

Ms Nompulelo Simelane

Nkangala District Municipality PO BOX 437 **Middelburg**

1050

Date:

26 April 2024

Enquiries:

Livhuwani Tshilate 017 615 2317

Ref: 17/4/AEL/MP312/11/09

Dear Ms. Simelane

KRIEL POWER STATION'S MONTHLY STACK EMISSIONS REPORT FOR THE MONTH OF MARCH 2024

This serves as the monthly report required in terms of Section 7.4 in Kriel Power Station's Atmospheric Emission License 17/4/AEL/MP312/11/09. The emissions are for the month of March 2024. Verified emissions of particulates matter, SO_2 and NO_x (as NO_2) are also included.

Raw Materials and Products

Table 1: Quantity of Raw Materials and Products used/produced for the month of March 2024

Raw Materials and Products used	Raw Material Type	Units	Maximum Permitted Consumption / Rate (Quantity)	Consumption / Rate in Month of March 2024	
useu	Coal	Tons/month	1 227 600	673 566.200	
	Fuel Oil	Tons/month	5 000	6535.152	
Production Rates	Product/ By- Product Name	Unit	Maximum Production Capacity Permitted (Quantity)	Production Rate in Month of March 2024	
	Ash	Tons/month	not specified	177 821.477	
	RE PM	kg/MWh	not specified	4.111	

1/...

Abatement Technology

Table 2: Abatement Equipment Control Technology for March 2024.

		Actual Efficiency (%)	Utilisation
		March 2024	March 2024
Associated Unit/Stack	Technology Type		
Unit 1	ESP	99.89%	100.00%
Unit 2	ESP	98.90%	100.00%
Unit 3	ESP	97.62%	100.00%
Unit 4	ESP	Outage	Outage
Unit 5	ESP	89.54%	100.00%
Unit 6	ESP	94.44%	100.00%

Energy Source Characteristics

Table 3: Energy Source Material Characteristics for the month of March 2024

Characteristic	Stipulated Range (Unit)	Monthly Average Content		
Sulphur Content	0.6-1.2 (%)	0.760		
Ash Content	27-32 (%)	26.400		

Monthly Monitor Reliability

Associated Unit/Stack	PM (%)	SOx (%)	NOx (%)		
North	76.52	87.10	87.10		
South	60.61	97.14	100.00		

Emissions Reporting

Table 6.5: Graph Legend Description

Condition	Colour	Description
Normal		Emissions below Emission Limit Value (ELV)
Grace		Emissions above the ELV during grace period
Section 30		Emissions above ELV during a NEMA S30 incident
Contravention		Emissions above ELV but outside grace or S30 incident conditions

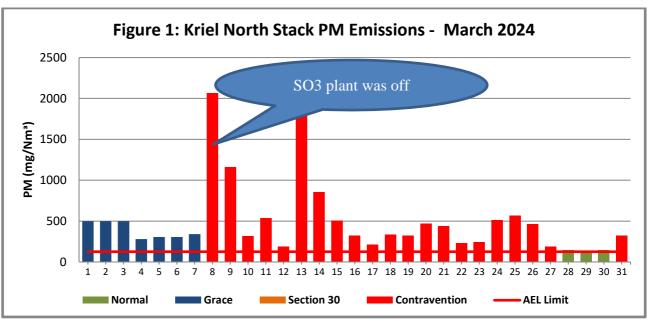


Figure 1: PM emissions for the month of March 2024 against emission limit for the North Stack. Monthly average was 498.5 mg/Nm3.

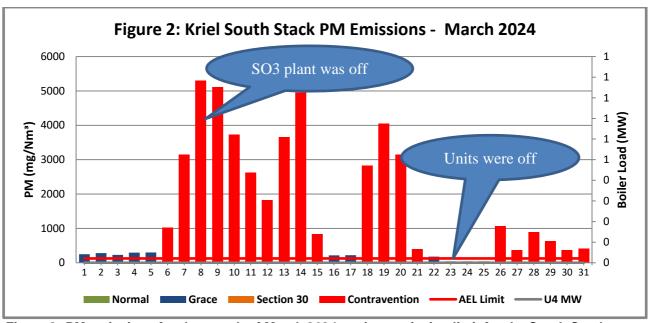


Figure 2: PM emissions for the month of March 2024 against emission limit for the South Stack. Monthly average was 1564.3 mg/Nm3.

