

Grid Access Unit Overview

Seetsele Seetswane

19 May 2025

Previous status quo grid access for IPPs (simplified)

Optimization potential

Entry points for IPPs into Eskom

- No clear accountability for grid access for IPPs (for customer management and for deriving the process internally)
- Processes not defined no clear rules
- Completely integrated in load business (including power sales)

In partnership with **G20**

Eskom's Response – GAU Mandate (2010)

Mandate

- Organisation and set-up of a new **Unit** that serves as **single point of contact/entry** for IPPs and services all generators needs
- Set up Unit with **sufficient transparency and sufficient guardrails** to guarantee non-discriminatory grid access and operations for all IPPs and generators
- **Create transparency** on pricing policy, network contracts, and operating agreements
- Develop Optimised IPP connection process
- Define **operations processes** for IPPs and generators for the future (post-grid connection)

Aspiration

Establish clear accountability for IPPs within Eskom

Achieve a fundamentally improved image of the way IPPs view the South African electricity market

Non-discriminatory grid access to enable IPPs. (>30% of overall Gx capacity by 2030)

Effective organization with end-to-end process excellence

Establish Grid Access Unit to build trust with the market: - Manage the overall service relationship with IPPs -Facilitate Grid Access (end-to-end) for IPPs/ generators

End-to-end process vs Grid Access Unit role

- Enabling and facilitating generators and IPP grid access, and making commercial options more viable requires service relationship, stakeholder and interface management, communication
- Management and integration of the development of relevant and appropriate standards, processes, frameworks
- Possibility of various connection, grid access and commercial options
- Pricing frameworks (costing of connection, network strengthening, and costs to "wheel")
- Technical capability for integration of the IPP generators
- Process and system capability, and facilitation thereof, to enable grid access
- Quotation and Contracting capability and management
- Sufficient data and information, to effectively facilitate, enable, plan and support (+ transparency)
- Requirement for long-term viability, while dealing with current challenges

In partnership with

G20 SOUT

GAU – Building capacity in a reforming industry

 Alignment along cluster for better and efficient delivery to Customers

(Eskom

Capacitating the Unit: 9 new positions across the country

- Enhancing systems (XRM, ACNAC), Processes (IGCAR, Grid Connection Guideline) and People (GAU structure)
- International Benchmarking Studies through ERID
- Supporting the Energy Action Plan NECOM
 - Industry Guidelines on Grid Capacity Allocations to be submitted to the Department of Energy and Electricity
 - Curtailment Capacity
 - E-mobility
- Disciplined execution on core deliverables
 - Reduce backlog
 - Improved KPIs and turnaround timelines
 - Improved transparency on grid allocations
 - Systems, processes, people support
- Positive stakeholder management ongoing engagements with customers as per our stakeholder engagement plan.

In partnership with **G20** S

2 ©) 🔲 👍 IPP dashboard - Power	er Bl 🛛 🗙	+									-	Ð	×
\leftarrow (ට බ 🗈 https://app.po	werbi.com/grou	ups/me/report	ts/6b9fc734-e84e-4796-ba9b-867fed	16737d/cfe4be304109	c7850eac?	ctid=93	aedbdc	🖄 A ^N	☆	<mark>2</mark> 0	; ∑≡		-
	IPP dashboard Data updated	5/16/25 🗸		Q Search						Q 63	; ⊥	?	8	8
G	\gg \square File \sim \mapsto Export \sim	🗸 🖻 Share	θθ Explore	🕞 Subscribe					🧔 Copil	ot 🕤	□ ~		3 🖓	☆
Create		(2) Eskom	GAU Performance Report			19.89 Projects in the pipeline(GW)			139 Projects in the	pipeline				* ज म:
Browse Browse OneLake catalog Workspaces	s 7	Sum of MEC (GW) 774.05	Stage 1 CEL 3 Execution 384.73 1 CEL 360.09 2 BQ 19.89 4 Connected 9.35	× Technology × 3.26 Hydro 1.66 Coal 1.43 Diesel 0.72 Concentrating PV 0.25 Biomass 0.17	Technology Concentrating PV Biogas Synchronous Condenser Nuclear Coal Diesel Hydro Biomass CSP Gas Hybrid BESS Wind PV Total	1 CEL 2 1 2 2 6 6 13 10 21 22 31 62 129 160 385 1113 1963	BQ 3 E 1 1 1 1 1 1 3 11 8 18 94 139	Execution 4 C 2 2 6 6 9 14 17 15 36 68 130 165 406 1211 2089	onnected Total 1 - 5 10 8 1 44 66 135 -	3 5 12 13 23 25 44 50 75 131 270 333 853 2484 4326				ers
Power Bl				Synchronous Condenser 0.10 Biogas 0.02			_						70%	

In partnership with

Overview of Legal/Regulatory Framework

Agreement	Parties					
1.Power Purchase Agreement (PPA) - purchase of energy on behalf of DoE	Eskom (SBO) and IPP					
2 Government Support Framework Agreement (GSFA) - government's commitment to financially support Eskom for IPP's energy purchases	Eskom and National Treasury					
3. Direct Agreements (DA) PPA, Use of System - agreements with lenders for stepping-in rights.	Eskom , DPE, DoE, Lenders Agent and IPP					
4 Independent Engineer (IE) Agreement – technical compliance, oversight and prudency on behalf of contracting parties.	Eskom (SBO), IPP & IE					
5 Budget Quote – detailed costing for the engineering scope of work (grid integration)	Eskom (GAU) & IPP					
6 Dx / Tx Connection and Use of System Agreement	Eskom (GAU) & IPP					
7 Self Build Agreement – Option provided for IPP to build contract works (Tx/Dx)	Eskom (GAU) & IPP					
8 Operating Agreement – governs the relationship between Eskom and IPPs on operations (Control and O&M)	Annexure to Dx / Tx CUOSA					
9 Reconciliation Agreement / amendment to Electricity Supply Agreement of a municipality	Eskom (Customer Services) & Municipality					

