ISBN 978-0-626-22828-6 SANS 1524-6-10:2010

Edition 1

NRS 009-6-10:2010

Edition 1

SOUTH AFRICAN NATIONAL STANDARD

Electricity payment systems

Part 6-10: Interface standards —
Online vending server — Vending clients

This national standard is the identical implementation of NRS 009-6-10:2010 and is
adopted in terms of a Memorandum of Agreement between the Electricity Suppliers
Liaison Committee and the SABS Standards Division.

Published by SABS Standards Division

1 Dr Lategan Road Groenkloof DX Private Bag X191 Pretoria 0001 S H B 5
Tel: +27 12 428 7911 Fax: +27 12 344 1568

www.sabs.co.za
© SABS

SANS 1524-6-10:2010
Edition 1

NRS 009-6-10:2010
Edition 1

Table of changes

Change No. Date Scope

Foreword

This South African standard was prepared by a working group of the Electricity Suppliers Liaison
Committee and adopted by National Committee SABS TC 62, Electrical measurements, in
accordance with procedures of the SABS Standards Division, in compliance with annex 3 of the
WTO/TBT agreement.

The adoption has been done in terms of a Memorandum of Agreement between the Electricity
Suppliers Liaison Committee and the SABS Standards Division.

This document was published in xxxxx 2010.

NRS 009-6-10:2010

Edition 1

ELECTRICITY PAYMENT SYSTEMS

Part 6-10: Interface standards —
Online vending server — Vending
clients

This specification is issued by
the Standardization Section, Eskom,

on behalf of the

User Group given in the foreword

Table of changes

Change No. Date

Text affected

Correspondence to be directed to

The NRS Projects Manager
The Standardization Section
Eskom

Private Bag X13

Halfway House 1685

Telephone : (011) 651 6832

Printed or electronic copies are obtainable
from

SABS Standards Division

Private Bag X191
Pretoria 0001

Telephone : (012) 428-7911

Fax : (011) 651 6827 Fax : (012) 344-1568

E-mail : nrs@eskom.co.za E-mail . sales@sabs.co.za

Website : http://www.nrs.eskom.co.za Website : http://www.sabs.co.za
COPYRIGHT RESERVED

Printed in the Republic of South Africa
by the SABS Standards Division
1 Dr Lategan Road, Groenkloof, Pretoria

NRS 009-6-10:2010

Notice

NRS 009-6-10 (XMLVend specification) was compiled with active participation and sharing of
information by several utilities, vending service providers, vending equipment suppliers and other
interested industry stakeholders. XMLVend is an industry specification with the key objective to
provide a secure, standards-based, open, non-proprietary platform for providing online vending
services.

The compilers acknowledge that the vending environment and user requirements are continuously
evolving and that the current version of the specification may not always support these changing
requirements. Therefore, utility-driven extensions to the specification are allowed and encouraged.
However, such extensions should only be done in a manner that acknowledges the open and
sharing culture that has been adopted in the development of XMLVend.

Therefore, it is expected that any extensions are made available freely and without limitations to the
XMLVend working group and users of the specification. This ensures that openness and
interoperability between XMLVend implementations are promoted and maintained. It also provides
a mechanism for updates and new requirements to be added to future specification versions.
Please refer to the inside cover for the contact details of the NRS Project Manager to whom such
updates should be referred.

Further information concerning XMLVend can be obtained from its website:
http://www.nrs.eskom.co.za/xmlvend

NRS 009-6-10:2010

Foreword

This part of NRS 009 was prepared on behalf of the Electricity Suppliers Liaison Committee (ESLC)
and approved by it for use by supply authorities in South Africa.

This part of NRS 009 was prepared by a working group which, at the time of publication, comprised
the following members:

S J van den Berg (Chairman) Mangaung Municipality (Centlec)

N Ballantyne City of Cape Town

R Devparsad eThekwini Electricity

P A Johnson IARC (Resources & Strategy)

W L Mathers Ekurhuleni Metropolitan Municipality

J O’Kennedy IARC (Resources & Strategy)

T Sibiya IARC (Resources & Strategy)

M Singh eThekwini Electricity

K Subramoney IARC (Resources & Strategy) [Compiler]
D van Rooi IARC (Resources & Strategy)

J van Vuuren Nelson Mandela Metropolitan Municipality
K Venketiah IARC (Resources & Strategy)

P Watkins eThekwini Electricity

H Wouda City Power Johannesburg

In addition to the NRS 009 working group members listed above, an “XMLVend working group”
consisting of utilities, suppliers and other interested parties was extensively consulted during the
compilation and preparation of this part of NRS 009. Their contribution to its development is
acknowledged. The list of the XMLVend working group members is available at
http://www.nrs.eskom.co.za/xmlvend.

NRS 009 was initially based on Eskom specification MC114, Requirements specification for a
common vending system for electricity dispensing systems, and consists of the following parts,
under the general title Electricity sales systems:

Part 0: Standard transfer specification — Synopsis. (Under consideration.)
Part 1: Glossary and system overview. (Withdrawn)

Part 2: Functional and performance requirements.
Section 1: System master stations. (obsolete)
Section 2: Credit dispensing units. (obsolete)
Section 3: Security module. (obsolete)
Section 4: Standard token translators. (obsolete)
Section 5: Error handling. (obsolete)

Part 3: Database format. (obsolete)
Part 4: National prepayment electricity meter cards.
Part 5: Testing of subsystems. (obsolete)

Part 6: Interface standards.
Section 1: Credit dispensing unit — Standard token translator interface. (obsolete)
Section 2: Not used.
Section 3: System master station — Credit dispensing unit. (obsolete)
Section 4: Data transfer by physical media — System master station — Credit
dispensing unit. (obsolete)
Section 5: Not allocated

NRS 009-6-10:2010

Foreword (concluded)

Section 6”; Standard transfer specification/Credit dispensing unit — Electricity
dispenser — Categories of token and transaction data fields.

Section 7V: Standard transfer specification/Credit dispensing unit — Electricity
dispenser — Token encoding and data encryption and decryption.

Section 8”: Standard transfer specification/Disposable magnetic token technology —
Token encoding format and physical token definition.

Section 9V: Standard transfer specification/Numeric token technology — Token
encoding format and physical token definition.

Part 7 Standard transfer specification/Management of cryptographic keys.

Part 8: The management of secure modules.

The NRS 009 series is being adopted and published as dual-numbered standards under the
designation SANS 1524/NRS 009. The following documents will be available under the general title
Electricity payment systems:

Part 1.

Part 1-1:

Part 1-2:

Part 4:

Part 6-10:

Part 7:

Part 8:

Part 9:

Payment meters.

Mounting and terminal requirements for payment meters.

Surge protective devices for the protection of payment meters.
National prepayment electricity meter cards.

Interface standards — Online vending server — Vending clients.
Standard transfer specification/Management of cryptographic keys.
The management of secure modules.

Implementing vending systems.

Annexes A to D for information only.

1) Parts and sections of NRS 009 which specify the Standard Transfer specification have been published by
the IEC as IEC 62055-41 and IEC 62055-51, Electricity metering — Payment metering system — Standard
transfer specification (STS).

NRS 009-6-10:2010

Introduction

Prepayment vending systems play a critical role in supporting electricity prepayment-metering
infrastructure. Current standardized offline vending systems enable convenient access to point of
sale (POS) or credit dispensing units (CDUSs) for customers to purchase electricity.

However, several electricity distributors wished to use online vending systems, and in the absence
of an acceptable industry standard, chose different proprietary systems. Although these systems
represent a technological step forward for prepayment vending, they could have a detrimental
effect on an already standardized prepayment industry. This prompted the standard transfer
specification user group, under the auspices of the Electricity Supply Liaison Committee (ESLC), to
initiate the online vending standardization project.

Online vending systems require the exchange of messages relating to prepayment electricity
vending transactions between a vending server and vending client. Therefore a secure interface
protocol is required to facilitate the message exchanges between servers and clients that employ
specifications at different application levels.

This part of NRS 009, NRS 009-6-10, also called the XMLVend specification, was prepared by the
XMLVend working group to establish, promote and implement the specified interface protocol
between an XMLVend server and XMLVend clients. The interface protocol is hereafter referred to
as the XMLVend protocol.

This part of NRS 009, which is the first edition of NRS 009-6-10 to be formally released and
published by the SABS Standards Division on behalf of the ESLC, is technically equivalent to what
was released by the NRS 009 working group as “version 2.1" during the development phase.
Version 2.1 was released as an interim NRS specification in February 2006 and superseded the
initial version 1 (February 2004) and version 2 (November 2005).

Keywords

electricity dispenser, electricity sales systems, online vending, payment systems, prepayment,
standard transfer specifications, token web services, XML, XMLVend.

1 NRS 009-6-10:2010

Contents
Page
S Tol o] o 1= PPV PRPPRRT 3
2 NOIMALIVE FEFEIENCES ..ottt ettt sttt et eab e nb e b neenanas 4
3 Terms, definitions and abbreVviationS ... 5
O L O £ To [N T =T 01T o PO O PP PO 6
4.1 Implementation MOAEIS ..ot re e 6
4.2 USE CASES ..eeeieieiteeeite e st ettt st ettt e e ra e s e e et E e Rt et e Rt h e s n e e e nn e eres 8
4.3 Use case actors, responsibilities and collaboratorscccovccvviivinievne s 8
4.4 USE CASE UOMAINS ..ooiieitiiitieitie ittt sttt sttt sttt sb e sb e sae e sae e st e satesibeeanesnneenneeneeneens 9
45 USE CASE AESCHIPLONSoiiiiiiiiiiie ettt ettt ettt et et e sb et sbe e s beesaeennee e 11
4.6 Fault and exception scenario handlingccccooiieiiiiii e 39
4.7 Use €ase Class dIagramsScooiiiiiiiiiii ittt ne e 41
5 Web services implementationooooiioriiiiiiieiie s 78
ST R [011 7o (Ui 1o] o ISP TSP OPRRPRR 78
5.2 Mapping use case class diagrams to the XMLVend Web serviceccccccvvvevcieennnen. 78
6 Change ManagemMENT PIOCESScc.eerueerueereerieerieeseesiee st ssee sttt be e bt e be e bt e beesbeesbeesseesaeesanesans 91
7 Constraints concerning group-Coded SGCSoiuiiiiiiiiiiiiieie et 92
Annex A (informative) Example fault deSCrHPLONSccooiiiiiiiiiiie e 93
Annex B (informative) UML NOtation OVEIVIEWccoiuiiiiiiiiiee ittt ettt 96
Annex C (informative) Overview of SOAP/XML Web services and WS-lc.ococeeiviiiiiniiiennns 97

Annex D (informative) Web services security risks and countermeasuresccccocveeeeinveeeenne 99

NRS 009-6-10:2010 2

This page intentionally left blank

3 NRS 009-6-10:2010

ELECTRICITY PAYMENT SYSTEMS

Part 6-10: Interface standards — Online vending server —
Vending clients

1 Scope

1.1 Purpose

This part of NRS 009 provides the necessary information to implement the XMLVend protocol as
part of an online prepayment electricity vending system. This part of NRS 009 consists of a
collection of material from several different sources and is intended to create a single source of
information that will provide the necessary basics to understand and implement XMLVend protocol.

This part of NRS 009-6 is divided into two parts:

a) part 1, User requirements, which is aimed at both users (utilities) and suppliers. This part
outlines the implementation models, business application domains and the content and structure
of the use case message pairs; and

b) part 2, Web services implementation, which is aimed mainly at suppliers. This part describes the
technical detail of how the use case message pairs should be securely exchanged using web
services. The XMLVend reference model is illustrated in figure 1.

Business Application
Domains

User requirements Use Cases
(Clause 4)

Message Pairs

XML/SOAP . . .
Web services implementation

(Clause 5)

Transport

Figure 1 — XMLVend reference model

This approach is to deliberately reach both the utilities and suppliers of XMLVend compliant
systems. Based upon the reader's experience and intentions, specific clauses of this part of
NRS 009 might be more valuable than others.

NRS 009-6-10:2010 4

This part of NRS 009 is meant to be used in conjunction with the latest versions of the XMLVend
WSDL and schema documents, which are available on the XMLVend website.

1.2 Items outside the scope

Payment transactions will be processed outside XMLVend, but the tender type (for example, cash,
credit cards) is covered in this part of NRS 009.

XMLVend does not directly support clients contracted with more than one utility and would therefore
have to communicate with servers that are managed by different utilities.

The protocol specifically excludes the case of an end customer who transacts directly with the
XMLVend server. If a customer would like to purchase a prepayment token online through for
example, the internet, the customer would have to connect to an intermediate entity, in this case, a
web server. The web server would then handle the web browser presentation layer details and in
the end, it would communicate with the XMLVend server as described in the protocol. The web
server in this instance would therefore act as an XMLVend client to handle the communications with
the XMLVend server.

2 Normative references

The following documents contain provisions which, through reference in this text, constitute
provisions of this part of NRS 009. All documents are subject to revision and, since any reference to
a document is deemed to be a reference to the latest edition of that document, parties to
agreements based on this specification are encouraged to take steps to ensure the use of the most
recent editions of the documents listed below. Information on currently valid national and
international standards can be obtained from the SABS Standards Division.

2.1 Standards and specifications

Hypertext Transfer Transport Protocol (HTTP) protocol specification, version 1.1. Available at
<http://www.w3c.org>.

NRS 009, Electricity sales systems — Addendum 07/2001 — STS EBSST implementation for initial
pilot sites.

NRS 009-2-2, Electricity sales systems — Part 2: Functional and performance requirements —
Section 2: Credit dispensing units.

NRS 009-4, Electricity sales systems — Part 4: National prepayment electricity meter cards.

NRS 009-6-7, Electricity sales systems — Part 6: Interface standards — Section 7: Standard transfer
specification/Credit dispensing unit — Electricity dispenser — Token encoding and data encryption
and decryption.

SANS 62051/IEC 62051, Electricity metering — Glossary of items.

WSDL, SOAP and XML schema specifications. Available at <http://www.w3c.org>.

WS-l Usage Scenarios, version 1.01. Available at <http://www.ws-i.org>.

WS-I Basic Profile, version 1.0a. Available at <http://www.ws-i.org>.

GZIP specifications. Available at http://www.gzip.org.

5 NRS 009-6-10:2010

2.2 Other publications

O’KENNEDY JC, Generic online vending glossary and definition of terms, version 1.12. Available at
<http://www.nrs.eskom.co.za/xmlvend>.

3 Terms, definitions and abbreviations

3.1 Terms and definitions
For the purposes of this document, the terms, definitions and abbreviations given in SANS 62051,

the terms, definitions and abbreviations contained in the Generic online vending glossary and
definition of terms (see 2.2) and the following apply.

3.2 Abbreviations

API: application program interface
AT: algorithm type

B2B: business to business

CDuU: credit dispensing unit

CHRG: charge

ebxML: electronic business extensible markup language
FBE: free basic electricity

HTTP: hypertext transport protocol

HTTPS: secure hypertext transport protocol

IP: internet protocol

JAX_RPC: java API for XML remote procedure call

KCT: key change token

KRN: key revision number

MCT: meter credit transformer
MSNO: meter serial number

POS: point of sale

SOAP: simple object access protocol
SGC: supply group code

SM: security model

SSL: secure socket layer

NRS 009-6-10:2010 6

SMTP: simple mail transfer protocol

STS: standard transfer specification
TCP: transport control protocol

TI: tariff index

TT: token technology

TLS: transport layer security

UDDI: universal description discovery and integration
UML: unified modelling language

URI: universal resource identifier
WSDL: web services description language
WSI: web service interoperability

XML: extensible markup language

4 User requirements

NOTE Clause 4 is aimed at both utilities that use XMLVend compliant equipment and suppliers that develop
XMLVend protocol equipment (client and server). Clause 4 outlines the implementation models, the business
application domains, the use cases and the content and structure of the use case message pairs.

4.1 Implementation models
4.1.1 Introduction

The implementation models illustrate the two models that may be used to communicate vending
requests to an XMLVend server.

7 NRS 009-6-10:2010

4.1.2 Implementation model 1

Implementation model 1, sometimes referred to as the “normal vendor” model, illustrates that the
customer interacts with an XMLVend client (through an operator) that communicates directly with
the XMLVend server. This model may be applied to (but is not limited to) implementations, where
vendors who currently use offline credit dispensing units are upgraded to online vending clients.
Implementation model 1 is illustrated in figure 2.

MLVend communications
protocol

XMLVend server

Figure 2 — Implementation model 1

4.1.3 Implementation model 2

Implementation model 2, sometimes referred to as the “client server” model, illustrates that the
customer interacts with terminals, that communicate using a proprietary protocol communicate to a
XMLVend client which then formats these requests as XMLVend requests and submits these to the
XMLVend server.

This model may be applied to (but is not limited to) vendors who currently have a footprint of
terminals and would like to add prepayment electricity vending capabilities to the terminals.
Implementation model 2 is illustrated in figure 3.

NRS 009-6-10:2010 8

Proprietary
communications

XMLVend client (1)

XMLVend
communications
protocol

XMLVend server

Proprietary
communications

XMLVend client (n)

Figure 3 — Implementation model 2

4.2 Use cases?

XMLVend use cases are used to describe the functionality exposed by the XMLVend protocol.
Each use case is aimed at complying with specific requirements of the following use case actors:
a) customers;

b) vending operators;

c) technical operators;

d) technicians; and

e) XMLVend clients.

XMLVend utilities do not have to implement all the XMLVend use cases but should select those that
most suit their requirements.

4.3 Use case actors, responsibilities and collaborators

Table 1 describes use case actors, their responsibilities and collaborators.

