

RESEARCH, TESTING AND DEVELOPMENT

SUSTAINABILITY

KWAZAMOKUHLE AIR QUALITY REPORT

MAY 2016

EXECUTIVE SUMMARY

This monthly report covers the ambient air quality data for May 2016 as monitored at KwaZamokuhle monitoring site.

There were five exceedances of the national ambient air quality for PM_{10} daily limit of $75\mu g/m^3$ and sixteen of the $PM_{2.5}$ daily limit of $40\mu g/m^3$ recorded. There were no exceedances of the national ambient air quality limits for SO_2 10 minutes, SO_2 hourly, NO_2 hourly and Ozone 8-hourly average recorded during the monitoring period under review.

Both SO_2 and NO_2 ambient concentrations at KwaZamokuhle monitoring site are influenced by the combination of low-level sources and tall stack emitters. Ambient fine particulate matter concentrations indicate the influence of low-level source emissions at KwaZamokuhle, probably domestic burning.

The national ambient air quality limits for SO_2 hourly, SO_2 10-minutes, SO_2 daily, NO_2 hourly and Ozone 8-hourly average monitored during the period under review are well below their national air quality annual limits with the exception of PM_{10} and $PM_{2.5}$. Both the PM_{10} and $PM_{2.5}$ have exceeded the number of allowed exceedances limit and therefore the station is non-compliant for particulate matter. This is a clear indication of a need for air quality improvement interventions that are focused on reducing particulate matter levels in the area.

The dominant winds during the day were from east-north-east, east, east-south-east and south-south-east sectors. The dominant winds during the night were from east-north-east, east, east-south-east and south-south-east sectors.

The overall percentage data recovered from the monitoring station during the reporting period was 95.3% and station availability was 98.9%. The majority of the parameters monitored at site meet the SANAS requirement of 90% data recovery per parameter with the exception of the NOx analyser and PM_{10} unit. NOX analyser was affected by the high internal temperature caused by the faulty air conditioner and PM_{10} unit was affected by high internal temperature and the faulty external pump.

1. INTRODUCTION

The KwaZamokuhle monitoring station is equipped to continuously monitor ambient concentrations of sulphur dioxide (SO₂), nitrogen oxides (NO, NO₂ and NO_x), ozone (O₃), fine particulate matter (FPM) of particulate size <10 μ m in diameter (PM₁₀) and fine particulate matter (FPM) of particulate size <2.5 μ m in diameter (PM_{2.5}). In addition, meteorological parameters of wind speed (WSP), wind direction (WDR), solar radiation (RAD), relative humidity (HUM), rainfall (RFL), pressure (PRS) and ambient temperature (TMP) are also recorded.

The monitoring site was established as part of a greater air quality offset pilot study. The objective of the pilot study is to test the effectiveness of the most promising household emission offset interventions identified during Eskom's pre-feasibility study. This includes identifying the possible improvement in ambient air quality resulting from emission reductions at a household level. Data measured at KwaZamokuhle will represent baseline and post intervention implementation ambient air quality.

2. SITE LOCATION

The KwaZamokuhle monitoring site is located in Hendrina about 22.5 km south-south-west of Arnot power station, 27.3 km east-south-east of Komati power station and 18.3 km south-east of Hendrina power station. (Co-ordinates: -26.138252, 29.738953)

Figure 1: KwaZamokuhle air quality monitoring station in relation to Komati, Hendrina and Arnot Power Stations

3. DATA RECOVERY

Data was analysed for completeness against a required SANAS guideline of 90% per parameter monitored and is represented in Table 1 for the KwaZamokuhle monitoring site.

