

Ms Nompumelelo Simelane Nkangala District P.O Box 437 MIDDLEBERG

1050

By email: Simelanenl@nkangaladm.gov.za

Date: 03 April 2024

Enquiries: S Chokoe Tel +27 13 647 6970

Dear Ms. Nompumelelo Simelane

Ref: Kendal Power Station AEL (17/4/AEL/MP312/11/15)

RESUBMISSION OF KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF SEPTEMBR 2023.

This is a monthly report required in terms of Section 7.4 in the Kendal Power Station's Atmospheric Emission License. The emissions are for Eskom Kendal Power Station.

Resubmission is made due to the engineering's analysis that was made on the reports to utilize Deutsch equation where monitors maxed out to get the surrogation value and this resulted in an increase in tonnages.

Compiled by:

Tsakani Holeni

ENVIRONMENTAL SENIOR ADVISOR- KENDAL POWER STATION

Supported by:

Solly Chokoe

ENVIRONMENTAL MANAGER- KENDAL POWER STATION

Generation Division (Kendal Power Station) N12 Balmoral Off Ramp, Emalahleni Private Bag x7272, Emalahlani 1035 SA Tel +27 13 647 6970 Fax +27 13 647 6904 www.eskom.co.za

KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF SEPTEMBER 2023

11 00

Jacob Zwane

Verified by:

BOILER ENGINEERING: SENIOR SYSTEM ENGINEER- KENDAL POWER STATION

Validated by:

Tendani Rasivhetshele

BOILER ENGINEERING MANAGER-KENDAL POWER STATION

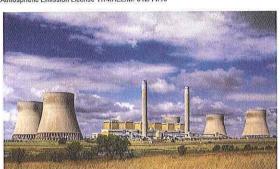
Supported by:

Malibongwe Mabizela

ENGINEERING MANAGER-KENDAL POWER STATION

Approved by:

Tshepiso Temo


GENERAL MANAGER-KENDAL POWER STATION

2024 04/22

SEPTEMBER 2023

ESKOM

KENDAL POWER STATION MONTHLY EMISSIONS REPORT
Atmospheric Emission License 17/4/AEL/MP312/11/15

1 RAW MATERIALS AND PRODUCTS

Raw Materials	Raw Material Type	Units	Maximum Permitted Consumption Rate	Consumption Rate Sep-2023	
and	Coal	Tons	2 260 000	517 030	
Products	Fuel Oil	Tons	5 000	11271.100	
	y sy a distribution due	AND KOUSE		L. v. n. p. l. v.	
ASSAULT OF	Broduct / By Product	AND COUNTY	Maximum Production	Indicative Production	
	Product / By-Product Name	Units	Maximum Production Capacity Permitted	Indicative Production Rate Sep-2023	
Production		Units			
Production Rates	Name	Units	Capacity Permitted	Rate Sep-2023	

2 ENERGY SOURCE CHARACTERISTICS

Coal Characteristic	Units	Stipulated Range	Monthly Average Content
CV Content	MJ/kg	16-24 (MJ/kg)	18.310
Sulphur Content	%	<1 (%)	0.880
Ash Content	%	40 (%)	33.920

3 EMISSION LIMITS (mg/Nm³)

Associated Unit/Stack	РМ	SO ₂	NOx
Unit 1	100	3500	1100
Unit 2	100	3500	1100
Unit 3	100	3500	1100
Unit 4	100	3500	1100
Unit 5	100	3500	1100
Unit 6	100	3500	1100

4 ABATEMENT TECHNOLOGY (%)

Associated Unit/Stack	Technology Type	Efficiency Sep-2023	Technology Type	SO, Utilization Sep-2023
Unit 1	ESP + SO ₁	98.223%	so,	86.4%
Unit 2	ESP + SO,	97.866%	so,	62.1%
Unit 3	ESP + SO,	Off-line	so,	Off-line
Unit 4	ESP + SO,	98.886%	so,	0.0%
Unit 5	ESP+SO ₁	99.186%	so,	0.8%
Unit 6	ESP+SO ₁	99.127%	so,	37.3%

SO3 flow is fluctuating on the units, SO3 plant got no sulphure flow, SO3 plant kept on tripping, SO3 plant not stable due to oil teak on sulphur block valve & converter outlet stage temp very erratic, SO3 Plant unstable due to converter outlet temp high.

Note: ESP plant does not have bypass mode operation, hence plant 100% Utilised.

