Gourikwa Power Station

Annual Report 2024

COMPILED BY: Maureen Dlulisa DATE: June 2024

Contents

1.	ENTERPRISE DETAILS	3
	1.1 ENTERPRISE DETAILS	3
	1.2 FACILITY BACKGROUND LOCATION AND EXTENT OF THE PLANT	4
	1.3 ATMOSPHERIC EMISSION LICENSE AND OTHER AUTHORISATIONS	6
2	NATURE OF THE PROCESS	6
	2.1 LISTED ACTIVITY	6
	2.3 UNIT PROCESSES	6
3	TECHNICAL INFORMATION	7
	3.1 RAW MATERIALS USED	7
	3.2 APPLIANCES AND ABATEMENT EQUIPMENT CONTROL TECHNOLOGY	8
4	ATMOSPHERIC EMISSIONS:	9
	4.1 POINT SOURCE PARAMETERS	9
	4.2 FUGITIVE EMISSIONS (AREA AND OR LINE SOURCES)	10
	4.3 EMERGENCY INCIDENTS	10
	4.4 EMISSIONS	10
5	IMPACT OF ENTERPRISE ON THE RECEIVING ENVIRONMENT	14
	5.1 ANALYSIS OF EMISSIONS' IMPACT ON HUMAN HEALTH	14
	5.2 ANALYSIS OF EMISSIONS' IMPACT ON THE ENVIRONMENT	14
6	COMPLAINTS	14
7.	CURRENT OR PLANNED AIR QUALITY MANAGEMENT INTERVENTIONS	14
8	COMPLIANCE AND ENFORCEMENT HISTORY	14
	8.1 CONTINUOUS EMISSION MONITORING SYSTEM	14
	8.2 COMPLIANCE AUDIT REPORT(S):	14
	8.3 ABATEMENT EQUIPMENT CONTROL TECHNOLOGY AVAILABILITY (%)	14
	8.4 LEAK DETECTION AND REPAIR PROGRAMME	15

1. ENTERPRISE DETAILS

1.1 ENTERPRISE DETAILS

Enterprise Name	Eskom Holdings SOC Limited
Trading As	Gourikwa Power Station
Enterprise Registration Number	2002/015527/30
Registered Address	Rosenpark, 15 Pasista Street, Bellville
Postal Address	P O Box 10438, Dana Bay, 6510
General Telephone Number	044 606 3400
Industry Sector	Electricity Generation
Name of the Responsible Officer	Pamela Mrubata (Plant Manager)
Name of Emission Control Officer	Maureen Dlulisa
Telephone Number	021 573 6000
Cellular Phone Number	083 404 9740
Fax Number	086 538 6505
Email Address	Dlulism@eskom.co.za
After Hours Contact Details	083 404 9740
Land Use Zoning as per Town Planning Scheme	INDUSTRIAL Zone 1

1.2 FACILITY BACKGROUND LOCATIO	N AND EXTENT OF THE PLANT	
Dhysical Address of Dramisso		

Physical Address of Premises	PetroSA Landfill Site
	Mossel Bay, 6500
Description of Site	Gourikwa power plant is located approximately 13km west of Mossel Bay, and approximately 1km west of the PetroSA facility, north of the N2.
Co-ordinates of Centre of Operations	Latitude: 34.164722º
	Longitude: 21.961667°
Property Registration Number (Surveyor - General Code)	W043C05100000000399000000
Extent (km ²)	81.8908 hectares
Elevation Above Mean Sea Level (m)	190 m
Province	Western Cape
District Municipality	Garden Route District Municipality
Local Municipality	Mossel Bay Local Municipality
Designated Priority Area	N/a

Figure 1: Gourikwa in relation to its surroundings

All areas within a 5 km radius;

•	North:
---	--------

- o Agricultural
- East:

•

0	Petro SA Industrial:	1 km
0	Mossel Bay Residential	9.9 km
South	East:	

- Dana Bay Residential
 6.8 km
- South:

0	Waste Disposal Site	0.5 km

- Transportation: N3 1.2 km
- Agricultural > 5km
- West:
 - Agricultural

1.3 ATMOSPHERIC EMISSION LICENSE AND OTHER AUTHORISATIONS

Name of Licensing Authority	Garden Route District Municipality
Atmospheric Emission License Number	WCED013
Date that AEL was Issued	17 May 2023
Type of AEL	Full
Review Date	Annually on a date determined by Licensing Authority
Renewal Application Date	30 April 2028

2. NATURE OF THE PROCESS

2.1 LISTED ACTIVITY

Listed Activity No.	Category of Listed Activity	Sub-category of Listed Activity	Listed Activity Name	Description of Listed Activity
1	Category 1	Subcategory 1.2	Liquid fuel combustion installations	Liquid fuels combustion installations used primarily for steam raising or electricity generation.
2	Category 2	Subcategory 2.4:	Storage and Handling of Petroleum Products.	Petroleum product storage tanks and product transfer facilities, except those used for liquefied petroleum gas.

2.3 UNIT PROCESSES

Unit Process	Function of Unit Process	Batch or Continuous Process
Unit 11	Power Generation 150MW	Intermittent
Unit 12	Power Generation 150MW	Intermittent
Unit 13	Power Generation 150MW	Intermittent
Unit 21	Power Generation 150MW	Intermittent
Unit 22	Power Generation 150MW	Intermittent
Fuel storage	Fuel storage	Continuous

3. TECHNICAL INFORMATION

3.1 RAW MATERIALS USED

Regulated Raw Materials					
Raw Material Type Maximum Permitted Consumpt Rate (Quantity)		Units (quantity/period)			
Diesel 40 000 Litre/hour/unit					
Non-regulated Raw Materials					
Raw Material Type	Maximum Permitted Consumption Rate (Quantity)	Units (quantity/period)			
Environmentally friendly solvent	100L mixed with 400L water per unit	L/Month/unit			

* Regulated raw materials refers to those materials when increased or decreased may result in the change of air emissions output.

* Non-regulated raw materials refer to those materials when increased or decreased may not result in any change of air emissions output.

Materials for Energy Source	Actual Consumption Rate (Quantity)	Units (quantity / period)	Max Sulphur Content of Fuel (%)	Max Ash Content of Fuel (%)
Diesel	40 000	Litres/hour/unit	0.05	Trace amounts

3.2 APPLIANCES AND ABATEMENT EQUIPMENT CONTROL TECHNOLOGY

Appliances				Air Pollution Control Technology							
Associate d Source Code/ Stack I.D.	Appliance / Process Equipment Number	Appliance type/ Descriptio n	Appliance Serial Number	Appliance Manufactu re Date	Product Name and Model	Technolog y Type	Commissi on Date	Date of Significant Modificati on /Upgrade	Design Capacity	Permitted Minimum Control Efficiency (%)	Permitted Minimum Utilization (%)
Unit 11	11MBM12	Low NO _x burners	N/A	Unknown	CEMS Analyzer	(Siemens)	2007	n/a	N/A		100%
Unit 12	12MBM12	Low NO _x burners	N/A	Unknown	CEMS Analyzer	(Siemens)	2007	n/a	N/A	NOv	100%
Unit 13	13MBM12	Low NO _x burners	N/A	Unknown	CEMS Analyzer	(Siemens)	2007	n/a	N/A	emissions < 250	100%
Unit 21	21MBM12	Low NO _x burners	N/A	Unknown	CEMS Analyzer	(Siemens)	2008	n/a	N/A	mgNm ³¹	100%
Unit 22	22MBM12	Low NO _x burners	N/A	Unknown	CEMS Analyzer	(Siemens)	2008	n/a	N/A		100%

¹ As per license

4. ATMOSPHERIC EMISSIONS:

4.1 POINT SOURCE PARAMETERS

Point Source code/ stack I.D.	Source name	Latitude (decimal degrees)	Longitude (decimal degrees)	Height of Release Above Ground (m)	Height Above Nearby Building (m)	Diameter at Stack Tip / Vent Exit (m)	Actual Gas Exit Temperature (°C)	Actual Gas Volumetri c Flow (m³/hr)	Actual Gas Exit Velocity (m/s)
1	Stack 11	34.166641	21.961986	30	18	6	560	1200	40
2	Stack 12	34.166399	21.962847	30	18	6	560	1200	40
3	Stack 13	34.166283	21.963260	30	18	6	560	1200	40
4	Stack 21	34.167331	21.959516	30	18	6	560	1200	40
5	Stack 22	34.167211	21.959926	30	18	6	560	1200	40

4.2 FUGITIVE EMISSIONS (AREA AND OR LINE SOURCES)

The fuel storage tanks vent to the atmosphere. No fugitive monitoring is conducted on site. The Environmental Management Plan is however in place, which guides the processes and procedures to be taken in the event of a leak. Any leaks are logged, managed and reported.

4.3 EMERGENCY INCIDENTS

No incidents occurred during the period under review.

4.4 EMISSIONS

Table 1:General overview of emissions Gourikwa Power Station - 2021/2022 to 2023/2024

Year	NO _x Total (Tons/annum	PM Total (Tons/annum	SO₂ Total (Tons/annum	CO₂ Total (Tons/annum
2023/2024	2072.258	0	9.309	1671361.70
2022/2023	1603.148	0.008	7.418	1370668.55
2021/2022	746.932	0.017	911.097	714559.50

Table 2: Annual Figures of emissions, energy sent out and fuel usage at Gourikwa Power Station 2021/2022 – 2023/2024

Year	Energy Sent Out (GWh)	Diesel used (tons)
2023/2024	2038.316	514 198.89
2022/2023	1681.217	425 567.226
2021/2022	870.396	227 774.452

	Financial Year 2023/2024					
Month	NO _x (tons) Calculated Values	SO ₂ (tons) Calculated Values	CO₂ (tons) Calculated Values	PM (tons) Measured Values	Diesel consumed (tons)	GWh Sent Out
Apr 2023	182135.0	688.0	150 339. 239	0	46 776.12	184.931
May 2023	288944.0	1306.0	229 025 991	0	71 258.50	281.981
June 2023	166304.0	655.0	126 206 605	0	39 267.56	155.567
July 2023	203770.0	768.0	157 306 060	0	48 943.76	196.903
Aug 2023	139675.0	530.0	102 893 051	0	32 013.85	127.308
Sept 2023	153464.0	541.0	116 799 018	0	36 340.51	145.316
Oct 2023	144399.0	599.0	112 648 427	0	35 049.11	140.566
Nov 2023	300073.0	1607.0	250 646 433	0	77 985.42	308.504
Dec 2023	78291.0	460.0	64 941 167	0	20 205.61	80.023
Jan 2024	97482.0	441.0	81 356 285	0	25 312.96	99.168
Feb 2024	161926.0	736.0	132 465 899	0	41 215.06	160.918
Mar 2024	155795.0	978.0	128 015 624	0	39 830.42	157.131
Totals	2072258.00	9309.0	1 652 643. 799	0	514 198.89	2038.316

Table 3: Pollutant Emission Trends for 2023/2024 financial year

The station reports on calculated CO_2 values for consistency otherwise SO_2 , PM and NO_x are measured as reported in monthly emission reports.

Figure 1: Annual GWh sent out between 2021 and 2024 for Gourikwa Power Station

Figure 2: Annual SO $_2$ Emissions in tons between 2021 and 2024 for Gourikwa Power Station

*Reduction in SO2 emissions is due to the lower Sulphur content in the Diesel currently used by the Power Station

Figure 3: Annual fuel usage in tons between 2021 and 2024 for Gourikwa Power Station

Figure 4: Monthly CO_2 Emissions in tons between 2021 and 2024 for Gourikwa Power Station

5. IMPACT OF ENTERPRISE ON THE RECEIVING ENVIRONMENT

5.1 ANALYSIS OF EMISSIONS' IMPACT ON HUMAN HEALTH

The Ambient Monitoring Station is located at the Garden Route District Municipal offices. Monthly reports are received, and analysis of emissions is done.

5.2 ANALYSIS OF EMISSIONS' IMPACT ON THE ENVIRONMENT

No analysis conducted during 2023/24 financial year period.

6. COMPLAINTS

No complaints were received in the past financial year. No complaints have been received for the last five years.

7. CURRENT OR PLANNED AIR QUALITY MANAGEMENT INTERVENTIONS

No planned air quality management interventions for the foreseeable future.

8. COMPLIANCE AND ENFORCEMENT HISTORY

Eskom Gourikwa Power Station is within AEL limits for Sulphur Dioxide, Oxides of Nitrogen Particulate Matter. The station still calculates Carbon Dioxide emissions.

No air quality related enforcement actions have been taken against Gourikwa Power Station.

8.1 CONTINUOUS EMISSION MONITORING SYSTEM

All 5 units are internally calibrated, annually, by station technicians and every second year calibrated by an external service provider. The last external calibration was done in May 2022. (Calibration certificates are attached to this report as well as the annual emission testing).

8.2 COMPLIANCE AUDIT REPORT(S):

No compliance audit was undertaken in period under review.

8.3 ABATEMENT EQUIPMENT CONTROL TECHNOLOGY AVAILABILITY (%)

The abatement technology (low NOx burners) was available 100% of the time while the units were in generating mode.

On average, 98% of the hourly values from the CEMS were valid in the past financial year.

Monitoring data availability

	Unit 11	Unit 12	Unit 13	Unit 21	Unit 22
PM	8759	8759	8760	8759	8759
SO ₂	8759	8759	8760	8759	8759
NOx	8759	8759	8760	8759	8759
CO	8759	8759	8760	8759	8759

Table 4: General oversight of monitoring data availability

CEMS at Gourikwa Power Station, for the period 2023/2024 in terms of the number of full hours that valid results were obtained for the CEMS is approximately 99% of the time.