Table1. Percentage data recovered per parameter for May 2016

NO	NO ₂	NO _x	O ₃	PRS	RAD	RFL	SO ₂	ТМР	WDR	WSP	WVL	PM _{2.5}	PM ₁₀	HUM	Data Recovery	Station Availability
88.6	88.6	88.6	93.3	100	99.9	99.9	90.1	100	100	100	100	98.5	73.5	100	95.3	98.9

The overall percentage data recovered from the monitoring station during the reporting period was 95.3% and station availability was 98.9%. The majority of the parameters monitored at site meet the SANAS requirement of 90% data recovery per parameter with the exception of the NOx analyser and PM_{10} unit. NO_X analyser was affected by the high internal temperature caused by the faulty air conditioner and PM_{10} unit was affected also by high internal temperature and the faulty external pump.

4. SUMMARY OF RESULTS FOR REPORTED PERIOD

The National Department of Environmental Affairs (DEA) has set the South African Ambient Air Quality Standards for the criteria pollutants as illustrated in Table 2.

Table 2: South African National Ambient Air Quality Standards

Pollutant	Averaging Period	Concentration	Allowed Frequency of Exceedances
NO ₂	1 hour	106 ppb	88
	1 year	21 ppb	0
SO ₂	10 minute average	191 ppb	526
	1 hour	134 ppb	88
	24 hours	48 ppb	4
	1 year	19 ppb	0
O_3	8 hours (running	61 ppb	11
	ave)		
PM ₁₀	24 hours	75 μg/m³	4
	1 year	40 μg/m ³	0
PM _{2.5}	24 hours	40 μg/m ³	0
2.0		40 μg/m ³ ⁽¹⁾ 25 μg/m ³	0
	1 year	20 μg/m³ ⁽¹⁾ 15 μg/m³	0

⁽¹⁾Compliance required by 1 January 2030

Table 3 is a summary report presenting highest mean concentrations and the number of exceedances of the respective National Ambient Air Quality Standards as monitored at KwaZamokuhle during the May 2016 monitoring period.

Table 3: Summary report

Pollutant	Highest	No of Hourly	Highest	No of Daily	No of 8hr	Highest	No of 10min
	Hourly	National	Daily	National Limit	Moving	10min	National Limit
	Mean	Limit	Mean	Exceedances	Average Limit	Mean	Exceedances
		Exceedances					
PM _{2.5} (μg/m ³)	491.9		90.5	16		531.6	
$PM_{10} (\mu g/m^3)$	417.7		105.2	5		491.5	
NO (ppb)	62.4		16.2			74.2	
NO ₂ (ppb)	42	0	16			47.6	
NOx (ppb)	96		29.8			108.7	
OZN (ppb)	63.5		27.1		0	65.6	
SO ₂ (ppb)	99.3	0	30.2	0		130.2	0
TMP (°C)	24		15.6			24.5	
WSP (m/s)	7.2		4.2			8.3	
WVL (m/s)	7		4			8.1	

There were five exceedances of the national ambient air quality for PM_{10} daily limit of $75\mu g/m^3$ and sixteen of the $PM_{2.5}$ daily limit of $40\mu g/m^3$ recorded. There were no exceedances of the national ambient air quality limits for SO_2 10 minutes, SO_2 hourly, NO_2 hourly and Ozone 8-hourly average recorded during the monitoring period under review.

Table 4: Exceedances for the National Ambient Air Quality Standards.

			PM _{2.5} d	laily exceed	lances
Pollutant	40 Limit	Year	Month	Day	Conc.
PM _{2.5}	40	2016	May	02	43.7
PM _{2.5}	40	2016	May	05	69.5
PM _{2.5}	40	2016	May	06	62.2
PM _{2.5}	40	2016	May	11	53.3
PM _{2.5}	40	2016	May	12	61.3
PM _{2.5}	40	2016	May	13	41.1
PM _{2.5}	40	2016	May	18	54.2
PM _{2.5}	40	2016	May	19	76.2
PM _{2.5}	40	2016	May	21	46.8
PM _{2.5}	40	2016	May	22	45.3
PM _{2.5}	40	2016	May	23	53.3
PM _{2.5}	40	2016	May	24	90.5
PM _{2.5}	40	2016	May	25	41.9
PM _{2.5}	40	2016	May	28	49.7
PM _{2.5}	40	2016	May	29	50.7
PM _{2.5}	40	2016	May	31	50.3
			PM ₁₀ d	aily exceed	lances
PM ₁₀	75	2016	May	02	90.4
PM ₁₀	75	2016	May	05	77.3
PM ₁₀	75	2016	May	28	105.2
PM ₁₀	75	2016	May	29	82.8
PM ₁₀	75	2016	May	31	82.7

