# **AVIFAUNAL IMPACT ASSESSMENT**

mora

FOR THE PROPOSED 2X 400 KV TRANSMISSION LINE FROM ARIES SUBSTATION TO UPINGTON SUBSTATION IN NORTHERN CAPE

September 2021



# COMPLIANCE WITH APPENDIX 6 OF THE 2017 EIA REGULATIONS

| Requirements of Appendix 6 – GN R326 EIA Regulations 7 April 2017                                                                                                                                                                                                                                         | Addressed in the Specialist Report |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| <ul> <li>1. (1) A specialist report prepared in terms of these Regulations must contain-</li> <li>a) details of-</li> <li>i. the specialist who prepared the report; and</li> <li>ii. the expertise of that specialist to compile a specialist report including a curriculum vitae;</li> </ul>            | Appendix A                         |
| <ul> <li>b) a declaration that the specialist is independent in a form as may be<br/>specified by the competent authority;</li> </ul>                                                                                                                                                                     | 1                                  |
| <ul> <li>c) an indication of the scope of, and the purpose for which, the report was<br/>prepared;</li> </ul>                                                                                                                                                                                             | 2                                  |
| (cA) an indication of the quality and age of base data used for thespecialist report:                                                                                                                                                                                                                     | 6                                  |
| ( <u>cB</u> ) a description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change;                                                                                                                                                              | 28                                 |
| <ul> <li>d) the date and season of the site investigation and the relevance of the<br/>season to the outcome of the assessment;</li> </ul>                                                                                                                                                                | 6                                  |
| e) a description of the methodology adopted in preparing the report orcarrying out the specialised process <u>inclusive of equipment and</u> <u>modelling used;</u>                                                                                                                                       | 6-7                                |
| <ul> <li>f) <u>details of an assessment of</u> the specific identified sensitivity of the site<br/>related to the <u>proposed</u> activity <u>or activities</u> and its associatedstructures and<br/>infrastructure, <u>inclusive of a site plan identifying site</u><br/><u>alternatives;</u></li> </ul> | 21-27                              |
| g) an identification of any areas to be avoided, including buffers;                                                                                                                                                                                                                                       | 21-27                              |
| <ul> <li>h) a map superimposing the activity including the associated structures<br/>and infrastructure on the environmental sensitivities of the siteincluding areas to be<br/>avoided, including buffers;</li> </ul>                                                                                    | 21-27                              |
| i) a description of any assumptions made and any uncertainties or gapsin knowledge;                                                                                                                                                                                                                       | 5                                  |
| <ul> <li>a description of the findings and potential implications of such findings on the impact of the<br/>proposed activity <u>or activities</u>;</li> </ul>                                                                                                                                            | 18                                 |
| k) any mitigation measures for inclusion in the EMPr;                                                                                                                                                                                                                                                     | 28                                 |
| I) any conditions for inclusion in the environmental authorisation;                                                                                                                                                                                                                                       | 29                                 |
| m) any monitoring requirements for inclusion in the EMPr or environmental authorisation;                                                                                                                                                                                                                  | 29                                 |
| <ul> <li>n) a reasoned opinion-         <ol> <li>whether the proposed activity, <u>activities</u> or portions thereofshould be<br/>authorised;</li></ol></li></ul>                                                                                                                                        | 29                                 |
| <ul> <li>if the opinion is that the proposed activity, <u>activities</u> or portions thereof should be<br/>authorised, any avoidance, management and mitigation measures that should be<br/>included in the EMPr, and<br/>where applicable, the closure plan;</li> </ul>                                  |                                    |
| <ul> <li>a description of any consultation process that was undertaken during the course of preparing<br/>the specialist report;</li> </ul>                                                                                                                                                               | N/A                                |
| <ul> <li>p) a summary and copies of any comments received during anyconsultation process and<br/>where applicable all responses thereto; and</li> </ul>                                                                                                                                                   | N/A                                |
| q) any other information requested by the competent authority.                                                                                                                                                                                                                                            |                                    |



2) Where a government notice gazetted by the Minister provides for any protocolor minimum information requirement to be applied to a specialist report, the requirements as indicated in such notice will apply.

# **DOCUMENT CONTROL**

| Report Name       | MOLEPO, M. 2021. AVIFAUNAL IMPACT ASSESSMENT<br>FOR THE PROPOSED 2X 400 KV TRANSMISSION LINE FROM<br>ARIES SUBSTATION TO UPINGTON SUBSTATION IN NORTHERN<br>CAPE |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference         | ARIUP_AVI/21                                                                                                                                                     |
| Submitted to      | Vombe Consulting                                                                                                                                                 |
| Author(s)         | Mokgatla Molepo Pr. Sci. Nat 009509                                                                                                                              |
|                   | MSc. Ornithology (Nelson Mandela University)                                                                                                                     |
| Internal Reviewer | Ramokone Mothwa BSc. Hons (University of Limpopo)                                                                                                                |



#### **EXECUTIVE SUMMARY**

In South Africa birds are faced with two major problems when it comes to electricity structures. Those are electrocution and collision.

MORA Ecological Services (Pty) Ltd was appointed by Vombe Consulting to conduct an avifaunal impact assessment for the proposed 2x 400kV Transmission line. The project entails a 2 x 400kV powerline that includes two substations, one named Upington and the other Aries both located outside Upington in Northern Cape.

More than 500 bird species are known to occur in this province. The birds of greatest potential relevance and importance with regard to possible impacts of the powerline transmission and associated infrastructure are likely to be local populations of endemic passerines, resident or migrant large bodied raptors, waterbirds and other terrestrial birds.

The terms of reference for the project were as follow;

- Describe the current state of avifauna in the study area, outlining important characteristics which may be influenced by the proposed infrastructure, or which may influence the proposed infrastructure during construction and operation;
- Identify Red Data species that may be potentially affected by the proposed project;
- Identify potential impacts on the avifauna that may arise from the proposed development;
- Undertake an impact assessment as specified in the NEMA 2014 regulations;
- Provide guidance on where the proposed transmission powerline and associated infrastructure should be situated to have the least impact on avifauna;
- Delineate where necessary any obvious, highly sensitive, no-go areas to be avoided during the construction of the transmission powerline and associated infrastructure; and
- Recommend practicable mitigation measures to minimize or eliminate negative impacts and or enhance potential project benefits.

The current state of avifauna in the study area was described, outlining important characteristics which may be influenced by the proposed infrastructure or which may influence the proposed infrastructure during construction and operation.



Potential impacts that have been identified during the study include bird collision, electrocution, and loss of habitats. Mitigation measures to safeguard the avifauna around the area were provided.

Sensitive avifaunal areas of the site were identified and discussed in the report. These areas were found to be associated with the Orange River and several drainage lines along the transmission powerline route.

Overall, the avifaunal sensitivity of the study area was regarded as Low-Medium around majority of the habitats. With the exception of the Orange River crossing. With proper mitigations as recommended in this report, impacts can be reduced to Low.

| Impact         | Phase              | Without<br>mitigation | With mitigation |
|----------------|--------------------|-----------------------|-----------------|
| Electrocutions | Construction Phase | L                     | L               |
|                | Operation Phase    | М                     | L               |
| Collisions     | Construction Phase | М                     | L               |
|                | Operation Phase    | Н                     | L               |
| Habitat loss   | Construction Phase | М                     | L               |
|                | Operation Phase    | L                     | L               |

The impacts associated with the proposed project are summarised below.

From the desktop and fieldwork data and analysis, it was concluded that the proposed transmission powerline and associated infrastructure can proceed, provided that the recommendations from the specialist are adhered to.