Thank You

IPP Grid Connection Quotation and Agreement Framework

Saloshnie Naidoo and Humeshnee Veerabadren

19 May 2025

Contractual Framework for Grid Connection

- Cost Estimate Letter (CEL)
- Budget Quote (BQ), Connection and-Use-of System Agreement (Dx/Tx CUOSA), Self-Build Agreement (Dx/Tx SBA), and Direct Agreement (DA)
- Key Considerations for:
 - > CEL
 - > BQ
 - > CUOSA
 - > SBA
 - > DA

- The CEL is not an offer for a contract. It is purely illustrative and in anticipation of a request for a BQ. It is based on engineering assumptions and issued in order to assist in making a decision to proceed to request a BQ
- The CEL is issued subject to conditions prevailing on Eskom's Transmission and/or Distribution Systems. At CEL stage, no capacity on the System is guaranteed or reserved.
- CEL Validity Period is 12 Months, however the sooner an IPP requests the BQ, the quicker Eskom can develop the BQ

Budget Quote (BQ)

- The BQ contains scope of works, price and timelines, for the Connection Works to be constructed to connect the Facility to the Dx/Tx System.
- The BQ is issued as a suite of documents, which include the Forms of CUOSA (Dx/Tx) and, if applicable, the Dx/Tx SBA (partially filled in)
- As soon as the IPP accepts the BQ, the execution versions of the above agreements should be finalized and signed (all within the BQ Acceptance Period).
- The commencement of the construction of the Eskom Connection Works is subject to the terms and conditions set out in BQ read together with the COUSA (Dx/Tx), and if applicable the Dx/Tx SBA.

Budget Quote Conditions

- Unconditional Acceptance of the BQ in the form of Acceptance Letter
- Upfront payment of Connection Charge Estimate
- Furnishing of Connection Charge Guarantee (if opted to pay in instalments) and payment of any instalment due
- Early Termination Guarantee (if applicable)
- CUOSA (Dx/Tx) signed by both parties
- If Dx/Tx SBA applicable, signed by both parties
- If Dx / Tx SBA applicable, then Contract Works / Contestable Works Securities are required
- PPA to be signed (Central Purchasing Agency) (Condition applicable for only Government program)

- All BQ Conditions to be fulfilled within BQ Acceptance Period = 120 Business Days (BQ validity period) for the BQ to become effective.
- If not, the BQ will lapse and be of no force or effect.
- BQ Effective Date is date within BQ Acceptance Period upon which the last of the BQ Conditions have been fulfilled.
- Construction can only commence once the BQ becomes effective.

- IPP and Eskom Milestone Schedules to be completed within 30 days of BQ Effective Date
- Any delay or deviations in achieving the milestones should be notified and agreed to by the Parties in writing

Connection and Use-of-System CUOSA (Dx and Tx)

CUOSA sets out the terms and conditions upon which Eskom and the IPP have agreed to:

- > physically connect the Facility to the Tx/Dx System and,
- to allow the IPP access to and the usage of the Tx/Dx System to export electrical energy from the Facility against the payment(s) by the IPP to Eskom of the applicable Charges

The access to and the usage of the Tx/Dx System is subject to compliance with all the applicable Codes and the Standard for the Interconnection of Embedded Generation

Key Considerations for CUOSA

- The completed Operating Procedure Manual (OPM) Ann B to the CUOSA, is not a requirement for the Execution Versions of these agreements and may be completed afterwards.
- The CUOSA can be signed with the *Form of OPM*.
- IPPs will not at this stage have the names and contact details of staff that must be listed to operate the plant and Eskom must determine the optimum control mode before the OPM can be finalised.
- The OPM must be completed and signed by both parties before the IPP is connected to the Dx System.
- Eskom to issue Operational Notification (ON) in terms of CUOSA and IPP may commence use of the Distribution System.

SBA regulates:

- the construction of the Contract Works and/or the Contestable Works to be undertaken by the IPP, and the Monopoly Works falling under the responsibility of Eskom
- the commissioning of the Contract Works and/or the Contestable Works by the IPP, and on completion of the Contract Works and/or Contestable Works the handover of the plant, facilities, equipment, assets and related designs, material guarantees/ warranties, deeds and other documentation by the IPP to Eskom

- IPP to issue Contract Works/ Contestable Works Completion Certificate after completion of Contract Works/Contestable Works and pre-commissioning
- After commissioning of Contract Works/Contestable Works, Eskom issues its notice of acceptance of Contract Works/Contestable Works Completion Certificate
- Hand-over Date occurs after Contract Works/Contestable Works Acceptance Date on which risk and benefit of Contract Works is transferred to Eskom

 DA is an agreement between Eskom, the IPP and the Financial Institution which gives the Lenders who provide project finance with step-in rights in the event the IPP fails to perform in terms of the project and suite of agreements

Contractual Framework

- Eskom (Distribution & Transmission) operates in a highly regulated environment and has a regulatory obligation not to discriminate between its customers regarding, amongst others, prices and conditions of service, except for objectively justifiable and identifiable differences approved by the Regulator.
- Therefore, Eskom cannot tailor make agreements to suit each IPP's specific needs. All IPPs are contracted on the basis of pre-approved templates
- Grid Connection Agreements (CUOSA), Self-build Agreements (SBA) and Direct Agreements (DA) are standard templates, are non-negotiable, and are in compliance with Eskom's regulatory obligations
- Adhering to all key aspects as discussed in this presentation, will ensure timeous Grid Connection for IPPs

THANK YOU

SAWEA

South African Wind Energy Association

Niveshen Govender Eskom IPP Conference 19 May 2025

SAWEA | AT A GLANCE

WHO WE ARE

SAWEA is a member-based not-forprofit industry association advocating for the accelerated growth of wind energy in South Africa. We aim to promote a better policy environment to sustain a thriving wind industry and support local participation and beneficiation.