5. METEOROLOGICAL OBSERVATIONS

The distribution of wind direction and wind speed for daytime and night-time hours for the reporting period are summarised on polar diagrams in Figure 2. The centre of the wind rose depicts the position of the air quality-monitoring site. The positions of the spokes in the polar diagram represent directions from which the wind was blowing. The length of the segment indicates the percentage of the time the wind blew from that direction and the speed in the various categories are denoted by colours and width.

The dominant winds during the day were from east-north-east, east, east-south-east and south-south-east sectors. The dominant winds during the night were from east-north-east, east, east-south-east and south-south-east sectors.

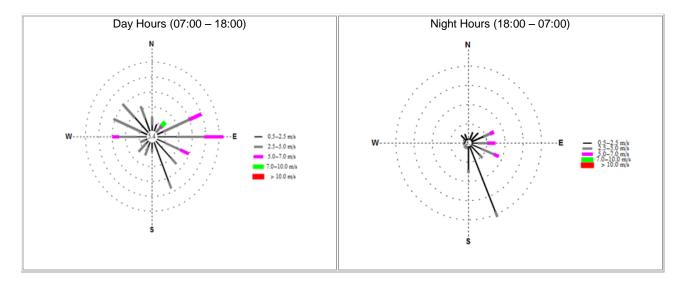


Figure 2: Wind profile at KwaZamokuhle monitoring site

6. DISCUSSION OF POLLUTANTS

Emissions of primary pollutants such as PM_{10} , SO_2 , and NO_X from low level sources such as domestic combustion and motor vehicles are expected to impact at ground level more significantly during the evening and early morning hours as a result of temperature inversion. Emissions of such pollutants from tall stacks (power stations and other industries), are expected to have a more significant impact at ground level during the day between 09:00 and 16:00, due to atmospheric turbulence influences.

6.1. SULPHUR DIOXIDE (SO₂).

6.1.1. Source Identification by SO₂ Hourly Diurnal Variations.

Figure 3 illustrates SO₂ concentrations increasing from the morning with a small peak at 08:00, higher concentrations in the afternoon, and highest concentrations in the evening, peaking at 19:00. The morning and evening peaks are from low-level sources, probably domestic coal burning, and the higher concentrations in the afternoon are indicate of tall stack sources.

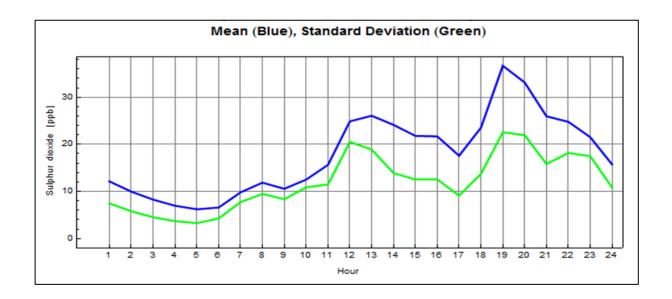


Figure 3: Diurnal variation of SO₂ hourly at KwaZamokuhle for May 2016

6.1.2 Sulphur Dioxide Hourly Event Roses

There were no exceedances of the national ambient air quality limits for SO_2 10 minutes, SO_2 hourly. Figure 4 show the event roses to indicate the sectors where the highest hourly concentrations were coming from during the day and the night.

During daytime, the highest mean concentrations above 61.21 ppb (98th percentile) were recorded in the north-east, south-south-east, west and north-west sectors (Table 5). The highest hourly mean concentrations above 52.86 ppb (98th percentile value) (Table 6) during the night-time were recorded in the north, east-north-east, south-west, west-north-west, north-west and north-north-west sectors. Komati Power Station is about 27.3 km west-north-west and Hendrina power station about 18.3 km north-west of the monitoring site and this could have impacted on the monitoring site.

