

Ms Nompumelelo Simelane Nkangala District P.O Box 437 MIDDLEBERG

Date: 29 September 2025

Enquiries: S Chokoe

Tel +27 13 647 6970

1050

By email: Simelanenl@nkangaladm.gov.za

Dear Ms. Nompumelelo Simelane

Ref: Kendal Power Station AEL (17/4/AEL/MP312/11/15)

SUBMISSION OF KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF AUGUST 2025.

This is a monthly report required in terms of Section 7.4 in the Kendal Power Station's Atmospheric Emission License. The emissions are for Eskom Kendal Power Station.

Compiled by:

Pfarelo Tshidzumba

OFFICER ENVIRONMENTAL MANAGEMENT - KENDAL POWER STATION

Date: 29/09/2025

Supported by:

Solly Chokoe

ENVIRONMENTAL MANAGER- KENDAL POWER STATION

Date: 29/09/2025

KENDAL POWER STATION'S EMISSIONS REPORT FOR THE MONTH OF AUGUST 2025

Verified by

Jacob Zwane

BOILER ENGINEERING: SENIOR SYSTEM ENGINEER- KENDAL POWER STATION

Date:

30/09/2025

Validated by

Tendáni Rasivhetshele

BOILER ENGINEERING MANAGER-KENDAL POWER STATION

Date:

30/09/2025

Supported by

Phindile Takane

ENGINEERING MANAGER-KENDAL POWER STATION

Date: 20/09/2020


Approved by

Tshepiso Temo

GENERAL MANAGER-KENDAL POWER STATION

Date:

KENDAL POWER STATION MONTHLY EMISSIONS REPORT Atmospheric Emission License: 17/4/AEL/MP312/11/15

1 RAW MATERIALS AND PRODUCTS

Raw Materials and	Raw Material Type	Units	Max Permitted Consumption Rate	Consumption Rate Aug 2025
Products	Coal	Tons	2 260 000	523319
Fibuucts	Fuel Oil	Tons	5 000	10682.770
NATIONAL PROPERTY.				
Production	Product / By-Product Name	Units	Max Production Capacity Permitted	Indicative Production Rate Aug-2025
Production Rates		Units		
Charles P.A. Carl Propher Color of You	Name		Permitted	Rate Aug-2025

Note: Max energy rate = AEL capacity [4,116 MW] × 24 hrs × days in month + 1,000 (to convert to GWh).

2 ENERGY SOURCE CHARACTERISTICS

Coal Characteristic	Units	Stipulated Range	Monthly Average Content
CV Content	MJ/kg	16-24 (MJ/kg)	19.170
Sulphur Content	%	<1 (%)	0.760
Ash Content	%	40 (%)	30.9

3 EMISSION LIMITS (mg/Nm³)

		Daily Limit	Limit	
Associated Unit/Stack	PM	SO ₂	NOx	
Unit 1	100	3000	750	
Unit 2	100	3000	750	
Unit 3	100	3000	750	
Unit 4	100	3000	750	
Unit 5	100	3000	750	
Unit 6	100	3000	750	

4 ABATEMENT TECHNOLOGY (%)

Associated Unit/Stack	Technology Type	ESP Efficiency	Technology Type	SO ₃ Plant Utilization
Unit 1	ESP + SO	99.770%	SO,	Off-line
Unit 2	ESP + 50 ,	95.872%	SO,	32.3%
Unit 3	ESP + SO	99.537%	SO,	29.078
Unit 4	ESP + SO	Off-line	SO,	Off-line
Unit 5	ESP + SO	98.464%	SO	29.0%
Unit 6	ESP + SO	99.320%	SO,	19.4%

Note: The ESP plant does not have a bypass mode; therefore, it operates at 100% utilization.

5 DATA RELIABILITY (%)

Associated Unit/Stack	PM	SO ₂	NO	02
Unit 1	100.0	100.0	82.2	100.0
Unit 2	1.7	100.0	100.0	100.0
Unit 3	100.0	100.0	99.3	100.0
Unit 4	Off	Off	Off	Off
Unit 5	97.5	61.8	61.8	99.9
Unit 6	76.8	100.0	100.0	89.3

Note: NO₄ emissions are measured as NO in PPM. The final NO₄ value is expressed as total NO₂ equivalent.

There is no Sulphur value for SO3 utilization due to switch failure on the server, however DCS signals used for its tripping alarms were used to get its utilization values. Sulphur flow will be available once we have commissioned the new PI system.

