

# **Technical and Generic Report**

Matimba Power Station

Title: **Matimba Power Station September** 

2025 emissions report

Document Identifier:

RP/247/065

Plant Location:

**Emission management** 

Area of Applicability:

**Matimba Power Station** 

Functional Area Applicability:

**Environment** 

Revision:

1

**Total Pages:** 

30

Report Date:

September 2025

Disclosure Classification: Controlled

Compiled by

Reviewed by

Supported by

**Authorized by** 

**Helry Ramahlare Senior Advisor Environment** 

**MC Mamabolo Environmental**  **Jacky Mathobela Engineering Manager**  **Obakeng Mabotja General Manager** 

Manager

Date: -----

31-10-2025

31/10/2025 Date: ----

Date: -----

2025-10-30

Date: ---

Revision:

Page: 2 of 30

# Content

|     |          |                                                                       | Page |
|-----|----------|-----------------------------------------------------------------------|------|
| 1.  | Repo     | ort Summary                                                           | 5    |
| 2.  | Emis     | ssion information                                                     | 6    |
|     | 2.1      | Raw materials and products                                            | 6    |
|     | 2.2      | Abatement technology                                                  | 6    |
|     | 2.3      | Emissions reporting                                                   | 7    |
|     |          | 2.3.1 Particulate Matter Emissions                                    | 7    |
|     |          | 2.3.2 Gaseous Emissions                                               | 11   |
|     |          | 2.3.2.a SOx Emissions                                                 | 11   |
|     |          | 2.3.2.b NOx Emissions                                                 | 14   |
|     |          | 2.3.3 Total Volatile Organic Compounds                                | 18   |
|     |          | 2.3.4 Greenhouse gas (CO <sub>2</sub> ) emissions                     | 19   |
|     | 2.4      | Daily power generated.                                                | 19   |
|     | 2.5      | Pollutant Tonnages                                                    | 23   |
|     | 2.6      | Operating days in compliance to PM AEL Limit                          | 23   |
|     | 2.7      | Operating days in compliance to SOx AEL Limit                         | 23   |
|     | 2.8      | Operating days in compliance to NOx AEL Limit                         | 24   |
|     | 2.9      | Continuous Emission Monitors                                          | 24   |
|     |          | 2.10.1 Changes, downtime, and repairs                                 | 25   |
|     |          | 2.10.2 Sampling dates and times                                       | 26   |
|     | 2.10     | Units Start-up information                                            | 27   |
|     | 2.11     | Emergency generation                                                  | 28   |
|     | 2.12     | Complaints register.                                                  | 28   |
|     | 2.13     | Air quality improvements and social responsibility conducted          |      |
|     |          | Air quality improvements                                              | 28   |
|     |          | Social responsibility conducted.                                      | 28   |
|     |          | Ambient air quality monitoring                                        |      |
|     |          | Electrostatic precipitator and Sulphur plant status                   |      |
|     | 2.16     | General                                                               | 29   |
| 3.  | Attac    | chments                                                               | 30   |
| 4.  | Repo     | ort Conclusion                                                        | 30   |
| Tal | ole 1: 0 | Quantity of Raw Materials and Products used/produced for the month    | 6    |
| Tal | ole 2: / | Abatement Equipment Control Technology Utilised                       | 6    |
| Tal | ole 3: I | Energy Source Material Characteristics                                | 7    |
| Tal | ole 4:   | Total volatile compound estimates                                     | 18   |
| Tal | ole 5: I | Daily power generated per unit in MWh for the month of September 2025 | 19   |
| Tal | ole 6: I | Pollutant tonnages for the month of September 2025                    | 23   |

## **CONTROLLED DISCLOSURE**

Revision: 1

Page: **3 of 30** 

| Table 7: Operating days in compliance with PM AEL limit of September 2025                                              | 23 |
|------------------------------------------------------------------------------------------------------------------------|----|
| Table 8: Operating days in compliance with SOx AEL limit of September 2025                                             | 23 |
| Table 9: Operating days in compliance with NOx AEL limit of September 2025                                             | 24 |
| Table 10: Monitor reliability percentage (%)                                                                           | 24 |
| Table 13: Dates of last full conducted CEMS verification tests for PM for unit 6.                                      | 26 |
| Table 14: Dates of last conducted CEMS Spot verification tests for PM, SO <sub>2</sub> and NOx for unit 1, 5 and 6)    | 26 |
| Table 15: Dates of last full conducted CEMS verification tests for PM for unit 2, unit 3 and 4 only                    | 26 |
| Table 16: Start-up information                                                                                         | 27 |
| Table 17: Emergency generation                                                                                         | 28 |
| Table 18: Complaints                                                                                                   | 28 |
| Figures                                                                                                                |    |
| Figure 1: Particulate matter daily average emissions against emission limit for unit 1 for the month of September 2025 | 7  |
| Figure 2: Particulate matter daily average emissions against emission limit for unit 2 for the month of September 2025 | 8  |
| Figure 3: Particulate matter daily average emissions against emission limit for unit 3 for the month of September 2025 | 9  |
| Figure 4: Particulate matter daily average emissions against emission limit for unit 4 for the month of September 2025 | 9  |
| Figure 5: Particulate matter daily average emissions against emission limit for unit 5 for the month of September 2025 | 10 |
| Figure 6: Particulate matter daily average emissions against emission limit for unit 6 for the month of September 2025 | 10 |
| Figure 7: SO2 daily average emissions against emission limit for unit 1 for the month of September 2025                | 11 |
| Figure 8: SO2 daily average emissions against emission limit for unit 2 for the month of September 2025                | 12 |
| Figure 9: SO2 daily average emissions against emission limit for unit 3 for the month of September 2025                | 12 |
| Figure 10: SO2 daily average emissions against emission limit for unit 4 for the month of September 2025               | 13 |
| Figure 11: SO2 daily average emissions against emission limit for unit 5 for the month of September 2025               | 13 |
| Figure 12: SO2 daily average emissions against emission limit for unit 6 for the month of September 2025               | 14 |
| Figure 13: NOx daily average emissions against emission limit for unit 1 for the month of September 2025               | 15 |
| Figure 14: NOx daily average emissions against emission limit for unit 2 for the month of September 2025               | 15 |
| Figure 15: NOx daily average emissions against emission limit for unit 3 for the month of September 2025               | 15 |

## **CONTROLLED DISCLOSURE**

# Matimba Power Station September 2025 emissions report

Unique Identifier: RP/247/065

Revision:

Page: 4 of 30

| Figure 16: NOx daily average emissions against emission limit for unit 4 for the month of September 2025 | 16 |
|----------------------------------------------------------------------------------------------------------|----|
| Figure 17: NOx daily average emissions against emission limit for unit 5 for the month of September 2025 | 16 |
| Figure 18: NOx daily average emissions against emission limit for unit 6 for the month of September 2025 | 17 |
| Figure 19: Unit 1 daily generated power in MWh for the month of September 2025                           | 20 |
| Figure 20: Unit 2 daily generated power in MWh for the month of September 2025                           | 20 |
| Figure 21: Unit 3 daily generated power in MWh for the month of September 2025                           | 21 |
| Figure 22: Unit 4 daily generated power in MWh for the month of September 2025                           | 21 |
| Figure 23: Unit 5 daily generated power in MWh for the month of September 2025                           | 22 |
| Figure 24: Unit 6 daily generated power in MWh for the month of September 2025                           | 22 |

Revision: 1

Page: **5 of 30** 

# 1. Report Summary

Matimba Power Station was issued with an Atmospheric Emission License (H16/1/13-WDM05) in September 2022. The License requires the license holder to submit monthly reports to the Department. This report contains the required information as specified in the license for September 2025. The information recorded in the report is obtained from Matimba Emission Reporting tool MTB0925ERT.