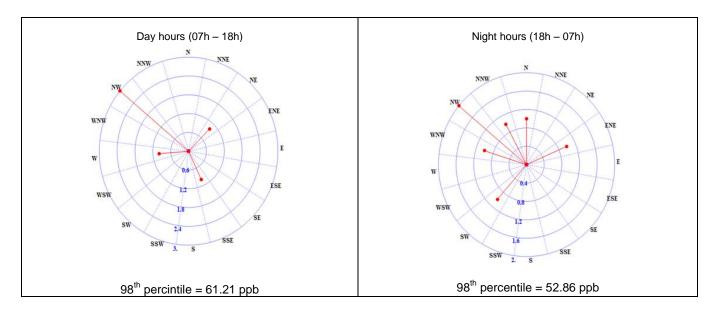


Figure 4: SO₂ hourly limit for exceedance roses and event roses for May 2016

Table 5: SO₂ day-time hourly mean 98th percentile for event table

Dir.	N	NNE	NE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	1	0	0	0	1	0	0	0	0	1	0	3	0
%	0	0	16.67	0	0	0	16.67	0	0	0	0	16.67	0	50	0

Table 6: SO₂ night-time hourly mean 98th percentile for event table

Dir.	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	1	0	0	1	0	0	0	0	0	0	1	0	0	1	2	1
%	14.29	0	0	14.29	0	0	0	0	0	0	14.29	0	0	14.29	28.57	14.29

6.2. Nitrogen Dioxide (NO₂)

6.2.1. Source identification by NO₂ diurnal variations

The NO₂ diurnal variation shows NO₂ concentrations reaching peaks at 08:00 in the morning, 13:00 in the afternoon and 19:00 in the evening as indicated by Figure 5 below. The concentration peaks observed in the afternoon may be associated with influence from high-level sources, those recorded in the morning and evening are associated with influence from low-level sources like domestic burning and vehicles.

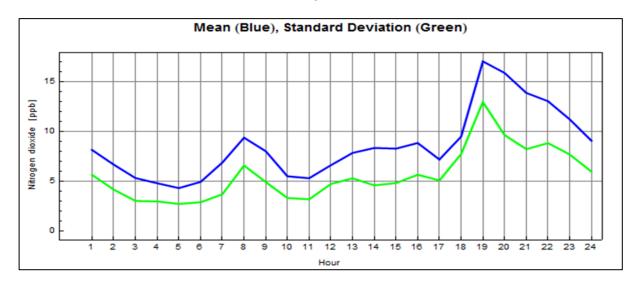


Figure 5: Diurnal variation of NO₂ hourly at KwaZamokuhle for May 2016

6.2.2 Nitrogen dioxide hourly event roses (98th percentile)

There were no exceedances of the NO₂ hourly limit of 106 ppb. Figure 6 shows the 98th percentile event roses indicating the sectors where highest hourly concentrations were coming from during the day and night. During the daytime the highest hourly mean concentrations above 28.37 ppb (Table 7) were recorded in the south-east, south-south-east, west-north-west and north-west sectors. The hourly mean concentrations above 28.51 ppb (Table 8) during the night-time were recorded in the north, east, east-south-east, south-west, west-north-west and north-west sectors. There are Coalfields located east-south-east of the monitoring site which might have an influence on the monitoring site.