6 EMISSION PERFORMANCE

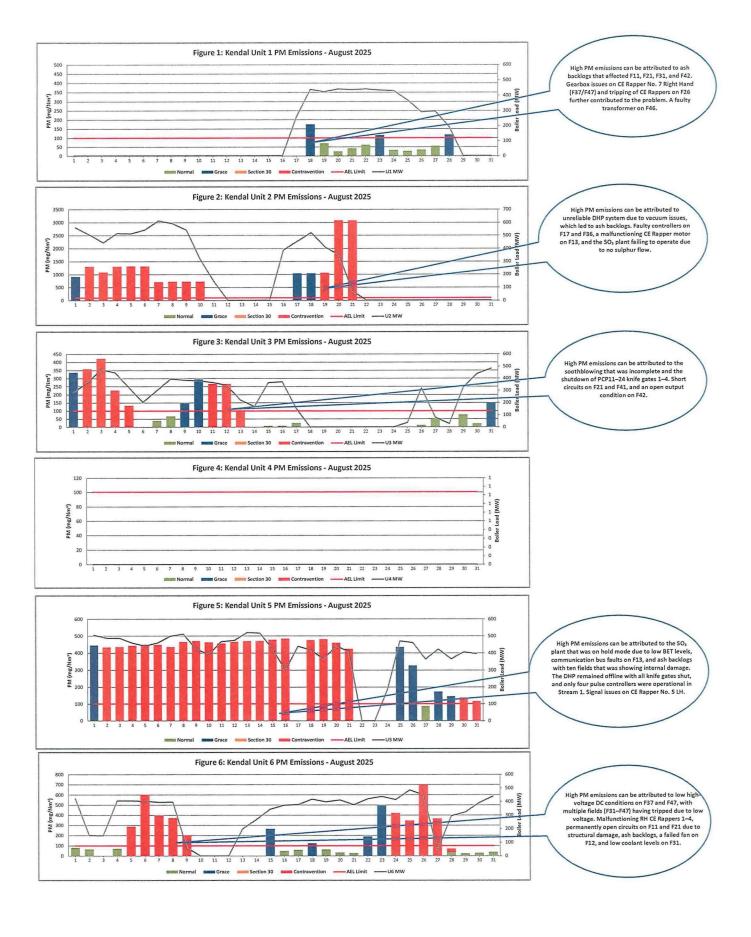
Table 6.1: Monthly tonnages for August 2025

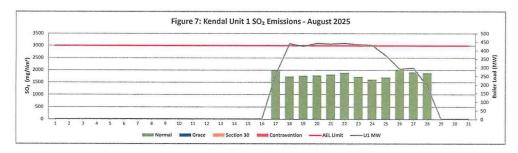
Associated Unit/Stack	PM (tons)	SO ₂ (tons)	NO, (tons)
Unit 1	32.1	929	430
Unit 2	951.8	1 432	680
Unit 3	105.6	1 199	249
Unit 4	Off	Off	Off
Unit 5	593.5	3 116	1 106
Unit 6	210.1	1 719	778
SUN	1 1 893 04	8 395	3 243

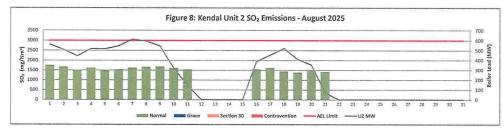
Table 6.2: PM AEL Daily Compliance - August 2025

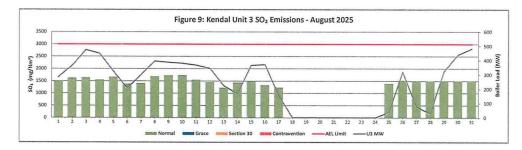
Associated Unit/Stack	Normal	Grace	Section 30	NC	Total Exceedance	Mnth Avg (mg/Nm³)
Unit 1	8	3	0	0	3	69.1
Unit 2	0	3	0	12	15	1 299.3
Unit 3	9	4	0	7	11	151.2
Unit 4	Off	Off	Off	Off	Off	Off
Unit 5	1	5	0	21	26	391.9
Unit 6	12	4	0	10	14	214.0
SUM	30	19	0	50	69	

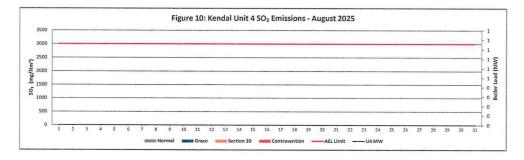
Table 6.3: SO₂ AEL Daily Compliance - August 2025

