

RESEARCH, TESTING AND DEVELOPMENT

SUSTAINABILITY

KWAZAMOKUHLE AIR QUALITY REPORT

AUGUST 2016

EXECUTIVE SUMMARY

This monthly report covers the ambient air quality data for August 2016 as monitored at KwaZamokuhle monitoring site.

There were twenty-six exceedances of the national ambient air quality for PM_{10} daily limit of $75\mu g/m^3$ and twenty-four of the $PM_{2.5}$ daily limit of $40\mu g/m^3$ recorded. There were eight exceedances of the national ambient air quality limits for SO_2 10 minutes. There were three exceedances of national ambient air quality for SO_2 hourly. There were no exceedances of the national ambient air quality for SO_2 hourly average and NO_2 hourly recorded during the monitoring period under review.

Both SO₂ and NO₂ ambient concentrations at KwaZamokuhle monitoring site are influenced by the combination of low-level sources and tall stack emitters. Ambient fine particulate matter concentrations indicate the influence of low-level source emissions at KwaZamokuhle, probably domestic burning.

There is non-compliance with the daily PM_{10} , $PM_{2.5}$ and SO_2 ambient standards in KwaZamokuhle. This is a clear indication of a need for air quality improvement interventions that are focused on reducing particulate matter levels in the area.

The dominant winds during the day were from east-north-east, south-south-east, south-west and north-west sectors. The dominant winds during the south-south-east, south, east-north-east and south-east sectors.

The overall percentage data recovered from the monitoring station during the reporting period was 93.4 % and station availability was 97%. The majority of the parameters monitored at site meet the SANAS requirement of 90% data recovery per parameter with the exception of the O_3 analyser, which was removed for repairs.

1. INTRODUCTION

The KwaZamokuhle monitoring station is equipped to continuously monitor ambient concentrations of sulphur dioxide (SO₂), nitrogen oxides (NO, NO₂ and NO_x), ozone (O₃), fine particulate matter (FPM) of particulate size <10µm in diameter (PM₁₀) and fine particulate matter (FPM) of particulate size <2.5µm in diameter (PM_{2.5}). In addition, meteorological parameters of wind speed (WSP), wind direction (WDR), solar radiation (RAD), relative humidity (HUM), rainfall (RFL), pressure (PRS) and ambient temperature (TMP) are also recorded.

The monitoring site was established as part of a greater air quality offset pilot study. The objective of the pilot study is to test the effectiveness of the most promising household emission offset interventions identified during Eskom's pre-feasibility study. This includes identifying the possible improvement in ambient air quality resulting from emission reductions at a household level. Data measured at KwaZamokuhle will represent baseline and post intervention implementation ambient air quality.

2. SITE LOCATION

The KwaZamokuhle monitoring site is located in Hendrina about 22.5 km south-south-west of Arnot power station, 27.3 km east-south-east of Komati power station and 18.3 km south-east of Hendrina power station. (Co-ordinates: -26.138252, 29.738953)

Figure 1: KwaZamokuhle air quality monitoring station in relation to Komati, Hendrina and Arnot Power Stations

3. DATA RECOVERY

Data was analysed for completeness against a required SANAS guideline of 90% per parameter monitored and is represented in Table 1 for the KwaZamokuhle monitoring site.

Table1. Percentage data recovered per parameter for August 2016

NO	NO ₂	NOx	O ₃	PRS	RAD	RFL	SO2	тмр	WDR	WSP	WVL	PM _{2.5}	PM ₁₀	ним	Data Rec.	Station Avail.
96	96	96	14.6	100	99.9	99.9	96.6	100	100	100	100	96.7	95.8	99.7	93.4	97

The overall percentage data recovered from the monitoring station during the reporting period was 93.4 % and station availability was 97%. The majority of the parameters monitored at site meet the SANAS requirement of 90% data recovery per parameter with the exception of the O_3 analyser, which was removed for repairs.

4. SUMMARY OF RESULTS FOR REPORTED PERIOD

The National Department of Environmental Affairs (DEA) has set the South African Ambient Air Quality Standards for the criteria pollutants as illustrated in Table 2.

