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PREAMBLE 

 

This study forms part of a range of studies conducted for Eskom as part of their application for 

postponement of the Minimum Emission Standards compliance timeframes. The study investigates 

the costs and benefits of mitigating air pollution emissions from 13 Eskom coal-fired power stations. 

The methodology is based on World Health Organisation guidelines.  

 

In addition to the authors, the contributors to this analysis include: 

 Sean O’Beirne from SE Solutions facilitated the interactions between the different 

research teams and provided key insights on abatement technologies. 

 Mark Zunckel and Atham Raghunandan from uMoya-NILU Consulting provided the 

dispersion modelling results. 

 Caradee Wright from the South African Medical Research Commission and Rietha 

Oosthuizen provided the epidemiological evidence used in the study. 

 Lorraine Ndala, Bryan McCourt, Bianca Wernecke, Tobile Bokwe, and Ebrahim Patel 

from Eskom provided important details on scenarios and abatement technology costs.  

 

 

  



 

  

3

EXECUTIVE SUMMARY 

The combustion of fossil fuels results in the emission of numerous atmospheric pollutants, that include 

but are not limited to Particulate Matter (PM), Nitrogen dioxide (NO2), and Sulphur dioxide (SO2). 

Atmospheric pollutants have numerous negative effects on human health and have been 

demonstrated to increase the risk of premature mortality.  

Technologies exist to reduce these emissions and therefore the health effects. Abatement 

technologies include Flue Gas Desulphurisation (FGD) for SO2 reduction, Electrostatic Precipitators 

(ESP) and Fabric Filter Plants (FFP) for PM reduction, Low NOX Burners (LNB) for NO2 reduction. A cost-

benefit analysis (CBA) allows for trade-offs between different scenarios to be compared to support 

decision making.  

The aim of this study was to estimate the incremental health benefits associated with abatement 

technology options that achieves compliance with the new Minimum Emission Standards (MES) of the 

Department of Environmental Affairs (DEA).  

Methodology 

An integrated Health CBA Model was developed, to model the impacts of four different scenarios. The 

Health CBA Model followed the General Principles of the World Health Organisation (WHO, 2016) for 

performing air pollution health risk assessment (AP-HRA). The detailed methodology and assumptions 

are set out in section 2 below. In summary, the methodology proceeded through several steps, as set 

out in the schematic and proceeding text below: 

 

1. Plant lifetimes were described for 13 coal-fired power plants and included 

commissioning and decommissioning dates (provided by Eskom). 

2. Abatement technologies required for each scenario were defined, by type and likely 

implementation schedule (refer to section 2.3.3). 

3. Capital expenditure required for abatement in each scenario was attributed per plant 

and per year using Eskom’s internal estimates. 

4. Operational expenditure required for abatement in each scenario was attributed per 

plant and per year using Eskom’s internal estimates. 

5. Dispersion modelling results were obtained as part of the broader Eskom 

investigation (Zunckel and Raghunandan, 2018). This data was segregated spatially, 

by ward and municipal boundaries to align with population data. Two sets of 

dispersion modelling data were obtained. The first set modelled predicted ambient 

concentrations of PM, NO2 and SO2 around individual power stations. The second set 

modelled cumulative predicted ambient concentrations of PM, NO2 and SO2 from all 

power stations on the Highveld. The dispersion modelling results were unique 
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because in addition to primary PM, the modelling predicted secondary PM effects, 

resulting from NO2 and SO2 reactions in the atmosphere (refer to Section 2.2). 

6. Population exposure was estimated at a spatial resolution of municipality and 

municipal wards. At each municipality or ward, the number of people exposed to 

different concentration ranges were determined per scenario per year, based on Stats 

SA population estimates and United Nations population growth forecasts (refer to 

Section 2.2).  

7. Health impacts were determined by using the AP-HRA methodology. Epidemiological 

evidence, in the form of Exposure-response functions (ERFs) and baseline incidence 

rates were provided by the SA Medical Research Council (SAMRC) (Wright and 

Oosthuizen, 2018) (refer to Section 2.3). The ERFs were limited to mortality incidence. 

The Cost of Illness (COI) methodology used was the value of statistical life (VSL). This 

method estimates the willingness to pay (WTP) of an individual for reducing their 

health risk. The VSL should not be interpreted as the intrinsic value of a life. Refer to 

Section 2.3.3 for a more detailed discussion. 

8. The CBA compares the overall scenario benefits and costs. The outputs of the AP-HRA, 

the health cost savings of each scenario, was used as the benefit. The capital and 

operational cost estimates were used as the costs in the CBA. The analysis timeline 

spans 2015 – 2045. This timeframe allows for 5-year interval analysis, aligning to the 

2020 MES. It also captures mitigation activities implemented since 2016. The base 

year was 2018, due to dispersion modelling timeframe.  The CBA was performed in an 

Excel spreadsheet, which consolidated all data sources, which contains all 

calculations, and was macro-enabled to run the large spatial exposure estimates for 

each scenario for the review period (refer to Section 2.4). Finally, an assessment of 

uncertainty of the results was done (refer to Section 2.5). 

Health benefits resulting from air pollution abatement 

The WHO (2016) recommends that the health risk in a population, associated with air pollution, is to 

be estimated using exposure-response functions (ERFs). ERFs are based on Relative Risk (RR) estimates 

derived from primary epidemiological studies. These RR functions estimate the likelihood of health 

outcomes occurring in a population exposed to a higher level of air pollution relative to that in a 

population with a lower exposure level. RR is usually expressed as the proportional increase in the 

assessed health outcome risk incidence associated with a given increase in pollutant concentrations, 

measured in μg/m3. The WHO (2016) notes that “the RR estimate cannot be assigned to a specific 

person; it describes risk in a defined population, not individual risk.” 

Ideally, ERF studies and their RRs should be determined based on primary epidemiological studies 

focussing on the exposed population. In the absence of such studies, as in the case of South Africa, 

the WHO (2016) recommends using ERFs from other countries. The SAMRC provided a number of ERF 

options for South Africa (refer to section 2.3.1). These were all mortality related RRs, and thus mobility 

related RRs were not assessed in this study. It is to be noted however that there are inherently 

significant limitations in transferring ERF studies from other countries. Pollution levels, chemical 

composition and health care systems are typically very different in other settings, and this would affect 

the accuracy of the ERFs. It is important to understand at what level interval the ERFs would result in 

significant differences in health outcome incidences. As a result, the WHO (2016) advises performing 

an assessment of the uncertainty of the analysis; in this case therefore this requires an assessment 
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related to a lack of knowledge about one or more components of the integrated Health CBA Model. 

Section 2.5 discusses each source of uncertainty and related limitations. Variation in health outcome 

incidences between the various ERFs provided, in some cases exceed 80%. This variation was dealt 

with through performing sensitivity analysis in the CBA (refer to section 2.4). 

Interpretation of premature mortality or attributable deaths has to be done with care. It is to be noted 

firstly that these numbers are indicators of health risk at a population level. The relative risk estimate 

inherent in the ERF is a metric of the likelihood of an adverse health outcome, and it cannot be 

attributed to an individual person. It can thus be used to quantify risk to a defined population (and 

not to an individual), (WHO 2016) and how this risk would vary between various policy options of 

scenarios.  

The ERFs provided by the SAMRC focussed exclusively on mortality and thus a monetary measure of 

mortality was required in order to perform cost-benefit analyses.  In air pollution cost-benefit 

analyses, the concept of value per statistical life (VSL) is commonly used to monetise mortality related 

benefits of air pollution reduction. The concept of a VSL is frequently misunderstood. It does not 

measure the intrinsic value of a human life, and neither does it value the economic productivity of a 

human. Rather, VSL is estimated by dividing an individual’s willingness to pay (WTP) to reduce health 

risk, by the likelihood of risk reduction. Robinson and Hammitt (2009) defines VSL to represent the 

rate at which an individual is willing to exchange their own income for a small reduction in their own 

mortality risk over a particular time period. Primary WTP studies for mortality risk reductions have not 

been done in South Africa. However, three studies have made VSL estimates for South Africa, all based 

on extrapolation of United States studies. These values, when adjusted to 2018, vary between R21 

million and R48 million (Table 4). The most conservative of these estimates (i.e. the highest VSL) of R 

53 Million (in 2020) was adjusted to 2018 and was used in the CBA. 

In spite of the various sources of uncertainty discussed above, the analysis still provides valuable 

insights into the comparison of scenarios tested in the CBA. This is because the uncertainty inherent 

in the analysis remains constant across all scenarios.  

Scenario assessment 

The scenarios evaluated in this study (against the baseline) included: 

1. Full compliance with new plant standards (FC) (Scenario 1 (Sc1)) 

2. Eskom Emission Reduction Plan (ERP) (Scenario 2 (S2)) 

3. ERP + FGD at Kendal and Matimba (Scenario 3 (S3)) 

4. ERP + Early decommissioning (ED) of Komati, Hendrina and Grootvlei (Scenario 4 (S4)) 

Approximately 20.3 million people are exposed to air pollution from the 13 power plants modelled, 

that fall within the modelling domain.  The mean additional annual average exposure to air pollution 

of the population within this domain, resulting from coal-fired power station emissions, was estimated 

by averaging dispersion modelling results over municipal boundaries. Approximately 17.7 million 

people were exposed to more than an additional 1µg.m3 (mean annual average) of PM2.5. Similarly, 

15.3 and 19.0 million people, respectively, were exposed to more than an additional 1µg.m3 of NO2 

and SO2 (see Section 2.2.4). 

Health benefits associated with each scenario were calculated against the baseline that assumed no 

new abatement technologies would be installed, and all plants would continue to emit air pollution at 

their current rates until decommissioning. The scenario with the highest health benefits was ERP+ED 

(S4), highlighting the immediate results achievable if early decommissioning of power plants can be 
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achieved. The ERP+ED (S4) is estimated to result in health benefits with a NPV that varied between R 

3.4 billion and R 30.1 billion. The FC (S1) had the next highest health benefits with a NPV that varied 

between R 2.5 billion and R 22.1 billion. The ERP+FGD (S3) had marginally higher health benefits than 

ERP (S2) due to the additional FGD at Kendal. Figure 1 demonstrates the averaged flow of benefits for 

the four scenarios.  

 

Figure 1 Average annual health benefits per scenario 

Scenario costs were calculated using Eskom’s estimates of abatement technology capital and 

operational spending requirements. As expected, the FC (S1) had the highest costs due to having the 

most abatement technologies installed, with the NPV between -R43.4 billion to -R65.1 billion. The ERP 

(S2) and ERP+ED (S4) had the same costs as they both had the same abatement technology additions 

with a NPV between -R16.9 billion to -R25.3 billion. The ERP+FGD (S3) had a higher cost with a NPV of 

-R21.2billion to -R31.8 billion due to the additional FGD at Kendal. Figure 2 demonstrates the averaged 

flow of costs for the four scenarios. 

 

Figure 2 Total abatement costs (CAPEX and OPEX) associated with each scenario’s abatement retrofits 
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Scenarios were compared in a cost-benefit analysis. The cost-benefit analysis apportioned costs 

(capital and operation expenditure on abatement technologies) and benefits (health benefits) to the 

years in which they would be realised. Because costs and benefits are accrued in different years 

according to the intervention schedules, the net present values of costs and benefits, using Eskom’s 

weighted average cost of capital (WACC) rate of 8.4% as the discount rate allows an objective 

comparison of scenarios. Dividing the NPV of costs by the NPV of benefits provides a cost:benefit ratio, 

which when greater than 1 indicates that the costs outweigh the benefits, and when less than 1 

indicate that the benefits outweigh the costs.  

The CBA ratios need to be interpreted with care. They are meant only to provide a perspective on and 

inform the decision-making process underlying the scenarios. They are not meant to be interpreted 

as a definitive answer to making abatement decisions. Decisions involving human health have to be 

informed by non-economic criteria as well. In addition, uncertainty inherent in the analysis, the cost 

benefit ratio should thus not be viewed as absolute, but rather as a relative value from which to 

compare scenarios. 

Table 1 Costs and benefits NPV estimates (lower and upper ranges) for each scenario, and cost:benefit ratios  

  FC (S1) ERP (S2) ERP+FGD (S3) ERP+ED (S4) 

Million Rands lower upper lower upper lower upper lower upper 

NPV of Costs  -43 369 -65 053 -16 923 -25 385 -21 205 -31 808 -16 923 -25 385 

NPV of Benefits  2 403 21 625 1 962 17 661 2 252 20 264 3 374 30 367 

NPV of Benefits 

minus Costs 
-40 966 -43 428 -14 961 -7 724 -18 954 -11 544 -13 549 4 982 

Cost: Benefit 

Ratio (range) 
18.0 3.0 8.6 1.4 9.4 1.6 5.0 0.8 

Cost: Benefit 

Ratio (central) 
4.5 2.2 2.4 1.3 

Refer to section 3.2 for sensitivity analysis using alternative discount rates. 

In spite of the uncertainties that are inherent in the current assessment process, the assessment 

provides valuable insights into the effects of air pollution and abatement. The larger investigation has 

made significant progress on improving the accuracy of dispersion modelling, through modelling 

secondary PM emissions and through performing cumulative emissions analysis. This work has 

increased our understanding of the exposed population. It is recommended that the analysis 

performed here be continuously improved to address prioritised sources of uncertainty. Improving 

the accuracy of the ERFs needs priority attention as AP-HRA applications continue to be improved. 

In spite of the level of uncertainty associated with ERFs, epidemiological evidence is sufficient to 

confirm the hypothesis that abatement technologies would have positive impacts on human health.  

With the testing of different discount rates, all scenarios become more favourable (i.e. future health 

benefits received a higher weighting than upfront costs). What is important to note however is that 

the order of the scenarios, as assessed using cost benefit ratios, do not change.  

Thus, most significantly, early decommissioning of the coal-fired power stations assessed in ERP+ED 

(S4), would have a significantly larger beneficial effect on health costs than abatement technologies 

alone. This holds for all discount rates tested. This plays a large role in positioning Scenario 4 as the 

most beneficial scenario, both in terms of largest health cost benefits, lowest cost of abatement, as 

well as relative cost:benefit ratio. The FC (S1) would eventually have the second most benefits (see 

Tables 5, 6 and 7).  
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It is also noted that the abatement technologies are expensive, and would place a significant financial 

burden on Eskom.  
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ACRONYMS AND ABBREVIATIONS 

AP-HRA  Air Pollution Health Risk Assessment 

CBA  Cost-Benefit Analysis 

COI  Cost of Illness 

COPD  Chronic Obstructive Pulmonary Disease 

DEA  Department of Environmental Affairs 

ERF  Exposure Response Function 

ESP   Electrostatic Precipitators  

FGD  Flue Gas Desulphurisation and Fabric Filter Plants (FFP). 