During the period under review, Matimba experienced sixty five (65) exceedances of the daily particulate matter emission limit (50mg/Nm³), fourty three (43) of these exceedances occurred outside of the 48-hour grace period and were recorded on the Eskom incident management process as non-compliance to the Atmospheric Emissions Licence and twenty two (22) exceedances occurred within the 48-hour grace period.

There were no exceedances of the monthly SOx limit (3500mg/Nm³). The were no exceedances of the daily NOx emission limit (750mg/Nm³).

Flue gas conditioning plant availability was below 90% for unit 2, unit 3, unit 4 and unit 5. Unit 1 SO3 plant's availability was 93%. Unit 2 SO3 plant's availability was 47%. Unit 3 SO3 plant's availability was 84%. Unit 4 SO3 plant's availability was 58%. Unit 5 SO3 plant's availability was 88% and unit 6 SO3 plant's availability was 98%.

The consumption rates for fuel oil for the month of September 2025 exceeded the limit of 1200 tons by 1581.09 tons due to combustion support across all units.

More information regarding above mentioned issues is provided in the relevant sections within the report.

Revision: 1

Page: 6 of 30

## 2. Emission information

# 2.1 Raw materials and products

**Table 1:** Quantity of Raw Materials and Products used/produced for the month.

| Raw Materials<br>and Products<br>used | Raw Material<br>Type         | Unit       | Maximum Permitted Consumption Rate (Quantity)    | Consumption<br>Rate        |
|---------------------------------------|------------------------------|------------|--------------------------------------------------|----------------------------|
| useu                                  | Coal                         | Tons/month | 1 500 000                                        | 825 307                    |
|                                       | Fuel Oil                     | Tons/month | 1 200                                            | 1581.09                    |
|                                       |                              |            |                                                  |                            |
| Production<br>Rates                   | Product/ By-<br>Product Name | Unit       | Maximum Production Capacity Permitted (Quantity) | Production Rate            |
| 1.000                                 | Energy                       | MW         | 4000                                             | Rate<br>825 307<br>1581.09 |
|                                       | Ash                          | Tons/month | 547500                                           | 296921.21                  |

The consumption rates for fuel oil for the month of September 2025 exceeded the permitted maximum limits due to combustion support.

# 2.2 Abatement technology

Table 2: Abatement Equipment Control Technology Utilised

| Associated Unit | Technology Type            | Minimum utilisation (%) | Efficiency (%)         |
|-----------------|----------------------------|-------------------------|------------------------|
| Unit 1          | Electrostatic Precipitator | 100%                    | 99.856%                |
| Unit 2          | Electrostatic Precipitator | 100%                    | 99.625%                |
| Unit 3          | Electrostatic Precipitator | 100%                    | 99.963%                |
| Unit 4          | Electrostatic Precipitator | 100%                    | 99.302%                |
| Unit 5          | Electrostatic Precipitator | 100%                    | 99.122%                |
| Unit 6          | Electrostatic Precipitator | 100%                    | 99.831%                |
| Associated      | Technology Type            | Minimum utilisation     | Actual Utilisation (%) |
| Unit            |                            | (%)                     |                        |
| Unit 1          | SO₃ Plant                  | 100%                    | 93%                    |
| Unit 2          | SO₃ Plant                  | 100%                    | 47%                    |
| Unit 3          | SO₃ Plant                  | 100%                    | 84%                    |
| Unit 4          | SO₃ Plant                  | 100%                    | 58%                    |
| Unit 5          | SO₃ Plant                  | 100%                    | 88%                    |
| Unit 6          | SO₃ Plant                  | 100%                    | 98%                    |

## **CONTROLLED DISCLOSURE**

Revision: 1

Page: **7 of 30** 

Flue gas conditioning plant availability was below 90% for unit 2, unit 3, unit 4 and 5. Unit 2 SO3 plant was on hold due to BUS communication faulty. Unit 3 SO3 plant was on hold due to LH bias temp low. Unit 4 SO3 plant was on hold due to sulphur control valve faulty. Unit 5 SO3 plant was on permit to work to replace LH Bias.

Table 3: Energy Source Material Characteristics.

|             | Characteristic  | Stipulated Range (Unit) | Monthly Average<br>Content |
|-------------|-----------------|-------------------------|----------------------------|
| Coal burned | Sulphur Content | 1.6%                    | 1.394%                     |
| Coal burned | Ash Content     | 40%                     | Content                    |

Energy source characteristics remained within the ranges stipulated in the license.

# 2.3 Emissions reporting

## 2.3.1 Particulate Matter Emissions

The emission monitors correlation and parallel tests were performed on unit 2,3 and 4 in June 2024 and the curves were applied on emissions calculations for June 2025. Unit 1,5 and 6 emission calculations were done using the correlation/parallel tests curves from the spot test performed in August 2023. Unit 2 PM correlation curve applied is linear curve, Unit 3 and 4 PM correlation curve applied is polynomial curve.

**Unit 1 Particulate Emissions** 

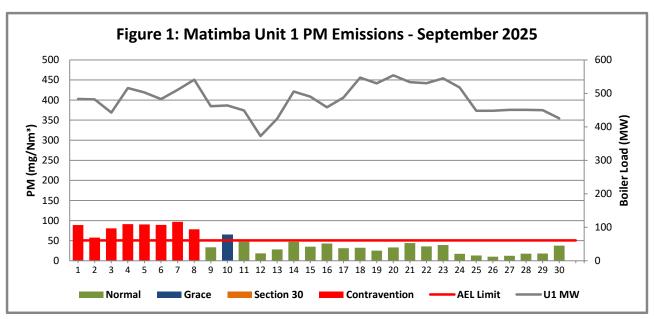



Figure 1: Particulate matter daily average emissions against emission limit for unit 1 for the month of September 2025

#### **CONTROLLED DISCLOSURE**

■ Normal

Grace

Unique Identifier: RP/247/065

Revision: 1

**AEL Limit** 

Page: 8 of 30

**Interpretation**: Unit 1 exceeded the daily particulate emission limit of 50mg/Nm3 on 1<sup>st</sup> to 8<sup>th</sup> of September 2025, the exceedances occurred outside of the 48-hour grace period and were recorded on the Eskom incident management process as non-compliance to the Atmospheric Emissions Licence. The exceedances were due to high hopper levels causing electrostatic precipitators fields to trip and have low efficiency.

# Figure 2: Matimba Unit 2 PM Emissions - September 2025 350 600 300 500 250 400 PM (mg/Nm³) 200 300 150 200 100 100 50 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

## **Unit 2 Particulate Emissions**

Figure 2: Particulate matter daily average emissions against emission limit for unit 2 for the month of September 2025

Contravention

Section 30

**Interpretation:** Unit 2 exceeded the daily particulate emission limit of 50mg/Nm3 on 1<sup>st</sup> to 11<sup>th</sup> of September 2025. The exceedances occurred outside of the 48-hour grace period and were recorded on the Eskom incident management process as non-compliance to the Atmospheric Emissions Licence. The exceedances were due to high hopper levels causing electrostatic precipitators fields to trip and have low efficiency.