Pollutant	Averaging Period	Concentration	Allowed Frequency of Exceedances
NO	1 hour	106 ppb	88
NO ₂	1 year	21 ppb	0
	10 minute average	191 ppb	526
<u> </u>	1 hour	134 ppb	88
SO ₂	24 hours	48 ppb	4
	1 year	19 ppb	0
O ₃	8 hours (running ave)	61 ppb	11
	24 hours	75 μg/m ³	4
PM ₁₀	1 year	40 µg/m ³	0
DM	24 hours	40 μg/m ³ ⁽¹⁾ 25 μg/m ³	0 0
PM _{2.5}	1 year	20 μg/m ³ ⁽¹⁾ 15 μg/m ³	0 0

 Table 2: South African National Ambient Air Quality Standards

⁽¹⁾Compliance required by 1 January 2030

Table 3 is a summary report presenting highest mean concentrations and the number of exceedances of the respective National Ambient Air Quality Standards as monitored at KwaZamokuhle during the August 2016 monitoring period.

Table 3: Summary report

Pollutant	Highest Hourly Mean	No of Hourly National Limit Exceedances	Highest Daily Mean	No of Daily National Limit Exceedances	No of 8hr Moving Average Limit	Highest 10min Mean	No of 10min National Limit Exceedances
ΡM _{2.5} (μg/m ³)	482.9		95.1	24		530.9	
ΡM ₁₀ (μg/m ³)	515.1		187.2	26		549.1	
NO (ppb)	55.7		20			138.5	
NO ₂ (ppb)	55.7	0	18.1			73.2	
NOx (ppb)	98.7		29.2			163.2	
OZN (ppb)	51		28.8		0	52.5	
SO ₂ (ppb)	145.2	3	44.9	0		218.3	8
TMP (°C)	28.6		15.8			29.1	
WSP (m/s)	8.9		4			9.8	
WVL (m/s)	8.7		3.9			9.5	

There were twenty-six exceedances of the national ambient air quality for PM_{10} daily limit of $75\mu g/m^3$ and twenty-four of the $PM_{2.5}$ daily limit of $40\mu g/m^3$ recorded. There were eight exceedances of the national ambient air quality limits for SO_2 10 minutes. There were three exceedances of national ambient air quality for SO_2 hourly .There were no exceedances of the national ambient air quality limits for SO_2 hourly .There were no exceedances of the national ambient air quality limits for SO_2 hourly average and NO_2 hourly recorded during the monitoring period under review.

Table 4: Exceedances for the National Ambient Air Quality Standards.

	SO ₂ hour	ly averages exc	eedances				
Limit	Day	Month	Year	Time	Conc	Wind Dir	Wind v
134	04	August	2016	18:00	145.245	W	1.945
134	04	August	2016	19:00	135.383	WSW	1.47
134	13	August	2016	20:00	140.622	NNW	0.67
SO ₂ 10-m	inutes average	es exceedances					
Limit	Day	Month	Year	Time	Conc	Wind Dir	Wind v
191	04	August	2016	17:50	213.3	N/A	N/A
191	04	August	2016	18:40	191.9	N/A	N/A
191	12	August	2016	18:50	206.95	N/A	N/A
191	12	August	2016	19:00	192.75	N/A	N/A
191	12	August	2016	19:10	218.35	N/A	N/A
191	13	August	2016	20:00	197.55	N/A	N/A
191	13	August	2016	20:50	215.65	N/A	N/A
191	14	August	2016	18:50	204.15	N/A	N/A
PM _{2.5} dail	y exceedance	es			<u>.</u>	÷	-
Limit	Day	Month	Year	Conc	Time	Wind Dir	Wind v
40	02	August	2016	61.2	N/A	N/A	N/A
40	03	August	2016	55.5	N/A	N/A	N/A
40	04	August	2016	60.5	N/A	N/A	N/A
40	05	August	2016	55.6	N/A	N/A	N/A
40	06	August	2016	94.8	N/A	N/A	N/A
40	07	August	2016	88.2	N/A	N/A	N/A
40	08	August	2016	46.4	N/A	N/A	N/A
40	10	August	2016	84.8	N/A	N/A	N/A
40	11	August	2016	85.8	N/A	N/A	N/A
40	12	August	2016	84.2	N/A	N/A	N/A

