

Ms Nompumelelo Simelane Nkangala District P.O Box 437 MIDDLEBERG

1050

By email: Simelanenl@nkangaladm.gov.za

Date:

10 March 2025

Enquiries: S Chokoe Tel +27 13 647 6970

Dear Ms. Nompumelelo Simelane

Ref: Kendal Power Station AEL (17/4/AEL/MP312/11/15)

RE-SUBMISSION OF KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF APRIL 2024.

This is a monthly report required in terms of Section 7.4 in the Kendal Power Station's Atmospheric Emission License. The emissions are for Eskom Kendal Power Station.

Re-submission is due to the surrogation values that had to be recorded when the monitor has maxed out or giving erratic data for both PM and gases after the review of the initial Air Quality Reports.

Compiled by:

Tsakani Holeni

ENVIRONMENTAL SENIOR ADVISOR- KENDAL POWER STATION

Date: 10 03 2025

Supported by:

Solly Chokoe

ENVIRONMENTAL MANAGER-KENDAL POWER STATION

Date: 10/03/2025

Generation Division Kendal Power Station N12 Balmoral Off Ramp, Emalahleni Private Bag x7272, Emalahlani 1035 SA Tel +27 13 647 6970 Fax +27 13 647 6904 www.eskom.co.za

KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF APRIL 2024

Verified by:

lacob Zwane

BOILER ENGINEERING: SENIOR SYSTEM ENGINEER-KENDAL POWER STATION

Date: 11/03/2025

Validated by:

Tendani Rasivhetshele

BOILER ENGINEERING MANAGER-KENDAL POWER STATION

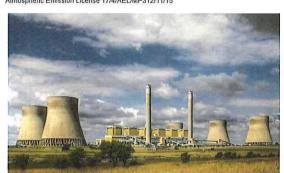
Date: 11/03/2025

Supported by:

Phindile Takane

ACTING ENGINEERING MANAGER-KENDAL POWER STATION

Date: 12/03/2025


Approved by:

Tshepiso Temo

GENERAL MANAGER-KENDAL POWER STATION

Date: 17 03 2025

KENDAL POWER STATION MONTHLY EMISSIONS REPORT Atmospheric Emission License 17/4/AEL/MP312/11/15

1 RAW MATERIALS AND PRODUCTS

Raw Materials	Raw Material Type	Units	Maximum Permitted Consumption Rate	Consumption Rate Apr-2024
and	Coal	Tons	2 260 000	722 721
Products	Fuel Oil	Tons	5 000	10114.660
			The second second	
	Product / By-Product Name	Units	Maximum Production Capacity Permitted	Indicative Production Rate Apr-2024
Production		2000		
Production Rates	Name	Units GWh Tons	Capacity Permitted	Rate Apr-2024

Note: Maximum energy rate is as per the maximum capacity stated in the AEL: [4 116 MW] x 24 hrs x days in Month/1000 to convert to GWh

2 ENERGY SOURCE CHARACTERISTICS

Coal Characteristic	Units	Stipulated Range	Monthly Average Content
CV Content	MJ/kg	16-24 (MJ/kg)	18.580
Sulphur Content	%	<1 (%).	0.770
Ash Content	%	40 (%)	33 430

3 EMISSION LIMITS (mg/Nm³)

Associated Unit/Stack	РМ	SO ₂	NOx
Unit 1	100	3500	1100
Unit 2	100	3500	1100
Unit 3	100	3500	1100
Unit 4	100	3500	1100
Unit 5	100	3500	1100
Unit 6	100	3500	1100

4 ABATEMENT TECHNOLOGY (%)

Associated Unit/Stack	Technology Type	Efficiency Apr-2024	Technology Type	SO ₃ Utilization Apr-2024
Unit 1	ESP + SO,	98.892%	SO ₃	53.3%
Unit 2	ESP + SO;	99.277%	SO,	80.0%
Unit 3	ESP + SO,	99.592%	SO,	100.0%
Unit 4	ESP + SO ₃	98.840%	so,	66.7%
Unit 5	ESP + SO,	87.344%	so,	46.7%
Unit 6	ESP + SO,	Off-line	SO,	Off-line

Note: ESP plant does not have bypass mode operation, hence plant 100% Utilised.

