

Phase 1

Reference No. : GP_21/126 June 2021

Compiled by	Recommended by	Supported by	Approved by
للمتنبي Siphesihle Satimburwa	Ronald Marais	Ache Jacob Machinjike	Segomoco Scheppers
Sonior Engineer	Senior Manager-	General Manager -	Group Executive-
Senior Engineer-	Strategic Grid	Grid Planning and	Transmission Division
Strategic Grid Planning	Planning-	Development	
Date: 07/07/2021	Date: 07/07/2021	Date: 07/07/2021	Date: 7 July 2021

DISCLAIMER

The publication of the Generation Connection Capacity Assessment of the 2023 transmission network (GCCA-2023) is to inform stakeholders of the potential capacity available on the Eskom transmission network to facilitate connection of generation projects. The Generation Connection Capacity Assessment (GCCA) is based on the information currently available and is subject to change. The information contained in this document does not constitute advice; it is a guideline to assist stakeholders. Eskom Holdings SOC Limited makes no representations regarding the suitability of the information to be used for any other purpose. All information is provided "AS IS" without warranty of any kind and is subject to change without notice. The entire risk arising out of its use remains with the recipient. In no event shall Eskom Holdings SOC Limited be liable for any direct, consequential, incidental, special, punitive, or any other damages whatsoever.

While the GCCA-2023 will be updated periodically, Eskom Holdings SOC Limited makes no representation or warranty as to the accuracy, reliability, validity, or completeness of the information in this document. Eskom does, however, endeavour to release the GCCA based on the best available information at its disposal at all times to ensure that the stakeholders are kept informed about the developments in the transmission network. Thus, the information contained in this document represents the most up-to-date information that was available at the time it was released.

Eskom Transmission Division Megawatt Park, Maxwell Drive, Sunninghill, Sandton PO Box 1091, Johannesburg, 2000, South Africa www.eskom.co.za

TABLE OF CONTENTS

1.	Intr	oduction1
2.	Ass	sumptions2
3.	Met	hodology3
	3.1.	Level 1: Transformer Capacity
	3.2.	Level 2: Substation Transfer Capacity4
3	3.3.	Level 3 and 4: Local and Supply Area Capacity5
4.	Res	sults6
2	4.1.	Supply Area Capacity
4	4.2.	Local Area Capacity7
4	4.3.	Northern Cape Substation and Transformer Capacity
4	1.4.	Northern Cape Summary of Results
4	4.5.	Hydra Cluster Substation and Transformer Capacity11
4	4.6.	Hydra Cluster Summary of Results 11
4	4.7.	Western Cape Substation and Transformer Capacity
2	4.8.	Western Cape Summary of Results
4	4.9.	Eastern Cape Substation and Transformer Capacity15
2	4.10.	Eastern Cape Summary of Results 15
4	4.11.	Free State Substation and Transformer Capacity17
4	4.12.	Free State Summary of Results17
4	4.13.	North West Substation and Transformer Capacity 19
4	4.14.	North West Summary of Results 19
5.	Cor	nclusion
6.	Dev	elopment Team

LIST OF FIGURES

Figure 1: Generation connection capacity limit hierarchy	3
Figure 2: Transformer capacity assessment	4
Figure 3: Substation transfer capacity assessment	4
Figure 4: Area limit assessment	5
Figure 5: Supply area capacity	6
Figure 6: Local area capacity	7
Figure 7: Northern Cape substation transfer capacity and transformer capacity	8
Figure 8: Hydra cluster substation transfer capacity and transformer capacity	. 11
Figure 9: Western Cape substation transfer capacity and transformer capacity	. 13
Figure 10: Eastern Cape substation transfer capacity and transformer capacity	. 15
Figure 11: Free State substation transfer capacity and transformer capacity	. 17
Figure 12: North West substation transfer capacity and transformer capacity	. 19

LIST OF TABLES

Table 1: REIPPPP BW5 required procurement by generation technology type	1
Table 2: Northern Cape summary of results	9
Table 3: Hydra cluster summary of results	12
Table 4: Western Cape summary of results	14
Table 5: Eastern Cape summary of results	16
Table 6: Free State summary of results	18
Table 7: North West summary of results	20

1. Introduction

The launch of the renewable energy independent power producer procurement programme (REIPPPP) attracts a large number of applications from independent power producers (IPP) for connection to the Eskom grid.

