

Ms Nompumelelo Simelane Nkangala District P.O Box 437 MIDDLEBERG

1050

By email: Simelanenl@nkangaladm.gov.za

Date:

10 March 2025

Enquiries: S Chokoe

Tel +27 13 647 6970

Dear Ms. Nompumelelo Simelane

Ref: Kendal Power Station AEL (17/4/AEL/MP312/11/15)

RE-SUBMISSION OF KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF JULY 2024.

This is a monthly report required in terms of Section 7.4 in the Kendal Power Station's Atmospheric Emission License. The emissions are for Eskom Kendal Power Station.

Re-submission is due to the surrogation values that must be recorded when the monitor has maxed out or giving erratic data for both PM and gases after the review of the initial Air Quality Reports.

Compiled by:

Tsakani Holeni

ENVIRONMENTAL SENIOR ADVISOR- KENDAL POWER STATION

Date: 10 03 2025

Supported by:

Solly Chokoe

ENVIRONMENTAL MANAGER- KENDAL POWER STATION

Date: 10 /03/2025

Generation Division
Kendal Power Station
N12 Balmoral Off Ramp, Emalahleni
Private Bag x7272, Emalahlani 1035 SA
Tel +27 13 647 6970 Fax +27 13 647 6904 www.eskom.co.za

KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF JULY 2024

Verified by:

Jacob Zwane

BOILER ENGINEERING: SENIOR SYSTEM ENGINEER-KENDAL POWER STATION

Date: 11 03 2025

Validated by:

Tendani Rasivhetshele

BOILER ENGINEERING MANAGER-KENDAL POWER STATION

Date: 11/03/2025

Supported by:

Phindile Takane

ACTING ENGINEERING MANAGER-KENDAL POWER STATION

Date: 12/03/2025

Approved by:

Tshepiso Temo

GENERAL MANAGER-KENDAL POWER STATION

Date: 17 03 2025

ESKOM KENDAL POWER STATION MONTHLY EMISSIONS REPORT Atmospheric Emission License 17/4/AEL/MP312/11/15

1 RAW MATERIALS AND PRODUCTS

Raw Materials	Raw Material Type	Units	Maximum Permitted Consumption Rate	Consumption Rate Jul-2024
and	Coal	Tons	2 260 000	1 031 314
Products	Fuel Oil	Tons	5 000	9425.350
OSSIVATOR		0.050,000		OUR WILLSON WILL
	Product / By-Product	Units	Maximum Production	
Production	Name	-0.000	Capacity Permitted	Rate Jul-2024
Production Rates	Name Energy	GWh	Capacity Permitted 3 062 304	Rate Jul-2024 1 723 094
	Name	-0.000	Capacity Permitted	Rate Jul-2024

Note: Maximum energy rate is as per the maximum capacity stated in the AEL: [4 116 MW] x 24 hrs x days in Month/1000 to convert to GWh

2 ENERGY SOURCE CHARACTERISTICS

Coal Characteristic	Units	Stipulated Range	Monthly Average Content
CV Content	MJ/kg	16-24 (MJ/kg)	18.770
Sulphur Content	%	<1 (%)	0.760
Ash Content	%	40 (%)	31.820

3 EMISSION LIMITS (mg/Nm³)

Associated Unit/Stack	PM	SO ₂	NOx
Unit 1	100	3500	1100
Unit 2	100	3500	1100
Unit 3	100	3500	1100
Unit 4	100	3500	1100
Unit 5	100	3500	1100
Unit 6	100	3500	1100

4 ABATEMENT TECHNOLOGY (%)

Associated Unit/Stack	Technology Type	Efficiency Jul-2024	Technology Type	SO ₃ Utilization Jul-2024
Unit 1	ESP + SO ₃	99.655%	so,	67.7%
Unit 2	ESP + SO ₃	99.164%	so,	87.1%
Unit 3	ESP + SO,	99.913%	SO,	83.9%
Unit 4	ESP + SO,	99.653%	so,	80.6%
Unit 5	ESP + SO ₃	98.566%	so,	61.3%
Unit 6	ESP+SO;	99.681%	so,	90.3%

Note: ESP plant does not have bypass mode operation, hence plant 100% Utilised

There is no Sulphur flow value for SO3 utilization due to switch failure on the server, however DCS signals used for its tripping alarms were used to get its utilization values. Sulfur flow will be available once we have commissioned the new PI system.

