S-01 Ruska, PPG 6200 S/N 39478

Indication Reference Correction Pressure kPa kPa kPa Rising Falling Rising Falling 0 0.00 0.00 0.00 0.00 0.95 0.95 0.05 0.05 1 2 1.90 1.90 0.10 0.10 3 2.87 2.87 0.13 0.13 4 3.83 3.83 0.17 0.17 5 4.80 4.80 0.20 0.20

The uncertainty of measurement is ± 0.02 kPa.

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, which unless specifically stated otherwise, provides a confidence level of 95%, in accordance with the Guide to the Expression of Uncertainty in Measurement, first edition, 1993.

Comments : The manometer scale/tube was calibrated in a vertical position. In the vertical position the manometer is designed to have a scale factor of 1. The specific gravity of the manometer fluid, as supplied by the customer, is 0.826.

Calibrated by :

D Wedderspoon

*** End of Certificate ***

Technical Signatory

RMNR027(0) Kusile U2 PM Measurements

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology es Charl Ciliers Avenue - Alberton + 1449 P O Box 145296 + Bracken Gardens + 1452 Tet: 011 626 3808 - Cel: 072 244 1371 - Fax: 066 610 4196 Web: www.unimet.co.za

MEASUREMENTS PERFORMED IN SANAS ACCREDITED CALIBRATION LABORATORY No 205

PRESSURE METROLOGY

CERTIFICATE OF CALIBRATION

Date of issue	:	31/08/2023
Certificate No	:	2308P11648-5

Technical Signatory

A Mathieson.

Page 1 of 2 pages.

The results of all measurements are traceable to the national measuring standards.

The values in this certificate are correct at the time of calibration. The results relate only to the measurement component of the instrument supplied. The results exclude the influence of any auxillary equipment that may be attached to the instrument. Subsequently the accuracy will depend on such factors as the care executed in the handling and use of the device, and the frequency of use. Recalibration should be performed after a period so chosen to ensure that the instrument's accuracy remains within the desired limits.

This certificate is issued in accordance with the conditions of the accreditation granted by the South African National Accreditation System (SANAS). It is a correct record of the measurements made. This certificate may not be reproduced other than in full except with prior written approval of the issuing laboratory. Legal liability shall be limited to the cost of recalibration and or certification, but the applicant indemnifies Unique Metrology (Pty) Ltd against any consequential or other loss.

The South African National Accreditation System (SANAS) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). This arrangement allows for the mutual recognition of technical test and calibration data by the member accreditation bodies worldwide. For more information on the Arrangement please contact www.ilac.org.

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology

63 Charl Cilliers Avenue - Alberton - 1449 P O Box 145296 - Bracken Gardens - 1452 Tel: 011 625 3808 - Cell: 072 244 1371 - Fax: 086 610 4196 Web: www.uninet.co.za

Page 2 of 2 pages.

CERTIFICATE OF CALIBRATION

Certificate Number
Calibration of a
Manufacturer & Type
Serial Number
Calibrated for
Contact Details
Procedure Number
Date of Calibration
Date of Issue
Laboratory Environment
Reference Standards

2308P11648-5 Manometer. Airflow, Incline Manometer. BOX5 Inthuu Measurements, Kempton Park. Alne Vorster, Tel: 010 054 5883. 53-129 31/08/2023 31/08/2023 20.5 °C 205-S-01 Ruska, PPG 6200 S/N 39478

SCALE FACTOR SET TO 0.2

Reference	Indication	Calculated	Correction
Pressure	(kPa)	(kPa)	(kPa)
0	Rising	Rising	Rising
0.000	0.000	0.000	0.000
0.450	2.185	0.436	0.014
0.450	2.180	0.435	0.015
0.450	2.165	0.432	0.018
0.450	2.170	0.433	0.017
0.450	2.180	0.435	0.015
0.450	2.165	0.432	0.018
0.450	2.175	0.434	0.016
0.450	2.165	0.432	0.018
0.450	2.165	0.432	0.018
0.450	2.165	0.432	0.018

The uncertainty of measurement is ± 0.025 kPa

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, which unless specifically stated otherwise, provides a confidence level of 95%, in accordance with the Guide to the Expression of Uncertainty in Measurement, first edition, 1993.

The manometer was calibrated after ensuring that the top of the instrument Comments . . plate was level, and the face of the plate was vertical. The indicated pressure was multiplied by the scale factor of 0.2 and the specific gravity of the manometer fluid, as supplied by the customer, is 0.826.

Calibrated by : D Wedderspoon *** End of Certificate ***

Technical Signatory

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology 63 Charl Ciliers Avenue - Alberton - 1449 P O Box 14/5295 - Bracken Gardens - 1452 Tet: 011 626 3808 - Cel: 072 244 1371 - Fax: 086 610 4196 Web: www.urimet.co.za

MEASUREMENTS PERFORMED IN SANAS ACCREDITED CALIBRATION LABORATORY No 205

PRESSURE METROLOGY

CERTIFICATE OF CALIBRATION

Date of issue	:	31/08/2023
Certificate No	:	2308P11648-6

Technical Signatory

A Mathieson.

Page 1 of 2 pages.

The results of all measurements are traceable to the national measuring standards.

The values in this certificate are correct at the time of calibration. The results relate only to the measurement component of the instrument supplied. The results exclude the influence of any auxillary equipment that may be attached to the instrument. Subsequently the accuracy will depend on such factors as the care executed in the handling and use of the device, and the frequency of use. Recalibration should be performed after a period so chosen to ensure that the instrument's accuracy remains within the desired limits.

This certificate is issued in accordance with the conditions of the accreditation granted by the South African National Accreditation System (SANAS). It is a correct record of the measurements made. This certificate may not be reproduced other than in full except with prior written approval of the issuing laboratory. Legal liability shall be limited to the cost of recalibration and or certification, but the applicant indemnifies Unique Metrology (Pty) Ltd against any consequential or other loss.

The South African National Accreditation System (SANAS) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). This arrangement allows for the mutual recognition of technical test and calibration data by the member accreditation bodies worldwide. For more information on the Arrangement please contact www.ilac.org.

RMNR027(0) Kusile U2 PM Measurements

Page 44 of 56

Tell: +27 (0)10 054 5883 +27 (0)10 054 5883 2/410 Seventh Road, +27 (0)10 054 5884 Kempton Park, 1619 +27 (0)86 659 2231 P.O. Box 14769, Brea Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619

P.O. Box 14769, Bredell, 1623

CERTIFICATE OF CALIBRATION

Page 2 of 2 pages.

1	2308P11648-6	
:	Pressure Gauge	
:	Wika 63mm	
2	88	
:	Inthuu Measurements, Kempton Park.	
:	Alne Vorster, Tel: 010 054 5883.	
:	53-126	
:	30/08/2023	
:	31/08/2023	
2	19.5 °C	
:	205-S-01 Ruska, PPG 6200	S/N 39478
	•	 2308P11648-6 Pressure Gauge Wika 63mm 88 Inthuu Measurements, Kempton Park. Alne Vorster, Tel: 010 054 5883. 53-126 30/08/2023 31/08/2023 19.5 °C 205-S-01 Ruska, PPG 6200

Reference Pressure	e Indication		Corre	ection Pa
kPa	Rising	Falling	Rising	Falling
0	0.0	0.0	0.0	0.0
-10	-9.8	-9.9	-0.2	-0.1
-20	-19.3	-19.5	-0.7	-0.5
-30	-29.7	-29.9	-0.3	-0.1
-40	-38.9	-38.9	-1.1	-1.1

The uncertainty of measurement is ± 0.2 kPa.

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, which unless specifically stated otherwise, provides a confidence level of 95%, in accordance with the Guide to the Expression of Uncertainty in Measurement, first edition, 1993.

Comments - 2 None.

Calibrated by : D Wedderspoon *** End of Certificate *** Technical Signatory

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology	(5)
P O Box 145296 • Bracken Gardens • 1452	
Tel: 011 626 3808 · Cell: 072 244 1371 · Fax: 086 610 4196	
Web: www.unimet.co.za	

MEASUREMENTS PERFORMED IN SANAS ACCREDITED CALIBRATION LABORATORY No 306

TEMPERATURE METROLOGY

CERTIFICATE OF CALIBRATION

	Date of issue	2	31/08/2023
--	---------------	---	------------

Certificate No : 2308T11648-1

Technical Signatory

A Mathieson.