2) A use case is defined as a single task, performed by the end user of a system, which has some useful
outcome to the end user.

NRS 009-6-10:2010

Table 1 — Roles, responsibilities and collaborators

1

2

3

Use case actor

Responsibilities

Collaborators

Customer

Initiates customer use cases.
Provides identification information.
Tenders payment.

Receives requested token receipt.

Vending operator.

Vending operator

Verifies customer identification.

Submits vending requests on behalf of
customer.

Performs operator specific tasks such as
open batches and close batches.

Hands generated tokens to customers.
Handles customer queries.

XMLVend client

Technical
operator

Performs meter management requests.

XMLVend client

XMLVend client

Authenticates the XMLVend Server.
Compiles and sends XMLVend request
messages to XMLVend server.

Receives and formats XMLVend response
messages from the XMLVend server.
Automatically initiates the “Issue Advice”
use case for use cases that might require
this service.

XMLVend server

XMLVend server

Authenticates the XMLVend clients
Complies with an appropriate XMLVend
response message based on its
application business logic.

Responds with a fault response message,
if required.

XMLVend clients

4.4 Use case domains

4.4.1 Grouping of use cases

The use cases have been divided into the following two business application domains:

a) revenue management; and

b) meter management.

A further grouping of use cases, referred to as base use cases have also been defined. These use
cases do not belong to any specific business application domain but are used in both the revenue

and meter management domains.

The grouping of the use cases into domains eases the implementation and maintenance of
XMLVend. It is also envisaged that some XMLVend implementations may only implement the

revenue management use cases and some only meter management use cases.

The XMLVend web service description language and schema documents have also been

separated into these two domains with a common base schema. See 5.2.

NRS 009-6-10:2010 10

4.4.2 Revenue management domain

The revenue management domain is concerned with credit vending, revenue collection and
management. The 17 use cases that belong to this domain are illustrated in figure 4.

Revenue: Cancal Takan Revenua:Frea Issue Token

Revenue::Reprint Transaction

Revanue: :Meater Cradit
Transfer (MCT) Token

Revenue::Check Batch Totals

Revenue::Start Batch

Revenuea::Pay Account

Revenue::Confirm Customer
Details

Revenue:: Purchase Trial
Credit Token

Revenua::Purchasa Cradit
Tokan

Revenue: Create Depasit Slip
Revenue:Vendor Statement

Revenue: Reprint Deposit
Shp

Revenue::FBE Token
Revanue:\Verify Token

Revenue:Reprint End Batch

Revenue::End Batch

Figure 4 — Revenue domain use cases

4.4.3 Meter management domain

The meter management domain is concerned with meter management functions. The five use
cases that belong to this domain are illustrated in figure 5.

11 NRS 009-6-10:2010

Meter Manamman_t..@anfin‘n Meter Meter Management:: Customer Report
Details Eault

Meter Management::Meter-Specific Meter Management::Update Mater key

Engineering Tokens Data

heter Management::Non-Meter-Specific
Engineering Tokens

Figure 5 — Meter domain use cases
4.4.4 Base domain

The base domain use cases that do not belong to any specific business application domain but are
used by both the revenue and meter management domains. The only use case currently defined for
this domain is the Issue Advice Use Case.

4.5 Use case descriptions

45.1 General

The use case description provides the business rationale and detailed description of each
XMLVend use case. The use cases have also been specified as generic as possible to ensure that
they comply with the requirements of all potential utilities.

Utilities will tailor the use case descriptions to comply with their specific requirements and compile
these into their own implementation-specific use case description document. An example of how
this can be approached is provided as supporting documentation, on
<http://www.nrs.eskom.co.za/xmlvend>.

4.5.2 Revenue domain use cases
45.2.1 Cancel token

Description
The cancel token use case is used to cancel a previous credit vend transaction. This use case only
applies to disposable magnetic card tokens.

NOTE It is the responsibility of the client device to destroy the token information stored on the magnetic card.
This use case can potentially be abused for fraudulent purposes. If it has to be supported, it should be carefully
controlled and monitored.

This use case corresponds to the “cancel token” transaction number 006 described in NRS 009,
addendum 07/2001.

NRS 009-6-10:2010 12

Desired outcome
The encoded token data is erased.

Dependencies
Follows: purchase credit token
Includes: issue advice, issue fault (if required)

Preconditions

The following apply:

a) acustomer wants to cancel an unused magnetic card encoded token;

b) the reprint token use case is disabled;

c) the XMLVend server supports this use case;

d) the operator is authorized to initiate this use case; and

e) the same amount of credit as originally issued is contained on magnetic card data.

Postconditions

The following apply:

a) a‘“cancel token” transaction is recorded on the server;
b) the encoded token data is erased; and

c) the customer receives the applicable refund.

Participants

The following apply:

a) customer;

b) vending operator;

¢) XMLVend client; and
d) XMLVend server.

Happy path
The cancel token happy path is illustrated in figure 6.

XMLVend XMLVend

(Message pairs)

abori

refry
::}—-.’_L;—:r'.:t-ﬂ e e[—
i ! cancelReq >
i i
I]
! il AN S ey
;-1 FReceipl H
* H
done o s 7 H
| Operator | cusiomer i
i ¢ Mmessagas] E
I i []
I] []
: ! :

Figure 6 — Cancel token happy path

13 NRS 009-6-10:2010

Implementation
The “cancel token” and “reprint token” use cases are mutually exclusive. If cancellations of tokens
are allowed, then reprints shall not be allowed.

In the event of an exemption occurring, it is highly recommended that this use case use the Issue
Advice Use Case to ensure that client and sever have the same understanding of the use case’s
outcome on both server and client. See 4.5.4.2.

4.5.2.2 Check batch totals

Description
The check batch totals is similar to the End Batch Use Case (see 4.5.2.6), except that it does not
close the batches but just returns the request batch summaries.

Desired outcome
The requested batch summary is returned.

Preconditions
The requested batch shall be open.

Postconditions
The batch summary is returned to the client.

Participants

The following apply:

a) vending operator;

b) XMLVend client; and
c) XMLVend server.

Happy path
The happy path is illustrated in figure 7.

: Boors XMLVend XMLVend
pe _ client Server

tor
f_'}—i_'.l'ec:k Batch Totals—pm {Message pairsJ]
: foialBatch Rl

t——ioiaBatchResm—

done Li—-—Eatch summary

abor (——PResull MEes58(]Em—
1
i

Figure 7 — Check bétch totals happy path

Implementation
None.

4.5.2.3 Confirm customer details
Description
The confirm customer use case is used to confirm the customer details associated with a particular

meter.

Desired outcome
The customer details that match the search criteria entered are returned.

NRS 009-6-10:2010 14

Preconditions
The XMLVend server supports this use case.

The vending operator is authorized to initiate this use case.

A customer identification parameter or meter identification parameter that is supported by the server
shall be provided, such as

a) customer name;

b) customer address;

c) customer account number;

d) customer ID number;

e) meter card (track 2 data);

f) meter serial number; and

g) meter configuration data, usually from an old token.

Postconditions
The customer details that match the identification parameter entered are returned to the client.

Participants

The following apply:

a) customer;

b) vending operator;

¢) XMLVend client; and
d) XMLVend server.

Happy path
The use case sequence diagram is illustrated in figure 8.

: XMLVend XMLVend
—

D—Customer Identification—pm i

oI ustome e q—-
retry

H L—confimCuslomenResp=—
ra—Dizplay 1D details -
dane ' Message pairs
| Oparator # Customer | I:L ge p 'j

—

messages 1
abort i

Figure 8 — Confirm customer details happy path

Implementation
This use case should not normally be used in conjunction with normal vending use cases since
there is a performance and cost penalty.

4.5.2.4 Create deposit slip

Description
The create deposit slip use case is used to assist the vendor to bank his sales. It is usually used by
implementations that do not use batches and operate on an “upfront” business model.

NOTE The original requirement to tie a banking batch and sales batches to a deposit reference does not
apply in an “upfront” model. In a “non-upfront” model, the banking deposits are normally linked to the banking
batch to reconcile deposits and sales. For the upfront model such reconciliation is not required since available
credit is validated for every individual transaction.

15 NRS 009-6-10:2010

Desired outcome
A deposit slip is generated that can be used by the vendor to bank his sales.

Preconditions
None.

Postconditions
The client prints a deposit slip.

Participants

The following apply:

a) vending operator;

b) XMLVend client; and
c) XMLVend server.

Happy path
The happy path is illustrated in figure 9.

ﬂ e xHILVand KM LVend
p‘ t:lla-nl: sawar

| r.,_.-.-|r-'-|_u_ st *'||I[3'—*~ [Measage patrsj E
 deposiiReg—

———lespnsi Resp———

done ip———=Llzposit Slip—
abor (l——REsull ME558 e m—
i

i
i

Figure 9 — Create d'eposit slip happy path

Implementation
None.

4.5.2.5 Collect FBE token

Description

The collect FBE token use case is used to request the free basic electricity (FBE) token. This is a
particular type of electricity credit token designed to issue a pre-programmed credit amount to each
meter once per month, free of payment.

This use case corresponds to the electricity basic support service token (EBSST) transaction
(type 010) described in NRS 009, addendum 07/2001.

NOTE The term “EBSST” (Electricity basic support service token) has been replaced by “FBE” (Free basic
electricity) token which is used throughout this part of NRS 009.

Desired outcome
The customer collects the FBE token.

NRS 009-6-10:2010 16

Preconditions

The following apply:

a) the XMLVend server supports this use case;

b) the vending operator is authorized to initiate this use case; and

c) anidentification parameter supported by the server for this use case shall be supplied, such as
1) a meter card (track 2 data) (see NRS 009-4);
2) a meter serial number; or
3) meter configuration data, usually from an old token.

Postconditions

The following apply:

a) the server security module (SM) generates the requested FBE token;
b) an “FBE token” transaction is recorded on the server; and

c) the customer receives the requested FBE token.

Participants

The following apply:

a) the customer;

b) the vending operator;

c) the XMLVend client; and
d) the XMLVend server.

Happy path
The happy path scenario is illustrated in figure 10.

XMLVend XMLVend

i
[D—Customer Identification—m

freReg 3

E fheRass

pll——Takens + Receipk

| Oparator [customes
Massa0as

dane

((Message pairs)

abort

Figure 10 — Free basic electricity happy path
Implementation
This use case is specifically silent on the method of identifying whether a customer qualifies for FBE
or what the amounts are that would apply. These and other parameters are not defined by
XMLVend but are instead managed by the server.

4.5.2.6 End batch
Description
The end batch use case closes an open banking, sales or shift batch as defined in NRS 009-2-2. It

may also be used to open a banking, sales and shift simultaneously.

The “end banking batch” response message may also be used to compile a deposit slip to assist
the vendor.

Desired outcome
The requested batch type is closed and a banking deposit slip is optionally printed.

Preconditions
The requested batch shall be open.

17 NRS 009-6-10:2010

Postconditions

The following apply:

a) the request batch type is closed;

b) the batch summary is returned to the client; and

¢) banking batch closures may optionally allow the vending operator to print a deposit slip.

Participants

The following apply:

a) the vending operator;

b) the XMLVend client; and
c) the XMLVend server.

Happy path
The happy path is illustrated in figure 11.

XMLVend XMLVend
— ' :

Erd Bateh————jpm
———anadBatchReg——-—

f——Lesull message

!
redry ! :
i E“-—ﬁm'l'ﬂqf{:hﬁa.gp_.
? Batch Endede—————+ :
e sfl——=Balch summary=—— -
abort .

Figure 11 — End batch happy path

Implementation

In the event that an exception occurs, it is highly recommended that this use case use the Issue
Advice Use Case, to ensure that client and server have the same understanding of the use case’s
outcome on both server and client. See 4.5.4.2.

45.2.7 Freeissue token

Description
The free issue token is similar to the “purchase credit token” use case except that it is recorded as

a “Free Issue” transaction.

This use case may be used by the utility to issue promotional or marketing credit tokens to
customers at no cost to the customer.

Desired outcome
The customer receives a free issue token.

Preconditions
The following apply:
a) acustomer requests a free issue token;
b) the XMLVend server supports this use case;
c) the operator is authorized to initiate this use case; and
d) an identification parameter supported by the server for this use case shall be supplied, such
as
1) a meter card (track 2 data) (see NRS 009-4);
2) a meter serial number; or
3) meter configuration data, usually from an old token.

NRS 009-6-10:2010 18

Postconditions

The following apply:

a) the server security module generates a credit token;

b) a“free issue token” transaction is recorded on the server; and
c) the customer obtains the requested free issue token.

Participants

The following apply:

a) the customer;

b) the XMLVend client operator;
¢) the XMLVend client; and

d) the XMLVend server.

Happy path
The happy path is illustrated in figure 12.

XMLVend XMLVend

[D—Customer ldantification—pm
—ireaissusReg——y

\ til—{roelzsLiaRes m—
ri—Tokens + Receipt

Oparator [customer

messages

i
i
abort !
'

donea

(Message pairs)

Figure 12 — Free issue token happy path

Implementation

In the event that an exception occurs, it is highly recommended that this use case use the Issue
Advice Use Case, to ensure that client and server have the same understanding of the use case’s
outcome on both server and client. See 4.5.4.2.

4.5.2.8 Meter credit transfer

Description

The meter credit transfer use case is used to reimburse a customer for remaining credit in a
changed out meter. The customer is usually requested to provide an official “meter change out”
form to the operator.

This use case corresponds to the “replacement token” transaction number 003 described in
NRS 009, addendum 07/2001.

Desired outcome
The customer receives a credit token to the value stated on the “meter change out” form.

Preconditions

The following apply:

a) the customer has a “meter change out” form;

b) the XMLVend server supports this use case; and
c) the operator is authorized to initiate this use case.

19 NRS 009-6-10:2010

Postconditions

The following apply:

a) the server security module generates a credit token;

b) a“meter credit transfer” transaction is recorded on the server; and
c) the customer obtains the requested meter credit transfer token.

Participants

The following apply:

a) the customer;

b) the vending operator;

c) the XMLVend client; and
d) the XMLVend server.

Happy path
The happy path is illustrated in figure 13.

XMLVend XMLVend
Customer)
Client Server

(Message pairs)

MeterCreditTransfer—p»,

Meter Change Out
O— R

Form

retry

——meterCreditTransferReqg—p»,

4—meterCreditTransferResp—
4——Tokens + Receipt

l Operator / customer
messages

done

abort

Figure 13 — Meter credit transfer token happy path
Implementation

NOTE The name has changed from “replacement token” since many people confused the name with
variations of the “reprint transaction” (see 4.5.2.14), which is something totally different.

This use case is intended to issue new (i.e. replacement) credit to a customer if a faulty meter with
credit has been exchanged with a new meter.

In the event that an exception occurs, it is highly recommended that this use case use the Issue
Advice Use Case, to ensure that client and server have the same understanding of the use case’s
outcome on both server and client. See 4.5.4.2.

4.5.2.9 Pay account
Description
The pay account use case provides a generic mechanism for a customer to pay an account that the

server supports.

This use case can be used to correspond to the following transactions described in NRS 009,
addendum 07/2001:

NRS 009-6-10:2010 20

a) “fixed charge” number 004;

b) “account payment” number 007;

c) ‘“recovery charge” number 013; and
d) “tariff surcharge” number 014.

Desired outcome
The customer pays the requested account.

Preconditions

The following apply:

a) acustomer has requested to pay an account;

b) the customer has the required identification parameter/s to pay the account, such as
1) the customer meter card (Track2Data) (see NRS 009-4),
2) the meter serial number,
3) the customer name,
4) the customer address;
5) the customer account number, and
6) the customer ID number;

c) the server supports the requested account payment;

d) the XMLVend server supports this use case; and

e) the operator is authorized to initiate this use case.

Postconditions

The following apply:

a) the applicable transaction is recorded on the server; and

b) the customer’s account payment is accepted and a receipt is issued to the customer.

Participants

The following apply:

a) the customer;

b) the vending operator;

c) the XMLVend client; and
d) the XMLVend server.

Happy path
The happy path is illustrated in figure 14.

XMLVend XMLVend

(Message pairs)

restr
D——Pay_Account——ym
; ——payAccReg——m
; ftf—eee A A LR & ey
e ‘o Receipt
S Ciperator [customer

messaqas

o

abaort

Figure 14 — Pay account happy path

21 NRS 009-6-10:2010

Implementation
XMLVend is silent on the validation of the customer or account as this should be handled by the
server functionality.

In the event that an exception occurs, it is highly recommended that this use case use the Issue
Advice Use Case, to ensure that client and server have the same understanding of the use case’s
outcome on both server and client. See 4.5.4.2.

4.5.2.10 Purchase credit token

Description
The purchase credit token use case is used to purchase prepaid credit tokens. The value of the
credit tokens may be expressed as currency value, or in kilowatt-hours, or in kilolitres (as
applicable).

This use case corresponds to the “prepayment sale” transaction number 000 described in
NRS 009, addendum 07/2001.

Desired outcome
The customer pays for and receives the purchased credit token.

Preconditions

The following apply:

a) the XMLVend server supports this use case;

b) the operator is authorized to initiate this use case;

c) the server business rules are met;

d) anidentification parameter supported by the server for this use case shall be supplied, such as
1) a meter card (track 2 data) (see NRS 009-4),
2) a meter serial number, or
3) meter configuration data, usually from an old token.

Postconditions

The following apply:

a) the server security module (SM) generates the requested credit token;
b) a“prepayment sale” transaction is recorded on the server; and

c) the customer obtains the requested credit token.

