

Ms Nompumelelo Simelane Nkangala District P.O Box 437 **MIDDLEBERG**

1050

By email: Simelanenl@nkangaladm.gov.za

Date:

30 April 2024

Enquiries: S Chokoe

Tel +27 13 647 6970

Dear Ms. Nompumelelo Simelane

Ref: Kendal Power Station AEL (17/4/AEL/MP312/11/15)

RESUBMISSION OF KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF FEBRUARY 2024.

This is a monthly report required in terms of Section 7.4 in the Kendal Power Station's Atmospheric Emission License. The emissions are for Eskom Kendal Power Station.

The report is late due to the engineering's analysis that the station made on the reports to utilize Deutsch efficiency equation where monitors maxed out to get the surrogation value. The final decision to implement the surrogation exercise was made in February 2024 and the station had to implement the exercise on the April 2023 to March 2024 Air Quality reports.

Compiled by:

ENVIRONMENTAL SENIOR ADVISOR- KENDAL POWER STATION

Date: 30/04/2024

Supported by:

Solly Chokoe

ENVIRONMENTAL MANAGER- KENDAL POWER STATION

Date: 30/04/2024

Generation Division (Kendal Power Station) N12 Balmoral Off Ramp, Emalahleni

Private Bag x7272, Emalahlani 1035 SA Tel +27 13 647 6970 Fax +27 13 647 6904 www.eskom.co.za

KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF FEBRUARY 2024

Verified by:

BOILER ENGINEERING: SENIOR SYSTEM ENGINEER- KENDAL POWER STATION

Date: 30/04/2024

Validated by:

Tendani Rasivhetshele

BOILER ENGINEERING MANAGER-KENDAL POWER STATION Date: 3010412024

Supported by:

Malibongwe Mabizela

ENGINEERING MANAGER-KENDAL POWER STATION Date: 2024 05/02

Approved by:

Tshepiso Temo

GENERAL MANAGER-KENDAL POWER STATION

FEBRUARY 2024

ESKOM KENDAL POWER STATION MONTHLY EMISSIONS REPORT Atmospheric Emission License 17/4/AEL/MP312/11/15

1 RAW MATERIALS AND PRODUCTS

Raw Materials	Raw Material Type	Units	Maximum Permitted Consumption Rate	Consumption Rate Feb-2024
and	Coal	Tons	2 260 000	562 779
Products	Fuel Oil	Tons	5 000	10854.330
CEPTER DE L'ANGE	Braduct / Bu Braduct	752	I Maniana Banduatian	Indicative Banduation
Production	Product / By-Product Name	Units	Maximum Production Capacity Permitted	Indicative Production Rate Feb-2024
Production Rates		Units		
Production Rates	Name		Capacity Permitted	Rate Feb-2024

Note: Maximum energy rate is as per the maximum capacity stated in the AEL: [4 116 MW] x 24 hrs x days in Month/1000 to convert to GWh

2 ENERGY SOURCE CHARACTERISTICS

Coal Characteristic	Units	Stipulated Range	Monthly Average Content
CV Content	MJ/kg	16-24 (MJ/kg)	18.320
Sulphur Content	%	<1 (%)	0.760
Ash Content	%	40 (%)	33.630

3 EMISSION LIMITS (mg/Nm²)

Associated Unit/Stack	РМ	SO ₂	NOx	
Unit 1	100	3500	1100	
Unit 2	100	3500	1100	
Unit 3	100	3500	1100	
Unit 4	100	3500	1100	
Unit 5	100	3500	1100	
Unit 6	100	3500	1100	

4 ABATEMENT TECHNOLOGY (%)

Associated Unit/Stack	Technology Type	Efficiency Feb-2024	Technology Type	SO, Utilization Feb-2024
Unit 1	ESP + SO1	96.920%	SO,	0.0%
Unit 2	ESP + SO,	98.517%	SO,	0.0%
Unit 3	ESP + SO;	99 514%	SO,	0.0%
Unit 4	ESP + SO,	99.397%	so,	0.0%
Unit 5	ESP+SO,	98 806%	SO,	0.0%
Unit 6	ESP + SO,	Off-line	50,	Off-line

There is no value for 503 utilization due to switch failure on the server, however Kendal Sulfur utilization database will be ready once we commissioned the new PI, system.