8.4 LEAK DETECTION AND REPAIR PROGRAMME

The station has not had any major fuel leaks that required reporting in terms of the Leak Detection and Repair Programme or legislation. Plant walk downs are performed at the start of every shift as per procedure (Weekly Inspection and Routine Operation of Power Station, Doc No.: OP-UCA-001r).

8.5 BTEX MONITORING

The station is required, in terms of the Atmospheric Emission Licence condition 7.6.2, to conduct a 2-week sampling regime in April and October and to submit the report to the authorities. In the period under review in October 2023, report was sent to the authorities and will again be attached to this annual report.

8.6 NAEIS REPORTING

Eskom has reported Gourikwa Power Station's emissions as per the NAEIS system requirement and is currently being reviewed/audited.

Hoping the above will meet your satisfaction. For any queries please do not hesitate to contact Maureen Dlulisa (021 573 6162).

Yours sincerely

Pamela Mrubata GOURIKWA POWER STATION

10. FORMAL DECLARATIONS

10.1 ANNEXURE A: DECLARATION OF ACCURACY OF INFORMATION

Please sign a written declaration indicating that the contents of annual report is true reflection of information provided.

STACK EMISSIONS MONITORING REPORT 2022

Environmental and Engineering Consultants

43 Kayburne Ave Randpark Ridge 2188 Gauteng South Africa Tel: +27 (0)11 792-0880

Your contact at RAYTEN ENGINEERING SOLUTIONS (Pty) Ltd

Jacques Le Roux Technical Director – Head Office Tel: 011 792 0880 / Mobile: 068 072 2234

<u>CLIENT DETAILS</u>			
Company Name:	Eskom Gourikwa Power Station		
Contact Person:	Antony Domburg		
Contact Telephone:	072 209 6113		
Company Address:	Petro SA Landfill Site, Mossel Bay 6500		
Permit/ AEL Reference:	WCED013		
Release Point/ Stack ID:	Unit 11/GT11		
Sampling Date:	13 May 2022		
Reporting Period:	2022		

Project Number:	TEC-ESK-222590	ANT COMPANY
Report Number:	ESKG-02-106-001-01	itor tora
Report Submission Date:	28 July 2022	HOC-MIKA
		The Laboratoria

info@rayten.co.za

011 792 0880

086 592 0298

ias

T0894

Sdl

www.rayten.co.za

PO Box 1369 Bromhof 2154

REVISION AND APPROVAL PAGE

Revision Number	01		
Rayten Report Number	ESKG-02-106-001-01		
Rayten Project Number	TEC-ESK-222590		
	Name	Signature	Date
Author	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	e-1	28 July 2022
Document Reviewer	Jacques Le Roux Technical Director (Technical Signatory)	Rouz	28 July 2022
Document Authorisation	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	<u>e</u>	28 July 2022

DISCLAIMER

Note that although every effort has been made by Rayten Engineering Solutions to obtain the correct information and to carry out an appropriate, independent, impartial, and competent study; Rayten Engineering Solutions cannot be held liable for any incident which directly or indirectly relates to the work in this document and which may have an effect on the client or on any other third party.

CONFIDENTIALITY

The content of this report will be kept confidential. Copies of the report will not be distributed to other parties except with the expressed permission of the client. The exception to this confidentiality being the requirement from the relevant authority or department. Copyright is vested in Rayten Engineering Solutions in terms of the Copyright Act (Act 98 of 1978) and no use or reproduction or duplication thereof may occur without the written consent of the author.

Emissions Measurements Report

Name of Enterprise: Rayten Engineering Solutions (Pty) Ltd

Declaration of accuracy of information provided:

I, Claire Wray, declare that the information provided in this report is in all respects factually true and correct.

Signed at, _____ Randburg_____ on this __28__ day of _July_2022_

Vray

Claire Wray Director

EXECUTIVE SUMMARY

Monitoring Objectives

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western Cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source.

Stack ID

Unit 11/GT11

Stack Parameters

- Gas velocity
- Gas volumetric flow rate
- Gas temperature
- Gas static and absolute pressure
- Moisture Content

Isokinetic Emissions

• Particulate Matter (PM)

Anisokinetic Emissions (Instrumental Monitoring)

• Combustion Gas Components (O₂, NO, NO₂, NOx, CO, CO₂ & SO₂)

Emissions Summary

Category for Limits:	1.2: Liquid Fuel Combustion Installations
Sampling Date:	13/05/2022
Sampling Times:	18:00 – 21:47
Amount of Test Runs:	3
Sampling Duration:	60 minutes per test run

Parameter	Reporting Units	Results	Limits	Compliant (Y/N)
Avg. Particulate Matter (PM)	mg/Nm³	1.96	50	Y
Avg. Sulphur Dioxide (SO ₂)	mg/Nm³	114.4	500	Y
Avg. Oxides of Nitrogen (NOx)	mg/Nm³	103.8	250	Y
Ava Oxygon (in stack)	0/11/1	14.6	NI/A	Ν/Λ
Referenced Oxygen	/0V/V 0/	14.0		
Referenced Oxygen	70	15	IN/A	IN/A

N/A = Not Applicable

LIST OF ABBREVIATIONS

Abbreviation	Meaning
AEL	Atmospheric Emission Licence
US EPA	United States Environmental Protection Agency
NPT	Normalised Pressure and Temperature
°C	Degree Celsius
mm	Millimetres
m	Meters
m ³	Cubic Meters
Nm ⁻³	Normalised Cubic Meter
mg	Milligrams
ml	Millilitres
m³/hr	Cubic Meter per Hour
kg/s	Kilogram per Second
kg/hr	Kilogram per Hour
m/s	Metres per Second
mg.Nm ⁻³	Milligrams per normalised Cubic Meter
ppm	Parts per million
ATM	Atmosphere
dscm	Dry Standard Cubic Meter
scmm	Standard Cubic Meter per Minute
acmm	Actual Cubic Meter per Minute
acms	Actual Cubic Meter per Second
g/dscm	Grams per Dry Standard Cubic Meter
BDL	Below Detection Limit
O ₂	Oxygen
PM	Particulate Matter
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
SO ₂	Sulphur Dioxide
H ₂ O	Water

CONTENTS

REV	ISION AND APPROVAL PAGE	0
EXE	CUTIVE SUMMARY	2
1.	INTRODUCTION	6
2.	METHOD OF MEASUREMENTS	7
3.	RESULTS	9
4.	DISCUSSION	11
5.	QUALITY CONTROL AND QUALITY ASSURANCE	12
6.	CONCLUSIONS	12

LIST OF APPENDICES

Appendix A – SANAS Accreditation Certificate

1. INTRODUCTION

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source:

- Particulate Matter (PM)
- Sulphur Dioxide (SO₂)
- Oxides of Nitrogen expressed as NO₂ (NOx)

Stack and Associated Listed Activity

Stack ID	Category	Subcategory	Description
011	1	2	Unit 11/GT11

Atmospheric Emissions Licence (AEL) Number (if applicable)

Name of Plant/ Facility:	Eskom Gourikwa
AEL Licence Number:	WCED013
AEL Expiry Date:	April 2023
Reporting Period:	2022

Process Details

Site Location:	Eskom Mosselbay Power Station
Description of Process:	Electricity Generation
Continuous or Batch:	Continuous
Product Details:	-
Normal Operation or Erratic:	Normal
Fuel Used (if applicable):	Diesel

Accreditation Status of Laboratory (Rayten Engineering Solutions)

Name of Service Provider:	Rayten Engineering Solutions (Internal Lab)
Accreditation Status:	Accredited
Last Audit Date:	September 2021
Audit Status:	Passed
Address:	43 Kayburne Ave, Randpark Ridge, Gauteng
Telephone:	011-792-0880

2. METHOD OF MEASUREMENTS

All samples and analyses were carried out according to internationally accepted reference methods, which comply with the National Environmental Management: Air Quality Act of 2004 (Act 39 of 2004), prescribed in Schedule A: Methods for sampling and analysis in terms of Notice GN1207 dated 31 October 2018. Sampling techniques were applied to measure the following:

Methods of Measurement and Analyses

Parameter/ Pollutant	Standard Reference Method or Alternative Method	Analysis Technique	Laboratory	Laboratory Accredited	Calculated Measure of Uncertainty +/
Sample and Velocity Traverses	US EPA Method 1	N/A	Rayten (Site)	Yes	N/A
Stack Gas Velocity & Volumetric Flow Rate	US EPA Method 2	Dry Gas Meter and Type S Pitot tube	Rayten (Site)	Yes	4.05 m/s
The gas temperatures	Connected to a digital thermometer (K-type)	Connected to a digital thermometer (K- type)	Rayten (Site)	Yes	N/A
Oxygen and Carbon Dioxide Concentration	US EPA Method 3A	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	Oxygen = 0.41% of indicated value.
Determination of Moisture Content in Stack Gases.	US EPA Method 4	Gravimetric	Rayten (Site)	Yes	1.81 mg
Particulate Matter	US EPA Method 5	Gravimetric	Rayten (Randburg)	Yes	2.48 mg
Sulphur Dioxide	US EPA Method 6C	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	1.95 ppm
Oxides of Nitrogen	US EPA Method 7E	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	8.18 ppm

Calibrated Equipment Checklist.

Equipment	ID
APEX Kit Number	Т3
Dry Gas Meter	1903078
Gas Analyzer	RAY-T3-IMR-001
Nozzle set	RAY-T3-SN-001
Pitot Tube	RAY-T3-PT-001
Site Balance	RAY-T3-SC-001
Barometer	RAY-T3-BAR-001
Manometer	RAY-T3-MM-001

3. RESULTS

Table A: Stack Parameters:

Plant	ESKOM GOURIK	WA Address <u>GOURIKWA</u>		lob #	UNIT 11 O	R GT 11
LEAD TECHNIC SUPPORTING T ISOKINETIC MA GAS ANALYSEI PITOT TUBE US	IAN: ECHNICIAN: CHINE USED: R USED: SED:	J Mashala G Mokgosi APEX 2 (DURBAN MACHINE) RAY-T3B-IMRA-001 RAY-T3-PT-001	1 903 078 D2802A08 0,8199		Ray Environmental and Environmental	ten ERING SOLUTIONS gineering Consultants
STACK PAR	AMETERS					
	Run Number		1	2	3	Average
Date	Test Date		13/05/2022	13/05/2022	13/05/2022	
Start	Run Start Time		18:00	19:24	20:47	
	Run Finish Time		19:00	20:24	21:47	
	Net Traversing Points		24	24	24	
Θ	Net Run Time, minutes		60	60	60	60
D _N	Nozzle Diameter, mm		6,1	6,1	6,1	6,1
Cn	Pitot Tube Coeficient		0,8199	0,8199	0,8199	0,82
Ŷ	Dry Gas Meter Calibration	n Factor	0,964	0,964	0,964	0,964
P _{Br}	Barometric Pressure, mm	of Mercury	773,46	773,46	773,46	773,46
PBr	Barometric Pressure, HPa	I Contraction of the second	1031,20	1031,20	1031,20	1031,20
ΔH	Average orifice meter Diff	erential, mm H₂O	70,00	76,00	74,00	73,33
Vm	Dry Gas Meter Volume Sa	ampled, m ³	1,663	1,720	1,683	1,689
t _m	Average Dry Gas Meter T	emperature, °C	12,6	7,6	5,5	8,6
V _{mstd}	Dry Gas Meter Volume Sa	ampled, Nm³ (Dry at 273K, 101.3kPa)	1,56	1,64	1,63	1,61
Vic	Total Moisture Liquid colle	cted, ml	3,7	4,8	4,5	4,3
V _{wstd}	Volume of Water Vapor, N	lm³ (Dry at 273K, 101.3kPa)	0,005	0,006	0,006	0,005
%H₂O	Moisture Content of Stack	Gas, %	0,29	0,36	0,34	0,33
%CO2	Carbon Dioxide, %		3,70	3,70	3,70	3,70
% O 2	Oxygen, %		14,6	14,6	14,6	14,6
% CO+ N ₂	Carbon Monoxide & Nitrog	jen, %	82	82	82	82
Pg	Flue Gas Static Pressure,	mm of H_2O	-44,00	-44,00	-44,00	-44,00
Ps	Absolute Flue Gas Pressu	ire, mm of Mercury	770,23	770,23	770,23	770,23
ts	Average Stack Gas Temp	erature, °C	520,0	519,0	518,0	519,0
ΔP_{avg}	Average Velocity Head, n	nm of H ₂ O	34,0	34,0	34,0	34,0
Vs	Average Stack Gas Veloc	ity, m/s	22,8	22,7	22,8	22,8
Ds	Stack Diameter (m)		6,2	6,2	6,2	6,2
As	Stack Crossectional Area	m²	30,19	30,19	30,19	30,19
Qd	Dry Volumetric Flow Rate	, Nm³/min (Dry at 273K, 101.3kPa)	27 345	27 409	27 254	27 336
Q _{aw}	Actual Wet Volumetric Flu	e Gas Flow Rate, m³/min	41 255	41 131	41 372	41 252
%	Percent Isokinetic of Sam	pling Rate, %	98,4	103,9	103,0	101,8

Table B: Pollutant Concentrations:

Plant	ESKOM GOURIKWA Address GOURIKWA		Job #	UNIT 11 O	R GT 11
EMISSION RES	ULTS			Ray	ten INEERING SOLUTIONS d Engineering Consultant
	Particulate Matter				
W _{total}	Particulate Method 5 Filter + Probe Catch Weight, mg	3,2	2,8	4,2	3,4
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm ³ at 273K, 101.3kPa)	2,02	1,71	2,55	2,09
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm ³ at 273K, 101.3kPa) @15% O2	1,89	1,60	2,39	1,96
E (kg/hr)	Particulate Emission Rate, kg/hr	3,31	2,81	4,17	3,43
	Combustion Gas Concentrations				
SO _{2 ppm}		42,00	43,00	43,00	42,67
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa	120,12	122,98	122,98	122,03
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa @15% O ₂	112,6	115,3	115,3	114,4
E (kg/hr)	SO2 Emission Rate, kg/hr	197,08	202,24	201,10	200,14
NOx ppm		53,00	54,00	55,00	54,00
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa	108,65	110,70	112,75	110,70
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa @15% O ₂	101,9	103,8	105,7	103,8
E (kg/hr)	NOx Emission Rate, kg/hr	178,26	182,05	184,37	181,56
CO ppm		32,00	29,00	27,00	29,33
CO mg/Nm ³	mg/Nm ³ at 273K, 101.3kPa	39,4	35,7	33,2	36,1
E (kg/hr)	CO Emission Rate, kg/hr	64,58	58,66	54,31	59,18

Table C: NAEIS Emissions Reporting Requirements:

Description:	Average:	Units:
Inside Stack Diameter =	6,20	m
Stack Exit Temperature =	519	°C
Actual Exit Flow Rate =	41252	m³/min
Actual Exit Flow Rate =	688	m³/s
PM emission rate =	3,43	kg/hr
PM emission rate =	30031	kg/year
SO ₂ emission rate =	200	kg/hr
SO_2 emission rate =	1753244	kg/year
NOx emission rate =	182	kg/hr
NOx emission rate =	1590477	kg/year
CO emission rate =	59	kg/hr
CO emission rate =	518430	kg/year
Above emission rates assume plant operates 24 hours for 365 days.		<u> </u>

4. DISCUSSION

Sample ports were available on the stack which were utilised for volumetric flow rate and isokinetic measurements.

Duct/ Stack Characteristics

Stack Shape	Circular	
Diameter / Depth:	6.2	m
Width (if square):	-	m
Area of Stack:	30.19	m²
Stack Orientation:	Vertical	
Number of ports:	3	

Site Notes/ Conditions

1	No concerns noted on site.
2	Eskom CEMs unit readings are graphed below for information.
3	-
4	-
5	-

Rayten monitored the stack accordingly and the results are a respectable indication of the stack emission rates. It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

5. QUALITY CONTROL AND QUALITY ASSURANCE

Rayten Engineering Solutions follows a strict Quality Management System which has been set up to comply with international standards. Rayten Engineering Solutions (Pty) Ltd is a SANAS accredited laboratory (T0894) in accordance with ISO/IEC 17025:2017 international standards. Rayten Engineering's scope of accreditation is attached. Calibration certificates can be made available on request.

6. CONCLUSIONS

It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

The results may become non-representative of the true emissions if deviations from process operating conditions, raw material feed rate and/or composition changes as well as upset conditions occur other than what was present at the time of taking the various samples.

Does the Unit11/GT11 comply with the minimum emissions standards as stipulated within the section 21 listed activities?

APPENDIX A

SANAS ACCREDITATION CERTIFICATE

CERTIFICATE OF ACCREDITATION

In terms of section 22(2) (b) of the Accreditation for Conformity Assessment, Calibration and Good Laboratory Practice Act, 2006 (Act 19 of 2006), read with sections 23(1), (2) and (3) of the said Act, I hereby certify that:-

RAYTEN ENGINEERING SOLUTIONS (PTY) LTD

Co. Reg. No.: 2019/310726/07

Facility Accreditation Number: T0894

is a South African National Accreditation System accredited facility provided that all conditions and requirements are complied with

This certificate is valid as per the scope as stated in the accompanying schedule of accreditation, Annexure "A", bearing the above accreditation number for

ENVIRONMENTAL ANALYSIS

The facility is accredited in accordance with the recognised International Standard

ISO/IEC 17025:2017

The accreditation demonstrates technical competency for a defined scope and the operation of a quality management system

While this certificate remains valid, the Accredited Facility named above is authorised to use the relevant accreditation symbol to issue facility reports and/or certificates

Mr M Phaloane Acting Chief Executive Officer

Effective Date: 13 February 2020 Certificate Expires: 12 February 2025

STACK EMISSIONS MONITORING REPORT 2022

Environmental and Engineering Consultants

43 Kayburne Ave Randpark Ridge 2188 Gauteng South Africa Tel: +27 (0)11 792-0880

Your contact at RAYTEN ENGINEERING SOLUTIONS (Pty) Ltd

Jacques Le Roux Technical Director – Head Office Tel: 011 792 0880 / Mobile: 068 072 2234

<u>CLIENT DETAILS</u>		
Company Name:	Eskom Gourikwa Power Station	
Contact Person:	Antony Domburg	
Contact Telephone:	072 209 6113	
Company Address:	Petro SA Landfill Site, Mossel Bay 6500	
Permit/ AEL Reference:	WCED013	
Release Point/ Stack ID:	Unit 12/GT12	
Sampling Date:	12 May 2022	
Reporting Period:	2022	

Project Number:	TEC-ESK-222590	ANT COMMENT
Report Number:	ESKG-02-106-002-01	
Report Submission Date:	28 July 2022	Hac-MIKA

info@rayten.co.za

011 792 0880

086 592 0298

www.rayten.co.za

PO Box 1369 Bromhof 2154

REVISION AND APPROVAL PAGE

Revision Number	01		
Rayten Report Number	ESKG-02-106-002-01		
Rayten Project Number	TEC-ESK-222590		
	Name	Signature	Date
Author	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	C-1	28 July 2022
Document Reviewer	Jacques Le Roux Technical Director (Technical Signatory)	Rouz	28 July 2022
Document Authorisation	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	<u>e</u>	28 July 2022

DISCLAIMER

Note that although every effort has been made by Rayten Engineering Solutions to obtain the correct information and to carry out an appropriate, independent, impartial, and competent study; Rayten Engineering Solutions cannot be held liable for any incident which directly or indirectly relates to the work in this document and which may have an effect on the client or on any other third party.

CONFIDENTIALITY

The content of this report will be kept confidential. Copies of the report will not be distributed to other parties except with the expressed permission of the client. The exception to this confidentiality being the requirement from the relevant authority or department. Copyright is vested in Rayten Engineering Solutions in terms of the Copyright Act (Act 98 of 1978) and no use or reproduction or duplication thereof may occur without the written consent of the author.

Emissions Measurements Report

Name of Enterprise: Rayten Engineering Solutions (Pty) Ltd

Declaration of accuracy of information provided:

I, Claire Wray, declare that the information provided in this report is in all respects factually true and correct.

Signed at, _____ Randburg_____ on this __28__ day of _July_2022_

Vray

Claire Wray Director

EXECUTIVE SUMMARY

Monitoring Objectives

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western Cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source.

Stack ID

Unit 12/GT12

Stack Parameters

- Gas velocity
- Gas volumetric flow rate
- Gas temperature
- Gas static and absolute pressure
- Moisture Content

Isokinetic Emissions

• Particulate Matter (PM)

Anisokinetic Emissions (Instrumental Monitoring)

• Combustion Gas Components (O₂, NO, NO₂, NOx, CO, CO₂ & SO₂)

Emissions Summary

Category for Limits:	1.2: Liquid Fuel Combustion Installations
Sampling Date:	12/05/2022
Sampling Times:	18:00 – 21:45
Amount of Test Runs:	3
Sampling Duration:	60 minutes per test run

Parameter	Reporting Units	Results	Limits	Compliant (Y/N)
Avg. Particulate Matter (PM)	mg/Nm³	1.42	50	Y
Avg. Sulphur Dioxide (SO2)	mg/Nm³	106.3	500	Y
Avg. Oxides of Nitrogen (NOx)	mg/Nm³	109.3	250	Y
Ava Oxygen (in stack)	%	14.7	ΝΙ/Δ	Ν/Δ
Referenced Oxygen	%	15	N/A	N/A

N/A = Not Applicable

LIST OF ABBREVIATIONS

Abbreviation	Meaning
AEL	Atmospheric Emission Licence
US EPA	United States Environmental Protection Agency
NPT	Normalised Pressure and Temperature
°C	Degree Celsius
mm	Millimetres
m	Meters
m ³	Cubic Meters
Nm ⁻³	Normalised Cubic Meter
mg	Milligrams
ml	Millilitres
m³/hr	Cubic Meter per Hour
kg/s	Kilogram per Second
kg/hr	Kilogram per Hour
m/s	Metres per Second
mg.Nm ⁻³	Milligrams per normalised Cubic Meter
ppm	Parts per million
ATM	Atmosphere
dscm	Dry Standard Cubic Meter
scmm	Standard Cubic Meter per Minute
acmm	Actual Cubic Meter per Minute
acms	Actual Cubic Meter per Second
g/dscm	Grams per Dry Standard Cubic Meter
BDL	Below Detection Limit
O ₂	Oxygen
PM	Particulate Matter
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
SO ₂	Sulphur Dioxide
H ₂ O	Water

CONTENTS

REV	ISION AND APPROVAL PAGE	0
EXE	CUTIVE SUMMARY	2
1.	INTRODUCTION	6
2.	METHOD OF MEASUREMENTS	7
3.	RESULTS	9
4.	DISCUSSION	11
5.	QUALITY CONTROL AND QUALITY ASSURANCE	12
6.	CONCLUSIONS	12

LIST OF APPENDICES

Appendix A – SANAS Accreditation Certificate

1. INTRODUCTION

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source:

- Particulate Matter (PM)
- Sulphur Dioxide (SO₂)
- Oxides of Nitrogen expressed as NO₂ (NOx)

Stack and Associated Listed Activity

Stack ID	Category	Subcategory	Description
012	1	2	Unit 12/GT12

Atmospheric Emissions Licence (AEL) Number (if applicable)

Name of Plant/ Facility:	Eskom Gourikwa
AEL Licence Number:	WCED013
AEL Expiry Date:	April 2023
Reporting Period:	2022

Process Details

Site Location:	Eskom Mosselbay Power Station
Description of Process:	Electricity Generation
Continuous or Batch:	Continuous
Product Details:	-
Normal Operation or Erratic:	Normal
Fuel Used (if applicable):	Diesel

Accreditation Status of Laboratory (Rayten Engineering Solutions)

Name of Service Provider:	Rayten Engineering Solutions (Internal Lab)
Accreditation Status:	Accredited
Last Audit Date:	September 2021
Audit Status:	Passed
Address:	43 Kayburne Ave, Randpark Ridge, Gauteng
Telephone:	011-792-0880

2. METHOD OF MEASUREMENTS

All samples and analyses were carried out according to internationally accepted reference methods, which comply with the National Environmental Management: Air Quality Act of 2004 (Act 39 of 2004), prescribed in Schedule A: Methods for sampling and analysis in terms of Notice GN1207 dated 31 October 2018. Sampling techniques were applied to measure the following:

Methods of Measurement and Analyses

Parameter/ Pollutant	Standard Reference Method or Alternative Method	Analysis Technique	Laboratory	Laboratory Accredited	Calculated Measure of Uncertainty +/
Sample and Velocity Traverses	US EPA Method 1	N/A	Rayten (Site)	Yes	N/A
Stack Gas Velocity & Volumetric Flow Rate	US EPA Method 2	Dry Gas Meter and Type S Pitot tube	Rayten (Site)	Yes	4.05 m/s
The gas temperatures	Connected to a digital thermometer (K-type)	Connected to a digital thermometer (K- type)	Rayten (Site)	Yes	N/A
Oxygen and Carbon Dioxide Concentration	US EPA Method 3A	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	Oxygen = 0.41% of indicated value.
Determination of Moisture Content in Stack Gases.	US EPA Method 4	Gravimetric	Rayten (Site)	Yes	1.81 mg
Particulate Matter	US EPA Method 5	Gravimetric	Rayten (Randburg)	Yes	2.48 mg
Sulphur Dioxide	US EPA Method 6C	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	1.95 ppm
Oxides of Nitrogen	US EPA Method 7E	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	8.18 ppm

Calibrated Equipment Checklist.