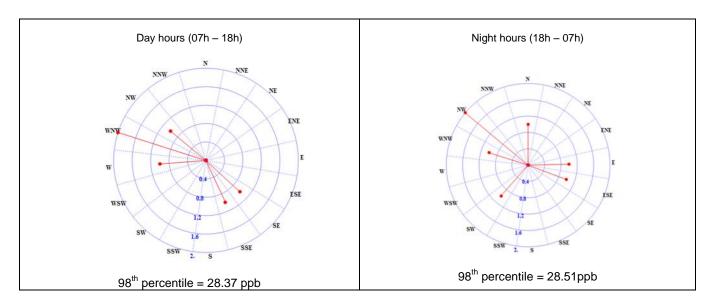


Figure 6: NO₂ hourly mean 98th percentile event roses during day and night times

Table 7: NO₂ day time hourly mean 98th percentile event table

Dir.	N	NNE	NE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	0	0	1	1	0	0	0	0	1	2	1	0
%	0	0	0	0	0	16.67	16.67	0	0	0	0	16.67	33.33	16.67	0

Table 8: NO₂ night-time hourly mean 98th percentile event table

Dir	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	1	0	0	0	1	1	0	0	0	0	1	0	0	1	2	0
%	14.29	0	0	0	14.29	14.29	0	0	0	0	14.29	0	0	14.29	28.57	0

6.3. Fine Particulate Matter (PM₁₀ and PM_{2.5}).

6.3.1. Source identification by PM_{10} and $PM_{2.5}$ diurnal variations.

The $PM_{2.5}$ and PM_{10} diurnal variations (Figures 7 and 8) display a similar pattern indicative of low-level emission sources, with low concentrations in the morning. The concentrations increase from 04:00 and peak at 08:00 in the morning. Thereafter they decrease until 12:00 and remain low throughout the afternoon. The concentrations increase again from 16:00, reaching a maximum peak at 20:00 and decrease throughout the evening. These peaks observed in the morning and evenings are typical of emissions from low-level sources, probably domestic combustion in KwaZamokhule.

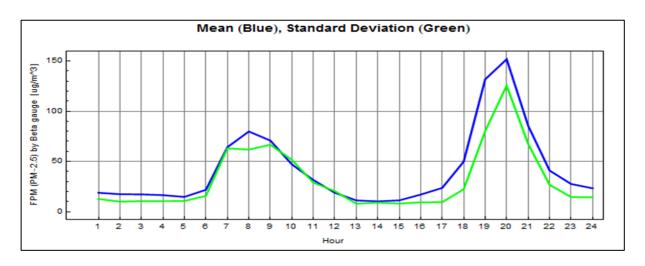


Figure 7: Diurnal variation of PM_{2.5} concentrations at KwaZamokuhle for May 2016

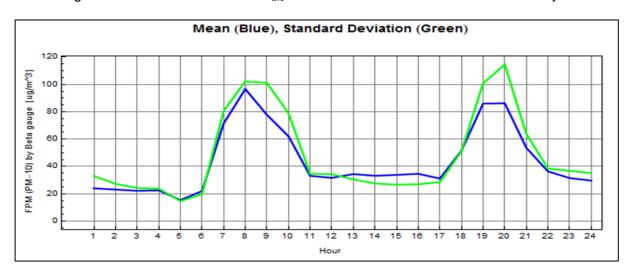


Figure 8: Diurnal variation of PM₁₀ concentrations at KwaZamokuhle for May 2016

6.3.2 Particulate fine matter hourly 98th percentile event roses

As there are no national hourly PM standards, the hourly mean 98th percentile daytime and night-time event roses are presented to identify the wind sectors from which the highest hourly concentrations were derived from during the monitoring period.

Figure 9 shows the $PM_{2.5}$ hourly mean 98^{th} percentile event roses during day and night times. During the daytime the $PM_{2.5}$ hourly mean sector concentrations above $206.75 \,\mu g/m^3$ (Table 9) were recorded in the south-south-east, west, west-north-west, north-west and north-north-west sectors. The hourly mean sector concentrations above $227.63 \,\mu g/m^3$ (Table 10) during the night-time were recorded in north, north-north-east, south-south-east, south, west, north-west and north-north-west sectors.