## **Unit 3 Particulate Emissions**

Revision: 1

Page: 9 of 30

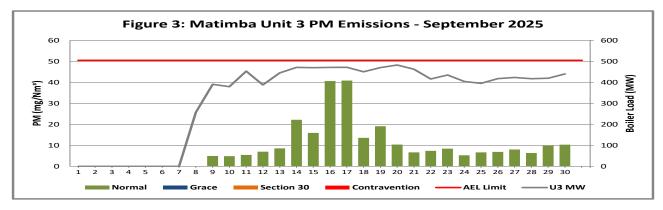



Figure 3: Particulate matter daily average emissions against emission limit for unit 3 for the month of September 2025

**Interpretation:** Unit 3 daily particulate emission remained within the limit of 50mg/Nm3 for the month of September 2025.

#### Figure 4: Matimba Unit 4 PM Emissions - September 2025 500 450 450 400 400 350 PM (mg/Nm³ 300 300 250 250 200 200 100 100 50 50 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Section 30 Contravention **AEL Limit**

## **Unit 4 Particulate Emissions**

Figure 4: Particulate matter daily average emissions against emission limit for unit 4 for the month of September 2025

**Interpretation:** Unit 4 exceeded the daily particulate emission limit of 50mg/Nm3 on 9<sup>th</sup> to 12th of September 2025 after unit light up and o the 28<sup>th</sup> to 30<sup>th</sup> September 2025. All exceedances occurred outside of the 48-hour grace period and were recorded on the Eskom incident management process as non-compliance to the Atmospheric Emissions Licence. The exceedances were due to high hopper levels causing electrostatic precipitators fields to trip and have low efficiency.

## **Unit 5 Particulate Emissions**

#### **CONTROLLED DISCLOSURE**

Revision: 1

Page: 10 of 30

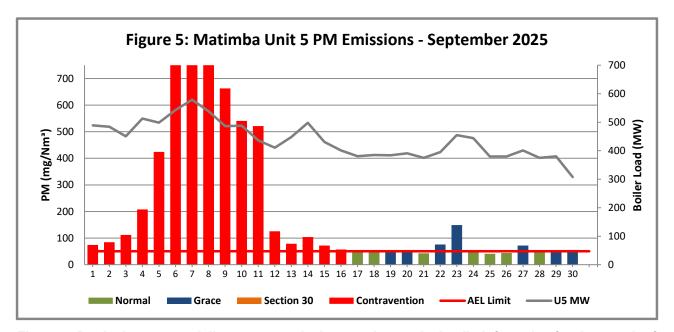



Figure 5: Particulate matter daily average emissions against emission limit for unit 5 for the month of September 2025

**Interpretation:** Unit 5 Particulate matter exceeded the daily limit of 50 mg/Nm³ on 1st to 15th of September 2025. All exceedances occurred outside of the 48-hour grace period and was recorded on the Eskom incident management process as non-compliance to the Atmospheric Emissions Licence. The exceedances were due to high hopper levels causing electrostatic precipitators fields to trip and have low efficiency.

#### 

## **Unit 6 Particulate Emissions**

Figure 6: Particulate matter daily average emissions against emission limit for unit 6 for the month of September 2025

Section 30

**Interpretation:** Unit 6 Particulate matter exceeded the daily limit of 50 mg/Nm³ on 3<sup>rd</sup> to 5<sup>th</sup> ad 10<sup>th</sup> to 15<sup>th</sup> of September 2025. All the exceedances occurred outside of the 48-hour grace period and was recorded on the Eskom incident management process as non-compliance to the Atmospheric Emissions Licence. The exceedances were due to high hopper levels causing electrostatic precipitators fields to trip and have low efficiency.

#### **CONTROLLED DISCLOSURE**

Revision: 1

Page: 11 of 30

## 2.3.2 Gaseous Emissions

Gaseous emissions analyzers calibration for all 6 units were performed in September 2025 as per the Eskom emission standard requirement.

The quality assurance tests (QAL2) used for September 2025 emission calculations were performed in June 2024 for Unit 2,3 and 4. Unit 1,5 and 6 quality assurance curves utilized are spot tests performed in August 2023

## 2.3.2.a SOx Emissions

# Unit 1 SO<sub>2</sub> Emissions

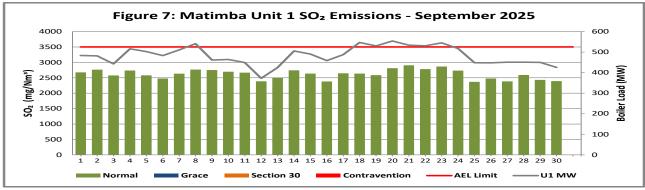



Figure 7: SO2 daily average emissions against emission limit for unit 1 for the month of September 2025

Interpretation: All daily averages below SO<sub>2</sub> emission monthly limit of 3500 mg/Nm<sup>3</sup>.

Unit 2 SO<sub>2</sub> Emissions

Revision: 1

Page: **12 of 30** 

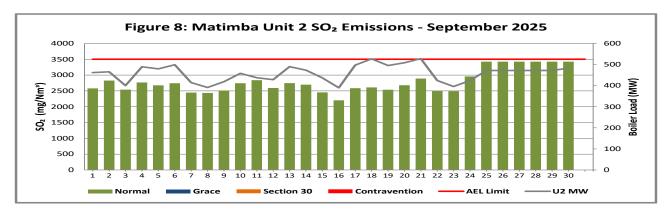



Figure 8: SO2 daily average emissions against emission limit for unit 2 for the month of September 2025

**Interpretation:** All daily averages below SO<sub>2</sub> emission monthly limit of 3500 mg/Nm<sup>3</sup>.SRM (Standard Reference Measurements from QAL2 tests) for Oxygen were used to calculate the SO<sub>2</sub> gaseous emissions for unit 2 in September 2025 due to defective monitor.

## Unit 3 SO<sub>2</sub> Emissions

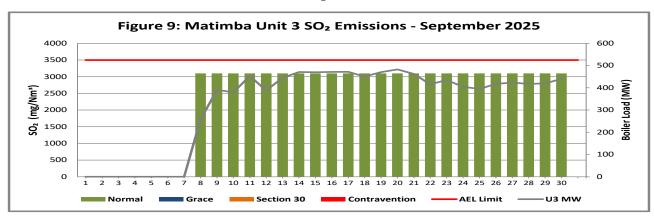



Figure 9: SO2 daily average emissions against emission limit for unit 3 for the month of September 2025

**Interpretation:** All daily averages below  $SO_2$  emission monthly limit of 3500 mg/Nm<sup>3</sup>.SRM (Standard Reference Measurements) for all the gaseous parameters were used to calculate the  $SO_2$  gaseous emissions for unit 3 in September 2025 due to defective monitor.

#### **CONTROLLED DISCLOSURE**

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorised version on the system.