Equipment	ID
APEX Kit Number	Т3
Dry Gas Meter	1903078
Gas Analyzer	RAY-T3-IMR-001
Nozzle set	RAY-T3-SN-001
Pitot Tube	RAY-T3-PT-001
Site Balance	RAY-T3-SC-001
Barometer	RAY-T3-BAR-001
Manometer	RAY-T3-MM-001

3. RESULTS

Table A: Stack Parameters:

Plant	ESKOM GOURIK	WA Address <u>GOURIKWA</u>	1	Job #	UNIT 12 O	R GT 12
LEAD TECHNIC SUPPORTING T ISOKINETIC MA GAS ANALYSE PITOT TUBE US	CIAN: FECHNICIAN: ACHINE USED: R USED: SED:	J Mashala G Mokgosi APEX 2 (DURBAN MACHINE) RAY-T3B-IMRA-001 RAY-T3-PT-001	1 903 078 D2802A08 0,8199		Ray Environmental and En	ten ERING SOLUTIONS gineering Consultants
STACK PAR	RAMETERS					
	Run Number		1	2	3	Average
Date	Test Date		12/05/2022	12/05/2022	12/05/2022	
Start	Run Start Time		18:00	19:23	20:45	
	Run Finish Time		19:00	20:23	21:45	
	Net Traversing Points		24	24	24	
Θ	Net Run Time, minutes		60	60	60	60
D _N	Nozzle Diameter, mm		6,1	6,1	6,1	6,1
C _n	Pitot Tube Coeficient		0,8199	0,8199	0,8199	0,82
Y	Dry Gas Meter Calibration	n Factor	0,964	0,964	0,964	0,964
P _{Br}	Barometric Pressure, mm	of Mercury	771,96	771,96	771,96	771,96
P _{Br}	Barometric Pressure, HPa	1	1029,20	1029,20	1029,20	1029,20
ΔH	Average orifice meter Diff	erential, mm H ₂ O	60,00	92,00	90,00	80,67
Vm	Dry Gas Meter Volume S	ampled, m ³	1,534	1,838	1,869	1,747
t _m	Average Dry Gas Meter 1	emperature, °C	14,8	9,4	6,0	10,1
V _{mstd}	Dry Gas Meter Volume S	ampled, Nm ³ (Dry at 273K, 101.3kPa)	1,43	1,75	1,80	1,66
Vic	Total Moisture Liquid colle	ected, ml	3,2	2,5	3,7	3,1
Vwstd	Volume of Water Vapor, I	Mm ³ (Dry at 273K, 101.3kPa)	0,004	0,003	0,005	0,004
%H ₂ O	Moisture Content of Stack	: Gas, %	0,28	0,18	0,25	0,24
%CO2	Carbon Dioxide, %		3,50	3,70	3,60	3,60
%O ₂	Oxygen, %		14,8	14,7	14,6	14,7
% CO+ N ₂	Carbon Monoxide & Nitro	gen, %	81,7	81,6	81,8	81,7
Pg	Flue Gas Static Pressure	mm of H ₂ O	-9,00	-9,00	-9,00	-9,00
Ps	Absolute Flue Gas Press	ire, mm of Mercury	771,30	771,30	771,30	771,30
ts	Average Stack Gas Temp	erature, °C	515,0	514,0	515,5	515
ΔP_{avg}	Average Velocity Head, r	nm of H ₂ O	28,0	40,0	40,0	36,0
Vs	Average Stack Gas Veloc	ity, m/s	20,5	24,2	24,5	23,1
Ds	Stack Diameter (m)		6,200	6,200	6,200	6,200
As	Stack Crossectional Area	, m²	30,19	30,19	30,19	30,19
Q _d	Dry Volumetric Flow Rate	, Nm³/min (Dry at 273K, 101.3kPa)	25 071	30 295	29 977	28 448
Q _{aw}	Actual Wet Volumetric Flu	e Gas Flow Rate, m³/min	37 090	43 893	44 324	41 769
%	Percent Isokinetic of Sam	pling Rate, %	98,0	99,8	103,8	100,5

Table B: Pollutant Concentrations:

Plant	ESKOM GOURIKWA Address GOURIKWA		Job #	UNIT 12 O	R GT 12
MISSION RES	<u>ULTS</u>			Ra	yten MGINEERING BOLUTION and Engineering Consulta
	Particulate Matter				
W _{total}	Particulate Method 5 Filter + Probe Catch Weight, mg	2,2	4,3	0,8	2,4
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm3 at 273K, 101.3kPa)	1,53	2,45	0,46	1,48
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm ³ at 273K, 101.3kPa) @15% O2	1,48	2,34	0,43	1,42
E (kg/hr)	Particulate Emission Rate, kg/hr	2,30	4,46	0,83	2,53
	Combustion Gas Concentrations				
SO _{2 ppm}		40,00	41,00	36,00	39,00
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa	114,40	117,26	102,96	111,54
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa @15% O ₂	110,7	111,7	96,5	106,3
E (kg/hr)	SO ₂ Emission Rate, kg/hr	172,09	213,14	185,19	190,14
NOx ppm		55,00	56,00	57,00	56,00
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa	112,75	114,80	116,85	114,80
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa @15% O ₂	109,1	109,3	109,5	109,3
E (kg/hr)	NOx Emission Rate, kg/hr	169,61	208,67	210,17	196,15
CO ppm		21,00	20,00	18,00	19,67
CO mg/Nm ³	mg/Nm ³ at 273K, 101.3kPa	25,8	24,6	22,1	24,2
E (kg/hr)	CO Emission Rate, kg/hr	38,86	44,72	39,82	41,13

Table C: NAEIS Emissions Reporting Requirements:

Description:	Average:	Units:
Inside Stack Diameter =	6,20	m
Stack Exit Temperature =	515	°C
Actual Exit Flow Rate =	41769	m³/min
Actual Exit Flow Rate =	696	m³/s
PM emission rate =	2,53	kg/hr
PM emission rate =	22142,6	kg/year
SO ₂ emission rate =	190	kg/hr
SO ₂ emission rate =	1665628	kg/year
NOx emission rate =	196	kg/hr
NOx emission rate =	1718274	kg/year
CO emission rate =	41	kg/hr
CO emission rate =	360307	kg/year
Above emission rates assume plant operates 24 hours for 365 days.		

4. DISCUSSION

Sample ports were available on the stack which were utilised for volumetric flow rate and isokinetic measurements.

Duct/ Stack Characteristics

Stack Shape	Circular	
Diameter / Depth:	6.2	m
Width (if square):	-	m
Area of Stack:	30.19	m²
Stack Orientation:	Vertical	
Number of ports:	3	

Site Notes/ Conditions

1	No concerns noted on Site.
2	Eskom CEMs unit readings are graphed below for information.
3	-
4	-
5	-

Tag Name	Description	Number	Server	Color	Units	Minimum	Maximum	IO Address	Time Offset	Source Tag	Source Server	Value at X1	Value at X2
GOP_12_M	GT12 CALC TURB OT (1	BLVVMS		°C	0	700	\\GOPMAS02\FSGate	0:00:00.000			512	483
GOP_12_M	GT12 ACTIVE POWER	2	BLVVMS		MW	-20	200	\\GOPMAS02\FSGate	0:00:00,000			143	29
GOP_12_M	GT12 TURBINE SPEE	3	BLVVMS		Hz	0	60	\\GOPMAS02\FSGate	0:00:00,000			50	50
GOP_12_M	GT12 FLUGAS STACK	4	BLVVMS		mg/m3	0	1250	\\GOPMAS02\FSGate	0:00:00,000			171	88

Rayten monitored the stack accordingly and the results are a respectable indication of the stack emission rates. It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

5. QUALITY CONTROL AND QUALITY ASSURANCE

Rayten Engineering Solutions follows a strict Quality Management System which has been set up to comply with international standards. Rayten Engineering Solutions (Pty) Ltd is a SANAS accredited laboratory (T0894) in accordance with ISO/IEC 17025:2017 international standards. Rayten Engineering's scope of accreditation is attached. Calibration certificates can be made available on request.

6. CONCLUSIONS

It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

The results may become non-representative of the true emissions if deviations from process operating conditions, raw material feed rate and/or composition changes as well as upset conditions occur other than what was present at the time of taking the various samples.

Does the Unit12/GT12 comply with the minimum emissions standards as stipulated within the section 21 listed activities?

APPENDIX A

SANAS ACCREDITATION CERTIFICATE

CERTIFICATE OF ACCREDITATION

In terms of section 22(2) (b) of the Accreditation for Conformity Assessment, Calibration and Good Laboratory Practice Act, 2006 (Act 19 of 2006), read with sections 23(1), (2) and (3) of the said Act, I hereby certify that:-

RAYTEN ENGINEERING SOLUTIONS (PTY) LTD

Co. Reg. No.: 2019/310726/07

Facility Accreditation Number: T0894

is a South African National Accreditation System accredited facility provided that all conditions and requirements are complied with

This certificate is valid as per the scope as stated in the accompanying schedule of accreditation, Annexure "A", bearing the above accreditation number for

ENVIRONMENTAL ANALYSIS

The facility is accredited in accordance with the recognised International Standard

ISO/IEC 17025:2017

The accreditation demonstrates technical competency for a defined scope and the operation of a quality management system

While this certificate remains valid, the Accredited Facility named above is authorised to use the relevant accreditation symbol to issue facility reports and/or certificates

Mr M Phaloane Acting Chief Executive Officer

Effective Date: 13 February 2020 Certificate Expires: 12 February 2025

STACK EMISSIONS MONITORING REPORT 2022

Environmental and Engineering Consultants

43 Kayburne Ave Randpark Ridge 2188 Gauteng South Africa Tel: +27 (0)11 792-0880

Your contact at RAYTEN ENGINEERING SOLUTIONS (Pty) Ltd

Jacques Le Roux Technical Director – Head Office Tel: 011 792 0880 / Mobile: 068 072 2234

<u>CLIENT DETAILS</u>			
Company Name:	Eskom Gourikwa Power Station		
Contact Person:	Antony Domburg		
Contact Telephone:	072 209 6113		
Company Address:	Petro SA Landfill Site, Mossel Bay 6500		
ermit/ AEL Reference: WCED013			
Release Point/ Stack ID:	Unit 13/GT13		
Sampling Date:	11 May 2022		
Reporting Period:	2022		

Project Number:	TEC-ESK-222590	and a state of the
Report Number:	ESKG-02-106-003-01	itoo tara
Report Submission Date:	28 July 2022	HOC-MIKA
		The and aluter

info@rayten.co.za

011 792 0880

086 592 0298

www.rayten.co.za

as

T0894

PO Box 1369 Bromhof 2154

REVISION AND APPROVAL PAGE

Revision Number	01				
Rayten Report Number	ESKG-02-106-003-01				
Rayten Project Number	TEC-ESK-222590				
	Name	Signature	Date		
Author	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	<u>e</u> -1	28 July 2022		
Document Reviewer	Jacques Le Roux Technical Director (Technical Signatory)	Rouz	28 July 2022		
Document Authorisation	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	<u>e</u>	28 July 2022		

DISCLAIMER

Note that although every effort has been made by Rayten Engineering Solutions to obtain the correct information and to carry out an appropriate, independent, impartial, and competent study; Rayten Engineering Solutions cannot be held liable for any incident which directly or indirectly relates to the work in this document and which may have an effect on the client or on any other third party.

CONFIDENTIALITY

The content of this report will be kept confidential. Copies of the report will not be distributed to other parties except with the expressed permission of the client. The exception to this confidentiality being the requirement from the relevant authority or department. Copyright is vested in Rayten Engineering Solutions in terms of the Copyright Act (Act 98 of 1978) and no use or reproduction or duplication thereof may occur without the written consent of the author.

Emissions Measurements Report

Name of Enterprise: Rayten Engineering Solutions (Pty) Ltd

Declaration of accuracy of information provided:

I, Claire Wray, declare that the information provided in this report is in all respects factually true and correct.

Signed at, _____ Randburg_____ on this __28__ day of _July_2022_

Vray

Claire Wray Director

EXECUTIVE SUMMARY

Monitoring Objectives

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western Cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source.

Stack ID

Unit 13/GT13

Stack Parameters

- Gas velocity
- Gas volumetric flow rate
- Gas temperature
- Gas static and absolute pressure
- Moisture Content

Isokinetic Emissions

• Particulate Matter (PM)

Anisokinetic Emissions (Instrumental Monitoring)

• Combustion Gas Components (O₂, NO, NO₂, NOx, CO, CO₂ & SO₂)

Emissions Summary

Category for Limits:	1.2: Liquid Fuel Combustion Installations
Sampling Date:	11/05/2022
Sampling Times:	17:00 – 21:00
Amount of Test Runs:	3
Sampling Duration:	60 minutes per test run

Parameter	Reporting Units	Results	Limits	Compliant (Y/N)
Avg. Particulate Matter (PM)	mg/Nm³	1.43	50	Y
Avg. Sulphur Dioxide (SO2)	mg/Nm³	80.4	500	Y
Avg. Oxides of Nitrogen (NOx)	mg/Nm³	81.61	250	Y
Ava Oxygen (in stack)	%	14.2	Ν/Δ	ΝΙ/Δ
Referenced Oxygen	%	15	N/A	N/A

N/A = Not Applicable

LIST OF ABBREVIATIONS

Abbreviation	Meaning
AEL	Atmospheric Emission Licence
US EPA	United States Environmental Protection Agency
NPT	Normalised Pressure and Temperature
°C	Degree Celsius
mm	Millimetres
m	Meters
m ³	Cubic Meters
Nm ⁻³	Normalised Cubic Meter
mg	Milligrams
ml	Millilitres
m³/hr	Cubic Meter per Hour
kg/s	Kilogram per Second
kg/hr	Kilogram per Hour
m/s	Metres per Second
mg.Nm ⁻³	Milligrams per normalised Cubic Meter
ppm	Parts per million
ATM	Atmosphere
dscm	Dry Standard Cubic Meter
scmm	Standard Cubic Meter per Minute
acmm	Actual Cubic Meter per Minute
acms	Actual Cubic Meter per Second
g/dscm	Grams per Dry Standard Cubic Meter
BDL	Below Detection Limit
O ₂	Oxygen
PM	Particulate Matter
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
SO ₂	Sulphur Dioxide
H ₂ O	Water

CONTENTS

REV	ISION AND APPROVAL PAGE	0
EXE	CUTIVE SUMMARY	2
1.	INTRODUCTION	6
2.	METHOD OF MEASUREMENTS	7
3.	RESULTS	9
4.	DISCUSSION	11
5.	QUALITY CONTROL AND QUALITY ASSURANCE	12
6.	CONCLUSIONS	12