# TABLE OF CONTENTS

| COMPLIANCE WITH APPENDIX 6 OF THE 2017 EIA REGULATIONS         |
|----------------------------------------------------------------|
| DOCUMENT CONTROLii                                             |
| EXECUTIVE SUMMARY                                              |
| List of figuresv                                               |
| List of tablesvi                                               |
| 1. DECLARATION OF INDEPENDENCE                                 |
| INDEMNITY1                                                     |
| 2. TERMS OF REFERENCES                                         |
| 3. INTRODUCTION AND PROJECT LOCATION                           |
| Assumptions, Limitations, uncertainties and gap analysis       |
| Study area6                                                    |
| Data Collection                                                |
| Desktop6                                                       |
| Fieldwork6                                                     |
| Vegetation of the study site7                                  |
| 4. RELEVANT LEGISLATION                                        |
| 5. IMPORTANT BIRD & BIODIVERSITY AREAS (IBAs)                  |
| 6. RESULTS                                                     |
| Avifaunal Sensitivity                                          |
| POTENTIAL IMPACTS AND MITIGATION MEASURES                      |
| 7. CONCLUSION AND SUMMARY OF RECOMMENDATIONS                   |
| 8. REFERENCES                                                  |
| 9. APPENDIX A: Short CV/Summary of Expertise – Mokgatla Molepo |
| 10. APPENDIX B: Selected SABAP 2 species list                  |

# List of figures

| Figure 1: Location of the study site.                                        | 4  |
|------------------------------------------------------------------------------|----|
| Figure 2: Vegetation map of the study site                                   | 8  |
| Figure 3: Important Bird and Biodiversity Areas in relation to the powerline | 14 |
| Figure 4: Several waterbodies observed around the study areas                | 15 |



| Figure 5: Typical vegetation along the powerline route.        | 16 |
|----------------------------------------------------------------|----|
| Figure 6: Some of the birds observed along the powerline route | 19 |
| Figure 7: Avifaunal Sensitivity A.                             | 21 |
| Figure 8: Avifaunal Sensitivity B.                             | 22 |
| Figure 9: Avifaunal Sensitivity C.                             | 23 |

# List of tables

| Table 1: Non-threatened terre   | strial and waterbird species recorded including | J Red Data bird |
|---------------------------------|-------------------------------------------------|-----------------|
| species that are likely to occu | r within the impact area including              |                 |



#### 1. DECLARATION OF INDEPENDENCE

I, Mokgatla Molepo, in my capacity as a specialist consultant, hereby declare that I:

- Act/acted as an independent specialist to Vombe Consulting for this project.
- Do not have any personal, business or financial interest in the project expect for financial remuneration for specialist investigations completed in a professional capacity as specified by the Environmental Impact Assessment Regulations, 2017.
- Will not be affected by the outcome of the environmental process, of which this report forms part of.
- Do not have any influence over the decisions made by the governing authorities.
- Do not object to or endorse the proposed developments but aim to present facts and my best scientific and professional opinion with regard to the impacts of the development.
- Undertake to disclose to the relevant authorities any information that has or may have the potential to influence its decision or the objectivity of any report, plan or document required in terms of the Environmental Impact Assessment Regulations, 2017.

#### INDEMNITY

- This report is based on survey and assessment techniques which are limited by time and budgetary constraints relevant to the type and level of investigation undertaken.
- This report is based on a desktop investigation using available information and data related to the site to be affected, in situ fieldwork, surveys and assessments and the specialists best scientific and professional knowledge.
- The Precautionary Principle has been applied throughout this investigation.
- The findings, results, observations, conclusions and recommendations given in this report are based on the specialist's best scientific and professional knowledge as well as information available at the time of study.
- Additional information may become known or available during a later stage of the process for which no allowance could have been made at the time of this report.
- The specialist reserves the right to modify this report, recommendations and conclusions at any stage should additional information become available.
- Information and recommendations in this report cannot be applied to any other area without proper investigation.
- This report, in its entirety or any portion thereof, may not be altered in any manner or form or for any purpose without the specific and written consent of the specialist as specified above.
- Acceptance of this report, in any physical or digital form, serves to confirm acknowledgement of these terms and liabilities.

Mokgatla Molepo 009509.

20 September 2021



# 2. TERMS OF REFERENCES

The terms of reference for the project were as follow;

- Describe the current state of avifauna in the study area, outlining important characteristics which may be influenced by the proposed infrastructure or which may influence the proposed infrastructure during construction and operation;
- Identify Red Data species that may be potentially affected by the proposed project;
- Identify potential impacts on the avifauna that may arise from the proposed development;
- Provide guidance on where the proposed transmission powerline and associated infrastructure should be situated to have the least impact on avifauna;
- Delineate where necessary any obvious, highly sensitive, no-go areas to be avoided during the construction of the transmission powerline and associated infrastructure;
- Recommend practicable mitigation measures to minimize or eliminate negative impacts and or enhance potential project benefits.



# 3. INTRODUCTION AND PROJECT LOCATION

Electricity supply is an essential service for South Africa's society and economy. In South Africa birds are faced with several problems when it comes to electricity structures. Those are electrocution and collision.

When it comes to interaction of birds with powerlines, birds are categorised as follows:

- Streamers
- Collision
- Electrocution
- Insulator Pollution
- Nesting

*Electrocution*: Birds perching on towers/conducting cables are killed if they cause short circuits.

*Collision*: In flight, birds can collide into the powerlines because powerlines are difficult to perceive as obstacles.

The risk of collisions in majority of the birds is increased by body size and limited manoeuvrability (McCann. 2005).

MORA Ecological Services (Pty) Ltd were appointed to conduct an avifaunal impact assessment for the proposed deviation of a 2x 400kV transmission powerline construction namely, Aries to Upington (Fig. 1).

This assessment was expected to provide a detailed description of the local avifauna and current ecological status of the proposed site and provide appropriate management recommendations.





Figure 1: Location of the study site.

# Assumptions, Limitations, uncertainties and gap analysis

- It is assumed that third party information (obtained from government, academic institutions and non-governmental organisations) is accurate and true;
- The study area was previously poorly surveyed prior to the baseline survey, as a result, species richness information is incomplete;
- The findings, results, observations, conclusions and recommendations provided in this report are based on the author's best scientific and professional knowledge as well as available information regarding the perceived impacts on wetland and terrestrial environment;
- The study was conducted at a time when palearctic migrants have not arrived at their final wintering grounds;
- Limited time in the field means that important components of the local avifauna (i.e.nest sites or localised areas of key habitats for rare or threatened species) could have been missed;
- The site visits as well as personal experience of the avifauna of the area and of similar species in different parts of South Africa, through the specialist's experience working across the country, goes some way to remedying any knowledge deficiencies.

MORA and its employees do not accept any responsibility for conclusions, suggestions, limitations and recommendations made in good faith, based on the information presented to them, obtained from the surveys or requests made to them at the time of this report.

# SURVEY METHODS AND REPORTING

#### Study area

The proposed transmission powerline falls within Northern Cape. It starts north of Aries Substation outside Kenhardt to Upington Substation.

#### Climate

The climate in Northern Cape varies according to regions, and the prevalent one around the study area is Hot semi-arid climate.

#### Birdlife

South Africa has recorded approximately 856 bird species, of which 68 are endemic or near endemic and 132 are Threatened or Near Threatened (Taylor & Peacock, 2018).

Northern Cape has recorded approximately 557 species including 28 species which are globally threatened (Avibase)

#### **Data Collection**

#### Desktop

Prior to commencement of the fieldwork, desktop data was collected from the following:

Southern African Bird Atlas Project 2 (SABAP2).

Coordinated Waterbird Counts (CWAC) which has data of more than 400 wetlands countrywide. None of the transmission powerline nor substation is located near CWAC site.

SANBI BGIS for vegetation types (Mucina and Rutherford, 2006).

#### Fieldwork

The site surveys were conducted in August 2021. Avifaunal surveys were conducted by a combination of walk transects, drive transects and point count method. A 12 minute point count method on a 20 m radius was used (Macchi & Grau 2012). For drive transects, observers used existing gravel roads where possible. For walk transects, observers walked along selected sections of the proposed transmission powerline.

Avifaunal micro habitats were identified using both ornithological and ecological experience.

No formal consultation process was conducted as part of this faunal study as it was not deemed necessary at the time of the study.

#### Vegetation of the study site

While broad-scale vegetation patterns influence the distribution and abundance of bird species holistically, it is the fine-scale vegetation patterns and various avian microhabitats in an area that determine local avifauna populations. While this is an avifaunal specialist report, vegetation and micro habitats are very important in determining avifaunal abundances and likelihood of occurrences.

The proposed transmission line runs through four vegetation types as described by Mucina & Rutherford (2006). These vegetation types are displayed below (Fig. 2).



Figure 2: Vegetation map of the study site.

# 4. RELEVANT LEGISLATION

# National Environmental Management: Biodiversity Act (Act No. 10 of 2004) (NEMBA).

NEMBA provides for the management and conservation of biological diversity and components thereof; the use of indigenous biological resources in a sustainable manner; the fair and equitable sharing of benefits rising from bio-prospecting of biological resources; and cooperative governance in biodiversity management and conservation within the framework of NEMA.