Page 1 of 2 pages.

The results of all measurements are traceable to the national measuring standards.

The values in this certificate are correct at the time of calibration. The results relate only to the measurement component of the instrument supplied. The results exclude the influence of any auxillary equipment that may be attached to the instrument. Subsequently the accuracy will depend on such factors as the care executed in the handling and use of the device, and the frequency of use. Recalibration should be performed after a period so chosen to ensure that the instrument's accuracy remains within the desired limits.

This certificate is issued in accordance with the conditions of the accreditation granted by the South African National Accreditation System (SANAS). It is a correct record of the measurements made. This certificate may not be reproduced other than in full except with prior written approval of the issuing laboratory. Legal liability shall be limited to the cost of recalibration and or certification, but the applicant indemnifies Unique Metrology (Pty) Ltd against any consequential or other loss.

The South African National Accreditation System (SANAS) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). This arrangement allows for the mutual recognition of technical test and calibration data by the member accreditation bodies worldwide.

For more information on the Arrangement please contact www.ilac.org.

Tell: +27 (0)10 054 5883
 Ieii:
 +27 (0)10 054 5883
 2/410 Seventh Road, I

 +27 (0)10 054 5884
 Kempton Park, 1619

 Fax:
 +27 (0)86 659 2231
 P.O. Box 14769, Bred

2/410 Seventh Road, Bredell, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology

63 Charl Cilliers Avenue • Alberton • 1449 P O Box 145296 • Bracken Gardens • 1452 Tel: 011 626 3808 • Cell: 072 244 1371 • Fax: 086 610 4196

Page 2 of 2 pages

CERTIFICATE OF CALIBRATION

Certificate Number	:	2308T11648-1			
Calibration of a	:	Digital Tempera	ture Indicator & Pi	robe	
Manufacturer & Type	:	GRC, FY400 &	Unknown Type K.		
Serial Number	1	11			
Calibrated for	:	Inthuu Measure	ments, Bredell, Ke	empton Park	
Contact Details	2	Alne Vorster, Te	el: 010 054 5883.		
Procedure Number	2	53-167			
Date of Calibration	:	31/08/2023			
Date of Issue	:	31/08/2023			
Laboratory Environment	2	21.1 °C			
Reference Standards	1	306-S-04	Fluke, 9144 Block	Calibrator	S/N B 26027

Reference Temperature °C	Indicated Reading °C	Correction °C
50	48	2
100	99	1
150	150	0
200	201	-1
250	251	-1
300	301	-1
350	351	-1
400	401	-1

The uncertainty of measurement is ± 2 °C

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, which unless specifically stated otherwise, provides a confidence level of 95%, in accordance with the Guide to the Expression of Uncertainty in Measurement, first edition, 1993.

Comments

The thermocouple was immersed to a constant depth of 150 mm. -

Technical Signatory

Calibrated by : D Wedderspoon

Page 47 of 56

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology	f san
63 Charl Cilliers Avenue • Alberton • 1449 P O Box 145296 • Bracken Gardens • 1452 Tel: 011 626 3808 • Cell: 072 244 1371 • Fax: 086 610 4196 Web: www.unimet.co.za	Caloran

MEASUREMENTS PERFORMED IN SANAS ACCREDITED CALIBRATION LABORATORY No 306

TEMPERATURE METROLOGY

CERTIFICATE OF CALIBRATION

Date of issue	-	31/08/2023
Date of 1550c		3110012023

Certificate No : 2308T11648-2

Technical Signatory

A Mathieson.

Page 1 of 2 pages.

The results of all measurements are traceable to the national measuring standards.

The values in this certificate are correct at the time of calibration. The results relate only to the measurement component of the instrument supplied. The results exclude the influence of any auxillary equipment that may be attached to the instrument. Subsequently the accuracy will depend on such factors as the care executed in the handling and use of the device, and the frequency of use. Recalibration should be performed after a period so chosen to ensure that the instrument's accuracy remains within the desired limits.

This certificate is issued in accordance with the conditions of the accreditation granted by the South African National Accreditation System (SANAS). It is a correct record of the measurements made. This certificate may not be reproduced other than in full except with prior written approval of the issuing laboratory. Legal liability shall be limited to the cost of recalibration and or certification, but the applicant indemnifies Unique Metrology (Pty) Ltd against any consequential or other loss.

The South African National Accreditation System (SANAS) is a member of the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement (MRA). This arrangement allows for the mutual recognition of technical test and calibration data by the member accreditation bodies worldwide.

For more information on the Arrangement please contact www.ilac.org.

RMNR027(0) Kusile U2 PM Measurements

Tell: +27 (0)10 054 5883 +27 (0)10 054 5883 2/410 Seventh Road, +27 (0)10 054 5884 Kempton Park, 1619 +27 (0)86 659 2231 P.O. Box 14769, Bree Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619 P.O. Box 14769, Bredell, 1623

Unique Metrology P O Box 145296 • Bracken Gardens • 1452 Tel: 011 626 3808 • Cel: 072 244 1371 • Fax: 086 610 4196 Web: www.unimet.co.za

CERTIFICATE OF CALIBRATION

Page 2 of 2 pages Certificate Number 2308T11648-2 Digital Temperature Indicator & Probe Calibration of a 2 Manufacturer & Type GRC, FY400 & Unknown Type K. Serial Number Calibrated for 12 Inthuu Measurements, Bredell, Kempton Park. Contact Details Alne Vorster, Tel: 010 054 5883. Procedure Number : 53-167 Date of Calibration 31/08/2023 Date of Issue 31/08/2023 21.1 °C Laboratory Environment : Reference Standards : 306-S-04 Fluke, 9144 Block Calibrator S/N B 26027

Reference Temperature °C	Indicated Reading °C	Correction °C
50	49	1
100	99	1
150	150	0
200	200	0
250	250	0
300	300	0
350	350	0
400	400	0

The uncertainty of measurement is ± 2 °C

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, which unless specifically stated otherwise, provides a confidence level of 95%, in accordance with the Guide to the Expression of Uncertainty in Measurement, first edition, 1993.

Comments

The thermocouple was immersed to a constant depth of 150 mm.

Technical Signatory

Calibrated by : D Wedderspoon

-

RMNR027(0) Kusile U2 PM Measurements

Reg No. 2009/190265/23

 Tell:
 +27 (0)10 054 5883
 2/410 Seventh Road, Bredell, 1619

 +27 (0)10 054 5884
 Kempton Park, 1619

 Fax:
 +27 (0)86 659 2231
 P.O. Box 14769, Bredell, 1623

Appendix F

Monitor Calibration Certificate

Page 50 of 56

Tell: +27 (0)10 054 5883

2/410 Seventh Road, Bredell, 1619
 Tell:
 +27 (0)10 054 5883
 2/410 Seventh Road, Bredell, 16

 +27 (0)10 054 5884
 Kempton Park, 1619

 Fax:
 +27 (0)86 659 2231
 P.O. Box 14769, Bredell, 1623

TYPE: FWE200DH

Ident-Nr.: 9214515 ZSV7

El declaration of conformity The undersigned, representing the following manufacturer herewith de that the product is in conformity with the provisions of the followir directive(s) (including all applicable amendments), and that the resp standards and/or technical specifications have been used as a basis fo (download: www.sick.com).

You can obtain the EU declaration of conformity with the sta www.sick.com

Produkt in Übereinstimmung mit den Bestimmunge den EU-Richtlinie(n) (einschließlich aller zutreffenden Änder dass die entsprechenden Normen und/oder tech nen zugrunde gelegt sind (Download: www.sick.com). UH I

з гдуслибе делеца затка ко----я за съответствие който представе докусломенатия производител, обяе тветства на разпоредбите на докуноброените диреские тветски делески изаменение и че се базира на съо в тихеически спецификации за прихожение (Из (Изте

cecom), šení o shodě EU sodepsaný, zastupující následujícího výrol k je v souladu s ustanoveními následující v šech platných změn) a že podkladem byly cké specifikace, (Ke stažení: www.sick.com),

ne specifikace. (Ke staženi: www.sick.com). rensstemmelseserklæring gjønde, der repræsenterer følgende producent, erklærer her tet er i overensstemmelse med bestemmelserne i følger (or) (inklusiv alle gjødende sendringer), og at alle til rder og/eller tekniske specifikationer er blevet anvendt (do ck.com).