No part of this document August be reproduced without the expressed consent of the copyright holder, Eskom Holdings SOC

Revision: 1

Page: 13 of 30

## Unit 4 SO<sub>2</sub> Emissions

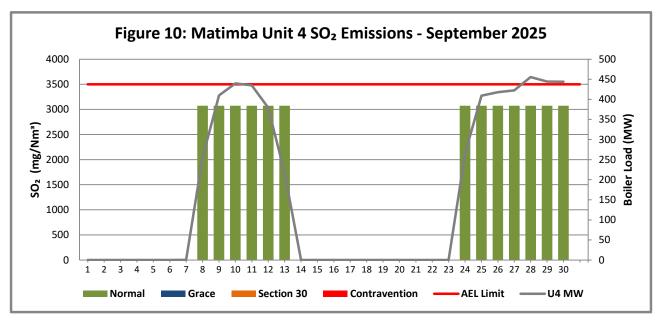



Figure 10: SO2 daily average emissions against emission limit for unit 4 for the month of September 2025

**Interpretation:** All daily averages below  $SO_2$  emission monthly limit of 3500 mg/Nm<sup>3</sup>. SRM (Standard Reference Measurements) from the QAL 2 tests report for all the gaseous parameters were used to calculate the  $SO_2$  gaseous emissions for unit 4 in September 2025 due to defective monitor.

## Unit 5 SO<sub>2</sub> Emissions

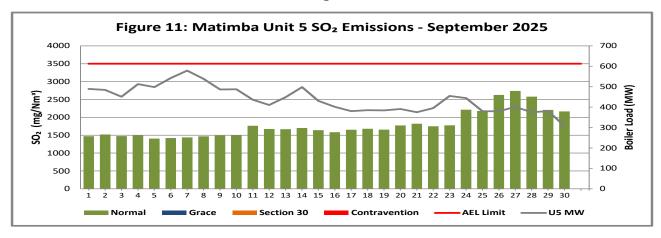



Figure 11: SO2 daily average emissions against emission limit for unit 5 for the month of September 2025

#### **CONTROLLED DISCLOSURE**

Revision: 1

Page: **14 of 30** 

**Interpretation:** All daily averages below SO<sub>2</sub> emission monthly limit of 3500 mg/Nm<sup>3</sup>. SRM (Standard Reference Measurements) from the QAL 2 test results for reference gas (Oxygen) were used to calculate the SO2 gaseous emissions for unit 5 in September 2025 due to low reliability on the Oxygen monitor.

#### Figure 12: Matimba Unit 6 SO<sub>2</sub> Emissions - September 2025 4000 600 3500 500 3000 400 mg/Nm<sup>3</sup> 2500 300 2000 1500 200 1000 100 500 0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 8 9 Normal ■ Grace Section 30 Contravention AEL Limit

Unit 6 SO<sub>2</sub> Emissions

Figure 12: SO2 daily average emissions against emission limit for unit 6 for the month of September 2025

**Interpretation:** All daily averages below SO2 emission monthly limit of 3500 mg/Nm3. SRM (Standard Reference Measurements) from the QAL 2 test results for reference gas (Oxygen) were used to calculate the SO2 gaseous emissions for unit 6 in September 2025 due to low reliability on the Oxygen monitor.

## 2.3.2.b NOx Emissions

#### Figure 13: Matimba Unit 1 NO<sub>x</sub> Emissions - September 2025 800 600 700 500 600 NOx (mg/Nm<sup>3</sup> 500 400 300 300 200 200 100 100 ■ Normal Section 30 **AEL Limit** Contravention

Unit 1 NO<sub>x</sub> Emissions

#### **CONTROLLED DISCLOSURE**

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorised version on the system.

No part of this document August be reproduced without the expressed consent of the copyright holder, Eskom Holdings SOC

Revision: 1

Page: **15 of 30** 

Figure 13: NOx daily average emissions against emission limit for unit 1 for the month of September 2025

**Interpretation:** All daily averages below NOx emission limit of 750 mg/Nm<sup>3</sup>.

## Unit 2 NO<sub>x</sub> Emissions

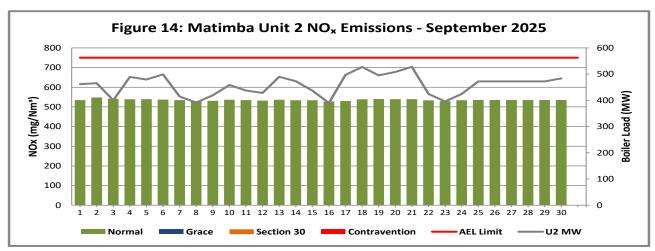



Figure 14: NOx daily average emissions against emission limit for unit 2 for the month of September 2025

**Interpretation:** All daily averages below NOx emission limit of 750 mg/Nm³. SRM (Standard Reference Measurements from QAL2 tests) for Oxygen and Nitrogen were used to calculate the SO2 gaseous emissions for unit 2 in September 2025 due to defective monitor.

## Unit 3 NO<sub>x</sub> Emissions

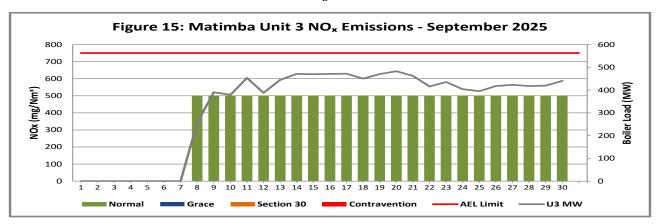



Figure 15: NOx daily average emissions against emission limit for unit 3 for the month of September 2025

**Interpretation:** All daily averages below NOx emission limit of 750 mg/Nm<sup>3</sup>. SRM (Standard Reference Measurements) for all the gaseous parameters were used to calculate the NOx gaseous emissions for unit 3 in September 2025 due to defective monitor.

#### **CONTROLLED DISCLOSURE**

Revision: 1

Page: **16 of 30** 

# Unit 4 NO<sub>x</sub> Emissions

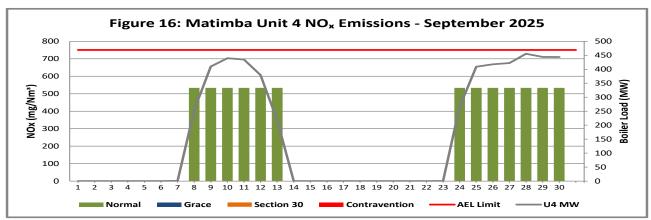



Figure 16: NOx daily average emissions against emission limit for unit 4 for the month of September 2025

**Interpretation:** All daily averages below NOx emission limit of 750 mg/Nm³. SRM (Standard Reference Measurements) from the QAL 2 tests report for all the gaseous parameters were used to calculate the NOx gaseous emissions for unit 4 in September 2025 due to defective monitor.