KEY FOCUS AREAS

Policy Advocacy

Thought Leadership

Knowledge Hub

Technology Innovation

OUR MEMBERS enei engie Vestas GNORDEX Cacciona **SIEMENS** Gamesa /GLOBELEQ | 2). RENEWARIE ENERGY Sasol **AR ed**F G7 renewable ENERGIES renewables REATILE C AFRICAN CLEAN ENERGY DEVELOPMENTS AE JUUI WKN Windcurrent GOLDWIND ArcelorMittal Scatec voltalia M&D GRI Renewable Industries INFINITY POWER PELEGREEN ENERGY ≫

WIND ENERGY Impact

SAWEA

SA | WIND ENERGY ACHIEVEMENTS

R89.6 billion invested in wind

653 MW from 6 wind projects in construction as of 02 2025

Offtake

Private

38.8 million estimate metric tonnes of CO2 emissions avoided

33% black SA shareholding R898 million SED and ED initiatives

R24 billion 47% of project value spent locally

SAWEA

Sources: DMRE REIPPPP Focus on Wind – Dec 2021 & IPPPP Overview as at 30 Sept 2024, available at https://www.ipp-projects.co.za/Publications

ENERGY POLICY Reforms

Electricity Regulation Act (ERA)

- Electricity Regulation Amendment Bill
- Schedule 2 Amendments
- South African Wholesale Electricity Market (SAWEM)
- Independent Transmission System Operator (TSO)

Integrated Resource Plan (IRP)

- Section 34 Ministerial
 Determinations
- Renewable Energy Independent Power Producer Procurement Programme (REIPPPP)
- Risk Mitigation IPP Procurement Programme (RMIPPPP)
- Battery Energy Storage IPP Power Programme (BESIPPPP)

Grid Connection Frameworks

- Interim Grid Capacity Allocation Rules (IGCAR)
- Batched Connection Generation Framework (BCGF)

Transmission Development Plan (TDP)

- Independent Transmission Projects (ITPs)
- South African Renewable Energy Grid Survey (SAREGS)
- Congestion Curtailment Framework

IRP2019 | VS DRAFT IRP2025

PUBLIC PROCUREMENT | OVERVIEW

SA WIND ENERGY MARKET

SA | WIND ENERGY MARKET

SA | WIND POTENTIAL

Onshore Wind Potential (404GW)

Offshore Wind Potential (901GW) – 49GW Fixed; 852GW Floating

PROJECT DEVELOPMENT | PIPELINE

South African RE Grid Survey 2024

Total 53 096 MW of Wind Projects in SA

Type of Project	South Africa
Pure Wind Projects	28 605 MW
Wind + BESS	15 280 MW
Wind + PV	4 845 MW
Wind + PV + BESS	4 366 MW
Total	53 096 MW

SAWEA

Source: 2024 SA Renewable Energy Grid Survey – July 2024 South African Renewable Energy Grid Survey – Eskom NTCSA

TRANSMISSION DEVELOPMENT PLAN

SAWEA

- Transmission Development Plan Outlines **14000km** of new Transmission lines by **2034**
- To account for **133GW** of Renewable Energy in **SA Renewable Energy Grid Survey** (SAREGS) 2024
- Urgency to resolve grid constraints in wind resource rich regions
- Utilising mechanisms such as **Curtailment** in the short term to unlock **3.4GW in WC and EC**
- Unlock capacity through 13GW prioritised transformer projects by 2030 and 24GW via expedited projects by 2033
- Resource, capacity constraints, CAPEX and servitude acquisition remains an issue
- Utilising **Independent Transmission Projects** (ITPs) to alleviate pressure on NTCSA to provide all Tx infrastructure
- Misalignment between TDP and IRP
- Key Target: ITPs prioritise wind congested regions

INDUSTRY | KEY CHALLENGES

1.

Lack of grid capacity and grid access allocation

Policy reform alignment with implementation in the regulatory environment

3.

Port-to-site logistics in the construction of new wind projects 4.

Creating an investor-friendly local manufacturing environment

Creating a workforce with the necessary training and competencies for the wind industry

GRID CAPACITY AND ACCESS | HURDLES

		CONTEXT / WHY?	WHERE ARE WE	NEXT STEPS
AINTS	Congestion Curtailment	Unlocks > 3 GW of wind projects in WC & EC	Approved by NERSA on 29 April 2025	Implementation framework and timelines required to guide industry
ONSTR/	TDP/ITP	IRP & SAREGS guided figures, aggressive TDP roll out required	ITP Regulations in public comment phase 1164km of ITPs in BW1 Nov 2025	Future ITP BWs to focus on wind constrained areas Align TDP with latest IRP
CITY C	Global Best Practices	Applying global best practice contributes to energy security and sustainability	<i>Global expert participation in SAWEM, potential to workshop across the entire utility value chain</i>	<i>Study tours, MoUs and more industry 'workshopping'</i>
CAPA(Transparent Grid Allocation Queues	Transparency in grid allocation offers prospective generators foresight to be grid ready, offers investors security	Exploring the practicality of an online public portal to inform grid applicants of their queueing position	Commence with implementation and rollout of portals
GRID	IGCAR + BCGF Changes	Appropriate rules for grid allocation paves the way for investor certainty, rapid implementation and quicker roll out of new Gx	IGCAR requires revision. BCGF is under development	Industry feedback and recommendations to be included and changes effected

GRID CONSTRAINTS | INDUSTRY CONSIDERATIONS

Grid Allocation

Non discriminatory access to the grid

 Non-discriminatory grid access regardless of the buyer and consistently applied to all generators in alignment with ERA and the move to a liberal market.

Clear and Consistent Grid Allocation Rules

• Transparent and consistent revocation processes and stakeholder consultation for changes.

Developing a Transparent Grid Access Queue

- Based on 'first ready, first served' principle
- Queue to be publicly visible and actively managed.

Regular Review of the of GCCA

• Annual review with quarterly updates to improve planning certainty.

Consistent Application of Rules

 Requirements should be equally applied to avoid submission delays, hampering consistency.

Congestion Curtailment

- Clarification on how the curtailed capacity be allocated to new projects - Timelines for implementation.
- Impact on existing generators and PPAs.
- Curtailment calculation methodology quantifying compensation and how curtailment will be practically applied.