## CMS

The Convention on the Conservation of Migratory Species of Wild Animals (also known as CMS or Bonn Convention) aims to conserve terrestrial, aquatic and avian migratory species throughout their range. It is an intergovernmental treaty, concluded under the aegis of the United Nations Environment Programme, concerned 22 with the conservation of wildlife and habitats on a global scale. Since the Convention's entry into force, its membership has grown steadily to include 117 (as of 1 June 2012) Parties from Africa, Central and South America, Asia, Europe and Oceania. South Africa is a signatory to this convention.

#### AEWA

The African-Eurasian Waterbird Agreement. The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) is the largest of its kind developed so far under the CMS. The AEWA covers 255 species of birds ecologically dependent on wetlands for at least part of their annual cycle, including many species of divers, grebes, pelicans, cormorants, herons, storks, rails, ibises, spoonbills, flamingos, ducks, swans, geese, cranes, waders, gulls, terns, tropic birds, auks, frigate birds and even the South African penguin. The agreement covers 119 countries and the European Union (EU) from Europe, parts of Asia and Canada, the Middle East and Africa.

# 5. IMPORTANT BIRD & BIODIVERSITY AREAS (IBAs)

BirdLife's Important Bird and Biodiversity Area concept has been developed and applied for over 30 years. Considerable effort has been devoted to refining and agreeing a set of simple but robust criteria that can be applied worldwide.

Initially, IBAs were identified only for terrestrial and freshwater environments, but over the past decade, the IBA process and method has been adapted and applied in the marine

realm. In 2012, BirdLife published the first Marine IBA "e-atlas", with details of 3,000 IBAs in coastal and territorial waters as well as on the high seas.

Important Bird and Biodiversity Areas (IBAs) are:

- Places of international significance for the conservation of birds and other biodiversity
- Recognised world-wide as practical tools for conservation.
- Distinct areas amenable to practical conservation action.
- Identified using robust, standardised criteria.
- Sites that together form part of a wider integrated approach to the conservation and sustainable use of the natural environment.

There is no IBA in proximity of the proposed transmission line. The nearest IBA is located approximately 30 km west of the transmission line (Fig. 3).

#### Augrabies Falls National Park

#### Site description

The Augrabies Falls National Park is situated on the vast Bushmanland peneplain where it straddles the Orange River, c. 35 km north-west of Kakamas. Before reaching the falls, the Orange River flows through a wide, flat valley where mainly commercial viticulture farming is practised. After cascading down the 56-m-high falls it meanders down a deep, narrow gorge for 18 km before reaching the level surface of the surrounding plains at Blouputs, where viticulture continues.

The largest section of the park is flat with low relief and scattered rocky hills. Large rounded granite domes and black granulite hills provide a variety of habitats. Ephemeral riverbeds and drainage lines are sandy, gravelly and dry and are mostly very shallow; some, however, are deeper with rocky sides and broad beds. The very low rainfall is sporadic and unpredictable, and this IBA is prone to long periods of drought.

The IBA belongs to the Bushmanland Bioregion, and lies within the Nama Karoo Biome. The ecosystem status for most of the area is Least Threatened with one vegetation type, Lower Gariep Alluvial, classified as Endangered. The remaining vegetation types are Bushmanland Arid Grassland, Kalahari Karroid Shrubland, Blouputs Karroid Thornveld and Lower Gariep Broken Veld. Very little transformation has taken place.

## Birds

Despite having a low species diversity, this IBA is important for many biome-restricted assemblage birds and a host of other arid-zone species. A total of 192 species has been recorded in the park. The total number of species recorded during SABAP2 is 186, with the pentads having been fairly well atlased at the time the IBA was assessed.

The lowland plains support large wide-ranging species such as Martial Eagle *Polemaetus bellicosus*, Kori Bustard *Ardeotis kori*, Ludwig's Bustard *Neotis ludwigii* and Karoo Korhaan *Eupodotis vigorsii*. Karoo Chat *Cercomela schlegelii*, Tractrac Chat *C. tractrac*, Sickle-winged Chat *C. sinuata* and Rufous-eared Warbler *Malcorus pectoralis* frequent the plains. Black-headed Canary *Serinus alario* is common where there is seed and water.

Large trees, including camel thorn *Vachellia* (formerly *Acacia*) *erioloba* and quiver tree *Aloe dichotoma*, occasionally support Sociable Weaver *Philetairus socius* nests, with the associated Pygmy Falcon *Polihierax semitorquatus* frequently present. In very wet years, large numbers of nomadic Black-eared Sparrow-lark *Eremopterix australis* and Stark's Lark *Spizocorys starki* move in for a brief period and breed. Verreauxs' Eagle *Aquila verreauxii*, Peregrine Falcon *Falco peregrinus*, Black Stork *Ciconia nigra*, Pale-winged Starling *Onychognathus nabouroup*, Bradfield's Swift *Apus bradfieldi* and Cinnamon-breasted Warbler *Euryptila subcinnamomea* occur in the river's steep gorges and associated rocky kloofs.

The belts of riparian Vachellia (formerly Acacia) karroo woodland hold Kalahari Scrub Robin Erythropygia paena, Namaqua Warbler Phragmacia substriata, Layard's Tit-Babbler Sylvia layardi, Marico Flycatcher Bradornis mariquensis, Scaly-feathered Finch Sporopipes squamifrons and Rosy-faced Lovebird Agapornis roseicollis. Waterbirds are associated with the river, although no globally important populations are supported.

#### **IBA trigger species**

Globally threatened birds are Martial Eagle, Kori Bustard and Ludwig's Bustard. Regionally threatened birds are Karoo Korhaan, Lanner Falcon *Falco biarmicus* and breeding Verreauxs' Eagle (4 to 6 birds; N du Plessis *pers. comm.*). Biome-restricted species are Stark's Lark, Karoo Long-billed Lark *Certhilauda subcoronata*, Kalahari Scrub Robin, Karoo Chat, Tractrac Chat, Sickle-winged Chat, Cinnamon-breasted Warbler, Namaqua Warbler, Layard's Tit-Babbler, Sociable Weaver, Pale-winged Starling and Black-headed Canary.

#### Other biodiversity

This IBA conserves populations of various near-endemic and endemic species. These include the distinctive quiver tree, the endemic marbled rubber frog *Phrynomantis annectens* and Broadley's flat lizard *Platysaurus broadleyi*. The healthy population of Hartmann's mountain zebra *Equus zebra hartmannae* (Vulnerable) is closely monitored.

After being re-introduced to the AFNP in 1985, black rhinos *Diceros bicornis* (Critically Endangered) were relocated to the Addo Elephant National Park in 1998. There are plans to re-introduce a small population again soon.

#### **Conservation issues**

#### Threats

This IBA is well managed, with far fewer threats than the surrounding landscape. Overgrazing of the surrounding farmland is, however, a threat. It results in degradation of habitat outside the park, potentially reducing populations of wide-ranging species such as bustards, which depend on large foraging areas that fall mostly outside the IBA's borders. Invasive alien plants are a continuing threat, especially in the riparian vegetation zone. Three invasive species are being actively controlled.

Historically, poisons were used extensively in the region to control damage-causing predators, such as black-backed jackal Canis mesomelas and caracal Caracal caracal. Poison use may be continuing in the surrounding livestock farming areas, but is likely to be at a lower level than previously. The potential impacts of poison use on several threatened raptor species has not been quantified.

Renewable energy developments, including hydropower, are a new threat. There are two approved applications to develop solar energy facilities on neighbouring farms at the southern boundary of this IBA. Possible impacts on birds are loss of habitat, breeding disturbance during construction, collisions with the reflective solar panels and, in the case of concentrated solar plants with power towers, solar flux injuries. Existing and new power lines from substations to renewable energy facilities are significant threats to trigger species.

The Nama Karoo and Succulent Karoo Biomes, which hold 76% of southern Africa's endemic birds, are under serious threat from climate change. Restricted-range and biome-restricted species tend to show greater sensitivity to climate change, arising from their comparatively narrow climatic niches. Large, mainly resident species dependent on rainfall are also more vulnerable to climate change. This would include the slow-breeding Verreauxs' Eagle and Martial Eagle, which also exhibit extended parental care.