LIST OF APPENDICES

Appendix A – SANAS Accreditation Certificate

1. INTRODUCTION

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source:

- Particulate Matter (PM)
- Sulphur Dioxide (SO₂)
- Oxides of Nitrogen expressed as NO₂ (NOx)

Stack and Associated Listed Activity

Stack ID	Category	Subcategory	Description
013	1	2	Unit 13/GT13

Atmospheric Emissions Licence (AEL) Number (if applicable)

Name of Plant/ Facility:	Eskom Gourikwa
AEL Licence Number:	WCED013
AEL Expiry Date:	April 2023
Reporting Period:	2022

Process Details

Site Location:	Eskom Mosselbay Power Station
Description of Process:	Electricity Generation
Continuous or Batch:	Continuous
Product Details:	-
Normal Operation or Erratic:	Normal
Fuel Used (if applicable):	Diesel

Accreditation Status of Laboratory (Rayten Engineering Solutions)

Name of Service Provider:	Rayten Engineering Solutions (Internal Lab)
Accreditation Status:	Accredited
Last Audit Date:	September 2021
Audit Status:	Passed
Address:	43 Kayburne Ave, Randpark Ridge, Gauteng
Telephone:	011-792-0880

2. METHOD OF MEASUREMENTS

All samples and analyses were carried out according to internationally accepted reference methods, which comply with the National Environmental Management: Air Quality Act of 2004 (Act 39 of 2004), prescribed in Schedule A: Methods for sampling and analysis in terms of Notice GN1207 dated 31 October 2018. Sampling techniques were applied to measure the following:

Methods of Measurement and Analyses

Parameter/ Pollutant	Standard Reference Method or Alternative Method	Analysis Technique	Laboratory	Laboratory Accredited	Calculated Measure of Uncertainty +/
Sample and Velocity Traverses	US EPA Method 1	N/A	Rayten (Site)	Yes	N/A
Stack Gas Velocity & Volumetric Flow Rate	US EPA Method 2	Dry Gas Meter and Type S Pitot tube	Rayten (Site)	Yes	4.05 m/s
The gas temperatures	Connected to a digital thermometer (K-type)	Connected to a digital thermometer (K- type)	Rayten (Site)	Yes	N/A
Oxygen and Carbon Dioxide Concentration	US EPA Method 3A	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	Oxygen = 0.41% of indicated value.
Determination of Moisture Content in Stack Gases.	US EPA Method 4	Gravimetric	Rayten (Site)	Yes	1.81 mg
Particulate Matter	US EPA Method 5	Gravimetric	Rayten (Randburg)	Yes	2.48 mg
Sulphur Dioxide	US EPA Method 6C	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	1.95 ppm
Oxides of Nitrogen	US EPA Method 7E	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	8.18 ppm

Calibrated Equipment Checklist.

Equipment	ID
APEX Kit Number	Т3
Dry Gas Meter	1903078
Gas Analyzer	RAY-T3-IMR-001
Nozzle set	RAY-T3-SN-001
Pitot Tube	RAY-T3-PT-001
Site Balance	RAY-T3-SC-001
Barometer	RAY-T3-BAR-001
Manometer	RAY-T3-MM-001

3. RESULTS

Table A: Stack Parameters:

Plant	ESKOM GOURIK	WA Address <u>GOURIKWA</u>		Job #	UNIT 13 O	R GT 13
LEAD TECHNIC SUPPORTING T ISOKINETIC MA GAS ANALYSE PITOT TUBE US	CIAN: FECHNICIAN: ACHINE USED: R USED: SED:	J Mashala G Mokgosi APEX 2 (DURBAN MACHINE) RAY-T3B-IMRA-001 RAY-T3-PT-001	1 903 078 D2802A08 0,8199		Rayt Environmental and Engineering	CONSULTIONS g Consultants
STACK PAR	RAMETERS					
	Run Number		1	2	3	Average
Date	Test Date		11/05/2022	11/05/2022	11/05/2022	
Start	Run Start Time		17:00	18:32	20:00	
	Run Finish Time		18:00	19:32	21:00	
	Net Traversing Points		24	24	24	
Θ	Net Run Time, minutes		60	60	60	60
D _N	Nozzle Diameter, mm		6,1	6,1	6,1	6,1
Cp	Pitot Tube Coeficient		0,8199	0,8199	0,8199	0,82
Ŷ	Dry Gas Meter Calibration	Factor	0,964	0,964	0,964	0,964
P _{Br}	Barometric Pressure, mm	of Mercury	778,71	778,71	778,71	778,71
P _{Br}	P _{Br} Barometric Pressure, HPa		1038,20	1038,20	1038,20	1038,20
ΔH	ΔH Average orifice meter Differential, mm H ₂ O		68,00	74,00	72,00	71,33
V _m Dry Gas Meter Volume Sampled, m ³		1,618	1,644	1,649	1,637	
t _m	t _m Average Dry Gas Meter Temperature, °C		15,3	11,0	6,8	11,0
V _{mstd}	V _{mstd} Dry Gas Meter Volume Sampled, Nm ³ (Dry at 273K, 101.3kPa)		1,51	1,56	1,59	1,56
V _{Ic}	Total Moisture Liquid colle	ected, ml	3,3	6	3,9	4,4
V _{wstd}	Volume of Water Vapor, N	m³ (Dry at 273K, 101.3kPa)	0,004	0,007	0,005	0,005
%H ₂ O	Moisture Content of Stack	Gas, %	0,27	0,48	0,30	0,35
%CO2	Carbon Dioxide, %		3,80	3,80	3,80	3,80
%O ₂	Oxygen, %		14,2	14,2	14,1	14,2
% CO+ N ₂	Carbon Monoxide & Nitrog	jen, %	82	82	82,1	82,0
Pg	Flue Gas Static Pressure,	mm of H_2O	-3,00	-3,00	-3,00	-3,00
Ps	Absolute Flue Gas Pressu	ire, mm of Mercury	778,49	778,49	778,49	778,49
ts	Average Stack Gas Temp	erature, °C	512	512	512	512
ΔP_{avg}	ΔP_{avg} Average Velocity Head, mm of H ₂ O		32,0	32,0	32,0	32,0
Vs Average Stack Gas Velocity, m/s		21,7	21,7	21,7	21,7	
Ds	Stack Diameter (m)		6,2	6,2	6,2	6,2
As	Stack Crossectional Area	, m²	30,19	30,19	30,19	30,19
Q _d Dry Volumetric Flow Rate, Nm ³ /min (Dry at 273K, 101.3kPa)		26 959	26 949	26 980	26 963	
Q _{aw}	Actual Wet Volumetric Flu	e Gas Flow Rate, m³/min	39 390	39 324	39 346	39 353
%l	Percent Isokinetic of Sam	pling Rate, %	96,7	100,4	102,1	99,7

Table B: Pollutant Concentrations:

Plant	ESKOM GOURIKWA Address GOURIKWA		Job #	UNIT 13 O	R GT 13
EMISSION RES	MISSION RESULTS				
	Particulate Matter				
W _{total}	Particulate Method 5 Filter + Probe Catch Weight, mg	3,0	2,9	1,7	2,5
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm ³ at 273K, 101.3kPa)	1,95	1,83	1,09	1,62
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm ³ at 273K, 101.3kPa) @15% O2	1,72	1,61	0,95	1,43
E (kg/hr)	Particulate Emission Rate, kg/hr	3,15	2,95	1,77	2,62
	Combustion Gas Concentrations				
SO _{2 ppm}		35,00	31,00	30,00	32,00
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa	100,10	88,66	85,80	91,52
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa @15% O ₂	88,32	78,23	74,61	80,39
E (kg/hr)	SO ₂ Emission Rate, kg/hr	161,91	143,36	138,89	148,05
NOx ppm		46,00	45,00	45,00	45,33
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa	94,30	92,25	92,25	92,93
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa @15% O ₂	83,21	81,40	80,22	81,61
E (kg/hr)	NOx Emission Rate, kg/hr	152,53	149,16	149,33	150,34
CO ppm		20,00	17,00	15,00	17,33
CO mg/Nm ³	mg/Nm ³ at 273K, 101.3kPa	24,60	20,91	18,45	21,32
E (kg/hr)	CO Emission Rate, kg/hr	39,79	33,81	29,87	34,49

Table C: NAEIS Emissions Reporting Requirements:

Description:	Average:	Units:
Inside Stack Diameter =	6,20	m
Stack Exit Temperature =	512	°C
Actual Exit Flow Rate =	39353,1	m³/min
Actual Exit Flow Rate =	655,9	m³/s
PM emission rate =	2,62	kg/hr
PM emission rate =	22978,4	kg/year
SO ₂ emission rate =	148	kg/hr
SO ₂ emission rate =	1296961	kg/year
NOx emission rate =	150	kg/hr
NOx emission rate =	1317005	kg/year
CO emission rate =	34	kg/hr
CO emission rate =	302127	kg/year
Above emission rates assume plant operates 24 hours for 365 days.		

4. DISCUSSION

Sample ports were available on the stack which were utilised for volumetric flow rate and isokinetic measurements.

Duct/ Stack Characteristics

Stack Shape	Circular	
Diameter / Depth:	6.2	m
Width (if square):	-	m
Area of Stack:	30.19	m²
Stack Orientation:	Vertical	
Number of ports:	3	

Site Notes/ Conditions

1	No concerns noted on Site.
2	Eskom CEMs unit readings are graphed below for information.
3	-
4	-
5	-

Rayten monitored the stack accordingly and the results are a respectable indication of the stack emission rates. It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

5. QUALITY CONTROL AND QUALITY ASSURANCE

Rayten Engineering Solutions follows a strict Quality Management System which has been set up to comply with international standards. Rayten Engineering Solutions (Pty) Ltd is a SANAS accredited laboratory (T0894) in accordance with ISO/IEC 17025:2017 international standards. Rayten Engineering's scope of accreditation is attached. Calibration certificates can be made available on request.

6. CONCLUSIONS

It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

The results may become non-representative of the true emissions if deviations from process operating conditions, raw material feed rate and/or composition changes as well as upset conditions occur other than what was present at the time of taking the various samples.

Does the Unit13/GT13 comply with the minimum emissions standards as stipulated within the section 21 listed activities?

APPENDIX A

SANAS ACCREDITATION CERTIFICATE

CERTIFICATE OF ACCREDITATION

In terms of section 22(2) (b) of the Accreditation for Conformity Assessment, Calibration and Good Laboratory Practice Act, 2006 (Act 19 of 2006), read with sections 23(1), (2) and (3) of the said Act, I hereby certify that:-

RAYTEN ENGINEERING SOLUTIONS (PTY) LTD

Co. Reg. No.: 2019/310726/07

Facility Accreditation Number: T0894

is a South African National Accreditation System accredited facility provided that all conditions and requirements are complied with

This certificate is valid as per the scope as stated in the accompanying schedule of accreditation, Annexure "A", bearing the above accreditation number for

ENVIRONMENTAL ANALYSIS

The facility is accredited in accordance with the recognised International Standard

ISO/IEC 17025:2017

The accreditation demonstrates technical competency for a defined scope and the operation of a quality management system

While this certificate remains valid, the Accredited Facility named above is authorised to use the relevant accreditation symbol to issue facility reports and/or certificates

Mr M Phaloane Acting Chief Executive Officer

Effective Date: 13 February 2020 Certificate Expires: 12 February 2025

STACK EMISSIONS MONITORING REPORT 2022

Environmental and Engineering Consultants

43 Kayburne Ave Randpark Ridge 2188 Gauteng South Africa Tel: +27 (0)11 792-0880

Your contact at RAYTEN ENGINEERING SOLUTIONS (Pty) Ltd

Jacques Le Roux Technical Director – Head Office Tel: 011 792 0880 / Mobile: 068 072 2234

<u>CLIENT DETAILS</u>			
Company Name:	Eskom Gourikwa Power Station		
Contact Person:	Antony Domburg		
Contact Telephone:	072 209 6113		
Company Address:	Petro SA Landfill Site, Mossel Bay 6500		
Permit/ AEL Reference:	WCED013		
Release Point/ Stack ID:	Unit 21/GT21		
Sampling Date:	10 May 2022		
Reporting Period:	2022		

Project Number:	TEC-ESK-222590	AND THE PARTY OF T
Report Number:	ESKG-02-106-004-01	4
Report Submission Date:	28 July 2022	Hac-MRA

info@rayten.co.za

011 792 0880

086 592 0298

www.rayten.co.za

PO Box 1369 Bromhof 2154

REVISION AND APPROVAL PAGE

Revision Number	01				
Rayten Report Number	ESKG-02-106-004-01				
Rayten Project Number	TEC-ESK-222590				
	Name	Signature	Date		
Author	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	e-1	28 July 2022		
Document Reviewer	Jacques Le Roux Technical Director (Technical Signatory)	Rouz	28 July 2022		
Document Authorisation	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	e-1	28 July 2022		

DISCLAIMER

Note that although every effort has been made by Rayten Engineering Solutions to obtain the correct information and to carry out an appropriate, independent, impartial, and competent study; Rayten Engineering Solutions cannot be held liable for any incident which directly or indirectly relates to the work in this document and which may have an effect on the client or on any other third party.