5 MONITOR RELIABILITY (%)

Associated Unit/Stack	PM	SO ₂	NO	O _z
Unit 1	88.8	99.5	95.8	100.0
Unit 2	45.1	100.0	100.0	15,6
Unit 3	OFF	OFF	OFF	OFF
Unit 4	95.2	0.0	0.0	37.3
Unit 5	99.7	100.0	91.1	100.0
Unit 6	93.8	95.1	100.0	83.0

Unit 6 93.8 95.1 100.0 83.0
Note: Nox emissions is measured as Not nPPM. Final Nox value is expressed as total NO 2
Note: Unit 1 and 2 dust monitors realiability is low due to monitors making out. Unit 2,4 and 6 O2 monitors reliability low due to defective monitors

6 EMISSION PERFORMANCE

Table 6.1: Monthly tonnages for the month of September 2023

Associated Unit/Stack	PM (tons)	SO ₂ (tons)	NO _s (tons)
Unit 1	474.7	1 663	633
Unit 2	663.9	1 371	552
Unit 3	OFF	OFF	OFF
Unit 4	330.3	0	0
Unit 5	177.2	785	349
Unit 6	271.0	690	487
SUM	1 917.22	4 509	2 020

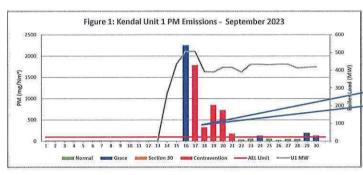
Please note the reported figures in tonnage calculation are an under estimate since the station did not use the Maxing out PM monitor quantification excersice which is the use of Surrogate values on days when the monitor maxed out

Table 6.2: Operating days in compliance to PM AEL Limit - September 2023

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average PM (mg/Nm³)
Unit 1	6	4	.0	5	9	550.9
Unit 2	1	3	0	16	19	616,5
Unit 3	OFF	OFF	OFF	OFF	OFF	OFF
Unit 4	0	3	0	18	21	562.5
Unit 5	2	7	0	6	13	482.5
Unit 6	0	4	0	16	20	328.9
SUM	9	21	0	61	82	

Table 6.3: Operating days in compliance to SO₂ AEL Limit - September 2023

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average SO ₂ (mg/Nm³)
Unit 1	17	0	0	0	0	1 707.0
Unit 2	20	0	0	1	1	2 714.2
Unit 3	OFF	OFF	OFF	OFF	OFF	OFF
Unit 4	0	0	0	0	0	
Unit 5	16	0	0	0	0	1 524.8
Unit 6	24	0	0	0	0	876.8
SUM	77	0	0	1	1	

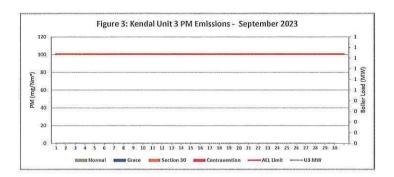

Table 6.4: Operating days in compliance to NOx AEL Limit - September 2023

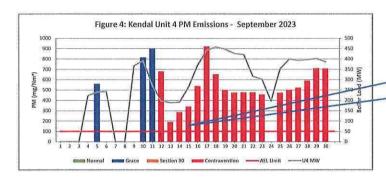
Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average NOx (mg/Nm³)
Unit 1	17	0	0	0	0	631.2
Unit 2	10	0	0	11	11	1 081.1
Unit 3	OFF	OFF	OFF	OFF	OFF	OFF
Unit 4	0	0	0	0	0	
Unit 5	16	0	0	0	0	688.6
Unit 6	24	0	0	0	0	610.6
SUM	67	0	0	11	11	

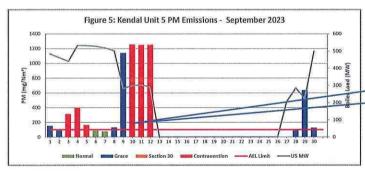
Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO 2

Table 6.5: Legend Description

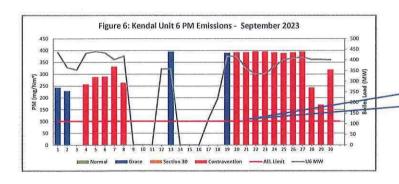
Condition	Colour	Description		
Normal	GREEN	Emissions below Emission Limit Value (ELV)		
Grace	Made of	Emissions above the ELV during grace period		
Section 30	n 30 ONANGE Emissions above ELV during a NEMA \$30 incident			
Contravention RED Emissions above ELV but outside grace or S30 Incident con		Emissions above ELV but outside grace or S30 incident conditions		