There is no Sulphur flow value for SO3 utilization due to switch failure on the server, however DCS signals used for its tripping alarms were used to get its utilization values. Sulfur flow will be available once we have commissioned the new PI system.

5 MONITOR RELIABILITY (%)

Associated Unit/Stack	PM	SO,	NO	0,
Unit 1	88.3	100.0	100.0	20.3
Unit 2	80.1	83.8	84.6	70.6
Unit 3	97.8	100.0	100.0	97.2
Unit 4	100.0	100.0	100,0	0.0
Unit 5	35,4	0.0	85.3	0.0
Unit 6	Off	Off	Off	Off

Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO 2

6 EMISSION PERFORMANCE

Table 6.1: Monthly tonnages for the month of April 2024

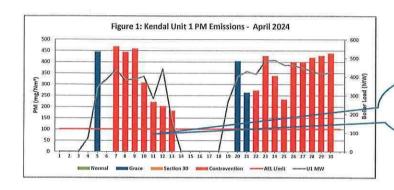
Associated Unit/Stack	PM (tons)	SO ₂ (tons)	NO, (tons)
Unit 1	335.5	1 973	901
Unit 2	329.0	2 603	1 195
Unit 3	229.6	3 250	1 189
Unit 4	375.3	2 438	685
Unit 5	3 648.2	1 785	416
Unit 6	Off	Off	Off
SUM	4 917.61	12 048	4 386

Table 6.2: Operating days in compliance to PM AEL Limit - April 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average PM (mg/Nm²)
Unit 1	0	3	0	16	19	356.1
Unit 2	0	0	0	29	29	204.3
Unit 3	18	6	0	6	12	120.4
Unit 4	5	2	0	13	15	323.8
Unit 5	2	5	0	8	13	5 600.1
Unit 6	Off	Off	Off	Off	Off	Off
SUM	25	16	0	72	88	

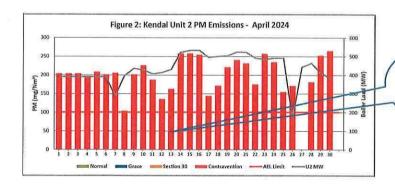
Table 6.3: Operating days in compliance to SO₂ AEL Limit - April 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average SO ₂ (mg/Nm³)
Unit 1	22	0	0	0	0	1 746.6
Unit 2	30	0	0	0	0	1 539.5
Unit 3	30	0	0	0	0	1 684.7
Unit 4	21	0	0	0	0	2 015.1
Unit 5	17	0	0	0	0	2 050.7
Unit 6	Off	Off	Off	Off	Off	Off
SUM	120	0	0	0	0	

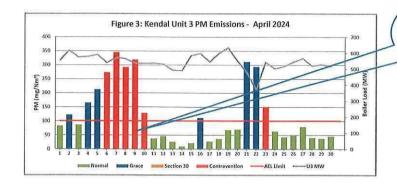

Table 6.4: Operating days in compliance to NOx AFI, Limit - April 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average NOx (mg/Nm²)
Unit 1	22	0	0	0	0	785.1
Unit 2	30	0	0	0	0	698.5
Unit 3	30	0	.0	0	0	618.3
Unit 4	21	0	0	0	0	561.1
Unit 5	16	0	0	0	0	475.9
Unit 6	Off	Off	Off	Off	Off	Off
SUM	110	0	0	n	0	

Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO 2

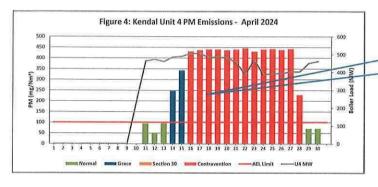

Table 6.5: Legend Description

Condition	Colour	Description	
Normal	GREEN	Emissions below Emission Limit Value (ELV)	
Grace	BLUE	Emissions above the ELV during grace period	
Section 30	ORANGE	Emissions above ELV during a NEMA S30 incident	
Contraventio	RED	Emissions above ELV but outside grace or S30 incident conditions	

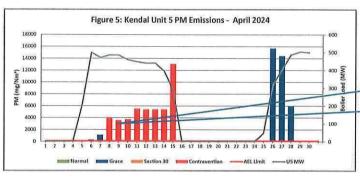


High emissions can be attributed to the unit on start up (cold start), Precipt field no 24,33 and 35 had communication buss fault and Precipt field no 22 circuit breaker was faulty, Precipt chain conveyor 32 hept ripping and SO3 failed to start due steam inlet temperature tha was fow. DHP also tripped due to compartness. High level.