## Unit 5 NO<sub>x</sub> Emissions

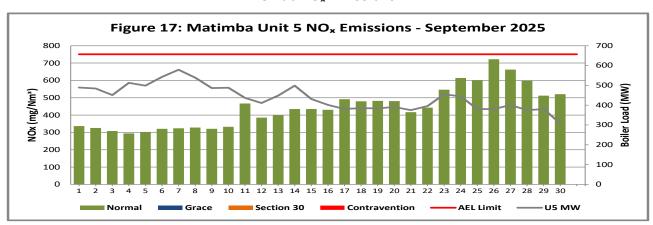



Figure 17: NOx daily average emissions against emission limit for unit 5 for the month of September 2025

#### **CONTROLLED DISCLOSURE**

Revision: 1

Page: **17 of 30** 

**Interpretation:** All daily averages below NOx emission limit of 750 mg/Nm³. SRM (Standard Reference Measurements) from the QAL 2 test results for reference gas (Oxygen) were used to calculate the NOx gaseous emissions for unit 5 in September 2025 due to low reliability on the Oxygen monitor

## Unit 6 NO<sub>x</sub> Emissions

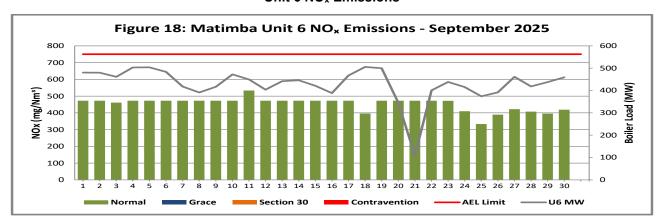



Figure 18: NOx daily average emissions against emission limit for unit 6 for the month of September 2025

**Interpretation:** All daily averages below NOx emission limit of 750 mg/Nm³. SRM (Standard Reference Measurements) from the QAL 2 test results for reference gas (Oxygen) were used to calculate the NOx gaseous emissions for unit 6 in September 2025 due to low reliability on the Oxygen monitor.

Revision: 1

Page: 18 of 30

## 2.3.3 Total Volatile Organic Compounds

Table 4: Total volatile compound estimates



## CALCULATION OF EMISSIONS OF TOTAL VOLATILE COMPOUNDS FROM FUEL OIL STORAGE TANKS\*

| Date:            | Tuesday, 28 October 2025                   |
|------------------|--------------------------------------------|
| Station:         | Matimba Power Station                      |
| Province:        | Limpopo Province                           |
| Tank no.         | 1-4                                        |
| Description:     | Outdoor fuel oil storage tank              |
| Tank Type:       | Vertical fixed roof (vented to atmosphere) |
| Material stored: | Fuel Oil 150                               |

#### MONTHLY INPUT DATA FOR THE STATION

Please only insert relevant monthly data inputs into the <u>blue cells</u> below Choose from a dropdown menu in the <u>green cells</u>

The total VOC emissions for the month are in the <u>red cells</u>

IMPORTANT: Do not change any other cells without consulting the AQ CoE

| MONTH:                 | September                           |                |                 |            |
|------------------------|-------------------------------------|----------------|-----------------|------------|
| GENERAL INFORM         | ATION:                              |                | Data            | Unit       |
| Total number of fue    | el oil tanks:                       |                | 4               | NA         |
| Height of tank:        |                                     |                | 13.34           | m          |
| Diameter of tank:      |                                     |                | 9.53            | m          |
| Net fuel oil through   | put for the month:                  |                | <u>1581.093</u> |            |
| Molecular weight of    | the fuel oil:                       |                | 166.00          | Lb/lb-mole |
| METEROLOGICAL          | DATA FOR THE MONTH                  |                | Data            | Unit       |
| Daily average ambie    | ent temperature                     |                | 23.43           | °C         |
| Daily maximum amb      | pient temperature                   |                | 31.06           | °C         |
| Daily minimum amb      | ient temperature                    |                | 16.52           | °C         |
| Daily ambient temp     | erature range                       |                | 14.54           | °C         |
| Daily total insolation | n factor                            |                | 4.41            | kWh/m²/day |
| Tank paint colour      |                                     | Gı             | rey/medium      | NA         |
| Tank paint solar ab    | sorbtance                           |                | 0.68            | NA         |
| FINAL OUTPUT:          |                                     |                | Result          | Unit       |
| Breathing losses:      |                                     |                | 0.54            | kg/month   |
| Working losses:        |                                     |                | 0.04            | kg/month   |
| TOTAL LOSSES (T        | otal TVOC Emissions for the month): |                | 0.59            | kg/month   |
| *** *** ***            |                                     | 110ED4 AD 40 0 | 4 0             |            |

<sup>\*</sup>Calculations performed on this spreadsheet are taken from the USEPA AP-42- Section 7.1 Organic Liquid Storage Tanks - January 1996. This spreadsheet is derived from materials provided by Jimmy Peress, PE, Tritech Consulting Engineers, 85-93 Chevy Chase Street, Jamaica, NY 11432 USA, Tel - 718-454-3920, Fax - 718-454-6330, e-mail - PeressJ@nyc.rr.com.

#### **CONTROLLED DISCLOSURE**

Revision: 1

Page: **19 of 30** 

# 2.3.4 Greenhouse gas (CO<sub>2</sub>) emissions

CO<sub>2</sub> emissions are reported in terms of the Greenhouse gas reporting regulations (GN 43712, GNR. 994/2020) and are not included in the monthly AEL compliance report.

# 2.4 Daily power generated.

Table 5: Daily power generated per unit in MWh for the month of September 2025

| Date       | Unit 1  | Unit 2  | Unit 3   | Unit 4   | Unit 5  | Unit 6  |
|------------|---------|---------|----------|----------|---------|---------|
| 2025/09/01 | 10561.6 | 9947.79 | Unit off | Unit off | 10514.5 | 10355   |
| 2025/09/02 | 10533.5 | 10034.6 | Unit off | Unit off | 10434.7 | 10369.2 |
| 2025/09/03 | 9664.8  | 8536.48 | Unit off | Unit off | 9713.24 | 9948    |
| 2025/09/04 | 11281.9 | 10526.4 | Unit off | Unit off | 11068.7 | 10864.7 |
| 2025/09/05 | 11000.6 | 10336.4 | Unit off | Unit off | 10746.3 | 10901.5 |
| 2025/09/06 | 10576.1 | 10785.4 | Unit off | Unit off | 11715.6 | 10471.3 |
| 2025/09/07 | 11200.9 | 8892.32 | Unit off | Unit off | 12509.3 | 9023.45 |
| 2025/09/08 | 11845.6 | 8378.28 | 5303.28  | 5307.94  | 11619.9 | 8448.51 |
| 2025/09/09 | 10073   | 8984.07 | 8369.8   | 8903.69  | 10485.5 | 8973.7  |
| 2025/09/10 | 10127.8 | 9865.15 | 8111.56  | 9588.63  | 10520.7 | 10212.5 |
| 2025/09/11 | 9801.18 | 9369.94 | 9771.79  | 9437.18  | 9393.08 | 9681.77 |
| 2025/09/12 | 8106.55 | 9157.72 | 8289.81  | 8184.83  | 8815.98 | 8672.26 |
| 2025/09/13 | 9257    | 10534.8 | 9561.87  | 4505.34  | 9649.83 | 9539.34 |
| 2025/09/14 | 11039.6 | 10165.7 | 10153.4  | Unit off | 10731.2 | 9646.38 |
| 2025/09/15 | 10696.8 | 9344.47 | 10127.7  | Unit off | 9251.59 | 9075.3  |
| 2025/09/16 | 10003.7 | 8290.95 | 10165.9  | Unit off | 8597.56 | 8363.03 |
| 2025/09/17 | 10620.1 | 10668.9 | 10179.9  | Unit off | 8133.4  | 10122.8 |
| 2025/09/18 | 11948.3 | 11341   | 9727.93  | Unit off | 8267.5  | 10938.2 |
| 2025/09/19 | 11581.3 | 10613.4 | 10175.4  | Unit off | 8223.65 | 10794.8 |
| 2025/09/20 | 12161.1 | 10941   | 10450.2  | Unit off | 8392.09 | 7378.41 |
| 2025/09/21 | 11698.1 | 11365.3 | 10001.6  | Unit off | 8045.4  | 2065.02 |
| 2025/09/22 | 11620.4 | 9067.62 | 8944.22  | Unit off | 8478.93 | 8590.87 |
| 2025/09/23 | 11933.1 | 8413.87 | 9383.36  | Unit off | 9775.28 | 9462.68 |
| 2025/09/24 | 11335.7 | 8909.32 | 8686.22  | 5521.86  | 9573.93 | 8945.02 |
| 2025/09/25 | 9827.02 | 8085.36 | 8467.13  | 8868.51  | 8172.1  | 8034.57 |
| 2025/09/26 | 9847.05 | 8093.04 | 8961.88  | 9043.64  | 8188.77 | 8383.24 |
| 2025/09/27 | 9899.16 | 8086.1  | 9116.35  | 9147.44  | 8634.56 | 9966.98 |
| 2025/09/28 | 9891.38 | 7475.64 | 8987.28  | 9924.4   | 8050.85 | 9033.31 |
| 2025/09/29 | 9869.64 | 8797.98 | 9022.2   | 9667.8   | 8170.64 | 9441.1  |
| 2025/09/30 | 9294.2  | 10083.8 | 9481.88  | 9695.36  | 6530.58 | 9947.12 |