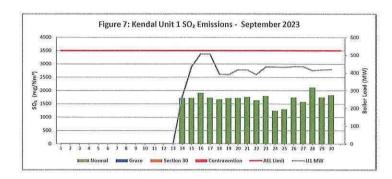

flighemissions can be attributed to Unit light up, 503 plant on hold due to no sulphur, Fuel Oil Usage | Combustion support on the Mills, DHP standing due to high compartment levels, DHP tripped due to high compartments. All knife gates closed, Precip converor 14 tripped, Precip chain conv 22 hopper knife gate closed from 1 to 5, Precip chain conv 32 knocked all hopper knife gates closed, DHP trip due to compartment [avel]

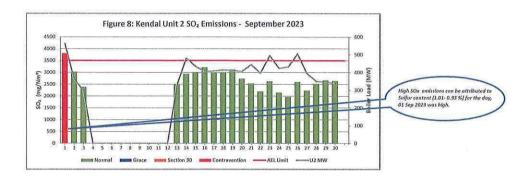

Unit 1 monitor maxed out on the 16th-17th and 19th - 20th

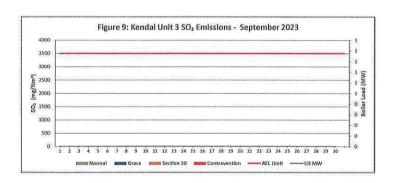

High emissions can be attributed to Fuel Oil Usage | Unit start up-Cold, SO3 plant got no sulphure flow, Dilp plant trip on compactment 20 high level, SO3 plant leget on tripping. DHP plant standing all precis hoopers shife gates closed dure to compartments full. DilP not running no Ashing space all hopper haifle gates closed. Percip chain conveyer 11 and 25 choseds. SO3 glant NO Sulphure flow temp. Percip chain conveyor 21 tripped and failing to start suspect PLC failure all Douger knife gates closed.

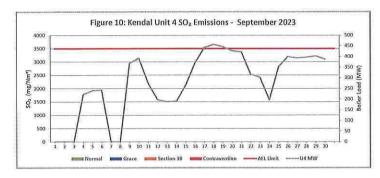
Unit 2 monitor maxed out on the 14th - 27th and 29th-30th



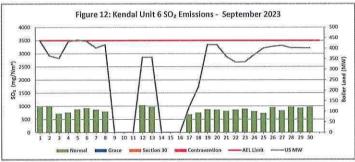

High PM emissions can be attributed to Fuel Oil Usage - Unit start up-Cold, DHP trip, Precip chain coneyor 24 tripped & Joil to start, Precip chain coneyor 11 tripped, and precip chain conevyor 12,13 & 14 kept on tripping, 503 plant nat ranning, Precip conv II-14 not running & Juli of suh at the drive unit, 503 plant not stable due to air lesk on sulphur block valve & converter outlet stage

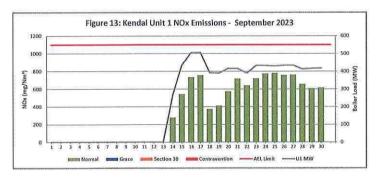


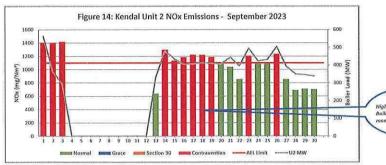

High PM emissions can be attributed to DHP precip conv 14 chain snapped, DHP off due to Jauliy FAB 3 PLC, SOD plant off due to lew audilings steam temperature, DHP Kept on tripping on stream 2 bucket elevator, stream 2 trips on comportment level figh.

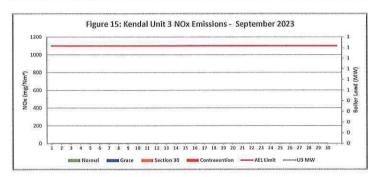


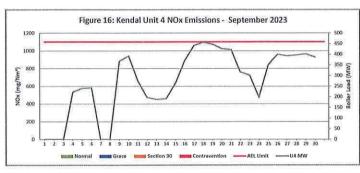

High PM emissions can be attributed to Unit light up conditions, SO3 plant low auxiliary steam temperature, all precip knife gates closed due to high level, ash plant standing due to fault on FAB 3 PLC

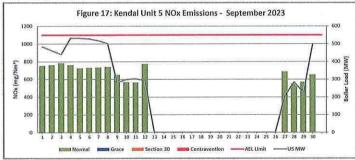














7 COMPLAINTS

There were no complaints for this months

Name	Root Cause Analysis	Calculation of Impacts I emissions associated	Dispersion modeling of pollutants where applicable	milytelited to
			- приможения	prevent reoccurrence

