

Transmission Development Plan (TDP) 2015 - 2024 Public Forum

Transmission Strategic Grid Study 2040

John Maree Auditorium, Eskom Academy of Learning

Ronald Marais – Strategic Grid Planning

Date: 10 October 2014

Powering your world

The Different Development Plans

Eskom

Integrated Resource Plan

- The Department of Energy (Energy Planner) is accountable for the Country Energy Plan as per recently published regulations.
- The Country Plan is also termed the Integrated Resource Plan (IRP).
- The Integrated Resource Plan (IRP) is intended to drive all new generation capacity development.
- NERSA licences new generators according to this determination.

Strategic Grid Plan

- The Strategic Grid Plan formulates long term strategic transmission corridor requirements
- Plan is based on range of generation scenarios, and associated strategic network analysis
- Horizon date is 20 years
- Updated every 2-3 years

Transmission Development Plan

- Transmission Development Plan (TDP) presents transmission corridor requirements
- Plan covers a 10 year window
- Updated annually
- Indicates financial commitments required over 10 year period

Linkages between the various plans

Capacity Planning vs Transmission Planning

Volume & type

Spatial & transportation

Current Transmission power flow

Impact of location on corridors - Inland Scenario

Impact of location on corridors - Coastal Scenario

Coastal Scenario

- Large nuclear displacing generation from the north to the coast
- Reduced northern corridors
- Reversing flow & increased corridor size

Issues to Consider

Servitude and EIA restrictions Lead times:

- Long Tx lines 6 - 8 years

Use all appropriate proven technology available

 HVDC, EHV AC, HVDC conversions of existing AC lines

Transmission technology choice must be compatible with strategic power system development plan

(Eskom

Purpose of the 2040 Network Study

- To adapt to the uncertainty of future load and generation
- To identify the **critical power corridors** and constraints on the transmission network
- Unlock and create a **flexible and robust grid** to be able to respond to the changing future needs of the country

The 2040 Transmission Network Study was undertaken to determine the development requirements of the future transmission grid to accommodate the expected load demand needs and the potential impact of future generation scenarios using the 2010 Integrated Resource Plan (IRP) as a baseline.

Organisations already engaged

Eskom

Within ESKOM:

- Generation
- Primary Energy department
- Gas & Liquid Fuel department
- Group Capital
- Project Development department
- Distribution
- Nuclear Department
- Strategy & Risk Management
- Transmission
- Southern African Energy

Outside ESKOM:

- SAWEA
- SASTELA
- SAPVIA
- CEF
- Solar Park Project
- Stellenbosch University
- Govt. Departments
 - DPE
 - DOE
 - DEA
 - DWAF
 - DAFF
 - DPW

The Three Generation Scenarios

• The IRP 2010 base Scenario (BASE IRP)

- 2010 IRP extended to 2040
- Coal fixed at 2030 level
- Balance in similar ratio to 2030 mix

• Increased Renewables Scenario (GREEN)

- Replaced nuclear component with RE base generation equivalent
- CSP (with storage)/ Wind with CCV of 30% / Natural Gas

• Increased Imports Scenario (IMPORT)

- Doubled imported power by 2030
- Reduced coal & nuclear
- New draft IRP Update was reviewed and found that above scenarios still appropriate and 2040 Study results and findings are applicable

(₦)Eskom

2040 Network Study – Generation Resource Map Public Coal Map

2040 Network Study – Generation Resource Map Coal Map & Eskom Coal Areas

2040 Network Study – Generation Resource Map Eskom Wind Areas

2040 Network Study – Generation Resource Map Wind Map of South Africa

2040 Network Study – Generation Resource Map SA Wind Map & Eskom Wind Areas

2040 Network Study – Generation Resource Map Eskom Solar (CSP) Areas

2040 Network Study – Generation Resource Map Public Solar Irradiation Map

2040 Network Study – Generation Resource Map Irradiation Map & Eskom Solar Areas

2040 Network Study – Generation Resource Map Eskom OCGT & CCGT Areas

2040 Network Study – Generation Resource Map

Public Gas Potential Map

(Eskom

Mapping the Demand and Generation

- Demand was allocated to each Municipal Area and then summated by province to get the total Load Demand for each province
- The Bars represent the relative Demand for 2011, 2020, 2030 and 2040 with the 2040 figure shown

 Generation was allocated to each Municipal Area and then summated by province to get the total Generation for each province for each Generation Scenario

Eskom

• The Bars represent the relative Generation for 2011, 2020, 2030 and 2040 with the 2040 figure

Mapping the Demand Balance up to 2040

- The Supply and Demand Balance value was calculated for each Generation Scenario for each year to 2040 to determine the change over this period
- The 2011, 2020, 2030 and 2040 scenarios are presented in the report to illustrate the change over each decade
- The Bars represent the relative Demand Balance for 2011, 2020, 2030 and 2040 with the 2040 figure shown for Scenario A in this case
- All three Generation Scenarios can be mapped and compared to show the differences between the scenarios over time

Comparing Demand Balances for each Generation Scenario

Marginal scenario difference for the TDP period

MAX & MIN DEMAND BALANCE PROGRESSION CONSIDERING ALL SCENARIOS (Allocated Generation less Maximum Demand in MW)

Transmission Centroid Network

- Unconstrained spatial Tx network model developed
- "Relative" electrical impedance between each adjoining centroids was calculated considering physical terrain
- Preferred power transfers for each generation scenario were determined

2014/10/13

Inter-Province Power Transfers for the IRP W60 CBA 2040 scenario

- Power transfers with direction of flow can be plotted between each province for the four Max Scenarios.
- Arrows indicate relative size of transfer in MW
- This case is for the IRP BASE scenario with 60% Wind generation in an east-to-west (CBA) distribution pattern
- Area shading indicates within province where generation excess (red) or high load demand (blue) is physically located

The identified 2040 SEA Corridors

Analysis of the inter-province power flows across the generation scenarios and loading conditions start to indicate where the power flows concentrates under all scenarios.

Five major corridors were identified for the future strategic development of the Tx Grid

Strategic Grid Plan

DEA \ CSIR Renewable Zones Study for SIP 8 (increase Renewable Energy)

Developers - Solar Preferred Location

Eskom

SEA - Wind and Solar Preferred Location

The CSIR were appointed by DEA to undertake a study to identify suitable corridors and zones for the efficient and effective rollout of wind and solar PV energy. The selection criteria included amongst others the environmental suitability of the land, the resource potential as well as exclusion areas.

Developers – Wind Preferred Location

Final SEA Corridors for SIP 10 project

The "National" power corridors were then further refined and consolidated into five Major Transmission power Corridors.

These were then used as the basis for a national SEA study project by the DEA. This forms part of the SIP 10 project of the Govt. NDP.

The objective is to secure all the needed environmental approvals for Tx lines within the corridors which will be valid in perpetuity.

SGP Tx 2040 Study Corridor Overview

23 Jan 2012 04:15 SAST

Upington area Aggregation level: 0 Aggregation area: 5 km x 5 km Number of PV power plants: 1

Eskom

SOLAR

Cloud impact on PV power generation

(Eskom

Cloud impact on PV power generation

RE Project Cluster Areas Study

- Identified cluster areas of potential RE projects
- Green is low number of projects
- Red is high number of projects
- Aligned with identified local and national corridor routes.

Strategic Unlocking of Renewable Access

Thank you