Jacula ago ten termination ago ten termination

atavusdeklaratsioon irjutanu, kes esindab järgmist tootjat, kinnitab käes e vastab järgneva(te) EL-i direktiivi(de) sätetele (kaasa ohastele muudatustele) ja et on rakendatud vastavi ilisi kirjeldusi. (Allalaadimine: www.sick.com). vatud kõikidele nõudeid ja/või

vaatimustenmukaisuusvakuutus kirjoittanut, joka edustaa alla mainittua valmistajaa, vakuuttaa i te on asuraavon (ien) EU-direktiivin (-ien) vaatimusten mukainer en kaikki soveilettavat muutokset ja että sen perustana ovat ndardit ja teihniset erittelyt (tatausosoite: www.sick.com).

Instantia texninet: entuegy: (Lataausosite: www.sick.com), fastantian de conformité UE soussigné, représentant le constructur ci-après, déclare par la présent le produit est conforme aux exigences de la (des) directive(s) de l'UE vantes (y compris tous les amendements applicables) et que les normes et/ou citaciations techniques correspondantes aut servi de base (téléchargement:

2017-12-19

Izjava o sukladnosti EU Potpisnik, koji zastupa proizvodača navedenog u nastavku, ovime je proizvod uskladen s odredbama dolje navedenih direktiva EU-a sve nastale izmjene) i da je u skladu s odgovarajućim normama (/i specifikacijama (prezužmanje: www.sick.com). EU megfe

pecinacijana uneuzinanje, www.sick.com), U megfeloložej niylatkozat Julirott, az alábbi gvártó képviseletében ezennel kijelenti, negfelel az alábbi EU-frányelv(ek) kővetelményeinek (beleért nontkozó módosítást) és kijelenti, hogy a megfelelő szatvá úšszaki előírásokat vette alapul. (Letöltés: www.sick.com).

ESB-samramisytitýsing Undirritaður, fyrir hönd framleiðandans sem nefndur er hér að neðan, lýsi Hir með ýrir að varna er í samrami við ákvæði eftitalinna ESB-tilskýpan meðtöldum öllum breyfingum sem við eiga) og að þessu til grund-samræmist vara viðeigand Istólum ogreða tækniforskriftum (nötu

w sick co Dichiarazione di conformità UE

zione di conformita UL scritto, in qualità di rappresentante del costruttore s con la presente che il prodotto è conforme alle dispos (ci) direttiva(e) UE (comprese tutte le modifiche applici ille rispettive norme e/o specifiche tecniche (scaricabili sa sulle rispettive noi w.sick.com).

Sa titlikties deklaracija Sairašiusysis, atstovaujantis šiam gamint ojui deklaruoja tittinka šios (iu) ES direktyvos (u) reikalavimus (jskaitant eicihius) ir kad buvo remtasi antrajame puslapyje nurodyta izabaj techninėmis specifikacijomis (atsisiųsti: www.sick.com). Istības deklarācija ES atb

2 atubiaudas Ucharusoja Japakšā parakstījusies persona, kas pārstāv zemāk minētoj leklarā, ka izstrādājums atbilst zemāk minētajai (-ām) ES leskatot visus atbilstošos grozījumus) un ka izstrādājuma iz parmatu ņemti attiecije standarti un/vai tehniskās specifikās www.sick.com).

ww.sick.com). Uverklaning van overeenstemming ndergetekende, vertegenwoordiger van de volgende fabrik einme dat het product voldoet aan de bepaingen van de chtlijfien() (inclusief alle van toepassing zijnde wijzigingen vereenkomstige normen en/of technische specificaties als grou behuikt (Download: www.sick.com). Leanspransent/ender

geouaric toomiada: www.saccconty. EU-samvaraerKalkering Undertegnede, som representerer nedennevnte produsent, e produktet er i samsvar med bestemmelsene i følgen (inkludert alle relevante endringer) og at relevante normer spesifikasjoner er blitt anvendt (Nedlasting: www.sick.com). racja zgod ności UE

Deklaracja zgodnosci u Ničej podpisany, reprezentujący wymienionego poniżej produce niniejszym, że wyrób jest zgodny z postanowieniami podanej/po dyrektwy/ UE (wraz z odnośnymi pograwkami) oraz, że za p odpowiednie normy i/lub specyfikacje techniczne (download: ww

Cooperando Leonardo y la operando e centracta (como O abato assinado, que representa o seguinte fabricante, que o produto está em conformidade com a disposiçá directiva(s) UE (incluindo todas as alterações aplicáveis) como base as respectivas normas e/ou especificações www.sick.com).

Declarație de conformitate UE

sclaratje de conformitate UE mentarul, in calitate de reprezentant al producătorului clară prin prezenta că produsul este în conformitate rectivelor UE enveneste mai po (cultusiv cu toate modificări termeiază pe normele sylvau specificațiile tehnice winicat www.scla.com). U spótisam zakturge sylvabcu tijmto vyhesele z byćo U spótisam zakturge sylvabcu tijmto vyhesele, z vyhob

ustanoveniami nasledujúcej (nasledujúcich) sme všetkých platných zmien) a že ako základ boli pou technické špecifikácie (Download: www.sick.com).

Izjava EU o skladnosti Podpisani predstavnik spodaj nav proizvod v skladu z določbami spoda ustreznimi spremembami) in da so o specifikacije (prenos: www.sick.com). nega pi

9214515.pdf

Performance of the second s

1/5

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

SICK

used directives and standards

Pos	Pos.text	Short.desc.	Document-No.	Issued	SICK-Id-No.	Pos-Exchg.
0100	OJEU L 96	LV DIRECTIVE 2014/35/EU	RL 2014/35/EU	2014-02-26	8606192	
0110	OJEU L 96	EMC DIRECTIVE 2014/30/EU	RL 2014/30/EU	2014-02-26	8606191	
0130	0JEU L 174	ROHS DIRECTIVE 2011/65/EU	RL 2011/65/EU	2011-06-08	8606079	
1000	LVD	SAFETY REQUIREMENTS ELECTRICAL EQUIPMENT	EN 61010-1	2010-10-01	8606036	
1040	LVD	ENCLOSURES PROTECTION DEGREES (IP-CODE)	EN 60529	1991-10-01	8605520	
1050	LVD	ENCLOSURES PROTECTION DEGREES(IPCODE)/A1	EN 60529/A1	2000-02-01	8605590	
1060	LVD	ENCLOSURES PROTECTION DEGREES(IPCODE)/A2	EN 60529/A2	2013-10-01	8606169	
2010	EMC	EMC, IMMUNITY FOR INDUSTRIAL ENVIRONMENTS	EN 61000-6-2	2005-08-01	8605737	
2040	EMC	ELECTRICAL EQUIPMENT FOR MEASUREMENT	EN 61326-1	2013-01-01	8606121	
2150	EMC	EMC, LIMITS F.HARMONIC CURRENT EMISSIONS	EN 61000-3-2	2006-04-01	8605810	
3000	ROHS	TECHNICAL DOCUM. HAZARDOUS SUBSTANCES	EN 50581	2012-09-01	8606209	

as of 2017-12-19

EU declaration of conformity 9214515

9214515.pdf

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231 2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Ergänzende Informationen zu den EMV-Produktfamilienstandards EN 61326-1 und EN 61326-2-x

Diese Normen enthalten Definitionen von Grenzwerten und Prüfpegeln für mehrere Umgebungen.

Bezüglich der Störaussendung sind Anforderungen für die Umgebungsbereiche

- Industrie (Klasse A) und
- Haushalts-/Gewerbebereich (Klasse B) enthalten.

Bezüglich der Störfestigkeit sind Anforderungen für die Umgebungsbereiche

- Beherrschte elektromagnetische Umgebung (niedrigste Anforderungen),
- Allgemeine Umgebung und
- Industrielle Umgebung (höchste Anforderungen) enthalten.