To be considered in the REIPPPP, IPPs go through a bidding process where they indicate the amount of power they can supply and the feasibility of supplying this power in a cost effective way. IPPs therefore need to identify sections of the network with available generation connection capacity where they can connect to. This causes IPPs to constantly contact Eskom with requests for information regarding the available capacity on the network at different nodes. To make information on generation connection capacity within the network readily accessible, Eskom developed the generation connection capacity assessment (GCCA) report.

The revision of the GCCA is triggered by the the announcement of a new REIPPPP bid window. The GCCA–2023 is therefore in response to the announcement of bid window round 5 (BW5) for which preferred bidders are expected to be connected in year 2023.

The REIPPPP BW5 aims to procure 2600 MW of renewable energy generation. Table 1 shows the breakdown per technology type of the generation capacity that will be procured in the REIPPPP BW5.

Technology	Capacity (MW)
Wind	1 600
Photovoltaic (PV)	1 000
Total IRP renewable energy for BW5	2 600

Table 1: REIPPPP BW5 required procurement by generation technology type

This report details the available generation connection capacity of the 2023 transmission network with all the projects that are expected to be commissioned by then. Phase 1 of this report considers six supply areas covering the area south from the North West and Free State provinces to the Western Cape. Phase 2 will be published later in the year with the remaining supply areas.

2. Assumptions

The key assumption changes from the GCCA-2022 which was published in 2018 are as follows:

- The connection of approved bidders from the Risk Mitigation Independent Power Producer Procurement Programme (RMIPPPP) will result in a reduction in the available generation connection capacity, moreso in the already constrained Northern Cape area.
- The reduction in the load forecast due to the downturn of the economy will lower the available capacity at substations as less of the generation will be absorbed by the local load and more of it will have to be exported to the transmission network.
- Delayed implementation of customer projects will result in further network constraints by forcing connections directly onto the transmission network.
- Reprioritisation and deferal of transmission projects mainly due to funding constraints will result in the inability to facilitate new connections.
- Improved correlation data of wind and solar resources will help to improve study results by utilising more credible assumptions.
- Wider area monitoring of the power system will provide improved oversight and identify upstream network constraints that may have been overlooked previously.

3. Methodology

The southern part of the South African transmission network was subdivided into six supply areas covering the area south from the North West and Free State provinces to the Western Cape. The departure from provinces and customer load networks (CLNs) to supply areas is deemed to be more appropriate for this type of assessment. Provincial boundaries may therefore not be respected when referring to provincial names for some supply areas.

The generation connection capacity results are assessed using the hierarchy shown in Figure 1. The generation capacity that can be connected must be restricted by the lowest limit in the overall hierarchy.

Figure 1: Generation connection capacity limit hierarchy

3.1. Level 1: Transformer Capacity

At level 1, the local substation transformation capacity is assessed assuming an N-0 level of reliability. The generation connection capacity available is evaluated considering the full transformation capacity and assuming that the generators operate at a 0.95 power factor.

When a generator is connected to the secondary busbar in a substation, the power generated is first absorbed by the local load and the excess is fed upstream through the transformers. The red arrows in Figure 2 depict the flow of power when the generator is connected at a substation.

The capacity of a substation's transformation is fixed, but the substation load varies throughout the day. This means that the lower the load connected at a substation, the lower the generation capacity that can be connected at the substation secondary busbar.

Figure 2: Transformer capacity assessment

3.2. Level 2: Substation Transfer Capacity

At level 2, the substation transfer capacity is evaluated by connecting a generator at each substation primary busbar one at a time, as shown in Figure 3. The network is assessed under all credible N-1 line contingencies.

Figure 3: Substation transfer capacity assessment

3.3. Level 3 and 4: Local and Supply Area Capacity

At level 3 and 4, the generation connection capacity is assessed at an area level by scaling all the connected generation in proportion to their values as determined from level 2. The available area generation connection capacity is evaluated by connecting generators at each substation's primary busbar as shown in Figure 4. The network is assessed under all credible N-1 line contingencies.

Figure 4: Area limit assessment

4. Results

4.1. Supply Area Capacity

The six supply areas are limited to about 10.5 GW of generation capacity. However, the Northern Cape power corridors are highly constrained and cannot evacuate additional generation further to what has already been approved. Substantial upstream network strengthening will therefore be required to facilitate new generation capacity. In contrast, the North West supply area has the ability to accommodate about 4 GW of generation.

The generation connection capacity available within each supply area is shown in Figure 5.

Figure 5: Supply area capacity

4.2. Local Area Capacity

The six supply areas consist of local areas, each of which have their own available capacity. Figure 6 shows the generation connection capacity available in each supply area as well as in their respective local areas.