Investment Support & Guarantees

Compensation for New TX Node Initiators
First IPP should be reimbursed proportionally when others connect.

Resolving Grid Bond & Guarantee Concerns

- Improve Grid Bond mechanism to ensure effectiveness
- Use guarantees to appropriately manage "grid risks", at large, and regulate behaviour.
- Remove potential duplication of guarantees across different project phases
- Create conditions for IPP recourse for delays (outside its control) that impact project timelines.

GRID CONSTRAINTS | INDUSTRY CONSIDERATIONS

CEL & BQ issues

Avoiding and limiting scope creep

- Timelines to get from CEL to BQ.
- Reduce project interdependencies to avoid delays cascading.

Minimising scope and costing differences between CEL and BQ

Creating recourse mechanisms for IPPs

• Lack of recourse for IPPs should Eskom not meet BQ timelines.

Standardising framework for BQ payment schedules

• Consistent approach across all projects recommended.

Procedural Bottlenecks

- Improving client communication and response times
 - Standardising response times and proactive communication with industry/Eskom Customers.
- Improving inter-divisional (Eskom Dx and NTCSA) consultation to align planning and prevent inconsistencies
- Consistency in application of rules by GAU
 and clarification of departmental roles
- Review of project agreements to ensure readiness for market changes

JOIN US FROM 21-23 OCTOBER AT CTICC2 TO FURTHER THE CONVERSATION

WINDABA?)

WINDABA

WINDAR

WINDABA

NIND

WINDABA WINDABA

WINDABA) WINDABA) WINDABA) WINDABA) WINDABA)

South African Wind Energy Association

THANK YOU

Self-Build Project Acceptance Process and Lessons Learnt

Lucy Sangweni PrEng

Chief Engineer: High Voltage Powerlines Engineering

19 May 2025

- ✓ To provide the business with guidelines and tools to use in integrating Self-Build Independent Power Producers (IPP) projects, into the grid.
- ✓ To provide lessons learnt from *actual experiences* relating to Self-Build IPP projects within Eskom.
- Ensure that lessons learnt are Captured, Recorded and Distributed to the organisation, to make effective use of them as a platform for effective controls and efficient mechanisms.
- ✓ To determine what problems occurred and how those problems are to be avoided in the future by not making the same mistakes over and over again.

Project Life Cycle Model

The Concept Phase

- ✓ The project is CRA approved; Gate 1 unlocked
- ✓ Appoint the core project stakeholders with valid professional registration and relevant experience.
- ✓ Eskom to arrange a stakeholder identification meeting (SHIM)
- ✓ Develop viable design alternatives
- ✓ Conduct risk identification for each alternative
- ✓ Submit concept design alternatives to Eskom for checking
- ✓ Prepare and submit for DRT
- ✓ Obtain Eskom DRT approval for the preferred concept design.
- ✓ Provide Job Cost Estimate as per WBS numbers
- Eskom Obtains quotations for monopoly works
- ✓ Provide project management plan
- ✓ Submit Environmental Assessment approval
- ✓ Eskom prepares and submit to IC for DRA gate unlocking.

The Definition Phase

- ✓ The project is DRA approved; Gate 2 unlocked
- Eskom prepares and issues a Budget Quotation (BQ) to the Developer
- ✓ Issue Budget Quote acceptance letter.
- Prepare a detailed final design
- ✓ Submit Health and safety plan
- ✓ Submit environmental management programme
- ✓ Submit project master schedule
- Prepare a detailed risk analysis and quantification
- Compile and submit final design package to Eskom for checking
- Prepare and submit for DRT
- ✓ Obtain final design DRT approval
- ✓ Arrange for FDP handover meeting
- Eskom prepares and submits for ERA gate unlocking

The Execution Phase

- ✓ The project is ERA approved; Gate 3 unlocked
- ✓ Procure Material
- Arrange Construction kick off meeting
- Execute site preparation/establishment
- ✓ Construct the asset
- Manage delivery of the project
- Provide Safety, health and Environment Management
- Conduct Quality Inspections
- Monitor and report progress
- Conduct pre-commissioning testing
- Confirm operational readiness
- ✓ Commission/energise the asset
- ✓ Compile and submit the As-Built data to Eskom
- Eskom prepares and submits for asset handover gate unlocking

The Finalisation Phase

- ✓ The project is Asset Handover Approved; Gate 4 unlocked
- Transfer the asset to Eskom's name
- ✓ Close-Out the project
- Evaluate project performance
- Eskom prepares and submit for FRA gate unlocking
- Disband the project Team

The Post Project Phase

- ✓ The project is FRA Approved; Gate 5 unlocked
- Eskom Operates and Maintain the asset
- ✓ Eskom conduct business solution review
- ✓ Eskom ensures benefits realisation
- Eskom prepares and submits for Benefits Realisation Approval.

Lessons Learnt Summary Table: Network Engineering & Design

Success	Challenges	Risks/Impacts	Recommendations
1. Successfully commissioned multiple IPP projects.		 Diverse expertise among team members raises high levels of learning, morale, and thus increases quality planning. Effective and transparent decision-making. 	i. Maintain
	2. Late appointment of design consultants	 i. Designers are not familiar with the project requirements and are pressured to deliver overnight. ii. Short engineering timelines iii. Sub-standard designs and incomplete designs get delivered iv. Project delays cripple in 	 Appoint design consultants at the initial stage of the project i.e., during project site acquisition. Design consultants must assist in the selection of the feasible site for the project. Environmental approval applications must consist of preliminary design concepts.
	3. EPC contractors appointed at a later stage while design consultants are appointed earlier.	i. Contractor and design consultants not synchronized.	 i. EPC Contractor and Design consultant must be appointed at the same time. ii. Contractors must fully engage design consultants during construction. iii. Design Consultant must provide construction support.
	4. Appointment of inexperienced design consultants	 i. Consultants not abiding to engineering principles and providing substandard professional service. ii. On job training and overworking Eskom engineers. iii. Prolonged design review process 	 Appoint qualified experienced design consultants with professional registrations. Design consultants must carry out their engineering obligations with professionalism, follow engineering standards, and always apply due care when developing designs.