Abatement Technology-Table 4

In order to achieve the required operational dust removal efficiency based on measured values, several assumptions such as ☐ Coal ash content (%) and burnt rate mass

Operational Dust Removal Efficiency

 $\eta = (1 - (Output/Input)) \times 100$

 $\eta = 1 - \{DustEmissionFromAQR ReportDustMonitor(tons)\}\ X 100$ (CoalBurnt(tons)+%AshContent+80%)

Monitor Reliability-Table 5

In terms of the minimum emissions standard, the requirement is that a monitor should be 80% reliable on a monthly average. The monitor reliability refers to data reliability because the assumed value of 99.325% reliability is compared to the dust concentration signal. If the dust concentration signal is above 99.325% opacity, the data information is no longer reliable because the monitor reading is out of its maximum reading range. The data reliability looks at how many times did the dust concentration signal go above 98% over a period of time e.g 24hours

The formula is as follows:

= (1 – (count hours above 99.325%/24hours))x 100

- > Average velocity values from the latest correlation report were used on the gaseous emissions on Unit 1, 2,4,5 &6 due to defective CEMS monitors and velocity correction factors were set M=1 and C=0
- > Unit 5 Monitor still using the old monitor correlation. After new correlations are done, new correlation factors will be implemeted and backfitted to the date of monitor installation.
- > U1 and 2 monitor maxed out, meaning the the emissions were higher than what the monitor was correlated for. In which case we use surrogate values. This is attributted to abnormal plant conditions.
- Surrigate values. This is activated to automate pair contactors.

 Please note the reported figures in tonnage calculation are the figures after the station used the Maxing out PM monitor quantification exercise which is the use of "surrogate values" on days when the monitor maxed out. The following are the days when the monitor was making out: Unit 1 from the 16th&17th, 19th &20th, U2 on the 14th - 27th & 29th&30th. Figures were restated based on the surrogate value determination that Kendal conducted.
- ➤ Unit 1
- Findings: The high emissions can be attributed to Unit light up, SO3 plant on hold due to no sulphur, Fuel Oil Usage | Combustion support on the Mills, DHP standing due to high compartment levels, DHP trpped due to high compartments. All knife gates closed, Precip conveyor 14 tripped, Precip chain conv 22 hopper knife gate closed from 1 to 5, Precip chain conv 13 chocked all hopper knife gates closed. DHP trip due to compartment level HI HI level
- > Resolution: Plant repaired
- Unit 2
 Findings: The high emissions can be attributed to Fuel Oil Usage | Unit start up -Cold, SO3 plant got no sulphure flow, DHP plant trip on compactment 20 high level, SO3 plant kept on tripping, DHP plant standing all precip hoppers knife gates closed dure to compartments full. DHP not running no Ashing space all hopper knife gates closed. Precip chain conveyor 11 and 23 chocked. SO3 plant NO Sulphure flow temp. Precip chain conveyor 21 tripped and failing to start suspect PLC failure all hopper knife gates closed. Precip chain conveyor 11 and 23 chocked. SO3 plant NO Sulphure flow temp. Precip chain conveyor 21 tripped and failing to start suspect PLC failure all hopper knife gates closed. Precip chain conveyor 11 and 23 chocked. SO3 plant NO Sulphure flow temp. Precip chain conveyor 12 tripped and failing to start suspect PLC failure all hopper knife gates closed.
- ► Unit 3
- > Unit off
- > Findings: High PM emissions can be attributed to Fuel Oil Usage Combustion Support | Unit start up -Cold, DHP trip, Precip chain coneyor 24 tripped & fail to start , Precip chain conveyor 11 tripped, and precip chain conveyor 12,13 & 14 kept on tripping, SO3 plant not running, Precip conv 11-14 not running & full of ash at the drive unit, SO3 plant not stable due to oil leak on sulphur block valve & converter outlet stage temp very erratic, SO3 Pplant unstable due to converter outlet temp hi. > Resolution: Plant repaired.

- Findings: High PM emissions can be attributed to DHP precip conv 14 chain snapped, DHP off due to faulty PLS, SO3 plant off due to low stream remp, DHP Kept on trpping on stream 2 bucket elevator, stream 2 trips on compartment level high
- > Resolution: Plant repaired.
- > Unit 6
- Findings: High PM emissions can be attributed to Unit light up conditions, SO3 plant low stream temp, all precip knife gates closed due to high level, ash plant standing due to fault on FAB 3 PIC.
- Resolution: Plant repaired.