40	13	August	2016	95.1	N/A	N/A	N/A
40	14	August	2016	64.3	N/A	N/A	N/A
40	17	August	2016	60.4	N/A	N/A	N/A
40	18	August	2016	51	N/A	N/A	N/A
40	19	August	2016	50.4	N/A	N/A	N/A
40	20	August	2016	47.9	N/A	N/A	N/A
40	21	August	2016	43.3	N/A	N/A	N/A
40	23	August	2016	73.3	N/A	N/A	N/A
40	25	August	2016	67.9	N/A	N/A	N/A
40	26	August	2016	41.3	N/A	N/A	N/A
40	27	August	2016	54.4	N/A	N/A	N/A
40	28	August	2016	54.8	N/A	N/A	N/A
40	29	August	2016	46.6	N/A	N/A	N/A
40	31	August	2016	40.0	N/A	N/A	N/A
	ly exceedance		2010	40.7			
Limit	Day	Month	Year	Conc	Time	Wind Dir	Wind v
75	02	August	2016	98.5	N/A	N/A	N/A
75	03	August	2016	187.2	N/A	N/A	N/A
75	04	August	2016	97.1	N/A	N/A	N/A
75	05	August	2016	112.3	N/A	N/A	N/A
75	06	August	2016	141.2	N/A	N/A	N/A
75	07	August	2016	163.3	N/A	N/A	N/A
75	08	August	2016	107.2	N/A	N/A	N/A
75	10	August	2016	119.2	N/A	N/A	N/A
75	11	August	2016	91.9	N/A	N/A	N/A
75	12	August	2016	136	N/A	N/A	N/A
75	13	August	2016	156.7	N/A	N/A	N/A
75	14	August	2016	125.2	N/A	N/A	N/A
75	17	August	2016	92.9	N/A	N/A	N/A
75	18	August	2016	83.6	N/A	N/A	N/A
75	19	August	2016	104.8	N/A	N/A	N/A
75	20	August	2016	125.9	N/A	N/A	N/A
75	21	August	2016	124.5	N/A	N/A	N/A
75	22	August	2016	91.9	N/A	N/A	N/A
75	23	August	2016	78.8	N/A	N/A	N/A
75	25	August	2016	115.2	N/A	N/A	N/A
75	26	August	2016	97.3	N/A	N/A	N/A
75	27	August	2016	106.7	N/A	N/A	N/A
75	28	August	2016	109.6	N/A	N/A	N/A
75	29	August	2016	89.8	N/A	N/A	N/A
75	30	August	2016	88.1	N/A	N/A	N/A
75	31	August	2016	83.9	N/A	N/A	N/A

5. METEOROLOGICAL OBSERVATIONS

The distribution of wind direction and wind speed for daytime and night-time hours for the reporting period are summarised on polar diagrams in Figure 2. The centre of the wind rose depicts the position of the air quality-monitoring site. The positions of the spokes in the polar diagram represent directions from which the wind was blowing. The length of the segment indicates the percentage of the time the wind blew from that direction and the speed in the various categories are denoted by colours and width.

The dominant winds during the day were from east-north-east, south-south-east, south-west and north-west sectors. The dominant winds during the south-south-east, south, east-north-east and south-east sectors.

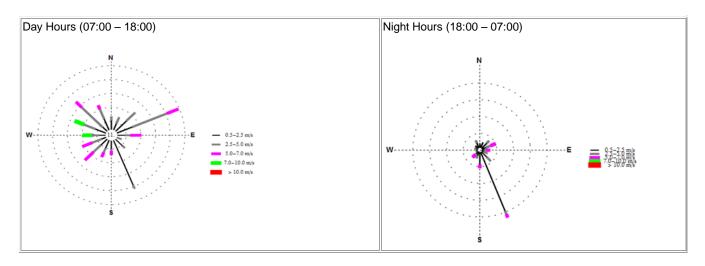


Figure 2: Wind profile at KwaZamokuhle monitoring site

6. DISCUSSION OF POLLUTANTS

Emissions of primary pollutants such as PM_{10} , SO_2 , and NO_X from low level sources such as domestic combustion and motor vehicles are expected to impact at ground level more significantly during the evening and early morning hours as a result of temperature inversion. Emissions of such pollutants from tall stacks (power stations and other industries), are expected to have a more significant impact at ground level during the day between 09:00 and 16:00, due to atmospheric turbulence influences.

6.1. SULPHUR DIOXIDE (SO₂).

6.1.1. Source Identification by SO₂ Hourly Diurnal Variations.

Figure 3 illustrates SO_2 concentrations increasing from the morning, the concentrations continue to rise throughout the afternoon until maximum peak is reached at 20h00. The morning and evening peaks are from low-level sources, probably domestic coal burning, and the higher concentrations in the afternoon are indicative of tall stack sources.

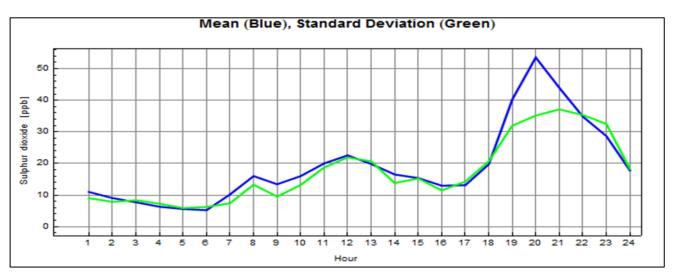


Figure 3: Diurnal variation of SO₂ hourly at KwaZamokuhle for August 2016

6.1.2 Sulphur Dioxide 10-minutes and Hourly Event Roses

There were nine exceedances of the national ambient air quality limits for SO_2 10 minutes. There were six exceedances of national ambient air quality for SO_2 hourly and six exceedances of the national ambient air quality limits for SO_2 daily. Figure 4 show the exceedance roses to indicate the sectors where the highest 10-minutes limit concentrations were coming from during the day and the night.