51

Lessons Learnt Summary Table: Network Engineering & Design

Success	Challenges	Risks/Impacts	Recommendations
	5. Changing design consultants before project completion	 i. Important information falls within the cracks due to communication break down and improper handover. ii. New consultants need time to familiarize themselves with the projects iii. New consultant copies the former consultant's designs without understanding their engineering philosophy. iv. Poor engineering designs executed. v. Lack of engineering accountability vi. Project delays and wasteful expenditure. 	 i. Self-Build Agreement requires that design consultants be appointed from concept to construction. ii. Change of design consultants once the project has started is not allowed. giii. Use of another consultant's work is not allowed. iv. Enforce Grid Access Rules.
	6. Change of Scope at DRA stage	 Restarting the project registration process and redesigning resulting in design errors and project delays. Puts more administration work within Eskom 	 i. Freeze project scope once CRA is approved. ii. No design changes to be accepted unless site conditions which were unforeseen during the initial evaluation deems it necessary.
	7. Budget quote unrealistic delivery deadlines and lack of understanding Eskom's project governance process.	 Pressurizing Eskom to have ad-hoc meetings and compromising Eskom's operations. 	 i. Design Consultants to familiarize themselves with ESKOM's Project Life Cycle Model Requirements and seek clarity from Eskom if necessary. ii. Eskom to provide a refresher Self - build project process during the project kickoff meeting (SHIM).

Lessons Learnt Summary Table: Network Engineering & Design

Success	Challenges	Risks/Impacts	Rrecommendations
	8. Resisting to implement Eskom's requirements	 i. Submission of non-compliant designs. ii. Unnecessary disputes iii. Escalated complaints iv. Rogue working relationships v. Project delays. 	 i. Designs must conform to ESKOM's requirements in addition to the national engineering standards. ii. Design consultants must be conversant with the Self-build Agreement and the Design Requirement standard.
	9. Use of non-standard and uncertified designs/components	 i. Non-standard components require certification tests to be performed before the design may be accepted. ii. Testing phase takes long and prolongs the design phase, which contributes to delayed project implementation. 	 i. Use standard components as much as possible. ii. Work closely with Eskom engineers from start to finish, if in doubt, contact Eskom. iii. IPP must handover the project with enough spares for non-standard components.
	10. Not involving Eskom during the Environmental Impact Assessment (EIA) process.	i. Acquiring corridors with EIA conditions that are not viable, which require amendments that lead to prolonged delays.	 i. Consult Eskom DX Land Development as an interested party during the EIA process. ii. Both Eskom Dx and NTCSA representatives should be involved where a project concerns both entities.
	11. Submission of incomplete or irrelevant Environmental Authorization documents.	 i. Delays in reviewing the environmental document, finalizing designs and executing the project. ii. Not adhering to Environmental and Land& Rights requirements. 	i. Handover meeting between the Developer's environmental consultant and Eskom Land Development is required

Lessons Learnt Summary Table: Execution Phase

Success	Challenges	Risk/Impacts	Recommendations
	12. Finalizing designs without Environmental approvals	 i. Environmental requirements are not considered in the design. ii. Re-designing during construction iii. Project Implementation Delays 	 i. Final designs must be submitted after all environmental authorizations have been obtained. ii. Conditionally accepting final designs is not allowed at Eskom. iii. Eskom must reject designs with incomplete environmental approvals.
	13. Constructing powerlines on routes not approved by the EA or Landowner.	 i. Project delays due to retrospective changes in the EA ii. Redesigning during the construction phase. iii. Wasteful expenditures. iv. Possible penalties imposed by the DEA 	 i. No final design shall be accepted by Eskom unless all Environmental approvals and Land &Rights approvals have been obtained. ii. No construction shall commence unless all environmental and Lands & Rights approvals have been obtained. iii. Conditional acceptance of an FDP is not authorized.
	14. Contractors bypassing Design Consultants during construction and seeking design solutions directly from Eskom.	 i. Design Consultant's professional responsibility and accountability fall away. ii. Project Change Request approval gets delayed. 	 Design consultants is responsible for implementing any project change request and remains accountable. Communication protocols for Self-Build projects must be always preserved.

Success	Challenges	Risk/Impacts	Recommendations
	15. Disregarding the approved Final Designs.	 i. Incorrect material used during construction. ii. Constructing assets that do not conform to engineering standards, undermining the safety of Eskom employees, public and the environment. iii. Plant premature failure and operational issues iv. Breach of the Self-Build Agreement v. Violation of the Engineering Profession Act 46 of 2000. 	 i. Contractor must use the approved design document to order material. ii. Design consultant to verify the correctness of the material to be ordered and delivered. iii. Stop the project iv. Enforce the Self- Build Agreement v. Report misconducts. vi. Uphold professional ethics in your conduct.
	16. Short notice outage requests.	i. Delayed project commissioning	 i. Present the expectations of both parties (Eskom and the Developer) at the construction kickoff meeting ii. Monitor the project construction schedule iii. Apply for outages in advance.

Thank you!

Navigating the Just Energy Transition and an evolving energy landscape

Malcolm Van Harte

Agenda

Distribution at a glance

- Current outlook
- Our future
- Eskom Renewable programmes

Eskom Distribution at a glance...

Eskom

MANDATETo power economic growth through the provision of reliable electricity and related energy services to our customers in a sustainable mannerTogethe by distribution		Together, cı by distributiı	VISION ner, creating exceptional value for customers, ributing reliable, secure and sustainable energy and related services		MISSION A profitable organisation by selling electricity and related energy services that are desirable to our customers to deliver the value they seek
				-	
	STRATEGIC OBJECTIVES		GOALS		INITIATIVES / INVESTMENTS
	Pursue financial and operational s	ustainability	Fix Current Business	Dr	rive turnaround plan, address municipal debt, cost- reflective tariffs, collections and losses
	Embrace Customer Centricity		Put the Customer at the Centre	Invest	t in online customer platforms that meet and exceed customer energy service needs efficiently
	Facilitate a competitive future ene	rgy industry	Prepare for Competition	Inve (st in DSO / DET capabilities for Dynamic Network Operations that enables an open energy market
	Modernise our power system		Leverage Technology	Invest	in grid modernisation with smart meters, microgrids, BESS, EVs etc.
	Strive for net zero emissions by 20 increase in sustainable jo)50 with an os	Transition Responsibly	Inves	st in Grid Health for growth in loads and generators

. . .