HPA  Highveld Priority Area 

ICD   International Classification of Diseases 

IRP  Integrated Resource Plan 

kW  Kilowatt 

LNB   Low NOX Burners  

MES  Minimum Emissions Standards 

NAAQS  National Ambient Air Quality Standard 

NO2  Nitrogen Oxide 

NPV  Net Present Value 

PM  Particulate Matter 

RR  Relative Risk 

SAMRC  South African Medical Research Council 

SO2  Sulphur Dioxide 

TB  Tuberculosis 

VSL  Value of Statistical Life 

WHO  World Health Organisation 

WACC  Weighted Average Cost of Capital  

WTP   Willingness to Pay 
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1. INTRODUCTION 

The Earth Summit1 in Rio de Janeiro in 1991 raised the awareness of the linkages between 

environmental health and human wellbeing to a global agenda. In the two and half decades since the 

Summit, significant effort has gone into methods for quantifying these linkages, in all environmental 

spheres, and informing policy development. During the same period, we have seen an information 

technology revolution, which has radically improved our ability to collect and analyse large data sets. 

In the field of air quality health risk assessment specifically, there has been a rapid and continuously 

improving set of methodologies through which to analyse the linkages between air pollution and 

health risk.  

The World Health Organisation (WHO) has been leading the development of health risk assessment 

methodology. Formally, air pollution health risk assessments (AP-HRA) are performed to provide 

quantifiable information for informing public policy decisions. The general principles for AP-HRAs have 

been published by the WHO (WHO, 2016). An AP-HRA proceeds through three steps.  

Firstly, it assesses the exposure of the target population to specific air pollutants. This requires a 

quantification of constituents in the atmosphere that are associated with human health risks. The 

atmosphere we breathe contains various such constituents, both from natural sources (e.g. sea salt 

and bio-aerosols) and anthropogenic sources (e.g. fuel combustion, suspension of fine particles, and 

industrial emissions) (refer to FRIDGE (2004) for a comprehensive discussion of pollution sources). 

When a particular policy option is analysed, specific indicator constituents need to be selected, and 

the incremental effect of the policy option needs to be estimated in terms of population exposure. In 

this study, incremental population exposure resulting from Eskom’s coal-fired power plant emissions 

(from 13 plants), was estimated through the use of dispersion modelling (refer to Zunckel and 

Raghunandan, 2018). 

Secondly, the AP-HRA estimates the resultant incremental change in health risk. This requires the 

application of exposure-response functions (ERFs). ERFs quantify the incremental change in health 

outcomes (compared to the baseline incidence), based on changes in exposure to pollutants. ERFs are 

derived from epidemiological studies, which are large scale population health studies that compare 

health outcome incidence between populations exposed to different concentrations of pollution. In 

this study, ERFs from studies in the USA and India were used, as no local ERFs exist (Wright and 

Oosthuizen, 2018). AP-HRA results can be reported in terms of morbidity indicators (e.g. cost of 

medical treatment and lost economic productivity) or mortality indicators (e.g. premature mortality). 

These indicators can be converted to monetary impacts by applying cost of illness (COI) 

methodologies. In this study, premature mortality was evaluated, using a value of a statistical life (VSL) 

COI methodology. 

Thirdly, the AP-HRA process requires the quantification and expression of the uncertainty of the 

estimated health effects. The WHO states that this step is “an important and integral component of 

the results, and … vital to ensure both that the main message is not lost and that the results produced 

are understandable by policy-makers and others who do not necessarily have a technical background 

or expertise in AP-HRA.” This step requires “the use of expert judgement (consensus) on the level of 

confidence of the results”.  

This study investigates the health effects of air pollution resulting from coal-fired powered plants and 

applies the AP-HRA methodology described above.  

                                                             
1 http://www.un.org/geninfo/bp/enviro.html 
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The indicator pollutants used included particulate matter (PM), nitrogen dioxide (NO2) and sulphur 

dioxide (SO2). These pollutants have several negative impacts, of most concern are the health impacts 

that include for instance heart disease, lung cancer, stroke and chronic obstructive pulmonary disease 

(WHO, 2016a).     

The Department of Environmental Affairs under the National Environmental Management Act (NEMA: 

AQA, 2004) sets ambient air quality standards. The Highveld, containing most of South Africa’s coal-

fired power stations, often exceeds the National Ambient Air Quality Standards (NAAQS) (DEA, 2009 

and 2012).  As a result, the Minister of Environmental Affairs declared the Highveld Priority Area (HPA) 

in November 2007 in terms of Chapter 18 of the National Environment Management: Air Quality Act, 

2004 (Act No. 39 of 2004) (NEMA: AQA). Where ambient air quality standards are exceeded, specific 

air quality mitigation actions would be required. Power generation is a Listed Activity in terms of 

Section 21 of the NEMA: AQA and Minimum Emission Standards (MES) are prescribed for existing and 

new plants.  Existing plants must comply with new plant standards by 2020. 

Technologies exist to reduce these emissions and therefore the health effects. Such abatement 

technologies include Flue Gas Desulphurisation (FGD) to reduce SO2, Electrostatic Precipitators (ESP) 

to reduce PM, Low NOX Burners (LNB) to reduce NO2 and Fabric Filter Plants (FFP) to reduce PM.  

This study investigated four air pollution mitigation scenarios for Eskom, through a cost-benefit 

analysis (CBA). The CBA uses the AP-HRA methodology to estimate the likely changes in health costs 

resulting from each scenario. The CBA compares these benefits against the capital costs and 

operational costs of the mitigation options for each scenario (refer to section 2.3).   

Other studies have previously been conducted to estimate the health impacts of either fossil fuel 

power plants, air pollution in general or specific sources in South Africa. They estimated morbidity and 

mortality, and in some instances attributed costs to these health impacts. Studies of this nature can 

take either bottom up (deterministic) approaches or top down (stochastic) approaches to modelling 

pollution exposure with the latter usually preferable in data poor environments or large spatial 

domains (Dios et al., 2012). These studies also varied in geographic scale, ranging from selected areas 

to the national scale. Some of the most recent and relevant include: 

The World Health Organisation estimated that, in South Africa, in 2009, approximately 1,100 deaths 

could be attributed to poor outdoor air quality (WHO, 2009). 

 Scale: National (All Air Pollution) 

 Resolution: Course 

 Health Outcomes: Mortality 

 Modelling Approach: Top-down 

The Institute for Health Metrics and Evaluation listed air pollution as the 9th largest risk factor driving 

death and disability combined in 2016 in South Africa (IHME, 2016).  

 Scale: National (All Air Pollution) 

 Resolution: Medium 

 Health Outcomes: Morbidity and Mortality 

 Modelling Approach: Bottom-up 

 

A study commissioned by Greenpeace in 2014 estimated air pollution emissions from Eskom’s coal-

fired power plants could cause as much as 2,200 premature deaths per year (Myllyvirta, 2014). The 

study also estimated the impacts of mercury pollution. 
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 Scale: National (Air Pollution from Coal-fired Power Plants) 

 Resolution: Medium 

 Health Outcomes: Morbidity and Mortality 

 Modelling Approach: Bottom-up 

 

A 2017 study commissioned by Groundwork, estimated the total impact of air pollution resulting from 

the coal-fired power plants at $2.4 billion of health costs annually in South Africa (Holland, 2017).  

 Scale: National (Air Pollution from Coal-fired Power Plants) 

 Resolution: Medium 

 Health Outcomes: Morbidity and Mortality 

 Modelling Approach: Bottom-up 

 

Van Horen (1996) evaluated the health costs associated with Eskom’s power stations as part of 

understanding the true costs of electricity generation. The valuation of morbidity outcomes was found 

to be small in terms of costs per kWh generated. 

 Scale: National (Air Pollution from Coal-fired Power Plants) 

 Resolution: Medium 

 Health Outcomes: Morbidity and Mortality 

 Modelling Approach: Bottom-up 

 

The Fund for Research into Industrial Development Growth and Equity, in 2004, assessed the 

economic impact of air pollution in selected areas in South Africa. The study found that power 

generation was responsible for 51% of the 8,700 respiratory cases in Mpumalanga (FRIDGE, 2004). 

 Scale: Selected Areas (All Air Pollution and Air Pollution from Power Plants) 

 Resolution: Medium 

 Health Outcomes: Morbidity and Mortality 

 Modelling Approach: Bottom-up 

 

A review by Spalding-Fecher and Matibe in 2003 aimed to calculate the external costs of electric power 

generation in South Africa. They estimated the health costs to be R1.1 billion per year (Spalding-Fecher 

and Matibe, 2003). 

 Scale: National (Air Pollution from Power Plants) 

 Resolution: Low 

 Health Outcomes: Morbidity and Mortality 

 Modelling Approach: Top-down. 

 

The methodology used in this investigation is discussed in detail in Section 2 below. 

  



 

  

14

2. METHODOLOGY AND INPUTS 

2.1. Overview 

An integrated Health CBA Model was developed that combined an AP-HRA with a CBA to assess four 

air pollution mitigation scenarios for 13 Eskom coal-fired power stations. 

Figure 3 below provides an overview of the methodology, and Sections 2.2 - 2.5 provide a more 

detailed discussion of each component. 

 

Figure 3 Overview of methodology and model architecture 

With reference to Figure 3, the integrated Health CBA Model includes the following components: 

1. Plant lifetimes were described for 13 coal-fired power plants and included 

commissioning and decommissioning dates (provided by Eskom) (Table 5). 

2. Abatement technologies required for each scenario were defined, by type and likely 

implementation schedule (Figure 23 - Figure 26). 

3. Capital expenditure required for abatement in each scenario was attributed per plant 

and per year using Eskom’s internal estimates (Section 2.3.3). 

4. Operational expenditure required for abatement in each scenario was attributed per 

plant and per year using Eskom’s internal estimates (Section 2.3.3). 

5. Dispersion modelling results were obtained as part of the broader Eskom 

investigation (Zunckel and Raghunandan, 2018). This data was segregated spatially, 

by ward and municipal boundaries to align with population data. Two sets of 

dispersion modelling data were obtained. The first set modelled predicted ambient 

concentrations of PM, NO2 and SO2 around individual power stations. The second set 

modelled cumulative predicted ambient concentrations of PM, NO2 and SO2 from all 

power stations on the Highveld. The dispersion modelling results were unique 

because in addition to primary PM, the modelling predicted secondary PM effects, 

resulting from NO2 and SO2 reactions in the atmosphere (refer to Section 2.2). 

6. Population exposure was estimated at a spatial resolution of municipality and 

municipal wards. At each municipality or ward, the number of people exposed to 

different concentration ranges were determined per scenario per year, based on Stats 

SA population estimates and United Nations population growth forecasts (refer to 

Section 2.2).  

7. Health impacts were determined by using the AP-HRA methodology. Epidemiological 

evidence, in the form of ERFs and baseline incidence rates were provided by the SA 

Medical Research Council (SAMRC) (Wright and Oosthuizen, 2018) (refer to Section 
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2.3). The ERFs were limited to mortality incidence. The COI methodology used was 

the value of statistical life (VSL). This method estimates the willingness to pay (WTP) 

of an individual for reducing their health risk. The VSL should not be interpreted as 

the intrinsic value of a life. Refer to Section 2.3.3 for a more detailed discussion. 

8. The CBA compares the overall scenario benefits and costs. The outputs of the AP-HRA, 

the health cost savings of each scenario, was used as the benefit. The capital and 

operational cost estimates were used as the costs in the CBA. The analysis timeline 

spans 2015 – 2045. This timeframe allows for 5-year interval analysis, aligning to the 

2020 MES. It also captures mitigation activities implemented since 2016. The base 

year was 2018, due to dispersion modelling timeframe.  The CBA was performed in an 

Excel spreadsheet, which consolidated all data sources, which contains all 

calculations, and was macro-enabled to run the large spatial exposure estimates for 

each scenario for the review period (refer to Section 2.4). Finally, an assessment of 

uncertainty of the results was done (refer to Section 2.5).  
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2.2. Exposure of the target population to specific air pollutants  

 Overview 

This section comprises the first step of the AP-HRA. It assesses the exposure of the target population 

to specific air pollutants.  

This requires an incremental effects quantification of constituents in the atmosphere that are 

associated with human health risks. These pollutants include PM, NO2 and SO2 emitted by the 13 coal-

fired power plants investigated. The emissions from these plants impact the Highveld Priority Area 

(HPA). 

Dispersion modelling combined with population distribution provided an estimate of exposed 

population. 

 Pollutants analysed 

A network of five ambient monitoring stations was established by the Department of Environmental 

Affairs (DEA) in the HPA in 2008. Currently a 9-year data record of SO2, NO2 and PM exists. The ambient 

monitoring stations are located at Ermelo, Hendrina, Middelburg, Secunda and Witbank.  An overview 

of the state of air quality in the HPA follows, per pollutant (Naidoo et al., 2018). 

Sulphur dioxide (SO2) 

Industrial processes and power generation are the main source of SO2 in the atmosphere through the 

combustion or refining of sulphur containing fuels. In the HPA the annual average ambient SO2 

concentrations are relatively high, and the annual average concentration is consistently more than 

50% of the NAAQS of 19 ppb. The highest concentrations occur in Witbank where the NAAQS was 

exceeded in 2010 and 2011, and the annual average concentration is 90% of the NAAQS in most other 

years (Figure 4).  

 

Figure 4 Annual average SO2 concentrations at the DEA-owned monitoring stations in the HPA in ppb 

Nitrogen dioxide (NO2) 

Industrial processes and power generation are the main source of NO2 in the atmosphere through the 

combustion or refining of fossil fuels, with some contribution from motor vehicle emissions, 

residential fuel burning and biomass burning. In the HPA the annual average ambient NO2 
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concentrations are relatively low compared to the NAAQS, except at Secunda in 2009 and Witbank in 

2016 where exceedances occurred (Figure 5).   

 

Figure 5  Annual average NO2 concentrations at the HPA monitoring stations in ppb 

Particulate matter (PM) 

There are numerous sources of primary particulate matter, including power generation, industry, 

mining, biomass burning and agricultural, as well as natural sources such as wind entrainment. In 

addition, secondary PM is produced by NO2 and SO2 reactions in the atmosphere. In this study all PM 

assessed was below 2.5 microns, i.e. PM2.5. 