Figure 9: PM_{2.5} hourly mean 98th percentile event roses during day and night times

Table 9: PM_{2.5} daytime hourly mean 98th percentile event table

Dir	N	NNE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	0	0	0	1	0	0	0	0	1	2	2	1
%	0	0	0	0	0	0	14.29	0	0	0	0	14.29	28.57	28.57	14.29

Table 10: PM_{2.5} night time hourly mean 98th percentile event table

Dir	N	NNE	NE	Ε	ENE	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	1	1	0	0	0	0	0	2	1	0	0	0	1	0	1	1
%	12.5	12.5	0	0	0	0	0	25	12.5	0	0	0	12.5	0	12.5	12.5

Figure 10 shows the PM_{10} hourly mean 98th percentile event roses during day and night times. PM_{10} hourly mean sector concentrations above 278.17 $\mu g/m^3$ (Table 11) were recorded in the south-south-east, south, south-south-west, west-north-west and north-north-west sectors during the daytime. During the night, the hourly mean concentrations above 210.6 $\mu g/m^3$ (Table 12) were recorded in the north, south-south-east, west and north-north-west sectors. Domestic burning in KwaZamokuhle is probably the largest source of PM.

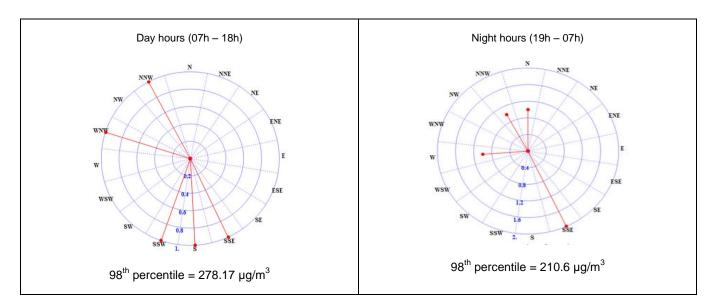


Figure 10: PM₁₀ hourly mean 98th percentile event roses during day and night times

Table 11: PM₁₀ daytime hourly mean 98th percentile event table

Dir	N	NNE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	0	0	0	1	1	1	0	0	0	1	0	1
%	0	0	0	0	0	0	20	20	20	0	0	0	20	0	20

Table 12: PM₁₀ night time hourly mean 98th percentile event table

Dir	N	NNE	NE	Ε	ENE	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	1	0	0	0	0	0	0	2	0	0	0	0	1	0	0	1
%	20	0	0	0	0	0	0	40	0	0	0	0	20	0	0	20

6.4. OZONE (O_3)

6.4.1. Source identification by O₃ diurnal variations

The O_3 hourly mean diurnal variations show low concentrations in the morning with an increase from 08:00 in the morning due to the break of the inversion layer when the sun goes up. The concentrations increase throughout the day as a result of photochemical reaction, peaking at 16:00 before decaying rapidly due to the lack of sunlight during the night-time period shown in Figure 12.



Figure 11: Diurnal variation of Ozone concentrations at KwaZamokuhle for May 2016

7. MONTHLY MEANS FOR THE CURRENT CALENDAR YEAR

7.1. TRENDS OVER THE REPORTING PERIOD (Jan 2015 – May 2016)

Time series graphs for each pollutant with respect to the national ambient limits are represented from the beginning of each month for the reporting period or since inception of the monitors. The resultant period may vary for each analyser, depending on when it was installed.

Figures 12 - 16 show seasonal trends where high concentrations were recorded from May to August 2015 (winter season) and low concentrations are also recorded form January – April 2016 (summer season) and May 2016 the winter season has started and we observe high concentrations for the parameters monitored at the site. Gaps in the data are as a result of the analysers being out of service due to faults experienced, tripping of circuit breakers and incoming power interruptions. There is no distinct trend observed on the O₃ 8hourly moving average monthly concentrations during the 2015 and 2016 monitoring period (Figure 17).