The Distribution Network will be the heart of the Energy Transition Drivers

- New technology introduce opportunities and risks
- Distributor will be at the epicenter of the Digital & Energy Transformation
- EDI reform is imperative for industry and government to ensure encourage participation and support the efficiency
- The digital revolution in the electricity sector has introduced new technologies, increased data, heightened cybersecurity and privacy risks, and optimized data engineering for supporting digital initiatives.
- Big data and AI in energy management optimize systems and cut unnecessary electricity use.

Eskom

Agenda

- Distribution at a glance
- Current outlook
- Our future
- Eskom Renewable programmes

Industry Survey: Interest in MW per Resource Type (2024)

Eskom

Grid Access Unit Applications Overview

Eskom

Indication of the current Order Book for private and formal bid window applications

Grid Access Unit Applications Power BI Report

Translating the building blocks for the energy transition into action....

Eskom Distribution's Infrastructure Development Plan (Grid Expansion) for next 10 – 20 years for DG/RE integration

Dx Plan aligned to TDP

() Eskom

Agenda

- Distribution at a glance
- Current outlook
- Our future
- Eskom Renewable programmes

The evolving role of the Distribution

The energy transition implies a major change in the operations of the distribution network:

TSO

Traditional power system

- Unidirectional electricity
 flow
- Passive distribution
 network
- Limited share of renewables
- No smart grid or smart home/appliances

Modern power system

- Strong increase of RES installation and smart appliances
- Bi-directional electricity and data flow
- Active distribution network
- Active demand and new demand response capabilities
- Innovative services
- One system approach

DSO

DSOs are a core partner to the key involved stakeholders of the energy transition, specifically with customers:

Within the evolving ESI, Distribution is also undergoing structural changes

PPA - Power Purchase Agreement, DSM – Demand Side Management, VPP – Virtual Power Plant, CSR – Corporate social responsibility, CPA – central purchasing agency,

Agenda

- Distribution at a glance
- Current outlook
- Our future
- Eskom Renewable programmes

MoEE, Eskom & Huawei's proposed FusionSolar Microgrid Solution - Madimbo and Madvete Village

South Africa_Green Digital Village Proposal

Huawei FusionSolar Smart Microgrid Solution - For Green, Resilient Power & Network

Microgrids...building resilience in our grids

- □ Reduce the cost to serve indigent communities
- Microgrids used as an off-grid solution in remote areas (e.g. back up supply for clinics and hospitals)
- Grid-tied microgrids for grid strengthening
- Microgrids as a product offering to customers
 - Huawei Digital Power, South Africa

Solar 229kWp PCS 300kW BESS 566kWh **Pongola PV(25MWp)** will positively impact Distribution power system – voltage, losses reduction, reduce aux charging of BESS & increase QoS

Utility-Scale Solar plant is key To Renewables Integration

- PV plant providing energy, a loss reduction in incoming 132kV lines, loss reduction equates to a R 1.6M saving per year
- Dengola BESS Active Power in MW for aux supply is estimated at 40MW
- PV plant at Pongola SS will positively impact 132kV voltages across the 132kV system.
- Optimistic LCOE.

The Distribution utility scale Battery Storage projects are key to renewable integration into the network

Utility-Scale Storage Key To Renewables Integration

- Incentives will emerge to stimulate battery support for ancillary services and prevent supply curtailment
- Batteries will be developed in conjunction with renewables in isolated power systems for reliability, flexibility and management, and resilience measures
Distribution aims to replace fleet with Electric Vehicles and create public charging infrastructure

Utility-So	cale EV Key To Renewables Integration
, J	EV charging customer offering in the residential sector Launch a large-scale incentive programme to deploy EV charging infrastructure
	EV vehicle fleet to identify opportunities for electrification.
	Make-ready incentive for the electrification of public transport and/or private company fleets
	Distribution will be installing of solar carports in the open parking area for vis

Cluster	FY26	FY27	FY28	Total
Cape Coastal	6	6	6	18
Central East	7	8	9	25
Gauteng	10	15	15	40
Gemma	5	5	5	15
LimLanga	10	16	16	42
DISTRIBUTION	38	50	51	140

itors

Eskom has made a commitment to be an anchor for electric vehicles (EVs) to make a positive contribution towards local market stimulation, and a pilot project for fleet electrification is being executed in Distribution.

Green Attribute Programme - Prosumers which are customers with registered renewable energy (Solar PV, Wind, Hydro etc.) generation facilities are eligible to participate.

- Green Attributes Programme will show your commitment to a sustainable future in reducing greenhouse gas emissions and supporting a cleaner environment Eskom grid services (i.e. net-billing, wheeling, banking etc.).
- Green Attributes are the credits, benefits, emissions reductions attributable to a specific generation facility that can reduce conventional fossil fuel generation carbon emissions.

South Africans can contribute to improving global climate change and ensure environmental benefits for current and future generations.

Gearing up for the future....

Summary

- Distribution is supporting the Eskom Just Energy Transition strategy and embedding the strategy in its customer offerings
- The Electricity Supply Industry is evolving, and Distribution is gearing up for the future...the playing field be different
- Distribution is modernising, refurbishing and innovating the Distribution Grid and a programme will be developed to achieve these objectives
- Distribution will play a significant role in providing access for customers to enjoy a greener future
- Flexible management of DER is key to unlocking the energy transition
- The interface of the DSO with the customer and the TSO is crucial to ensuring a stable and sustainable grid

Thank you

Impact of the ERA Amendment - Market Code

Presented by: Keith Bowen

Date: 19 May 2025

Proposed multi-market model

Company South Africa ™

Day-ahead Market: Supply side and demand side

- Supply curve: price increments offered by generators / traders, bound by technical parameters
- Demand curve: expected demand for consumers / traders / retailers adjusting for price responsive capability
- Price set by marginal generator (after accounting for price responsive demand and technical parameters / constraints)

Transition: Vesting contracts

- Vesting contracts are aimed at curbing the exercise of market power by the generation companies, to promote efficiency and competition in the electricity market for the benefit of consumers.
- With the vesting contracts, generation companies are committed to sell a specified amount of electricity at a specified price
- This removes the incentives for generation companies to exercise their market power by withholding capacity to push up spot prices in the wholesale market.
- Vesting contracts can manage the transition to full competition in electricity and manage the financial risk of market participants.