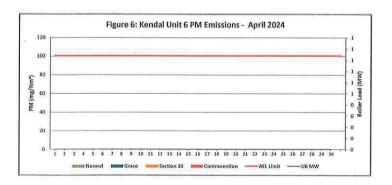
Dust monitor maxed out and PM values were surrogated.

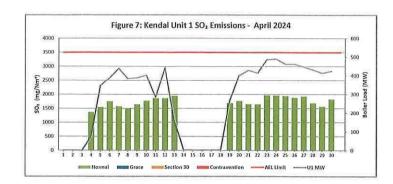


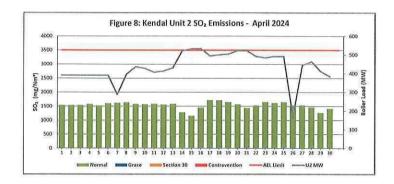
High emissions can be attributed to the SO3 plant that was on hold mode due to low steam temperature, peor pre-pid fields performance, DIPP off due to bucket elevator flopper gate that lost open limit. The DIPP also tripped due to compartment levels that were high. Dust monitor maxed out and PM values were successful. surrogated.

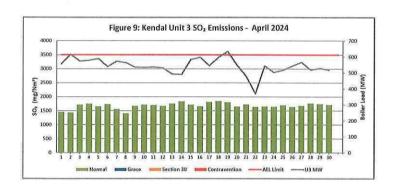


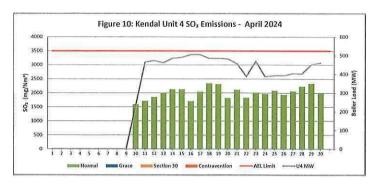
e 1792 1003

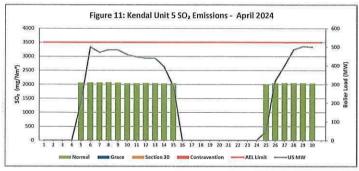

> High PM emissions can be attributed to 503 plant which was on hold mode due to aux steam temperature that was low and also off due to the heate belong off. DIP happer ship gates were telme to time closed for more than 3 hours resulting into ESP fileds short circuit conditions cousing the field to underperform.

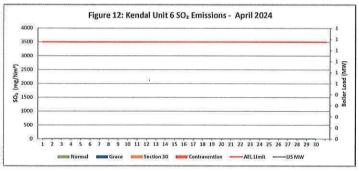


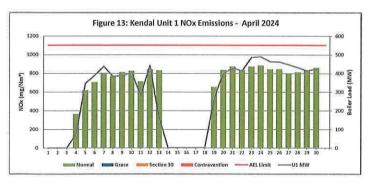

High PM emissions can be attributed to the DHP stream 2 bucket elevator that tripped, SO3 stopped from outside plant due to blue line water pipe leak, Field 45 was foulty and SO3 plant on hold mode due to burner outlet temperature that was low.

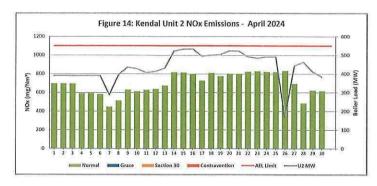


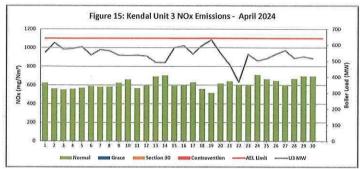

High FM emissions can be attributed to whit light up conditions and the 503 plant that was not available, DHP conveyor was off due to stream 1 bucket elevatorthat was tripping. DHP stream 1 and 2 was not available, Field 31,32,34 and 35 excandary volotoge was law, Field 35 contactor error, Field 42 and 43 communication bus fault and the other that are under performing. Dust manifor maxed out and PM values were surrogated.