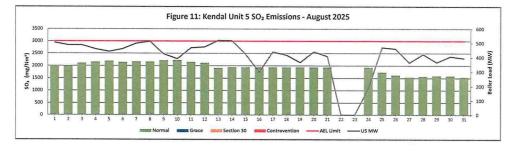

Associated Unit/Stack	Normal	Grace	Section 30	NC	Total Exceedance	Mnth Avg (mg/Nm³)
Unit 1	12	0	0	0	0	1 827.3
Unit 2	17	0	0	0	0	1 571.8
Unit 3	24	0	0	0	0	1 507.0
Unit 4	Off	Off	Off	Off	Off	Off
Unit 5	29	0	0	0	0	1 941.0
Unit 6	28	0	0	0	0	1 772.3
SUM	110	0	0	0	0	

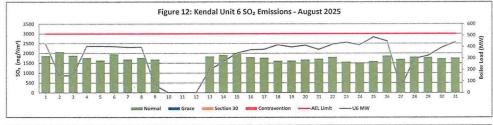

able 6.4: NO. AEL Daily Compliance - August 2025

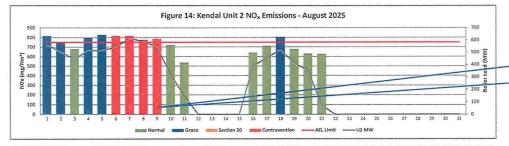

Associated Unit/Stack	Normal	Grace	Section 30	NC	Total Exceedance	(mg/Nm²)
Unit 1	4	3	0	5	8	814.9
Unit 2	8	5	0	4	9	730.9
Unit 3	24	0	0	0	0	303.1
Unit 4	Off	Off	Off	Off	Off	Off
Unit 5	19	2	0	8	10	684.0
Unit 6	17	7	0	4	11	747.3
SUM	72	17	0	21	38	

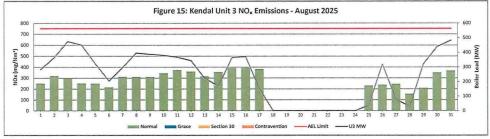

Table 6.5: Legend Description

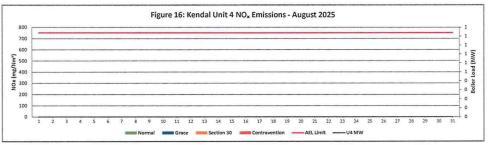

Condition	Colour	Description	
Normal	GREEN	Emissions below Emission Limit Value (ELV)	
Grace	BLUE	Emissions above the ELV during grace period	
Section 30	ORANGE	Emissions above ELV during a NEMA S30 incident	
Contravention	RED	Emissions above ELV but outside grace or S30 incident conditions	

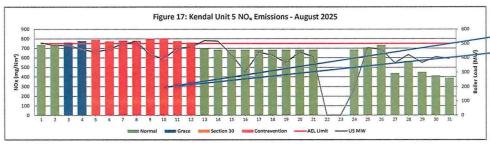


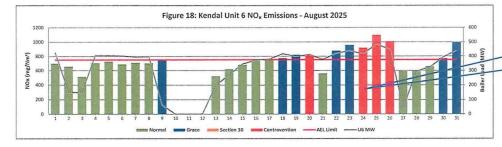









The station's gas monitors appear to be malfunctioning and providing inaccurate readings. Restoration efforts are currently underway, after which a verification process will be conducted to ensure accuracy.


The station's gas monitors appear to be malfunctioning and providing inaccurate readings. Restoration effors are currently underway, after which a verification process will be conducted to ensure accuracy.

The station's gas monitors appear to be malfunctioning and providing inaccurate readings. Restoration efforts are currently underway, after which a verification process will be conducted to ensure accuracy.

The station's gas monitors appear to be malfunctioning and providing inaccurate readings. Restoration efforts are currently underway, after which a verification process will be conducted to ensure accuracy.