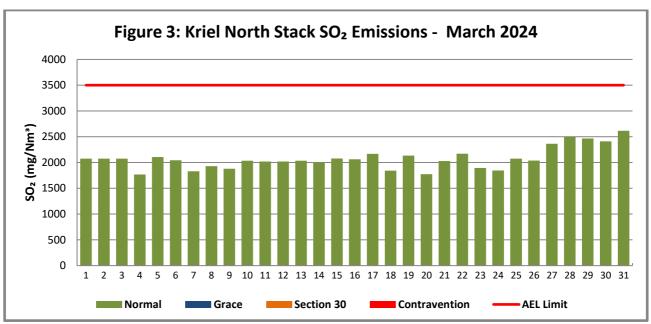


Figure 3. SO₂ emissions for the month of March 2024 against emission limit for the North Stack. The SOx Limit is 3500mg/Nm3.

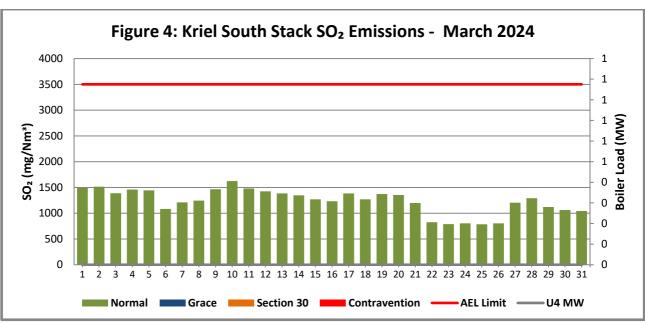


Figure 4. SO₂ emissions for the month of March 2024 against emission limit for the South Stack. The SOx Limit is 3500mg/Nm3.

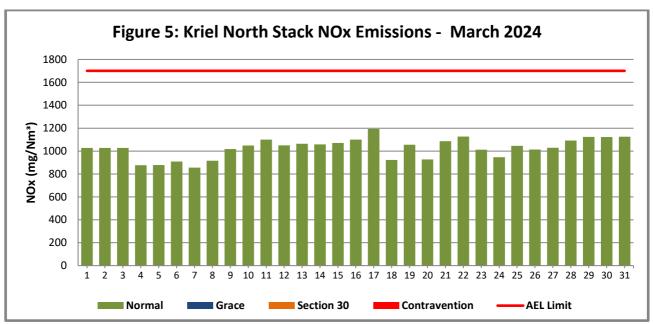


Figure 5. NO₂ emissions for the month of March 2024 against emission limit for the North Stack. The NOx Limit is 1600mg/Nm3.

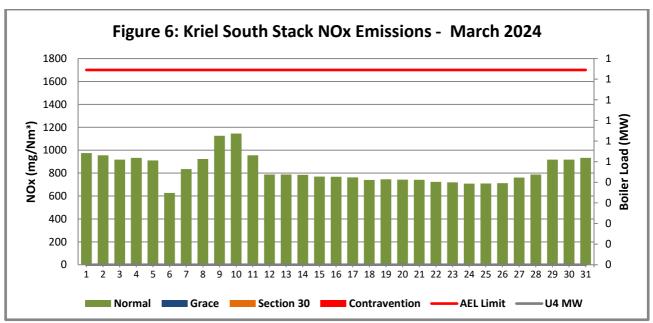


Figure 6. NO₂ emissions for the month of March 2024 against emission limit for the South Stack. The NOx Limit is 1600mg/Nm3.

Table 4: Monthly tonnages for the month March 2024

Unit	PM (tons)	SO ₂ (tons)	NO ₂ (tons)	
SUM	4 998.8	8 450.1	4 703.5	

Table 5: Each unit and respective days operating under normal operation and section 31 days respectively.