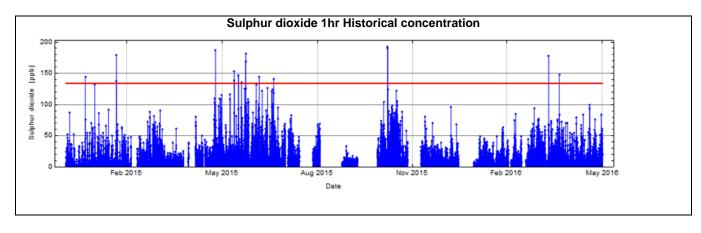


Figure 12: SO₂ 1hr mean concentration

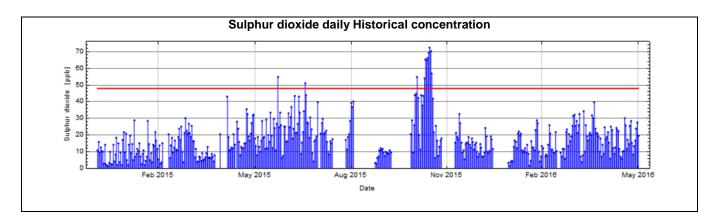


Figure 13: SO₂ daily monthly concentrations

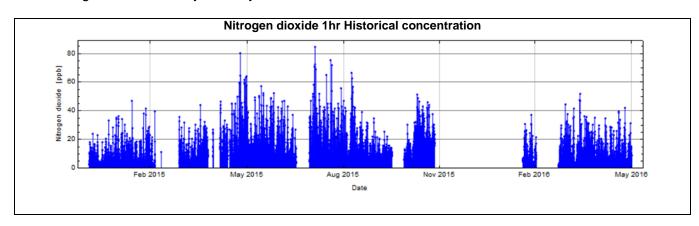


Figure 14: NO₂ 1hr monthly concentration

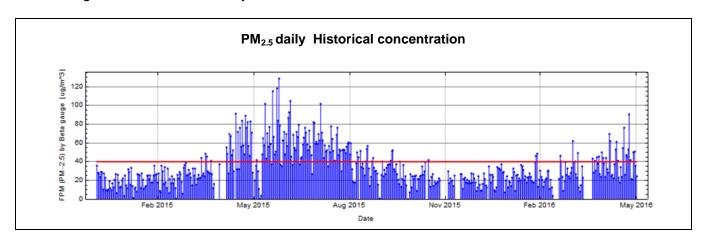


Figure 15: $PM_{2.5}$ daily monthly concentration

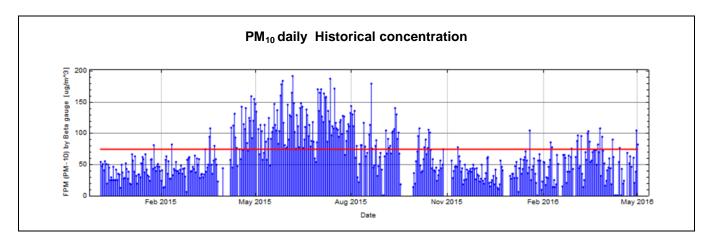


Figure 16: PM_{2.5} daily monthly concentrations

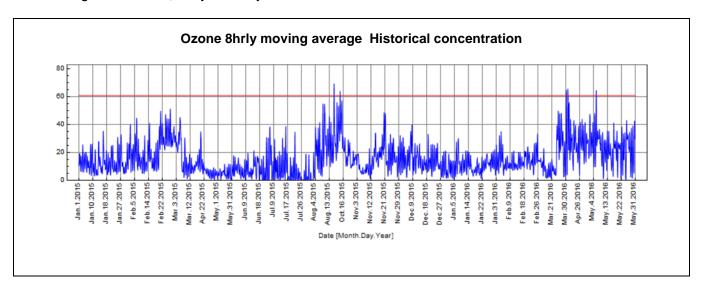


Figure 17: O₃ 8hrs moving average

Table 13: Monthly means for the calendar year 2016

Parameter measured	January	February	March	April	May
PM _{2.5} (μg/m³)	21	25.2	25.5	32.6	41.6
PM ₁₀ (μg/m³)	32.5	44.1	47.9	67	43
NO ₂ (ppb)	=	8.2	9.7	10.1	8.3
O ₃ (ppb)	22.4	25.5	23.5	20.3	17.2
SO ₂ (ppb)	10.9	13.7	16	20.6	17.3

The monthly means show the trends of the pollutant monitored at the site from January to May 2016.

