

RESEARCH, TESTING AND DEVELOPMENT

SUSTAINABILITY

KWAZAMOKUHLE AIR QUALITY REPORT

OCTOBER 2016

EXECUTIVE SUMMARY

This monthly report covers the ambient air quality data for October 2016 as monitored at KwaZamokuhle monitoring site.

There were six exceedances of the national ambient air quality for PM_{10} daily limit of $75\mu g/m^3$ and three of the $PM_{2.5}$ daily limit of $40\mu g/m^3$ recorded. The national ambient air quality for ozone 8-houlry limit of 61 ppb was exceeded seven times. There were no exceedances of the other national ambient air quality limits recorded for other parameters during the monitoring period under review.

Both SO_2 and NO_2 ambient concentrations at KwaZamokuhle monitoring site are influenced by the combination of low-level sources and tall stack emitters. Ambient fine particulate matter concentrations indicate the influence of low-level source emissions at KwaZamokuhle, probably domestic burning. There is non-compliance with SO_2 daily, PM_{10} daily and $PM_{2.5}$ daily and ozone 8-hourly standards at KwaZamokuhle. All other parameters are still within their respective allowed number of exceedances per year.

The dominant winds during the day were from north-west, north-north-west, west-north-west and east-north-east. The dominant winds during the night were from south-south-east, east, east-north-east and north-east.

The overall percentage data recovered from the monitoring station during the reporting period was 97.3 % and station availability was 96.1%. All the parameters monitored at site meet the SANAS requirement of 90% data recovery per parameter and data loss was due to site services and power outages.

DISCLAIMER

It is certified that the data presented is, to the best of our knowledge, a true copy of the specified record and for the times and places indicated thereon, as held on file at Research, Testing and Development Department (RT&D). The user assumes the entire risk related to the use of this data. In no event will S&I be liable to the user or to any third party for any direct, incidental, consequential, special or exemplary damages or profit resulting from any use or misuse of this data.

1. INTRODUCTION

The KwaZamokuhle monitoring station is equipped to continuously monitor ambient concentrations of sulphur dioxide (SO_2), nitrogen oxides (NO, NO_2 and NO_x), ozone (O_3), fine particulate matter (FPM) of particulate size <10 μ m in diameter (PM_{10}) and fine particulate matter (FPM) of particulate size <2.5 μ m in diameter ($PM_{2.5}$). In addition, meteorological parameters of wind speed (WSP), wind direction (WDR), solar radiation (RAD), relative humidity (HUM), rainfall (RFL), pressure (PRS) and ambient temperature (TMP) are also recorded.

The monitoring site was established as part of a greater air quality offset pilot study. The objective of the pilot study is to test the effectiveness of the most promising household emission offset interventions identified during Eskom's pre-feasibility study. This includes identifying the possible improvement in ambient air quality resulting from emission reductions at a household level. Data

measured at KwaZamokuhle will represent baseline and post intervention implementation ambient air quality.

2. SITE LOCATION

The KwaZamokuhle monitoring site is located in Hendrina about 22.5 km south-south-west of Arnot power station, 27.3 km east-south-east of Komati power station and 18.3 km south-east of Hendrina power station. (Co-ordinates: -26.138252, 29.738953)

Figure 1: KwaZamokuhle air quality monitoring station in relation to Komati, Hendrina and Arnot Power Stations and Kwazamokuhle Township

3. DATA RECOVERY

Data was analysed for completeness against a required SANAS guideline of 90% per parameter monitored and is represented in Table 1 for the KwaZamokuhle monitoring site. All parameters met the SANAS guideline

Table1. Percentage data recovered per parameter for October 2016

NO	NO ₂	NO _x	O ₃	PRS	RAD	RFL	SO ₂	ТМР	WDR	WSP	WVL	PM _{2.5}	PM ₁₀	HUM	Data Recovery	Station Avail
93.8	93.8	93.8	94	100	100	100	94	100	100	100	99.9	95.9	93.8	99.8	97.3	96.1

The overall percentage data recovered from the monitoring station during the reporting period was 97.3 % and station availability was 96.1%. All the parameters monitored at site meet the SANAS requirement of 90% data recovery per parameter and data loss was due to site services and power outages.