Table 5.1: Operating days in non-compliance to PM AEL Limit – March 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contravention		Average PM (mg/Nm³)
North	03	07	0	21	31	498.5
South	03	80	0	20	31	1564.3

Table 5.2: Operating days in compliance to SOx AEL Limit - March 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average SOx (mg/Nm³)	
North	31	0	0	0	0	2 076.5	
South	31	0	0	0	0	1 237.9	

Table 5.3: Operating days in compliance to NOx AEL Limit – March 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contravention	Total Exceedance	Average NOx (mg/Nm³)
North	31	0	0	0	0	1 027.5
South	31	0	0	0	0	833.2

Light up information

Table 6: PM Start-up information for the month of March 2024

North Stack	Event 1		Event 2		Event 3		Event 4	
Unit No.	Uı	nit 1	Unit 2		no event		Unit 3	
Breaker Open (BO)	BO previously	BO previously	5:10 am	2024/03/07	7:20 pm	2024/03/18	3:30 am	2024/03/04
Draught Group (DG) Shut Down (SD)	n/a	n/a	6:05 pm	2024/03/07	DG did not trip or SD	DG did not trip or SD	3:35 pm	2024/03/04
BO to DG SD (duration)	n/a	DD:HH:MM	00:12:55	DD:HH:MM	n/a	DD:HH:MM	00:12:05	DD:HH:MM
Fires in time	2:25 pm	2024/03/25	12:45 am	2024/03/13			11:05 am	2024/03/07
Synch. to Grid (or BC)	6:30 pm	2024/03/25	11:00 am	2024/03/13			8:35 pm	2024/03/07
Fires in to BC (duration)	00:04:05	DD:HH:MM	00:10:15	DD:HH:MM		DD:HH:MM	00:09:30	DD:HH:MM
Emissions below limit from BC (end date)	not > limit	not > limit		#N/A			not > limit	not > limit

Emissions below limit from BC (duration)	DD:HH:MM	n/a	DD:HH:MM		DD:HH:MM	n/a	DD:HH:MM
--	----------	-----	----------	--	----------	-----	----------

North StackCont.	Event 1		E	Event 2		Event 3		vent 4
Unit No.	U	nit 1	no	event	no event		no event	
Breaker Open (BO)	8:20 am	2024/03/31						
Draught Group (DG) Shut Down (SD)	9:15 am	2024/03/31						
BO to DG SD (duration)	00:00:55	DD:HH:MM		DD:HH:MM		DD:HH:MM		DD:HH:MM
Fires in time								
Synch. to Grid (or BC)								
Fires in to BC (duration)		DD:HH:MM		DD:HH:MM		DD:HH:MM		DD:HH:MM
Emissions below limit from BC (end date)								
Emissions below limit from BC (duration)		DD:HH:MM		DD:HH:MM		DD:HH:MM		DD:HH:MM

South Stack	Е	vent 1	Ev	ent 2	Ev	ent 3	Ev	rent 4
Unit No.	no	o event	U	nit 5	no	event	U	nit 6
Breaker Open (BO)			12:30 am	2024/03/21	8:50 pm	2024/03/05	2:35 am	2024/03/15
Draught Group (DG) Shut Down (SD)			2:30 pm	2024/03/21	DG did not trip or SD	DG did not trip or SD	3:15 pm	2024/03/15
BO to DG SD (duration)		DD:HH:MM	00:14:00	DD:HH:MM	n/a	DD:HH:MM	00:12:40	DD:HH:MM
Fires in time			6:30 am	2024/03/25			4:20 am	2024/03/20
Synch. to Grid (or BC)			11:25 pm	2024/03/25			6:05 pm	2024/03/20
Fires in to BC (duration)		DD:HH:MM	00:16:55	DD:HH:MM		DD:HH:MM	00:13:45	DD:HH:MM
Emissions below limit from BC (end date)			not > limit	not > limit			not > limit	not > limit
Emissions below limit from BC (duration)		DD:HH:MM	n/a	DD:HH:MM		DD:HH:MM	n/a	DD:HH:MM

South Stack Cont.	Ev	ent 1	E	vent 2	Ev	ent 3	E	vent 4	
Unit No.	Unit 6		Unit 6 no event		event	no	event	nc	event
Breaker Open (BO)	1:30 pm	2024/03/28							
Draught Group (DG) Shut Down (SD)	1:55 am	2024/03/29							

BO to DG SD (duration)	00:12:25	DD:HH:MM	DD:HH:MM	DD:HH:MM	DD:HH:MM
Fires in time	4:45 am	2024/03/31			
Synch. to Grid (or BC)					
Fires in to BC (duration)		DD:HH:MM	DD:HH:MM	DD:HH:MM	DD:HH:MM
Emissions below limit from BC (end date)	not > limit	not > limit			
Emissions below limit from BC (duration)		DD:HH:MM	DD:HH:MM	DD:HH:MM	DD:HH:MM

Complaints Register

Table 9: Complaints for the month of March 2024.

the incident applicable

There was no complaint related to air quality received during the month of March 2024.