Wholesale tariff - transition

- Network charges (Tx & Dx)
 - Connection charges
 - Network utilisation (demand and fixed)
 - Losses recovery charge
 - Ancillary services
- Legacy charges
 - Recovery of legacy costs (REIPPP, stranded assets)
 - Potentially a fixed charge
- Subsidy charges
 - Recovery of approved policy subsidies in tariffs, potentially including NPAs
 - Potentially a fixed charge
 - Requires a National Subsidy Framework
- Generation Capacity or Standby charge
 - · Reflects the fixed costs elements of standby for system support
 - Charged as a demand charge on rolling 12-month maximum hour demand
 - Could also have a TOU component
 - Impacted by diversity of usage
- Energy tariff
 - Market price (or time-of-use differentiated tariff for downstream vesting contracts)

Energy (Market)

Proposed structure

South African Wholesale Electricity Market (SAWEM) Market Operator Roadmap

Market launch **Establish platform for Capacity market rules** bilateral hedging approved February 2026 System development for March 2026 platforms **Vesting contracts** September 2025 finalized and approved **NERSA** approval for September 2025 **Agreements for Market Operator license** balancing and market participation finalised September 2025 January 2026 Wholesale tariff rules approved December 2025 Training platform and simulations developed June 2025 **NERSA** approval for Market Code

Eskom

National Transmission Company South Africa ™

July – December 2025

Conclusion

Dx IPP Connection Studies: New RVC Standard for BESS, vRE and Dispatchable Plants

Monde Soni (Chief Engineer, Network Planning)

19 May 2025

Introduction

- Inverter based resource fault contribution
- Unintended consequences that come with IBR "medical side effects"
- Grid forming inverters?? Readiness??
- Context of this presentation:
 - DER
 - IBR
 - Voltage quality
- Previous BESS Bid Windows:
 - Eskom Dx BESS
 - ESIPPPP1
 - ESIPPPP2
 - ESIPPPP3

Eskom		Standard		Distribution
Title: RAPID VOLTAGE CHAI	NGE NG	Unique Identifier:		240-171000460
GENERATORS	5 AND	Alternative Referenc	e Number	: N/A
		Area of Applicability:		Engineering
		Documentation Type	91	Standard
		Revision:		1
		Total Pages:		28
		Next Review Date:		May 2030
		Disclosure Classifica	ition:	Controlled Disclosure
Compiled by	Approve	d by	Authori	zed by
- Millabodi V		10	A	fing
incent Mabodi	Monde S	oni	Mfundi	Songo
ingineer: Network	Chief En	gineer: Network	Senior	Manager: Planning
ate: 06 May 2025	Date: 6	May 2025	Date:	6 May 2025
· ·		· ·	Suppor	ted by SCOT/SC
				t
			Kurt De	dekind
			Plannin	g SC Chairperson
			Deter	

PCM Reference: N/A

SCOT Study Committee Number/Name: Planning Study Committee

VVT vs RVC

VOLTAGE DEVIATION

The voltage deviation is a percentage steady state voltage that results from the application and operation of the DER on the busbars of the network in the study area where the DER is being proposed.

Voltage Deviation =

Bus voltage with DER-Bus voltage no DER Bus voltage no DER X 100%

<u>"N-0" STEADY STATE VOLTAGE VARIATION/PROFILE/REGULATION</u>

Continuous time-series variation of the voltage caused by the DER operation (charging-idle-discharge) in steady state.

'DeltaV_max' (or RVC)

An immediate voltage change that is experienced by the network when the DER changes its power output suddenly/ trips. A phenomenon takes place before voltage correction by OLTC, capacitor banks and voltage regulators takes place.

Source: J. Barros, et al. Rapid Voltage Changes in Power System Networks and their Effect on Flicker

- 'N-1' VOLTAGE DEVIATION
- NETWORK STIFFNESS CRITERION
- SHORT CIRCUIT RATIO (SCR)

II. RVCs in power system networks

RVCs can be caused by switching operations such as motor starting, capacitor banks switching on/off, load switching or transformer tap-changer operations. In addition, they can also be induced by sudden load variations or by power output variations from distributed energy resources such as solar or wind power systems. Fig. 1 shows examples of RVCs associated with motor starting and capacitor switching [2].

The main effect of RVCs is on flicker, but other nonflicker effect as malfunction of control systems acting on voltage angle, braking or accelerating moments from motors or impairment of electronic equipment have been reported in the literature [8].

Source: J. Barros, et al. Rapid Voltage Changes in Power System Networks and their Effect on Flicker

Let us use the correct terminology: RAPID VOLTAGE CHANGE (RVC)

RVC Limits – What Informs Them...

- Rapid Voltage Change
 - Ref: Rapid Voltage Change Limit for Bess Integration Studies for Planning 240-146900837
 - RVC Limit = 5% (General Limit for Dispatchable Plants)
 - 3% RVC limit for vRE
 - Assessed at Points of Connection (POC) and Points of Common Coupling (PCC)
 - RVC to be assessed at BEFS operating power factor under lead, lag and unity
 - Test power factor to be determined by BESF category as per BESF Code
 - Distribution Planning RVC limits for ancillary services support NRS048-2, NRS048-4

4	Table F.3 – Rap	id voltage change emiss	ion limits		
	1	2	3		
Number of changes per hour		∆U _{dyn} (see	/ U n (%) note)		
	r	MV/LV	H∨		
	<i>r</i> < 1	4,00	3,0		
	1 < <i>r</i> ≤ 10	3,00	2,5		
$\frac{10 < r \le 100}{100 < r \le 1000}$		2,00	1,5		
		1,25	1,0		
NOTE Where					
ΔU_{dyn} is as defined in F.3.3.1; and					
U _n is the actual r.m.s. voltage.					