The annual average PM2.5 concentrations are high at the HPA monitoring stations relative to the 

NAAQS (25 µg.m-3 prior to 2016 and 20 µg.m-3 thereafter). The exception is Hendrina and the Secunda 

stations.  The 9-year monitoring record for the HPA monitoring stations also shows the consistent 

exceedances of the NAAQS, although there is evidence of a decreasing trend at the monitoring 

stations since 2012 (Figure 6).  

 

Figure 6 Annual average PM2.5 concentrations for the HPA in µg.m-3  
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 Description of power plants 

Eskom has indicated that the MES cannot be achieved at 13 coal-fired power stations and plans to 

apply for an extension of the conditions (Zunckel and Raghunandan, 2018). These power stations have 

a combined installed capacity of 38 510 MW and are listed in Table 2. 

Table 2 Eskom coal-fired power stations, used in this study, and their installed capacity (Zunckel and 

Raghunandan, 2018). 

Power Station Province Installed capacity (MW) 

Arnot Mpumalanga 2 352 

Camden Mpumalanga 1 561 

Duvha Mpumalanga 3 600 

Grootvlei Mpumalanga 1 180 

Hendrina Mpumalanga 1 893 

Kendal Mpumalanga 4 116 

Komati Mpumalanga 990 

Kriel Mpumalanga 3 000 

Kusile Mpumalanga 4 800 

Lethabo Free State 3 708 

Majuba Mpumalanga 4 110 

Matla Mpumalanga 3 600 

Tutuka Mpumalanga 3 600 
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 Dispersion modelling 

Dispersion modelling is required to estimate the effects of stack emissions on ambient concentrations 

of pollutants and describe them spatially.  

uMoya-Nilu Consulting conducted the dispersion modelling and followed the requirements of the DEA 

guideline for dispersion modelling (DEA, 2014).  

The work modelled the dispersion of primary and secondary particulate matter (PM2.5), nitrogen 

dioxide (NO2) and Sulphur dioxide (SO2), for each power plant, as well as cumulatively. (Zunckel and 

Raghunandan, 2018). Dispersion modelling was performed using the CALPUFF suite of models. 

CALPUFF is a multi-layer, multi-species non-steady-state puff dispersion model that simulates the 

effects of time and space-varying meteorological conditions on pollution transport, transformation 

and removal.  It includes algorithms for sub-grid scale effects, such as terrain effect, as well as longer 

range effects, such as pollutant removal due to wet scavenging and dry deposition, chemical 

transformation, and the formation of secondary particulate matter. The Air Pollution Model (TAPM) 

was used to model surface and upper air metrological data for the study domain.   

Two types of analysis were performed, individual and cumulative models. Individual plant dispersion 

modelling results had smaller modelling domains (4 356 km2; 66 km by 66 km), while the cumulative 

modelling had large domains (97 200 km2; 360 km by 270 km). Because of the much larger modelling 

domain of the cumulative model, it was used to calculate the status quo health impacts. The 

cumulative assessment however only offers a static “snapshot” of predicted ambient concentrations 

and does not allow the effects of different scenarios to be modelled. The individual dispersion results 

are less useful for calculating health effects because of their smaller modelling domains (covering 

smaller populations), however individual models are useful for assessing the impacts of changes in 

scenarios, as pollution from individual plants can be evaluated. As such, integrated Health CBA Model 

used the individual models to estimate relative changes between scenarios and years, applied to the 

health costs derived from the cumulative models.  

Individual Models: Primary and secondary PM2.5 was combined to estimate total PM2.5. Two of the 

emission scenarios were used; (i) the “Current”; and (ii) the “Compliance” scenario, that described 

predicted ambient pollution concentrations in the region attributable to the 13 plants that were 

modelled. For the health benefits analysis, it was assumed that all power plants will emit “Current” 

emissions until abatement technologies are installed, from which time they will emit “Compliance” 

emissions. Examples of the “Current” predicted annual average concentrations based on actual 

emissions and assuming new plant MES are presented in the Figure 7 to Figure 14. 

Cumulative Models: Primary and secondary PM2.5 was combined to estimate total PM2.5. This 

analysis only used (i) the “Current”; scenario, that described cumulative predicted ambient pollution 

concentrations in the region attributable to the 13 plants that were modelled. These models were 

used to estimate the status quo health costs. The “Current” predicted annual average 

concentrations based on actual emissions are presented in the Figure 15 to Figure 18. 

  



 

  

20

 

Figure 7 Predicted annual average SO2 concentrations (µg/m3) resulting from actual emissions for Camden 

Power Station (Current) 

 

Figure 8 Predicted annual average SO2 concentrations (µg/m3) assuming new plant MES from Camden Power 

Station (Compliance) 
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Figure 9 Predicted annual average PM2.5 concentrations (µg/m3) resulting from actual emissions for Camden 

Power Station (Current) 

 

Figure 10 Predicted annual average PM2.5 concentrations (µg/m3) assuming new plant MES from Camden 

Power Station (Compliance) 
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Figure 11 Predicted annual average NO2 concentrations (µg/m3) resulting from actual emissions for Camden 

Power Station (Current) 

 

Figure 12 Predicted annual average NO2 concentrations resulting assuming new plant MES from Camden 

Power Station (Compliance) 
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Figure 13 Predicted annual average secondary particulate concentrations (µg/m3) resulting from actual 

emissions for Camden Power Station (Current) 

 

Figure 14 Predicted annual average secondary particulate concentrations (µg/m3) resulting, assuming new 

plant MES from Camden Power Station (Compliance) 
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Figure 15 Predicted annual average SO2 concentrations (µg/m3) resulting from actual emissions from the 13 

coal-fired power stations (Zunckel and Raghunandan, 2018) 

 

 

Figure 16 Predicted annual average NO2 concentrations (µg/m3) resulting from actual emissions from the 13 

coal-fired power stations (Zunckel and Raghunandan, 2018) 
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Figure 17 Predicted annual average PM2.5 concentrations (µg/m3) resulting from actual emissions from the 13 

coal-fired power stations (Zunckel and Raghunandan, 2018) 

   

Figure 18 Predicted annual average secondary particulate concentrations (µg/m3) resulting from actual 

emissions from the 13 coal-fired power stations (Zunckel and Raghunandan, 2018) 
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 Population exposure 

Population exposure was estimated at a spatial resolution of municipality and municipal wards. At 

each municipality or ward, the number of people exposed to different concentration ranges were 

determined per scenario per year, based on Stats SA population estimates (Stats SA, 2012; Stats SA, 

2018) and United Nations population growth forecasts (United Nations, 2017). 

Population exposure was estimated at a spatial resolution of municipality (cumulative model) and 

municipal wards (individual models). At each ward, the number of people exposed to different 

concentration ranges for each pollutant were determined per scenario per year. Primary and 

secondary particulate matter was summed to estimate total exposure at each spatial unit. 

 

Figure 19 Overview of population exposure calculation 

The integrated Health CBA model calculated pollution exposure as follows: 

 Dispersion Model outputs were used to spatially apportion pollution concentrations. 

The co-ordinates (x;y) of receptors from the output files were attributed to specific 

administrative boundaries. 

 Administrative boundaries used were municipalities and municipal wards. The 

predicted ambient concentrations for each pollutant was averaged for the entire 

spatial unit.  

 Population density (population per ward) was obtained from the Census 2011 (Stats 

SA, 2018). 

 Total population was obtained from mid-year population estimates (Stats SA, 2018). 
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 Power plant locations were used to determine the wards which were affected by each 

plant, to estimate relative impacts of each power plant to the cumulative impact 

modelled.  

 Fleet capacity (Table 5) was used to determine whether power plants were 

operational in each year. If abatement technologies were installed, they had 

“Compliance” ambient pollution concentrations. 

 Population growth forecasts were used to determine the growth in population 

exposure over time (United Nations, 2017). 

Approximately 17.7 million people were population exposed to more than an additional 1µg.m3 

(mean annual average) of PM2.5 due to the 13 power plants. Similarly, 15.3 and 19.0 million people 

were exposed to more than an additional 1µg.m3 of NO2 and SO2, respectively. 

 

 

 

Figure 20 Population exposure to NO2, PM2.5 and SO2 mean annual average concentration ranges. 
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2.3. Incremental change in health risk 

 Health impacts 

The WHO (2016) recommends that the health risk in a population, associated with air pollution, is to 

be estimated using exposure-response functions (ERFs). ERFs are based on Relative Risk (RR) estimates 

derived from primary epidemiological studies.  

These RR functions estimate the likelihood of health outcomes occurring in a population exposed to a 

higher level of air pollution relative to that in a population with a lower exposure level (WHO, 2016). 

RR is usually expressed as the proportional increase in the assessed health outcome associated with a 

given increase in pollutant concentrations, measured in μg/m3. The WHO (2016) notes that “the RR 

estimate cannot be assigned to a specific person; it describes risk in a defined population, not individual 

risk.” 

The RRs are derived from epidemiological studies. These are mostly based on evidence from 

population health studies that compare health outcome incidences of populations exposed to higher 

levels of air pollution to populations exposed to lower levels of air pollution. Most of these studies 

have been done in Europe and North America. 

The health outcomes used in this study were specified by the SAMRC based on an international 

benchmarking exercise, and included commonly associated diseases such as cerebrovascular, 

respiratory and cardiovascular mortality (Wright and Oosthuizen, 2018). In addition, the MRS report 

also identified an emerging health outcome linked to air pollution, in the form of diabetes mellitus 

mortality.  

Respiratory Mortality: The lung is the internal organ most vulnerable to infection and injury from the 

external environment because of its constant exposure to ambient air. Respiratory mortality includes 

deaths due to chronic obstructive pulmonary disease (COPD), asthma, acute lower respiratory tract 

infections, tuberculosis (TB), and lung cancer (FIRS, 2017). Diseases of the respiratory system make up 

9.4% of total deaths in South Africa (StatsSA, 2018). 

Cardiovascular Mortality: Cardiovascular mortality includes death attributable to myocardial ischemia 

and infarction, heart failure, ischaemic heart disease and cardiac arrest. Cardiovascular diseases fall 

within International Classification of Diseases (ICD) codes I00-I152. Long-term exposure to nitrogen 

dioxide is associated with increased cardiovascular mortality (Maji et al., 2017). In South Africa, 

diseases of the cardiovascular system make up 18.5% of total deaths (SAMRC, 2016). 

Cerebrovascular Mortality: Stroke, transient ischemic attack, aneurysms, and vascular malformations 

are all types of cerebrovascular disease. Cerebrovascular diseases have ICD codes I60-I69. Exposure 

to particulate matter is associated with increased cerebrovascular mortality (Gutiérrez-Avila et al., 

2018). Cerebrovascular diseases are responsible for 5.7% of natural deaths in South Africa (StatsSA, 

2018). 

Diabetes Mellitus Mortality: Diabetes mellitus is a group of diseases where a person has high blood 

glucose (blood sugar), either because insulin production is inadequate, or because the body's cells do 

not respond properly to insulin, or both. Diabetes diseases have a classification of E10 (Type 1) and 

E11 (Type 2) in the International Statistical Classification of Diseases (ICD) (WHO, 2016b). Long-term 

exposure to particulate matter is associated with a significant increase in diabetes-related mortality 

(Brook et al., 2013). Diabetes Mellitus is estimated to be responsible for 6.2% of natural deaths in 

South Africa (StatsSA, 2018). 
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The baseline incidence rates of these health outcomes, as well as the ERFs describing the change in 

incidence in relation to changes in exposure (RRs) were also provided by the Medical Research 

Council. Figure 22 demonstrates how the relative risks for each of these health outcomes are related 

to pollution concentrations. 

The baseline incidences were estimated by the SAMRC based for either 2012 or 2016, based on Stats 

SA data.  

Ideally, ERF studies and their RRs should be determined based on primary epidemiological studies 

focussing on the exposed population. In the absence of such studies, as in the case of South Africa, 

the WHO (2016) recommends using ERFs from other countries. The SAMRC provided a number of ERF 

options for South Africa, as set out in Table 3. 

It is to be noted that there are inherently significant limitations in transferring ERF studies from other 

countries. Pollution levels, chemical composition and health care systems are typically very different 

in other settings, and this would affect the accuracy of the ERFs. 

It is important to understand at what level interval the ERFs would result in significant differences in 

health outcome incidences. It is also to be noted that the ERFs proposed by the SAMRC were all 

specified for relatively coarse intervals in ambient concentrations of 10 µg/m3. These are relative 

coarse bands and have to be applied to the changes in annual average ambient concentration 

estimated by the dispersion modelling, which are in the order of 1-3 µg/m3. Figure 21 provides a 

sensitivity analysis that demonstrates how the choice of finer pollution concentration interval affects 

the health incidence estimates. At 10 µg/m3 intervals, at which the ERFs are specified, no health effects 

are visible. This is because the changes in ambient concentrations modelled are smaller than 10 µg/m3. 

At a finer interval of 0.75 µg/m3, much larger health effects are visible. This study adopted a 

conservative approach favouring higher health costs per incidence by assuming ERFs are significant at 

0.2 µg/m3 intervals 

Figure 21 can also be used to demonstrate an example of how an ERF is applied. In 2018, 4.17 million 

people were exposed to an additional 2 µg/m3 from the 13 power stations modelled. Cerebrovascular 

mortality has a baseline incidence rate of 0.0413%, meaning that we would expect 2792 mortalities 

out of the 4.17 million people in that year. However, the incidence of cerebrovascular mortality 

increases by 11% (from baseline incidence) for every 10 µg/m3 increase in PM2.5 exposure, so a 2 µg/m3 

increase results in a new incidence rate of 0.0422% (0.0413%×1.11^(2/10)). This extra 0.00087% 

incidence or 36.4 cases of cerebrovascular mortality is then attributable to PM2.5 from the 13 power 

plants modelled. Similarly, this method was applied to all pollutants and exposed population ranges 

and the increased exposure is estimated to result in an additional 334 cases of premature respiratory, 

cardiovascular and cerebrovascular mortality attributed to air pollution from the 13 power stations in 

2018.  