NOTE The server may also return an FBE token, a free issue token, or a pay account transaction together
with a credit token (if so configured).

Participants

The following apply:

a) the customer;

b) the vending operator;

C) the XMLVend client; and
d) the XMLVend server.

Happy path
The happy path is illustrated in figure 15.

NRS 009-6-10:2010 22

XMLVend XMLVend

(Message pairs)

[D=Purchase Cradit token—pm
—cradi VandRaeg——_»

¢ cradifVendResp

plp——Tokens + Receipt
done Cperator { customer
Messages

abaort

Figure 15 — Purchase credit token happy path
Implementation
The server may also be configured to return more than one token with the requested credit token
under certain circumstances, for example, an FBE token, a free issue token or a pay account
transaction.

In the event that an exception occurs, it is highly recommended that this use case use the issue
advice use case, to ensure that client and server have the same understanding of the use case’s
outcome on both server and client. See 4.5.4.2.

4.5.2.11 Purchase trial credit token

Description
The purchase trial credit token use case functions exactly like the purchase credit token use case,
except that the server does not generate a “valid” credit token.

It can be used to determine the cost of a specific number of required units before committing to the
transaction or it may be used to test the application layer communications between the client and
server.

Desired outcome
The server processes the trial vend transaction exactly like a credit vend transaction except that the
credit token returned will not be “valid”.

Preconditions

The following apply:

a) the XMLVend server supports this use case;

b) the operator is authorized to initiate this use case;

c) anidentification parameter supported by the server for this use case shall be supplied, such as
1) a meter card (track 2 data) (see NRS 009-4),
2) a meter serial number, or
3) meter configuration data, usually from an old token.

23 NRS 009-6-10:2010

Postconditions

The following apply:

a) atransaction may or may not be recorded on the server; and
b) atrial vend response is returned to the client.

Participants

The following apply:

a) the customer;

b) the vending operator;

c) the XMLVend client; and
d) the XMLVend server.

Happy path
The happy path is illustrated in figure 16.

XMLVend XMLVend

D—Customer ldantification—ym
——trialCredifVendRe

ey [} :
i i Cradll VendR e s fm—

rl—Tokens + Receipt - i

dane (Message pairs) |
Oparator [custormeas .

’ “ MESSAgES H '

abort ! !

Figure 16 — Purchase trial credit token happy path

Implementation

The token cipher being returned shall not be a “valid” credit token but it shall still conform to
requested algorithm type (AT) format. Returned STS tokens will be set to “00000 00000 00000
00000". The receipt number shall be set to “0".

4.5.2.12 Reprint deposit slip

Description
The reprint deposit slip use case reprints a “deposit slip” that might have been mislaid or soiled.

Desired outcome
A requested deposit slip is reprinted.

Preconditions
None.

Postconditions
The client reprints the last deposit slip.

Participants

The following apply:

a) the vending operator;

b) the XMLVend client; and
c) the XMLVend server.

Happy path
The happy path is illustrated in figure 17.

NRS 009-6-10:2010 24

O rator xm LVend xm LVend
p-n -::Ilanl: sarvar

IMy—Reprint Deposit Slip—ms Message pall‘s
repintDepSlinReg—

retry

—reprintDepShipResp—,

done i—Reprnted Deposit Slipe—
abort —>esul message

Figure 17 — Reprint deposit slip happy path

Implementation
None.

4.5.2.13 Reprint end batch

Description

The reprint end batch use case reprints the original end batch summary details that might have
been mislaid or soiled. A specific batch or a batch and its “children” may be requested for reprint. If
a specific batch is not requested, the last batch is reprinted.

Desired outcome
The requested end batch summary details are returned to the client. The response may include the
associated deposit slip.

Preconditions
None.

Postconditions

The following apply:

a) the client obtains a reprint of the requested end batch summary details; and
b) the response may include the associated deposit slip.

Participants

The following apply:

a) the vending operator;

b) the XMLVend client; and
c) the XMLVend server.

Happy path
The happy path is illustrated in figure 18.

25 NRS 009-6-10:2010

XMLVend XMLVend

ILUSE‘ Case 51 D‘j Dy—Reprint End Batch—m

repvintEnaBatchReg—pm

relry

i—reprinfEndBalchiRe spm—

Reprinted End Batch
aone < Summary -
abort ——Fesult message— [MESSEQE pairs j

Figure 18 — Reprint end batch happy path

Implementation
None.

4.5.2.14 Reprint transaction

Description
The reprint transaction use case is used to reprint previous server transactions. The number of
returned transactions is determined by the server.

This use case corresponds to the “Reprint” transaction (type 002) described in NRS 009-2-2.

Desired outcome
The customer collects the reprinted transaction receipt and possible token.

Preconditions

The following apply:

a) the XMLVend server supports this use case;

b) the operator is authorized to initiate this use case;

c) if the reprint transaction includes a token, the cancel token use case shall be disabled; and

d) anidentification parameter supported by the server for this use case shall be supplied, such as
1) a meter card (track 2 data) (see NRS 009-4),
2) a meter serial number, or
3) meter configuration data, usually from an old token.

Postconditions

The following apply:

a) a“Reprint” transaction is recorded on the server; and

b) the customer receives a reprinted transaction receipt and possibly a token.

Participants

The following apply:

a) the customer;

b) the vending operator;

c) the XMLVend client; and
d) the XMLVend server.

Happy path
The happy path is illustrated in figure 19.

NRS 009-6-10:2010 26

XMLVend XMLVend

[D—Customer ldantification—pm

reprntReg————_.-

redry

il R & ——

il—Tokens + Receipt:

donea

(Message pairs)

Oparator [customer

' messages

Figure 19 — Reprint transactions happy path

Implementation
If reprints of tokens are allowed, then cancellation of the tokens shall not be allowed.

4.,5.2.15 Start batch

Description
The start batch use case is used to open banking, sales or a shift batch as defined in NRS 009-2-2.

Desired outcome
The request batch type is started.

Preconditions
The parent batch shall have been started.

Postconditions

The following apply:

a) the request batch type is started; and

b) the XMLVend server allocates a batch reference number to the batch as defined in
NRS 009-2-2.

Participants

The following apply:

a) the vending operator;

b) the XMLVend client; and
c) the XMLVend server.

Happy path
The happy path is illustrated in figure 20.

27 NRS 009-6-10:2010

I XMLVend XMLVend

(O——=5tart Batch——»

starBafchiRe e—]

—startBatchResp———

pi——Balch Started
b S LT 1855 5 —

abort i }
i }

done

Figure 20 — Start batch happy path
Implementation
It is recommended that this use case make use of the Issue Advice Use Case to ensure that client
and server have the same understanding of the use case’s outcome on both server and client.

4.5.2.16 Vendor statement

Description

The vendor statement use case assists the vendor to reconcile deposits and sales with the account
balance and available credit by providing the vendor with the latest deposits that have been added
to his credit balance and his remaining credit at a specific time.

Desired outcome
The vendor’s account balance, available credit and vendor statement transactions are returned.

Preconditions
None.

Postconditions
The server returns the account balance, the available credit and the last X number of vendor
statement transactions. X is a server configured value.

Participants

The following apply:

a) the vending operator;

b) the XMLVend client; and
c) the XMLVend server.

Happy path
The vendor statement happy path is illustrated in figure 21.

NRS 009-6-10:2010 28

s XMLVend XMLVend
e client Server

tor
Py——Vendor Statement—s [: Meslﬁage [}airs }
:—L'erJrJrJrS‘!eJ!HmErJch'ﬁ-:;—.r

—vandorStalementResp—

retry

done HVendor Staferment Summarny—

abort H—Fesul message———

Figure 21 — Vendor statement happy path
Implementation
None.

4.5.2.17 Verify token

Description

The verify token use case allows a customer or vending operator to verify the information encoded
on a token. The customer or vending operator will be required to provide the original numeric token
or magnetic token.

Desired outcome
The token is verified.

Preconditions

The following apply:

a) the XMLVend server supports this use case; and
b) the operator is authorized to initiate this use case.

Postconditions
The token is verified and its associated data is returned to the client.

Participants

The following apply:

a) the customer;

b) the vending operator;

c) the XMLVend client; and
d) the XMLVend server.

Happy path
The verify token happy path is illustrated in figure 22.

29 NRS 009-6-10:2010

XMLVend XMLVend

(Message pairs)

D——\Verify ok f——]

VTR e g——

ol VI B et

'-‘—l."_‘xll'l" | N i —

Operator § customer
Messages

dona

Figure 22 — Verify token happy path
Implementation
None.

4.5.3 Meter management use cases
4.5.3.1 Confirm meter details

The confirm meter details use case is used to confirm the meter details and may be used to encode
a meter card.

Desired outcome
The meter details that match the search criteria entered are returned.

Preconditions

The following apply:

a) the XMLVend server supports this use case;

b) the vending operator is authorized to initiate this use case;

c) anidentification parameter supported by the server for this use case shall be supplied, such as
1) a meter card (track 2 data) (see NRS 009-4);
2) a meter serial number; or
3) meter configuration data, usually from an old token.

d) the server business rules are met.

Postconditions
The meter details that match the identification parameter entered are returned to the client.

Participants

The following apply:

a) the customer;

b) the vending operator;

C) the XMLVend client; and
d) the XMLVend server.

Happy path
The confirm meter details happy path is illustrated in figure 23.

NRS 009-6-10:2010 30

| XMLVend XMLVend

D—Meter Identification—fm

abort

1 ——canfirmideienRe
retry ! H
H - ol te R e S —
r—Display ID details - i
done (Message pairs)
Oparator [custormes .
MEsSsaAges i

-

Figure 23 — Confirm meter details happy path
Implementation
None.

4.5.3.2 Customer report fault

Description
The customer report fault use case is used to report a fault to the utility that cannot be solved by the
vending operator, such as a meter malfunction.

Depending on the fault being logged, meter configuration data, as well as customer contact
information may be required.

Desired outcome
The customer logs a fault with the utility and receives a fault reference number.

Preconditions

The following apply:

a) the XMLVend server supports this use case; and
b) the operator is authorized to initiate this use case.

Postconditions

The following apply:

a) the server logs the customer fault; and

b) the customer obtains a reference number for the fault reported.

Participants

The following apply:

a) the customer;

b) the vending operator;

c) the XMLVend client; and
d) the XMLVend server.

Happy path
The customer report fault happy path is illustrated in figure 24.

31 NRS 009-6-10:2010

XMLVend XMLVend

(Message pairs)

o = —

ey

D—Customer Fault Report—s)
——custFauliReportRog—7m]
]

L
L‘—!;I.‘.‘il'FH!|'.|I'FC'H|!.I|:HI'FC'H.'1'I_1—-

bip——F.aferance No.

Operator § customer
¢ Messages

dona

abort

Figure 24 — Customer report fault happy path

Implementation

In the event that an exception occurs, it is highly recommended that this use case use the Issue
Advice Use Case, to ensure that client and sever have the same understanding of the use case’s
outcome on both server and client. See 4.5.4.2.

4.5.3.3 Meter-specific engineering token

Description

This use case is used to request meter-specific engineering tokens, which are defined in
NRS 009 6-7 and are usually requested by a technical operator. These tokens are used to update
the meter configuration information.

The meter-specific engineering tokens in table 2 shall be supported.

Table 2 — Meter-specific engineering token

1 2 3
No. | Token name Token-specific parameters
1 | Set Power Limit Power Limit [nnn.n kW]
2 | Set Phase Unbalance Power Limit [nnn.n kW]
3 | Add Default Credit None
4 | Clear Credit None
5 | Clear Tamper None
6 | Engineering Key Change FROM
SGC [nnnnnn]
KRN [n]
Tl [nn]
TO
SGC [nnnnnn]
KRN [n]
Tl [nn]
7 | Set Water Factor Water Factor [nnnnnn]
NOTE 1 “n” =integer
NOTE 2 See 3.2 for an explanation of abbreviations used in the table.

NRS 009-6-10:2010 32

The “Engineering Key Change” function provides more flexibility than the “Update Meter Key Use
Case” (see 4.5.3.5) as it will allow the technical operator to provide the “TO” information. The “TO”
information is only processed if the meter does not exist on the server. If the meter exists on the
server, then the “TO” information will not be used and server information will be used.

A “set power limit” token may also be generated with a key change, if the power limit is tied to the
specific tariff index. This will assist in maintaining the correct power limit for a specific tariff.

The “add default credit” is a new function. It will create a standard STS credit token but only for a
set pre-configured amount (e.g. 5 kWh). Strict controls should, however, be employed for this
function, as it can be abused.

Desired outcome
The requested meter-specific engineering token is returned.

Preconditions

The following apply:

a) the XMLVend server supports this use case;

b) the technical operator is authorized to initiate this use case;

c) anidentification parameter supported by the server for this use case shall be supplied, such as
1) a meter card (track 2 data) (see NRS 009-4),
2) a meter serial number, or
3) meter configuration data, usually from an old token.

Postconditions
a) the server security module (SM) generates the requested engineering token; and
b) an “engineering” transaction is recorded on the server.

Participants

The following apply:

a) the technical operator;
b) the XMLVend client; and
c) the XMLVend server.

Happy path
The meter-specific engineering token happy path is illustrated in figure 25.

XMLVend XMLVend

My=Meter Specific Engineering—jm I:: Message F]airs
——meatarSpeciflcEngRleq—pm

i —meterSpecificEngResp—|

E Meter Specific Enginesnng
token]

abort —=F sl messa0e———

dornie

Figure 25 — Meter-specific engineering token happy path
Implementation
The server may enable or disable individual functions for certain groups of technical operators, for
example a field technician may be allowed to perform engineering key changes and set maximum
power but may not be allowed to clear credit or create credit tokens.

33 NRS 009-6-10:2010

4.5.3.4 Non-meter-specific engineering token

This use case generates non-meter-specific engineering tokens and is usually requested by a
technical operator. The non-meter-specific engineering tokens are risk-free tokens and may be
entered into any meter. The non-meter-specific engineering tokens are illustrated in table 3.

Table 3 — Non-meter-specific engineering tokens

1 2
Token name

zZ
o

Ol ([N[foojo|(h[W[N|F|O

Test All
Test Breaker

Test Display

Display Power Limit

Display Tariff Index (T1)
Display Key Revision (KRN)
Display Tamper

Display Instantaneous Power
Display Consumed Total
Display Phase Unbalance
Display Version

[Eny
o

Desired outcome
The requested non-meter-specific engineering token is returned to the client for use in any STS
meter.

Preconditions

The following apply:

a) the XMLVend server supports this use case;

b) the operator is authorized to initiate this use case; and
c) the server business rules are met.

Postconditions
The requested non-meter-specific engineering token is returned.

Participants

The following apply:

a) the technical operator;
b) the XMLVend client; and
c) the XMLVend server.

Happy path
The non-meter-specific engineering token happy path is illustrated in figure 26.

NRS 009-6-10:2010 34

IML‘Uend IML‘Jend
i

b—M(:rl-ll'Ek—!'- peciic Engineearin :I_.. Message paws
;—.'lc,n!.-f&-n'erﬂ,rm:;l.r:;Er._.;F:'h:,l—.v

'1-r.'<:-.riMe.'e.'S|nr-.*r:r'l'.'r:f-.'lf_;lHr-z-ﬁp—.
Mon-meter-Specific Engineearing
done i token]
abort B ST 17155 B B

Figure 26 — Non-meter-specific engineering token happy path

Implementation
None.

4.5.3.5 Update meter key data

Update meter key data is a new function: the original key change function is now called
“engineering key change” to differentiate it from “update meter key data”.

The update meter key data use case is used to update one or more meter key data items for a
specific meter, i.e. Supply Group Code (SGC), Key Revision Number (KRN) and tariff index (TI). It
implements the standard key change process as defined by STS but the only difference being that
the end state of the change is always the same as the data on the server. The “From” meter key
data is obtained from a meter card or an old token. The “To” meter key data is not specified by the
client as it is obtained from the server. This significantly reduces the risks associated with vendors
producing key change tokens.

This use case is manually triggered from the client. It usually follows an unsuccessful purchase
credit use case, with a fault response, reporting a mismatch between the server and supplied meter
data items.

Desired outcome
Meter key data for a specific meter is updated to be the same as the server data.

Preconditions

The following apply:

a) the XMLVend server supports this use case;

b) the operator is authorized to initiate this use case;

c) the server business rules are met;

d) an identification parameter supported by the server for this use case shall be supplied
containing the “from” meter data items, such as
1) a meter card (track 2 data) (see NRS 009-4),
2) meter configuration data, usually from an old token.

Postconditions

The following apply:

a) the server security module generates the required Key Change Token (KCT) set;

b) the transaction is recorded on the server;

c) the customer obtains the KCT set that will be used to update the meter key data to match the
server meter key data; and

d) the customer’s meter card data is also updated.

35 NRS 009-6-10:2010

Participants

The following apply:

a) the customer;

b) the technical operator;
c) the XMLVend client; and
d) the XMLVend server.

Happy path
The update meter key data happy path is illustrated in figure 27.

XMLVend XMLVend

b—‘d-:-'.u;-r |dent fiu;a'.i:wr—p: I:- MBSSEQE palrs-] E
l——pipdateMetartie R og—m

a—updateMseierkeyRe sp—,

i}—pdate Meter Card

Tokers and Operatar |
| Customer messagas

done

Figure 27 — Update meter key data happy path

Implementation
This use case is manually triggered from the client. It usually follows an unsuccessful Purchase
Credit Use Case, with a fault response, reporting a mismatch between the server and supplied
meter data items.

It can also be used when a credit token was issued from the server data, which may be different
from the configuration of the meter. The update meter key use case will be used to correct the
meter configuration so that the meter would accept the original credit token and also end with the
correct configuration as defined by the server.