Figure 6: Local area capacity

With the exception of the Northern Cape, it is evident that within the six supply areas, the local areas have capacity ranging from 1 GW to 4 GW. In most cases the supply area becomes the constraint. Therefore, to unlock the available local area capacity, upstream strengthening is required.

4.3. Northern Cape Substation and Transformer Capacity

Figure 7 shows the substation transfer capacity and transformer capacity within the Northern Cape supply area.

Figure 7: Northern Cape substation transfer capacity and transformer capacity

The Northern Cape supply area has transformation capacity at all of the substations, however it does not have substation transfer capacity.

4.4. Northern Cape Summary of Results

Table 2 summarises the available generation connection capacity within the Northern Cape supply area..

Supply Area	Local Area	Substation	Voltage (kV)	No. of Transformers	Transformer Size (MVA)	Total Capacity (MVA)	Load (MW)	Approved REIPPP Solar Gen (MW)	Approved REIPPP Wind Gen (MW)	Approved RMIPPP Gen (MW)	Transformer Limit (MW)	Substation Limit (MW)	Local Area Limit (MW)	Supply Area Limit (MW)
		Aggeneis	220/66	2	40	80	26	40	0	0	62	0		
			400/220	2	315	630	-	0	0	0		0		
		Gromis	220/66	2	40	80	3.38	0	0	0	79	0		
		Groeipunt	220/132	1	250	250	0	0	137	0	101	0		
	Greater Namaqualand	Paulputs	220/132	1	250	250	16	294	0	0	88	0		
			220/132	1	125	125		0	0	0			0	
		Oranjemond	220/66	2	80	160	23	0	0	0	175	0		0
		Nama	220/66	2	80	160	27	0	0	0	179	0		0
		Upington	400/132	1	500	500	38	383	0	75	54	0		
Northern Cape		Nieuwehoop	400/132	1	250	250	0	0	0	347	366	0		
Hormon Cupo		Houwonoop	400/132	1	500	500	Ŭ	0	0	017	000	0		
		Aries	400/22	1	45	45	1.1	9.65	0	0	34	0		
		Kronos	400/132	1	250	565	21	225	238	0	95	0		
		Rionos	400/132	1	315	000	21	0	0	0	55	0		
		Olien	275/132	1	150	400	78.6	258	0	0	220	0		
Northern Cape	Northern Cane	Olicit	275/132	1	250	400	10.0	200	0		220		0	
			400/132	2	500			324	0	0		0	0	
		Ferrum 2	275/132	2	250	1150	0 134	0	0	0	903	0		
			132/66	3	80			0	0	0		0		
		Garona	275/132	1	125	125	28	50	0	0	96	0		

Table 2: Northern Cape summary of results

Supply Area	Local Area	Substation	Voltage (kV)	No. of Transformers	Transformer Size (MVA)	Total Capacity (MVA)	Load (MW)	Approved REIPPPP Solar Gen (MW)	Approved REIPPPP Wind Gen (MW)	Approved RMIPPP Gen (MW)	Transformer Limit (MW)	Substation Limit (MW)	Local Area Limit (MW)	Supply Area Limit (MW)
			400/132	1	500	500		0	0	150	325	0		
		Lewensaar	275/22	1	40	40	4.6	0	0	0	42.6	0		
		Boundary	275/132	2	250	500	108	228	0	0	355	0		
		Holios	400/132	1	500	500	1 75	75	276	0	126	0		
		Hellos	400/22	1	45	45	1.75	15	270	0	120	0		
		Juno	400/132	2	120	240	126	9	100	0	212	0		
		Mookodi	400/132	2	250	500	32	75	0	0	432	0		

4.5. Hydra Cluster Substation and Transformer Capacity

Figure 8 shows the substation transfer capacity and transformer capacity within the Hydra cluster.

Figure 8: Hydra cluster substation transfer capacity and transformer capacity

The Hydra cluster has transformation capacity and substation transfer capacity available at all of the substations.

4.6. Hydra Cluster Summary of Results

Table 3 summarises the available generation connection capacity within the Hydra cluster supply area.