In the AP-HRA, each health outcome must be attributed to an individual indicator pollutant. While 

health outcomes can be attributed to many different indicator pollutants, using all would result in 

double accounting of health impacts as these pollutants are associated with each other. For instance, 

there are three ERFs for respiratory mortality health outcome, respectively for PM2.5 (WHO, 2014), for 

SO2 (based on a study from India (Maji et al., 2017)), and for NO2 (based on a study from Holland 

(Fischer et al., 2015)). These three ERFs give widely varying results. For the purpose of this study, the 

Indian example, which gave mid-range incidence was selected. Ischaemic heart disease mortality was 

excluded from the analysis as it is a component of cardiovascular mortality. Variation in health 
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outcome incidences between the various ERFs provided in some cases exceed 80%. This variation was 

dealt with through performing sensitivity analysis in the CBA (refer to section 2.4).  

For this reason, the following four ERFs were selected for evaluation in the AP-HRA:  

 Respiratory mortality using SO2 as an indicator pollutant 

 Cardiovascular mortality using NO2 as an indicator pollutant 

 Cerebrovascular mortality using PM2.5 as an indicator pollutant 

 Diabetes mellitus mortality using PM2.5 as an indicator pollutant. 

Figure 22 demonstrates how the relative risks for each of these health outcomes are related to 

pollution concentrations.  
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Table 3 Indicator pollutants, baseline incidence, relative risks, and costs of each health outcome (Source: 

SAMRC, Table meeting 15 August 2018) 

Indicator 

Pollutant 

Health Outcome Baseline data Relative Risk or 

Hazard Ratio per 

10µg/m3 

Reference 

PM2.5 Diabetes Mellitus 

Mortality 

5.5% of total deaths Hazard ratio 

1.13 

Pope III et al., 

2015 

 Cerebrovascular 

Mortality 

5.10% of total deaths Hazard ratio 

1.11 

Pope III et al., 

2015 

 Respiratory 

Mortality 

9.40% of total deaths RR 1.10 WHO, 2014 

 Ischaemic Heart 

Disease Mortality 

2.80% of total deaths RR 1.05 Burnett et al., 

2014 

 Cardiovascular 

Mortality 

18.5% of total deaths Hazard ratio 1.12 Pope III et al., 

2015 

     

SO2 Cardiovascular 

mortality 

18.5% of total deaths 

In 2012 

RR: 1.0103 Maji et al., 2017 

 Respiratory 

Mortality 

9.40% of total deaths RR:1.0106 Maji et al., 2017 

     

NO2 Respiratory 

Mortality 

9.40% of total deaths Hazard Ratio 

1.02  

Fischer et al., 

2015 

 Cardiovascular 

mortality 

18.5% of total deaths 

In 2012 

RR: 1.0206 Maji et al., 2017 

 

 

 

Figure 21 Sensitivity analysis of the effect of pollution concentration intervals on predicted mortality 

incidence. 
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Figure 22 Exposure-response functions for health outcomes related to air pollution 
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 Health costs 

The detrimental effects of air pollution on human health is borne in the economy by households, 

insurance companies, employers and public health programs (Romley et al., 2010).  

The fundamental goal of health cost or cost of illness (COI) studies is to evaluate the economic burden 

that illness imposes on society as a whole (Jo, 2014). Rice (1967) and Rice et. al (1985), were 

instrumental in standardising methodologies for estimating COI, and these methodologies continue 

to be used internationally, and periodically updated (Rice, 1996; Rice, 2000).  

COI studies contextualise adverse diseases effects into monetary terms, with the purpose of informing 

decision-making. Such decisions could include (a) to simply present the magnitude of disease in 

monetary terms; (b) to comparatively evaluate intervention programs; (c) to assist in the allocation of 

research funding on specific diseases; (d) to provide a basis for policy and planning relative to 

mitigation initiatives; and (e) to provide an economic framework for program evaluation (Rice, 2000).  

The COI studies traditionally stratify costs into two categories: direct costs and indirect costs.  Direct 

costs relate to the cost of medical treatment. This would include costs of visiting health care facilities, 

medicine and hospitalisation. Indirect costs comprise morbidity costs (the cost of lost economic 

productivity due to absenteeism or temporary or permanent disability) and mortality costs. With 

respect to mortality costs, valuing human life is contentious, as it can be seen as a judgement on the 

intrinsic value of life and involves complex ethical considerations. Often, cost-effectiveness analysis is 

used as an alternative (Muchapondwa, 2009). This side-steps the complexity of life valuation and uses 

disease or fatality incidence indicators to compare effectiveness of different policy or spending 

options. 

In this study, the ERFs provided by the SAMRC, focussed exclusively on mortality and thus a monetary 

measure of mortality was required in order to perform cost-benefit analyses.  In air pollution cost-

benefit analyses, the concept of value per statistical life (VSL) is commonly used to monetise mortality 

related benefits of air pollution reduction. The concept of a VSL is frequently misunderstood. It does 

not measure the intrinsic value of a human life, and neither does it value the economic productivity 

of a human. Rather, VSL is estimated by dividing an individual’s willingness to pay (WTP) to reduce 

health risk, by the likelihood of risk reduction. Robinson and Hammitt (2009) defines VSL to represent 

the rate at which an individual is willing to exchange their own income for a small reduction in their 

own mortality risk over a particular time period. By example, if an individual is willing to pay R5 to 

reduce her/his annual mortality risks by 1 in 10,000, the VSL is R50,000 (R5 ÷ 1/10,000). Primary WTP 

studies for mortality risk reductions has not been done in South Africa. However, three studies have 

made VSL estimates for South Africa, all based on extrapolation of United States studies. These values, 

when adjusted to 2018, vary between R21 million and R48 million (Table 4). 

A thesis on evaluating the costs and benefits associated with the reduction in SO2 emissions from 

industrial activities on the Highveld of South Africa (Grobler, 2016), provided the most conservative of 

these estimates (i.e. the highest VSL) of R 53 Million (in 2020). This value adjusted to 2018 was used 

in the CBA. 
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Table 4 VSL estimates for South Africa from literature 

Study Method VSL (US$) 
VSL Adjusted to 

2018 

World Bank; Robinson and Hammitt 

(2009) 

Transfer of USA 

studies 
$1,313,600 (2007) R 21,000,000 

Thesis; Grobler (2016) 
Transfer of USA 

studies 

2005 values 

extrapolated to 2020 

at R53 million 

R 48,000,000 

Harvard; Robinson et al (2018) 
Transfer of USA 

studies 
2015 values R 30,000,000 
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 Pollution abatement options 

Abatement options include early decommissioning and the installation of technologies to reduce 

emissions. Technologies include Flue Gas Desulphurisation (FGD), Electrostatic Precipitators (ESP), 

Low NOx Burners (LNB) and Fabric Filter Plants (FFP). ESP and FFP are used to reduce particulate 

matter (PM) emissions, LNB to reduce nitrogen dioxide (NO2) emissions and FGD to reduce sulphur 

dioxide (SO2) emissions. The model required that each abatement technology applied in each plant in 

each scenario was described in terms of commissioning periods. The model assumed that upon 

commissioning, each plant’s emissions would shift from current emissions to the MES for each of their 

respective pollutants. 

Early decommissioning 

Plant lifetimes were described for the 13 power plants modelled, and included commissioning and 

decommissioning dates, to evaluate pollution emissions per year for each scenario. All scenarios had 

the same commissioning and decommissioning dates, except for ERP+ED (S4), that specified the early 

decommissioning of Komati, Hendrina and Grootvlei (Table 5). The decommission dates are based on 

the present IRP and any decommissioning would be subject to the necessary legal and consultative 

processes.  

Table 5 Commissioning and decommissioning periods for different scenarios 

Plant 

Commissioning Period Decommissioning Period 

All Scenarios Baseline S4: ERP +ED 

Start End Start End Start End 

Arnot 1971 1975 2021 2029 2021 2029 

Camden 2005 2008 2020 2023 2020 2023 

Duvha 1980 1984 2030 2034 2030 2034 

Grootvlei 2008 2011 2025 2028 2019 2019 

Hendrina 1970 1976 2020 2026 2019 2019 

Kendal 1988 1992 2038 2043 2038 2043 

Komati 2009 2013 2024 2028 2019 2019 

Kriel 1976 1979 2026 2029 2026 2029 

Kusile 2017 2022 2051 2051 2051 2051 

Lethabo 1985 1990 2035 2040 2035 2040 

Majuba 1996 2001 2046 2050 2046 2050 

Matla 1979 1983 2029 2033 2029 2033 

Tutuka 1985 1990 2035 2040 2035 2040 

These plant lifetimes were used to describe the base emission rates for each scenario in the integrated 

model. Plants being decommissioned after 2050, were given a default value of 2051. 
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PM reduction 

Abatement technologies that reduce the emission of PM include Fabric Filter Plants (FFP) and 

Electrostatic Precipitators (ESP).  

An ESP removes particulate matter, from the flue gas using the force of an induced electrostatic 

charge. ESP upgrades or refurbishments can reduce particulate matter between 95-97%. Eskom 

estimates that the capital expenditure for ESP upgrades and refurbishments to have overnight costs 

of between R432 and R537 per kW, based on international benchmarks. It is assumed that these 

capital costs would be equally distributed throughout the commissioning period. Operational costs for 

ESPs include increases in auxiliary power, and operations and maintenance costs, which is estimated 

to be between R10 and R14 per kW per year. 

FFPs remove particulate matter by passing flue gas through fabric bags that physically remove the 

particulate matter. FFPs are much more effective than ESPs and can reduce particulate matter 

emissions by 99%. Eskom estimates that the capital expenditure for FFP retrofits to have an overnight 

cost of R1 697 per kW. It is assumed that these capital costs would be equally distributed throughout 

the commissioning period. Operational costs for FFPs include increases in auxiliary power, and 

operations and maintenance costs, which is estimated to be approximately R44 per kW per year. 

NO2 reduction 

LNBs are an abatement technology to reduce NO2 emissions. LNBs are designed to control fuel and air 

mixing to reduce peak flame temperature and thereby reduce NO2 formation. LNBs can reduce NO2 

emissions by approximately 30%. Eskom estimates that the capital expenditure for LNB retrofits to 

have an overnight cost of R587 per kW, based on international benchmarks. It is assumed that these 

capital costs would be equally distributed throughout the commissioning period.  LNBs result in 

increased coal consumption due to an increase in unburnt coal. At R400 per tonne, the annual 

operational expenditure on coal can range from R 1.7 to R26 per kW per year. 

SO2 reduction 

FGD is a set of technologies used to reduce SO2 emissions. FGD systems typically include a fly ash 

removal and SO2 removal. SO2 (an acid gas) removal is facilitated by alkaline sorbents such as 

limestone to react with the gas. FGDs are typically separated into two types, semi-dry and wet, 

dependent on their water requirements, and can reduce SO2 emissions by 90%. Eskom estimates 

capital expenditure to range from R 4 211 (semi-dry) to R 5 560 (wet) per kW (overnight costs), based 

on international benchmarks. It is assumed that these capital costs would be equally distributed 

throughout the commissioning period. Operational costs include increased auxiliary power 

requirements, water consumption, reagents and operations and maintenance to range from R 147 

(wet) to R 227 (dry) per kW per year. 

  



 

  

37

2.4. Cost-Benefit Analysis 

A CBA is a widely used approach employed for decision-making support.  This approach was formalized 

in the United States in 1958 with the purpose of justifying public expenditures on alternative 

investment options competing public funds such as water, roads, and other public utilities’ networks 

construction projects.  CBA methodology broadly advises on the treatment of income benefits and 

costs; externality costs; how to measure them conceptually; how future prices should be treated; the 

importance of using a discount rate; the proper period of analysis; and cost allocation procedures for 

projects.   

The World Bank2 defines a Social CBA as an extension of a financial analysis.  Ideally, in extending the 

financial analysis, all relevant economic costs and benefits are quantified and analysed. The CBA pulls 

together the component analyses of the study to assess the overall impact for a set of scenario options 

(emission reduction measures). 

The objective of the CBA is to comparatively analyse investments or scenarios (in this case 

interventions in air quality management). The CBA achieves this end by identifying and monetizing the 

costs and benefits and predicting the timing thereof over the same horizon as the projects’ economic 

lifetime (National Treasury, 2017). 

A CBA allows scenarios to be objectively compared according to the cost:benefit relationship to 

analyse the relative efficiency of various interventions and the magnitude of the benefits to identify 

the interventions that will have the largest impacts. 

In this analysis, the CBA compares the scenario health benefits to capital and operational costs pf 

abatement. This CBA does not capture all potential costs and benefits, both direct and indirect. (Refer 

to section 2.5.1 below for a discussion of CBA limitations.)  

The analysis timeline spans 2015 – 2045. This timeframe allows for 5-year interval analysis, aligning to 

the 2020 MES. It also captures mitigation activities implemented since 2016. The base year was 2018, 

due to dispersion modelling timeframe.  The CBA was performed in an Excel spreadsheet, which 

consolidated all data sources, which contains all calculations, and was macro-enabled to run the large 

spatial exposure estimates for each scenario for the review period. Because costs and benefits are 

accrued in different years according to the intervention schedules, the net present values of costs and 

benefits, using Eskom’s weighted average cost of capital (WACC) rate of 8.4% as the discount rate 

allows an objective comparison of scenarios. 

The health cost benefits were estimated based on the outputs of the AP-HRA, and followed the steps 

below: 

1. Each of the assessed Scenarios implemented an abatement schedule at the 13 power 

plants assessed (refer to section 3 for details) 

2. It was assumed that the abatement schedule achieved MES compliance, and thus the 

dispersion effects modelled by uMoya-Nilu Consulting was used to estimate the 

change in population exposure from the “Current” to the “Compliance” levels. 

3. The change in population exposure resulting from step 2 above was applied to the 

ERFs identified in section 2.3.1 to estimate health impact outcomes (sensitivity 

analysis was performed in the CBA to develop a view on the uncertainty inherent in 

the ERFs, also refer to section 2.5.1) 

                                                             
2 http://documents.worldbank.org/curated/en/445971468767366310/pdf/multi-page.pdf 
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4. The VSL (refer to section 2.3.2) was applied to the health impact outcomes for each 

scenario, to estimate change in health cost benefits. 

5. Capital and operational cost estimates were used as the costs in the CBA (refer to 

section 2.3.3).  

6. Sensitivity analysis was performed on both the health benefit and abatement cost 

estimates. We assumed that capital and operations costs estimates is at a concept 

accuracy or 80%. This implies that costs could vary by +-20%. The health benefits 

variation was more difficult to judge, due to the extent of uncertainties (refer to 

section 2.5.1). Comparative analysis of various ERFs in literature shows that health 

outcome incidences could vary by up to 80%. For this reason, we used a +-80% 

variation for health benefits in the CBA.  