CONFIDENTIALITY

The content of this report will be kept confidential. Copies of the report will not be distributed to other parties except with the expressed permission of the client. The exception to this confidentiality being the requirement from the relevant authority or department. Copyright is vested in Rayten Engineering Solutions in terms of the Copyright Act (Act 98 of 1978) and no use or reproduction or duplication thereof may occur without the written consent of the author.

Emissions Measurements Report

Name of Enterprise: Rayten Engineering Solutions (Pty) Ltd

Declaration of accuracy of information provided:

I, Claire Wray, declare that the information provided in this report is in all respects factually true and correct.

Signed at, _____ Randburg_____ on this __28__ day of _July_2022_

Vray

Claire Wray Director

EXECUTIVE SUMMARY

Monitoring Objectives

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western Cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source.

Stack ID

Unit 21/GT21

Stack Parameters

- Gas velocity
- Gas volumetric flow rate
- Gas temperature
- Gas static and absolute pressure
- Moisture Content

Isokinetic Emissions

• Particulate Matter (PM)

Anisokinetic Emissions (Instrumental Monitoring)

• Combustion Gas Components (O₂, NO, NO₂, NOx, CO, CO₂ & SO₂)

Emissions Summary

Category for Limits:	1.2: Liquid Fuel Combustion Installations	
Sampling Date:	10/05/2022	
Sampling Times:	09:08 – 13:15	
Amount of Test Runs:	3	
Sampling Duration:	60 minutes per test run	

Parameter	Reporting Units	Results	Limits	Compliant (Y/N)
Avg. Particulate Matter (PM)	mg/Nm³	4.40	50	Y
Avg. Sulphur Dioxide (SO ₂)	mg/Nm³	110.8	500	Y
Avg. Oxides of Nitrogen (NOx)	mg/Nm³	141.7	250	Y
Ava Oxygon (in stock)	0/ 1/1/	16.4	Ν/Δ	ΝΙ/Δ
Avg. Oxygen (In stack)	/0V/V	10.4		
Referenced Oxygen	%	15	IN/A	IN/A

N/A = Not Applicable

LIST OF ABBREVIATIONS

Abbreviation	Meaning
AEL	Atmospheric Emission Licence
US EPA	United States Environmental Protection Agency
NPT	Normalised Pressure and Temperature
°C	Degree Celsius
mm	Millimetres
m	Meters
m ³	Cubic Meters
Nm ⁻³	Normalised Cubic Meter
mg	Milligrams
ml	Millilitres
m³/hr	Cubic Meter per Hour
kg/s	Kilogram per Second
kg/hr	Kilogram per Hour
m/s	Metres per Second
mg.Nm ⁻³	Milligrams per normalised Cubic Meter
ppm	Parts per million
ATM	Atmosphere
dscm	Dry Standard Cubic Meter
scmm	Standard Cubic Meter per Minute
acmm	Actual Cubic Meter per Minute
acms	Actual Cubic Meter per Second
g/dscm	Grams per Dry Standard Cubic Meter
BDL	Below Detection Limit
O ₂	Oxygen
PM	Particulate Matter
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
SO ₂	Sulphur Dioxide
H ₂ O	Water

CONTENTS

REV	ISION AND APPROVAL PAGE	0
EXE	CUTIVE SUMMARY	2
1.	INTRODUCTION	6
2.	METHOD OF MEASUREMENTS	7
3.	RESULTS	9
4.	DISCUSSION	11
5.	QUALITY CONTROL AND QUALITY ASSURANCE	12
6.	CONCLUSIONS	12

LIST OF APPENDICES

Appendix A – SANAS Accreditation Certificate

1. INTRODUCTION

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source:

- Particulate Matter (PM)
- Sulphur Dioxide (SO₂)
- Oxides of Nitrogen expressed as NO₂ (NOx)

Stack and Associated Listed Activity

Stack ID	Category	Subcategory	Description
021	1	2	Unit 21/GT21

Atmospheric Emissions Licence (AEL) Number (if applicable)

Name of Plant/ Facility:	Eskom Gourikwa
AEL Licence Number:	WCED013
AEL Expiry Date:	April 2023
Reporting Period:	2022

Process Details

Site Location:	Eskom Mosselbay Power Station
Description of Process:	Electricity Generation
Continuous or Batch:	Continuous
Product Details:	-
Normal Operation or Erratic:	Normal
Fuel Used (if applicable):	Diesel

Accreditation Status of Laboratory (Rayten Engineering Solutions)

Name of Service Provider:	Rayten Engineering Solutions (Internal Lab)
Accreditation Status:	Accredited
Last Audit Date:	September 2021
Audit Status:	Passed
Address:	43 Kayburne Ave, Randpark Ridge, Gauteng
Telephone:	011-792-0880

2. METHOD OF MEASUREMENTS

All samples and analyses were carried out according to internationally accepted reference methods, which comply with the National Environmental Management: Air Quality Act of 2004 (Act 39 of 2004), prescribed in Schedule A: Methods for sampling and analysis in terms of Notice GN1207 dated 31 October 2018. Sampling techniques were applied to measure the following:

Methods of Measurement and Analyses

Parameter/ Pollutant	Standard Reference Method or Alternative Method	Analysis Technique	Laboratory	Laboratory Accredited	Calculated Measure of Uncertainty +/
Sample and Velocity Traverses	US EPA Method 1	N/A	Rayten (Site)	Yes	N/A
Stack Gas Velocity & Volumetric Flow Rate	US EPA Method 2	Dry Gas Meter and Type S Pitot tube	Rayten (Site)	Yes	4.05 m/s
The gas temperatures	Connected to a digital thermometer (K-type)	Connected to a digital thermometer (K- type)	Rayten (Site)	Yes	N/A
Oxygen and Carbon Dioxide Concentration	US EPA Method 3A	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	Oxygen = 0.41% of indicated value.
Determination of Moisture Content in Stack Gases.	US EPA Method 4	Gravimetric	Rayten (Site)	Yes	1.81 mg
Particulate Matter	US EPA Method 5	Gravimetric	Rayten (Randburg)	Yes	2.48 mg
Sulphur Dioxide	US EPA Method 6C	Instrumental (RAY-T3-IMR- 001) (Site)		Yes	1.95 ppm
Oxides of Nitrogen	US EPA Method 7E	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	8.18 ppm

Calibrated Equipment Checklist.

Equipment	ID
APEX Kit Number	Т3
Dry Gas Meter	1903078
Gas Analyzer	RAY-T3-IMR-001
Nozzle set	RAY-T3-SN-001
Pitot Tube	RAY-T3-PT-001
Site Balance	RAY-T3-SC-001
Barometer	RAY-T3-BAR-001
Manometer	RAY-T3-MM-001

3. RESULTS

Table A: Stack Parameters:

Plant	ESKOM GOURIK	WA Address <u>GOURIKWA</u>		lob #	UNIT 21 OI	R GT 21
LEAD TECHNIC SUPPORTING 1 ISOKINETIC MA GAS ANALYSE PITOT TUBE US	CIAN: FECHNICIAN: ACHINE USED: R USED: SED:	J Mashala G Mokgosi APEX 2 (DURBAN MACHINE) RAY-T3B-IMRA-001 RAY-T3-PT-001	1 903 078 D2802A08 0,8199		Rayt Environmental and Engine	NG SOLUTIONS Rering Consultants
STACK PAR	RAMETERS					
	Run Number		1	2	3	Average
Date	Test Date		10/05/2022	10/05/2022	10/05/2022	
Start	Run Start Time		09:08	10:50	12:15	
	Run Finish Time		10:08	11:50	13:15	
	Net Traversing Points		24	24	24	
Θ	Net Run Time, minutes		60	60	60	60
D _N	Nozzle Diameter, mm		6,1	6,1	6,1	6,1
Cp	Pitot Tube Coeficient		0,8199	0,8199	0,8199	0,82
Y	Dry Gas Meter Calibration	Factor	0,964	0,964	0,964	0,964
P _{Br}	Barometric Pressure, mm	of Mercury	771,21	771,21	771,21	771,21
P _{Br}	Barometric Pressure, HPa		1028,20	1028,20	1028,20	1028,20
ΔH	Average orifice meter Diff	erential, mm H ₂ O	64,00	72,00	72,00	69,33
Vm	Dry Gas Meter Volume Sa	ampled, m ³	1,545	1,692	1,709	1,649
t _m	Average Dry Gas Meter T	emperature, °C	19,4	23,8	25,8	23,0
V _{mstd}	Dry Gas Meter Volume Sa	ampled, Nm³ (Dry at 273K, 101.3kPa)	1,43	1,54	1,54	1,51
V _{Ic}	Total Moisture Liquid colle	cted, ml	5,5	4,5	3,3	4,4
V _{wstd}	Volume of Water Vapor, N	lm³ (Dry at 273K, 101.3kPa)	0,007	0,006	0,004	0,006
%H ₂ O	Moisture Content of Stack	Gas, %	0,47	0,36	0,27	0,37
%CO2	Carbon Dioxide, %		2,80	2,60	2,70	2,70
%O ₂	Oxygen, %		16,4	16,4	16,4	16,4
% CO+ N ₂	Carbon Monoxide & Nitrog	jen, %	80,8	81	80,9	80,9
Pg	Flue Gas Static Pressure,	mm of H_2O	-4,00	-4,00	-4,00	-4,00
Ps	Absolute Flue Gas Pressu	ire, mm of Mercury	770,92	770,92	770,92	770,92
t _s	Average Stack Gas Temp	516	516	516	516	
ΔP_{avg}	Average Velocity Head, n	30,0	30,0	30,0	30,0	
Vs	Average Stack Gas Veloc	21,2	21,1	21,0	21,1	
Ds	Stack Diameter (m)	6,2	6,2	6,2	6,2	
As	Stack Crossectional Area	m²	30,19	30,19	30,19	30,19
Q _d	Dry Volumetric Flow Rate	, Nm³/min (Dry at 273K, 101.3kPa)	25 967	26 066	26 229	26 087
Q _{aw}	Actual Wet Volumetric Flu	e Gas Flow Rate, m³/min	38 384	38 282	38 081	38 249
%	Percent Isokinetic of Sam	pling Rate, %	94,9	101,3	101,0	99,1

Table B: Pollutant Concentrations:

Plant	ESKOM GOURIKWA Address GOURIKWA		Job #	UNIT 21 O	R GT 21
EMISSION RES	<u>SULTS</u>			Ray Environmental and	V ten NEERING SOLUTIONS Engineering Consultants
	Particulate Matter				
W _{total}	Particulate Method 5 Filter + Probe Catch Weight, mg	6,0	5,3	3,8	5,1
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm ³ at 273K, 101.3kPa)	4,20	3,45	2,48	3,38
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm ³ at 273K, 101.3kPa) @15% O2	5,48	4,50	3,23	4,40
E (kg/hr)	Particulate Emission Rate, kg/hr	6,5501	5,3930	3,8970	5,28
	Combustion Gas Concentrations				
SO _{2 ppm}		28,11	30,00	31,00	29,70
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa	80,39	85,80	88,66	84,95
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa @15% O ₂	104,86	111,91	115,64	110,81
E (kg/hr)	SO ₂ Emission Rate, kg/hr	125,2557	134,1870	139,5260	132,99
NOx ppm		53,00	52,00	54,00	53,00
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa	108,65	106,60	110,70	108,65
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa @15% O ₂	141,72	139,04	144,39	141,72
E (kg/hr)	NOx Emission Rate, kg/hr	169,2779	166,7172	174,2108	170,07
CO ppm		21,70	18,50	16,00	18,73
CO mg/Nm ³	mg/Nm³ at 273K, 101.3kPa	26,69	22,76	19,68	23,04
E (kg/hr)	CO Emission Rate, kg/hr	41,5849	35,5877	30,9708	36,05

Table C: NAEIS Emissions Reporting Requirements:

Average:	Units:
6,20	m
516	°C
38249,5	m³/min
637,5	m³/s
5,3	kg/hr
46253,3	kg/year
133	kg/hr
1164989	kg/year
170	kg/hr
1489801	kg/year
36	kg/hr
315779	kg/year
	Average: 6,20 516 38249,5 637,5 5,3 46253,3 1133 1164989 170 1489801 36 315779

4. DISCUSSION

Sample ports were available on the stack which were utilised for volumetric flow rate and isokinetic measurements.

Duct/ Stack Characteristics

Stack Shape	Circular	
Diameter / Depth:	6.2	m
Width (if square):	-	m
Area of Stack:	30.19	m²
Stack Orientation:	Vertical	
Number of ports:	3	

Site Notes/ Conditions

1	No concerns noted on Site.
2	Eskom CEMs unit readings are graphed below for information.
3	-
4	-
5	-

BLV/MSD017:GDP_21_MBR20_CG002A_OUT [Cyclic - 00 00:00:34 947]													
Tag Name	Description	Number	Server	Color	Units	Minimum	Maximum	IO Address	Time Offset	Source Tag	Source Server	Value at X1	Valu ^
GOP_21_M	GT21 ACTUAL POSN IGV (%)	4	BLVVMS		%	-10,00	120,00	\\GOPMAS02\FSGate	0:00:00,000			102,69	102,
GOP_21_M	GT21 CALC TURB OT (°C)	5	BLVVMS		°C	0,00	700,00	\\GOPMAS02\FSGate	0:00:00,000			519,59	520,
GOP 21 M	GT21 ACTIVE POWER (MW)	6	BLVVMS		MW	-20,00	200,00	\\GOPMAS02\FSGate	0:00:00,000			147,53	135,
GOP_21_M	GT21 TURBINE SPEED (Hz)	7	BLVVMS		Hz	0	60	\\GOPMAS02\FSGate	0:00:00,000			50	50
GOP 21 M	GT21 FLUGAS STACK NOX (ma/m3)	8	BLVVMS		mc/m3	0	1250	\\GOPMAS02\FSGate	0:00:00.000			137	137 🜱
<													>

GOP_21

Rayten monitored the stack accordingly and the results are a respectable indication of the stack emission rates. It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

5. QUALITY CONTROL AND QUALITY ASSURANCE

Rayten Engineering Solutions follows a strict Quality Management System which has been set up to comply with international standards. Rayten Engineering Solutions (Pty) Ltd is a SANAS accredited laboratory (T0894) in accordance with ISO/IEC 17025:2017 international standards. Rayten Engineering's scope of accreditation is attached. Calibration certificates can be made available on request.