During daytime, there were four exceedances of concentrations for SO_2 10-minutes limit that were recorded one from north-north-east two from west-south-west, one from west.sectors (Table 5). During the nighttime, there were four exceedances of concentrations for SO_2 10-minutes limit that were recorded one from north, one from north-north-east, one from north-west and one from north-north-west sectors (Table 6) Komati Power Station is about 27.3 km west-north-west and Hendrina power station about 18.3 km north-west of the monitoring site and the Kwazamokuhle township is on the surroundings of north to south sector of the monitoring site this could have impacted on the monitoring site. Local SO_2 emissions from domestic coal burning probably make the greatest contribution to SO_2 levels in KwaZamokuhle.

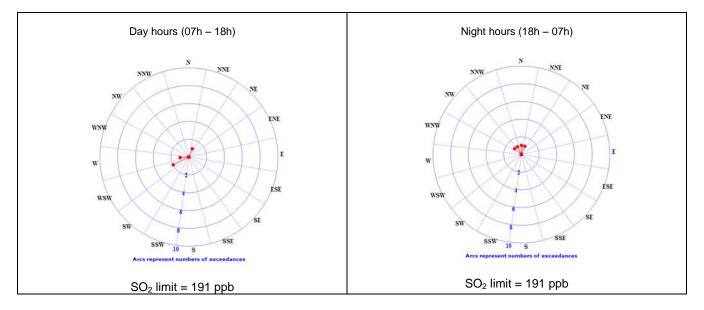


Figure 4: SO₂ 10-minutes limit for exceedance roses for August 2016

Table 5: SO ₂ day-time	10-minutes	limit for	exceedance table

Dir.	Ν	NNE	NE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Exc	0	1	0	0	0	0	0	0	0	0	2	1	0	0	0
%	0	25	0	0	0	0	0	0	0	0	50	25	0	0	0

Table 6: SO₂ night-time 10-minutes limit for exceedance table

Dir.	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
%	25	25	25	0	0	0	0	0	0	0	0	0	0	0	25	25

There were three exceedances of the national ambient air quality limits for SO_2 hourly. Figure 5 show the exceedance roses to indicate the sectors where the exceedances of hourly limit concentrations were coming from during the day and the night.

During daytime, there was one exceedance of concentrations for SO_2 hourly limit that were recorded, one exceedance from west sector (Table 7). During the nighttime, there were two exceedances of mean concentrations SO_2 hourly limit (Table 8) two exceedances were recorded in the west-southwest, north-north-west sectors. Komati Power Station is about 27.3 km west-north-west and Hendrina power station about 18.3 km north-west of the monitoring site and the Kwazamokuhle township is on the surroundings of north to south sector of the monitoring site this could have impacted on the monitoring site. Local SO_2 emissions from domestic coal burning probably make the greatest contribution to SO_2 levels in KwaZamokuhle.

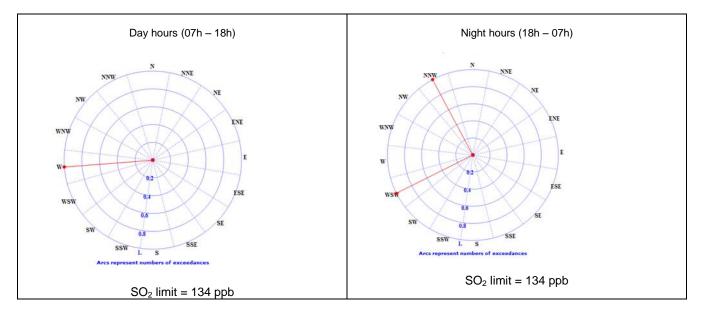


Figure 5: SO₂ hourly limit for exceedance roses for August 2016

Table 7: SO ₂ day-time	hourly limit for exceedance table
-----------------------------------	-----------------------------------

Dir.	Ν	NNE	NE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
%	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0

Table 8: SO₂ night-time hourly limit for exceedance table

Dir.	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
%	0	0	0	0	0	0	0	0	0	0	0	25	0	0	0	50

6.2. Nitrogen Dioxide (NO₂)

6.2.1. Source identification by NO₂ diurnal variations

The NO₂ diurnal variation shows NO₂ concentrations reaching peaks at 08:00 in the morning, and 20:00 in the evening as indicated by Figure 6 below. The concentration peaks observed in the morning and evenings are associated with influence from low-level sources like domestic burning and vehicles.