Temperatures in most South African parks have increased between 1 and 1.5 °C over the past 50 years.

## Conservation action

This IBA is a formally protected national park, established in 1966. It is an important tourist attraction, drawing up to 89 000 visitors per annum. The highest numbers were recorded during recent floods in 2010 and 2011.

Land claims on two property portions are still in process, and discussions are ongoing to find mutually beneficial co-management arrangements. Negotiations are in progress to contractually include private land in the western section of the park, which will increase its extent by approximately 5 392 ha.

Because of the threat of climate change to this region's biodiversity in the coming decades, it is critical to maintain the ability of species to migrate to new locations in response to changing conditions across the landscape. The effective conservation of much of the planet's biodiversity under climate change will depend upon rigorously defined networks of protected areas displaying functional connectivity at regional and continental scales.

The National Protected Areas Expansion Strategy priority areas are included in the buffer zone that surrounds the park. The priority expansion footprint of the buffer zone just reaches the eastern extent of the Mattheus-Gat Conservation Area IBA (SA034). Privately owned land in this area linking the two IBAs should be considered for declaration as protected environments under the Biodiversity Stewardship programme.



Figure 3: Important Bird and Biodiversity Areas in relation to the powerline.

#### **Bird micro habitats**

In addition to the description of vegetation, it is important to understand the habitats available to birds at a smaller spatial scale, i.e. micro habitats. Micro habitats are shaped by factors other than vegetation, such as topography, land use, food sources and manmade factors. Investigation of this study area revealed the following bird micro habitats.

#### Waterbodies:

Waterbodies have become important attractants to various bird species in the South African landscape. Various waterfowl, such as Egyptian goose, Spur-winged goose and numerous duck species, are likely to frequent these areas and are vulnerable to collision with power lines. More importantly, Flamingos are likely use these areas as stop over points while moving between larger water bodies. Various Storks may also frequent these water bodies. There is a pond and drainage lines in the study area which are of great importance to avifauna.



Figure 4: Several waterbodies observed around the study area.

#### Vegetation:

The powerline route is dominated by Bushveld and Grassland vegetation with croplands in between. This type of vegetation is likely to support a variety of bird species. Furthermore, low shrubs will mostly be important to physically smaller bird species to escape heat during the day. Majority of the trees are less likely to interact directly with the proposed powerline. They may, however, provide perching, roosting and nesting habitat for various raptor species, as well as larger birds such as francolins, Guineafowl, Herons and Hadeda Ibises.



Figure 5: Typical vegetation along the powerline route.

# 6. RESULTS

Birds are regarded as one of the most useful bioindicators, and they have been used extensively as models to determine ecosystem function (see review Koskimies 1989; Potts et al. 2014; Bregman et al. 2016).

More than 500 bird species are known to occur in the province referred to as the study area. Generally, the areas along the proposed transmission powerline are of **Low Sensitivity** due to anthropogenic activities in majority of the area. Furthermore, very few Species of Conservation Concern were observed, and SABPA2 also has few of the abovementioned. Below is the table containing species recorded on site during the survey.

Table 1: Non-threatened terrestrial and waterbird species recorded including Red Data bird species that are likely to occur within the impact area including.

| Species                    | Common Name                     | IUCN<br>Conservation<br>Status | Preferred habitat                          |  |
|----------------------------|---------------------------------|--------------------------------|--------------------------------------------|--|
| Phoenicopterus roseus      | Greater Flamingo                | NT                             | Wetlands                                   |  |
| Ciconia nigra              | Black Stork                     | VU                             | Wetlands                                   |  |
| Polemaetus bellicosus      | Martial Eagle                   | EN                             | Natural veld                               |  |
| Falco biarmicus            | Lanner Falcon                   | VU                             | Natural veld and Farmland                  |  |
| Falco rupicoloides         | *Greater Kestrel                | LC                             | Natural veld and Farmland                  |  |
| Oena capensis              | *Namaqua Dove                   | LC                             | Natural veld, Semi-arid and Farmland       |  |
| Crithagra flaviventris     | *Yellow Canary                  | LC                             | Open shrubland, Grassland                  |  |
| Corvus capensis            | *Cape Crow                      | LC                             | Grassland, Open Savanna, and Farmland      |  |
| Sylvia subcoerulea         | *Chestnut-vented<br>Warbler     | LC                             | Semi-arid woodlands and shrubland          |  |
| Colius colius              | *White-backed<br>Mousebird      | LC                             | Semi-arid and arid                         |  |
| Lamprotornis nitens        | *Cape Starling                  | LC                             | Savanna, Farmland, Riverine<br>bush        |  |
| Motacilla capensis         | *Cape Wagtail                   | LC                             | Generalist                                 |  |
| Turdus litsitsirupa        | *Groundscraper Thrush           | LC                             | Open woodland                              |  |
| Cercotrichas<br>coryphoeus | *Karoo Scrub Robin              | LC                             | Drainage line woodland and Bushveld clumps |  |
| Petrochelidon spilodera    | *South African Cliff<br>Swallow | LC                             | Grassland and Savanna                      |  |

| Chrysococcyx caprius     | Diederik Cuckoo            | LC | Savanna, Semi-arid shrubland, Drainage lines |  |  |
|--------------------------|----------------------------|----|----------------------------------------------|--|--|
| Himantopus Himantopus    | *Black-winged Stilt        | LC | Wetlands and Sewage dams                     |  |  |
| Tricholama leucomelas    | *Acacia Pied Barbet        | LC | Semi-arid Savanna                            |  |  |
| Ardea goliath            | *Goliath Heron             | LC | Shallow waterbodies                          |  |  |
| Tadorna cana             | *South African<br>Shelduck | LC | Wetlands                                     |  |  |
| Threskiornis aethiopicus | African Sacred Ibis        | LC | Wetlands, Farmland, Landfills and Grasslands |  |  |
| Bubulcus ibis            | *Western Cattle Egret      | LC | Grassland and Farmland                       |  |  |
| Eupodotis vigorsi        | Karoo Korhaan              | LC | Shrubland                                    |  |  |
| Afrotis afraoides        | Northern Black Korhaan     | LC | Grassland, Bushveld and Farmland             |  |  |
| Alopochen aegyptiaca     | *Egyptian Goose            | LC | Wetlands and Farmland                        |  |  |
| Plectropterus gambensis  | *Spur-winged Goose         | LC | Wetlands and Farmland                        |  |  |
| Numida meleagris         | *Helmeted Guineafowl       | LC | Generalist                                   |  |  |
| Sagittarius serpentarius | Secretarybird              | VU | Open Grassland with scattered trees          |  |  |
| Struthio camelus         | *Common Ostrich            | LC | Open Arid Savanna, Shrubland and Desert      |  |  |
|                          |                            |    |                                              |  |  |

\*=Recorded

# Sociable Weaver nest African Fish Eagle Ant Eating Chat White Browed Sparrow Weaver nest Sickle-winged Chat Karoo Korhaan

Figure 6: Some of the birds observed along the powerline route.

# **Avifaunal Sensitivity**

The proposed transmission powerline and associated infrastructures were checked for avifaunal sensitivity. During the survey it was observed that avifaunal sensitive sites were mainly associated with rivers, drainage lines and ridge lines.

#### Upington Substation to Loxtonvale Deviation:

This section was observed to be of Low Avifaunal Sensitivity due to its distance away from the Orange River (see Fig. 7).

#### Kakamas Orange River Deviation:

This section was observed to be of Low-Medium and High Avifaunal Sensitivity due to the ridge line and Orange River and a canal. Presence of rivers attract migrant and large bodied waterbirds (see Fig. 8).

#### Uitsig to Aries Substation Deviation:

This section was observed to be of Low-Medium Avifaunal Sensitivity due to the presence several tributaries of Graafwaters River (see Fig. 9). Species of Conservation Concern such as Karoo Korhaan were observed along this section.



Figure 7: Avifaunal Sensitivity A.



Figure 8: Avifaunal Sensitivity B.



Figure 9: Avifaunal Sensitivity C.

# POTENTIAL IMPACTS AND MITIGATION MEASURES

- Bird mortality through collision and electrocution.
- Loss of nesting and foraging grounds for birds.
- Disturbance and displacement of local endemic passerines from nesting and/or foraging areas by construction, operation and maintenance.