Section 3.2 provides the CBA results. 
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2.5. Uncertainty of the estimated health effects  

 Sources of uncertainty and limitations 

The WHO (2016) advises performing an assessment of the uncertainty of the analysis; in this case 

therefore this requires an assessment related to a lack of knowledge about one or more components 

of the integrated Health CBA Model. The sections below discuss each source of uncertainty and related 

limitations. 

Air pollutants exist as a complex mixture: Despite improvements in the science underlying AP-HRAs, 

it is still not possible to estimate with complete certainty the effects of air pollution on health (WHO 

Regional Office for Europe, 2014. The observed adverse effects attributed to an individual air pollutant 

may actually be (partly) attributable to other pollutants in the mixture which are correlated with the 

assessed pollutant (WHO Regional Office for Europe, 2013). It is not possible to assess the uncertainty 

relating to this (WHO, 2016).  

Pollutants modelled: The analysis was limited to SO2, NO2 and PM2.5 pollutants. Other pollutants may 

also contribute to health risk and these were not modelled in the dispersion modelling. This may 

under-estimate health risks.  

Population pollution exposure level: Dispersion modelling was conducted to estimate exposed 

population for the selected pollutants. In addition, secondary PM effects were estimated. Dispersion 

modelling has certainty attached to it as a result of input uncertainty and inherent errors in the model, 

discussed in Zunckel and Raghunandan (2018). Modelling for estimates of future exposure levels were 

based on the assumption that after an individual plant has been fitted with abatement technology, 

the resultant emissions would be equal to MES. This assumption increases the uncertainty of the 

assessment.  

Modelling Domain: The cumulative dispersion modelling domain was 360 km by 270 km. This domain 

is large but does not offer full coverage of all predicted ambient concentration ranges from power 

plants. This leads to an underestimation of exposed population. Ideally a dispersion modelling exercise 

for a study of this nature should have full national coverage. 

Baseline disease burden: The number of deaths or cases of disease were estimated by the SAMRC 

based for either 2012 or 2016, based on Stats SA data. The data for these years is therefore accurate. 

Uncertainty arises however because projections are made of population size growth in future, under 

the assumption that the relative ratio of number of deaths in the future remain constant. 

Exposure response functions: ERFs are derived from epidemiological studies, in which the parameters 

of the epidemiological experiment and assumptions made during the experiment introduce some 

uncertainty into the results. More significantly, because primary epidemiological evidence on air 

pollution is not available for South Africa. This absence of direct epidemiological evidence is a key 

limitation. As a result, inference has to be drawn from studies in other parts of the world. It is to be 

noted that health response per unit change in air pollution high ambient levels (such as the HPA) may 

differ from that observed in countries with lower pollution levels. In summary, the WHO (2016) notes 

that extrapolated ERF information may not accurately describe the exposure-response relationship in 

the region to be assessed, leading to uncertainties in the results. 

Resolution of ERFs: The ERFs used were all specified for stepped changes in ambient concentrations 

of 10µg/m3. These are relative coarse bands and have to be applied to the changes in annual average 

ambient concentration estimated by the dispersion modelling, which are in the order of 1-3 µg/m3.  
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Morbidity effects were not assessed: The costs of medical treatment (including visiting health care 

facilities, and costs of medicine and hospitalisation) and the loss of economic production due to sick-

leave absenteeism or temporary or permanent disability, were not assessed. As a result, the CBA 

underestimates the health benefits of the various scenarios. 

Value of statistical life: VSLs are accurate when estimated based on primary data collected through 

willingness to pay studies specific to the exposed population. All VSL estimates for South Africa are 

derived and transferred from studies done in the United States of America. This introduces uncertainty 

in the CBA results. 

The CBA does not capture economic externalities. These include both benefits and costs. The benefits 

of reduced health risk on households, employers and the health care and insurance industries were 

not assessed. The costs of implementation of abatement technologies would put additional pressure 

on Eskom debt requirements, and further on electricity price escalations. These would result in 

additional economic costs, and these were not assessed. In Scenario 4, the reduced revenue to Eskom, 

as a result of earlier plant closure, and its multiplier effects, were not assessed.  

The CBA does not capture coal-mining related environmental externalities. In Scenario 4, earlier 

closure of coal-fired power plants would reduce coal requirements. This scenario may be associated 

with benefits in the form of a reduction in coal-mining associated environmental externalities. 

 Dealing with the uncertainties and limitations in the assessment of results 

Several important considerations exist when interpreting the results of the integrated Health CBA.  

Interpretation of premature mortality or attributable deaths has to be done with care. It is to be noted 

firstly that these numbers are indicators of health risk at a population level. The relative risk estimate 

inherent in the ERF is a metric of the likelihood of an adverse health outcome, and it cannot be 

attributed to an individual person. It can thus be used to quantify risk to a defined population (and 

not to an individual), (WHO 2016) and how this risk would vary between various policy options of 

scenarios.  

The various sources of uncertainty discussed above, affect the accuracy of the absolute values of the 

assessments. In the absence of primary ERF studies, it is not possible to judge the accuracy of the 

absolute values of the assessment with a high level of confidence. However, this report uses ranges 

to reflect uncertainty.  

In spite of the various sources of uncertainty discussed above, the analysis still provides valuable 

insights into the comparison of scenarios tested in the CBA. This is because the uncertainty inherent 

in the analysis remain constant across all scenarios.  

The description of uncertainty sources also serves as a basis for further work to be prioritised in 

improving future integrated Health CBAs. 
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3. RESULTS AND DICUSSION 

 

3.1. Scenarios 

The scenarios evaluated in this study (against a baseline) included: 

1. Full compliance with new plant standards (FC) (S1) 

2. Eskom Emission Reduction Plan (ERP) (S2) 

3. ERP + FGD at Kendal (S3) 

4. ERP + Early decommissioning (ED) of Komati, Hendrina and Grootvlei (S4) 

 Scenario 1: Full compliance with new plant standards (FC) 

Scenario 1 (FC) assumes that all 13 plants investigated will be in full compliance with new plant 

standards. FC sees the retrofitting of power plants with LNB (6 plants), FFP (6 plants) and FGD (7 

plants), in addition to those already installed. LNB installations begin in 2016 at Camden, and end in 

2031 at Lethabo. FFP installations begin in 2017 at Duvha, and end in 2026 at Matla and Tutuka. FGD 

installations begin in 2019 at Kriel and end in 2038 at Lethabo. 

 

Figure 23 Scenario 1 (FC) power plant commissioning and decommissioning periods, and abatement 

technology installation schedules. An S-suffix denotes the start of an activity, and the E-suffix denotes the end 

of the activity. Abatement technologies are assumed to run from the end of their commissioning date to the 

decommissioning date of the power plant. 
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 Scenario 2: Emission reduction plan (ERP) 

Scenario 2 (ERP) assumes that Eskom will continue with its planned emission reduction plan up to the 

decommissioning of each power plant. ERP sees the retrofitting of power plants with LNB (4 plants), 

FFP (1 plant), ESP (4 plants) and FGD at none of the 13 plants modelled, in addition to those abatement 

technologies already installed. ESP installations begin in 2019 at Kendal, Kriel and Lethabo, and end in 

2026 at Matla. LNB installations begin in 2016 at Camden, and end in 2027 at Matla. FFP installations 

begin in 2017 at Duvha, and end in 2026 at Matla and Tutuka. FFP is only installed at Tutuka, beginning 

in 2021 and ending in 2026. 

 

Figure 24 Scenario 2 (ERP) power plant commissioning and decommissioning periods, and abatement 

technology installation schedules. An S-suffix denotes the start of an activity, and the E-suffix denotes the end 

of the activity. Abatement technologies are assumed to run from the end of their commissioning date to the 

decommissioning date of the power plant.  
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 Scenario 3: ERP + Flue gas desulphurization (ERP+FGD) 

Scenario 3 (ERP+FGD) assumes that Eskom will continue with its planned emission reduction plan up 

to the decommissioning of each power plant, as well as installs FGD at Kendal. ERP+FGD sees the 

retrofitting of power plants with LNB (4 plants), FFP (1 plant), ESP (4 plants) and FGD (1 plant), in 

addition to those abatement technologies already installed. ESP installations begin in 2019 at Kendal, 

Kriel and Lethabo, and end in 2026 at Matla. LNB installations begin in 2016 at Camden, and end in 

2027 at Matla. FFP installations begin in 2017 at Duvha, and end in 2026 at Matla and Tutuka. FFP is 

only installed at Tutuka, beginning in 2021 and ending in 2026. FGD is only installed at Kendal with 

installation beginning in 2028 and ending in 2033. 

 

Figure 25 Scenario 3 (ERP+FGD) power plant commissioning and decommissioning periods, and abatement 

technology installation schedules. An S-suffix denotes the start of an activity, and the E-suffix denotes the end 

of the activity. Abatement technologies are assumed to run from the end of their commissioning date to the 

decommissioning date of the power plant. 
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 Scenario 4: ERP + Early decommissioning (ERP+ED) 

Scenario 4 (ERP+ED) assumes that Eskom will continue with its planned emission reduction plan up to 

the decommissioning of each power plant, as well initiates early decommissioning at Grootvlei, 

Hendrina and Komati. ERP+ED sees the retrofitting of power plants with LNB (4 plants), FFP (1 plant), 

ESP (4 plants), in addition to those abatement technologies already installed. ESP installations begin 

in 2019 at Kendal, Kriel and Lethabo, and end in 2026 at Matla. LNB installations begin in 2016 at 

Camden, and end in 2027 at Matla. FFP installations begin in 2017 at Duvha, and end in 2026 at Matla 

and Tutuka. FFP is only installed at Tutuka, beginning in 2021 and ending in 2026. 

 

Figure 26 Scenario 4 (ERP+ED) power plant commissioning and decommissioning periods, and abatement 

technology installation schedules. An S-suffix denotes the start of an activity, and the E-suffix denotes the end 

of the activity. Abatement technologies are assumed to run from the end of their commissioning date to the 

decommissioning date of the power plant. 

  



 

  

45

3.2. Summary 

Approximately 20.3 million people are exposed to air pollution from the 13 power plants modelled, 

that fall within the modelling domain.  The mean additional annual average exposure to air pollution 

of the population within this domain, resulting from coal-fired power station emissions, was estimated 

by averaging dispersion modelling results over municipal boundaries. Approximately 17.7 million 

people were exposed to more than an additional 1µg.m3 (mean annual average) of PM2.5. Similarly, 

15.3 and 19.0 million people, respectively, were exposed to more than an additional 1µg.m3 of NO2 

and SO2. 

The health effects of this increased exposure were determined using an AP-HRA, that applied ERFs to 

the baseline incidence rates, and determined that air pollution from the 13 power plants do have a 

large health impact. There was extreme variability with the total health costs estimates, which varied 

by as much as 80%. Furthermore, the total health cost is extremely sensitive to the VSL used, and a 

conservative value of R48 million was used. 

Health benefits associated with each scenario were calculated against the baseline that assumed no 

new abatement technologies would be installed, and all plants would continue to emit air pollution at 

their current rates until decommissioning. The scenario with the highest health benefits was ERP+ED 

(S4), highlighting the immediate results achievable if early decommissioning of power plants can be 

achieved. The ERP+ED (S4) is estimated to result in health benefits with a NPV that varied between R 

3.4 billion and R 30.1 billion. The FC (S1) had the next highest health benefits with a NPV that varied 

between R 2.5 billion and R 22.1 billion. The ERP+FGD (S3) had marginally higher health benefits than 

ERP (S2) due to the additional FGD at Kendal. Figure 27 demonstrates the averaged flow of benefits 

for the four scenarios.  

 

 

Figure 27 Annual health benefits per scenario 

Scenario costs were calculated using Eskom’s estimates of abatement technology capital and 

operational spending requirements. As expected, the FC (S1) had the highest costs due to having the 

most abatement technologies installed, with the NPV between -R43.4 billion to -R65.1 billion. The ERP 

(S2) and ERP+ED (S4) had the same costs as they both had the same abatement technology additions 

with a NPV between -R16.9 billion to -R25.3 billion. The ERP+FGD (S3) had a higher cost with a NPV of 
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-R21.2billion to -R31.8 billion due to the additional FGD at Kendal. Figure 28 demonstrates the 

averaged flow of costs for the four scenarios. 

 

Figure 28 Total abatement costs (CAPEX and OPEX) associated with each scenario’s abatement retrofits 

Scenarios were compared in a cost-benefit analysis. The cost-benefit analysis apportioned costs 

(capital and operation expenditure on abatement technologies) and benefits (health benefits) to the 

years in which they would be realised. Because costs and benefits are accrued in different years 

according to the intervention schedules, the net present values of costs and benefits, using Eskom’s 

weighted average cost of capital (WACC) rate of 8.4% as the discount rate, and additional sensitivity 

analysis testing using social discount rates of 1% and -1%, allowing for an objective comparison of 

scenarios. Dividing the NPV of costs by the NPV of benefits provides a cost:benefit ratio, which when 

greater than 1 indicates that the costs outweigh the benefits, and when less than 1 indicate that the 

benefits outweigh the costs.  

The CBA ratios need to be interpreted with care. They are meant only to provide a perspective on and 

inform the decision-making process underlying the scenarios. They are not meant to be interpreted 

as a definitive answer to making abatement decisions. Decisions involving human health has to be 

informed by non-economic criteria as well. In addition, uncertainty inherent in the analysis, the cost 

benefit ratio should thus not be viewed as absolute, but rather as a relative value from which to 

compare scenarios. 

Table 6 Costs and benefits NPV estimates (lower and upper ranges) for each scenario, and cost:benefit ratios 

using a discount rate of 8.4%. 

  FC (S1) ERP (S2) ERP+FGD (S3) ERP+ED (S4) 

Million Rands lower upper lower upper lower upper lower upper 

NPV of Costs  -43 369 -65 053 -16 923 -25 385 -21 205 -31 808 -16 923 -25 385 

NPV of Benefits  2 403 21 625 1 962 17 661 2 252 20 264 3 374 30 367 

NPV of Benefits 

minus Costs 
-40 966 -43 428 -14 961 -7 724 -18 954 -11 544 -13 549 4 982 

Cost: Benefit 

Ratio (range) 
18.0 3.0 8.6 1.4 9.4 1.6 5.0 0.8 

Cost: Benefit 

Ratio (central) 
4.5 2.2 2.4 1.3 
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Table 7 Costs and benefits NPV estimates (lower and upper ranges) for each scenario, and cost:benefit ratios 

using a discount rate of 1.0%. 