Reserve type	Typical dispatches	RVC Limit MV (%)	RVC Limit HV (%)
Instantaneous	2/day	5	4
Regulating	300/hour	1.25	1.0
Ten minute	3/day	5	4
Supplemental	1/day	5	4

What do these limits mean? That the plant cannot be connected?? NO!

BESS Operation – Regulating Frequency Simplified

Explaining the RVC Limit for Ancillary Service – Regulating Reserve

Hypothetical scenario

- BESS Size = 380MW
- Iterative process to determine MW for Regulating reserve
- MW Capacity compliant to 1% RVC limit (RR) is 105MW
- Thus, 28% of the capacity

Notes:

- Pulse size
- Number of pulses per hour
- Use of BESS capacity
- Net-zero energy over 1 hour

Source: Y. MA, et al. Automatic Generation Control (AGC) Enhancement for Fast-Ramping Resources, CIGRE US National Committee 2019 Grid of the Future Symposium

Eskom

How to Do RVC Test Correctly

- Committed IPP Projects (BQ Accepted) must be active on the Casefile
- OU Case file maintenance is very important ensures similar version for all planners
- In case of BESS, remember to set **operating limits** to (-ve and +ve)
- RE/BESS Capability Curve (for specific category) must be included
- Load flow: Power Factor = 0,95. Local Controller = Constant V
 - LG-HL (Evening Discharge): PV = 0; Load = 1scale (in the surrounding network Mining load excluded) BESS, Wind
 - HG-LL(Midday <u>Charge</u> and <u>Discharge</u>): PV=max; Load = 0.5scale (Mining load excluded) BESS, PV, Wind
 - Record thermal loading and voltage
- RVC: Power Factor = 0.95 (2 scenarios are critical). Local Controller = Constant Q
 - Evening Discharges @ 0.95PF (Mvar Export) BESS, Wind
 - Midday Charges @ 0.95PF (Mvar Import) BESS,
 - Record the highest RVC on the Capacity Confirmation Sheet
 - If RVC exceeds 5, use a Double Circuit line. If this doesn't help, then the project is not compliant

IPPO's Evaluation Price => no room for error

Rapid Voltage Change category	0 ≤ x ≤ 1 %	1 < x ≤ 3%	3% < x ≤ 5%	x > 5%
RVC Factor	1,00	1,20	1,30	Grid Code Non Compliant

Unintended consequences: Building around and blocking access to strategic infrastructure (MTSs and Collectors) – NOT GOOD

- What's coming (Draft IRP)
 - 2000MW of new BESS is proposed

- C.8.4 General Conditions Extracted: CEL General Conditions... The Indicative Cost Estimate is based on the best available assumption information at the time of producing the quote. Eskom Transmission reserves the right to review the recommended solution and provide the customer with a new quote should the input assumptions materially change or new information come to light.
 - 2km setback between Eskom Transmission infrastructure and IPP infrastructure is required.

I.O.N... #not to labour the point

	Walkersv				
Cookhouse	Wind	140		Poseidon	Operational
Waainek	Wind	23.86	RE IPP 2	Poseidon	Operational
Amakhala Emoyeni (Phas	e 1) Eastern Cape Wind	140	RE IPP 2	Poseidon	Operational
Nojoli Wind Farm	Wind	87	RE IPP 3	Poseidon	Operational
Poseidon Golden Valley Wind	Wind	117.72	RE IPP 4	Poseidon	Operational
Nxuba wind Farm	VVind	138.9	RE IPP 4	Poseidon	
ejoli Cookhouse Uitkeer Njeli Wind Farm	648N	IW (Undivers	sified!)		
Golden Valley Cookhouse					
Onder-Smoordnif Golden Valle			1		
Middleton		Poseidon Substation -	NTCSA	a Emoyeni (Phase 1) Eastern Ca	De

Hybrid Plant Sizing: BESS and RE Hybrids

Concept: Size Calculation for Hybrid Plants

Time (s)

Example: Size Calculation for Hybrid Plants

SOME PERSPECTIVES FROM EPRI WORKING GROUPS...

Benchmarking Utility Actions: What is being done today? Part 2: Customer-owned DER

- Adopt latest version of IEEE 1547 to enable more active voltage support from DER.
- Limit voltage fluctuations from intermittent DER using non-unity power factors.
- As part of the DER interconnection process:
 - Include voltage step-change evaluations, where DER output is dropped, and the resulting voltage changes are analyzed.
 - Verify settings and placement of existing voltage regulation equipment, adjusting set points and usage as needed, in addition to installing new regulation equipment to handle increased DER capacity.

Myth: DER will increase the cost of distribution voltage regulation.

- Can changes in regulation deadband or DER settings to ease oversensitive tap changing operations?
- What about 40-200 operations/day, even very high annual tap operations (30,000) should field for 16 – 20 + years?
- What is your failure experience? Do you run to failure?
- Could maintenance or repair help? What's are the cost tradeoffs? Has anyone put a value on voltage quality? What was it?

Concluding Remarks

🚺 🛞 Eskom

- VVT vs RVC: appropriate use of terms
- RVC Standard is OUT
- Must ensure uniform approach throughout!
- Case file management is key Fault levels to align with Tx
- Planning studies (grid impact) are about worst case at the moment anyway...
- RE IPPs are required to have reactive power control too (among others)

Table 1: RVC limits for different Sources				
Generator type	Applicable Limits			
BESS	≤ 5%			
Dispatchable Generators	≤ 5%			
Variable Renewable Energy	≤ 3%			
Hybrid RE and BESS (Single POC)	≤ 5%			
Hybrid RE and BESS (separate POCs)	≤ 5% for BESS, ≤ 3% for vRE			

Thank you