4. SUMMARY OF RESULTS FOR REPORTED PERIOD

The National Department of Environmental Affairs (DEA) has set the South African Ambient Air Quality Standards for the criteria pollutants as illustrated in Table 2.

Table 2: South African National Ambient Air Quality Standards

Pollutant	Averaging Period	Concentration	Allowed Frequency of Exceedances
NO ₂	1 hour	106 ppb	88
	1 year	21 ppb	0
SO ₂	10 minute average	191 ppb	526
	1 hour	134 ppb	88
	24 hours	48 ppb	4
	1 year	19 ppb	0
O ₃	8 hours (running ave)	61 ppb	11
PM ₁₀	24 hours	75 μg/m ³	4
	1 year	40 μg/m³	0
PM _{2.5}	24 hours	40 ug/m ³	0
12.5	21110410	40 μg/m³ ⁽¹⁾ 25 μg/m³	0
	1 year	20 μg/m³ ⁽¹⁾ 15 μg/m³	0

⁽¹⁾Compliance required by 1 January 2030

Table 3 is a summary report presenting highest mean concentrations and the number of exceedances of the respective National Ambient Air Quality Standards as monitored at KwaZamokuhle during the October 2016 monitoring period.

Table 3: Summary report

Pollutant	Highest Hourly	No of Hourly National	Highest Daily	No of Daily National Limit	No of 8hr Moving	Highest 10min	No of 10min National Limit
	Mean	Limit	Mean	Exceedances	Average Limit	Mean	Exceedances
		Exceedances			_		
PM _{2.5} (µg/m ³)	277.6		46.2	3		373	
$PM_{10} (\mu g/m^3)$	393.6		128	6		528	
NO (ppb)	51.8		9.6			91.1	
NO ₂ (ppb)	41	0	11.9			60.7	
NOx (ppb)	69.9		17			104.3	
OZN (ppb)	80.6		50.6		7	86.6	
SO ₂ (ppb)	124.6	0	23.6	0		172.5	0
TMP (°C)	33.8		24.9			34.2	
WSP (m/s)	9.6		6.1			11.2	
WVL (m/s)	8.3		5.9			10.9	

There were six exceedances of the national ambient air quality for PM₁₀ daily limit of 75µg/m³ and three of the PM_{2.5} daily limit of 40µg/m³ recorded. The national ambient air quality for ozone 8-houlry limit of 61 ppb was exceeded seven times. There were no exceedances of the other national ambient air quality limits recorded for other parameters during the monitoring period under review.

Table 4: Exceedances for the National Ambient Air Quality Standards.

	PN	1 ₁₀ daily exceedance	es											
Limit	Day	Month	Year	Conc										
75	05	October	2016	83.5										
75	06	October	2016	116										
75	07	October	2016	128										
75														
75	75 11 October 2016 82.5													
75	12	October	2016	92.1										
	P	M10 daily exceeda	nces											
Limit	Day	Month	Year	Conc										
40	006	October	2016	40.7										
40	07	October	2016	46.2										
40	12	October	2016	44.6										
Limit	Day	Month	Year	Conc										
61	27	October	2016	7										

5. METEOROLOGICAL OBSERVATIONS

The distribution of wind direction and wind speed for daytime and night-time hours for the reporting period are summarised on polar diagrams in Figure 2. The centre of the wind rose depicts the position of the air quality-monitoring site. The positions of the spokes in the polar diagram represent directions from which the wind was blowing. The length of the segment indicates the percentage of the time the wind blew from that direction and the speed in the various categories are denoted by colours and width.

The dominant winds during the day were from north-west, north-north-west, west-north-west and east-north-east. The dominant winds during the night were from south-south-east, east, east-north-east and north-east. .