  FC (S1) ERP (S2) ERP+FGD (S3) ERP+ED (S4) 

Million Rands lower upper lower upper lower upper lower upper 

NPV of Costs  -119 810  -179,716  -32,713  -49,070  -47,478  -71,216  -32,713  -49,070  

NPV of Benefits  8,391  75,517  6,408  57,675  7,819  70,370  8,952  80,565  

NPV of Benefits 

minus Costs -111,420  -104,198  -26,305 8,606  -39,659  -847  -23,761  -31,495  

Cost: Benefit Ratio 

(range) 14.3 2.4 5.1 0.9 6.1 1.0 3.7 0.6 

Cost: Benefit Ratio 

(central) 3.6 1.3 1.5 0.9 

 

Table 8 Costs and benefits NPV estimates (lower and upper ranges) for each scenario, and cost:benefit ratios 

using a discount rate of 1.0%. 

  FC (S1) ERP (S2) ERP+FGD (S3) ERP+ED (S4) 

Million Rands lower upper lower upper lower upper lower upper 

NPV of Costs  -164,459  -246,688  -40,048  -60,072  -61,237  -91,856  -40,048  -60,072  

NPV of Benefits  12,178  109,599  9,104  81,937  11,325  101,923  12,119  109,069  

NPV of Benefits 

minus Costs -152,281  -137,090  -30,944  21,865  -49,912  10,067  -27,929  48,997  

Cost: Benefit Ratio 

(range) 13.5 2.3 4.4 0.7 5.4 0.9 3.3 0.6 

Cost: Benefit Ratio 

(central) 3.4 1.1 1.4 0.8 

 

In spite of the uncertainties that are inherent in the current assessment process, the assessment 

provides valuable insights into the effects of air pollution and abatement. The larger investigation has 

made significant progress on improving the accuracy of dispersion modelling, through modelling 

secondary PM emissions and through performing cumulative emissions analysis. This work has 

increased our understanding of the exposed population.  

It is recommended that the analysis performed here be continuously improved to address prioritised 

sources of uncertainty. Improving the accuracy of the ERFs needs priority attention as AP-HRA 

applications continue to be improved. 

In spite of the level of uncertainty associated with ERFs, epidemiological evidence is sufficient to 

confirm the hypothesis that abatement technologies would have positive impacts on human health.  

With the testing of different discount rates, all scenarios become more favourable (i.e. future health 

benefits received a higher weighting than upfront costs). What is important to note however is that 

the order of the scenarios, as assessed using cost benefit ratios, do not change.  

Thus, most significantly, early decommissioning of the coal-fired power stations assessed in ERP+ED 

(S4), would have a significantly larger beneficial effect on health costs than abatement technologies 

alone. This holds for all discount rates tested. This plays a large role in positioning Scenario 4 as the 
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most beneficial scenario, both in terms of largest health cost benefits, lowest cost of abatement, as 

well as relative cost:benefit ratio. The FC (S1) would eventually have the second most benefits (see 

Tables 5, 6 and 7).  

It is also noted that the abatement technologies are expensive and would place a significant financial 

burden on Eskom. 
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1. Background 

 

The South African Medical Research Council (SAMRC) Environment and Health Unit was contracted by 

Naledzi Environmental Consultants to compile a list of relevant concentration-response functions for 

human health effects of sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (PM). These 

concentration-response functions will then be used as input in a human health risk assessment in a project 

with ESKOM.  

 

We have prepared a Microsoft Excel spreadsheet of all of the information mentioned in this report and 

therefore this report should be read in conjunction with the appended spreadsheet. 

 

2. Introduction 

 

Environmental Health, according to the World Health Organization (WHO) (1992) can be defined as 

“….those aspects of human health, including quality of life, that are determined by physical, biological, 

social and psychosocial factors in the environment”. Ambient air and specifically the quality of ambient 

air can therefore be considered as a factor that can determine the quality of an individual’s life.  

 

In addition, Target 3.9 of the Sustainable Development Goals, states: “By 2030, substantially reduce the 

number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and 

contamination” and one of the indicators (3.9.1) for this target is “mortality due to air pollution (ambient 

and household) (WHO, 2016). 

 

As far back as 1285, an air pollution commission in London recommended the banning of coal burning in 

urban areas to reduce air pollution (Smith and Akhar, 2003). In December 1952, severe air pollution in the 

form of a layer of smoke from coal burning (formed due to unfavourable meteorological conditions) 

caused a high mortality rate in London. This high mortality rate continued for a number of months after 

the air pollution episode. Evidence shows that what was previously thought to be mortalities due to 

influenza during and after the episode, could not be possible, which leaves 12 000 unexplained and 
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additional deaths (Brunekreef and Holgate, 2002; Davis et al, 2002). As recent as 2013, an air pollution 

episode in China was responsible for daily PM2.5 (particulate matter with a diameter of equal to or less 

than 2.5 µm) concentrations that exceeded 500 μg/m3 (West, 2016). 

 

Since the London episode of 1952, results of numerous studies have established associations between air 

pollutants and acute and chronic human health effects, including cardiovascular effects, cerebrovascular 

effects, respiratory effects and cancer (Bowe et al., 2018, Maji et al., 2017, WHO, 2013, Wichmann and 

Voyi 2012). Associations with kidney effects and diabetes II have also been observed (Bowe et al., 2018, 

Pope III et al., 2015, Pearson et al, 2010).  

 

In 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution as a 

human carcinogen and associated with lung cancer. An association between outdoor air pollution and an 

increased risk for urinary tract/bladder cancer has also been observed (WHO, 2018).  

 

According to estimations by the WHO, 58% of outdoor air pollution-related premature deaths in 2016 

were due to ischaemic heart disease and strokes, while 18% were due to chronic obstructive pulmonary 

disease, another 18% due to acute lower respiratory infections and 6% of deaths were due to lung cancer 

(WHO, 2018). 

 

Although the physiological mechanisms of action are not clear in all of the health effects associated with 

exposure to air pollution, biologically plausible mechanisms have been reported. These mechanisms 

include biomarkers of systemic inflammation, such as C-reactive protein and fibrinogen (Kelly and Fussel, 

2015).  

 

Despite a decrease in air pollution in some countries, such as countries in Europe and North America (West 

et al., 2016) due to legislation and engineering controls, air pollution is still a global issue. Ambient PM2·5 

was the fifth-ranking mortality risk factor in 2015 and was associated with more than 4 million deaths and 

103.1 million disability-adjusted life-years (DALYs) globally (Cohen et al, 2017). In the same year (2015), 

household air pollution was responsible for 2.9 million deaths and 85.6 million DALYs (GBoD of 2015, 

2016). 
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A concern is that air pollution in sub-Saharan Africa is on the increase, supposedly due to an increase in 

population, motor vehicles and domestic fuel use (Amegah and Agyei-Mensah, 2017). Air pollution is also 

on the increase in the Middle East, Asia and Latin America (West et al., 2016).  

 

It must be kept in mind that air pollution has no boundaries and thus is not confined to the country where 

the sources are located. Of further concern is that research from epidemiological and toxicological studies 

has indicated that ‘current’ air pollution is even more detrimental to health, arguably due to the different 

components of air pollution (Hoek et al., 2013, Kelly and Fussel, 2015, Thurston et al., 2016, Wang et al, 

2017). These different components are as a result of different sources and different technologies now in 

use, which in some developing countries, goes together with poor control of air pollution (West, et al., 

2016).  

 

As a result of the changing nature of air pollution, a current important research question is: “what specific 

characteristics and components of air pollution or specific mixtures of air pollutants are responsible for 

specific health effects?” (West et al., 2016).  

 

3. Exposure-response functions 

 

Exposure–response functions or concentration-response functions of air pollutants are used to determine 

the burden of disease from air pollution and therefore the impact air pollution may have on human health, 

which in turn, may be used to inform policy (WHO, 2014).  

 

Accurate exposure of populations to air pollutants is of the utmost importance to develop these exposure-

response functions and the policies they inform (Shaddick et al., 2018, WHO, 2014). Initial exposure-

response functions were based on monitored data, however, not all countries have extensive monitoring 

networks. To overcome this problem, additional measures of air quality are being introduced lately, for 

example: 

 Land-Use Regression models (looking at road type, traffic counts, topography, and land cover) 

(Fischer et al., 2015), 

 Satellite remote sensing (of aerosol optical depth), and 
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 Chemical transport models which are then calibrated against ground measurements using linear 

regression to produce air quality data at high resolutions (Shaddick et al., 2018). Ideal resolution 

would be ~1 km, but ~12 km is acceptable (WHO, 2014). 

 

Studies used to develop concentration-response functions are mainly epidemiology studies and they tend 

to focus on mortality (death) rather than morbidity (illnesses or conditions). The reason for this is often 

the lack of baseline data for morbidity, such as the number of hospital and clinic visits and the prevalence 

of illnesses, for example, asthma (WHO, 2014). This is also true for South Africa where national mortality 

data are more readily available than morbidity data (StatsSA, 2018).  

 

There are uncertainties in concentration-response functions. For example, relating to the shape of the 

concentration-response curve (linear or threshold) at different concentrations, also the risk of exposure 

to air pollution mixtures (whether the risk will be: the same as the sum of the effects of the single 

pollutants evaluated (additive) or more (synergistic) or less (antagonistic)), and how concentration-

response relationships may differ from one population to another.  

 

The question is thus whether the concentration-response function can be extrapolated from one 

population to another if one population has a different lifestyle, age structure and medical service than 

the other, for example from a developed to a developing country? (WHO, 2014). 

 

Another uncertainty is the health impacts of specific sources (WHO, 2014). In determining concentration-

response functions by using mass per volume, for example, for PM, it is generally assumed that all 

particulates are equally toxic, although studies suggest a difference in health impacts of particulate matter 

from different sources or areas, most probably due to a difference in size and chemical composition (Hoek 

et al., 2013, Lelieveld et al., 2015, Wang et al., 2017).  

 

3.1 Shape of exposure-response curve 

 

The shape of the exposure-response graph may be different for different outcomes (diseases) as 

determined by Pope III et al. (2011). They found the concentration-response function for PM2.5 and lung 

cancer to be “nearly linear”, whereas for cardio-vascular disease it was not the case; the response was 

much steeper at the very low levels of exposure compared with higher levels of exposure. One explanation 
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for the different shapes of the concentration-response graphs is that the cardiovascular effects may have 

been caused by the particulates themselves, whereas the carcinogenic compounds adsorbed onto the 

particulates, may be responsible for lung cancer (Pope III, 2011). The average daily ambient PM2.5 

concentrations were approximately 14 μg/m3 (Pope III, 2011). 

 

The team assessing the Global Burden of Disease (GBD) in 2010, incorporated information about exposure 

and the health risks posed by ambient and indoor particulate matter from studies done all over the world, 

into an integrated exposure model, in order to estimate the relative risk of dying from different diseases 

in relation to different concentrations of fine particulate matter (PM2.5) (Arnold, 2014). Previous models 

used a linear exposure-response relationship between 7.5 and 50 µg/m3 (the latter concentration to cater 

for smokers) based on the American Cancer society Cancer Prevention Study II (CPSII) where the exposure 

concentration of PM2.5 was less than 22 µg/m3 (Burnett et al., 2014). There was thus a gap in the 

knowledge of what the exposure–response curve would look like when average concentrations of PM2.5 

would be above 50 µg/m3 (Lim et al., 2012) indicating the importance of health impact assessments in 

developing countries, where a range in annual concentration of PM2.5 of 50-100 µg/m3 may be possible 

(WHO, 2014). In their analysis of data from the 2015 Global Burden of Diseases Study, Cohen et al. (2017) 

found no risk (no response) in association with PM2.5 concentrations below 2.4 μg/m³. 

 

Yin et al., (2017) determined the shape of the concentration-response graphs in a study in China, where 

exposure was to higher concentrations (4.2 to 83.8 µg/m3) of PM2.5 than in the United States studies. 

However, they confirmed the non-linear shape (threshold or S-curve) for cardiovascular disease mortality 

that Pope III et al., (2011) described in their study, but for lung cancer they also found a threshold and 

thus did not confirm the linear shape of Pope III’s study. These findings indicate that the concentrations 

of exposure (high or low) could have an influence on the shape of the concentration-response graphs for 

mortality due to PM2.5. 

 

There is a lack of evidence regarding the shape of PM2.5 concentration-response graphs in terms of 

morbidity (disease) both for low and high concentrations of exposure (WHO, 2014). Studies of ambient 

PM pollution suggest a smaller effect on the incidence of cardiovascular and respiratory disease than on 

mortality (Lim et al, 2012). 
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3.2 Exposure to air pollution mixtures 

 

As mentioned earlier in Section 2, the WHO (2014) considers the exposure-response functions of pollution 

mixtures as an area of work where there is still uncertainty. There is uncertainty whether the risk will be 

additive, synergistic or antagonistic when pollutant mixtures are evaluated for their association with 

diseases compared to when single pollutants are evaluated. In this regard a population cohort study 

involving about 2 million adults in Canada investigated the association between PM2.5, NO2 and ozone (O3) 

and the incidence of dementia. The results showed a hazard ratio of 1.04 for PM2.5, 1.10 for NO2 and 0.98 

for O3 when evaluated as single pollutants and a hazard ratio of 1.02 for PM2.5, 1.09 for NO2 and 0.99 for 

O3 when evaluated in a three-pollutant model, thus a slight decrease in risk (Chen et al., 2017). Results 

may, however, differ in a different setting or with different pollutants.  

 

3.3 Concentration-response relationships in different populations and from different 

sources. 

 

Different sources of air pollution, such as coal combustion, metal production, traffic and biomass burning, 

have been associated with different types of health effects (Kelly and Fussel, 2015). Different populations 

may be exposed to different compositions of particulates depending on the sources, for example in 

London people are mostly exposed to diesel particulates, while in Ethiopia the main source of particulates 

is biomass burning, in Ghana it is the desert’s wind-blown sand as well as traffic and in some parts of 

China, particulates are mostly from coal-fired power stations (Kelly and Fussel, 2015). Particulates from 

different sources may differ in chemical composition, size, shape and surface area, all of which are 

characteristics that may influence their toxicity. In addition, volatile organic compounds adsorbed to 

particulates may influence toxicity (Kelly and Fussel, 2015).  

 

Requia et al. (2018) performed a meta-analysis on 70 studies from 28 countries on air pollution and human 

health related to cardiovascular and respiratory effects. In their analysis, they observed significant 

heterogeneity which could be as a result of differences in ambient air pollution, population characteristics 

and environmental exposure. 