Supply Area	Local Area	Substation	Voltage (kV)	No. of Transformers	Transformer Size (MVA)	Total Capacity (MVA)	Load (MW)	Approved REIPPP Solar Gen (MW)	Approved REIPPP Wind Gen (MW)	Approved RMIPPPP Gen (MW)	Transformer Limit (MW)	Substation Limit (MW)	Local Area Limit (MW)	Supply Area Limit (MW)
		Lludro	400/132	2	240	480	102	317	152	0	89	2240		
Hydra	Hudro Cluster	пуша	400/132	1	500	500	0	0	236	75	164	2340	2260	2260
Cluster	nyura Cluster	Roodekuil	220/132	1	125	125	23	0	0	0	142	140	2300	2300
		Ruigtevallei	220/132	1	250	250	48	70	0	0	216	260		

Table 3: Hydra cluster summary of results

4.7. Western Cape Substation and Transformer Capacity

Figure 9 shows the substation transfer capacity and transformer capacity within the Western Cape supply area.

Figure 9: Western Cape substation transfer capacity and transformer capacity

Except for Sterrekus, the Western Cape supply area has transformation capacity at all the substations. Furthermore, the Western Cape supply area has available transfer capacity at all the substations.

4.8. Western Cape Summary of Results

Table 4 summarises the available generation connection capacity within the Western Cape supply area.

Supply Area	Local Area	Substation	Voltage (kV)	No. of Transformers	Transformer Size (MVA)	Total Capacity (MVA)	Load (MW)	Approved REIPPP Solar Gen (MW)	Approved REIPPP Wind Gen (MW)	Approved RMIPPPP Gen (MW)	Transformer Limit (MW)	Substation Limit (MW)	Local Area Limit (MW)	Supply Area Limit (MW)
		Komsberg	400/132	1	500	500	0	0	419,2	0	56	900		
	Greater Komsberg	Карра	765/400	1	2000	2000	-	0	0	0	-	1520	1600	
			400/132	1	500	500	0	0	108	128	239			
		Stikland	400/132	2	500	1000	118	0	0	0	1374	620		
		Aurora	400/132	1	500	1000	213	89	159 4	320	539	580		
			400/132	2	250		2.0		100,1	020	000			
\\/aatava		Acacia	400/132	3	500	1500	346	0	0	0	1771	720		
Cape		Pinotage	400/132	2	500	1000	146	0	0	0	1096	620		1100
Oupo	Greater Peninsula	Muldersvlei	400/132	3	500	1500	21	0	138	0	1308	640	1100	
		Bacchus	400/132	2	500	1000	236	36	58	0	1096	600	1100	
		Sterrekus	765/400	1	2000	2000	-	0	0	0	-	600		
		Philippi	400/132	2	500	1000	276	0	0	0	1226	700		
		Droerivier 2	400/132	1	250	250	0	0	0	0	367	1460		
			400/132	1	125	125	U	0	0	0	307	1400		
	Western Cape	Proteus	400/132	2	500	1000	239	0	0	0	1210	700		

Table 4: Western Cape summary of results

4.9. Eastern Cape Substation and Transformer Capacity

Figure 10 shows the substation transfer capacity and transformer capacity within the Eastern Cape supply area.

Figure 10: Eastern Cape substation transfer capacity and transformer capacity

The Eastern Cape supply area has transformation capacity and substation transfer capacity available at all the substations.

4.10. Eastern Cape Summary of Results

Table 5 summarises the available generation connection capacity within the Eastern Cape supply area.

Supply Area	Local Area	Substation	Voltage (kV)	No. of Transformers	Transformer Size (MVA)	Total Capacity (MVA)	Load (MW)	Approved REIPPP Solar Gen (MW)	Approved REIPPP Wind Gen (MW)	Approved RMIPPP Gen (MW)	Transformer Limit (MW)	Substation Limit (MW)	Local Area Limit (MW)	Supply Area Limit (MW)
	Port Elizabeth	Grassridge	400/132	2	500	1000	302	0	724	75	528	960		
	(Gqeberha)	Dedies	220/132	2	360	720		0	0		609		1140	
		Dedisa	400/132	2	500	1000	122	0	0	648	424	1160		
		Neptune	400/132	2	500	1000	38	0	0	0	987	1080		1740
- .		Delphi	400/132	2	125	250	110	0	100	0	248	880		
Eastern		Pembroke	220/132	2	250	500	43	0	53	0	465	60	1740	
Cape	Footore Core		400/220	2	500	1000	0	0	0	0	-	500		
	Eastern Cape		400/132	1	500	500	0	0	484	0	0	520		
		Poseidon	220/132	2	125	250	47	0	164	0	121			
			220/66	1	80	80	47	0	0	0	93	320		
			220/66	1	40	40	17	0	0	0	38			

Table 5: Eastern Cape summary of results

4.11. Free State Substation and Transformer Capacity

Figure 11 shows the substation transfer capacity and transformer capacity within the Free State supply area.