#### Impact 1: Electrocutions

| Potential impact description: Electrocution of birds when perched on towers                                       |          |              |               |          |              |             |            |
|-------------------------------------------------------------------------------------------------------------------|----------|--------------|---------------|----------|--------------|-------------|------------|
|                                                                                                                   | Extent   | Duration     | Intensity     | Status   | Significance | Probability | Confidence |
| Without                                                                                                           | L        | М            | М             | Negative | Μ            | М           | Н          |
| Mitigation                                                                                                        |          |              |               | _        |              |             |            |
| With Mitigation                                                                                                   | L        | М            | L             | Negative | Μ            | М           | Н          |
| Can the ir                                                                                                        | npact be | No.          |               |          |              |             |            |
| reversed?                                                                                                         |          |              |               |          |              |             |            |
| Will impact caus                                                                                                  | е        | Yes. Birds i | may be killed |          |              |             |            |
| irreplaceable los                                                                                                 | s or     |              |               |          |              |             |            |
| resources?                                                                                                        |          |              |               |          |              |             |            |
| Can impact be a                                                                                                   | voided,  | Not require  | d             |          |              |             |            |
| managed or miti                                                                                                   | gated?   |              |               |          |              |             |            |
| Mitigation measu                                                                                                  | ures:    |              |               |          |              |             |            |
| <ul> <li>No mitigations are required as the risk of birds being electrocuted is considered negligible.</li> </ul> |          |              |               |          |              |             |            |
|                                                                                                                   |          |              |               |          |              |             |            |
| Cumulative impacts: Impacts could be very low if the installation follows Eskom approved guidelines.              |          |              |               |          |              |             |            |
| <b>Residual impacts:</b> Once the transmission lines are decommissioned, the impacts would cease.                 |          |              |               |          |              |             |            |

# Impact 2: Collisions

| Potential impact description: Collision of birds with wires.                                             |                     |                                                               |           |          |              |             |            |  |
|----------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------|-----------|----------|--------------|-------------|------------|--|
|                                                                                                          | Extent              | Duration                                                      | Intensity | Status   | Significance | Probability | Confidence |  |
| Without<br>Mitigation                                                                                    | L                   | Н                                                             | Н         | Negative | M            | Н           | Н          |  |
| With<br>Mitigation                                                                                       | L                   | Н                                                             | L         | Negative | L            | М           | Н          |  |
| Can the impact be This impact can be prevented through appropriated mitigation measures reversed?        |                     |                                                               |           |          |              |             |            |  |
| Will impact<br>irreplaceabl<br>resources?                                                                | cause<br>le loss or | Yes. Species of Conservation Concern are likely to be killed. |           |          |              |             |            |  |
| Can impact be Yes.<br>avoided,<br>managed or<br>mitigated?                                               |                     |                                                               |           |          |              |             |            |  |
| Mitigation measures:                                                                                     |                     |                                                               |           |          |              |             |            |  |
| Bird Flight Diverters should be installed on selected sections of the powerlines (i.e., Where it crosses |                     |                                                               |           |          |              |             |            |  |

drainage lines, waterbodies).

**Cumulative impacts:** Impacts could be substantial if contractors do not adhere to Eskom approved line marking guidelines.

**Residual impacts:** Although birds that would have been killed by the powerlines can be considered as residual, the impacts would cease once the transmission lines are decommissioned.

#### Impact 3: Habitat Destruction/ Loss

| Potential impact description: The construction of the transmission powerline and associated infrastructure will                                                                                                            |                                                                                                                                              |                |               |                 |                     |                    |                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-----------------|---------------------|--------------------|------------------|--|
| result in habitat loss                                                                                                                                                                                                     |                                                                                                                                              |                |               |                 |                     |                    |                  |  |
|                                                                                                                                                                                                                            | Extent                                                                                                                                       | Duration       | Intensity     | Status          | Significance        | Probability        | Confidence       |  |
| Without<br>Mitigation                                                                                                                                                                                                      | L                                                                                                                                            | М              | М             | Negative        | Μ                   | Н                  | Н                |  |
| With<br>Mitigation                                                                                                                                                                                                         | L                                                                                                                                            | М              | L             | Negative        | М                   | М                  | н                |  |
| Can the imp<br>reversed?                                                                                                                                                                                                   | Can the impact be No, once vegetation is cleared, it would be possible to return it to its previous state.                                   |                |               |                 |                     |                    |                  |  |
| Will impact cau<br>irreplaceable lo<br>resources?                                                                                                                                                                          | Will impact cause No. No Species of Conservation Concern are likely to be impacted by vegetation clearance. irreplaceable loss or resources? |                |               |                 |                     |                    |                  |  |
| Can impac<br>avoided, man<br>mitigated?                                                                                                                                                                                    | Can impact be Yes. Although mitigations will be provided, minimal vegetation loss would be inevitable.<br>avoided, managed or<br>mitigated?  |                |               |                 |                     |                    | l be inevitable. |  |
| Mitigation mea                                                                                                                                                                                                             | sures:                                                                                                                                       | •              |               |                 |                     |                    |                  |  |
| All veg                                                                                                                                                                                                                    | etation no                                                                                                                                   | ot required to | be removed    | should be pr    | otected against da  | mage.              |                  |  |
| <ul> <li>Sensit</li> </ul>                                                                                                                                                                                                 | ive areas                                                                                                                                    | such as wetl   | ands and dra  | ainage lines n  | nust be avoided.    | -                  |                  |  |
| • Existing roads must be used where possible during construction of the transmission powerline.                                                                                                                            |                                                                                                                                              |                |               |                 |                     |                    |                  |  |
| <ul> <li>Ideally, an Ornithologist should conduct a preconstruction walk-through of the selected alignment to check<br/>for possible nesting sites of Red Data birds immediately before construction commences.</li> </ul> |                                                                                                                                              |                |               |                 |                     |                    |                  |  |
| Cumulative im                                                                                                                                                                                                              | pacts: Im                                                                                                                                    | pacts could b  | pe substantia | al if cleared a | reas that are no lo | nger used are left | bare without     |  |
| rehabilitation measures.                                                                                                                                                                                                   |                                                                                                                                              |                |               |                 |                     |                    |                  |  |

**Residual impacts:** Vegetation would recover to a large extent.

#### SUMMARY OF ASSESSMENT

| Impact         | Phase              | Without<br>mitigation | With<br>mitigation |
|----------------|--------------------|-----------------------|--------------------|
| Electrocutions | Construction Phase | L                     | L                  |
|                | Operation Phase    | М                     | L                  |
| Collisions     | Construction Phase | М                     | L                  |
|                | Operation Phase    | Н                     | L                  |
| Habitat loss   | Construction Phase | М                     | L                  |
|                | Operation Phase    | L                     | L                  |

# 7. CONCLUSION AND SUMMARY OF RECOMMENDATIONS

While electricity supply is an essential service for the country, it important that it does not negatively impact our ecological resources (plants, birds and other animals). Conservation of these resources should be prioritized.

Impacts such as collisions, electrocutions, avifaunal displacement, and loss of habitats especially nesting site are expected during developments of this nature.

Bird mortalities caused by transmission infrastructures have been documented worldwide and applicable methods to prevent such mortalities have been developed.

Some of the listed mitigation measures will also protect other collision prone species, which include non-threatened large terrestrial and waterbird species.

The following recommendations are applicable for the proposed transmission powerlines and associated infrastructures:

A "Bird Friendly" structure, with a bird perch (as per standard Eskom guidelines) should be used for the tower infrastructure.

All relevant perching surfaces should be fitted with bird guards and perch guards as deterrents (Hunting, 2002).

Installation of artificial bird space perches and nesting platforms, at a safe distance from energised components (Goudie, 2006; Prinsen *et al.*, 2012).

Bird Flight Diverters should be placed from tower/pylon to tower/pylon instead of 60% placement along the collision risk areas. The relevant sections of power line requiring this mitigation should be confirmed by an avifaunal walk down once the exact route and tower positions are confirmed just prior to construction.

Shaw (2013) found that collision still occurred near the towers/pylons. As a result, they recommended a 100% marking of a powerline on high collision risk sections.

Overall, the impacts associated with this proposed transmission powerline are considered Low-Medium with the exception of collisions with powerlines and habitat loss resulting from establishment of servitudes.

It is the opinion of the specialist that the proposed construction of 2x 400kV transmission powerline namely, Aries to Upington be considered favourably, provided that the mitigations and recommendations are adhered to.