It is highly recommended that vendors who perform this function also have the capability to update
the customer’s meter card.

4.5.4 Base use cases

4.5.4.1 General

At the time of publication of this part of NRS 009, there was only one base use case. See 4.5.4.2.
4.5.4.2 Issue advice

Description

The Issue Advice Use Case provides three possible mechanisms to ensure that the client and
server share the same understanding of the outcome of a use case. This use case is required when

an exception occurs while a transaction is being processed, such as communication that fails
between a client and a server after a request has been sent and the client is waiting for a response.

NRS 009-6-10:2010 36

Three advice mechanisms have been defined as follows:
a) explicit use case confirm and reversed — a use case outcome is only finalized once it has been
explicitly confirmed or reversed by the client;

NOTE Confirmation requests may include the payment method of the preceding use case.

b) implicit use case confirm and explicit reverse — a use case outcome is always assumed final,
unless it is reversed by the client with a “Reversal Advice” message; and

c) advises last response — a use case outcome is always assumed final and cannot be reversed.
Clients would have to determine if the use case has been processed by the server by issuing
an “Advise Last Response” message.

Desired outcome
The client and server share the same understanding of the outcome of a use case.

Preconditions
The following apply:

a) explicit use case confirm and reverse;
1) confirmation messages are issued for all response messages, and
2) reversal messages are issued for all use cases that cannot be finalized on the client;

b) implicit use case confirm and explicit reverse; and
1) reversal messages are issued for all use cases that cannot be finalized on the client;

c) advise last response.
1) advice last response messages are issued when the client is uncertain if the server has
processed its request message.

Postconditions
The following postconditions can exist depending on the use case scenario implemented

a) the use case is explicitly confirmed or reversed;

b) the use case is implicitly confirmed or explicitly reversed; and

c) the use case is implicitly confirmed or, if the client is in doubt, the last response of the server is
requested. If the use case was successfully completed on the server, the response message
will be resent. However, if the transaction was not successfully completed on the server, an
XMLVend fault message will be returned and the client can safely repeat the transaction.

Participants

The following apply:

a) the XMLVend client; and
b) the XMLVend server.

Happy path
The use case scenarios are as follows:

a) Explicit confirm and reverse: The applicable use case is only considered successful or
unsuccessful when the client explicitly sends an advice (confirm) or advice (reversal) message
respectively. This scenario is referred to as Explicit Use Case Confirm and Reverse. In this
scenario the server depends on the client.

The explicit confirm and reverse happy path is illustrated in figure 28.

37 NRS 009-6-10:2010

| XMLVend XMLVend

((Message pairs)

P—F.I'r:h:—]!—ii—! Credit I-:;kHr'—.]_ ditVendR
creditVen erqo—_pl

i radiVenaRas

retry

) —v'-.h'.I'L-'.'I'ZEHH!’,‘{[:I’JHI’I-I'.’H_,'—.I
| Tokens + Receipt
donea Qperator / customer

MEssanes

]
ri—adviceResp{ Confinm j—,

p—FU'mass Credit t-:uk.er—b-l_
craditVandR

chient Timeout %cmm'tvgndﬁazj

Y
E—a-:.l’wl;-e:‘Req."R:—.l warsal)

Lf—Advise Customar——

abort

ratry

abort

|
1
|
ﬁ-ﬁl.r'f:c'.'?aspr.'?nl.r'crsﬁfj—!

Figure 28 — Explicit transaction confirm and reverse happy paths

b) Implicit confirm and explicit reverse: The server considers an applicable use case
successful after it has sent the use case response message, unless indicated otherwise by a
client with an advice (reversal) advice message. This scenario is referred to as Implicit Use
Case Confirm and Explicit Reverse and is sometimes referred to as “negative confirmations”.
In this scenario the server also depends on the client.

The implicit confirm and explicit reverse happy path is illustrated in figure 29.

NOTE The successful use case response from the server is not confirmed explicitly.

NRS 009-6-10:2010 38

| XMLVend XMLVend

(Message pairs)

[O—Furchase Credit token—jmy
- —creditVand Reg—yp

ifp———craditVendRas——

retry

if——Tokens + Receipt
daone Operator / customer
messanes

abort

D—Purchase Credit token—m

creditVend Reg——e

client Timeout E><—Uﬂﬂ'ﬂ'h"&ﬂdﬁesp—-

ratry

——adicaRag{Ravarsall—m
abort b Al S LIS 0T

\—advice Resp[Reversal)

i

Figure 29 — Implicit confirm and explicit reverse use case happy path

Advise last response: The server always considers an applicable use case successful after
it has sent the use case response message. However, if the client does not receive a
response and therefore cannot be sure of the success of the use case on the server, it
requests the server to resend the last response message using the advice (lastResponse)
message.

If the use case was successfully completed on the server, the response message will be
resent. However, if the transaction was not successfully completed on the server, an
XMLVend fault message will be returned and the client can repeat the transaction.

In this scenario the server does not depend on the client. It is the client’s responsibility to
ensure responses are received for all requests (by verifying the message IDs). If a request
has not been responded to for a use case, the customer has to request an Advise Last
Response. If a response is received, the vendor can then issue it to the customer or
alternatively keep it for a manual reconciliation process.

An example sequence diagram using the advise last response mechanism is illustrated
below.

NOTE The successful use case response from the server is not confirmed explicitly as in (b).

39 NRS 009-6-10:2010

XMLVend XMLVend
client server
b—PI.Iill'ﬂ-IHl—."h)hvl'—'i- i
craditlandiRo gy

[}
I T
I 1
i i
retry : client Timeaout 1 /é—i-'":‘”-'l"-"'&'”ffﬁﬁf‘xf-‘—'
i i |
I 1 1
I 1 1
] 1 '
] '
I 1
I ' . 1
sdviceReq(LastResponse
: . SACWTCET i i 1 _,I_'..i
I 1 i
I 1
]]
i 'aq-—ﬁ:h*l'r:HHr-?.l;p.’u' Fi."-il'l"’.’ﬁ."-ill':l:'l'i."-iﬁ"__l—i
abort Hp—Tckans to Customei——
OR

token
retained by vendor for :
manual reconciligtion !

Figure 30 — Advise last response happy path
Implementation
Use case scenarios (a) and (b) can potentially be abused for the following reasons:

a) XMLVend clients can issue fraudulent advice (reversal) requests;

b) it is the responsibility of the client that once an advice (reversal) message is sent, the customer
is not presented with any data in the form of a receipt or verbal communication; and

c) the server depends on decisions made by the client.

If use case scenarios (a) and (b) are implemented by utilities, the client implementations shall be
strictly managed, with extensive testing and change control processes.

Use case scenario (c) offers the least risk, since the server does not depend on the client. The
client is not allowed to issue advice (reversal) messages and, if they are issued, the messages shall
be ignored by the server.

The advice message is system generated and not user initiated. The advice messages shall be
delivered, which need not be in real-time. That is, an Issue Advice response message shall be
received for the transaction to be completed. The use case can be implemented as follows:

1) locking the user interface until the exception scenario has been resolved; and
2) using a message queue to ensure guaranteed delivery of the advice messages.

Utilities will need to decide which “issue advice” scenario best suits their implementation. It is
important that the decided approach is understood upfront by both client and server suppliers to
ensure interoperability. Utilities may also decide to implement different “issue advice” scenarios for
different vendor implementation models (see 4.1).

4.6 Fault and exception scenario handling
4.6.1 General
The XMLVend use cases covered in 4.5 specify happy path sequence diagrams for the request and

response message pairs. The happy path is followed when the use case is successful, i.e. when
the desired outcome is achieved. The happy path assumes the following to be true:

NRS 009-6-10:2010 40

a) the client is able to send the request, the server able to receive the request, process it and
send the response to the client. The client is able to receive the response message, and
successfully process it; and

b) an application layer fault scenario does not exist while processing a request, such as a server
configured business rule being violated.

This subclause describes how XMLVend addresses fault scenarios when the happy path cannot be
followed.

4.6.2 Advice messages

4.6.2.1 As described in 4.5.4, the “Issue Advice” use case assists with communication-related fault
scenarios. This scenario, when the client does not receive a response message, places it in an
uncertain state since it is unsure if its request has been processed by the server or not. Two advice
messages message pairs are provided to assist in resolving this fault scenario:

a) reversal advice; and
b) advise last response.

4.6.2.2 The “Reversal Advice” message reverses the transaction on the server. The “Reversal
Advice” message has the following risks:

a) the client can issue fraudulent reversal requests; and
b) the server depends on decisions made by the client.

The “advise last response” message requests that the server resend its last response message.
The resent message receipt is then handed to the customer or kept by the vending operator for
manual reconciliation. If the request was not processed, then an XMLVend fault response
message, “LastResponseEx”, is sent as described in 4.7.3.9.

The “advise last response” message offers the least risk, since the server does not depend on
client decisions.

4.6.3 Fault response messages

Server application fault scenarios occur while processing a request message; this may prevent the
server from continuing with the happy path of the use case. In this scenario the server shall respond
with an appropriate fault response message to the client. The “XMLVend fault response message”
is defined to communicate fault descriptions to the client.

Three main categories of fault response messages have been defined as follows:
a) XMLVendFaultEx — These fault scenarios are XMLVend protocol related;

b) SystemEx — These fault scenarios are server system failure related, such as, “Security Module
Server not responding. Please try later.” As these fault scenarios are implementation specific, it
is up to the user and server supplier to define these, as an extension of “SystemEx”; and

c) BusinessRuleEx — These fault scenarios are business-rule related, such as “Meter Blocked”.
Some generic business rule faults have been defined in XMLVend, however, implementation of
specific faults shall be defined by the utility and server supplier as an extension of
“BusinessRuleEx".

The fault response message also provides for operator- and customer-specific fault messages to be
returned to the client. Utilities will define these messages, such that the correct fault description
information is conveyed and some guide is given to operators on how to resolve the fault scenario.
See annex A where examples of these messages are provided for the fault scenarios defined in
XMLVend.

41 NRS 009-6-10:2010

4.7 Use case class diagrams
4.7.1 General

Subclause 4.5 describes the use case happy path with the corresponding request and response
messages. This subclause presents the class diagrams for the request and response messages
that realise the use case. The class diagrams document the structure and content of each message
pair based on the business requirements for each use case. The class diagrams are presented in a
technology neutral and user accessible Unified Modelling Language (UML) notation®.

Each class diagram in this subclause has a shaded (red) class, which represents the root class of
the diagram. Some diagrams may omit some related classes; this has been done to simplify the
diagram but does not indicate that the related classes are not applicable in the message realization.
In most cases the diagrams can be read in top-down fashion, except where the complexity of the
diagram prevents this layout. All class and field names use the Camel naming convention. Class
names are also prefixed with their domain name.

4.7.2 Interpreting optional fields

The class diagrams specify both mandatory (“[1]") and optional (“[0]") fields. Mandatory request
fields represent the minimum fields required to process the request message on the server.
Mandatory response fields represent the minimum fields required by the client to process the
response message.

Optional request fields provide additional data to the server. The server can choose to process or
not to process the optional fields. Optional response fields provide additional data to the client, the
client can choose to process or not to process the optional fields.

Specific implementations may, however, redefine optional request fields as mandatory, when the
data contained in an optional field is required to successfully process the request on the server.
Servers should reject all request messages that do not contain the required optional fields with an
appropriate fault response message. Utilities can review their current CDU user interfaces to
identify optional fields that need to be redefined as mandatory.

Optional response fields can also be redefined as mandatory when the specific implementation
requires optional response fields to be processed by the client. Clients will be required to process
the optional fields if present in the response message. Utilities can review their current prepayment
receipts to identify optional fields that need to be redefined as mandatory. The redefinition of
optional fields as mandatory will be specified by each utility in its implementation-specific use case
descriptions document, and communicated to server and client suppliers.

4.7.3 Request and Response Message Class Diagrams

4.7.3.1 Cancel token

The cancel token request message class diagram is illustrated in figure 31.

3) The class diagrams are defined using standard UML notation. A quick reference to the UML notation used
in this subclause is provided in annex B.

NRS 009-6-10:2010 42

Base::AuthCred
1 1 +authCred +opName : OpName
- +password : Password
Base::DevicelD T T Base::BaseReq J 0.1 |tnewPassword : Password
+terminallD 1
Q +clientlD AF 1 1 +msgID
Base::EANDevicelD Base::GenericDevicelD Base::MsgID

Base::BaseVendReq

+ean : EAN +id : Msg 1 +dateTime : MsglDDateTime

+uniqueNumber : MsglDUniqueNumber

1 +resource

Base::Resource

+idMethod

AN Base::VendIDMethod

Base::Gas Base::Water | | Base::Electricity| |Base:ConnectionTime| |Base::CurrencyResource

1
1 +token
Base::Token

Figure 31 — Cancel token request message class diagram

The cancel token response message class diagram is illustrated in figure 32.

43 NRS 009-6-10:2010

Base::BaseResp

+serverlD : DevicelD
+clientID : DevicelD
+terminallD : DevicelD
+reqMsgID : MsgID
+respDateTime : dateTime
+dispHeader : Msg +custVendDetail
+operatorMsg : Msg
+custMsg : Msg

Base::CustVendDetail
0.1 +dayslLastPurchase : int

% Base::UtilityDetai

- +util
Base::BaseVendResp @ — utility +name : OrganisationName
+address : Address

1 +taxRef : TaxRef

+vendor

Base::VendorDetail

+name : OrganisationName

0.1 +address : Address

H

+clientStatus

Base::ClientStatus

+availCredit : Currency

1
0.1 +batchStatus

1 +origTx Base::BatchStatus

+banking : BatchStatusType
Revenue::CreditVend Tx +sales : BatchStatusType
+shift : BatchStatusType

Figure 32 — Cancel token response message class diagram

NRS 009-6-10:2010

4.7.3.2 Check batch to

tals

44

The check batch totals request message class diagram is illustrated in figure 33.

Base::BaseReq

Revenue::TotalAllIBatchesReq

Revenue::TotalShiftBatchReq

Revenue::TotalSalesBatchReq

Revenue::TotalBankBatchReq

Figure 33 — Check batch totals request message class diagram

The check batch totals response message class diagram is illustrated in figure 34.

Base::BaseResp

+serverlD[1] : DevicelD
+clientID[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

+totalBatch

Revenué::Batch

+started[1] : dateTime
+ended[1] : dateTime
+batchTot[1] : Currency

Figure 34 — Check batch totals response message class diagram

45 NRS 009-6-10:2010

4.7.3.3 Confirm customer details check batch totals

The confirm customer details request message class diagram is illustrated in figure 35.

Base::AuthCred
+opName : OpName
1 1 +authCred [+password : Password
Base::DevicelD Base::BaseReq +newPassword : Password
1 1
+clientlD 1 0.1
+terminallD 1 +msgID
Base::MsgID
- n - " " +dateTime : MsglDDateTime
Base::EANDevicelD Base::GenericDevicelD 1 |+uniqueNumber : MsgiDUniqueNumber
+ean : EAN +id : Msg

1 +idMethod

Base::IDMethod

AN ‘
Base::CustIDMethod
Base::VendIDMethod
1 -
} . 1 +custldentifier
+meterldentifier
Base::Meterldentifier Base::Custidentifier
AN AN
Base::CustAddress Base::CustIDNumber
+address[1] : Address +idNo[1] : IDNo
Base::MeterConfig
Base::MeterNumber
+msno : MSNO
Base::CustAccountNo
Base::CustName
A +accNo[1] : AccountNo " TR N
+organisation[0..1] : OrganisationName name[1] : PersonName
Base::MeterCard Base::MeterDetail

+track2Data : NRSTrack2Data +msno : MSNO

+sgc : STSSupplyGroupCode
+krn : STSKeyRevNo

+ti : STSTariffindex

Figure 35 — Confirm customer details request message class diagram

NRS 009-6-10:2010 46

The confirmed customer details response message class diagram is illustrated in figure 36.

Base::BaseResp

+server|D[1] : DevicelD
+clientID[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

* +confirmCustResult

Base::CustDetail

Revenue::ConfirmCustResult +name[1] : PersonName
+address[1] : Address
+contactNo[0..1] : ContactNo

+accNo[0..1] : AccountNo

. . +locRef[0..1] : LocRef
1 1 1
0.1 +meterDetail 1 +custVendConfig)
1 +custVendDetail
Base::MeterDetail Revenue::CustVendConfig

Base::CustVendDetail

+msno[1] : MSNO

+sgc[1] : STSSupplyGroupCode
+krn[1] : STSKeyRevNo

+ti[1] : STSTariffindex

+canVend[1] : bool
+fbeDue[0..1] : bool
+maxVendAmt[0..1] : Currency
+minVendAmt[0..1] : Currency

+daysLastPurchase[0..1] : int

1 +meterType

Base::MeterType

+at : STSAT
+t: STSTT

Figure 36 — Confirm customer details response message class diagram

4.7.3.4 Confirm meter details

a7

NRS 009-6-10:2010

The confirm meter details request message class diagram is illustrated in figure 37.