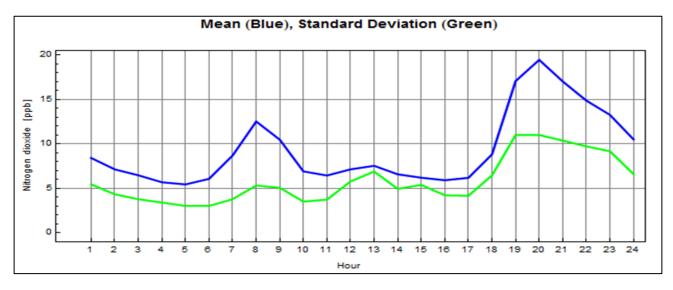


Figure 6: Diurnal variation of NO₂ hourly at KwaZamokuhle for August 2016

6.2.2 Nitrogen dioxide hourly event roses (98th percentile)

There were no exceedances of the NO_2 hourly limit of 106 ppb. Figure 6 shows the 98th percentile event roses indicating the sectors where highest hourly concentrations were coming from during the day and night. During the daytime the highest hourly mean concentrations above 25.84 ppb (Table 9) were recorded in the north, south-south-east, west-south-west, west, west-north-west and north-west sectors. The hourly mean concentrations above 34.22 ppb (Table 10) during the night-time were recorded in the south-west, west-south-west, and north-north-west sectors. There is Coalfields located east-south-east of the monitoring site which might have an influence on the monitoring site.

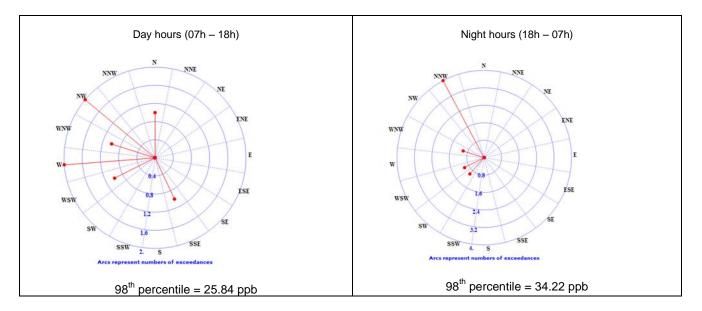


Figure 7: NO₂ hourly mean 98th percentile event roses during day and night times

Table 9: NO₂ day time hourly mean 98th percentile event table

Dir.	Ν	NNE	NE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	1	0	0	0	0	0	1	0	0	1	1	2	1	2	0
%	12.5	0	0	0	0	0	12.5	0	0	12.5	25	25	12.5	25	0

Table 10: NO₂ night-time hourly mean 98th percentile event table

Dir	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	4
%	0	0	0	0	0	0	0	0	0	0	14.29	14.29	0	14.29	0	57.14

6.3. Fine Particulate Matter (PM₁₀ and PM_{2.5}).

6.3.1. Source identification by PM_{10} and $PM_{2.5}$ diurnal variations.

The $PM_{2.5}$ and PM_{10} diurnal variations (Figures 8 and 9) display a similar pattern indicative of low-level emission sources. The concentrations increase from 06:00 and peak between09:00 and 10:00 in the morning. The PM concentration levels remain low throughout the day and increase in the afternoon until evening peak is reached at 20:00 These peaks observed in the morning and evenings are typical of emissions from low-level sources, probably domestic combustion in KwaZamokhule.

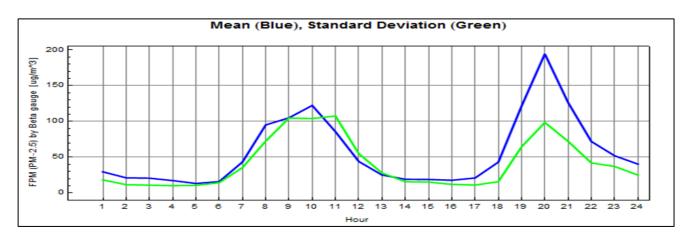


Figure 8: Diurnal variation of PM_{2.5} concentrations at KwaZamokuhle for August 2016