5 MONITOR RELIABILITY (%)

Associated Unit/Stack	PM	SO ₂	NO	0,
Unit 1	100.0	83.0	83.2	0.0
Unit 2	91.6	100.0	100.0	88.3
Unit 3	85.0	0.0	84.7	97.8
Unit 4	100.0	100.0	0.0	0.0
Unit 5	50.7	0.0	97.0	99.1
Unit 6	97.9	99.9	99.9	99.9

Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO 2

6 EMISSION PERFORMANCE

Table 6.1: Monthly tonnages for the month of July 2024

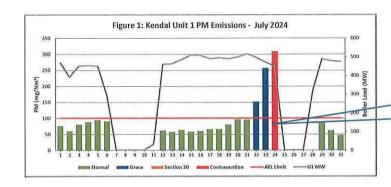
Associated Unit/Stack	PM (tons)	SO ₂ (tons)	NO _s (tons)
Unit 1	123.6	2 604	1 196
Unit 2	366.2	2 885	1 521
Unit 3	43.1	2 892	1 274
Unit 4	156.9	3 456	1 291
Unit 5	490.4	2 588	1 251
Unit 6	172.0	3 644	1 631
SUM	1 352.18	18 070	8 163

Table 6.2: Operating days in compliance to PM AEL Limit - July 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average PM (mg/Nm²)
Unit 1	19	2	0	1	3	96.6
Unit 2	2	4	0	21	25	253.5
Unit 3	26	0	0	0	0	25.6
Unit 4	22	3	0	2	5	107.2
Unit 5	0	1	0	20	21	449.5
Unit 6	19	4	0	5	9	87.2
SUM	88	14	0	49	63	

Table 6.3: Operating days in compliance to SO₂ AEL Limit - July 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average SO ₂ (mg/Nm²)
Unit 1	24	0	0	0	0	1 892.3
Unit 2	27	0	0	0	0	1 811.1
Unit 3	27	0	.0	0	0	1 630.5
Unit 4	29	0	0	0	0	1 961.6
Unit 5	24	0	0	0	0	2 056.7
Unit 6	29	0	0	.0	0	1 806.3
SUM	160	0	0	0	0	


Table 6.4: Operating days in compliance to NOx AEL Limit - July 2024

Associated Unit/Stack	Normal	Grace	Section 30	Contraven tion	Total Exceedance	Average NOx (mg/Nm ¹)
Unit 1	24	0	0	0	0	852.3
Unit 2	27	0	0	0	0	950.9
Unit 3	27	0	0	0	0	719.5
Unit 4	29	0	0	0	0	737.7
Unit 5	24	0	0	0	0	922.7
Unit 6	29	0	0	0	0	804.2
SUM	160	0	0	0	0	

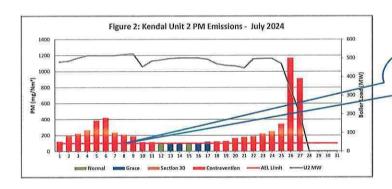
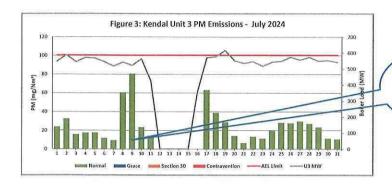
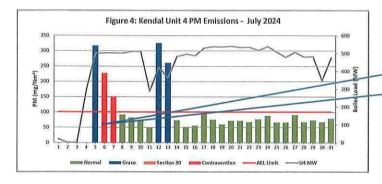
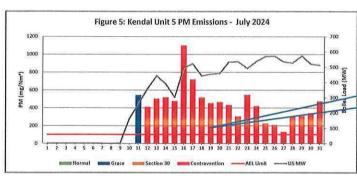
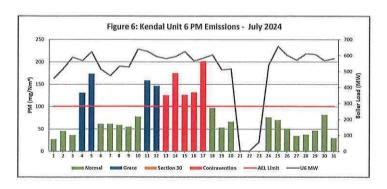