Q +terminallD

Base::EANDevicelD

Base::GenericDevicelD

+ean[1] : EAN

+id[1] : Msg

Base::IDMethod

AN

Base::AuthCred

1 1 +authCred
Base::DevicelD <& Base::BaseReq >
1 1
+clientlD 1 0.1
S 4 >
1

+opName[1] : OpName
+password|0..1] : Password
+newPassword|[0..1] : Password

1 +msgID

Base::MsgID

+dateTime[1] : MsglDDateTime
+uniqueNumber[1] : MsgIDUniqueNumber

1 +idMethod

Base::VendIDMethod

% & +meterldentifier

Base::Meterldentifier

AN

|

Base::MeterNumber

+msno[1] : MSNO

|

Base::MeterConfig

JAN

Base::MeterCard

+track2Data[1] : NRSTrack2Data

Base::MeterDetail

+msno[1] : MSNO

+krn[1] : STSKeyRevNo
+ti[1] : STSTariffindex

+sgc[1] : STSSupplyGroupCode

ZT LA

1 +meterType

Base::ExtMeterDetail

Base::MeterType

+useSTTI[O..1] : bool
+track2Datal0..1] : NRSTrack2Data

+at[1] : STSAT
+tt[1] : STSTT

Figure 37 — Confirm meter details request message class diagram

NRS 009-6-10:2010 48

The confirm meter details response message class diagram is illustrated in figure 38.

Base::BaseResp

+serverlD[1] : DevicelD
+clientID[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

1 +confirmMeterResult

Meter Management::ConfirmMeterResuIt

1 +meterDetail

Base::MeterDetail

1 +msno[1] : MSNO

’+sgc[1] : STSSupplyGroupCode
+krn[1] : STSKeyRevNo

+ti[1] : STSTariffiIndex

1 +meterType

Base::MeterType

+at[1] : STSAT
+tt[1] : STSTT

Base::ExtMeterDetail

+useSTT[0..1] : bool
+track2Data[0..1] : NRSTrack2Data

Figure 38 — Confirm meter details response message class diagram

49 NRS 009-6-10:2010

4.7.3.5 Collect FBE token

The collect FBE token request message class diagram is illustrated in figure 39.

Base::BaseVendReq

Figure 39 — Collect FBE token request message class diagram

The collect FBE token response message class diagram is illustrated in figure 40.

Revenue::CreditVendResp

Figure 40 — Collect FBE token response message class diagram

NRS 009-6-10:2010 50

4.7.3.6 Create deposit slip

The create deposit slip request message class diagram is illustrated in figure 41.

Base::BaseReq

Figure 41 — Create deposit slip request message class diagram

51 NRS 009-6-10:2010

The create deposit slip response message class diagram is illustrated in figure 42

Base::BaseResp

+serverlD[1] : DevicelD
+clientID[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

1

1 +depSlip

Revenue::DepositSIip

+amt[1] : Currency
+bankingRefNo[1] : RefNo
+header[0..1] : Msg

1
0.1 +beneficiary

Revenue::Beneficiary

+accName[1] : PersonName
+accNo[1] : AccountNo
+bankName[1] : OrganisationName
+branchCode[1] : BranchCode
+bankRegNo[1] : BankRegNo

Figure 42 — Create deposit slip response message class diagram

NRS 009-6-10:2010

4.7.3.7 Customer report fault

52

The customer report fault request message class diagram is illustrated in figure 43.

Base::BaseReq

+custFaultReport +custDetail

Meter Management::CustFaultReport Base::CustDetail

+desc[0..1] : Msg

+name[1] : PersonName

+address[1] : Address

+contactNo[0..1] : ContactNo

% +accNo[0..1] : AccountNo

+locRef[0..1] : LocRef

Meter Management::NetworkFaultReport

Meter Management::MeterFaultReport

1 +meterinfo

Base::VendIDMethod

Figure 43 — Customer report fault request message class diagram

53

NRS 009-6-10:2010

The customer report fault response message class diagram is illustrated in figure 44.

Base::BaseResp

+serverlD[1] : DevicelD
+clientID[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

Base::CustDetail

+name[1] : PersonName
+address[1] : Address
+contactNo[0..1] : ContactNo
+accNo[0..1] : AccountNo
+locRef[0..1] : LocRef

+custDetail

1
1

+custFaultLog

Meter Management::CustFaultLog

+refNo[1] : RefNo

1 +faultReport

Meter Management::CustFaultReport

+desc|0..1] : Msg

AN

Meter Management::MeterFaultReport

Meter Management::NetworkFaultReport

Figure 44 — Customer report fault response message class diagram

NRS 009-6-

4.7.3.8 End b

10:2010

atch

54

The end batch fault request message class diagram is illustrated in figure 45.

Base::BaseReq

Revenue::EndAllBatchesReq

Revenue::EndShiftBatchReq

Revenue::EndSalesBatchReq

Rev

enue::EndBankBatchReq

Figure 45 — End batch fault request message class diagram

The end batch fault response message class diagram is illustrated in figure 46.

1 +units

1

Revenue::ResourceTotal

\/ [+descl1] : Msg

Base::Units

+value[1] : decimal
+siUnit[1] : ResourceSIUnit

Base::BaseResp

[+custMsg[0..1]

+serverID[1] : DevicelD
l+clientiD[1] : DevicelD
l+terminallD[1] : DevicelD
l+reqMsgID[1] : MsgID
l+respDateTimel[1] : dateTime
l+dispHeader(0..1] : Msg
[+operatorMsg[0..1] : Msg

Msg

1
1

+endBatch

Revenue::Batch

0.1 +otTax

+started[1] : dateTime

+resTot

ded[1] : dateTime
+batchTot[1] : Currency

\

Base::Tax
[+ami[1] : Currency

A

!
Revenue::BankBatch

R

+seqNo[1] : ShiftSalesBatchSeqNo

[+seqNo[1] : ShiftSalesBatchSeqNo

[+seqNo[1] : BankBatchSeqNo
4] ¢
I

[I 1 +firstTxSeqNo[0..1] : TxSeqNo
Ry : icityTotal R Total R urrencyTotal [+lastTxSeqNo[0..1] : TxSeqNo [0..1] :
0.1 +batchReport /P
0.z ¢ A)
- +shlesBatghy Ordepsl 1
R ~GasTowa] [R TimeTotal Revenue::BatchReport epStp :
B \/
Revenue::DepositSlip 0.1 +beneficiary
!) +am([1] : Currency
0. +payTypeTotal | +onera.—g—\|tannta\ - #Total |, pankingRefNo[1] : RefNo —
+header[0..1] : Msg 1 Revenue::Beneficiary

Revenue::PayTypeTotal

Revenue::OperatorTotal

Revenue::TxTotal

+amt[1] : Currency

+desc(1] : Msg +amt[1] : Currency

[+opName[1] : OpName

[ramt[1] : Currency
+desc(1] : Msg

é}

[+accName[1] : PersonName
[+accNof1] : AccountNo
[+bankName[1] : OrganisationName
[+branchCodel[1] : BranchCode
+bankRegNo[1] : BankRegNo

1

Revenue::NormalSaleTotal

Revenue::CancellationTotal

Revenue::AccPaymentTotal

Revenue::MeterCreditTransferTotal

Revenue::CashTotal Revenue::CreditCardTotal

Revenue::OtherTotal

Revenue::FreelssueTotal

Revenue::ChequeTotal

Revenue::DebitCardTotal

Re

yTotal| R

iceChrgTotal

Figure 46 — End batch fault response message class diagram

55 NRS 009-6-10:2010

4.7.3.9 Fault response message

The fault response message class diagram is illustrated in figure 47.

Base::BaseResp

+serverID : DevicelD
+clientID : DevicelD
+terminallD : DevicelD
+reqMsglID : MsgID
+respDateTime : dateTime
+dispHeader : Msg
+operatorMsg : Msg
+custMsg : Msg

1 +ault

Base::Fault
+desc : Msg

Base::SystemEx Base::XMLVendFaultEx

Base::BusinessRuleEx

AN

Base::UseCaseSupportEx Base::XMLVendSchemaEx Base::ConfirmationEx

Base::ClientIDSSLEx Base::LastResponseEx Base::ReversalEx

Figure 47 — Fault response message class diagram

NRS 009-6-10:2010 56

The specializations of the BusinessRuleEx class are illustrated in figure 48.

Base::BusinessRuleEx

JAN
Base::BlockedMeterEx Base::ClientIDAuthorisationEx
Base::FBEEx Base::ConfirmCustomerEx
Base::LatestK RNEXx Base::CancelEx

Base::CheckBatchTotalEx
Base::MSNOCheckDigitEx

Base::DebtEx
Base::RequestAuthorisationEx

Base::EndBatchEx
Base::SGCAuthorisationEx

Base::InsufficientMeterDataEx
Base::STSDataEx

Base::ReprintDepositSlipEx
Base::VendorCreditEx

Base::ReprintEndBatchEx

Base::ServiceChrgEx

Base::ReprintEx
Base::UnknownMeterEx

Base::RequireMeterCardEx
Base::UnknownMeterUpdateMtrKeyEx

Base::StartBatchEx

Base::UpdateMtrKeySameEx

Base::VerifyTokenEx

Figure 48 — Fault response message — BusinessRuleEx class diagram

57 NRS 009-6-10:2010

4.7.3.10 Free issue token

The free issue token request message class diagram is illustrated in figure 49.

Base::BaseVendReq

Figure 49 — Free issue token request message class diagram

The free issue token response message class diagram is illustrated in figure 50.

Revenue::CreditVendResp

Figure 50 — Free issue token response message class diagram

NRS 009-6-10:2010

4.7.3.11 Issue advice

58

The issue advice request message class diagram is illustrated in figure 51.

Base::DevicelD

1 1 +authCred
Base::AuthCred
Base::! eq
1 1 +opName : OpName
+clientlD 1 0.1 +password : Password
+newPassword : Password
+terminallD 1

Base::EANDevicelD

Base::GenericDevicelD

+ean[1] : EAN

+id[1] : Msg

+msgID

+adviceReqMsgID

Base::MsgID

+dateTime[1] : MsgIDDateTime
+uniqueNumber[1] : MsglDUniqueNumber

Base::ConfirmationAdviceReq

Base::ReversalAdviceReq

Base::LastRespAdviceReq

1

0.1 +payType

Base::PayType

Figure 51— Issue advice request message class diagram

The issue advice response message class diagram is illustrated in figure 52.

Base::BaseResp

+serverID[1] : DevicelD
+clientID[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg >
+custMsgl[0..1] : Msg

+lastResponse

1 +reqMsgID
+adviceReqMsgID aMsg

Base::MsgID

+dateTime[1] : MsgIDDateTime
+uniqueNumber[1] : MsgIDUniqueNumber

Base::ConfirmationAdviceResp

Base::ReversalAdviceResp

Base::LastRespAdviceResp

+txConfirmed[1] : bool

+txReversed[1] : bool

Figure 52 — Issue advice response message class diagram

4.7.3.12 Meter credit transfer token

59 NRS 009-6-10:2010

The meter credit transfer request message class diagram is illustrated in figure 53.

Base::BaseVendReq

1 +chgOutUnits

1 +creditTransferDetail

Revenue::PurchaseValueUnits

Revenue::CreditTransferDetail

+oldMSNQJ[1] : MSNO
+refNo[0..1] : RefNo

Figure 53 — Meter credit transfer request message class diagram

The meter credit transfer response message class diagram is illustrated in figure 54.

Base::BaseVendResp

1 +creditTransferDetail 1 +creditTransferTx

Revenue::Cred i'tTran sferDetail

+0ldMSNO[1] : MSNO
+refNo[0..1] : RefNo

Revenue::CreditVendTx

Figure 54 — Meter credit transfer response message class diagram

NRS 009-6-10:2010

60

4.7.3.13 Meter-specific engineering token use case

The meter specific engineering token request message class diagram is illustrated in figure 55.

Base::BaseVendReq

Meter Management::PwrLmtReq Meter Management::DefCreditReq

Meter Management::ClearTamperReq Meter Management::SetWaterFactorReq

+waterFactor[1] : WaterFactor

Meter Management::PhUnbalReq

Meter Management::ClearCreditReq

Meter Management::EngKCTReq

1 +pwrLmt 1 +pwrLmt

Base::PwrLmt

+value[1] : PwrLmtValue
+siUnit[1] : ResourceSIUnit = kW

1
1 +kctData

Base::KCTData

+fromSGC[1] : STSSupplyGroupCode
+fromKRN[1] : STSKeyRevNo
+fromTI[1] : STSTariffindex
+t0SGC[1] : STSSupplyGroupCode
+toKRN[1] : STSKeyRevNo

+toTI[1] : STSTariffindex

Figure 55 — Meter-specific engineering token request message class diagram

The meter-specific engineering token response message class diagram is illustrated in figure 56.

Base:MeterDetail

Base: MeterSpecific Tokenfssue

+meterDetail msno[1] 0 MSHO
Hsgo[1] - STESupplyGroupCode
.J Fkm[1] : STSKeyRewMNo

Fdesc[1] - Msg

1 L1i[1] @ STSTarifflndesx

Base:BaselVendResp

AN

1 +token

Base: Token

Meter Management: DefCreditResp

Meter Management:: SetWaterFactorResp

[2

1 +defCradit

Basa:CreditTokenlssua

[Frescurce|1] - Resource

1 :

Base: KCTokenlssue

l

1

1 +waterFactor

Meter Managemeant::EngKCTResp

Meter Management-ClearTamperResp

Base:WaterFactorTokenlssue

+waterFactor[1] | WaterFactor

+

1 1 +clearTamper

+angkCToky

Meter Management: PwrbLmtResp

Meter Management: ClearCreditResp

BasaClearTamperTokenlssue

r -

[—

1 L)
1 +gcifhata
™) \

Base:KCTData

+HromSEC[1] - STSSupplyGroupCode 0.1
HromEIRM[1] @ STSKeyRewvMNo
+HromTI[1] : STSTarfflndex
+HoSGC[1] @ STSSupplyGrouplCode
+toKRM[1] : STSKeyRewMNo
+HoTI[1] - STSTariffindex

L3

1

Meter Management:: PhUnbalResp

+pwrbmiToern parbmiToken

) ™
Base: PwrLmtTokenlssuepwrbmit
.
-

+

4 \l/ +clearCredit

Base: ClearCreditTokenlssue

1
Base: PwrLmit
walua[1] - PuwrbmtWalue

t +phlUnbalance

11 Base:PhUnbalTokenlssue

HsiUnit]1] : ResourceSIUnit = kKW

“+pawrL]

For KCT token Issues, the token will be a KCTaken

Base::MeterSpecificEng Tokemnlssue

Figure 56 — Meter-specific engineering token response message class diagram

T9

0T-9-600 SYN

0To¢

NRS 009-6-10:2010 62

4.7.3.14 Non-meter-specific engineering token

The non-meter-specific engineering token request message class diagram is illustrated in figure 57.

Base::BaseReq

Base::MeterType

+at[1] : STSAT
+t[1] : STSTT

+meterType

Meter Management::DispVerReq

Meter Management::TestAllReq

Meter Management::DispPhUnbalanceReq

Meter Management::TestBreakerReq

Meter Management::TestDisplayReq Meter Management::DispConsTotReq

Meter Management::DispPwrLmtReq

Meter Management::DispInstPwrReq

Meter Management::DispTIReq

Meter Management::DispTamperReq

Meter Management::DispKRNReq

Figure 57 — Non-meter-specific engineering token request message class diagram

63 NRS 009-6-10:2010

The non-meter-specific engineering token response message class diagram is illustrated in
figure 58.

Base: BaseResp

[tserverlD[1] - DevicalD
clientlD[1] : DevicelD
+erminallD[1] : DevicelD
[+reqMsgID[1] - MsgID
[trespDateTime[1] : dateTime
[reispHeader(0..1] - Msg

Meter Management. TestAllResp Meter Management DispVerResp [roperatorisg[D. 1] : Msg
[+custhsglo. 1] : Msg
1 +HestAll
—# . .—“\I/ +displer
1
Meter i TestAll Meter Management, TestBreakerResp
Meter 1= Displ Meter DispVerT
1 +testBreaker
3 [1 +dispPhUnbalance
WMeter Management. TesBreaker Tokenlssue Meter Management. TestDisplayResp 1 \l/
— Meter Management:DispConsTotResp Meter ispl
T HesiDisp !
+
Meter TestDi:
il = e o=p 1 1 \l/ +dispConsTat
Meter M i wrResp
— Meter i onsT
1 +eispPwrlLmt —
7
Metr | - DispPwrLmt 1
Meter Management:DispTIResp - 7 +displnstPur
- Meter Management:-DispTamperResp P
Meter L T
T sdispTl 'Y
N7 1
Meter Management::DispTITokenlssue Meter Management: DispKRNResp ' 1 +dispTamper
" — Meter I :DispTamperT
7 14 1
Meter DispKRNT
I

<

Meter Manager

Base Token | 1 +meterType |Base:MeterType

[at[1]: STSAT
1 ~7 le[4] : STSTT
+tokan Meter peci 1

b-descl1] - Msg 1

Figure 58 — Non-meter-specific engineering token response message class diagram

NRS 009-6-10:2010

4.7.3.15 Pay account

The pay account request message class diagram is illustrated in figure 59.

64

Base::BaseReq

1 +payAccount

Revenue::PayAccount

+idMethod

+desc[0..1] : Msg

Base::IDMethod

Revenue::DebtRecovery

Figure 59 — Pay account request message class diagram

Revenue::ServiceChrg

0.1 +payType

Base::PayType

65 NRS 009-6-10:2010

The pay account response message class diagram is illustrated in figure 60.