General

The particulate matter (PM10) emissions on the North Common Stack exceeded the **monthly limit**; on average emissions figure of **498.5 mg/Nm³** and also the South Common Stack also exceeded the **monthly limit** on the recorded PM10 monthly average figure of **1564.3 mg/Nm³**. The gaseous (NOx & SOx) emissions on both the North and the South Stack were within their monthly limit, during the month of March 2024; refer to graphs above.

NB: The rest of the information demonstrating compliance with the emissions license conditions is supplied in the annual emission reports sent to your office.

Kriel Power Station's List of NEMA Section 30 Incidents for 2023/2024 Financial Year

Month	Description of Section 30 Incidents - including the reference number	Root Cause (s)	Status of S30 Incident with DEFF (open or closed)	Remarks
April-2023	South Stack High Emissions	Unit 4 A EFP plant breakdown causing half load conditions, which calls for operating the unit with fuel oil support to badly impacting	Open	

		the stack		
May - 2023	North Stack High	emissions Unit 4 A EFP plant	Open	
	Emissions	breakdown causing		
		half load		
		conditions which calls for		
		operating the unit		
		with fuel oil support		
		to badly impacting		
		the stack emissions		
May - 2023	South Stack High	Unit 4 A EFP plant	Open	
-	Emissions	breakdown		
		causing half load		
		conditions		
		which calls for		
		operating the unit with fuel oil		
		support		
		to badly impacting the stack		
		emissions		
June – 2023	North Stack High Emissions	Units operating at half load	Open	
	LIIIIOSIOIIO	conditions		
		which affects the		
		sulphur dosing and causes the		
		plant to		
		operate with fuel oil		
		support because		
		of high turbine		
		back pressure, low final		
		feedwater		
		temperature, high works power loss		
		from high usage of		
		electric feed pump		
		and dust handling plant because of		
		dust transportation		
		resulting in high stack emissions		
June - 2023	South Stack High	Units operating at	Open	
	Emissions	half load		
		conditions		

		which affects the	
		sulphur dosing	
		and causes the	
		plant to	
		operate	
		with fuel oil	
		support because	
		of high turbine	
		back pressure,	
		low final feedwater	
		temperature, high	
		works power loss	
		from high usage of	
		electric feed pump	
		and dust handling	
		plant because of	
		dust transportation	
		resulting in high	
		stack emissions	
July - 2023	North Stack High	The north stack	
	Emissions	emissions daily	
		average has	
		significantly	
		reduced as results	
		of shutting of unit	
		2 outage for the	
		planned GO	
		outage. However,	
		due to the	
		isolation of cooling	
		tower number 2	
		for the cooling	
		tower fills	
		replacement	
		project, unit 3 is	
		operating at low	
		loads to	
		condenser	
		vacuum high. The	
		half load	
		conditions mean	
		supporting the unit	
		with oil burners to	
		support	
		combustion and	
		sulphur trioxide	
		(SO3) not in	
		service. The south	
		stack PM	
		emission daily	
		average has	
		significantly	

reduced since	
synchronisation of	
units from half	
station shutdown.	
Aug - 2023North Stack High EmissionsThe north stack emissions	
Cimodono	
exceedance was	
due to RH1 and	
RH2 poor field	
performance (high	
spark rates) which resulted in	
ESP reduced	
collection	
efficiency. The reduced field	
performance on the first field was	
as results	
of high hoppers, which resulted	
from an ash	
backlog on the	
dust handling	
plant.	
Sep - 2023 North Stack High The North Stack	
Emissions emissions	
exceedance was	
due the increase	
of hopper alarms	
to 24 on Unit 1	
due to blow tanks	
which were not	
available. Blow	
tank 1 2 discharge	
seal was	
damaged and	
blow tank 1 2 was	
leaking on the	
vent.	
Consequently, the	
electrostatic	
precipitators	
(ESP)	
performance	
decreased	
because of	
accumulation	
inside the fields.	
Oct - 2023 North Stack high Requested grace	
Emissions period to exceed	
the limit after the	