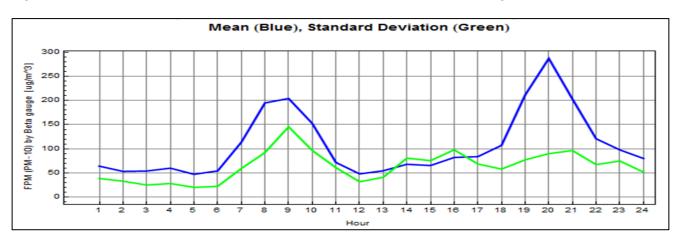


Figure 9: Diurnal variation of PM₁₀ concentrations at KwaZamokuhle for August 2016

6.3.2 Particulate fine matter hourly 98th percentile event roses

As there are no national hourly PM standards, the hourly mean 98th percentile daytime and night-time event roses are presented to identify the wind sectors from which the highest hourly concentrations were derived from during the monitoring period.

Figure 10 shows the PM_{2.5} hourly mean 98th percentile event roses during day and night times. During the daytime the PM_{2.5} hourly mean sector concentrations above 270.22 μ g/m³ (Table 11) were recorded in the north, south, south-south-west, west-north-west and north-west sectors. The hourly mean sector concentrations above 350.28 μ g/m³ (Table 12) during the night-time were recorded in east-south-east, south-south-west, south-west and north-west sectors.

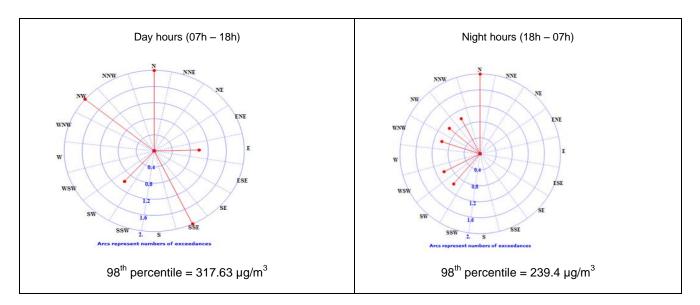


Figure 10: PM_{2.5} hourly mean 98th percentile event roses during day and night times

Dir	Ν	NNE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	2	0	0	1	0	0	2	0	0	1	0	0	0	2	0
%	25	0	0	12.5	0	0	25	0	0	12.5	0	0	0	25	0

Table 12: PM_{2.5} night time hourly mean 98th percentile event table

Dir	Ν	NNE	NE	E	ENE	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	2	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
%	28.57	0	0	0	0	0	0	0	0	0	14.29	0	0	14.29	14.29	14.29

Figure 11 shows the PM_{10} hourly mean 98th percentile event roses during day and night times. PM_{10} hourly mean sector concentrations above 424.32 µg/m³ (Table 13) were recorded in the south-south-east, south-west, west-north-west sectors during the daytime. During the night, the hourly mean concentrations above 370.7µg/m³ (Table 14) were recorded in the north, north-north-east, east, west-south-west, north-west and north-north-west sectors. Domestic burning in KwaZamokuhle is probably the largest source of PM.

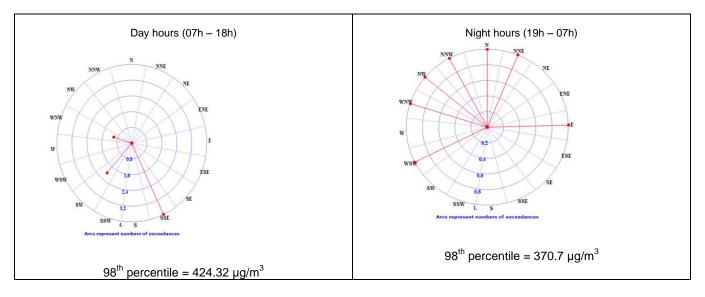


Figure 11: PM₁₀ hourly mean 98th percentile event roses during day and night times

Dir	Ν	NNE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	0	0	0	4	0	0	2	0	0	1	0	0
%	0	0	0	0	0	0	57.14	0	0	28.57	0	0	14.29	0	0

Table 14: PM ₁₀ night time hourl	y mean 98 th percentile e	vent table
---	--------------------------------------	------------

Dir	Ν	NNE	NE	E	ENE	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	1	0	0	0	3	0	1	0	1	0	0	1	0
%	0	0	0	14.29	0	0	0	42.86	0	14.29	0	14.29	0	0	14.29	07

6.4. OZONE (O₃)

6.4.1. Source identification by O_3 diurnal variations

The O_3 hourly mean diurnal variations show low concentrations in the morning with an increase from 08:00 in the morning due to the break of the inversion layer when the sun goes up. The concentrations increase throughout the day as a result of photochemical reaction, peaking at 15:00 before decaying rapidly due to the lack of sunlight during the night-time period shown in Figure 12.