Base::BaseVendResp

Revenue::Receipt

+receiptNo[1] : ReceiptNo

’L

1 1 }rpayAccReceipt
Revenue::PayAccReceipt
1 +transactions 1 0.1 +meterDetail
Revenue::Transactions Base::MeterDetalil
+lessRound[0..1] : Currency +msno[1] : MSNO
+tenderAmt[0..1] : Currency +sgc[1] _2 STSSupplyGroupCode
+change[0..1] : Currency :E[;‘][l]s _I_S;_Safifflzr'?:g)i\lo
. 1.* +tX
1 \VA
Revenue::Tx +tax Base::Tax
+amt[1] : Currency H”ﬂlmt[l] - Currency
+receiptNo[0..1] : ReceiptNo O
1 O.
Revenue::PayAccTx +ariff Base::Tariff
+accDesc[1] : Msg ® ; +name[1] : Msg
+accNo[0..1] : AccountNo +desc[0..1] : Msg
1 0.1
Revenue::DebtRecoveryTx Revenue::ServiceChrgTx

+balance[0..1] : Currency

Figure 60 — Pay account response message class diagram

NRS 009-6-10:2010

4.7.3.16 Purchase credi

t token

66

The purchase credit token request message class diagram is illustrated in figure 61.

+authCred

Base::DevicelD

Base::BaseReq

1
+terminallD

1

+msgiD

+clientlD

Base::EANDevicelD| |Base::GenericDevicelD

Base::AuthCred

[+opName[1] : OpName
(+password[0..1] : Password
[+newPassword[0..1] : Password

1

Base:MsgID

+dateTime[1] : MsgiDDateTime
+uniqueNumber[1] : MsgIDUniqueNumber

+ean(1] : EAN +id[1] : Msg

Base::

BaseVendReq o

+idMethod

Base::VendIDMethod

1

+resource Base::Resource

Revenue::AbstractCreditVendReq

Y

1

1
1 | +purchasevalue

Revenue::PurchaseValue

L%

Base::Gas

Base::Water| |Base::Electricity

Base::ConnectionTime

Revenue::PurchaseValueCurrency

Revenue::PurchaseValueUnits

0.1 | +payType

Base::PayType

Base::Cheque

Base::Card

1 1
1 +amt
1 +units
Base::Currency
+value[1] : decimal Base::Units
+symbol[1] : CurrencySymbol +value[1] : decimal B
[+siUnit1] : ResourceSIUnit

ase::Unknown

+chequeAmt[1] : Currency
+accHolderName[1] : PersonName
+accHolderIDNol[1] : IDNo
+accNo[1] : AccountNo
+bankName[1] : OrganisationName
+branchCode[1] : BranchCode
+chegNo[1] : ChequeNo
+cheqType[1] : ChequeType
+micr[0..1] : MICR

+cardAmt[1] : Currency
+accHolderName[1] : PersonName
+pan[1] : AccountNo
+clearingHouse[1] : OrganisationName
+expiryDate[1] : BankCardExpiry
+cvNum[1] : BankCardCVNum

i

Base::Cash

+tenderAmt[1] : Currency

Base::CurrencyResource

Base::CreditCard

Base::DebitCard

Figure 61 — Purchase credit token request message class diagram

67 NRS 009-6-10:2010

The purchase credit token response message class diagram is illustrated in figure 62.

Base::BaseResp
+serverlD[1] : DevicelD
+clientID[1] : DevicelD Base::CustVendDetail
+terminallD[1] : DevicelD dDetail +daysLastPurchase[0.4] - int
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime

Revenue::Receipt +dispHeader[0..1] : Msg 0.1 0.1 +vendor
. o] 0 0..1] : Msg
PtNo[; p!
+custMsg[0..1] : Msg \V/
7~ Base::VendorDetail
1 [+name[1] : OrganisationName
+address[1] : Address
1 +transactigns
Base::BaseVendResp
Revenue:: Transactions T ; -
+lessRound[0..1] : Currency 1 Y

+tenderAmt[0..1] : Currency Q 1

+changel0..1] : Currency Base::UtilityDetail
+name[1] : OrganisationName
+address[1] : Address
1 +taxRef[1] : TaxRef
1.* +tx
1 "
Revenue::Tx 1 1 +clientStatus
ax +amt[1] : Currency ; /
0.. +receiptNo[0..1] : ReceiptNo 1 | +creditvendReceipt Ee————
" +availCredit[1] : Currency
Base::Tax Revenue::CreditVendReceipt
+amt[1] : Currency
% 0.1 +batchStatus
Base:VAT
[rate[1] : Percentage Revenue::PayAccTx . Base::BatchStatus
y Revenue::CreditVendTx Base::MeterSpecificTokenlssue banking[l] : BatchStatusTs
+accDesc[1] : Msg anking[1] : BatchStatusType
+accNo[0..1] : AccountNo +desc[1] : Msg +sales[1] : BatchStatusType
+shift[1] : BatchStatusType
PAN) R YA
1 1 1 1 +token
0.1 etariff| +tariff
1 +creditTokenlssue \V
~ Base::Token
Revenue::DebtRecoveryTx | |Revenue::ServiceChrgTx Base:Tarift Base::CreditTokenlssue
T +namef[1] : Ms; 1 +units
+balance[0..1] : Currency +desc[l[)..]1] Mgsg +resource([1] : Resource ‘—\]/
: Base::Units
AN - 1 +meterDetail
value[1] : decimal
[+siUnit[1] : ResourceSIUnit +stsCipher[1] : STSCipherText
Base::MeterDetail
[+msno[1] : MSNO
+sgc[1] : STSSupplyGroupCode
+krn[1] : STSKeyRevNo
Base::SaleCredTokenlssue | | Base:FBECredTokenlssue || Base::FreeCredTokenlssue | | Base:MCTCredTokenlssue +ti[1] : STSTariffIndex

Figure 62 — Purchase credit token response message class diagram

NRS 009-6-10:2010 68

4.7.3.17 Purchase trial credit token

The purchase trial credit token request message class diagram is illustrated in figure 63.

Revenue::AbstractCreditVendReq

Figure 63 — Purchase trial credit token request message class diagram

The purchase trial credit token response message class diagram is illustrated in figure 64.

Revenue::CreditVendResp

Figure 64 — Purchase trial credit token response message class diagram

69 NRS 009-6-10:2010

4.7.3.18 Reprint transaction

The reprint transaction request message class diagram is illustrated in figure 65.

Base::AuthCred
- i ! ! - +authCred +opName : OpName
Base::DevicelD n T @ Base::BaseReq ‘%massword Password
+clientID ° 1 0.1 +newPassword : Password
A +terminallD 1
+msglD Base::MsgID

+dateTime : MsglDDateTime
+uniqueNumber : MsgIDUniqueNumber

Base::EANDevicelD Base::GenericDevicelD
+ean : EAN +id : Msg

1
1 +idMethod

Base::IDMethod

AN

Base::VendIDMethod Base::CustIDMethod

Figure 65 — Reprint transaction request message class diagram

NRS 009-6-10:2010 70

The reprint transaction response message class diagram is illustrated in figure 66.

Base::BaseResp

+serverlD : DevicelD
+clientID : DevicelD
+terminallD : DevicelD
+reqMsgID : MsgID
+respDateTime : dateTime
+dispHeader : Msg
+operatorMsg : Msg
+custMsg : Msg

T

1.x +reprint

Base::BaseVendResp

Figure 66 — Reprint transaction response message class diagram

71 NRS 009-6-10:2010

4.7.3.19 Reprint deposit slip

The reprint deposit slip request message class diagram is illustrated in figure 67.

Base::BaseReq

Figure 67 — Reprint deposit slip request message class diagram

The reprint deposit slip response message class diagram is illustrated in figure 68.

Base::BaseResp

+serverID[1] : DevicelD
+clientlD[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

JAN

1.x +reprint

Revenue::DepositResp

Figure 68 — Reprint deposit slip response message class diagram

NRS 009-6-10:2010

4.7.3.20 Reprint end batch

72

The reprint end batch request message class diagram is illustrated in figure 69.

Base::BaseReq

Revenue::ReprintEndShiftBatchReq

Revenue::ReprintEndSalesBatchReq

Revenue::ReprintEndBankingBatchReq

+segNol0..1] : ShiftSalesBatchSeqNo

+seqNol0..1] : ShiftSalesBatchSegNo
+all[0..1] : bool

+seqNoJ[0..1] : BankBatchSeqNo
+all[0..1] : bool

Figure 69 — Reprint end batch request message class diagram

The reprint end batch response message class diagram is illustrated in figure 70.

Base::BaseResp

+serverlD[1] : DevicelD
+clientID[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

JAN

1
1 +endBatchReprint

Revenue::EndBatchResp

Figure 70 — Reprint end batch response message class diagram

73 NRS 009-6-10:2010

4.7.3.21 Start batch

The start batch request message class diagram is illustrated in figure 71.

Base::BaseReq

Revenue::StartAlIBatchesReq | [Revenue::StartShiftBatchReq| [Revenue::StartSalesBatchReq | | Revenue::StartBankBatchReq

Figure 71 — Start batch request message class diagram

The start batch response message class diagram is illustrated in figure 72.

Base::BaseResp

+serverID[1] : DevicelD
+clientID[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

1 +startedBatch

Revenue::StartBatch
+Started[1] : Date

AN
Revenue::ShiftStartBatch Revenue::SalesStartBatch Revenue::BankStartBatch
+seqNo[1] : ShiftSalesBatchSegNo +seqgNo[1] : ShiftSalesBatchSegNo +seqNo[1] : BankBatchSeqNo
+shiftStartBatch 0..* 1 +salesStartBatch 0..* 1 r

Figure 72 — Start batch response message class diagram

NRS 009-6-10:2010 74

4.7.3.22 Update meter key

The update meter key request message class diagram is illustrated in figure 73.

Base::AuthCred

+opName[1] : OpName
+authCred [+password[0..1] : Password
1 1 +newPassword|[0..1] : Password

Base::DevicelD @ Base:BaseReq &

0.1

1
+clientID 1
* NN
AN +terminallD Base::MsgID

1 +dateTime[1] : MsgIDDateTime
+uniqueNumber[1] : MsgIDUniqueNumber

Base::EANDevicelD Base::GenericDevicelD

+ean[1] : EAN +id[1] : Msg

1
1 +idMethod

Base::MeterConfig

Base::MeterCard Base::MeterDetail
+track2Data[1] : NRSTrack2Data +msno[1] : MSNO
+sgc[1] : STSSupplyGroupCode
+krn[1] : STSKeyRevNo

+ti[1] : STSTariffIndex

Figure 73 — Update meter key request message class diagram

75 NRS 009-6-10:2010

The update meter key response message class diagram is illustrated in figure 74.

Base::BaseVendResp

1 Base::MeterSpecificTokenlssue
+desc[1] : Msg

1 +meterDetail 1

Base::MeterDetail Base::Meter: ificEngT
+msno[1] : MSNO
+sgc[1] : STSSupplyGroupCode
+krn[1] : STSKeyRevNo A
+ti[1] : STSTariffindex

1 +updateMeterKey
1 +token
Base::KCTokenlssue
Base:: Token -
For KCT token Issues, the token will be a KCToken
JANVAN — .
1 +kctData
Base::KCTData
+fromSGC[1] : STSSupplyGroupCode
Base::STS1Token Base::KCToken 0.1 +pwrLmtToken [+fromKRN[1] : STSKeyRevNo
+stsCipher[1] : STSCipherText +fromTI[1] : STSTariffindex
. +toSGC[1] : STSSupplyGroupCode

Base::PwrLmtTokenlssue +oKRN[L] : STSKeyRevNo

/\ ’ +toTI[1] : STSTariffindex

1+sethdMeterKey 1 1
1 .—lq/ +pwrLmt

Base::PwrLmt

+setlstMeterKey

+value[1] : PwrLmtValue
+siUnit[1] : ResourceSIUnit = kW

Figure 74 — Update meter key response message class diagram

NRS 009-6-10:2010 76

4.7.3.23 Verify token

The verify token request message class diagram is illustrated in figure 75.

Base::BaseReq

1 1
1 +token 1 +idMethod
Base::Token Base::VendIDMethod

Figure 75 — Verify token request message class diagram

The verify token response message class diagram is illustrated in figure 76.

Base::BaseVendResp

1 1
1 +tokenInfo 1 +creditVendTx
Base::TdkenInfo Revenue::CreditVendTx

Z‘l.

Base::STS1TokenlInfo

+tokenlID : decimal
+transferAmt : decimal
+tokenClass : TokenSubClassType

Figure 76 — Verify token response message class diagram

77 NRS 009-6-10:2010

4.7.3.24 Vendor statement

The vendor statement request message class diagram is illustrated in figure 77.

Base::BaseReq

Figure 77 — Vendor statement request message class diagram

The vendor statement response message class diagram is illustrated in figure 78.

Base::BaseResp

+serverID[1] : DevicelD
+clientlD[1] : DevicelD
+terminallD[1] : DevicelD
+reqMsgID[1] : MsgID
+respDateTime[1] : dateTime
+dispHeader[0..1] : Msg
+operatorMsg[0..1] : Msg
+custMsg[0..1] : Msg

1

1 +statement

Revenue::Vend orStatement

+accNo[1] : AccountNo
+accBal[1] : Currency
+availCredit[1] : Currency

1
0.* +lineltem

Revenue::VendorStatementLineltem

+desc[1] : Msg
+amt[1] : Currency
+appliedDate[1] : dateTime

Figure 78 — Vendor statement response message class diagram

NRS 009-6-10:2010 78

4.7.4 Class and attribute descriptions

The class and associated field definitions have been embedded into the schema as <annotations>.
They are available on http://www.nrs.eskom.co.za/xmlvend.

5 Web services implementation

NOTE Clause 5 is aimed mainly at suppliers of XMLVend clients and servers. It describes the technical detail
of how the messages are required to be securely exchanged between the XMLVend client and server.

5.1 Introduction

XMLVend currently specifies web services as the method to implement the use case message pairs
described in 4.7. Web services provide the following functions:

a) platform-independent format language for structured data exchanged. This is achieved through
the use of eXtensible markup language (XML);

b) a way of describing the structure of the data being exchanged. This is achieved through the
use of XML Schema,;

c) a standard method of packaging the data for transmission over the communications network.
This is achieved through the use of protocol known as “SOAP”;

d) a way for the Web services to describe their public interface to clients. This is achieved
through the use of Web Services Description Language (WSDL); and

e) a standard method of transporting the data across the network. This is achieved through the
use of hypertext transport protocol (HTTP) and TCP/IP.

To further assist with interoperability and adoption of web services the Web Service Interoperability
(WS-I) organization has published guidelines for implementation of web services. The guidelines or
profiles have been adopted by this specification (XMLVend). Further details on web services and
WS-l is provided in annex C.

This clause describes the mapping of the use case class diagrams to a web service, implementing
the web services stack, message exchange workflow, and fault handling using Web Services.

5.2 Mapping use case class diagrams to the XMLVend Web service
5.2.1 The development process
The Web service specification deliverables are the XMLVend schema and WSDL. The process

used to develop the schema and WSDL is based on the “Contract-First” development approach.
This approach is illustrated in figure 79.

79 NRS 009-6-10:2010

Author message definition using
schema (xsd) from class diagrams

Request
Message

Author operations using WSDL

.g. CreditVend Operation, etc.

Request
Message

Generate Code from WSDL

Implement methods

@ Iterate

Figure 79 — Schema and WSDL development approach

Steps 1, 2 and 5 are part of the XMLVend specification development process. Steps 3 and 4 are
used by suppliers to implement an XMLVend compliant server or client (or both) and therefore not
discussed in this specification.

Step 1 is used to author the request or response messages using schema, modelled on the class
diagrams described in 4.7. This step focuses on naming and structuring the data messages that are
exchanged between client and server.

NRS 009-6-10:2010 80

Step 2 is used to author the service operations and transport bindings using WSDL. The WSDL
operation defines the schema message pairs that shall be exchanged to implement a particular use
case. The operations are then grouped into a WSDL interface (or portType). WSDL also defines the
transport binding details that are needed to exchange messages between client and server. WSDL
contains all the information required for code generators to produce the implementation code for
both client and server.

Step 5 provides feedback from the implementations to update and enhance the specification.

5.2.2 The schema and WSDL

5.2.2.1 General

The schemas have been mapped from the class diagrams described in 4.7. This mapping process
is currently manual and some unintentional errors have been introduced. Therefore, the schemas
shall be considered the definitive specification for the XMLVend message pairs, supported by the
class diagrams.

Figure 80 shows the relationships between the domain-specific schemas and WSDLs. The diagram

also shows how the core schemas can be extended to support user-specific requirements. The
extension of the core XMLVend schema is described in 5.2.2.3.

XMLVend Custom
Extensions
XMLVend Core —
xmlvend-
base-X.xsd
xmlvend-
revenue- xmlvend-
X.xsd meter-X.xsd
AN JAN
] 1 1
e 1
Revenue _l
Custom 0 ‘ 0 CMe:er
Extensions. xmlvend- ustom
g xscli revenue- xmlvend- xmlvtend- Extensions.
N meter- d
X.wsdl full-X.wsdl Xwsdl XS

Figure 80 — Schema and WSDL for each domain

81 NRS 009-6-10:2010

The core XMLVend schema and WSDL consist of the following:

a)

b)

schemas:
1) xmlvend-base-X.xsd — the base schema contains common types, constraints and message
pairs that are used by both the revenue and meter schemas;

2) xmlvend-revenue-X.xsd — the revenue schema contains all message pairs and types that
are specific to the revenue management domain; and

3) xmlvend-meter-X.xsd — the meter schema contains all message pairs and types that are
specific to the meter management domain.

WSDLs and

1) xmlvend-full-X.wsdl — the full WSDL includes all operations (use cases). This WSDL would
usually be used by suppliers that implement use case from both the revenue and meter
management domains;

2) xmlvend-revenue-X.wsdl — the revenue WSDL contains the revenue management specific
operations (use cases). This WSDL shall be used by suppliers that implement revenue
management operations only; and

3) xmlvend-meter-X.wsdl — the meter WSDL contains the meter management specific
operations (use cases). This WSDL shall be used by suppliers that implement meter
management operations only.