Die in dieser Konformitätserklärung aufgeführten Geräte entsprechen den Anforderungen folgender Umgebungen:

Störaussendung: Klasse A Störfestigkeit: Industrielle Umgebung

Sie sind somit für den Einsatz in industrieller Umgebung vorgesehen. Bei Verwendung im Wohn- und Gewerbebereichen können zusätzliche Maßnahmen für die Begrenzung der Störaussendung erforderlich sein.

Additional informations with respect to the EMC product family standards EN 61326-1 and EN 61326-2-x

These standards contain definitions for emission limits and immunity requirements for multiple environments.

In respect of emissions, the standards contain limits for the environments

- industrial (class A) and
- residential / commercial (class B).

In respect of immunity, the standards contain requirements for the environments

- electromagnetic protected (lowest requirements)
- general
- industrial (hardest requirements)

The devices listed in this declaration of conformity are conformal to the requirements of the environments below.

Emissions: Class A Immunity: Industrial environment

Their intended usage is limited to industrial environments. When used in residential or commercial environments, additional measures may be required to limit the electromagnetic emissions.

2017-12-19

9214515.pdf

3/5

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

Ergänzende Informationen zu den EMV-Produktfamilienstandards EN 61326-1 und EN 61326-2-x

Diese Normen enthalten Definitionen von Grenzwerten und Prüfpegeln für mehrere Umgebungen.

Bezüglich der Störaussendung sind Anforderungen für die Umgebungsbereiche

- Industrie (Klasse A) und
- Haushalts-/Gewerbebereich (Klasse B) enthalten.

Bezüglich der Störfestigkeit sind Anforderungen für die Umgebungsbereiche

- Beherrschte elektromagnetische Umgebung (niedrigste Anforderungen),
- Allgemeine Umgebung und
- Industrielle Umgebung (höchste Anforderungen) enthalten.

Die in dieser Konformitätserklärung aufgeführten Geräte entsprechen den Anforderungen folgender Umgebungen:

Störaussendung: Klasse B Störfestigkeit: Industrielle Umgebung

Sie sind somit für den Einsatz in allen spezifizierten Umgebungen geeignet.

Additional informations with respect to the EMC product family standards EN 61326-1 and EN 61326-2-x

These standards contain definitions for emission limits and immunity requirements for multiple environments.

In respect of emissions, the standards contain limits for the environments

- industrial (class A) and
- residential / commercial (class B).
- In respect of immunity, the standards contain requirements for the environments
 - electromagnetic protected (lowest requirements) •
 - general
 - industrial (hardest requirements)

The devices listed in this declaration of conformity are conformal to the requirements of the environments below.

Class B

Emissions: Immunity:

Industrial environment They are therefore adequate for usage in all specified environments...

2017-12-19

9214515.pdf

4/5

Tell: +27 (0)10 054 5883
 Tell:
 +27 (0)10 054 5883
 2/410 Seventh Road, Bredell, 16

 +27 (0)10 054 5884
 Kempton Park, 1619

 Fax:
 +27 (0)86 659 2231
 P.O. Box 14769, Bredell, 1623

2/410 Seventh Road, Bredell, 1619

List of devices (count: 16)

SICK-ID-No.	Device-type
1066190	FWE200DH-NNJ
1068441	FWE200DH-NNE
1068461	FWE200DH-BNJ
1069590	FWE200DH-NNP
1069591	FWE200DH-BNE
1069592	FWE200DH-BNP
1069593	FWE200DH-NHJ
1069594	FWE200DH-NHE
1069595	FWE200DH-NHP
1069596	FWE200DH-BHJ
1069597	FWE200DH-BHE
1069598	FWE200DH-BHP
1080211	FWE200DH-NNJS
1082849	FWE200DH-NNT
1084553	FWE200DH-NND
1092874	FWE200DH-NNE

as of 2017-12-19

EU declaration of conformity 9214515

2017-12-19

9214515.pdf

Tell: +27 (0)10 054 5883 +27 (0)10 054 5884 Fax: +27 (0)86 659 2231

2/410 Seventh Road, Bredell, 1619 Kempton Park, 1619 P.O. Box 14769, Bredell, 1623

7 REVISIONS

Revision No.	Date	Description
0	2024/03/06	Original report document

8 DISTRIBUTION LIST

A Mzimela	Sick Automation
R Nare	Inthuu Measurements CC
A Vorster	Inthuu Measurements CC

Ms Nompumelelo Simelane Nkangala District Municipality PO Box 437

Middleburg 1050 Date:

April 2024

Enquiries: Lesiba Kgobe *Tel:* +27 *13 699 7817*

Ref: Kusile Power Station AEL (17/4/AEL/MP311/12/01)

Dear Ms. Simelane

KUSILE POWER STATION'S MONTHLY EMISSIONS REPORT FOR MARCH 2024

This serves as the monthly report required in terms of Section 7.6 in Kusile Power Station's Atmospheric Emission License: 17/4/AEL/MP311/12/01. The emissions are for the month of March 2024.

Hoping the above will meet your satisfaction.

Yours sincerely

Christopher Nani ACTING GENERAL MANAGER DATE: 24 04 2024

Generation Division – Coal New Build Unit Management Department (Kusile Power Station) R545 Kendal/Balmoral Road, Haartebeesfontein Farm, Witbank Postnet Suite 283 Private Bag X 7297 Witbank 1035 SA Tel+27 13 693 4320 Fax +27 86 768 3030 www.eskom.co.za

1. KUSILE POWER STATION MONTHLY EMISSIONS REPORT: Atmospheric Emission License 17/4/AEL/MP311/12/01

2. Raw Materials and Products

Raw	Raw Material Type	Units	Max Permitted Consumption Rate	Consumption Rate Mar-2024
Materials	Coal	Tons	1 818 083	718 414
Products	Fuel Oil	Tons	5 533	1827.585
	Limestone	Tons	72 917	12181
	Product / By-Product Name	Units	Max Production Capacity Permitted	Indicative Production Rate Mar-2024
Due du sti su	Energy	GWh	3 214.080	1 346.976
Rates	Ash	Tons	663 583	227 665.501
	Gypsum Tons		129 250	6 821.360
	RE PM kg/MV		not specified	0.092
	RE SOx	kg/MWh	not specified	5.289

3. Energy source characteristics

Fuel Characteristic	Units	Stipulated Range	Monthly Average Content
Coal Sulphur	%	1.3	0.800
Ash in Coal	%	38	31.690
Fuel Oil Sulphur	%	3.5	2.690
Ash in FO	%	0.1	0.030

4. Emissions Limits (mg/Nm³)

Associated Unit/Stack	РМ	SO ₂	NOx
North	50	3500	750
South	50	1000	750

5. Abatement Technology (%)

Associated Unit/Stack	Technology Type	Efficiency Mar- 2024	Utilisation Mar - 2024	Technology Type	Efficiency Mar-2024	Utilisation Mar- 2024
Unit 1	FFP	99.921%	100%	FGD	Out of service	Out of service
Unit 2	FFP	99.989%	100%	FGD	Out of service	Out of service
Unit 3	FFP	99.898%	100%	FGD	Out of service	Out of service
Unit 4	FFP	99.987%	100%	FGD	99.939%	100%

Note: Both the FFP and FGD does not have bypass mode operation, hence plant 100% Utilised.

6. Monitoring reliability (%)

Associated Unit/Stack	РМ	SO₂	NO
Unit 1	100.0	100.0	100.0
Unit 2	100.0	100.0	100.0
Unit 3	100.0	100.0	100.0
Unit 4	31.7	99.2	98.4

Unit 4 monitor reliability was below the 80% reliability due to faulty analyser, and the analyser has since been replaced.