Revision: 1

Page: 20 of 30

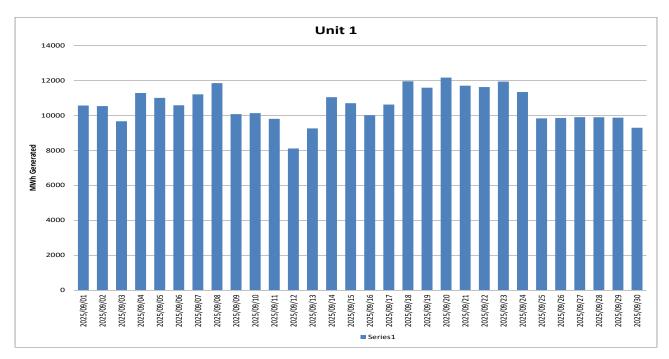



Figure 19: Unit 1 daily generated power in MWh for the month of September 2025

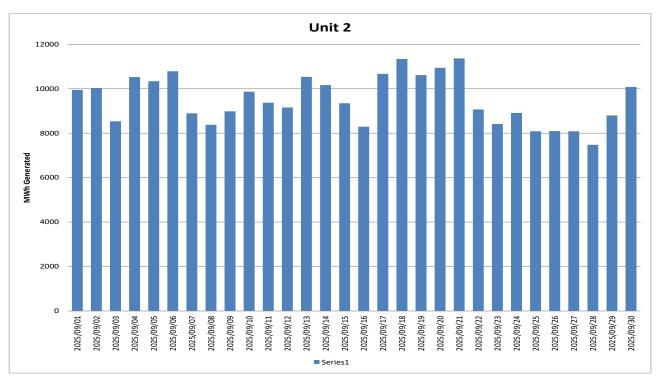



Figure 20: Unit 2 daily generated power in MWh for the month of September 2025

## **CONTROLLED DISCLOSURE**

Revision: 1

Page: 21 of 30

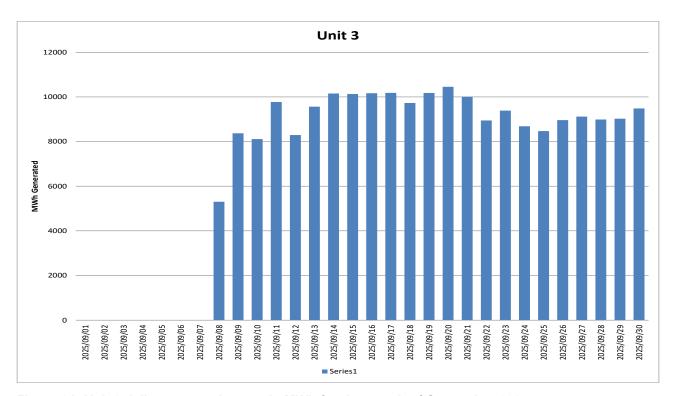



Figure 21: Unit 3 daily generated power in MWh for the month of September 2025

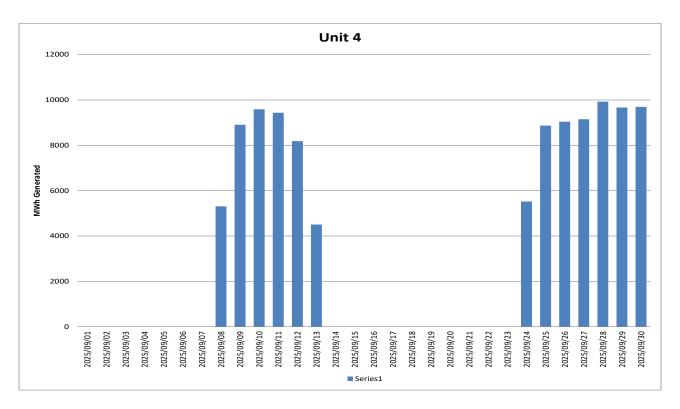



Figure 22: Unit 4 daily generated power in MWh for the month of September 2025

## **CONTROLLED DISCLOSURE**

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorised version on the system.

No part of this document August be reproduced without the expressed consent of the copyright holder, Eskom Holdings SOC Ltd.

Revision: 1

Page: **22 of 30** 

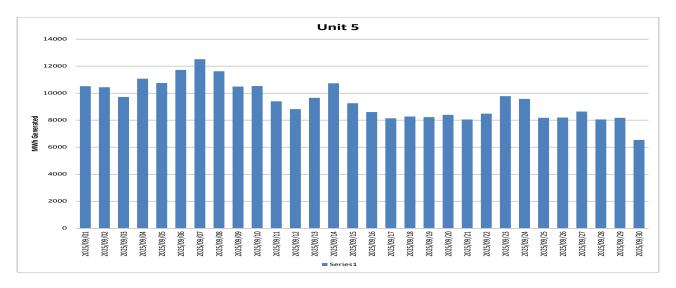



Figure 23: Unit 5 daily generated power in MWh for the month of September 2025

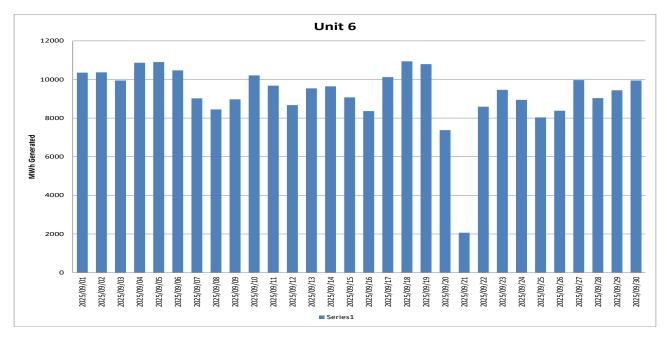



Figure 24: Unit 6 daily generated power in MWh for the month of September 2025

## **CONTROLLED DISCLOSURE**

Revision: 1

Page: 23 of 30

# 2.5 Pollutant Tonnages

The emitted pollutant tonnages for September 2025 are provided in table 6.