The schema file name naming convention is xmlvend-“domain”-“version”.xsd

The WSDL file name naming convention is xmlvend-“domain”-“version”.wsdl

The WSDLs and schema files are available for download on
<http://www.nrs.eskom.co.za/xmlvend>.

5.2.2.2 Versioning with namespaces

The XML namespaces serve two purposes, as follows:

a)

b)

to ensure unigueness of XML element and attribute names (eliminate name collisions); and

to provide a URI to specify the language associated with a given XML element or attribute.

The schema namespace naming convention is
http://www.nrs.eskom.co.za/xmlvend/“domain”/“version”/schema

The WSDL (service) namespace naming convention is
http://www.nrs.eskom.co.za/xmlvend/service/“version”/"domain”

The specification version is embedded into the namespaces. Therefore, the specification version is
controlled through the schema and WSDL namespaces. If a new XMLVend version is released,
then the applicable namespaces will change.

The “full” WSDL namespace, which includes the meter and revenue domain services does not have
a “domain” specified.

NOTE The namespaces of the individual schemas may change independent of each other.

NRS 009-6-10:2010 82

5.2.2.3 User-specific schema extensions

Extensions shall be specified in a separate schema file. The file hame naming convention to be
used is “utility”-xmlvend-“domain”-“version”.xsd, e.g., eskom-xmlvend-revenue-2.0.xsd.

The extension schema namespace naming convention to be used is
http://www."utility"/xmlvend/“domain”-ext/“version”/schema,
e.g. http://www.eskom.co.za/xmlvend/revenue-ext/2.1/schema

An example of user-specific schema extensions is provided on
http://www.nrs.eskom.co.za/xmlvend.

The user-specific extensions may be implemented by generating the required code from the
schema file discussed above and using the late binding mechanism in the XML, using the
<xsi:type> attribute of the relevant element in the XML instance file.

5.2.2.4 Schema optional elements and attributes

Elements are specified as optional in the schema using minOccurs attribute, for example <element
name="KRN" minOcurrs="0" />. XML instance documents that specify <KRN xsi:nil="true"/> or

<KRN/> for an omitted optional element is not valid since optional elements shall either be present
or totally omitted. Optional attributes shall also be treated similarly.

5.2.3 The XMLVend Web services stack
5.2.3.1 Overview

Each layer of the Web services stack represents one of the fundamental functional areas of a web
service instance. These layers are depicted in figure 81.

Web Service Stack Web Service Stack
Data ¢ ---- XML ----D Data
SOAP Message ---- goap ~—--P SOAP Message
Transport -=-=-= HTTP -~~~ -P Transport

A

» Message
I

Figure 81 — Web services stack

A web service application may include several logical layers incorporating functions such as the
web service instance and application business logic. The WS-I basic profile and usage scenarios
do not address application business logic except where the functionality of any part of the web
services stack is implemented within the business logic.

A set of activities is defined for each layer of the Web services stack. Activities are the fundamental
operations that comprise a Web service. A single activity has several constraints applied to it from
the basic profile. For example, one activity might be “Send HTTP” and the specifications and
guidelines for how to fulfil that activity come from the SOAP 1.1 and HTTP sections of the basic
profile. Activities are summarized in table 4 below.

83 NRS 009-6-10:2010

Table 4 — Activities grouped by Web services stack layer

1 2
Layer Activity
Data Layer Write XML
Process XML
SOAP Message Layer Write SOAP envelope

Process SOAP envelope
Write SOAP body
Process SOAP body
Write SOAP header
Process SOAP header

Transport Layer Send HTTP
Receive HTTP

5.2.3.2 Data layer

The data layer translates the application specific data into the model chosen for the specific Web
service. The data layer includes the functions necessary to support flexible data typing. This layer
maps to the wsdl:itypes and wsdl:message definitions within a WSDL, which in turn map to the
types and elements defined the schema documents.

The following activities are part of the data layer.

a) Write XML: Application-level messages that are to be exchanged during a Web services
interaction shall be written to a serialized form that can be transported with the underlying
transport protocol. These messages use the data types and formats declared in the schemas.
Writing the message data is the responsibility of the application component sending a
message to a recipient. The output of this activity is often referred to as the SOAP payload.

b) Process XML: Application-level messages that are exchanged in a Web services interaction
are passed to application components responsible for receiving, interpreting and acting upon
the received messages. Application components process message data according to the types
and formats declared in the schemas.

The data layer is the most important layer with respect to XMLVend specification because the data
layer describes and transports the XMLVend messages pairs between XMLVend client and
XMLVend server.

5.2.3.3 SOAP message layer

The SOAP message layer is the infrastructure that processes SOAP messages, dispatches them,
and may optionally fulfil Quality of Service requirements. On the sending side the message layer
writes SOAP messages, based on the data model defined in portTypes and bindings. On the
receiving side the message layer processes the SOAP messages and dispatches requests to the
correct application or method.

The following activities are executed with the SOAP message layer:

a) SOAP envelope;

1) write SOAP envelope; and
2) process SOAP envelope.

NRS 009-6-10:2010 84

b) SOAP body;

The SOAP body is used for transporting application-specific information included in the
application message data. The activities in this layer are different from the data payload writing
and processing activities described in the data layer activities section.

1) write SOAP body; and
2) process SOAP body.

c) SOAP header;
The SOAP header provides a modular mechanism for extending a SOAP message.

1) write SOAP header; and
2) process SOAP header.

5.2.3.4 Transport layer

The transport layer sends and receives messages. For the basic profile, this includes only HTTP
client and server platforms. This layer maps to the wsdl:binding and wsdl:port definitions with the
WSDL document.

SOAP messages shall be sent using the send and receive HTTP transport protocols.
NOTE GZIP compression and TLS security are also applied at this layer.

5.2.4 The XMLVend message exchange pattern

5.2.4.1 Overview

The XMLVend message pairs exchanged between XMLVend Client and Server are implemented
using synchronous request / response pattern as described in the WS-I usage scenario.

The XMLVend client invokes an XMLVend use case by sending an appropriate XMLVend
request SOAP message bound to an HTTP request to the XMLVend Server.

The XMLVend server executes the service and sends an appropriate XMLVend response
SOAP message bound to an HTTP response to the XMLVend Client.

The high-level interactions between an XMLVend client and server using a synchronous
request/response pattern are illustrated in figure 82.

Consumer / Vending Vending
Operator Client Server

Synchronous Request /
Response Message pair

(SOAP message bound

(O—XMLVend use case—pp (10 HTTP)

——XMLVend_Request—p»

4—XMLVend_Response:

@¢—Result Dater

¢——Result message—‘

Figure 82 — Synchronous request/response (SOAP message bound to HTTP)
sequence diagram

85 NRS 009-6-10:2010

5.2.4.2 Request/response message pair flow

5.2.4.2.1 The detailed flow for this scenario, using the activities defined in 5.2.3, is described
below. Each bulleted item represents the activities performed within one layer of the Web services
stack required to complete the flow. Each activity has constraints imposed upon it from the WS-I
Basic Profile.

5.2.4.2.2 The XMLVend client initiates the following SOAP request (see figure 83):

a)

b)

c)

data layer;
1) write XML.

SOAP message layer; and
1) write SOAP envelope;
2) write SOAP body.

transport layer;
1) optional compress HTTP body message;
2) send HTTP.

5.2.4.2.3 The XMLVend server receives the SOAP request:

a)

b)

d)

transport layer;
1) receive HTTP;
2) uncompress HTTP body message (if required).

SOAP message layer;
1) process SOAP envelope;
2) process SOAP body.

data layer; and
1) process XML. The data payload is processed according to the data model and dispatched
to the server application.

application layer;
1) process security credentials as described in 5.2.6;
2) process business rule compliance.

5.2.4.2.4 Request flow is illustrated in figure 83.

NRS 009-6-10:2010 86

XMLVend client XMLVend server

Use Case
Initiated
[Insufficient [success]

information]
Obtain required infarmation for Request

[success)

[Write XML as per XMLVend Request Data MﬂdeD

!
|

\ /

TN 4 (if applicable) N
t\U ncompress HTTP Body Me:ssage/-'

[success]

Process SOAP Envelope

[Auite generatad [success]

SOAP Faul]
Process SOAP Body
success]
[¥MLVend SOAP W []
Fault .
aul) Process XML as per XMLVend Request Data Mudelj
[XMLVend SOAP [success]
Faull]
Hﬁhew and verify Security Credenﬁalsj
[XMLVend SOAP \y fuccess]

Faul]
Hcrmk and verify compliance with Business Rules)
ﬂ[swwssl

s pusA X of sbessapy yney seudosdde puas pue apdwog

(

Figure 83 — Request flow

5.2.4.2.5 The vend server generates an appropriate SOAP response as follows (see figure 84):

a) datalayer;
1) write XML. The payload is created according to the XMLVend data model.

b) SOAP message layer; and
1) write SOAP envelope;
2) write SOAP body;

c) transport layer;
1) optional compress the HTTP body;
2) send HTTP;

87 NRS 009-6-10:2010

5.2.4.2.6 The XMLVend Client receives the SOAP response:

a) transport layer;
1) receive HTTP;

b) SOAP message layer;
1) process SOAP envelope;
2) process SOAP body;

c) datalayer; and
1) process XML - the data payload is processed according to the data model and dispatched
to the client application.

d) application layer;
1) process security credentials as described in 5.2.6;
2) process business rule compliance.

5.2.4.2.7 Response flow is illustrated in figure 84.

NRS 009-6-10:2010 88

Vending Server Vending Client

[success]$

G)btain required information for Responsa

[success]\H/

(Write XML as per XMLVend_Response Data ModeD

Send HTTP

’ Optional \

Process SOAP Body

[success]

Grocess XML as per XMLVend Request Data ModeD

\b [success]

Gheck and verify Security Credentiala
\b [success]

Check and verify compliance to Client Business Rules
(If applicable)

[success]

{ouﬂado jual|D BuipuaA o1 yne4 a]e:)!unu.lwo:a

Figure 84 — Response flow

5.2.4.2.8 The following activities shall adhere to the referenced constraints described for the
synchronous request/response usage scenario in WS-I usage scenarios specification:

a) write XML;

b) write SOAP envelope;

c) write SOAP body;

d) send HTTP;

e) receive HTTP;

f) process SOAP;

g) process SOAP body; and
h) process XML.

89 NRS 009-6-10:2010

5.2.4.3 Message uniqueness

All request messages contain a unique message identifier in the <msgID/> field. The XMLVend
client application is responsible for generating the uniqgue message identifier. The uniqgue message
identifier consists of a sequence number and a date time stamp. Client application developers shall
take appropriate care not to generate duplicate message identifiers should the client date time
settings be manipulated.

The XMLVend server shall verify that each client request message identifier is unique with respect
to that client. The server shall raise the appropriate XMLVendFaultEx (see 4.6) should it encounter
a duplicate message identifier for a specific client.

5.2.4.4 Application layer error handling

As described in 4.6.3 and 4.7.3.9, a standard fault response message has been defined to
communicate fault scenarios to the client. This subclause describes how the XMLVend fault
response message is integrated with SOAP’s fault communication mechanism.

Application layer errors that occur while a request is being serviced are communicated to the client
using the SOAP fault mechanism. The specific application error information will be compiled as per
XMLVend fault Response message (see 4.7.3.9) and included into the <detai l> section of a
SOAP <fault> element.

Fault generation shall adhere to constraints and behaviour as described for the synchronous
request/response scenario usage scenario in WS-1 Usage Scenarios specification.

5.2.4.5 Data transport

The data transport protocol between XMLVend Client and XMLVend Server will be HTTP as
specified for the synchronous request / response usage scenario in WS-l Usage Scenarios
specification.

The HTTP SOAPAction header shall be omitted or, if present, contain an empty string ().
Therefore, no decision making by the server or client shall be based on this header. This removes

the close coupling between the XMLVend protocol and HTTP, allowing other transports to be
utilized in the future.

5.2.5 Message compression
5.2.5.1 General

XMLVend compression is implemented at the HTTP layer of the protocol stack and shall be
implemented as specified in the HTTP 1.1 protocol specification.

5.2.5.2 Compression algorithm

The supported compression algorithm is GZIP <http://www.gzip.org>. It is recommended that the
latest official release of GZIP be implemented.

NRS 009-6-10:2010 90

5.2.5.3 Compression implementation rules

HTTP messages will optionally be compressed (in both directions) by making use of the standard
HTTP content encoding mechanism. This is achieved by the client setting the appropriate HTTP
request headers, for example:

a) content-encoding: gzip; and

b) accept-encoding: gzip.

As per HTTP protocol, the server should respond with a 415 (unsupported media type) message if it
does not understand the encoding indicated by the content-encoding request header. The client

may then retry sending the message without applying compression.

The accept-encoding request header indicates that the client will accept "gzip", encoded data;
otherwise the data will not be compressed by the server.

NOTE This compression occurs at an HTTP layer, and is not analogous to compressing the SOAP body
within the SOAP envelope.

5.2.6 Security

5.2.6.1 Security overview

Web services’ as with other information technologies, security consists of understanding the
potential threats an attacker may mount, and applying operational, physical, and technological
countermeasures to reduce the risk of a successful attack to an acceptable level. Because an
"acceptable level of risk" varies hugely depending on the application and because costs of
implementing countermeasures are also highly variable, there can be no universal "right answer" for
securing Web services. Choosing the absolutely correct balance of countermeasures and
acceptable risk can only be done on a case-by-case basis.

See annex D for details on security risks and threats that web service base systems shall consider.
5.2.6.2 Security mechanisms

5.2.6.2.1 Options

XMLVend may use the security mechanisms given in 5.2.6.2.2 and 5.2.6.2.3.

5.2.6.2.2 Dedicated communications link

A dedicated communications link is used between the XMLVend server and XMLVend client. An
example of such a link is a Virtual Private Network (VPN) link.

Client authentication at the application layer may be enabled using the username and password
fields contained in request messages.

5.2.6.2.3 Transport Layer Security (TLS)
5.2.6.2.3.1 General

XMLVend adopts and recommends the use of HTTP secured with either TLS 1.0 or SSL 3.0
(HTTPS) as specified in the WS-I profile. HTTPS is widely regarded as a mature standard for
encrypted transport connections to provide a basic level of confidentiality. HTTPS thus forms the
first and simplest means of achieving some basic security features that are required by many real-
world web service applications.

91 NRS 009-6-10:2010

5.2.6.2.3.2 Compliance

TLS implementations shall comply with the constraints specified for the Synchronous Request /
Response usage scenario in WS-| usage scenarios specification.

5.2.6.2.3.3 Authentication

The XMLVend implementation of HTTPS will require both server and client authentication through
the use of server and client digital certificates. The client and server private keys should be stored
in a secure location. A hardware storage medium is recommended. For the clients that also act as
POS terminals a portable hardware storage medium such as a smart card is recommended. This
scenario would have the added security benefit of disenabling the XMLVend client when the smart
card is removed, reducing the risk of unauthorized use of the XMLVend client when it is unattended.

The server shall also verify that the <clientID/> field in every request message matches the client
certificate common name (CN) field. If the fields do not match, the appropriate XMLVendFaultEx
shall be raised (see 4.6).

5.2.6.2.3.4 TLS session timeout

The TLS session timeout determines the time period that a session key is valid after which a new
session key shall be negotiated.

A lengthy session timeout could provide sufficient time for “hacker” to crack the session key. It is
therefore recommended that the maximum session timeout be 12 h, i.e. a new session shall be re-
negotiated every 12 h cycle.

5.2.6.2.3.5 Certificate management

The management of the digital certificates is beyond the scope of this specification but the
certificate management process should be a joint agreement between transacting parties.

A typical process for certificate request and signing has been compiled as a guide for testing and
piloting XMLVend. This document is available on <http://www.nrs.eskom.co.za/XMLVend>.

5.2.7 Testing and verifying compliance

Implementations can check compliance with WS-I requirements by utilizing the WS-I test tools.
Supplier interoperability can be accomplished by testing between supplier equipment. An XMLVend
reference server and client implementation and compliance test suite has been developed and the
latest version is available on <http://www.nrs.eskom.co.za/XMLVend>.

6 Change management process

The change management process is illustrated in figure 85. Updates and modifications to the
specification shall be managed through this process.

NRS 009-6-10:2010 92

/XM LVeniProposals\

Users Suppliers Other

v

XMLVend Working Group

Accept / Decline Inform Proposer

Add to list of updates
for next release.

Figure 85 — XMLVend specification change management process

7 Constraints concerning group-coded SGCs

Group-coded SGCs depend on the token being erased after use. The token technology is restricted
magnetic cards. However, online vending servers cannot ensure that the token is finally encoded
on a magnetic card. Therefore, vending to group-coded SGCs shall be avoided by online vending
systems. This can be achieved by preventing group-coded SGCs from being loaded on the server’s
security module. This should be controlled and monitored by utilities and server suppliers.