		inchallation of NI	
		installation of New	
		Abatement	
		Technology HFTs.	
		The station will	
		undertake new	
		Correlation curve	
		and back fit	
		accordingly and	
0 / 0000	0 11 01 1 11: 1	report accurately.	
Oct - 2023	South Stack High	The ESP fields	
	Emissions	performance	
		continued to	
		deteriorate, with	
		the collection	
		efficiency below	
		40%. It was noted	
		that there was	
		significant drop in	
		fields performance	
		on the RHS only.	
		The RHS poor	
		fields performance	
		was as results of	
		the failure of the	
		DE rapping	
		system. During	
		commissioning of	
		the 5B transformer	
		which was	
		replaced on the	
		-	
		29th of September	
		2023, the	
		phasing was not	
		verified, and motor	
		directions checks	
		were not	
		conducted	
		thereafter. This	
		then resulted in	
		motor rotating	
		in the wrong	
		directions and	
		consequently the	
		failure of torque	
		insulators which	
		rendered most DE	
		rappers not	
		available. It should	
		be noted there	
		were other causes	
		that contributed to	
		the high	
	l		

		emissions, this includes the saturation of the ID fans and poor dust handling plant availability as results of failure of the overland conveyors and blow tanks.	
Nov - 2023	North High Stack Emissions	It was due to the loss of two main electric conveying air compressors, namely Demag 5 & 6. Both compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical components during operation. Due to a decrease in the volumetric flow rate from the compressors, the dry dust pipes and collecting vessels experienced blockages.	
Nov - 2023	South High Stack Emissions	PM emissions daily average increased due to hopper alarms which resulted from unstable conveying air from time to time. The effect of unstable conveying air resulted in sustained hopper alarms that failed to clear. As result there was a high ash accumulation and hang ups	

		inside the fields. The hang ups bridged the Discharge electrode and Collecting Electrodes plates which results in arcing and undervoltage trips. The high ash accumulation further affected the CE rapping system. The ash accumulation and hang ups resulted in a drop in ESP collection efficiency to below 30 % and consequently high PM emissions.	
Dec - 2023	North High Stack Emissions	Accumulation of hopper levels when the ash discharge rate from the fly ash hopper is lower than the rate at which ash accumulates within the fly ash hopper. This issue stemmed from the loss of two main electric conveying air compressors, namely Demag 5 & 6.	
Dec - 2023	South High Stack Emissions	Compressors experienced rotor crushing and bearing seizure due to inadequate oil in the mechanical components during operation. Due to a decrease in the volumetric flow rate from the	

		compressors, the
		dry dust pipes and
		collecting vessels
		experienced
		blockages.
Jan - 2024	North High Stack	Reduced ESP
Jaii - 2024	Emissions	collection
	LIIIISSIOIIS	efficiency due to
		fly ash
		accumulation
		inside the
		fields, Dust
		accumulation of
		the
		Discharge
		electrodes
		resulting in high
		spark
		rates and field
		tripping on
		undervoltage, and
Jan - 2024	South High Stack	Failure of the 18A
	Emissions	and 18B conveyor
		belt & failure of
		blow
		tanks to start due
		to ESP fields poor
		performance due
		to
		ash accumulation
		that
		occurred as
		results of
		high hopper
		alarms.
Feb - 2024	North and South High	Due to the
	Stack Emissions	fluctuation of
		conveying and
		service air. Units
		2,3,5 and 6 were
		on load with
		hopper alarms,
		17, 13,14 and 17
		due compressor fluctuation and
		mobile
		compressor kept
		on tripping on low diesel. The
		compressor has
		been unstable for
		חבבוו מוופומחוב וחו

Mar - 2024	North and South High	a while as we had lost a lot of electric compressors due to damage. Hopper alarms went up to 19, 19 and 30 on Unit 3, 5 and 6 on load the hopper alarms went up to 19, 19 and 30 due to unstable Demag Pressure and compressors tripping.	
	Stack Emissions	of SO3 plant and unavailability of HP pumps and overland conveyor belts due to ESP fields poor performance leading to ash accumulation that occurred as results of high hopper alarms.	