 

Requia et al. (2018) also investigated the effect that variables related to energy (clean or dirty electricity 

production), transportation (consumption of bio-fuel, distillate fuel oil and motor gasoline) socioeconomic 
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status (population density, Gross Domestic Product (GDP) and education) and a variable for smoking or 

using solid fuel for cooking, could have on the association between air pollutants and cardio-respiratory 

effects. These effects included both cardio-respiratory morbidity (hospital admissions) and cardio-

respiratory mortality. An increased risk of cardio-respiratory effects was demonstrated for exposure to all 

the pollutants considered the current report (PM10, PM2.5, SO2 and NO2).  The effect of air pollution on 

cardio-respiratory effects varied spatially across the 28 countries assessed. The highest risks identified 

were for Brazil (Requia et al., 2018). 

 

Results from this meta-analysis showed that for hospital admissions related to PM2.5 exposure, clean 

electricity production, consumption of biofuels and urban population accounted for about 69% of the 

heterogeneity, while for mortality related to PM2.5 exposure, clean electricity production, consumption of 

motor gasoline, consumption of cooking fuel, population density and education, accounted for 64% of the 

heterogeneity (Requia et al., 2018).  

 

Lelieveld et al. (2015) determined global pre-mature deaths related to air quality from different sources 

in different countries. They found PM2.5 was associated with most pre-mature deaths and mainly in Asia. 

In addition, they found emissions from household fuel use (for heating and cooking) had the largest impact 

globally.  

 

4 Particulate matter (PM) 

 

Particulate matter is defined as “a complex mixture of solid and liquid particulates of organic and inorganic 

substances suspended in the air” (WHO, 2018). Smaller particulates have a higher potential to enter deep 

into the lungs and are therefore considered to be a risk to human health (WHO, 2018). 

 

As far back as 1935 PM was already implicated in respiratory health effects. An article was published in 

“Public Health Reports” (Brown et al., 1935) about a dust storm in Kansas in the United States of America, 

that caused instant darkness for 40 minutes and for three hours light only occasionally broke through. 

Apart from the livestock that was lost and crops that were destroyed, there was a marked increase in 

respiratory infections and hospital admissions for infections as well as deaths. Analysis of micro-organisms 

in samples from the dust storms did not identify pathogens and it was therefore concluded that the 
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irritation caused by exposure to PM (which had a relatively high silica content) contributed to 

susceptibility to infections. 

 

4.1 Particulate matter with a diameter equal to or smaller than 2.5 µm (PM2.5) 

 

As mentioned in the introduction, globally ambient PM2·5 was the fifth-ranking mortality risk factor in 2015 

(Cohen et al, 2017). According to the Global Burden of Disease study of 2015 (published in 2016), ambient 

PM ranked 7th among the 10 largest contributors to death and disability in South Africa, while household 

air pollution was not amongst the ten largest contributors to death and disability in South Africa. 

 

Many studies have found significant associations between PM2.5 and many adverse health effects, 

including an increased risk of death, cardiovascular disease, stroke and even diabetes (Pope III et al., 2015, 

WHO 2013, Hoek et al., 2013, Pearson et al., 2010). A population cohort study involving about 2 million 

adults in Canada (where air pollution is amongst the lowest in the world) even showed a risk of dementia 

from exposure to PM2.5, although the five-year cumulative exposure was only 10.4 μg/m3 (Chen et al., 

2017).  

 

The risk for cardiovascular mortality stimulated by air pollution, is increased, not only in individuals with 

cardio-metabolic disorders (such as insulin resistance/high blood glucose/diabetes mellitus, hypertension, 

obesity (especially central obesity), and elevated levels of lipids in the blood) but also in those without 

such disorders (Pope III et al., 2015). Deaths from hypertension or diabetes were more strongly associated 

with exposure to PM2.5 compared to other disorders (Pope III et al., 2015). These findings were based on 

a 22-year prospective cohort study with improved exposure assessment (residential level) involving 669 

046 participants from the American Cancer Society Cancer Prevention Cohort II Study (Pope III et al., 

2015). It is believed that PM2.5 is the biggest driver for pre-mature mortality in the world (Requia et al., 

2018). 

 

Studies on the association between PM2.5 and effects on the kidney are few but a recent cohort study, 

involving more than 2 million people, found that a 10 µg/m3 increase in the concentration of PM2.5 was 

associated with an increased risk of having a low estimated glomerular filtration rate (eGFR) (hazard ratio 

1.21) (which is an indication that the kidneys are not functioning optimally), chronic kidney disease 
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(hazard ratio 1.27) and end stage renal disease (chronic kidney failure) (hazard ratio 1.26) (Bowe et al., 

2018).  

 

According to Pope III et al. (2018) the indication from epidemiological studies is that the impact of PM2.5 

on the burden of disease is mainly due to cardiovascular morbidity and mortality. Long-term prospective 

cohort studies in the United States showed a Hazard Ratio of 1.34 for cardiovascular mortality for an 

increase of 10 μg/m3 in the concentration of PM2.5, even after control for risk factors such as smoking. 

A study by Thurston et al. (2016) involving more than 4 million adults in more than 100 metropolitan areas 

of the United States indicated that the risk of ischaemic heart disease mortality associated with PM2.5  

differ according to compounds and source. The risk was five times higher for PM2.5 from coal combustion, 

than for the same mass in general ambient air. Similarly, diesel traffic-related elemental carbon soot 

produced a Hazard Ratio of 1.03, but PM2.5 from wind-blown soil and biomass combustion was not 

associated with a risk of ischaemic heart disease mortality (Thurston et al., 2016). 

 

4.2 Particulate matter with a diameter equal to or smaller than 10 µm (PM10) 

 

We tried to locate studies in developing countries that may be comparable to the South African situation. 

A study in India by Maji et al. (2017) showed an increased risk of hospital admissions for respiratory and 

cardiovascular diseases per 10 µg/m3 increase in exposure to PM10. The same study in India (Maji et al 

2017), as well as studies in South Korea (Kim et al, 2017), Hong Kong and Taiwan (Lu et al., 2015) and 

China (Shang et al., 2013) showed associations between PM10 exposure and respiratory and cardiovascular 

mortality. 

 

Meta-analyses of 10 European cohort studies, involving about 16 000 children, indicated an increased 

odds of pneumonia when exposed to PM10 (Macintyre et al., 2014). 

 

The Dutch Environmental Longitudinal Study (DUELS) was a study that involved about 7 million individuals 

above the age of 30 years, followed as a cohort for seven years, and reported associations between PM10 

and non-accidental mortality, circulatory disease mortality, respiratory mortality and lung cancer 

mortality. The association they found between NO2 and respiratory mortality disappeared when adjusted 

for PM10 but it remained for PM10, and the association with lung cancer mortality and NO2 was reduced 

from a hazard ratio of 1.093 to 1.08 when adjusted for PM10.  
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5 Nitrogen dioxide (NO2) 

 

The main man-made sources of NO2 are combustion processes (i.e. heating, power generation, and 

engines in vehicles and ships) (WHO, 2018). Most atmospheric NO2 is emitted as NO, which is rapidly 

oxidized by ozone to NO2 (WHO, 2006). 

 

As far as short-term effects are concerned, the lowest observed adverse effect level on lung function in 

laboratory studies involving asthmatics, was a one hour concentration above 500 μg/m3. 

 

Epidemiological studies have shown a reduction in lung function growth associated with NO2 (WHO, 

2018). Hoek et al. (2013) performed meta-analyses on 14 cohort studies and found a Relative Risk (RR) of 

1.05 for all-(natural) cause mortality for a 10 µg/m3 increase in NO2. 

 

In the Dutch Environmental Longitudinal Study (DUELS), Fisher et al. (2015) found an association between 

NO2 and a number of mortalities (non-accidental, respiratory and lung cancer) but not for circulatory 

disease and when they adjusted the association between the different mortalities and NO2, for PM10, the 

association of NO2 with respiratory mortality disappeared (but it remained for PM10) and the association 

with lung cancer mortality was reduced from a hazard ratio of 1.093 to 1.08. However, other studies did 

find an association between NO2 and cardiovascular effects (see below). 

 

In a South African case-cross-over study by Wichmann and Voyi (2012) it was found that cardiovascular 

mortality increased by 2.6% and cerebrovascular mortality by 6.6% with an increase of 10 µg/m3 in the 

daily average of NO2. 

 

A population cohort study involving about 2 million adults in Canada (where air pollution is amongst the 

lowest in the world - 16.2 ppb) showed a risk of dementia from exposure to NO2 (Chen et al., 2017). 

Another long-term (16 years) Canadian cohort study, involving 2.5 million people, showed associations 

between NO2 exposure and mortality from: respiratory diseases, cardiovascular and cerebrovascular 

diseases, as well as diabetes and lung cancer (Crouse et al., 2015).  
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A study in India by Maji et al (2017) showed an increased risk of hospital admissions for respiratory and 

cardiovascular diseases per 10 µg/m3 increase in NO2 exposure. The same study in India (Maji et al 2017), 

as well as a study in China (Shang et al., 2013) showed associations between NO2 exposure and respiratory 

and cardiovascular mortality. 

 

Meta-analyses of 10 European cohort studies, involving about 16 000 children, indicated an increased 

odds of pneumonia and otitis media (middle ear infection) when exposed to NO2 (Macintyre et al., 2014). 

Studies on co-exposure of NO2 and SO2 have found synergistic (worse than additive) effects on human 

health (WHO, 1997). 

 

6 Sulphur dioxide (SO2) 

 

The main man-made sources of SO2 are the burning of sulphur-containing fossil fuels, for example, coal-

fired power stations, domestic coal burning for heating and motor vehicles (WHO, 2018). 

 

Exposure to SO2 may cause upper respiratory irritation, inflammation of the respiratory tract, aggravation 

of asthma and chronic bronchitis and have a detrimental effect on lung function. In addition, it was found 

that hospital admissions and cardiac disease increase on days when SO2 levels are higher (WHO, 2018). 

 

Exercising asthmatics who participated in controlled studies experienced changes in pulmonary function 

and respiratory symptoms after 10 minutes of exposure to SO2 which formed the basis of the 

recommended 10 minute SO2 guideline of 500 μg/m3 (WHO, 2006). However, subsequent re-analysis of 

the effects of SO2 post-2005 found evidence that the point of departure for setting the 10-minute 

guideline of 500 µg/m3 needs an additional uncertainty factor, which indicates that the guideline may 

have to be lowered when it is re-evaluated (WHO, 2013a). The WHO is of the opinion that an annual 

guideline is not needed, since compliance with the 24-hour level will assure low annual average levels 

(WHO, 2006). 

 

In a South African case-cross-over study by Wichmann and Voyi (2012) it was found that cardiovascular 

mortality increased by 3.3% and cerebrovascular mortality by 5.3% with an increase of 10 µg/m3 in the 

daily average of SO2. 
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A study in India by Maji et al. (2017) showed an increased risk of hospital admissions for respiratory and 

cardiovascular diseases per 10 µg/m3 increase in SO2 exposure. The same study in India (Maji et al 2017) 

as well as a study in China (Shang et al., 2013) showed associations between SO2 exposure and respiratory 

and cardiovascular mortality. 

 

Studies on co-exposure of SO2 and NO2 have found synergistic (worse than additive) effects on health 

(WHO, 1997). 

 

7 Choice of concentration-response functions 

 

The concentration-response functions per 10 µg/m3 increase in the concentration of the specific 

pollutants, are presented in the attached spreadsheet and some recommended concentration-response 

functions are tabled in Appendix A. In compiling these functions to be used in the current study, the focus 

was on recent studies, large study populations, and long-term studies, meta-analyses of large studies, 

prospective cohort studies and studies from developing and developed countries, higher and lower 

concentrations of pollutants.   

 

For long-term effects of PM2.5, the following concentration-response functions are recommended: 

 

For all-cause mortality – 1.06, and all natural cause mortality 1.066, as recommended by the WHO (2013 

and 2014 respectively) from annual mean concentrations.  

 

Similar concentration-response functions for all-cause mortality were found by Pope III et al. (2015) 

namely, 1.07, in the 22 year follow-up of the American Cancer Society study and 1.06 resulted from two 

long-term cohort studies published in 2018 by Pope III et al.  

 

For cardiovascular mortality from long-term exposure, the concentration-response function of 1.12 from 

the American Cancer Society study (Pope III et al., 2015) is recommended.  

 

This concentration-response function is in the same order as the 1.10 recommended by the WHO (2014) 

and the 1.09 found in the Chinese men prospective cohort (Yin et al., 2017), where exposure was to higher 

concentrations (range 4.2 to 83:8 µg/m3). 
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For respiratory mortality from long-term exposure, the concentration-response function of 1.10 from 

studies in Europe, Canada and the US (WHO, 2014) is recommended. Crouse et al., (2015) found no 

increased risk per 5 µg/m3 in the 16 year Canadian Census cohort study  

 

For lung cancer mortality the exposure-response function of 1.09 determined by Burnett et al. (2014) is 

recommended.  

 

Burnett et al. applied an Integrated Exposure model to data from the Global Burden of Disease 2010 study. 

This concentration-response function is the same as that determined by Hamra et al. (2014) in meta-

analyses of 18 studies on particulate matter and lung cancer in the USA, Europe, China, Japan and New 

Zealand. The concentration-response function from the Chinese men study (Yin et al., 2017) was slightly 

higher (1.12). It must be noted that this study recorded higher exposure concentrations (range 4.2 to 83:8 

µg/m3). 

 

For ischaemic heart disease mortality the concentration-response function by Burnett (2014) of 1.05 is 

recommended.  

 

This function is in the same order as that found by Yin et al (2017) (1.09) in the Chinese men study. The 

function resulted from the American Cancer Society follow-up analyses is 1.14 (Pope III, 2015).  

 

Thurston et al., 2016 found different concentration-response functions for the association with long-term 

exposure to PM2.5 and ischaemic heart disease, depending on the type of particulates. For general ambient 

particulates the hazard ratio was 1.01 per 1 µg/m3 increase. For PM2.5 from coal combustion, which is 

relevant to this project, it was 1.05 per 1 µg/m3 increase. These risks were based on data from the 

American Cancer Society II study. 

 

For short-term effects of PM2.5, the following concentration-response functions are recommended: 

 

For daily all-cause mortality – two concentration-response functions are recommended for 

consideration. The first is 1.012, as recommended by the WHO (2013) from daily mean concentrations (14 

µg/m3). This concentration-response function, however, differs from the 0.40% increase in daily mortality 
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found in a meta-analyses of 59 epidemiology studies in 22 cities in mainland China, Hong Kong and Taiwan 

(Lu et al., 2015), where the exposure was to higher concentrations (39 to 177 µg/m3). It is therefore 

possible that the difference could be due to exposure to different concentrations and we suggest using 

both. 