Figure 12: Diurnal variation of Ozone concentrations at KwaZamokuhle for August 2016

7. MONTHLY MEANS FOR THE CURRENT CALENDAR YEAR

7.1. TRENDS OVER THE REPORTING PERIOD (Jan 2015 – August 2016)

Time series graphs for each pollutant with respect to the national ambient limits are represented from the beginning of each month for the reporting period or since inception of the monitors. The resultant period may vary for each analyser, depending on when it was installed.

Figures 13 - 17 show seasonal trends where high concentrations were recorded from May to August 2015 (winter season) and low concentrations are also recorded from January – April 2016 (summer season) and May 2016 the winter season has started and we observe high concentrations for the parameters monitored at the site. Gaps in the data are as a result of the analysers being out of service due to faults experienced, tripping of circuit breakers and incoming power interruptions. There is no distinct trend observed on the O_3 8hourly moving average monthly concentrations during the 2015 and 2016 monitoring period (Figure 18).

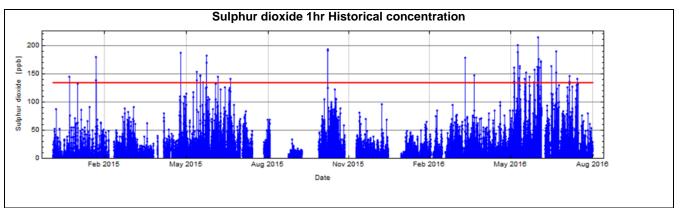


Figure 13: SO₂ 1hr mean concentration

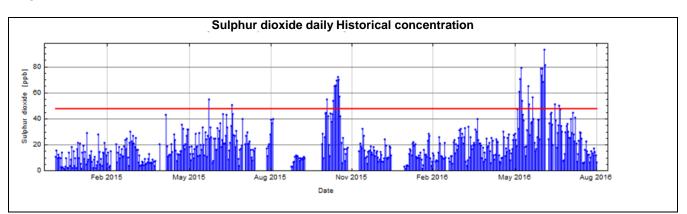
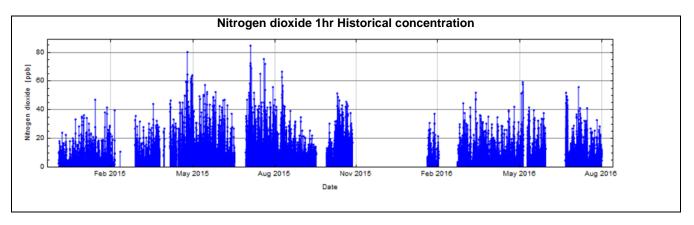