Note: NOx emissions is measured as NO in PPM. Final NOx value is expressed as total NO 2

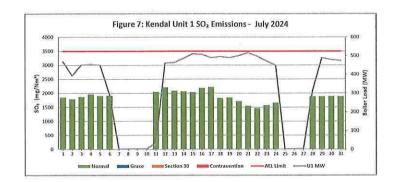
Table 6.5: Legend Description

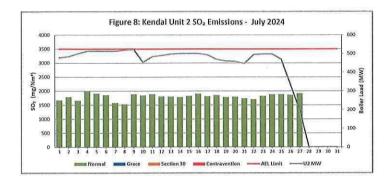

Condition	Colour	Description	
Normal	GREEN	Emissions below Emission Limit Value (ELV)	
Grace	30,000	Emissions above the ELV during grace period	
Section 30	ORANGE	Emissions above ELV during a NEMA S30 incident	
Contraventio	RED	Emissions above ELV but outside grace or S30 incident conditions	

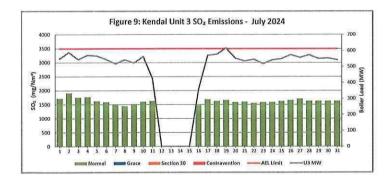

High emissions can be attributed to the DHP that was standing with all knife gates closed.

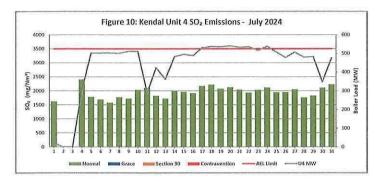

High emissions can be attributed to DHP that was off due to choked bucket elevator on stream 2, 803 plant tripped due to steam low temperature. Unit was on Fuel oil support and the DHP tripped due to high compartment levels.

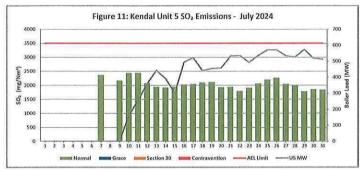

High emissions can be attributed to unit 3 having adopted new correlation curves after backfitting.

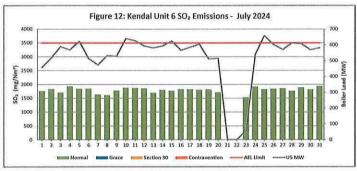


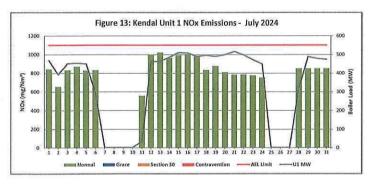

High PM emissions can be attributed to the SO3 plant that was off due to Back End Temperature Low, field 21 and 43 secondary Temperature Low, field 21 and 43 secondary Temperature Low, field 21 and 43 secondary Temperature Low, field 21 and 50 secondary Low, field 10 se

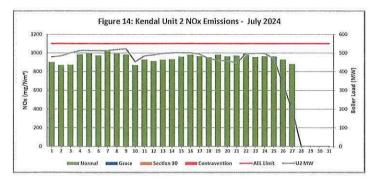


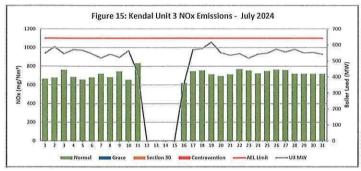

High PM emissions can be attributed to unit on Light up -Cold Start, unit Fuel oil support and DHP was standing with all knife gates shut.