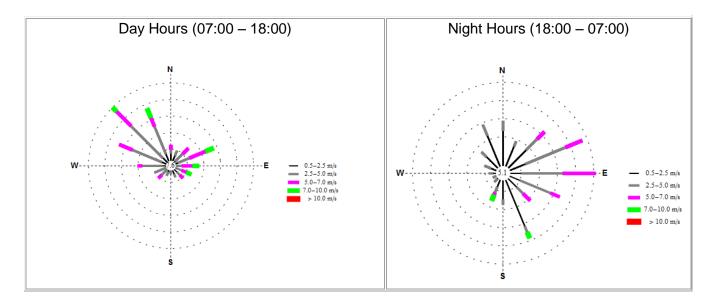


Figure 2: Wind profile at KwaZamokuhle monitoring site

6. DISCUSSION OF POLLUTANTS

Emissions of primary pollutants such as PM_{10} , SO_2 , and NO_X from low level sources such as domestic combustion and motor vehicles are expected to impact at ground level more significantly during the evening and early morning hours as a result of temperature inversion. Emissions of such pollutants from tall stacks (power stations and other industries), are expected to have a more significant impact at ground level during the day between 09:00 and 16:00, due to atmospheric turbulence influences.

6.1. SULPHUR DIOXIDE (SO₂).

6.1.1. Source Identification by SO₂ Hourly Diurnal Variations.

Figure 3 shows SO_2 concentrations increasing from the morning. The concentrations continue to rise throughout the afternoon and showing peaks at 09:00, 11:00 in the morning and 20h00 in the evening. The morning and evening peaks are from low-level sources, probably domestic coal burning, and peak in the afternoon is an indicative of tall stack sources.

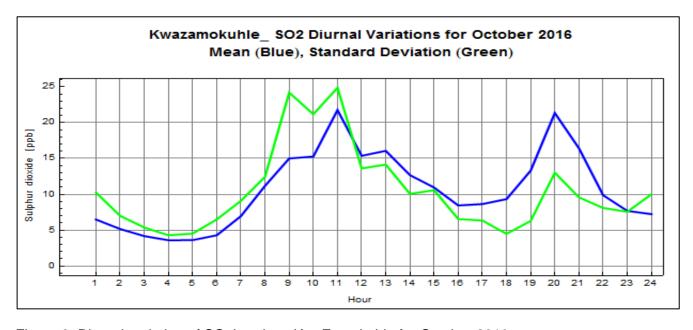


Figure 3: Diurnal variation of SO₂ hourly at KwaZamokuhle for October 2016

6.1.2 Sulphur Dioxide Hourly Event Roses

There were no exceedances of the national ambient air quality limits for SO₂ 10 minutes, SO₂ hourly. Figure 4 shows the 98th percentile event roses indicating the sectors where highest hourly concentrations were coming from during the day and night.

During the daytime the highest hourly mean concentrations above 59.99 ppb (Table 5) were recorded in the north-west and north-north-west sectors. The hourly mean concentrations above 38.45 ppb (Table 6) during the night-time were recorded in north, north-north-east, south, south-south-west, west-north-west and north-north-west sectors. The Kwazamokuhle Township is located from north to south and Hendrina power station is located in the north-west sectors of the monitoring site and this could have shown impact on the quality of the air around the monitoring site. Local SO_2 emissions from domestic coal burning probably make the greatest contribution to SO_2 levels in KwaZamokuhle.

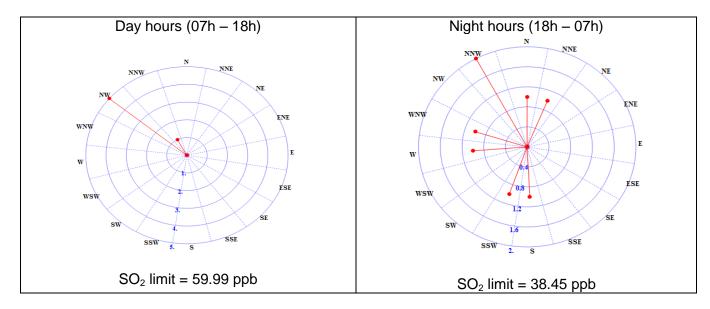


Figure 4: SO₂ hourly mean 98th percentile event roses for October2016

Table 5: SO₂ day-time hourly mean 98th percentile for event table

D	ir.	N	NNE	NE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
E۱	ve	0	0	0	0	0	0	0	0	0	0	0	0	0	5	1
9/	6	0	0	0	0	0	0	0	0	0	0	0	0	0	83.33	16.67