7. Emissions Performance

Table 7.1: Monthly tonnages for the month of March - 2024

Associated Unit/Stack	РМ	SO2	NOx
Unit 1	50.6	3 111	977
Unit 2	2.9	827	223
Unit 3	63.1	3 028	805
Unit 4	6.7	158	658
SUM	123.4	7 124	2 662

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average PM (mg/Nm³)
Unit 1	30	0	0	0	0	24.6
Unit 2	16	0	0	0	0	4.8
Unit 3	30	1	0	0	1	31.8
Unit 4	25	0	0	0	0	4.4
SUM	101	1	0	0	1	

Table 7.2: Operating days in compliance to PM AEL Limit - March 2024

Table 7.3: Operating days in compliance to SO₂ AEL Limit - March 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average SO ₂ (mg/Nm³)
Unit 1	31	0	0	0	0	1 404.9
Unit 2	17	0	0	0	0	1 302.1
Unit 3	31	0	0	0	0	1 523.5
Unit 4	26	0	0	0	0	94.5
SUM	105	0	0	0	0	

Table 7.4: Operating	days in compliance to	o NOx AEL Limit – Marc	h 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average NOx (mg/Nm³)
Unit 1	31	0	0	0	0	439.5
Unit 2	17	0	0	0	0	351.6
Unit 3	31	0	0	0	0	405.0
Unit 4	26	0	0	0	0	394.1
SUM	105	0	0	0	0	

Table 7.5: Legend Description

Condition	Colour	Description
Normal		Emissions below Emission Limit Value (ELV)
Grace		Emissions above the ELV during grace period
Section 30		Emissions above ELV during a NEMA S30 incident
Contravention		Emissions above ELV but outside grace or S30 incident conditions

Unit 3 exceeded the daily average on 3rd March 2024 due to leaks on cell 21, bag replacement was done to manage the dust concentration.

Due to a faulty analyser a monthly dust emission average was used from the 15th until the 31st of March 2024.

KUSILE POWER STATION'S MONTHLY EMISSIONS REPORT FOR MARCH 2024 - 17/4/AEL/MP311/12/01

KUSILE POWER STATION'S MONTHLY EMISSIONS REPORT FOR MARCH 2024 - 17/4/AEL/MP311/12/01

8. Correlation and Parallel test

Unit 1, 3 and 4 are operated with valid correlation and parallel curves. Unit 2 is operated with unity curves; the emissions will be retrofitted upon completion of the test and implementation of the curves. The emission reports for Unit 2 will be resubmitted.

9. Shut down and Light up information

Unit No. 1	Event 1		Eve	ent 2	Event 3		
Breaker Open (BO)	5:15 pm	2024/03/02	10:40 am	2024/03/25	8:45 pm	2024/03/30	
Draught Group (DG) Shut Down (SD)	5:20 pm	2024/03/02	10:40 am	2024/03/25	8:50 pm	2024/03/30	
BO to DG SD (duration)	00:00:05	DD:HH:MM	00:00:00	DD:HH:MM	30:20:50	DD:HH:MM	
Fires in time	5:45 pm	2024/03/02	11:25 am	2024/03/25	9:45 pm	2024/03/30	
Synch. to Grid (or BC)	10:15 pm	2024/03/02	4:15 pm	2024/03/25	2:10 am	2024/03/31	
Fires in to BC (duration)	00:04:30	DD:HH:MM	00:04:50	DD:HH:MM	00:04:25	DD:HH:MM	
Emissions below limit from BC (end date)	not > limit						
Emissions below limit from BC (duration)	n/a	DD:HH:MM	n/a	DD:HH:MM	n/a	DD:HH:MM	

Unit No. 2	Eve	nt 1	Event 2			
Breaker Open (BO)	10:40 pm 2024/03/01		9:25 pm	2024/03/17		
Draught Group (DG) Shut Down (SD)	10:40 pm	2024/03/01	10:00 pm	2024/03/18		
BO to DG SD (duration)	00:00:00	DD:HH:MM	01:00:35	DD:HH:MM		
Fires in time	11:20 pm	2024/03/01				
Synch. to Grid (or BC)	4:25 am	2024/03/02				
Fires in to BC (duration)	00:05:05	DD:HH:MM		DD:HH:MM		
Emissions below limit from BC (end date)	not > limit	not > limit				
Emissions below limit from BC (duration)	n/a DD:HH:MM			DD:HH:MM		

KUSILE POWER STATION'S MONTHLY EMISSIONS REPORT FOR MARCH 2024 - 17/4/AEL/MP311/12/01

Unit No. 4	Eve	nt 1	Event 2		
Breaker Open (BO)	BO previously	BO previously	7:10 am	2024/03/23	
Draught Group (DG) Shut Down (SD)	n/a	n/a	DG did not trip or SD	DG did not trip or SD	
BO to DG SD (duration)	n/a	DD:HH:MM	n/a	DD:HH:MM	
Fires in time	10:25 pm	2024/03/05	3:15 pm	2024/03/23	
Synch. to Grid (or BC)	6:20 pm	2024/03/06	6:00 pm	2024/03/23	
Fires in to BC (duration)	00:19:55	DD:HH:MM	00:02:45	DD:HH:MM	
Emissions below limit from BC (end date)	not > limit	not > limit	not > limit	not > limit	
Emissions below limit from BC (duration)	n/a	DD:HH:MM	n/a	DD:HH:MM	

10. Complaints

No complaints reported for the month of March 2024

Date and time complaint was received	Complaint received	Source code name	Root cause analysis	Calculation of impact/emissions associated with incidents and dispersion modelling of pollutants where applicable.	Measures implemented or to be implemented to prevent recurrence	Date by which measures will be implemented
No complair	nts reported fo	or the mor	hth of March	2024 ו		

Kusile Ambient Air Quality Monitoring

March 2024

1. INTRODUCTION

At the request of Environmental Management, Research, Testing and Development Department (RT&D) air quality team initiated an additional ambient air quality monitoring site at Balmoral and Wilge, in the vicinity of Kusile power station. The objective is to assess compliance with national ambient air quality standards, identify potential sources of pollution, protect public health and the environment and establish a baseline for future mitigation measures to enable Eskom to operate temporary stacks at the Kusile power stations at emission levels above the levels authorised in the station's Atmospheric Emission Licence (AEL). The existing air quality monitoring stations (Phola and Chicken Farm) will complement the additional monitoring stations to reduce uncertainties, as each monitoring station has an objective linked to a power station of interest. The Ogies monitoring station will be commissioned in April 2024.

Kendal air quality monitoring data does not form part of the analysis for this reporting since the Kendal monitoring site is solely used for research purposes to assess the worst-case scenario of emissions from the Kendal power station. The monitoring station is located about 2 km from the Kendal power station in the prevailing wind direction. Data recorded at the station reflects the impact of Kendal power station downwind of the station and other sources.

The Balmoral and Wilge monitoring stations are currently equipped to continuously monitor ambient concentrations of sulphur dioxide (SO₂). In addition, meteorological parameters of wind velocity, wind direction and ambient temperature, humidity, ambient pressure and rainfall, amongst others are also recorded.

The following parameters, nitrogen dioxide (NO₂), ozone (O₃) and fine particulate matter of particulate size <10 μ m and particulate size <2.5 μ m in diameter (PM₁₀ and PM_{2.5}) will be monitored from 01 April 2024.

The data for this reporting period (01 - 31 March 2024) were analysed for ambient SO₂ as monitored at Balmoral, Chicken Farm, Phola and Wilge air quality monitoring stations. The Particulate Matter and NO₂ data were further analysed for Chicken Farm and Phola.

This report focuses on the results of the ambient air quality monitoring stations; results from stack monitoring, fugitive dust and animal health are addressed in our reports produced for the station.

2. DATA ACQUISITION AND QUALITY CONTROL

Each monitoring station is visited every two weeks by trained technicians for routine service. Zero and span checks are carried out on each analyser during routine services and any discrepancies are logged and used during data verification at Eskom RT&D Sustainability Department.

Full dynamic calibration audits are carried out on the gas analysers (SO₂, NO₂ and O₃ analysers) quarterly and particulate matter analysers are calibrated every six months. All calibration results and certificates are filed in the laboratory for assessment purposes. Interlaboratory calibrations are routinely carried out with other accredited laboratories ,to enhance quality control.