Table 6: Pollutant tonnages for the month of September 2025

| Associated<br>Unit/Stack | PM (tons) | SO <sub>2</sub> (tons) | NO <sub>x</sub> (tons) |
|--------------------------|-----------|------------------------|------------------------|
| Unit 1                   | 77.0      | 4 327                  | 705                    |
| Unit 2                   | 190.9     | 7 020                  | 1 352                  |
| Unit 3                   | 14.7      | 3 876                  | 627                    |
| Unit 4                   | 140.0     | 3 280                  | 569                    |
| Unit 5                   | 457.9     | 3 153                  | 782                    |
| Unit 6                   | 85.0      | 2 745                  | 577                    |
| SUM                      | 965.42    | 24 401                 | 4 612                  |

# 2.6 Operating days in compliance to PM AEL Limit

Table 7: Operating days in compliance with PM AEL limit of September 2025

| Associated Unit/Stack | Normal | Grace | Section<br>30 | NC | Total<br>Exceedance | Mnth Avg<br>(mg/Nm³) |
|-----------------------|--------|-------|---------------|----|---------------------|----------------------|
| Unit 1                | 21     | 1     | 0             | 8  | 9                   | 45.2                 |
| Unit 2                | 13     | 6     | 0             | 11 | 17                  | 73.8                 |
| Unit 3                | 22     | 0     | 0             | 0  | 0                   | 12.2                 |
| Unit 4                | 4      | 4     | 0             | 3  | 7                   | 151.2                |
| Unit 5                | 7      | 7     | 0             | 16 | 23                  | 236.9                |
| Unit 6                | 20     | 4     | 0             | 5  | 9                   | 67.7                 |
| SUM                   | 87     | 22    | 0             | 43 | 65                  |                      |

# 2.7 Operating days in compliance to SOx AEL Limit

Table 8: Operating days in compliance with SOx AEL limit of September 2025

| Associated Unit/Stack | Normal | Grace | Section<br>30 | NC | Total<br>Exceedance | Mnth Avg<br>(mg/Nm³) |
|-----------------------|--------|-------|---------------|----|---------------------|----------------------|
| Unit 1                | 30     | 0     | 0             | 0  | 0                   | 424.9                |
| Unit 2                | 30     | 0     | 0             | 0  | 0                   | 535.4                |
| Unit 3                | 23     | 0     | 0             | 0  | 0                   | 501.2                |
| Unit 4                | 13     | 0     | 0             | 0  | 0                   | 533.4                |
| Unit 5                | 30     | 0     | 0             | 0  | 0                   | 443.7                |
| Unit 6                | 30     | 0     | 0             | 0  | 0                   | 454.0                |
| SUM                   | 156    | 0     | 0             | 0  | 0                   |                      |

## **CONTROLLED DISCLOSURE**

Revision: 1

Page: 24 of 30

# 2.8 Operating days in compliance to NOx AEL Limit

Table 9: Operating days in compliance with NOx AEL limit of September 2025

| Associated<br>Unit/Stack | Normal | Grace | Section<br>30 | NC | Total<br>Exceedance | Mnth<br>Limit<br>Value | Mnth Avg<br>(mg/Nm³) |
|--------------------------|--------|-------|---------------|----|---------------------|------------------------|----------------------|
| Unit 1                   | 30     | 0     | 0             | 0  | 0                   | 3500                   | 2 619.0              |
| Unit 2                   | 30     | 0     | 0             | 0  | 0                   | 3500                   | 2 786.4              |
| Unit 3                   | 23     | 0     | 0             | 0  | 0                   | 3500                   | 3 100.0              |
| Unit 4                   | 13     | 0     | 0             | 0  | 0                   | 3500                   | 3 072.7              |
| Unit 5                   | 30     | 0     | 0             | 0  | 0                   | 3500                   | 1 784.7              |
| Unit 6                   | 30     | 0     | 0             | 0  | 0                   | 3500                   | 2 163.0              |
| SUM                      | 156    | 0     | 0             | 0  | 0                   |                        |                      |

## 2.9 Continuous Emission Monitors

**Table 10:** Monitor reliability percentage (%)

| Associated Unit/Stack | РМ    | SO <sub>2</sub> | NO    | O <sub>2</sub> |
|-----------------------|-------|-----------------|-------|----------------|
| Unit 1                | 100.0 | 99.9            | 99.9  | 100.0          |
| Unit 2                | 98.3  | 77.8            | 100.0 | 100.0          |
| Unit 3                | 82.4  | 100.0           | 100.0 | 100.0          |
| Unit 4                | 90.2  | 100.0           | 100.0 | 100.0          |
| Unit 5                | 87.5  | 98.5            | 98.3  | 79.3           |
| Unit 6                | 88.4  | 26.9            | 25.4  | 100.0          |

Note: NOx emissions are measured as NO in PPM. Final NOx value is expressed as total NO2.

## Comments:

Continuous emission monitors operating at reliability less than 80% for unit 2,3,4 and 6 for the reporting period due to defective monitors. Unit 2 monitor was found to have a sinter is blockage. and faulty heater relay, Unit 3 had filter wheel defected ,all spares required for defects corrections ordered. Unit 2, 3 and 4 gaseous monitor reliability was 100% due to the SRM (Standard Reference Material) values from the parallel test used to calculate the gaseous emissions for unit 2, 3 and 4

Revision:

Page: **25 of 30** 

# 2.10.1 Changes, downtime, and repairs

## Unit 1

- No adjustments done on the CEMs.
- Correlation test done in September 2025.

## Unit 2

- No adjustments done on the CEMs.
- No downtime or repairs done on the particulate monitors.

## Unit 3

- No adjustments done on the CEMs.
- No downtime or repairs done on the particulate monitors.

## Unit 4

- No adjustments done on the CEMs.
- No downtime or repairs done on the particulate monitors.

## Unit 5

- No adjustments done on the CEMs.
- Correlation test to be done.

## Unit 6

- No adjustments done on the CEMs.
- Correlation test done in September 2025

Revision: 1

Page: 26 of 30

# 2.10.2 Sampling dates and times

Table 11: Dates of last full conducted CEMS verification tests for PM for unit 6.

| Name of service provider:    |                  | Stacklabs Environmental Services CC        |                                |                                |  |  |
|------------------------------|------------------|--------------------------------------------|--------------------------------|--------------------------------|--|--|
| Address of service provider: |                  | 10 Chisel Street Boltonia Krugersdorp 1739 |                                |                                |  |  |
| Stack/ Unit PM               |                  | SO <sub>2</sub>                            | NOx                            | CO <sub>2</sub>                |  |  |
| 6                            | 2020/09/09 06h41 | New sampling tests in table 14             | New sampling tests in table 14 | New sampling tests in table 14 |  |  |

**Table 12:** Dates of last conducted CEMS Spot verification tests for PM, SO<sub>2</sub> and NOx for unit 1, 5 and 6)

| Name of serv                 | vice provider:   | Levego Environmental services                            |                  |                  |  |  |
|------------------------------|------------------|----------------------------------------------------------|------------------|------------------|--|--|
| Address of service provider: |                  | Building R6 Pineland site Ardeer Road Modderfontein 1645 |                  |                  |  |  |
| Stack/ Unit                  | PM               | SO₂                                                      | NOx              | CO <sub>2</sub>  |  |  |
| 1                            | 2023/08/01 19h33 | 2023/08/01 19:33                                         | 2023/08/01 19:33 | 2023/08/01 19:33 |  |  |
| 5 2023/08/05 07:30           |                  | 2023/08/05 07:30                                         | 2023/08/05 07:30 | 2023/08/05 07:30 |  |  |
| Dates in table 13 above      |                  | 2023/08/05 15:52                                         | 2023/08/05 15:52 | 2023/08/05 15:52 |  |  |

Note: The CEMS Spot verification tests for PM, SO<sub>2</sub> and NOx were performed in August 2023. PM spot verification test results for unit 6 failed and old curves are still in use.