6. CONCLUSIONS

It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

The results may become non-representative of the true emissions if deviations from process operating conditions, raw material feed rate and/or composition changes as well as upset conditions occur other than what was present at the time of taking the various samples.

Does the Unit21/GT21 comply with the minimum emissions standards as stipulated within the section 21 listed activities?

APPENDIX A

SANAS ACCREDITATION CERTIFICATE

CERTIFICATE OF ACCREDITATION

In terms of section 22(2) (b) of the Accreditation for Conformity Assessment, Calibration and Good Laboratory Practice Act, 2006 (Act 19 of 2006), read with sections 23(1), (2) and (3) of the said Act, I hereby certify that:-

RAYTEN ENGINEERING SOLUTIONS (PTY) LTD

Co. Reg. No.: 2019/310726/07

Facility Accreditation Number: T0894

is a South African National Accreditation System accredited facility provided that all conditions and requirements are complied with

This certificate is valid as per the scope as stated in the accompanying schedule of accreditation, Annexure "A", bearing the above accreditation number for

ENVIRONMENTAL ANALYSIS

The facility is accredited in accordance with the recognised International Standard

ISO/IEC 17025:2017

The accreditation demonstrates technical competency for a defined scope and the operation of a quality management system

While this certificate remains valid, the Accredited Facility named above is authorised to use the relevant accreditation symbol to issue facility reports and/or certificates

Mr M Phaloane Acting Chief Executive Officer

Effective Date: 13 February 2020 Certificate Expires: 12 February 2025

STACK EMISSIONS MONITORING REPORT 2022

Environmental and Engineering Consultants

43 Kayburne Ave Randpark Ridge 2188 Gauteng South Africa Tel: +27 (0)11 792-0880

Your contact at RAYTEN ENGINEERING SOLUTIONS (Pty) Ltd

Jacques Le Roux Technical Director – Head Office Tel: 011 792 0880 / Mobile: 068 072 2234

	CLIENT DETAILS		
Company Name:	Eskom Gourikwa Power Station		
Contact Person: Antony Domburg			
Contact Telephone:	072 209 6113		
Company Address:	: Petro SA Landfill Site, Mossel Bay 6500		
Permit/ AEL Reference:	WCED013		
Release Point/ Stack ID:	Unit 22/GT22		
Sampling Date:	10 May 2022		
Reporting Period:	2022		

Project Number:	TEC-ESK-222590	and the second second
Report Number:	ESKG-02-106-005-01	
Report Submission Date:	28 July 2022	HOC-MIKA

info@rayten.co.za

011 792 0880

086 592 0298

www.rayten.co.za

PO Box 1369 Bromhof 2154

REVISION AND APPROVAL PAGE

Revision Number	01					
Rayten Report Number	ESKG-02-106-005-01					
Rayten Project Number	TEC-ESK-222590					
	Name	Signature	Date			
Author	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	e-1	28 July 2022			
Document Reviewer	Jacques Le Roux Technical Director (Technical Signatory)	Rouz	28 July 2022			
Document Authorisation	Clive Wray Engineering Manager (Pr. Eng.) (Technical Signatory)	e-1	28 July 2022			

DISCLAIMER

Note that although every effort has been made by Rayten Engineering Solutions to obtain the correct information and to carry out an appropriate, independent, impartial, and competent study; Rayten Engineering Solutions cannot be held liable for any incident which directly or indirectly relates to the work in this document and which may have an effect on the client or on any other third party.

CONFIDENTIALITY

The content of this report will be kept confidential. Copies of the report will not be distributed to other parties except with the expressed permission of the client. The exception to this confidentiality being the requirement from the relevant authority or department. Copyright is vested in Rayten Engineering Solutions in terms of the Copyright Act (Act 98 of 1978) and no use or reproduction or duplication thereof may occur without the written consent of the author.

Emissions Measurements Report

Name of Enterprise: Rayten Engineering Solutions (Pty) Ltd

Declaration of accuracy of information provided:

I, Claire Wray, declare that the information provided in this report is in all respects factually true and correct.

Signed at, _____ Randburg_____ on this __28__ day of _July_2022_

Vray

Claire Wray Director

EXECUTIVE SUMMARY

Monitoring Objectives

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western Cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source.

Stack ID

Unit 22/GT22

Stack Parameters

- Gas velocity
- Gas volumetric flow rate
- Gas temperature
- Gas static and absolute pressure
- Moisture Content

Isokinetic Emissions

• Particulate Matter (PM)

Anisokinetic Emissions (Instrumental Monitoring)

• Combustion Gas Components (O₂, NO, NO₂, NOx, CO, CO₂ & SO₂)

Emissions Summary

Category for Limits:	1.2: Liquid Fuel Combustion Installations
Sampling Date:	10/05/2022
Sampling Times:	17:00 – 20:40
Amount of Test Runs:	3
Sampling Duration:	60 minutes per test run

50	Y
500	Y
250	Y
NI/A	ΝΙ/Δ
IN/A	IN/A
N/A	N/A
	50 500 250 N/A N/A

N/A = Not Applicable

LIST OF ABBREVIATIONS

Abbreviation	Meaning
AEL	Atmospheric Emission Licence
US EPA	United States Environmental Protection Agency
NPT	Normalised Pressure and Temperature
°C	Degree Celsius
mm	Millimetres
m	Meters
m ³	Cubic Meters
Nm ⁻³	Normalised Cubic Meter
mg	Milligrams
ml	Millilitres
m³/hr	Cubic Meter per Hour
kg/s	Kilogram per Second
kg/hr	Kilogram per Hour
m/s	Metres per Second
mg.Nm ⁻³	Milligrams per normalised Cubic Meter
ppm	Parts per million
ATM	Atmosphere
dscm	Dry Standard Cubic Meter
scmm	Standard Cubic Meter per Minute
acmm	Actual Cubic Meter per Minute
acms	Actual Cubic Meter per Second
g/dscm	Grams per Dry Standard Cubic Meter
BDL	Below Detection Limit
O ₂	Oxygen
PM	Particulate Matter
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
SO ₂	Sulphur Dioxide
H ₂ O	Water

CONTENTS

REV	ISION AND APPROVAL PAGE	0
EXE	CUTIVE SUMMARY	2
1.	INTRODUCTION	6
2.	METHOD OF MEASUREMENTS	7
3.	RESULTS	9
4.	DISCUSSION	11
5.	QUALITY CONTROL AND QUALITY ASSURANCE	12
6.	CONCLUSIONS	12

LIST OF APPENDICES

Appendix A – SANAS Accreditation Certificate

1. INTRODUCTION

Rayten Engineering Solutions (Rayten) conducted a stack emission survey at Eskom Gourikwa situated in Mosselbay, Western cape. The objective of the measurement program was to quantify the following parameters and emissions from a single point source:

- Particulate Matter (PM)
- Sulphur Dioxide (SO₂)
- Oxides of Nitrogen expressed as NO₂ (NOx)

Stack and Associated Listed Activity

Stack ID	Category	Subcategory	Description
022	1	2	Unit 22/GT22

Atmospheric Emissions Licence (AEL) Number (if applicable)

Name of Plant/ Facility:	Eskom Gourikwa
AEL Licence Number:	WCED013
AEL Expiry Date:	April 2023
Reporting Period:	2022

Process Details

Site Location:	Eskom Mosselbay Power Station	
Description of Process:	Electricity Generation	
Continuous or Batch:	Continuous	
Product Details:	-	
Normal Operation or Erratic:	Normal	
Fuel Used (if applicable):	Diesel	

Accreditation Status of Laboratory (Rayten Engineering Solutions)

Name of Service Provider:	Rayten Engineering Solutions (Internal Lab)		
Accreditation Status: Accredited			
Last Audit Date:	September 2021		
Audit Status: Passed			
Address:	43 Kayburne Ave, Randpark Ridge, Gauteng		
Telephone:	011-792-0880		

2. METHOD OF MEASUREMENTS

All samples and analyses were carried out according to internationally accepted reference methods, which comply with the National Environmental Management: Air Quality Act of 2004 (Act 39 of 2004), prescribed in Schedule A: Methods for sampling and analysis in terms of Notice GN1207 dated 31 October 2018. Sampling techniques were applied to measure the following:

Methods of Measurement and Analyses

Parameter/ Pollutant	Standard Reference Method or Alternative Method	Analysis Technique	Laboratory	Laboratory Accredited	Calculated Measure of Uncertainty +/
Sample and Velocity Traverses	US EPA Method 1	N/A	Rayten (Site)	Yes	N/A
Stack Gas Velocity & Volumetric Flow Rate	US EPA Method 2	Dry Gas Meter and Type S Pitot tube	Rayten (Site)	Yes	4.05 m/s
The gas temperatures	Connected to a digital thermometer (K-type)	Connected to a digital thermometer (K- type)	Rayten (Site)	Yes	N/A
Oxygen and Carbon Dioxide Concentration	US EPA Method 3A	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	Oxygen = 0.41% of indicated value.
Determination of Moisture Content in Stack Gases.	US EPA Method 4	Gravimetric	Rayten (Site)	Yes	1.81 mg
Particulate Matter	US EPA Method 5	Gravimetric	Rayten (Randburg)	Yes	2.48 mg
Sulphur Dioxide	US EPA Method 6C	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	1.95 ppm
Oxides of Nitrogen	US EPA Method 7E	Instrumental (RAY-T3-IMR- 001)	Rayten (Site)	Yes	8.18 ppm

Calibrated Equipment Checklist.

Equipment	ID
APEX Kit Number	Т3
Dry Gas Meter	1903078
Gas Analyzer	RAY-T3-IMR-001
Nozzle set	RAY-T3-SN-001
Pitot Tube	RAY-T3-PT-001
Site Balance	RAY-T3-SC-001
Barometer	RAY-T3-BAR-001
Manometer	RAY-T3-MM-001

3. RESULTS

Table A: Stack Parameters:

Plant	ESKOM GOURIKWA Address GOURIKWA		Job #	UNIT 22 O	R GT 22
LEAD TECHNIC	IAN: J Mashala				
SUPPORTING T	ECHNICIAN: G Mokgosi			Dav	ton
ISOKINETIC MA	CHINE USED: APEX 2 (DURBAN MACHINE)	1 903 078		nay	len
GAS ANALYSE	R USED: RAY-T3B-IMRA-001	D2802A08			ERING SOLUTIONS
PITOT TUBE US	SED: RAY-T3-PT-001	0,8199		Environmental and E	ngineering Consultants
STACK PAR	AMETERS				
	Run Number	1	2	3	Average
Date	Test Date	10/05/2022	10/05/2022	10/05/2022	
Start	Run Start Time	17:00	18:20	19:40	
	Run Finish Time	18:00	19:20	20:40	
	Net Traversing Points	24	24	24	
Θ	Net Run Time, minutes	60	60	60	60
D _N	Nozzle Diameter, mm	6,1	6,1	6,1	6,1
C _n	Pitot Tube Coeficient	0.8199	0.8199	0.8199	0.82
Y	Dry Gas Meter Calibration Factor	0,964	0,964	0,964	0,964
P _{Br}	Barometric Pressure, mm of Mercury	771,21	771,21	771,21	771,21
P _{Br}	Barometric Pressure, HPa	1028,20	1028,20	1028,20	1028,20
ΔН	Average orifice meter Differential, mm H ₂ O	66,00	68,00	68,00	67,33
Vm	Dry Gas Meter Volume Sampled, m ³	1,590	1,609	1,640	1,613
t _m	Average Dry Gas Meter Temperature, °C	16,8	10,3	8,1	11,7
V _{mstd}	Dry Gas Meter Volume Sampled, Nm ³ (Dry at 273K, 101.3kPa)	1,46	1,52	1,56	1,51
Vic	Total Moisture Liquid collected, ml	4,6	3,2	4,1	4,0
V _{wstd}	Volume of Water Vapor, Nm ³ (Dry at 273K, 101.3kPa)	0,006	0,004	0,005	0,005
% H₂O	Moisture Content of Stack Gas, %	0,39	0,26	0,32	0,32
%CO ₂	Carbon Dioxide, %	3.80	3.80	4.00	3.87
% O 2	Oxvaen. %	14.2	14.3	13.9	14.1
% CO+ N ₂	Carbon Monoxide & Nitrogen, %	82	81,9	82,1	82,0
Pg	Flue Gas Static Pressure, mm of H_2O	-4,00	-4,00	-4,00	-4,00
P _s	Absolute Flue Gas Pressure, mm of Mercury	770,92	770,92	770,92	770,92
t _s	Average Stack Gas Temperature, °C	516,0	516,0	515,0	515,7
ΔP_{avg}	Average Velocity Head, mm of H ₂ O	30,0	30,0	30,0	30,0
V _s	Average Stack Gas Velocity, m/s	21,1	21,1	21,1	21,1
Ds	Stack Diameter (m)	6,2	6,2	6,2	6,2
A _s	Stack Crossectional Area, m ²	30,19	30,19	30,19	30,19
Q _d	Dry Volumetric Flow Rate, Nm3/min (Dry at 273K, 101.3kPa)	26 049	26 018	26 032	26 033
Q _{aw}	Actual Wet Volumetric Flue Gas Flow Rate, m³/min	38 190	38 284	38 239	38 237
%	Percent Isokinetic of Sampling Rate, %	96,8	101,1	103,8	100,6