Table 6: SO₂ night-time hourly mean 98th percentile for event table

Di	ir.	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
E۱	vе	1	1	0	0	0	0	0	0	1	1	0	0	1	1	0	2
%	6	12.5	12.5	0	0	0	0	0	0	12.5	12.5	0	0	12.5	12.5	0	25

6.2. Nitrogen Dioxide (NO₂)

6.2.1. Source identification by NO₂ diurnal variations

The diurnal variation indicates NO_2 concentrations reaching minor peaks at 08:00 and 11:00 in the morning and afternoon, and then concentrations decrease throughout the afternoon and a maximum peak at 20:00 in the evening as indicated by Figure 5 below. The concentration peaks observed in the morning and evenings are associated with influence from low-level sources like domestic burning and vehicles and the peak observed in the afternoon is influenced by tall stack emissions.

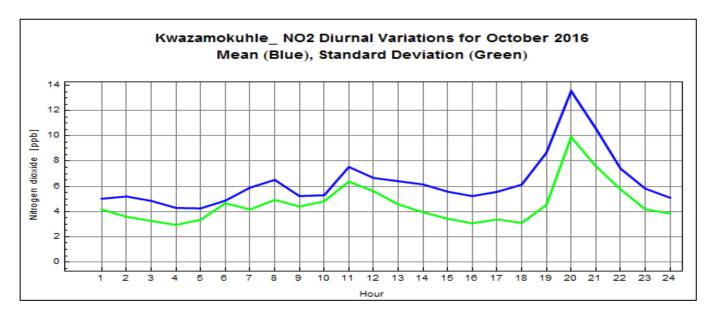


Figure 5: Diurnal variation of NO₂ hourly at KwaZamokuhle for October 2016

6.2.2 Nitrogen dioxide hourly event roses (98th percentile)

There were no exceedances of the NO₂ hourly limit of 106 ppb. Figure 6 shows the 98th percentile event roses indicating the sectors where highest hourly concentrations were coming from during the day and night. During the daytime the highest hourly mean concentrations above 10.52 ppb (Table 7) were recorded in the north, west and north-west sectors. The hourly mean concentrations above 23.44 ppb (Table 8) during the night-time were recorded in the south-east, south-south-east, west, west-north-west and north-north-west sectors. There is Coalfields located east-south-east of the monitoring site which might have an influence on the monitoring site.

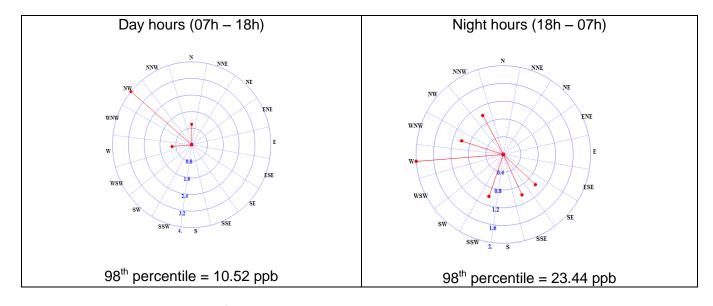


Figure 6: NO₂ hourly mean 98th percentile event roses during day and night times

Table 7: NO₂ day time hourly mean 98th percentile event table

Dir	. N	NNE	NE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Ev	1	0	0	0	0	0	0	0	0	0	0	1	0	4	0
%	16.67	0	0	0	0	0	0	0	0	0	0	16.67	0	66.67	0

Table 8: NO₂ night-time hourly mean 98th percentile event table

Dir	Z	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	0	0	0	1	1	0	1	0	0	2	1	0	1
%	0	0	0	0	0	0	14.29	14.29	0	14.29	0	0	28.57	14.29	0	14.29

- 6.3. Fine Particulate Matter (PM_{10} and $PM_{2.5}$).
- 6.3.1. Source identification by PM_{10} and $PM_{2.5}$ diurnal variations.

The $PM_{2.5}$ and PM_{10} diurnal variations (Figures 7 and 8) display a similar pattern indicative of low-level emission sources on the ambient concentrations. Two distinct peaks are evident at 08:00 in the morning and 20:00 in the evening. These peaks are typical of emissions from low-level sources, probably domestic fuel combustion in KwaZamokhule. Concentrations remained low throughout the day.