Table 14: Number of exceedances of the National Ambient Air Quality Limits

	SO ₂	SO ₂ 10-	SO ₂	NO ₂	PM ₁₀	PM _{2.5}	O ₃ 8-
	hourly	nimutes	daily	hourly	daily	daily	Hourly
Jan 2016	0	0	0	0	0	0	0
Feb 2016	0	0	0	0	1	2	0
March 2016	0	0	0	0	3	2	0
April	2	3	0	0	9	8	0
May	0	0	0	0	5	16	
Total	0	0	0	0	18	28	0
Allowed no of exceedances	88	526	4	88	4	4	11

The national ambient air quality limits for, SO_2 hourly, SO_2 10-minutes, SO_2 daily, NO_2 hourly and Ozone 8-hourly average monitored during the period under review are well below their national air quality annual limits with the exception of PM_{10} and $PM_{2.5}$. Both the PM_{10} and $PM_{2.5}$ have exceeded the number of allowed exceedances limit and therefore the station is non-compliant for particulate matter. This is a clear indication of a need for air quality improvement interventions that are focused on reducing particulate matter levels in the area.

8. CONCLUSION

There were five exceedances of the national ambient air quality for PM_{10} daily limit of $75\mu g/m^3$ and sixteen of the $PM_{2.5}$ daily limit of $40\mu g/m^3$ recorded. There were no exceedances of the national ambient air quality limits for SO_2 10 minutes, SO_2 hourly, NO_2 hourly and Ozone 8-hourly average recorded during the monitoring period under review.

Both SO₂ and NO₂ ambient concentrations at KwaZamokuhle monitoring site are influenced by the combination of low-level sources and tall stack emitters. Ambient fine particulate matter concentrations indicate the influence of low-level source emissions at KwaZamokuhle, probably domestic burning.

Report compiled by: Trinity Ngomane

RT&D

Reviewed by: Kgancho Komane

Air Quality, Climate Change & Ecosystem Management

RT&D

Approved by:

Air Quality Centre of Excellence Eskom Environmental Management

Kelangerman

9. **DISTRIBUTION LIST**

SUSTAINABILITY-ENVIRONMENTAL **MWP**

Attention: K Langerman Attention: O Makhalemele

RT&D – Air Quality, Climate Change & Ecosystem management RT&D Attention: Gabi Mkhatshwa

Project File RT&D

Project Leader

Attention: Trinity Ngomane

ABBREVIATIONS

μg/m³	Microgram per cubic meter
DEA	Department of Environmental Affairs
deg	Degree
deg C	Degree Celsius
E	East
ENE	East-north-east
ESE	East-south-east
FPM	Fine particulate matter
HUM	Humidity
m/s	Meters per second
MWP	Megawatt Park
N	North
NE	North-east
NNE	North-north-east
NNW	North-north-west
NO ₁	Nitric oxide
NO ₂	Nitrogen dioxide
NO _X	Oxides of nitrogen
NW	North-west
Ozn/O ₃	Ozone
PM- ₁₀	Particulate matter < 10 microns in diameter
PM- _{2.5}	Particulate matter < 2.5 microns in diameter
ppb	Parts per billion
ppm	Parts per million
PRS	Pressure
RAD	Solar Radiation
RFL	Rain Fall
RT&D	Research, Testing and Development
S	South
SANAS	South African National Accreditation System
SE	South-east
SGT	Sigma theta
SO ₂	Sulphur Dioxide
SSE	South-south-east
SSW	South-south-west
SW	South-west
TMP	Ambient temperature
W	West
WDR	Wind direction from true North
WNW	West-north-west
WSP	Wind speed

WSW	West-south-west
WVL	Wind velocity