Table B: Pollutant Concentrations:

Plant	ESKOM GOURIKWA Address GOURIKWA		Job #	UNIT 22 O	R GT 22
EMISSION RES	ULTS			Ra	yten and Engineering Consultan
	Particulate Matter				
W _{total}	Particulate Method 5 Filter + Probe Catch Weight, mg	5,9	5,7	4,4	5,3
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm ³ at 273K, 101.3kPa)	4,04	3,74	2,80	3,53
C _{mg/dscm}	Particulate Concentration (Dry mg/Nm3 at 273K, 101.3kPa) @15% O2	3,57	3,35	2,36	3,09
E (kg/hr)	Particulate Emission Rate, kg/hr	6,32	5,83	4,37	5,51
	Combustion Gas Concentrations				
SO _{2 ppm}		28,00	31,00	30,00	29,67
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa	80,08	88,66	85,80	84,85
SO _{2 mg/Nm³}	mg/Nm³ at 273K, 101.3kPa @15% O ₂	80,08	88,66	85,80	84,85
E (kg/hr)	SO2 Emission Rate, kg/hr	125,16	138,41	134,01	132,53
NOx ppm		53,00	53,00	56,00	54,00
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa	108,65	108,65	114,80	110,70
NOx mg/Nm ³	(NOX expressed as NO2) mg/Nm ³ at 273K, 101.3kPa @15% O ₂	95,87	97,30	97,01	96,73
E (kg/hr)	NOx Emission Rate, kg/hr	169,81	169,61	179,31	172,91
CO ppm		23,00	22,00	20,00	21,67
CO mg/Nm ³	mg/Nm ³ at 273K, 101.3kPa	28,29	27,06	24,60	26,65
E (kg/hr)	CO Emission Rate, kg/hr	44,22	42,24	38,42	41,63

Table C: NAEIS Emissions Reporting Requirements:

Description:	Average:	Units:
Inside Stack Diameter =	6,20	m
Stack Exit Temperature =	516	°C
Actual Exit Flow Rate =	38237,5	m³/min
Actual Exit Flow Rate =	637,3	m³/s
PM emission rate =	5,5	kg/hr
PM emission rate =	48230,6	kg/year
SO ₂ emission rate =	133	kg/hr
SO ₂ emission rate =	1160935	kg/year
NOx emission rate =	173	kg/hr
NOx emission rate =	1514709	kg/year
CO emission rate =	42	kg/hr
CO emission rate =	364656	kg/year
Above emission rates assume plant operates 24 hours for 365 days.		

4. DISCUSSION

Sample ports were available on the stack which were utilised for volumetric flow rate and isokinetic measurements.

Duct/ Stack Characteristics

Stack Shape	Circular	
Diameter / Depth:	6.2	m
Width (if square):	-	m
Area of Stack:	30.19	m²
Stack Orientation:	Vertical	
Number of ports:	3	

Site Notes/ Conditions

1	No concerns noted on Site.
2	Eskom CEMs unit readings are graphed below for information.
3	-
4	-
5	-

0

mg/m3

BLVVMS.

BLVVMS...

GOP_22

50 177

Rayten monitored the stack accordingly and the results are a respectable indication of the stack emission rates. It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

5. QUALITY CONTROL AND QUALITY ASSURANCE

Rayten Engineering Solutions follows a strict Quality Management System which has been set up to comply with international standards. Rayten Engineering Solutions (Pty) Ltd is a SANAS accredited laboratory (T0894) in accordance with ISO/IEC 17025:2017 international standards. Rayten Engineering's scope of accreditation is attached. Calibration certificates can be made available on request.

6. CONCLUSIONS

It is Rayten's opinion that the component emissions reported are representative of the true emissions from the point source, at the time the samples were taken.

The results may become non-representative of the true emissions if deviations from process operating conditions, raw material feed rate and/or composition changes as well as upset conditions occur other than what was present at the time of taking the various samples.

Does the Unit22/GT22 comply with the minimum emissions standards as stipulated within the section 21 listed activities?

APPENDIX A

SANAS ACCREDITATION CERTIFICATE

CERTIFICATE OF ACCREDITATION

In terms of section 22(2) (b) of the Accreditation for Conformity Assessment, Calibration and Good Laboratory Practice Act, 2006 (Act 19 of 2006), read with sections 23(1), (2) and (3) of the said Act, I hereby certify that:-

RAYTEN ENGINEERING SOLUTIONS (PTY) LTD

Co. Reg. No.: 2019/310726/07

Facility Accreditation Number: T0894

is a South African National Accreditation System accredited facility provided that all conditions and requirements are complied with

This certificate is valid as per the scope as stated in the accompanying schedule of accreditation, Annexure "A", bearing the above accreditation number for

ENVIRONMENTAL ANALYSIS

The facility is accredited in accordance with the recognised International Standard

ISO/IEC 17025:2017

The accreditation demonstrates technical competency for a defined scope and the operation of a quality management system

While this certificate remains valid, the Accredited Facility named above is authorised to use the relevant accreditation symbol to issue facility reports and/or certificates

Mr M Phaloane Acting Chief Executive Officer

Effective Date: 13 February 2020 Certificate Expires: 12 February 2025

TEST REPORT

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Kirsten Burgess	Laboratory	X-Lab Earth Science
Client	ARGUS SCIENTIFIC AFRICA (PTY) LTD	Address	2 Samantna Street, Strydompark, Randburg, 2169
Address	Unit 16, 360 Business Park 8 Section street Paarden Eiland	Telephone	+27 (0)11 590 3000
Tolonhono		Laboratory Manager	Mrs Tasneem Tagari
Facsimile		Lab Reference	JBX23-14797
Email	kburgess@argos-sci.com	Report Number	0000057925
		Date Received	19/04/2023 11:02
Order Number	To Follow	Date Started	25/04/2023 9:04
Samples Sample matrix	4 AIR	Date Reported	25/04/2023 13:06

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0775.

Samples received at ambient temperature in good condition.

SIGNATORIES

Tasneem Tagari

General Manager/Technical Signatory

Report number 0000057925

Client reference: To Follow

TEST REPORT

Benzene		ng/tube	10	<10	<10	<10	11
BTEX in Air	Method: ME-	AN-061					
Parameter		Units	LOR				
			Sample Number Sample Name	JBX23-14797.001 365519 (South)	JBX23-14797.002 365516 (West)	JBX23-14797.003 365512 (North)	JBX23-14797.004 365504 (East)

Denzene	ng/tube	10				
Toluene	ng/tube	10	18	<10	<10	47
Ethylbenzene	ng/tube	10	<10	<10	<10	<10
m/p-xylene	ng/tube	10	<10	<10	<10	<10
o-xylene	ng/tube	10	<10	<10	<10	<10

Volatile Organic Compounds (VOC) in Air Method: ME-AN-061

Styrene *	na/tube	10	<10	<10	<10	<10
	3	_	_		_	-

METHOD SUMMARY

METHOD	METHOD SUMMARY
ME-AN-061	This method is used to determine Benzene, Toluene, Ethylebenzene & Xylene's in air samples which have been actively or passively sampled onto an adsorbent thermal desorption tube. The sample tubes are loaded onto the thermal desorption unit autosampler and the compounds are desorbed at 300°C for 7 minutes with a flow of Helium onto a cryo-focusing Tenax® trap. The trap is then quickly desorbed onto the analytical capillary column in the gas chromatograph which separates the compounds. Each compound is then identified and quantified by the mass spectrometer which is operated in full scan mode over a 50 – 300amu range. Identification of analytes is accomplished by comparing their mass spectra with the mass spectra of authentic standards and elution times. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard using an appropriate calibration curve.
ME-AN-U6 I	This method is used to determine Benzene, Toluene, Ethylebenzene & Xylene's in air samples which have been actively or passively sampled onto an adsorbent thermal desorption tube. The sample tubes are loaded onto the thermal desorption unit autosampler and the compounds are desorbed at 300°C for 7 minutes with a flow of Helium onto a cryo-focusing Tenax® trap. The trap is then quickly desorbed onto the analytical capillary column in the gas chromatograph which separates the compounds. Each compound is then identified and quantified by the mass spectrometer which is operated in full scan mode over a 50 – 300amu range. Identification of analytes is accomplished by comparing their mass spectra with the mass spectra of authentic standards and elution times. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard using an appropriate calibration curve.

JBX23-14797

0000057925 Report number Client reference:

To Follow

FOOTNOTES _ IS Insufficient sample for analysis. The sample was not analysed for this analyte LNR Sample listed, but not received. Results marked "Not SANAS Accredited" in this report are not Performed by outside laboratory. included in the SANAS Schedule of Accreditation for this laboratory Λ LOR Limit of Reporting / certification body / inspection body". Samples analysed as received. Unless otherwise indicated, samples were received in containers fit for Solid samples expressed on a dry weight basis. purpose. This document is issued by the Company under its General Conditions of Service. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. X-Lab Earth Science is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za. The document is issued in accordance with SANAS's accreditation requirements and shall not be reproduced, except in full, without written approval of the laboratory

LAB-QLT-REP-001

TEST REPORT

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Kirsten Burgess	Laboratory	X-Lab Earth Science
Client	ARGOS SCIENTIFIC AFRICA (PTY) LTD	Address	2 Samantha Street, Strydompark, Randburg, 2169
Address	Unit 16, 360 Business Park 8 Section street Paarden Eiland	Telephone	+27 (0)11 590 3000
Tolophono		Laboratory Manager	Mrs Tasneem Tagari
Facsimile		Lab Reference	JBX23-16472
Email	kburgess@argos-sci.com	Report Number	0000066798
		Date Received	13/10/2023 07:46
Order Number	ESKOM DANA BAY BTEX SAMPLING	Date Started	20/10/2023 11:25
Samples Sample matrix	4 AIR	Date Reported	21/10/2023 10:41

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0775.

Samples received at ambient temperature in good condition.

SIGNATORIES

Tasneem Tagari

General Manager/Technical Signatory

0000066798

Report number Client reference:

ESKOM DANA BAY BTEX SAMPLING

TEST REPORT

		Sample Number	JBX23-16472.001	JBX23-16472.002	JBX23-16472.003	JBX23-16472.004
		Sample Name	364762 (SOUTH)	365508 (WEST)	365501 (NORTH)	365514 (EAST)
Parameter	Units	LOR				
BTEX in Air Method: ME-	AN-061					
Benzene	ng/tube	10	11	<10	<10	<10

Defizerie	ng/tube	10				
Toluene	ng/tube	10	12	<10	14	<10
Ethylbenzene	ng/tube	10	<10	<10	<10	<10
m/p-xylene	ng/tube	10	<10	<10	<10	<10
o-xylene	ng/tube	10	<10	<10	<10	<10

Volatile Organic Compounds (VOC) in Air Method: ME-AN-061

Styrene *	ng/tube	10	<10	<10	<10	<10

METHOD SUMMARY

METHOD	METHOD SUMMARY
ME-AN-061	This method is used to determine Benzene, Toluene, Ethylebenzene & Xylene's in air samples which have been actively or passively sampled onto an adsorbent thermal desorption tube. The sample tubes are loaded onto the thermal desorption unit autosampler and the compounds are desorbed at 300°C for 7 minutes with a flow of Helium onto a cryo-focusing Tenax® trap. The trap is then quickly desorbed onto the analytical capillary column in the gas chromatograph which separates the compounds. Each compound is then identified and quantified by the mass spectrometer which is operated in full scan mode over a 50 – 300amu range. Identification of analytes is accomplished by comparing their mass spectra with the mass spectra of authentic standards and elution times. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard using an appropriate calibration curve.
ME-AN-U6 I	This method is used to determine Benzene, Toluene, Ethylebenzene & Xylene's in air samples which have been actively or passively sampled onto an adsorbent thermal desorption tube. The sample tubes are loaded onto the thermal desorption unit autosampler and the compounds are desorbed at 300°C for 7 minutes with a flow of Helium onto a cryo-focusing Tenax® trap. The trap is then quickly desorbed onto the analytical capillary column in the gas chromatograph which separates the compounds. Each compound is then identified and quantified by the mass spectrometer which is operated in full scan mode over a 50 – 300amu range. Identification of analytes is accomplished by comparing their mass spectra with the mass spectra of authentic standards and elution times. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard using an appropriate calibration curve.

JBX23-16472

Report number 0000066798 Client reference:

ESKOM DANA BAY BTEX SAMPLING

. FOOTNOTES _

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- Performed by outside laboratory.
- LOR Limit of Reporting

included in the SANAS Schedule of Accreditation for this laboratory / certification body / inspection body".

Results marked "Not SANAS Accredited" in this report are not

The sample was not analysed for this analyte

Samples analysed as received. Solid samples expressed on a dry weight basis. Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

X-Lab Earth Science is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za.

The document is issued in accordance with SANAS's accreditation requirements and shall not be reproduced, except in full, without written approval of the laboratory

LAB-QLT-REP-001