7 COMPLAINTS

There were no complaints for this months

implemented		modeling of	Calculation of Impacts /	Cause	Source Code / Name
-	-				

8 GENERAL

Abatement Technology-Table 4

In order to achieve the required operational dust removal efficiency based on measured values, several assumptions such as

© Coal ash content (%) and burnt rate mass

© Fly: Coarse ash ratio of 80:20 - 80% of fly-ash mass obtained from burnt coal goes to ESP

Measurement of dust emission by Dust Monitor over a period of time (monthly)

Operational Dust Removal Efficiency

 $\eta = (1 - (Output/Input)) \times 100$

 $\eta = 1 - \underbrace{(DustEmissionFromAQR\ ReportDustMonitor(tons)}_{(CoalBurnt(tons)*\%AshContent*80\%)} \times 100$

Monitor Reliability-Table 5

In terms of the minimum emissions standard, the requirement is that a monitor should be 80% reliable on a monthly average.

The monitor reliability refers to data reliability because the assumed value of 99.325% reliability is compared to the dust concentration signal. If the dust concentration signal is above 99.325% opacity, the data information is no longer reliable because the monitor reading is out of its maximum reading range. The data reliability looks at how many times did the dust concentration signal go above 98% over a period of time e.g 24hours

The formula is as follows:

= (1 - (count hours above 99.325%/24hours))x 100

- Emissions Performance:

 > Average velocity values from the latest correlation report were used on the gaseous emissions on Units due to defective CEMS monitors and velocity correction factors were set M=1 and C=0

 > Unit 2 and 6 maxed out, meaning the emissions were higher than what the monitor was correlated for, in which case we use surrogate values. This is attributed to abnormal plant conditions.

 > Please note that the reported figures in tonnage calculation are the figures after the station used the maxing out quantification exercise which is the use of "surrogate values" on days when the monitor maxed out.

 Flow was not working for the whole month because of sensors that are faulty and the sensors have to be replaced on all the units. The process for procuring new sensors is in progress.

 Correlation curves for units 1,4 and 5 were changed to suite changes of the data signals from *AAA* to *HME* data values because of the damaged cables for *AAA* signal giving values that were not
- reliable.

- > Surrogation values were recalculated after updating raw data based on curves update.
 > The QAL 2 average values for gaseous were used as raw data in cases where the monitor had an error, were used as surogation values.
 > The O2 sensors for unit 2, 3 and 6 are faulty they all need to be replaced. Unit 5 and 4 O2 sensors were replaced in July 2025 and the process of replacing the other sensors is in progress.
 > The PM monitors were not 100% reliable due ash backlogs, dust flooded the dust motors.
- > Unit 1

Findings: High PM emissions can be attributed to ash backlogs that affected F11, F21, F31, and F42. Gearbox issues on CE Rapper No. 7 Right Hand (F37/F47) and tripping of CE Rappers on F26 further contributed to the problem. A faulty transformer on F46.

Resolution: Plant repaired.

Findings: High PM emissions can be attributed to unreliable DHP system due to vacuum issues, which led to ash backlogs. Faulty controllers on F17 and F36, a malfunctioning CE Rapper motor on F13, and the SO₃ plant failing to operate due to no sulphur flow. > Resolution: Plant repaired.

> Unit 3
Findings: High PM emissions can be attributed to the soothblowing that was incomplete and the shutdown of PCP11–24 knife gates 1–4. Short circuits on F21 and F41, and an open output condition on

> Resolution: Plant repaired.

> Unit 4

Findings: unit was off

> Resolution: Plant repaired.

Findings: High PM emissions can be attributed to the SO₃ plant that was on hold mode due to low BET levels, communication bus faults on F13, and ash backlogs with ten fields that was showing internal damage. The DHP remained offline with all knife gates shut, and only four pulse controllers were operational in Stream 1. Signal issues on CE Rapper No. 5 LH. > Resolution: Plant repaired.

Unit 6 Findings: High PM emissions can be attributed to low high-voltage DC conditions on F37 and F47, with multiple fields (F31–F47) having tripped due to low voltage. Malfunctioning RH CE Rappers 1–4, permanently open circuits on F11 and F21 due to structural damage, ash backlogs, a failed fan on F12, and low coolant levels on F31.
Resolution: Plant repaired.

9 Complaints and S30 Incidents Register

Refer to Addendum (If anv)

Alloll (=

Engineering Manager

Compiled by

Environmental Officer

For Nkangala District Municipality

Copies Generation Environmental Management

Generation Compliance Management Generation Asset Management

Kendal Power Station

Environmental Manage

29/04/2005

Air Quality Officer

D Herbst B Mccourt

R Rampiar E Patel

Engineering Manager Operating Manager Maintenance Manager Production Manager Boiler Engineering Manager System Engineer Environmental Manager