Figure 14: SO₂ daily monthly concentrations

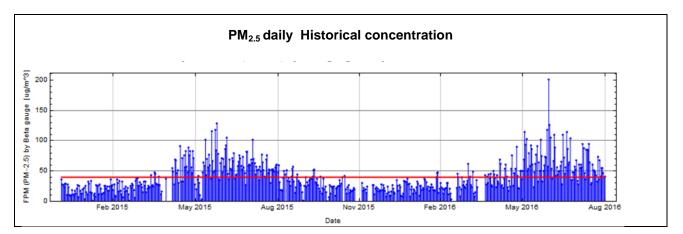


Figure 16: PM_{2.5} daily monthly concentration

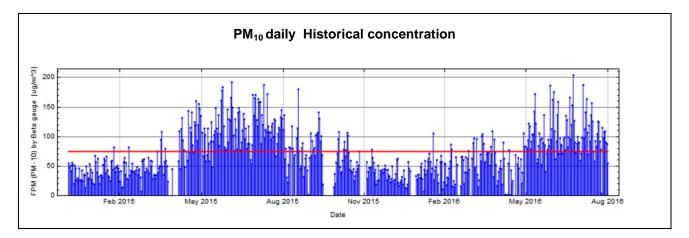


Figure 17: PM_{2.5} daily monthly concentrations

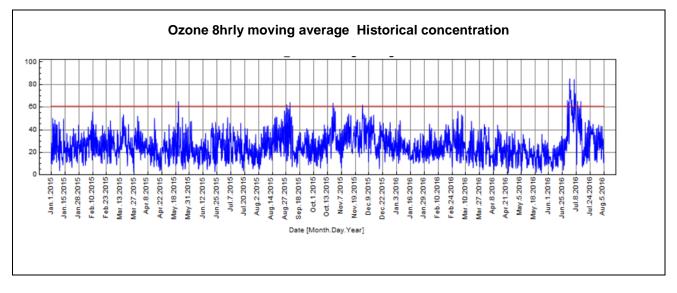


Figure 18: O₃ 8hrs moving average

Table 15: Monthly means for the calendar year 2016

Parameter measured	January	February	March	April	Мау	June	July	August
PM _{2.5} (μg/m³)	21	25.2	25.5	32.6	41.6	72.4	63.9	56.7
PM ₁₀ (µg/m³)	32.5	44.1	47.9	67	43	99.8	107. 5	106.3
NO ₂ (ppb)	-	8.2	9.7	10.1	8.3	11.2	12.4	9.4
O ₃ (ppb)	22.4	25.5	23.5	20.3	17.2	18.7	37.5	26
SO ₂ (ppb)	10.9	13.7	16	20.6	17.3	39.7	38	19.2

The monthly means show the trends of the pollutant monitored at the site from January to August 2016.

	SO ₂ hourly	SO ₂ 10- nimutes	SO ₂ daily	NO ₂ hourly	PM ₁₀ daily	PM _{2.5} daily	O ₃ 8- Hourly
Jan 2016	0	0	0	0	0	0	0
Feb 2016	0	0	0	0	1	2	0
March 2016	0	0	0	0	3	2	0
April	2	3	0	0	9	8	0
May	0	0	0	0	5	16	0
June	18	21	9	0	25	27	3
July	6	9	6	0	26	26	81
August	3	8	0	0	26	24	0
Total	27	38	15	0	95	165	84
Allowed no of exceedances	88	526	4	88	4	4	11

Table 16: Number of exceedances of the National Ambient Air Quality Limits

There is non-compliance with SO_2 daily, PM_{10} daily and $PM_{2.5}$ daily standards in KwaZamokuhle. This is a clear indication of a need for air quality improvement interventions that are focused on reducing particulate matter levels in the area.

8. CONCLUSION

There were twenty-six exceedances of the national ambient air quality for PM_{10} daily limit of $75\mu g/m^3$ and twenty-four of the $PM_{2.5}$ daily limit of $40\mu g/m^3$ recorded. There were eight exceedances of the national ambient air quality limits for SO_2 10 minutes. There were three exceedances of national ambient air quality for SO_2 hourly .There were no exceedances of the national ambient air quality for SO_2 hourly .There were no exceedances of the national ambient air quality limits for SO_2 hourly average and NO_2 hourly recorded during the monitoring period under review.

Both SO_2 and NO_2 ambient concentrations at KwaZamokuhle monitoring site are influenced by the combination of low-level sources and tall stack emitters. Ambient fine particulate matter concentrations indicate the influence of low-level source emissions at KwaZamokuhle, probably domestic burning.

Report compiled by: Trinity Ngomane RT&D

Reviewed by: Kgancho Komane

~e-

Air Quality, Climate Change & Ecosystem Management RT&D

Kristy Langerman

Approved by:

Air Quality Centre of Excellence Eskom Environmental Management

9. DISTRIBUTION LIST

SUSTAINABILITY-ENVIRONMENTAL MWP Attention: K Langerman Attention: O Makhalemele

RT&D – Air Quality, Climate Change & Ecosystem management	RT&D
Attention: Gabi Mkhatshwa	

Project File Project Leader Attention: Trinity Ngomane RT&D

ABBREVIATIONS

µg/m³	Microgram per cubic meter
DEA	Department of Environmental Affairs
deg	Degree
deg C	Degree Celsius
E	East
ENE	East-north-east
ESE	East-south-east
FPM	Fine particulate matter
ним	Humidity
m/s	Meters per second
MWP	Megawatt Park
N	North
NE	North-east
NNE	North-north-east
NNW	North-north-west
NO ₁	Nitric oxide
NO ₂	Nitrogen dioxide
NO _X	Oxides of nitrogen
NW	North-west
Ozn/O ₃	Ozone
PM-10	Particulate matter < 10 microns in diameter
PM- _{2.5}	Particulate matter < 2.5 microns in diameter
ppb	Parts per billion
ppm	Parts per million
PRS	Pressure
RAD	Solar Radiation
RFL	Rain Fall
RT&D	Research, Testing and Development
S	South
SANAS	South African National Accreditation System
SE	South-east
SGT	Sigma theta
SO ₂	Sulphur Dioxide
SSE	South-south-east
SSW	South-south-west
SW	South-west
TMP	Ambient temperature
W	West
WDR	Wind direction from true North
WNW	West-north-west
WSP	Wind speed

WSW	West-south-west
WVL	Wind velocity