Data at the monitoring stations are logged directly using dedicated CR-1000 Campbell Scientific data loggers. Permanent data records of all calculated 10-minutes mean values of all parameters monitored, together with minimum and maximum values, are stored on the

logging device. These are derived from 10-second scans and are also logged and saved in 1minute intervals. The raw 1-minute average data is also transferred live to the South African Ambient Air Quality Information System (SAAQIS) server since the 14th of December 2023. Recorded data are downloaded remotely from the site through communicators that are connected to the Eskom network and transferred onto a central computer for verification and validation.

3. MONITORING STATION LOCATIONS

Figure 1 below indicates the locations of the air quality monitoring stations in relation to the Kusile power station. The new monitoring stations, Balmoral and Wilge, are denoted by green icons and the pre-existing monitoring stations, Chicken Farm and Phola, by yellow icons.

Figure 1: Air Quality Monitoring stations in relation to Kusile power station

4. MONITORING RESULTS AND DISCUSSIONS

The data is statistically analysed to assess the diurnal and monthly variations of the air pollutants, as well as to evaluate it against the current national ambient air quality standards for SO_2 , NO_2 , O_3 , $PM_{2.5}$ and PM_{10} .

4.1. DATA RECOVERY

The SANAS guideline figure of 90% data availability per parameter monitored is used as a standard for representative data capture. This describes the required completeness of data set for the reporting of averages and is based on standard arithmetic calculations. The completeness calculations for data sets exclude zero and span data and times where service and/or maintenance is being conducted on the instruments in question. Station availability is reported as a measure of the percentage of time that electrical power was available to the monitoring station.

Stations name	SO ₂	NO ₂	O 3	PM _{2.5}	PM ₁₀	WSP	WDR	Station Availability
Balmoral (BL)	0.1					54.2	54.2	47.4
Chicken Farm (CF)	99.1	64	99.6	100	0	100	100	100
Phola (PO)	99.3	98.8	99.3	0	0	100	100	99.6
Wilge (WL)	91.8					100	100	92.2

Table 1: Percentage data recovery per parameter monitored in March 2024

Good representative percentage data was recovered for all the parameters monitored during the monitoring period under review at the monitoring stations with the exceptions of few parameters at Phola, Chicken Farm and Balmoral respectively. The pollutant and meteorological data for Balmoral were low due to power interruptions in the area. The data for $PM_{2.5}$ and PM_{10} were not recorded at the Phola monitoring station due to faulty instruments. The data for PM_{10} was not recorded at Chicken Farm monitoring station due to faulty instrument. The data for SO_2 was not recorded at the Balmoral monitoring station due to faulty instrument and power interruptions at site.

4.2. METEOROLOGICAL OBSERVATIONS

The distributions of wind direction and wind speed for daytime and night-time hours for the reporting period are summarised on polar diagrams. The centre of the wind rose depicts the position of the air quality monitoring site. The positions of the spokes in the polar diagram represent directions from which the wind was blowing. The length of the segment indicates the percentage of the time the wind blew from that direction and the speed in the various categories are denoted by colours and width.

4.2.1. BALMORAL AIR QUALITY MONITORING STATION

The wind at Balmoral monitoring station was coming from the north-eaterly to easterly directions during the day and from the south-easterly to south-south-easterly directions during the night time. The monitoring station is north-east of Kusile power station.

Figure 2: Wind profiles at Balmoral monitoring station

4.2.2. CHICKEN FARM AIR QUALITY MONITORING STATION

The dominant wind directions at Chicken Farm monitoring station during the day were northwest, north-north-west, north and east. During the night, the dominant wind directions were north-east, east and east-south-east. The monitoring station is south of Kusile power station.

Figure 3: Wind profiles at Chicken Farm monitoring station

4.2.3. PHOLA AIR QUALITY MONITORING STATION

The dominant wind directions at Phola monitoring station during the day were west-north-west and north-west. During the night, the dominant wind directions were east-north-east, east and east-south-east. The monitoring station is south-east of Kusile power station.

Figure 4: Wind profiles at Phola monitoring station.

4.2.4. WILGE AIR QUALITY MONITORING STATION

The wind at Wilge monitoring station was coming from the north, north-north-east, north-east to north-north-west directions during the day. The dominant wind sectors during the night are north-east, south-south-east to south-east. The monitoring station is south-east of Kusile power station.

Figure 5: Wind profiles at Wilge monitoring station.

4.3. EXCEEDANCES OF THE NATIONAL AMBIENT AIR QUALITY LIMITS

Pollutant	Unit	Period	Limit	Number of annual exceedances allowed	Source
Carbon Monoxide	Ppm	1hr	26.	88.	DFFE
Carbon Monoxide	Ppm	8hr	8.7	11.	DFFE
(PM ₁₀) by Beta gauge	µg/m³	24hr	75.	4.	DFFE
(PM ₁₀) by Beta gauge	µg/m³	1year	40.	0.	DFFE
(PM _{2.5}) by Beta gauge	µg/m³	24hr	40	4	DFFE
(PM _{2.5}) by Beta gauge	µg/m³	1year	20	0	DFFE
Nitrogen dioxide	Ppb	1year	21.	0.	DFFE
Nitrogen dioxide	Ppb	1hr	106.	88.	DFFE
Ozone	Ppb	8hr	61.	11.	DFFE
Sulphur dioxide	Ppb	1hr	134.	88.	DFFE
Sulphur dioxide	Ppb	10min	191.	526.	DFFE
Sulphur dioxide	Ppb	24hr	48.	4.	DFFE
Sulphur dioxide	Ppb	1year	19.	0.	DFFE

Table 2: National Ambient Air Quality Standards

The National Department of Forestry, Fisheries and the Environment (DFFE) has set the South African Ambient Air Quality Standards for the criteria pollutants as illustrated in Table 2.

Table 3: Highest SO₂ concentration recorded (in ppb).

Monitoring Stations	10-min average	Date	Hourly average	Date	Daily average	Date
Balmoral	ND		ND		ND	
Chicken Farm	103.6	31/03/2024 09:10	70.9	13/03/2024 15:00	18.9	26/03/2024
Phola	116.1	12/03/2024 10:20	106.0	12/03/2024 12:00	22.6	26/03/2024
Wilge	80.8	1303/2024 11:50	65.2	13/03/2024 15:00	18.4	26/03/2024

There were no exceedances of the ambient SO_2 limits recorded for all the monitoring stations during the monitoring period under review. The highest SO_2 concentrations recorded at the monitoring stations are indicated in Table 3 and figures 6 to 8 below.

Figure 7: Time series graph for the SO2 daily mean concentrations at Phola AQM station

Figure 8: Time series graph for the SO₂ daily mean concentrations at Chicken Farm AQM station

There were no exceedances of the NO₂ hourly limit of 106 ppb recorded at the monitoring stations during the March 2024 monitoring period. There were fourteen (14) exceedances of the $PM_{2.5}$ daily limit of 40 µg/m³ recorded at the Chicken Farm monitoring station. See Figure 10 below.

Figure 9: Time series graph for the PM_{2.5} daily mean concentrations at Chicken Farm AQM station

Table	4:	Exceedances	above	national	ambient	air	quality	limits	for	Chicken	Farm	air	quality
monitoring station													

	PM _{2.5} Daily Exceedances (Chicken Farm)								
Pollutant	Limit	Year	Month	Day	Conc. (µg/m³)				
PM _{2.5}	40	2024	March	01	60.3				
PM _{2.5}	40	2024	March	03	42.5				
PM _{2.5}	40	2024	March	04	42.2				
PM _{2.5}	40	2024	March	08	43.7				
PM _{2.5}	40	2024	March	09	85.9				
PM _{2.5}	40	2024	March	10	62.7				
PM _{2.5}	40	2024	March	11	54.6				
PM _{2.5}	40	2024	March	14	55.7				
PM _{2.5}	40	2024	March	17	58.1				
PM _{2.5}	40	2024	March	20	71.0				
PM _{2.5}	40	2024	March	21	67.3				
PM _{2.5}	40	2024	March	22	46.8				
PM _{2.5}	40	2024	March	28	42.3				
PM _{2.5}	40	2024	March	29	76.8				

Table 5: Exceedances of the NAAQ Limits per pollutant- March 2024

Averaging Period	Balmoral	Chicken Farm	Phola	Wilge
SO ₂ 10-min	0	0	0	0
SO ₂ Hourly	0	0	0	0
SO ₂ Daily	0	0	0	0
NO ₂ Hourly		0	0	
O ₃ 8-hourly		227	11	
PM _{2.5} Daily		14	ND	
PM ₁₀ Daily		ND	ND	

A summary of all exceedances per pollutant for March 2024 is shown in Table 5.