Figure 11: Free State substation transfer capacity and transformer capacity

The Free State supply area has transformation capacity and substation transfer capacity available at all the substations.

4.12. Free State Summary of Results

Table 6 summarises the available generation connection capacity within the Free State supply area.

Supply Area	Local Area	Substation	Voltage (kV)	No. of Transformers	Transformer Size (MVA)	Total Capacity (MVA)	Load (MW)	Approved REIPPP Solar Gen (MW)	Approved REIPPP Wind Gen (MW)	Approved RMIPPPP Gen (MW)	Transformer Limit (MW)	Substation Limit (MW)	Local Area Limit (MW)	Supply Area Limit (MW)				
		Perseus	765/400	1	2000	2000	0	0	0	0	-	920						
			400/275	2	400	800	0	0	0	0	-	760						
			400/275	1	800	800	0	0	0	0	-	700	2440					
	Diverniontein	Beta	765/400	2	2000	4000	0	0	0	0	-	1520	2440					
Free State		Harvard	275/132	2	500	1000	131	64	0	0	1017	1100		1260				
		Merapi	275/132	2	250	500	51	0	0	0	526	820						
		Leander	400/132	2	500	1000	154	0	0	0	1104	1020						
	Welkom	Theseus	400/132	2	500	1000	292	0	0	0	1242	1480	1280					
							Weikom	Everest	275/132	2	500	1000	56	0	0	0	1006	620

Table 6: Free State summary of results

4.13. North West Substation and Transformer Capacity

Figure 12 shows the substation transfer capacity and transformer capacity within the North West suppy area.

Figure 12: North West substation transfer capacity and transformer capacity

The North West supply area has transformation capacity and substation transfer capacity available at all the substations except for Mookodi and Pluto.

4.14. North West Summary of Results

Table 7 summarises the available generation connection capacity within the North West supply area.

Supply Area	Local Area	Substation	Voltage (kV)	No. of Transformers	Transformer Size (MVA)	Total Capacity (MVA)	Load (MW)	Approved REIPPP Solar Gen (MW)	Approved REIPPP Wind Gen (MW)	Approved RMIPPPP Gen (MW)	Transformer Limit (MW)	Substation Limit (MW)	Local Area Limit (MW)	Supply Area Limit (MW)
	Rustenburg	Dinaledi	400/132	3	500	1500	315	0	0	0	1740	2880		
		Marang	400/88	4	315	1260	520	0	0	0	1717	2920		
		Ngwedi	400/132	2	500	1000	129	0	0	0	1079	2960		
		Ararat	275/88	3	315	945	377	0	0	0	1275	1080	4051	
		Bighorn	400/275	2	800	1600	0	0	0	0	-	3400		
			275/88	3	315	945	265	0	0	0	1149	1340		
		Trident	275/88	2	315	630	260	0	0	0	859	1560		
North West		Midas	400/132	2	500	1000	275	0	0	0	1225	2580		4051
NOTIT WEST		Pluto	400/275	1	800	800	0	0	0	0		2580		
		FILLO	400/275	1	750	750	0	0	0	0	-	2560		
			400/132	3	500	1500	248	0	0	0	1673			
	Carletonville	Hermes	132/88	1	180	180	38	0	0	0	261	2180	2580	
			132/88	1	160	160		0	0	0	301			
		Mercury	400/132	2	500	1000	194	67,9	0	0	1076	1280		
	w) Matanaha al	275/132	1	250	250	60	75	0	0	223	1040		
		vvalersned	275/88	2	315	630	38	0	0	0	637	- 1040		

Table 7: North West summary of results

5. Conclusion

The publication of the GCCA-2023 is to inform stakeholders of the potential capacity available on the Eskom transmission network to facilitate connection of generation projects for REIPPPP BW5. Phase 1 of this report considered six supply areas covering the area south from the North West and Free State provinces to the Western Cape. Phase 2 will be published later in the year with the remaining supply areas.

6. Development Team

This document was developed by the following team members.

I. Mokwena	Engineer- Strategic Grid Planning
S. G. Satimburwa	Senior Engineer- Strategic Grid Planning
C. Ndlhovu	Chief Engineer- Strategic Grid Planning
S. Ncwane	Chief Engineer- Strategic Grid Planning
R. Marais	Senior Manager- Strategic Grid Planning