 

For hospital admissions for cardiovascular diseases, including stroke, based on daily mean 

concentrations, 1.0091 is recommended as per the WHO (2013) from the APED study. 

 

For respiratory mortality from short-term exposure, the percentage increase was 0.75% (Lu et al., 2015), 

thus from exposure to relatively high concentrations.  

 

For ischaemic heart disease mortality from short-term exposure (to approximately 14 μg/m3), Pope et 

al., 2011, published a concentration-response factor of 1.18 based on data from the American Cancer 

Society II study. 

 

For other health outcomes from short-term and long-term exposure to PM2.5, including kidney failure, 

diabetes mortality and risk of dementia, concentration-response functions are presented in the attached 

spreadsheet. 

 

For long-term effects of PM10 

 

For total mortality the following concentration –response functions are recommended for consideration:  

 

The largest study investigating the association between PM10 and total mortality, was the Dutch 

Environmental Longitudinal study (DUELS) (involving about 7 million people), published by Fischer et al., 

(2015). They found a concentration-response function of 1.08 for an increase of 10 μg/m3. The median 

exposure concentration was relatively low at 29 μg/m3.  

 

This exposure-response concentration was similar to the 1.05 published by Kim et al (2017) from a study 

in Korea involving about 300 000 individuals, where the mean exposure was 60 μg/m3 (range between 39 

and 72 μg/m3). However, another study in India involving 1.69 million people exposed to concentrations 
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between 150 and 210 μg/m3 found a concentration-response function of 1.0044, which is much lower 

(Maji et al., 2017).  

 

When selecting a concentration-response function from the above, the concentration to which the 

specific community is exposed, should be taken into account.  

 

For cardiovascular disease mortality the same situation was evident as for total mortality, namely the 

largest study investigating the association between PM10 and cardiovascular mortality, was the Dutch 

study (Fischer et al., 2015). They found a concentration-response function of 1.06 which was similar to 

the 1.05 of the Korean study (Kim et al., 2017), but higher than the Indian study’s concentration-response 

function of 1.006, despite higher exposure concentrations in India (Maji et al., 2017). 

 

For cerebrovascular mortality from long-term exposure to PM10, the concentration-response function of 

1.14 from the Korean study (Kim et al., 2017) is recommended.  

 

For respiratory mortality the concentration-response function of the Dutch study was found to be 1.13 

(Fischer et al., 2015), which was in the same order as that of the Korean study (1.19) (Kim et al., 2017), 

with the Indian study again lower at 1.008 (Maji et al., 2017). 

 

For short-term effects of PM10 

 

For total mortality a concentration-response function of 0.36 % increase for an increase of 10 μg/m3 is 

recommended.  

 

This function was determined by Lu et al. (2015) from meta-analyses of 59 epidemiology studies in 22 

cities in China where the exposure concentrations ranged between 52 and 174 μg/m3. This function is 

similar to the 0.32 excess risk found in another meta-analyses of 33 studies (also in China) published by 

Shang et al. (2013).  

 

For cardiovascular mortality the concentration-response functions of the two Chinese studies were again 

similar showing increases of 0.36% (Lu et al., 2015) and 0.43% (Shang et al., 2013). However, in this case 
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data for South Africa is available from a study by Wichmann and Voyi (2012) that showed a 1.7% increase 

in daily cardiovascular mortality for an increase of 10 μg/m3 in the daily concentration of PM10. 

 

For cerebrovascular mortality South African data are also available from the study by Wichmann and Voyi 

(2012), which showed an increase of 3.2% for an increase of 10 μg/m3 in the daily concentration of PM10. 

 

For respiratory mortality the concentration-response functions of the two Chinese studies are in the same 

order of magnitude. The larger Chinese study showed a 0.42% increase in respiratory mortality (Lu et al., 

2015) and the South African study (Wichmann and Voyi, 2012) a 1.1% increase for an increase of 10 μg/m3 

in the daily concentration of PM10.   

 

For other less frequently measured health outcomes from short-term and long-term exposure to PM10, 

including pneumonia, otitis media (ear infection) and croup as well as incidence of asthma in asthmatic 

children and hospital admissions for respiratory and cardiovascular disease, concentration-response 

functions are presented in the attached spreadsheet. 

 

For short-term effects of SO2 

 

Since the health effects of SO2 are normally acute, more studies determining concentration-response 

functions focused on short-term exposure than long-term exposure.  

 

For respiratory mortality, the South African study (Wichmann and Voyi, 2012) did not find an increased 

risk, but the study by Shang (2013) (meta-analyses of 33 Chinese studies) reported excess risk of 1.18. 

 

For cardiovascular mortality the South African study reported an increase of 3.3% per 10 μg/m3 increase 

in the daily concentration, while the Chinese study reported an excess risk of 0.85 (Shang et al., 2013). 

 

Only the Chinese study (Shang et al., 2013) reported on all-cause mortality (excess risk of 0.81), and only 

the South African study (Wichmann and Voyi, 2012) reported on cerebrovascular mortality (an increase 

of 5.3%). 
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Long-term effects of SO2 

 

For long-term effects of SO2, only one study, the study by Maji et al (2017), was found in the literature 

surveyed. For total mortality, the RR was 1.0068, for respiratory mortality, 1.0106 and for cardiovascular 

mortality the RR was 1.0103.  

 

For hospital admissions, the RR for chronic obstructive pulmonary disease (COPD) was 1.007, for 

respiratory conditions 1.0014 and for cardiovascular conditions 1.0079.  

 

For long-term effects of NO2, 

 

For all-cause mortality, the concentration-response function of 1.03 is recommended, resulted from 

three large studies, namely the Californian study (Jerret et al 2013), the Dutch study (Fisher et al 2015) 

and the Indian study (Maji et al., 2017).  

 

For cardiovascular disease mortality, the results from these three studies differed slightly. Jerret et al. 

(2013) reported a RR of 1.048, Maji et al. (2017) a RR of 1.0206, while Fischer et al. (2015) found no risk.  

 

The study by Maji et al. (2017) was the most recent, involved 1.69 million people and was in a country 

where the concentrations are relatively high. It was therefore decided to use the concentration –response 

function of 1.0206 from the Indian study.  

 

For the same reason it was decided to use the concentration-response function of 1.0371 from the same 

study for respiratory mortality over the one of 1.02 from the Dutch study (Fischer et al., 2015). 

 

For short-term effects of NO2 

 

For all-cause mortality there are two concentration-response functions that can be used. One from 

Europe (WHO, 2013) (RR 1.0027) and another from China (Shang et al., 2013) (excess risk 1.3). 
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For respiratory mortality, the concentration-response function of the South African study by Wichmann 

and Voyi (2012) is recommended (percentage increase of 1.7). The function resulted from the Chinese 

study (Shang et al., 2013) showed an excess risk of 1.62. 

 

For cardiovascular mortality, the concentration-response function of the South African study by 

Wichmann and Voyi (2012) is again recommended (percentage increase of 2.6), while the function 

resulted from the Chinese study (Shang et al., 2013) showed an excess risk of 1.42. 

 

For other less frequently measured health outcomes from short-term and long-term exposure to NO2, 

including pneumonia, otitis media (ear infection) and croup as well as hospital admissions for respiratory 

and cardiovascular disease, concentration-response functions are presented in the attached spreadsheet. 

 

8 Conclusions 

 

It is evident that air pollution is an environmental risk factor for a number of health outcomes. These 

outcomes are not confined to respiratory effects only but include vascular diseases, diabetes, kidney 

effects and even dementia.  

 

Of concern is the fact that air pollution is on the increase in mainly developing countries and since air 

pollution has no boundaries, the impact will not be confined to the country where the sources are. Also 

of concern is that currently air pollution is considered more toxic than before as a result of different 

technologies and products being used and produced. 

 

It is therefore important to determine the impact air pollution may have on the population of a country, 

also in economic terms, as this will inform policies and the setting of air quality standards. To determine 

these impacts, concentration-response functions, determined mostly through epidemiological studies, 

are being used. It is important for these concentration-response functions to be valid and they can only 

be valid if the exposure in the epidemiology studies used to determine them, was accurately measured. 

Not all areas in all countries where the epidemiology studies were conducted have monitoring networks 

at a high resolution, and it is therefore necessary to use additional tools to measure exposure, such as 

Land-Use Regression models, satellite remote sensing, and chemical transport models. These methods 
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allow for air pollution concentrations to be determined at the level of the residential address of 

participants. 

 

Since ambient air pollution measurements alone may underestimate personal exposure, integrated 

exposure was determined in some studies, where exposure to smoking (active and passive) and household 

fuel use were also taken into account. Despite these measurements to accurately determine 

concentration-response functions, there are still uncertainties, for example, whether the shape of the 

concentration-response graphs can be considered linear for all pollutants or whether concentration-

response functions developed from studies conducted in developed countries, where air pollution is 

relatively low (and where most studies have been done), can be used in developing countries where air 

pollution is relatively high and where there is a lack of information on concentration-response functions? 

Another uncertainty is the effects that pollution mixtures may have on human health, since epidemiology 

studies are focused on individual pollutants. However, air pollution mixtures are complex, and probably 

the reason why indicator pollutants, such as particulate matter are studied instead. In addition, in the case 

of particulates, concentration-response functions assume all particulates of the same size are equally 

toxic, which may not be the case, as they may be from different sources, thereby having different 

characteristics and chemical components. Knowing the characteristics and toxicity of particulates from 

different sources, will be of use in determining the attribution of specific sources to specific health 

impacts, which in turn will assist in formulating air pollution control policies.  
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Some recommended E-R functions per pollutant and health outcome 

Pollutant C-R function per 10 µg/m3 

increase (exposure 

concentrations)* 

Health outcome Reference 

    

PM2.5 Long-term 1.06 All-cause mortality WHO 2013 

 1.066 All natural-cause 

mortality 

WHO 2014 

 1.12 CV mortality Pope et al., 

2015  

 1.10 Respiratory 

mortality 

WHO, 2014 

 1.09 Lung cancer 

mortality 

Burnett et al., 

2014 

 1.05 Ischaemic heart 

disease mortality 

Burnett et al., 

2014 

PM2.5 Short-term 1.012 

(daily mean 14 µg/m3) 

All-cause mortality WHO, 2013 

 0.40% increase 

(39 to 177 µg/m3) 

Non-accidental 

mortality 

Lu et al., 2015 

 1.0091 Hospital 

admissions for CV 

disease 

WHO, 2013 

 0.75% increase Respiratory 

mortality 

Lu et al., 2015 

 1.18 Ischaemic heart 

disease mortality 

Pope et al., 

2011 

    

PM10 Long-term 1.08 

(median 29 μg/m3) 

Total mortality Fischer et al., 

2015 

 1.0044 

(150 to 210 μg/m3) 

Total mortality Maji et al., 

2017 

 1.06 Cardiovascular 

mortality 

Fischer et al., 

2015 

 1.05 Cardiovascular 

mortality 

Kim et al., 2017 

 1.006 Cardiovascular 

mortality 

Maji et al., 

2017 

 1.14 Cerebrovascular 

mortality 

Kim et al., 2017 

 1.13 Respiratory 

mortality 

Fischer et al., 

2015 

 1.19 Respiratory 

mortality 

Kim et al., 2017 
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Pollutant C-R function per 10 µg/m3 

increase (exposure 

concentrations)* 

Health outcome Reference 

PM10 Short-term 0.36 % increase 

(52 to 174 μg/m3) 

Total mortality Lu et al. 2015 

 0.32% excess risk 

(44 and 172 μg/m3) 

All-cause mortality Shang et al. 

2013 

 1.7% increase Cardiovascular 

mortality 

Wichmann & 

Voyi 2012 

 0.36% increase Cardiovascular 

mortality 

Lu et al. 2015 

 Excess risk 0.43%  Cardiovascular 

mortality 

Shang et al., 

2013 

 3.2% increase  Cerebrovascular 

mortality 

Wichmann & 

Voyi 2012 

 1.1% increase Respiratory 

mortality 

Wichmann & 

Voyi 2012 

 0.42% increase Respiratory 

mortality 

Lu et al. 2015 

SO2 Long-term 

 

1.0068  

(ann ave 16 to 21 μg/m3 ) 

Total mortality Maji et al., 

2017 

 1.0106 Respiratory 

mortality 

Maji et al., 

2017 

 1.0103 Cardiovascular 

mortality 

Maji et al., 

2017 

 1.007 Hospital 

admissions COPD 

Maji et al., 

2017 

 1.0014 Hospital 

admissions 

respiratory 

conditions 

Maji et al., 

2017 

SO2 Short-term Excess risk 0.81 All-cause mortality Shang et al. 

2013 

 No increase Respiratory 

mortality 

Wichmann & 

Voyi 2012 

 Excess risk 1.18 Respiratory 

mortality 

Shang et al. 

2013 

 5.3% increase Cerebrovascular 

mortality 

Wichmann & 

Voyi 2012 

 3.3% increase Cardiovascular 

mortality 

Wichmann & 

Voyi 2012 

 Excess risk 0.85 Cardiovascular 

mortality 

Shang et al. 

2013 

NO2 Long-term 

 

1.03 All-cause mortality Jerret et al. 

2013; Fischer 

et al., 2015; 
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Pollutant C-R function per 10 µg/m3 

increase (exposure 

concentrations)* 

Health outcome Reference 

Maji et al., 

2017 

 1.0206 Cardiovascular 

mortality 

Maji et al., 

2017 

 No risk Cardiovascular 

mortality 

Fischer et al., 

2015; 

 1.048 Cardiovascular 

mortality 

Jerret et al. 

2013 

 1.02 Respiratory 

mortality 

Fischer et al., 

2015 

NO2 Short-term 

 

1.0027 All-cause mortality WHO, 2013 

 Excess risk 1.3 All-cause mortality Shang et al., 

2013 

 1.7% increase Respiratory 

mortality 

Wichmann & 

Voyi 2012 

 Excess risk 1.62 Respiratory 

mortality 

Shang et al., 

2013 

 2.6% increase Cardiovascular 

mortality 

Wichmann & 

Voyi 2012 

 Excess risk 1.42 Cardiovascular 

mortality 

Shang et al., 

2013 
*It is important to read this table together with the spreadsheet containing all concentration-response functions. 