#### 8. REFERENCES

- Bregman T. P., Lees, A. C., MacGregor, H. E. A., Darski, B., de Moura, N. G., Aleixo, A., Barlow, J. & Tobias, J. A. 2016 Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. *Proceedings of the Royal Society B* 283: 1-10.
- Branch, B. 1998. Field guide to snakes and other reptiles of southern Africa. Struik Nature, Cape Town.
- Bredenkamp, G., Granger, J.E. & van Rooyen, N. 1996. Moist Sandy Highveld Grassland. In: Low, A.B. &Robelo, A.G. (eds) *Vegetation of South Africa, Lesotho and Swaziland*. Department of Environmental Affairs and Tourism.
- Koskimies, P. Birds as a tool in environmental monitoring. *Annales Zoologici Fennici*, 26: 153-166.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. 2006. World Map of Köppe Geiger Climate Classification updated. *Meteorology. Z.* **15**. 259-263.
- Kotze, D.C., Marneweck, G.C., Batchelor, A.L., Lindley, D.S. & Collins, N.B. 2007. Wet EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands, WRC Report No. TT 339/09, Water Research Commission, Pretoria.
- Macchi, L. & Grau, H. R. 2012. Piospheres in the dry Chaco. Contrasting effects of livestock puestos on forest vegetation and bird communities. Journal of Arid Environments, 176-187.
- Mucina, L., Hoare, D.B., Lötter, M.C., Du Preez, P.J., Rutherford, M.C., Scott Shaw, C.R., Bredenkamp, G.J., Powrie, L.W., Scott, L., Camp, K.G.T., Cilliers, S.S.Bezuidenhout, H., Mostert, T.H., Siebert, S.J., Winter, P.J.D., Burrows, J.E., Dobson, L., Ward, R.A., Stalmans, M., Oliver, E.G.H., Siebert, F., Schmidt, E.,Kobisi, K., Kose, L. 2006. Grassland Biome. In: Mucina, L. & Rutherford, M.C. (eds.). Vegetation map of South Africa, Lesotho and Swaziland: an illustrated guide. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- Ollis, D., Snaddon, K., Job, N., & Mbona, N. 2013. Classification Systems for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. SANBI Biodiversity Series 22. Pretoria: South African National Biodiversity Institute.
- Potts, J. R., Mokross, K., Stouffer, P. C. & Lewis, M. A. 2014. Step selection techniques uncover the environmental predictors of space use patterns in flocks of Amazonian birds. *Ecology and Evolution*,4(24): 4578-4588.
- Sinclair, I., Hockey, P., Tarboton, W. & Ryan, R. 2011. Birds of Southern Africa. Struik Nature, Cape Town.

Taylor, M.R. & Peacock, F. 2018. State of South Africa's Bird Report. Birdlife South Africa. https://avibase.bsc-eoc.org/checklist.jsp?region=ZAnw

#### 9. APPENDIX A: Short CV/Summary of Expertise – Mokgatla Molepo

Mokgatla Molepo is Director and Principal Ecologist at MORA Ecological Services and has over 10 years of experience in biodiversity measurement, management and assessment. He has provided specialist ecological input on more than 50 projects across South Africa. He is registered with the South African Council for Natural Scientific Professions (No. 009509).

#### TERTIARY EDUCATION:

• MSc Zoology, Nelson Mandela University

Research Project Topic: Foraging behaviour and thermal physiology in Cape Sugarbirds: sex-specific responses to temperature.

• BSc Honours in Zoology, University of Limpopo

Research Project Topic: Morphometrics and plumage variation in the South African Fiscal flycatcher *Sigelus silens* Shaw 1809.

• BSc Botany & Zoology, University of Venda

#### **CERTIFICATES:**

- Hydropedology and Wetland Functioning, Terra Soil Science & Water Business Academy
- Section 21 (c) & (i) Water Use Authorisation Training, Department of Water and Sanitation
- Basic Project Management, Hudisa Business School

#### **PROFESSIONAL MEMBERSHIP:**

- South African Council for Natural Scientific Professions (SACNASP) Professionally registered as Professional Natural Scientist. **Registration number:** 009509
- British Ecological Society (BES). Membership number: 1010709
- Zoological Society of Southern Africa (ZSSA). Membership number: 691

#### WORK EXPERIENCE:

- MORA Ecological Services (Pty) Ltd: April 2018 Current, I am an Environmental Specialist and my duties include; (i) conducting ecological and environmental impact assessments, (ii) and writing specialist reports.
- Arcus Consulting: May November 2017
- Centre for African Conservation Ecology (ACE), Nelson Mandela University: 2015 2016.
- South African National Biodiversity Institute (SANBI): May December 2014.
- Department of Zoology, University of Venda: 2009 2013.
- Percy FitzPatrick Institute of African Ornithology: March April 2014.

#### SELECTED ECOLOGICAL ASSESSMENT PROJECTS:

| Year | Project                                                                                                                                                 | Location:                                                   | Role(s)                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
| 2021 | Avifaunal Impact Assessment: Musina-Makhado<br>Special Economic Zone                                                                                    | Musina & Makhado Local<br>Municipality                      | Avifaunal<br>Specialist/Ornithologist     |
| 2021 | Avifaunal Impact Assessment: Proposed 400kV<br>Kimberley Strengthening                                                                                  | North West & Northern Cape                                  | Avifaunal<br>Specialist/Ornithologist     |
| 2020 | Avifaunal Impact Assessment for the proposed<br>33kV overhead powerlines on Roggeveld Wind<br>Energy Farm                                               | Laingsburg Local<br>Municipality, Western Cape              | Avifaunal<br>Specialist/Ornithologist     |
| 2020 | Avifaunal & Ecological Impact Assessment for the proposed solar farm on Vaalkloof Nature Reserve.                                                       | Breede Valley Municipality,<br>Western Cape                 | Ecologist                                 |
| 2020 | Biodiversity Impact Assessment (BIA) for the proposed township establishment in Pretoria North                                                          | Pretoria, Gauteng                                           | Ecologist                                 |
| 2019 | Ecological assessment for the proposed mine on<br>Farm Palmietfontein 189 IP situated within JB<br>Marks Local Municipality, North West Province        | Ventersdorp, North West                                     | Ecologist                                 |
| 2019 | Biodiversity Management Plans for Evander Gold<br>Mine                                                                                                  | Evander, Mpumalanga                                         | Ecologist                                 |
| 2019 | Avifaunal assessment for the proposed granite mine outside Mokopane                                                                                     | Mogalakwena Local<br>Municipality, Limpopo                  | Avifaunal<br>Specialist/<br>Ornithologist |
| 2019 | Ecological assessment for the proposed for Nandoni mixed development.                                                                                   | Nandoni, Thulamela Local<br>Municipality, Limpopo           | Ecologist                                 |
| 2019 | Ecological assessment for the proposed cultural village on farm Mphaphuli 278MT                                                                         | Mukomaasinandu,<br>Thulamela Local<br>Municipality, Limpopo | Ecologist                                 |
| 2019 | Ecological assessment for the proposed Musina mixed development.                                                                                        | Musina, Limpopo                                             | Ecologist                                 |
| 2019 | Preliminary Ecological assessment for the prospecting on Kroomdrai farm, Mokopane                                                                       | Mokopane, Mogalakwena Local<br>Municipality, Limpopo        | Ecologist                                 |
| 2018 | Avifaunal impact assessment for the proposed<br>construction of two double storey on Mooifontein<br>farm no 14IR, Portion 22 in Norkem, Kempton<br>Park | City of Ekurhuleni, Gauteng<br>province                     | Avifaunal<br>Specialist/<br>Ornithologist |