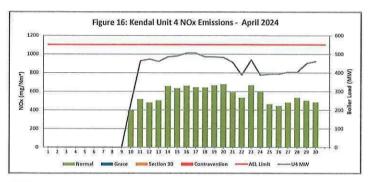


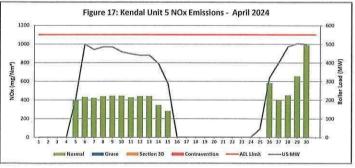












7 COMPLAINTS

There were no complaints for this months

Source Code /	Root Cause Analysis	Calculation of Impacts /	Dispersion modeling of pollutants	Measures implemented to
Name		emissions associated	where applicable	prevent reoccurrence

Abatement Technology-Table 4

In order to achieve the required operational dust removal efficiency based on measured values, several assumptions such as

☐ Coal ash content (%) and burnt rate mass ☐ Fly: Coarse ash ratio of 80:20 - 80% of fly-ash mass obtained from burnt coal goes to ESP

Measurement of dust emission by Dust Monitor over a period of time (monthly)

Operational Dust Removal Efficiency

 $\eta = (1 - (Output/Input)) \times 100$

 $\eta = 1 - \{ \underline{DustEmissionFromAQR\ ReportDustMonitor(tons)} \ \times \ 100 \\ (CoalBurnt\{tons\} * \%AshContent * 80\%)$

Monitor Reliability-Table 5

In terms of the minimum emissions standard, the requirement is that a monitor should be 80% reliable on a monthly average.

The monitor reliability refers to data reliability because the assumed value of 99.325% reliability is compared to the dust concentration signal. If the dust concentration signal is above 99.325% opacity, the data information is no longer reliable because the monitor reading is out of its maximum reading range. The data reliability looks at how many times did the dust concentration signal go above 98% over a period of

The formula is as follows:

= (1 – (count hours above 99.325%/24hours))x 100

Emissions Performance:

- Average velocity values from the latest correlation report were used on the gaseous emissions on Unit 1, 2,4,5 &6 due to defective CEMS monitors and velocity correction factors were set M=1 and C=0
- > Avarage emeissions for unit 1 NOx from the the 1st to the 3rd were used from the available data as the monitor was defective.

- Avarage emeissions for unit 1 NOx from the 1st to the 9rd were used from the available data as the monitor was defective.
 Avarage emeissions for Unit 1 O2 from the 1st to the 9th were used from the available data as the monitor was defective.
 Dust monitor for units 1,2 and 5 in some of the days were not reliable and maxed out and PM values were surrogated.
 Correlation curves for units 1,4 and 5 were changed to suite changes of the data signals from *AAA* to *HME* data values because of the damaged cables for *AAA* signal giving vaues that were not reliable.
 Surrogation values were recalculated after updating raw data based on curves update.
 The QAL 2 average values for gaseous were used as raw data in cases where the monitor had an error and used as surrogation values.

> Unit 1

Findings: The high emissions can be attributed to the unit on start up (cold start), Precipt field no 24,33 and 35 had communication buss fault and Precipt field no 21 circuit breaker was faulty, Precipt chain conveyor 23 kept tripping and SO3 failed to start due steam inlet temperature tha was low. DHP also tripped due to compartmens high level.

> Resolution: Plant repaired

> Unit 2

Findings: The high emissions can be attributed to the SO3 plant that was on hold mode due to low steam temperature, poor precip fields performance, DHP off due to bucket elevator flopper gate that lost open limit. The DHP also tripped due to compartment levels that were

high.
> Resolution: Plant repaired.

Unit 3
 Findings: The high PM emissions can be attributed to SO3 plant that was on hold mode due to aux steam temperature that was low, SO3 plant was off due to the heater that was off.

> Resolution: Paint repaired.

Findings: High PM emissions can be attributed to the DHP stream 2 bucket elevator that tripped, SO3 that stopped from outside plant due to pipe leak, Field 45 was faulty and SO3 plant that was on hold mode due to burner outlet temperature that was low. Resolution: Plant repaired.

> Unit 5
Findings: High PM emissions can be attributed to unit light up conditions and the SO3 plant that was not available, DHP conveyor was off due to stream 1 bucket elevatorthat was tripping, DHP stream 1 and 2 was not available, Field 31,32,34 and 36 secondary volatage was low, Field 35 contactor error, Field 42 and 43 Communication bus fault and the other that are under performing.

> Resolution: Plant repaired.

➤ Unit 6- Unit off