Note: ESP plant does not have bypass mode operation, hence plant 100% Utilised.

5 MONITOR RELIABILITY (%)

Associated Unit/Stack	PM	SO ₂	NO	0,
Unit 1	86.0	78.3	78.9	67.8
Unit 2	63.4	99.6	100.0	90.3
Unit 3	76.5	100.0	84.6	0.0
Unit 4	100.0	100.0	100.0	10.3
Unit 5	97.6	99.5	94.8	99.3
Unit 6	Exempt	0.0	0.0	0.0

Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO₂

6 EMISSION PERFORMANCE

Table 6.1: Monthly tonnages for the month of February 2024

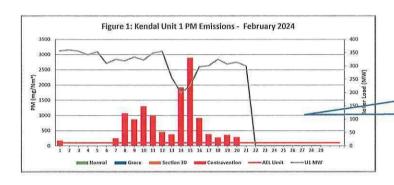
Associated Unit/Stack	PM (tons)	SO ₂ (tons)	NO, (tons)
Unit 1	738.2	1 890	742
Unit 2	413.8	2 020	673
Unit 3	57.2	.0	0
Unit 4	275.7	2 307	1 237
Unit 5	502.2	2 324	1 014
Unit 6	Exempt	0	0
SUM	1 987.08	8 541	3 667

Table 6.2: Operating days in compliance to PM AEL Limit - February 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average PM (mg/Nm³)
Unit 1	0	0	0	15	15	1 503.5
Unit 2	0	0	0	21	21	434.7
Unit 3	0	0	0	5	5	215.5
Unit 4		7	0	3	10	188.3
Unit 5		0	0	10	10	341.5
Unit 6	Exempt	Exempt	Exempt	Exempt	Exempt	Exempt
SUM	0	7	0	54	61	

Table 6.3: Operating days in compliance to SO₂ AEL Limit - February 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average SO ₂ (mg/Nm³)
Unit 1	21	0	0	0	0	1 599.5
Unit 2	22	0	0	0	0	1 958.7
Unit 3	0	0	0	0	0	
Unit 4	28	0	0	0	0	1 576.2
Unit 5	25	0	0	0	0	1 525.9
Unit 6	0	0	0	0	0	
SUM	96	0	0	0	0	


Table 6.4: Operating days in compliance to NOx AEL Limit - February 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average NOx (mg/Nm³)
Unit 1	21	0	0	0	0	629.4
Unit 2	22	0	0	0	0	648.8
Unit 3	0	0	0	0	Ö	
Unit 4	28	0	0	0	0	838.1
Unit 5	25	0	0	0	0	662.4
Unit 6	0	0	0	.0	0	
SUM	96	0	0	0	0	

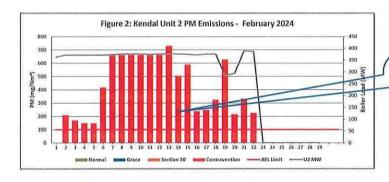
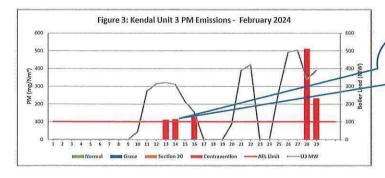
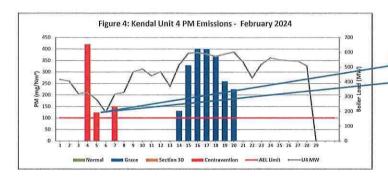
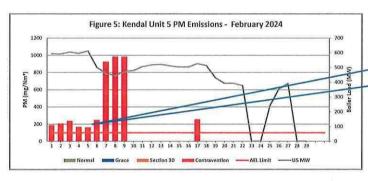
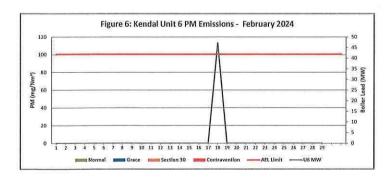

Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO₂

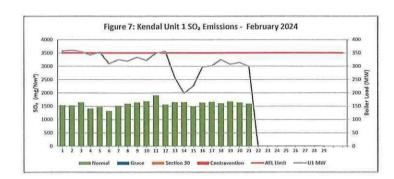
Table 6.5: Legend Description

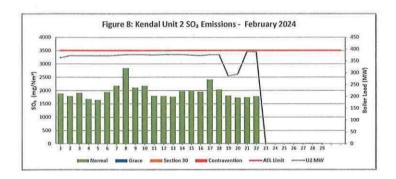

Condition	Colour	Description		
Normal	GREEN	Emissions below Emission Limit Value (ELV)		
Grace	410-71	Emissions above the ELV during grace period		
Section 30	ORANGE	Emissions above ELV during a NEMA S30 incident		
Contravention	REO	Emissions above ELV but outside grace or S30 incident conditions		

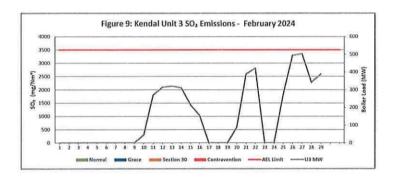

High emissions can be attributed to
Ash spreader that tripped due to high ash
piles, pHP precipt conveyor 11 to 24 that
was still hecked in due to first Sknife
gates that dosed due to prelonged sub
hacklogs caused by Fly ash buncker
conditioners failure. Unit on oil support.

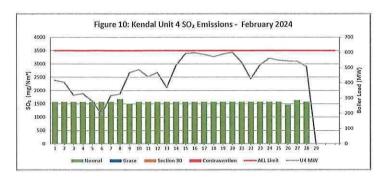

High emissions can be attributed to defective Fly Ash Bunkers One conditioners { bearings & folipper gates failures}. S which resulted with prolonged DHP standing/ backlogs with first S knile gates closed due tohigh compartments high levels. Spreader tripped link conveyor overloaded with sturry.

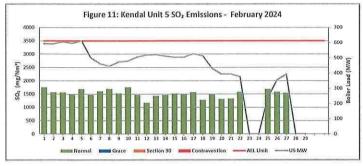

High emissions can be attributed to Unit light up, \$03 not available. DHP precipt, 11 standing with all kg's closed DHP standing with first 5 knife gates closed, Precipt 24 stopped running.

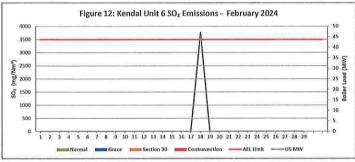


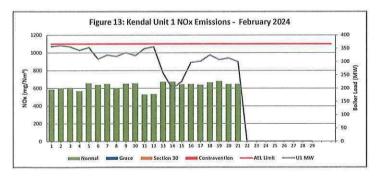

High PM emissions can be attributed to DHP standing with kaife gates closed due to high compartments high levels. Low sulfur flow.

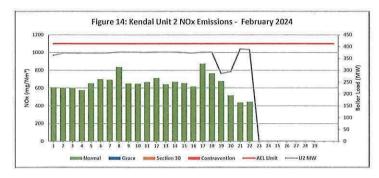


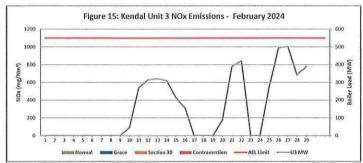

High put emissions can be attributed to Spreader tripped on link conveyor geating & no power to run the motor, Top bunker convey tripped, DHP is stands due to compartments figh levels. Kirile gate closed on first collecting conveyor due to DHP Precipt 21-24 standing on U.S. Unvallability of bucket elevator streams which resulted with DHP standing with kaifle gates closed due to high compartments high rayels.