# 10. APPENDIX B: Selected SABAP 2 species list

| Upington | Ref | Common group | Common species    | Genus         | Species      |
|----------|-----|--------------|-------------------|---------------|--------------|
| 1        | 432 | Barbet       | Acacia Pied       | Tricholaema   | leucomelas   |
| 2        | 431 | Barbet       | Black-collared    | Lybius        | torquatus    |
| 3        | 439 | Barbet       | Crested           | Trachyphonus  | vaillantii   |
| 4        | 674 | Batis        | Pririt            | Batis         | pririt       |
| 5        | 404 | Bee-eater    | European          | Merops        | apiaster     |
| 6        | 410 | Bee-eater    | Little            | Merops        | pusillus     |
| 7        | 411 | Bee-eater    | Swallow-tailed    | Merops        | hirundineus  |
| 8        | 808 | Bishop       | Southern Red      | Euplectes     | orix         |
| 9        | 812 | Bishop       | Yellow-crowned    | Euplectes     | afer         |
| 10       | 722 | Bokmakierie  | Bokmakierie       | Telophorus    | zeylonus     |
| 11       | 731 | Brubru       | Brubru            | Nilaus        | afer         |
| 12       | 544 | Bulbul       | African Red-eyed  | Pycnonotus    | nigricans    |
| 13       | 545 | Bulbul       | Dark-capped       | Pycnonotus    | tricolor     |
| 14       | 872 | Bunting      | Cinnamon-breasted | Emberiza      | tahapisi     |
| 15       | 874 | Bunting      | Golden-breasted   | Emberiza      | flaviventris |
| 16       | 871 | Bunting      | Lark-like         | Emberiza      | impetuani    |
| 17       | 154 | Buzzard      | Steppe            | Buteo         | vulpinus     |
| 18       | 860 | Canary       | Black-throated    | Crithagra     | atrogularis  |
| 19       | 866 | Canary       | Yellow            | Crithagra     | flaviventris |
| 20       | 575 | Chat         | Anteating         | Myrmecocichla | formicivora  |
| 21       | 570 | Chat         | Familiar          | Cercomela     | familiaris   |
| 22       | 630 | Cisticola    | Desert            | Cisticola     | aridulus     |
| 23       | 646 | Cisticola    | Levaillant's      | Cisticola     | tinniens     |
| 24       | 642 | Cisticola    | Rattling          | Cisticola     | chiniana     |

| Upington | Ref  | Common group  | Common species | Genus         | Species        |
|----------|------|---------------|----------------|---------------|----------------|
| 25       | 641  | Cisticola     | Tinkling       | Cisticola     | rufilatus      |
| 26       | 629  | Cisticola     | Zitting        | Cisticola     | juncidis       |
| 27       | 504  | Cliff-swallow | South African  | Hirundo       | spilodera      |
| 28       | 212  | Coot          | Red-knobbed    | Fulica        | cristata       |
| 29       | 50   | Cormorant     | Reed           | Phalacrocorax | africanus      |
| 30       | 4131 | Coucal        | Burchell's     | Centropus     | burchellii     |
| 31       | 277  | Courser       | Temminck's     | Cursorius     | temminckii     |
| 32       | 203  | Crake         | Black          | Amaurornis    | flavirostris   |
| 33       | 621  | Crombec       | Long-billed    | Sylvietta     | rufescens      |
| 34       | 523  | Crow          | Саре           | Corvus        | capensis       |
| 35       | 522  | Crow          | Pied           | Corvus        | albus          |
| 36       | 352  | Cuckoo        | Diderick       | Chrysococcyx  | caprius        |
| 37       | 348  | Cuckoo        | Jacobin        | Clamator      | jacobinus      |
| 38       | 351  | Cuckoo        | Klaas's        | Chrysococcyx  | klaas          |
| 39       | 317  | Dove          | Laughing       | Streptopelia  | senegalensis   |
| 40       | 318  | Dove          | Namaqua        | Oena          | capensis       |
| 41       | 314  | Dove          | Red-eyed       | Streptopelia  | semitorquata   |
| 42       | 940  | Dove          | Rock           | Columba       | livia          |
| 43       | 517  | Drongo        | Fork-tailed    | Dicrurus      | adsimilis      |
| 44       | 103  | Duck          | Массоа         | Oxyura        | тассоа         |
| 45       | 100  | Duck          | White-faced    | Dendrocygna   | viduata        |
| 46       | 96   | Duck          | Yellow-billed  | Anas          | undulata       |
| 46       | 70   | Eagle         | African Fish   | Haliaeeetus   | vocifer        |
| 47       | 368  | Eagle-owl     | Spotted        | Bubo          | africanus      |
| 48       | 61   | Egret         | Cattle         | Bubulcus      | ibis           |
| 49       | 59   | Egret         | Little         | Egretta       | garzetta       |
| 50       | 600  | Eremomela     | Yellow-bellied | Eremomela     | icteropygialis |
| 51       | 119  | Falcon        | Amur           | Falco         | amurensis      |

| Upington | Ref | Common group | Common species         | Genus          | Species         |
|----------|-----|--------------|------------------------|----------------|-----------------|
| 52       | 820 | Finch        | Red-headed             | Amadina        | erythrocephala  |
| 53       | 789 | Finch        | Scaly-feathered        | Sporopipes     | squamifrons     |
| 54       | 835 | Firefinch    | Jameson's              | Lagonosticta   | rhodopareia     |
| 55       | 837 | Firefinch    | Red-billed             | Lagonosticta   | senegala        |
| 56       | 707 | Fiscal       | Common (Southern)      | Lanius         | collaris        |
| 57       | 663 | Flycatcher   | Chat                   | Bradornis      | infuscatus      |
| 58       | 665 | Flycatcher   | Fiscal                 | Sigelus        | silens          |
| 59       | 661 | Flycatcher   | Marico                 | Bradornis      | mariquensis     |
| 60       | 654 | Flycatcher   | Spotted                | Muscicapa      | striata         |
| 61       | 179 | Francolin    | Orange River           | Scleroptila    | levaillantoides |
| 62       | 339 | Go-away-bird | Grey                   | Corythaixoides | concolor        |
| 63       | 89  | Goose        | Egyptian               | Alopochen      | aegyptiacus     |
| 64       | 88  | Goose        | Spur-winged            | Plectropterus  | gambensis       |
| 65       | 162 | Goshawk      | Gabar                  | Melierax       | gabar           |
| 66       | 165 | Goshawk      | Southern Pale Chanting | Melierax       | canorus         |
| 67       | 6   | Grebe        | Little                 | Tachybaptus    | ruficollis      |
| 68       | 192 | Guineafowl   | Helmeted               | Numida         | meleagris       |
| 69       | 288 | Gull         | Grey-headed            | Larus          | cirrocephalus   |
| 70       | 72  | Hamerkop     | Hamerkop               | Scopus         | umbretta        |
| 71       | 171 | Harrier-Hawk | African                | Polyboroides   | typus           |
| 72       | 55  | Heron        | Black-headed           | Ardea          | melanocephala   |
| 73       | 54  | Heron        | Grey                   | Ardea          | cinerea         |
| 74       | 442 | Honeyguide   | Lesser                 | Indicator      | minor           |
| 75       | 418 | Ноорое       | African                | Upupa          | africana        |
| 76       | 424 | Hornbill     | African Grey           | Tockus         | nasutus         |
| 77       | 426 | Hornbill     | Southern Yellow-billed | Tockus         | leucomelas      |
| 78       | 81  | Ibis         | African Sacred         | Threskiornis   | aethiopicus     |
| 79       | 83  | Ibis         | Glossy                 | Plegadis       | falcinellus     |

| Upington | Ref  | Common group  | Common species   | Genus        | Species      |
|----------|------|---------------|------------------|--------------|--------------|
| 80       | 84   | Ibis          | Hadeda           | Bostrychia   | hagedash     |
| 81       | 851  | Indigobird    | Village          | Vidua        | chalybeata   |
| 82       | 122  | Kestrel       | Greater          | Falco        | rupicoloides |
| 83       | 125  | Kestrel       | Lesser           | Falco        | naumanni     |
| 84       | 123  | Kestrel       | Rock             | Falco        | rupicolus    |
| 85       | 402  | Kingfisher    | Brown-hooded     | Halcyon      | albiventris  |
| 86       | 130  | Kite          | Black-shouldered | Elanus       | caeruleus    |
| 87       | 1035 | Korhaan       | Northern Black   | Afrotis      | afraoides    |
| 88       | 224  | Korhaan       | Red-crested      | Lophotis     | ruficrista   |
| 89       | 245  | Lapwing       | Blacksmith       | Vanellus     | armatus      |
| 90       | 242  | Lapwing       | Crowned          | Vanellus     | coronatus    |
| 91       | 1183 | Lark          | Eastern Clapper  | Mirafra      | fasciolata   |
| 92       | 459  | Lark          | Fawn-coloured    | Calendulauda | africanoides |
| 93       | 488  | Lark          | Red-capped       | Calandrella  | cinerea      |
| 94       | 458  | Lark          | Rufous-naped     | Mirafra      | africana     |
| 95       | 460  | Lark          | Sabota           | Calendulauda | sabota       |
| 96       | 474  | Lark          | Spike-heeled     | Chersomanes  | albofasciata |
| 97       | 823  | Mannikin      | Bronze           | Spermestes   | cucullatus   |
| 98       | 509  | Martin        | Brown-throated   | Riparia      | paludicola   |
| 99       | 506  | Martin        | Rock             | Hirundo      | fuligula     |
| 100      | 803  | Masked-weaver | Southern         | Ploceus      | velatus      |
| 101      | 210  | Moorhen       | Common           | Gallinula    | chloropus    |
| 102      | 392  | Mousebird     | Red-faced        | Urocolius    | indicus      |
| 103      | 390  | Mousebird     | Speckled         | Colius       | striatus     |
| 104      | 391  | Mousebird     | White-backed     | Colius       | colius       |
| 105      | 734  | Myna          | Common           | Acridotheres | tristis      |
| 106      | 637  | Neddicky      | Neddicky         | Cisticola    | fulvicapilla |
| 107      | 1    | Ostrich       | Common           | Struthio     | camelus      |