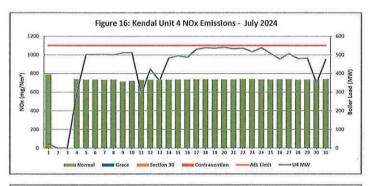


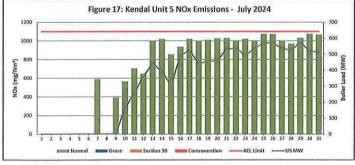


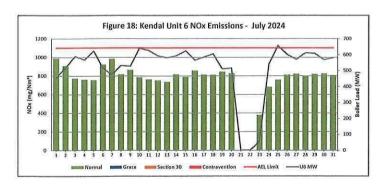












7 COMPLAINTS

There were no complaints for this months

Source Code /	Root Cause Analysis	Calculation of Impacts I	Dispersion modeling of pollutants	Measures implemented to
Name		emissions associated	where applicable	prevent reoccurrence

Abatement Technology-Table 4

In order to achieve the required operational dust removal efficiency based on measured values, several assumptions such as © Coal ash content (%) and burnt rate mass

☐ Fly: Coarse ash ratio of 80:20 - 80% of fly-ash mass obtained from burnt coal goes to ESP

Measurement of dust emission by Dust Monitor over a period of time (monthly)

Operational Dust Removal Efficiency

 $\eta = (1 - (Output/Input)) \times 100$

 $\eta = 1 - \{ \underbrace{DustEmissionFromAQR\,ReportDustMonitor(tons}_{\cite{CoalBurnt\{tons\}}} \times 100 \\ (CoalBurnt\{tons)*\%AshContent*80\%) \}$

Monitor Reliability-Table 5

In terms of the minimum emissions standard, the requirement is that a monitor should be 80% reliable on a monthly average. The monitor reliability refers to data reliability because the assumed value of 99.325% reliability is compared to the dust concentration signal. If the dust concentration signal is above 99.325% opacity, the data information is no longer reliable because the monitor reading is out of its maximum reading range. The data reliability looks at how many times did the dust concentration signal go above 98% over a period of time e.g 24hours

The formula is as follows:

= (1 – (count hours above 99.325%/24hours))x 100

Emissions Performance:

- > Average velocity values from the latest correlation report were used on the gaseous emissions on some Units due to defective CEMS monitors and velocity correction factors were set M=1 and C=0
- Unit 2 and 5 maxed out, meaning the emissions were higher than what the monitor was correlated for, in which case we use surrogate values. This is attributed to abnormal plant conditions.
- > Please note that the reported figures in tonnage calculation are the figures after the station usd the maxing out quantification exercise which is the use of "surrogate values" on days when the monitor maxed out.

 > Flow was not working for the whole month because Unit 2,3,5 and 6 sensors that are faulty and the sensors have to be replacement on all
- the units. The process for procuring new sensors is in progress.
- > Correlation curves for units 1,4 and 5 were changed to suite changes of the data signals from *AAA* to *HME* data values because of the damaged cables for *AAA* signal giving vaues that were not reliable.
- > Surrogation values were recalculated after updating raw data based on curves update.
- > The QAL 2 average values for gaseous were used as raw data in cases where the monitor had an error, were used as surggation values.

Findings: The high emissions can be attributed to the DHP that was standing with all knife gates closed.

> Resolution: Plant repaired

Findings: The high emissions can be attributed to DHP that was off due to choked bucket elevator on stream 2, SO3 plant tripped due to steam low temperature. Unit was on Fuel oil support and the DHP tripped due to high compartment levels.

Resolution: Plant repaired.

- > Emission were high on one day due to to unit 3 having adopted new correlation curves after backfitting. > Resolution: Plant Repaired

> Unit 4

- Findings: High PM emissions can be attributed to the SO3 plant that was off due to Back End Temperature Low, field 21 and 43 secondary voltage that was low, field 17 and 26 was faulty, DHP stopped due to ash spillages, unit was on Fuel oil support, SO3 was on hold mode due to no sulphur flow, DHP stream 2 second collecting conveyor tripped and RH prcip fields 32,33,35 & 43 discharge emitter fault.
- > Resolution: Plant repaired.

- > Findings: High PM emissions can be attributed unit on Light up Cold Start, unit Fuel oil support and DHP was standing with all knife gates shut.

- Unit 6
 Findings: High PM emissions can be attributed to unit on Fuel oil support, the SO3 plant that was on hold mode due to low steam temperature, Field 16, 17, 26 27 DC Volage was low, Precip 12 - 24 was not available and SO3 lance 8 was not available.

 Resolution: Plant repaired.