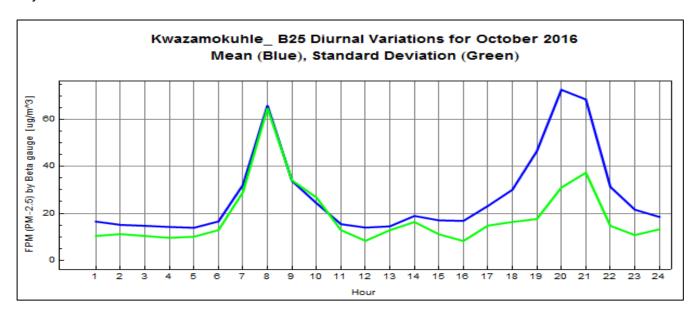


Figure 7: Diurnal variation of PM_{2.5} concentrations at KwaZamokuhle for October 2016

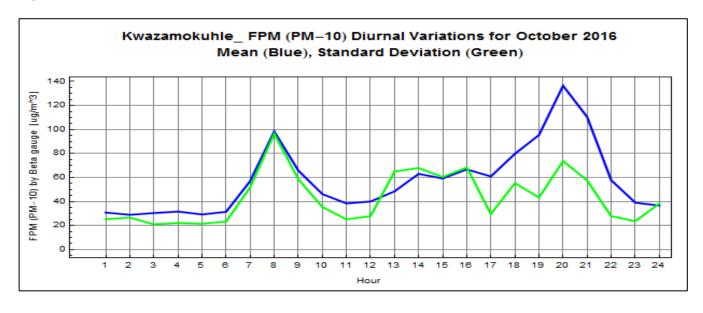


Figure 8: Diurnal variation of PM₁₀ concentrations at KwaZamokuhle for October 2016

6.3.2 Particulate fine matter hourly 98th percentile event roses.

As there are no national hourly PM standards, the hourly mean 98th percentile daytime and night-time event roses are presented to identify the wind sectors from which the highest hourly concentrations were derived from during the monitoring period.

Figure 7 shows the $PM_{2.5}$ hourly mean 98^{th} percentile event roses during day and night times. During the daytime the $PM_{2.5}$ hourly mean sector concentrations above $110.19\mu g/m^3$ (Table 9) were recorded in the east-north-east, south-east, south-south-east and north-north-west sectors. The hourly mean sector concentrations above $104.95\mu g/m^3$ (Table 10) during the night-time were recorded in north-north-east, east-north-east, south-south-east, south, south-south-west and west-north-west sectors.

Figure 9: PM_{2.5} hourly mean 98th percentile event roses during day and night times

Table 9: PM_{2.5} daytime hourly mean 98th percentile event table

Dir	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	1	0	0	1	2	0	0	0	0	0	0	0	3
%	0	0	0	14.29	0	0	14.29	28.57	0	0	0	0	0	0	0	42.86

Table 10: PM_{2.5} night time hourly mean 98th percentile event table

Dir	Ζ	NNE	NE	Е	ENE	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	1	0	0	1	0	0	1	1	2	0	0	0	1	0	0
%	0	14.29	0	0	14.29	0	0	14.29	14.29	28.57	0	0	20	14.29	0	0

Figure 10 shows the PM_{10} hourly mean 98th percentile event roses during day and night times. PM_{10} hourly mean sector concentrations above 275.17µg/m³ (Table 11) were recorded in north, south-south-east, south, south-south-west and west-north-west sectors. During the night, the hourly mean concentrations above 211.62µg/m³ (Table 12) were recorded in the east-north-east, east, south-south-east, south, south-south-west and west-north-west sectors. Domestic burning in KwaZamokuhle is probably the largest source of PM_{10} .