34

| Upington | Ref | Common group        | Common species   | Genus         | Species       |
|----------|-----|---------------------|------------------|---------------|---------------|
| 108      | 359 | Owl                 | Barn             | Tyto          | alba          |
| 109      | 365 | Owlet               | Pearl-spotted    | Glaucidium    | perlatum      |
| 110      | 387 | Palm-swift          | African          | Cypsiurus     | parvus        |
| 111      | 682 | Paradise-flycatcher | African          | Terpsiphone   | viridis       |
| 112      | 852 | Paradise-whydah     | Long-tailed      | Vidua         | paradisaea    |
| 113      | 531 | Penduline-tit       | Саре             | Anthoscopus   | minutus       |
| 114      | 311 | Pigeon              | Speckled         | Columba       | guinea        |
| 115      | 692 | Pipit               | African          | Anthus        | cinnamomeus   |
| 116      | 694 | Pipit               | Plain-backed     | Anthus        | leucophrys    |
| 117      | 238 | Plover              | Three-banded     | Charadrius    | tricollaris   |
| 118      | 650 | Prinia              | Black-chested    | Prinia        | flavicans     |
| 119      | 830 | Pytilia             | Green-winged     | Pytilia       | melba         |
| 120      | 844 | Quailfinch          | African          | Ortygospiza   | atricollis    |
| 121      | 805 | Quelea              | Red-billed       | Quelea        | quelea        |
| 122      | 581 | Robin-chat          | Саре             | Cossypha      | caffra        |
| 123      | 413 | Roller              | Lilac-breasted   | Coracias      | caudatus      |
| 124      | 415 | Roller              | Purple           | Coracias      | naevius       |
| 125      | 308 | Sandgrouse          | Burchell's       | Pterocles     | burchelli     |
| 126      | 307 | Sandgrouse          | Namaqua          | Pterocles     | namaqua       |
| 127      | 258 | Sandpiper           | Common           | Actitis       | hypoleucos    |
| 128      | 262 | Sandpiper           | Marsh            | Tringa        | stagnatilis   |
| 129      | 421 | Scimitarbill        | Common           | Rhinopomastus | cyanomelas    |
| 130      | 586 | Scrub-robin         | Kalahari         | Cercotrichas  | paena         |
| 131      | 711 | Shrike              | Crimson-breasted | Laniarius     | atrococcineus |
| 132      | 706 | Shrike              | Lesser Grey      | Lanius        | minor         |
| 133      | 708 | Shrike              | Red-backed       | Lanius        | collurio      |
| 134      | 146 | Snake-eagle         | Black-chested    | Circaetus     | pectoralis    |
| 135      | 786 | Sparrow             | Саре             | Passer        | melanurus     |

35

| Upington | Ref  | Common group   | Common species       | Genus        | Species          |
|----------|------|----------------|----------------------|--------------|------------------|
| 136      | 784  | Sparrow        | House                | Passer       | domesticus       |
| 137      | 4142 | Sparrow        | Southern Grey-headed | Passer       | diffusus         |
| 138      | 780  | Sparrow-weaver | White-browed         | Plocepasser  | mahali           |
| 139      | 185  | Spurfowl       | Swainson's           | Pternistis   | swainsonii       |
| 140      | 737  | Starling       | Cape Glossy          | Lamprotornis | nitens           |
| 141      | 735  | Starling       | Wattled              | Creatophora  | cinerea          |
| 142      | 270  | Stilt          | Black-winged         | Himantopus   | himantopus       |
| 143      | 576  | Stonechat      | African              | Saxicola     | torquatus        |
| 144      | 79   | Stork          | Black                | Ciconia      | nigra            |
| 145      | 755  | Sunbird        | Marico               | Cinnyris     | mariquensis      |
| 146      | 763  | Sunbird        | White-bellied        | Cinnyris     | talatala         |
| 147      | 493  | Swallow        | Barn                 | Hirundo      | rustica          |
| 148      | 502  | Swallow        | Greater Striped      | Hirundo      | cucullata        |
| 149      | 501  | Swallow        | Red-breasted         | Hirundo      | semirufa         |
| 150      | 495  | Swallow        | White-throated       | Hirundo      | albigularis      |
| 151      | 604  | Swamp-warbler  | Lesser               | Acrocephalus | gracilirostris   |
| 152      | 208  | Swamphen       | African Purple       | Porphyrio    | madagascariensis |
| 153      | 380  | Swift          | African Black        | Apus         | barbatus         |
| 154      | 381  | Swift          | Bradfield's          | Apus         | bradfieldi       |
| 155      | 385  | Swift          | Little               | Apus         | affinis          |
| 156      | 383  | Swift          | White-rumped         | Apus         | caffer           |
| 157      | 714  | Tchagra        | Brown-crowned        | Tchagra      | australis        |
| 158      | 97   | Teal           | Red-billed           | Anas         | erythrorhyncha   |
| 159      | 275  | Thick-knee     | Spotted              | Burhinus     | capensis         |
| 160      | 557  | Thrush         | Groundscraper        | Psophocichla | litsipsirupa     |
| 161      | 1104 | Thrush         | Karoo                | Turdus       | smithi           |
| 162      | 514  | Tit            | Ashy                 | Parus        | cinerascens      |
| 163      | 658  | Tit-babbler    | Chestnut-vented      | Parisoma     | subcaeruleum     |

36

| Upington | Ref  | Common group | Common species | Genus        | Species      |
|----------|------|--------------|----------------|--------------|--------------|
| 164      | 316  | Turtle-dove  | Саре           | Streptopelia | capicola     |
| 165      | 686  | Wagtail      | Саре           | Motacilla    | capensis     |
| 166      | 599  | Warbler      | Willow         | Phylloscopus | trochilus    |
| 167      | 841  | Waxbill      | Black-faced    | Estrilda     | erythronotos |
| 168      | 839  | Waxbill      | Blue           | Uraeginthus  | angolensis   |
| 169      | 843  | Waxbill      | Common         | Estrilda     | astrild      |
| 170      | 840  | Waxbill      | Violet-eared   | Granatina    | granatina    |
| 171      | 783  | Weaver       | Sociable       | Philetairus  | socius       |
| 172      | 1172 | White-eye    | Саре           | Zosterops    | virens       |
| 173      | 1171 | White-eye    | Orange River   | Zosterops    | pallidus     |
| 174      | 846  | Whydah       | Pin-tailed     | Vidua        | macroura     |
| 175      | 847  | Whydah       | Shaft-tailed   | Vidua        | regia        |
| 176      | 818  | Widowbird    | Long-tailed    | Euplectes    | progne       |
| 177      | 419  | Wood-hoopoe  | Green          | Phoeniculus  | purpureus    |
| 178      | 450  | Woodpecker   | Cardinal       | Dendropicos  | fuscescens   |
| 179      | 447  | Woodpecker   | Golden-tailed  | Campethera   | abingoni     |

# **REPORT COMPILED BY:**

Mokgatla Molepo (MSc) Ecologist & Avifaunal Specialist.

Email: mokgatla@moraecological.co.za

Contact: (+27) 76 559 7692