SO₂ trigger levels or emergency response levels will be based on the United States Acute Exposure Guideline Levels for Hazardous Substances. (AEGL) as amended for South African circumstances. Levels confirmed with the authorities are as follows.

- a. AEGL 1 the cautionary notification level (non-disabling level) is based on the South African NAAQS limit – for SO₂ this will be 191 ppb over 10-minute for exposure more than 4 hours.
- b. AEGL 2 the warning notification level (disabling level for those with asthma) is aligned to the US AEGL approach – for SO₂ will be 744 ppb over a 10-minute for exposure up to 8 hours.
- c. AEGL the lethality level for SO_2 , this will be 29 771 ppb over a 10-minute period.

There were no events that triggered the notification of stakeholders in terms of the agreed AEGL recorded in March 2024.

SITES	CF	РО	BL	WL	Allowed No. of Exceedances
PM₁₀ (Daily)	0	0	ND	ND	4
PM _{2.5} (Daily)	23	1	ND	ND	4
NO₂ (hourly)	0	0	ND	ND	88
SO₂ (Hourly	0	0	0	0	88
SO₂ (Daily)	0	0	0	0	4
O₃ (8h moving)	115	67	ND	ND	11
SO₂ (10 minute)	0	0	0	1	526

Chicken Farm air quality monitoring is in non-compliance with national ambient air quality limits of $PM_{2.5}$ daily limit of 40 µg/m³. The sources that have an impact on Chicken farm are Eva high Steel and Vanadium in the north-east, Phola Township in the east-south-east, Klipspruit Colliery in the south east and Kusile Power station in the north to north-west sectors.

5. DFFE AND SAAQIS REPORTING

The raw monitoring data, downloaded at 1-minute averages is available in real-time to the DFFEmanaged South African Air Quality Information System (SAAQIS) since the 14th of December 2023 for all Eskom air quality monitoring stations.

6. CONCLUSIONS

There were no exceedances of the ambient SO₂ limits recorded for all the monitoring stations during the monitoring period under review. There were fourteen (14) exceedances of the $PM_{2.5}$ daily limit of 40 µg/m³ recorded at the Chicken Farm monitoring station.

There were no events that triggered the notification of stakeholders in terms of the agreed AEGL recorded in March 2024.

Incident Investigation Report

Kusile Power Station Unit 1 and 3 Particulate Matter (PM) daily average exceedances in October, November, and December 2023.

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Document Identifier	240-131462934	Rev	2	
Effective Date	October 2023			
Review Date	October 2026			1

1. IDENTIFYING INFORMATION:

- a. Type of incident: Particulate Matter emission limit exceedances
- b. Business Unit affected: Kusile Power Station
- c. Location of the incident: Unit 1 and 3
- d. Date of the incidents:

Unit 1	Octob	er 2023:
	0	20-28/10/2023
	Nover	<u>nber 2023:</u>
	0	5-7/11/2023
	0	11-15/11/2023
1	0	22-25/11/2023
Unit 3	Nover	nber 2023
	0	02-25/11/2023
	0	29-30/11/2023
	<u>nber 2023</u>	
	0	01-20/12/2023

e. Contact details of the person reporting the incident: Lesiba Kgobe - 013 699 7917

2. DESCRIPTION OF INCIDENT:

Upon retrofitting the emission reports, Kusile Power Station noted exceedances of Particulate Matter emission daily averages limits on Unit 1 and 3 in October, November and December 2023.

3. LEGISLATION APPLICABLE TO THE INCIDENT

National Environmental Management Air Quality Act Kusile Power Station Atmospheric Emission License Ref no 17/4/AEL/MP311/12/01

4. SUPPORTING EVIDENCE:

Kusile Power Station emission reports for October, November and December 2023.

5. INVESTIGATION FINDINGS:

i. Only indicative values were available resulting in the station unable to activate the high dust emission response procedure, due to lack of correlated data.

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Esko	m
------	---

Kusile	Power	Station
Environ	mental	Incident
Inv	vestigat	tion

Station	Document Identifier	240-131462934	Rev	2	
Station Incident ion	Effective Date	October 2023			
	Review Date	October 2026			1

- ii. The first 1000-1200 operational hours are associated with high emissions. The material fibres for the installed bag set are 100% PPS and did not assist with the reduction of PM that is provided by the PI or P84 fibre.
- iii. PM concentration is affected by cleaning system parameters and exposure to high differential pressure (DP).
- iv. Online cell inspection was ongoing based on cell dust flow meters trends. This was effective in reducing dust from damaged bags but ineffective in reducing high dust concentrations associated with bleed through.

6. INVESTIGATION COMMITTEE MEMBERS:

- System Engineer Nontobeko Moyo
- System Engineer Nthabiseng Tsosane
- Process Engineer Hanneke Heymans
- Senior Advisor Environmental- Cylia Malebana
- Senior Advisor Environmental Maghawe Nkambule
- Environmental Officer Nhlonipho Nkosi
- Performance and Testing Technician Kenneth Mkhonto

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Document Identifier	240-131462934	Rev	2	
Effective Date	October 2023			
Review Date	October 2026			

1. Executive Summary

Upon retrofitting the emission reports, Kusile Power Station noted exceedances of Particulate Matter emission daily averages limit on Unit 1 and 3 in October, November and December 2023.

2. Sequence of Events

- Unit 3, Unit 1, and Unit 2 returned to service on the 29 September, 16 October, and 28 November 2023 respectively.
- The Continuous Emissions Monitoring Systems (CEMS) for unit 1, 2 and 3 were installed and commissioned by 29 Setember 2023.
- The PM and Gaseous (SO2 and NOx) emissions were being reported using the unity curves upon the returned to service of the units until correlation tests were completed.
- Correlations tests for Unit 3 and 1 were completed successfully by November 2023 Unit 3 and December 2023 Unit 1 and the finalized reports were received by January 2024.
- Implementation of the correlations curves on Unit 1 and 3 Distributed Control System (DCS) and Emission Reporting Tool (ERT) were completed and the process of retrofitting emission reports commenced.

3. Incidents details

Emission Monitoring: A new DCS screen was configured for the temporary stack where only indicative values were available for operator to monitor the emissions limits pending correlation testing. Figure 1 below shows a snapshot of the DCS for Unit 2 showing the temporary stack Continuous Emission Monitoring System (CEMS) screen. This is what was available to the operator for the period during which correlations were not implemented. The correlation curves were implemented on the 15 January 2024 for Unit 1 and 3 following the completion of the tests. Unit 2 correlation test is still pending due to load restriction.

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

€ska	om	Kı Env	isile P vironm	ower Station ental Incident	Document Identifier	240-	131462934	Rev	2
			Inve	stigation	Effective Date	e Octo	ber 2023		
					Review Date	Octo	ber 2026		
Panding Cor	relation / (alibration	- do not						
10 / Vol	% at Stacl	k (Correlate	ed)		Instantaneo	us Raw V	alues		
	Min	Hour	Day		SO2	2054.22	mg/Nm ^s		
Dust	0.00	0.00	0.00	mg/Nm³	NO	302.2	mg/Nm ^a		
SO2	49.7	49.7	49.7	mg/Nm³	NO2	-0.1	mg/Nm³		
NOx	0.0	0.0	0.0	mg/Nm³	NOx	462.3	mg/Nm ³		
co	6.9	6.9	6.9	mg/Nm*	Temperature	142.6	°C		
02	0.0	0.0	0.0	%	Temperature	142.0	10		
CO2	0.0	0.0	0.0	%	Pressure	839.1	nPa		
Pressure	80.0	80.0	. 80.0	kPa	02	5.8	Vol%		
Temperature	0.0	0.0	0.0	°C	Dust	11.4	S		
Volumn Flow	0.0	0.0	0.0	Nm ³ /s	Velocity	18.6	m/s		
younari low	0.0	0.0	0.0		CO	0.0	ppm		
					CO2	13.1	%		