Annex A
(informative)

Example fault descriptions

2

3

4

<BusinessRuleEx/>
specialization

Suggested text for <desc/> field

Suggested text for <operatortMsg/> field

Suggested text for <custMsg/> field

ClientIDSSLEXx The client ID in the SSL certificate The vending client application has caused security exception error | N/A
does not match the ClientID in the on the server related to its ClientID. Please contact your service
request message. provider.
LastResponseEx No associated request message on The server did not process the requested transaction. The required | N/A
the server. action can be retried.
UseCaseSupportEx The server does not support the The server does not support the request function. Contact your N/A
requested use case. service provider.
XMLVendSchemaEx The request message does not The vending client application has caused a message validation N/A
conform to the XMLVend schema. error on the server. Verify the data and retry. If the problem
persists, contact your service provider.
BlockedMeterEx The meter is blocked. The meter has been blocked. The transaction cannot be The meter has been blocked. Please
completed. contact your service provider.
FBEEX The customer does not qualify for The customer does not qualify for FBE. You are not configured for FBE.
FBE. Please contact your service provider.
LatestKRNEXx KRN = X for SGC = YYYYYY has KRN = X for SGC = YYYYYY has expired. Do Update Meter Key
expired. request and encode Meter Card.
MSNOCheckDigitEx Meter serial number (MSNO) fails the | Invalid Meter Number — Retry with meter number from an old token

meter check digit validation.

or use a meter card.

€6

0T0Z-0T-9-600 SYUN

Annex A
(continued)

1 2 3 4
<BusinessRuleEx/> Suggested text for <desc/> field Suggested text for <operatortMsg/> field Suggested text for <custMsg/>
specialization field

RequestAuthorizationEx

Vendor not authorized to perform
the requested function.

Vendor not authorized to perform the requested function.
Please contact your service provider or try another function.

SGCAuthorizationEx Vendor not configured for Vendor not configured for SGC=XXXXXX. Please contact your
SGC=XXXXXX. service provider.
STSDataEx Incorrect STS data is supplied. STS parameter X = YYY, is valid. Verify the data provided and
retry.
VendorCreditEx Insufficient vendor credit Insufficient vendor credit available to perform the transaction.
available to perform the Please update credit.
transaction.
ServiceChrgEx No outstanding service charge The customer has no outstanding service charge for payment.
for payment.
UnknownMeterEx The meter XXX is not registered | Meter XXX is not registered on the server. Request cannot be
on the server. processed. Please contact the service provider.
UnknownMeterUpdate Cannot Update Meter Key, meter| Meter XXX, not registered. Do Engineering Key Change or Meter XXX, not registered.
MtrKeyEx not registered. contact your service provider to register the meter. Contact your service provider
to register the meter.
UpdateMtrKeySameEx “From” meter key data same as | MSNO=XXXXXXXX, “FROM” key data is the same as the “TO”"
“To” meter key data. key data, SGC=XXXXXX, KRN=X, TI=XX". Key Change not
required.
VerifyTokenEx Unable to verify token Not verified — Token does not match meter information Not verified — Token does not

supplied.

match meter information
supplied.

ClientIDAuthorizationEx

Client ID not registered or
blocked.

Client ID XXX, not registered or blocked. Contact Service
Provider.

This client is not registered.
Please try another vendor.

ConfirmCustomerEx

Customer not found.

Customer not found. Try different search criteria.

CancelEx

Token cannot be cancelled.

The token cannot be cancelled. Contact service provider.

0T0Z-0T-9-600 SUN

¥6

Annex A
(concluded)

1

2

3

4

<BusinessRuleEx/>
specialization

Suggested text for <desc/> field

Suggested text for <operatortMsg/> field

Suggested text for <custMsg/> field

CheckBatchTotalEx The batch total cannot be checked. | The batch total cannot be checked as the batch is not open.

DebtEx No outstanding debt. No outstanding debt available for customer/meter. No outstanding debt. Please
contact your service provider for
assistance.

EndBatchEx The batch cannot be closed. The batch cannot be closed as the batch is not open, or child

batches are still open. Contact service provider if problem
persists.

InsufficientMeterDataE
X

Meter XXXXXXXX, not registered.
Additional meter information
required.

Meter XXXXXXXX, not registered. Additional meter
information required from a Meter Card or Old Token.

Meter XXXXXXXX, not
registered. Additional meter
information required from a
Meter Card or Old Token.

ReprintDepositSlipEx

No deposit slips available for reprint.

No deposit slips found for vendor XXXXX.

ReprintEndBatchEx No closed batches available to No closed batches available for reprint for vendor, XXXX.
reprint.
ReprintEx No transactions found for meter No transactions found for meter XXXX. No transactions found for meter

XXXX.

XXXX.

RequireMeterCardEx

Require meter card.

Must swipe a valid meter card to enter meter data.

Must swipe a valid meter card to
enter meter data.

StartBatchEx

The batch cannot be opened.

The batch cannot be opened due to an already open batch.
Close the open batch and retry.

G6

0T0Z-0T-9-600 SUN

NRS 009-6-10:2010

96

Annex B
(informative)

UML notation overview

The XMLVend message pair class diagrams are defined using UML notation. This annex presents

an overview of the UML notation used in the diagrams.

The class diagrams make use of two class relationships, specialization and composition.

Figure B.1 illustrates the specialization relationship. Specialization is a very strong relationship — it
is an is a relationship. This is like where the “Sedan” is a special instance of “Car” class.
Specialization allows for substitutability and inheritance. The relationship is shown in figure B.2.

Car

JAN

Sedan

HatchBack

Figure B.1 — Specialization relationship (is a)

Figure B.2 illustrates the composition relationship. Composition is a strong has a relationship. This
means that the “car” has one or more doors. It further implies that the doors are only accessible

through the car class.

Car

1

Figure B.2 — Composition relationship (has a)

Composition relationships also specify multiplicity. In the above example, the “1” and “*” mean each
car instance can have many tyres associated with it. The following are other multiplicity notations:

a) “0.1"— None or one only;

b) “0..*” — None or one and more; and

+door

Door

>

*

c) “1.* — Atleast one but can be more than one.

97 NRS 009-6-10:2010

Annex C
(informative)

Overview of SOAP/XML Web services and WS-I

C.1 At the simplest level, a Web service is a programmable logic accessible using standard
Internet protocols. It consists of a service-agnostic request handler (a listener/server) that receives
SOAP/XML message requests, and a facade layer that exposes the operations supported by the
underlying business logic. The responses are then also packaged and sent as standardized
SOAP/XML messages.

SOAP and XML are establishing themselves as standard protocols for business-to-business (B2B)
integration. Both protocols are public standards maintained by the World-Wide Web Consortium
(W3C), which do not impose any licensing constraints.

C.2 The benefits of using SOAP are given in (a) to (d).
a) SOAP is becoming the standard for B2B integration.

b) SOAP supports the packaging of auxiliary information with a service request. This could be
auxiliary security or transactional information or additional information, which is relevant to
some role players.

c) SOAP supports publication of services in registries (UDDI and ebXML registries) for lookup by
clients.

d) There are a number of frameworks, which automate the mapping from normal programming
languages onto/from SOAP. These include JAX_RPC from Sun, Axis from Apache, .Net from
Microsoft and others.

C.3 with the plumbing (XML, SOAP, WSDL, UDDI, HTTP) more or less complete, the universal
adoption of Web services is assured as long as those who develop the applications keep to the
three tenets given in (a) to (c).

a) Systems are only loosely coupled together by nothing more than SOAP messages transmitted
over HTTP or another open transport protocol (such as TCP or SMTP).

b) A service shall be described in a widely supported open interface definition language (such as
WSDL).

c) If a service and client need to exchange data, the exchange shall be done in a universal data
format with agreement on how data types are serialized (using XML and XML schemas, for
example).

C.4 However, the primary challenge is that Web services standards are currently evolving in an
emerging market and they have yet to prove the notion that Web services standards can provide
interoperability. Simply put, plug-and-play interoperability among different Web service
implementations is simply not a reality. There are three main reasons for these interoperability
problems:

a) ambiguity among the interpretations of the standards that have already been agreed upon;

b) differences among specifications that have yet to gain widespread adoption; and

c) insufficient understanding of the interactions among specifications.

NRS 009-6-10:2010 98

Annex C
(concluded)

Fortunately, the IT leaders behind the Web services specifications realized that interoperability is in
the best interests of all industry participants. In early 2002, key industry leaders created the Web
Services Interoperability Organization (WS-I), an industry organization focused on promoting Web
Service interoperability across platforms, operating systems and programming languages.

C.5 Rather than creating new specifications, WS-I aims to comply with its interoperability goals
through the following deliverables:

a)

b)

c)

d)

Web service profiles that specify collections of specifications, along with clarifications of the
ambiguities, so that they can be adopted in an interoperable fashion;

Web services that test and implement guidance to accelerate customer deployments;
development and encouragement of Web service best practices, usage scenarios, use case
and sample implementations that illustrate how Web service profiles can be applied to solve

interoperability challenges; and

creation of self-administered and self-validating test suites for conformance on
implementations with the profiles created by WS-I.

99 NRS 009-6-10:2010

Annex D
(informative)

Web services security risks and countermeasures

D.1 General

This annex details common Web service threats and suggests possible countermeasures that are
compliant with the Basic Profile. The countermeasures detailed here are best applied through a risk
assessment of your Web service application.

The information presented here is not intended to be an exhaustive or encyclopaedic treatment of
the security issues that confront Web service developers. Rather, it is designed to provide an
intermediate assessment of security issues that briefly explores the intersection between traditional
security issues and their manifestation in the Web service architecture.

D.2 Authentication

Authentication is a mechanism or a protocol that demonstrates proof of an asserted identity. Using
an authentication mechanism, a Web service can draw conclusions about the sender of a request
or a response message, and then act on the message. Many types of authentication mechanisms
and protocols have been developed, including password schemes, Secure Sockets Layer (SSL),
Kerberos, and public key infrastructure.

Each mechanism has advantages and limitations. With respect to interoperability, each mechanism
introduces a variety of challenges. Web services can usually rely on the software platform to
provide interoperable transport authentication. Authentication requirements are usually
asymmetrical between service requestors and service providers. Therefore, authentication for Web
Services can be further subdivided as given in D.3 and D.4.

D.3 Request authentication

D.3.1 Threat

The threats to a Web Service that do not authenticate utilities include access to data or resources
by unauthorized entities, and “man-in-the-middle attacks”. In man-in-the-middle attacks, an
unauthorized entity intercepts messages between requestor and responder, enabling
eavesdropping and data manipulation. In very sophisticated Web service environments, a Web
service provider may not be able to authenticate all parties involved in a transaction, and may
therefore be required to delegate trust to other Web services.

Since Web services may rely on directory services to find providers of services (such as UDDI),
authentication shall be ensured in certain processes such as consulting UDDI registries or
downloading WSDL files. If authentication is not required by a directory, a relatively easy attack
would be to falsify a WSDL file, causing the reliant Web services to bind to improper ports.

D.3.2 Countermeasure

A Web service should authenticate the sender of a request. Some specific situations in which Web
services should authenticate requests include those in which the underlying state is changed, in
which there is a charge for using the service, or where the information returned by the service is
privileged.

Authentication of the service requester is the appropriate countermeasure. Client authentication can
be performed using agreed upon digital certificates in the client authentication piece of an SSL/TLS
exchange. The digital certificates exchanged during the SSL handshake shall chain to a certificate
of authority agreed upon by both client and server.

NRS 009-6-10:2010 100

Annex D
(continued)

D.4 Response authentication

D.4.1 Threat

An attack on a service requester is one that interposes a false or “spoofed” service that supplies
responses resembling those provided by the expected service. For example, a “man-in-the-middle”
might substitute a false response message for a genuine response, leading to request/response
mismatches.

D.4.2 Countermeasure

Authentication of the service is the appropriate countermeasure. An SSL/TLS connection can
provide server authentication and is typically sufficient protection from Web service provider
spoofing for point-to-point transactions.

D.5 Authorization

Authorization is the process of determining the capabilities granted to an entity by a service provider
or another trusted entity. While authentication determines which entities can access a Web service,
authorization determines which features of that Web service can be accessed by the authenticated
entity. In some cases even authenticated entities shall be restricted to a subset of functions
provided by a Web service.

D.6 Request authorization

D.6.1 Threat

Unauthorized access to computational resources or protected data.
D.6.2 Countermeasure

Apply authorization mechanisms. Web services requests are fulfilled based on the authorization
assigned to a particular requestor by the service provider. A Web service may need to
communicate its authorization requirements through a policy.

A simple Web service may have one authorization level: i.e., | will execute process X for any user
authenticated using a recognized token. However, more sophisticated mechanisms may be
required for Web services designed to service a range of customers.

D.7 Confidentiality

D.7.1 Threat

A threat is posed by a compromise of privileged information through unauthorized access. In a
messaging environment (as opposed to a session environment) it is important to evaluate the
message protection characteristics of a Web service, because a Web service may not know the
ultimate destination or the full route of the data being sent. Intermediaries may be traversed and if
the data is unprotected, might read the confidential contents of a message, or they might be able to
deduce confidential information by the mere fact that a particular message (or a message of a
certain type, or messages in a certain frequency) was sent.

101 NRS 009-6-10:2010

Annex D
(continued)

D.7.2 Countermeasure

Encryption is the primary defence against a breach of confidentiality. How encryption is applied can
vary widely. The SSL/TLS protocol encrypts messages for the duration of the session. However, at
each end-point, the message will be fully decrypted. An exception to this situation is SSL proxy
tunnelling, in which a client proxy opens a connection to a secure server and copies data in both
directions without intervening in the secure transaction.

There are ways to address the problem of end-to-end confidentiality while remaining compliant,
though out of scope, of the Basic Profile. As an example, XML Encryption can be used to
selectively encrypt elements or the entire message. There are many configurations, but one is to
have the SOAP implementation encrypt the message payload, while leaving other information "in
the clear" in the SOAP header.

D.8 Data integrity
D.8.1 Threat

Loss of data integrity is the unauthorized modification of a request or response. The threat to Web
services is the malicious alteration or the accidental corruption of data.

D.8.2 Countermeasure
Messages sent using SSL/TLS have guaranteed data integrity for the duration of the exchange.

Another technique compliant, yet out of scope, with the Basic Profile is the use of digital signatures
and message digests to provide proof of data integrity using XML Digital Signature. These can be
applied to complete XML messages, or to portions of XML documents according to the XML Digital
Signature specification.

D.9 Replay
D.9.1 Threat

A basic attack on a Web service is an attempt to re-use a once valid message. Certain elements of
a Web services message, such as a security token, can also be reused as part of a different
message to give the impression of a valid request or response.

D.9.2 Countermeasure

Replay attacks can be addressed by using message time stamps and caching, and through the use
of universally unique identifiers on all messages.

D.10 Non-repudiation

This guarantees that both the Web service provider and customer client are protected against any
claims from either party that the transaction did or did not occur at a later point in time.

D.11 Logging and auditing

One of the best countermeasures for any of the above security issues is a robust auditing/logging
mechanism. In combination with authentication mechanisms, auditing and logging mechanisms can
provide chains of evidence that permit runtime infractions of trust policies to be remedied by the
offline trust infrastructure of business agreements and contractual law.

NRS 009-6-10:2010 102

Annex D
(concluded)

D.12 Other risks

Like any networked application, Web services are exposed to standard network security
vulnerabilities such as

a)
b)
c)
d)

e)

unauthorized users who gain direct access to network resources;

virus or Trojan horse programs being transmitted within otherwise valid XML messages;
misconfiguration or improper coordination of internal resources by a Web services provider;
exploitation of known weaknesses; and

denial of service attacks.

D.13 Security standards

The security implementation shall adhere to the implemented open security protocol standards so
that interoperability can be ensured.

© SABS

SABS — Standards Division

The objective of the SABS Standards Division is to develop, promote and maintain South African
National Standards. This objective is incorporated in the Standards Act, 2008 (Act No. 8 of 2008).

Amendments and Revisions

South African National Standards are updated by amendment or revision. Users of South African
National Standards should ensure that they possess the latest amendments or editions.

The SABS continuously strives to improve the quality of its products and services and would
therefore be grateful if anyone finding an inaccuracy or ambiguity while using this standard would
inform the secretary of the technical committee responsible, the identity of which can be found in
the foreword.

Tel: +27 (0) 12 428 6666 Fax: +27 (0) 12 428 6928

The SABS offers an individual notification service, which ensures that subscribers automatically
receive notification regarding amendments and revisions to South African National Standards.
Tel: +27 (0) 12 428 6883 Fax: +27 (0) 12 428 6928 E-mail: sales@sabs.co.za

Buying Standards

Contact the Sales Office for South African and international standards, which are available in both
electronic and hardcopy format.

Tel: +27 (0) 12 428 6883 Fax: +27 (0) 12 428 6928 E-mail: sales@sabs.co.za

South African National Standards are also available online from the SABS website
http://www.sabs.co.za

Information on Standards

The Standards Information Centre provides a wide range of standards-related information on both
national and international standards, and is the official WTO/TBT enquiry point for South Africa. The
Centre also offers an individual updating service called INFOPLUS, which ensures that subscribers
automatically receive notification regarding amendments to, and revisions of, international
standards.

Tel: +27 (0) 12 428 6666 Fax: +27 (0) 12 428 6928 E-mail: info@sabs.co.za

Copyright

The copyright in a South African National Standard or any other publication published by the SABS
Standards Division vests in the SABS. Unless exemption has been granted, no extract may be
reproduced, stored in a retrieval system or transmitted in any form or by any means without prior
written permission from the SABS Standards Division. This does not preclude the free use, in the
course of implementing the standard, of necessary details such as symbols, and size, type or grade
designations. If these details are to be used for any purpose other than implementation, prior written
permission must be obtained.

Details and advice can be obtained from the Senior Manager.
Tel: +27 (0) 12 428 6666 Fax: +27 (0) 12 428 6928 E-mail: info@sabs.co.za

mailto:sales@sabs.co.za
mailto:sales@sabs.co.za
http://www.sabs.co.za/
mailto:info@sabs.co.za
mailto:info@sabs.co.za