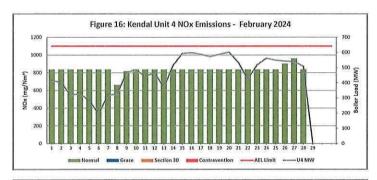


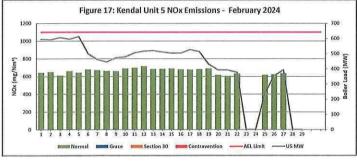


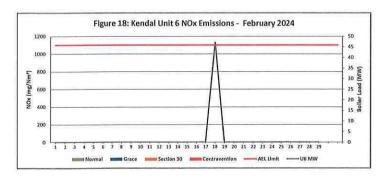












7 COMPLAINTS

There were no complaints for this months

Source Code /	Root Cause Analysis	Calculation of Impacts /	Dispersion modeling of pollutants	Measures implemented to
Name		emissions associated	where applicable	prevent reoccurrence

Abatement Technology-Table 4

In order to achieve the required operational dust removal efficiency based on measured values, several assumptions such as

☐ Coal ash content (%) and burnt rate mass ☐ Fly: Coarse ash ratio of 80:20 - 80% of fly-ash mass obtained from burnt coal goes to ESP

Measurement of dust emission by Dust Monitor over a period of time (monthly)

Operational Dust Removal Efficiency

 $\eta = (1 - (Output/Input)) \times 100$

Monitor Reliability-Table 5

Monitor Reliability-Table 5
In terms of the minimum emissions standard, the requirement is that a monitor should be 80% reliable on a monthly average.
The monitor reliability refers to data reliability because the assumed value of 99.325% reliability is compared to the dust concentration signal. If the dust concentration signal is above 99.325% opacity, the data information is no longer reliable because the monitor reading is out of its maximum reading range. The data reliability looks at how many times did the dust concentration signal go above 98% over a period of time e.e 24hours

The formula is as follows: = (1 – (count hours above 99.325%/24hours))x 100

Emissions Performance:

- > Average velocity values from the latest correlation report were used on the gaseous emissions on Unit 1, 2,4,5 &6 due to defective CEMS monitors and velocity correction factors were set M=1 and C=0

 Unit 5 Monitor is now using the new monitor correlation. New correlation factors were implemeted.
- > Please note the reported figures in tonnage calculation are the figures after the station used the maxing out PM monitor quantification exercise which is the use of "surrogate values" on days when the monitor maxed out. The following are the days when the monitor was maxing out. Unit 1 on the 4th & 5th, 8th to 11th and 14 & 16, Unit 2 6th to 21st, Unit 3 26th to 29th.

> Unit 1

Findings: The high emissions can be attributed to Ash spreader that tripped due to high ash piles, DHP precipt conveyor 11 to 24 that was still checked in due to first 5 knife gates that closed due to prolonged ash backlogs caused by Fly ash buncker conditioners failure. Unit was on oil support on some of the days.

> Resolution: Plant repaired

> Unit 2

Findings: The high emissions can be attributed to defective Fly Ash Bunkers one conditioners (bearings & flopper gates failures) which resulted with prolonged DHP standing/backlogs with first 5 knife gates closed due to high compartments high levels. Spreader tripped link conveyor overloaded with slurry.

> Resolution: Plant repaired.

Findings: The high PM emissions can be attributed to Unit light up, SO3 that was not available. DHP precipt 11 that was standing with all kg's closed, DHP standing with first 5 knife gates closed, Precipt 24 stopped running.

> Resolution: Plant repaired.

Findings: High PM emissions can be attributed to the DHP that was standing with knife gates closed due to high compartments levels and also due to low sulfur flow.

> Resolution: Plant repaired.

Findings: High PM emissions can be attributed to the spreader that tripped on link conveyor gearbox & there was no power to run the rindings. Tight PM emissions can be activated to the spreader that tripped on him conveyor gention activities and power to that the motor, Top bunker conveyor tripped, the DHP was standing due to compartments high levels. Knife gate closed on first collecting conveyor due to DHP Precipt 21-24 standing on Unit 5. Unvailability of bucket elevator streams which resulted with DHP standing with knife gates closed due to high compartments levels.

➤ Resolution: Plant repaired.

Unit 6 on outage.