Figure 1: Temporary stack DCS interface (Current Unit 2 state with indicative values available for monitoring

Ash Bleed-Through: Filtration theory defines the filter fabric as a support medium, on which a primary ash cake is to form. This primary cake is responsible for increasing filtration efficacy. On the primary layer, the secondary ash cake is formed which is to be removed by the installed cleaning system for conveying via the Dust Handling Plant (DHP). During pulse cleaning, the cleaning pulse abruptly pushes the bag outward allowing for the secondary ash cake to dislodge, however, it also temporarily stretched the bag fabric, opening the pores and allowing for the passing of the smaller ash particle. For this reason, there is ash bleed-through, or increased emission associated with the pulse cleaning. The cleaning system parameters are set such that the secondary ash cake removal is achieved with the least possible cleaning pressure and frequency settings. This is to allows for the extension of the filter bag life. More importantly, the settings allow for improved Pulse Jet Fabric Filter plant (PJFFP) PM removal efficiency as it allows for primary ash cake to be established at an early stage of operation through minimising the ash bleed-through. For the case of returning Kusile Unit 1 and 3 to service, the system differential pressure (DP) at which the cleaning system pulse cleaning is initiated was changed from 1.3kPa to 1.5kPa to delay the cleaning sequence starting point. This was to account for the bag set being new and prone to ash bleed-through and to allow for the formation of the ash cake. The settings would be optimised to the system DP at a later stage of operation as required.

System Differential Pressure: There were instances where there was a decrease in pressure supplied to the system for pulse cleaning, this would lead to elevated operating differential pressures from the system. The system would then automatically adjust the cleaning pressure and frequency to reduce the

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Eskom

Kusile Power Station Environmental Incident Investigation

Document Identifier	240-131462934	Rev	2
Effective Date	October 2023		
Review Date	October 2026		

DP, however, this has a negative effect on the outlet PM concentration. In addition to this, any increase in operating DP is associated with the Induced Draught (ID) Fan vanes position increasing to overcome the DP and maintain stable furnace pressure. This vital control further exacerbates the PM concentration challenge as it pulls harder against any ash leaks existing in the plant.

Filter Material: For any bag set, it is envisaged that there are emissions associated with early bag life, however, the set installed in unit 1 and 3 had fibre composition of 100% PPS and did not include the PI/P84 final layer. This final layer is included in the updated Kusile PPS bag specification and is a trilobal fibre that allows for increased surface area and reduces these emissions associated with pulse cleaning at early bag life.

PJFF Plant PM Management: The PJFF plant is the abatement technology installed for the removal of PM to concentrations below 50mg/Nm³. The system has known design defects concerning the distribution of flow through the plant. This makes sections of the plant structure and certain position of the filter bag installation prone to erosion damage. The damaged bags act as point of ash leakage and has a negative effect on the outlet dust concentration measured from the plant. Several engineering changes have been implemented that have improves the flow distribution challenge in the plant such as:

- Installation of deflector plates on the individual cell inlets
- Installation of diffusion plate on the inlet to reduce the volumetric flow towards the bags
- Installation of dummy bags in high wear areas
- Installation of erosion protection tiles and angle irons for ducting and supports

These have assisted with the erosion challenge however frequent bag failure remains a problem requiring intervention for PM management. The PJFF plant is fitted with individual cell dust flow monitors that provides a relative dust flow concentration measured as a percentage. The dust flow meters are trended on a weekly basis and PJFF cell prioritisation for cell access communicated to the maintenance team. Cell inspections for bag replacements are then conducted by the maintenance department. For the period where the PM concentration measurements were not available on the CEMS, these activities were ongoing based on information from the cell dust flow monitors.

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Eskom

Kusile Power Station Environmental Incident Investigation

on	Document Identifier	240-131462934	Rev	2	
on ent	Effective Date	October 2023			
	Review Date	October 2026			
					-

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Kusile Power Station Environmental Incident Investigation

	Document Identifier	240-131462934	Rev	2	
	Effective Date	October 2023			
	Review Date	October 2026			

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

File name: 240-131462934-Kusile Power Station Environmental Incident Investigation-Rev 2 Template ID: 240-43921804 (Rev 7) Header and Footer portrait template

Page 8 of 14

Kusile Power Station Environmental Incident Investigation

Document Identifier	240-131462934	Rev	2
Effective Date	October 2023		
Review Date	October 2026		

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Eskom	Kusile Power Station	Document Identifier	240-131462934	Rev	2
	Investigation	Effective Date	October 2023		
		Review Date	October 2026		

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Kusile Power Station Environmental Incident Investigation

Document Identifier	240-131462934	Rev	2	
Effective Date	October 2023			
Review Date	October 2026			

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

File name: 240-131462934-Kusile Power Station Environmental Incident Investigation-Rev 2

Template ID: 240-43921804 (Rev 7) Header and Footer portrait lemplate

Page 11 of 14

Kusile Power Station Environmental Incident Investigation

Document Identifier	240-131462934	Rev	2	
Effective Date	October 2023			
Review Date	October 2026			

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

File name: 240-131462934-Kusile Power Station Environmental Incident Investigation-Rev 2

Page 12 of 14

Eskom

Kusile Power Station Environmental Incident Investigation

Document Identifier	240-131462934	Rev	2	
Effective Date	October 2023			
Review Date	October 2026			

4. Investigation Findings

- Only indicative values were available resulting in the station unable to activate the high dust emission response procedure, due to lack of correlated data.
- The first 1000-1200 operational hours are associated with high emissions. The material fibres for the installed bag set are 100% PPS and did not assist with the reduction of PM that is provided by the PI or P84 fibre.
- PM concentration is affected by cleaning system parameters and exposure to high DP.
- Online cell inspection was ongoing based on cell dust flow meters trends. This was effective in reducing dust from damaged bags but ineffective in reducing high dust concentrations associated with bleed through.

5. Incident analysis

Root cause

• Use of PPS bags that are without PI or P84 fibre final layer.

Direct cause

• High dust emissions from PJFFP

Contributory causes

• Operating of Unit 1 and 3 with unity curves

6. Corrective and preventative action recommendations

No	Action	Responsibility	Target Date
5.1	Spot checks are to be done on units during the	Performance	Upon return to service
	next CEMS installation while awaiting	Testing Engineering	of Units – if required
	correlations for implementation of a	Manager	
	preliminary curve. This will allow for the		
	operator to have values to monitor and action		
	while awaiting test.		
5.2	Cleaning system setting DP used to start the	Boiler Maintenance	Upon installation of new
	pulse cleaning will be increased to 1.5kPa	Manager	bags
19 A.	from 1.3kPa for a new bag set. In addition to		

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

Eskom

Kusile Power Station Environmental Incident Investigation

n	Document Identifier	240-131462934	Rev	2
nτ	Effective Date	October 2023		
	Review Date	October 2026		

	this, the maximum pulse cleaning pressure		
	setting will be limited to 500kPa instead of		к · · ·
	600kPa to prevent disturbance of the primary		
e e	ash cake		
5.3	The specification for the PPS will be used at	PJFFP System	Completed
	Kusile going forward will include the PI or P84	Engineer	
	fibre final layer.		
5.4	Online bag replacements will continue as	Boiler Maintenance	As and when required
	required by the system for PM concentration	Technician	
	management.		

7. LESSON LEARNT

- The use of correct specification for procuring the PJFFP bags.
- Spots checks to be done while awaiting plant conditions to allow for full correlation test specifically for Units coming from long term outage.

Compiled by: Supported by: Approved by: Christopher Nani Lesiba Kgobe Grace Olukune Acting General Manager **Environmental Management Engineering Group Manager** 24/04/2024 Manager Date: 24/4/2024 Date: 24/04/2024 Date:

Controlled Disclosure

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system. No part of this document may be reproduced in any manner or form by third parties without the written consent of Eskom Holdings SOC Ltd, © copyright Eskom Holdings SOC Ltd, Reg No 2002/015527/30

File name: 240-131462934-Kusile Power Station Environmental Incident Investigation-Rev 2 Template ID: 240-43921804 (Rev 7) Header and Footer portrait template Page 14 of 14