Table 13: Dates of last full conducted CEMS verification tests for PM for unit 2, unit 3 and 4 only

| Name of serv | rice provider:   | Levego Environmental services                            |                  |                  |  |  |
|--------------|------------------|----------------------------------------------------------|------------------|------------------|--|--|
| Address of s | ervice provider: | Building R6 Pineland site Ardeer Road Modderfontein 1645 |                  |                  |  |  |
| Stack/ Unit  | PM               | SO <sub>2</sub>                                          | NOx              | CO <sub>2</sub>  |  |  |
| 2            | 2024/07/02 08h50 | 2024/07/02 12h35                                         | 2024/07/02 12h35 | 2024/07/02 12h35 |  |  |
| 3            | 2024/06/23 16h34 | 2024/06/23 14h00 2024/06/23 14h00 2024/06/23 14h         |                  |                  |  |  |
| 4            | 2024/06/29 16h05 | 2024/06/29 11h00 2024/06/29 11h00 2024/06/29 11h00       |                  |                  |  |  |

## **CONTROLLED DISCLOSURE**

Revision:

Page: **27 of 30** 

# 2.10 Units Start-up information

Table 14: Start-up information

| Unit                                   | 3          |       |
|----------------------------------------|------------|-------|
| Fires in                               | 2025/09/08 | 00h25 |
| Synchronization with Grid              | 2025/9/08  | 08h51 |
| Emissions below limit                  | 2025/08/31 | 15h00 |
| Fires in, to synchronization           | 8.26       | HOURS |
| Synchronization to <<br>Emission limit | 6.9        | HOURS |

| Unit                                   | 4          |       |  |
|----------------------------------------|------------|-------|--|
| Fires in                               | 2025/09/07 | 04h12 |  |
| Synchronization with Grid              | 2025/09/08 | 05h03 |  |
| Emissions below limit                  | 2025/09/08 | 10h08 |  |
| Fires in, to synchronization           | 24.51      | HOURS |  |
| Synchronization to <<br>Emission limit | 5.5        | HOURS |  |

| Unit                                   | 4          |       |  |  |
|----------------------------------------|------------|-------|--|--|
| Fires in                               | 2025/09/24 | 00h57 |  |  |
| Synchronization with Grid              | 2025/09/24 | 07h12 |  |  |
| Emissions below limit                  | 2025/09/24 | 14h02 |  |  |
| Fires in, to synchronization           | 6.14       | HOURS |  |  |
| Synchronization to <<br>Emission limit | 6.50       | HOURS |  |  |

Revision: 1

Page: 28 of 30

# 2.11 Emergency generation

Table 15: Emergency generation

|                                                              | Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 | Unit 6 |
|--------------------------------------------------------------|--------|--------|--------|--------|--------|--------|
| Emergency Generation hours declared by national Control      | 720    | 720    | 720    | 720    | 720    | 720    |
| Emergency Hours declared including hours after standing down | 718    | 720    | 543    | 287    | 714    | 694    |
| Days over the Limit during<br>Emergency Generation           | 9      | 17     | 0      | 7      | 23     | 9      |

During the period under review all Units were on emergency generation in force from 01 September 2025 until 30 September 2025.

# 2.12 Complaints register.

Table 16: Complaints

| Source C<br>Name | Code/ | Root Cause<br>Analysis | Calculation of Impacts/ emissions associated with the incident | Dispersion modelling of pollutants where applicable | Measures<br>implemented to<br>prevent<br>reoccurrence | Date by which measure will be implemented |
|------------------|-------|------------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| None             |       |                        |                                                                |                                                     |                                                       |                                           |

# 2.13 Air quality improvements and social responsibility conducted.

## Air quality improvements

None

Social responsibility conducted.

None

# 2.14 Ambient air quality monitoring

The September 2025 ambient air quality monitoring report is attached to this report as an addendum.

## **CONTROLLED DISCLOSURE**

Revision: 1

Page: 29 of 30

## 2.15 Electrostatic precipitator and Sulphur plant status

#### Unit 1

- High hopper levels cause a decline in precipitator performance.
- The SO<sub>3</sub> plant is operating normally with no abnormalities observed.

#### Unit 2

- High hopper levels cause a decline in precipitator performance.
- The SO<sub>3</sub> plant is operating normally with no abnormalities observed.

## Unit 3

- High hopper levels cause a decline in precipitator performance.
- The SO<sub>3</sub> plant is operating normally with no abnormalities observed.

## Unit 4

- High hopper levels cause a decline in precipitator performance.
- The SO<sub>3</sub> plant is operating normally with no abnormalities observed.

#### Unit 5

- High hopper levels cause a decline in precipitator performance.
- The SO<sub>3</sub> plant is operating normally with no abnormalities observed.

#### Unit 6

- High hopper levels cause a decline in precipitator performance.
- The SO<sub>3</sub> plant is operating normally with no abnormalities observed.

## SO₃ common plant

The SO<sub>3</sub> common plant is operating normally with no abnormalities observed.

## 2.16 General

## Name and reference number of the monitoring methods used:

- 1. Particulate and gas monitoring according to standards
  - a. BS EN 14181:2004 Quality Assurance of Automated Measuring Systems
  - b. ESKOM internal standard 240-56242363 Emissions Monitoring and Reporting Standard

## **Sampling locations:**

- 1. Stack one
  - a. Particulates:
    - i. S23° 40' 2.8" E027° 36' 34.8" 175m from ground level and 75m from the top.
  - b. Gas:
    - i. S23° 40' 2.8" E027° 36' 34.8" 100m from ground level and 150m from the top.
  - c. Stack height
    - i. 250 meter consist of 3 flues
- 2. Stack two
  - a. Particulates:

#### **CONTROLLED DISCLOSURE**

Revision: 1

Page: **30 of 30** 

- i. S23° 40' 14.8" E027° 36' 47.5" 175m from ground level and 75m from the top.
- b. Gas:
  - i. S23° 40' 14.8" E027° 36' 47.5" 100m from ground level and 150m from the top.
- c. Stack height
  - i. 250 meter consist of 3 flues

## 3. Attachments

- Fugitive dust fall out monitoring report and Ambient air quality report.
- Marapong ambient air quality report

# 4. Report Conclusion

The rest of the information demonstrating compliance with the emission license conditions is supplied in the annual emission report sent to your office.

Hoping the above will meet your satisfaction.

I hereby declare that the information in this report is correct.

Yours sincerely

GENERAL MANAGER: MATIMBA POWER STATION