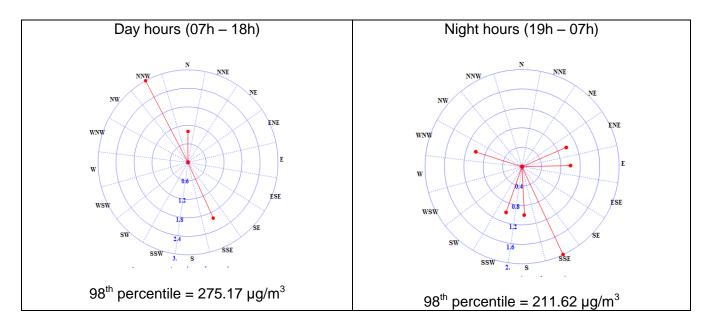


Figure 10: PM₁₀ hourly mean 98th percentile event roses during day and night times

Table 11: PM₁₀ daytime hourly mean 98th percentile event table

Dir	N	NNE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	1	0	1	0	0	0	2	0	0	0	0	0	0	0	3
%	16.67	0	0	0	0	0	33.33	0	0	0	0	0	0	0	50

Table 12: PM₁₀ night time hourly mean 98th percentile event table

Dir	N	NNE	NE	Е	ENE	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
Eve	0	0	0	1	1	0	0	2	1	1	0	0	0	1	0	0
%	0	0	0	14.29	14.29	0	0	28.57	14.29	14.29	0	0	0	14.29	0	0

6.4. OZONE (O_3)

6.4.1. Source identification by O₃ diurnal variations

The O_3 hourly mean diurnal variations show low concentrations in the morning with an increase from 08:00 in the morning due to the break of the inversion layer when the sun goes up. The concentrations increase throughout the day as a result of photochemical reaction, peaking at 16:00 before decaying rapidly due to the lack of sunlight during the night-time period shown in Figure 11. The ozone 8-hourly average was exceeded seven times.

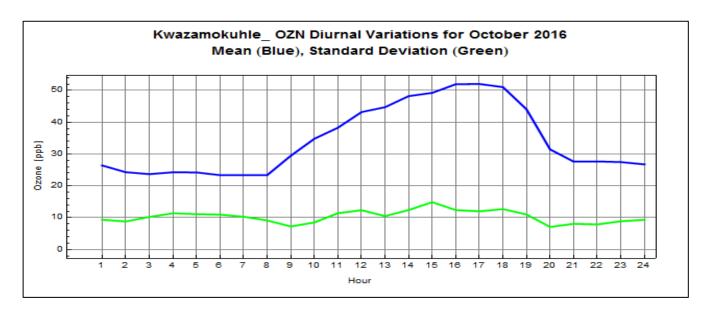


Figure 11: Diurnal variation of Ozone concentrations at KwaZamokuhle for October 2016

7. MONTHLY MEANS FOR THE CURRENT CALENDAR YEAR

7.1. TRENDS OVER THE REPORTING PERIOD (Jan 2015 – October 2016)

Time series graphs for each pollutant with respect to the national ambient limits are represented from the beginning of each month for the reporting period or since inception of the monitors. The resultant period may vary for each analyser, depending on when it was installed.

Figures 12 - 16 show seasonal trends where high concentrations were recorded from May to August 2015 (winter season) and low concentrations are also recorded from January – April 2016 (summer season) and May 2016 the winter season has started and we observe high concentrations for the parameters monitored at the site. Gaps in the data are as a result of the analysers being out of service due to faults experienced, tripping of circuit breakers and incoming power interruptions. There is no distinct trend observed on the O_3 8hourly moving average monthly concentrations during the 2015 and 2016 monitoring period, though there has been an increase on the O_3 concentrations levels from September – October 2016. (Figure 17)

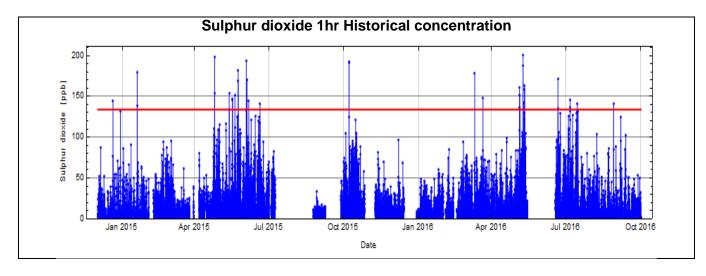


Figure 12: SO₂ 1hr mean concentration

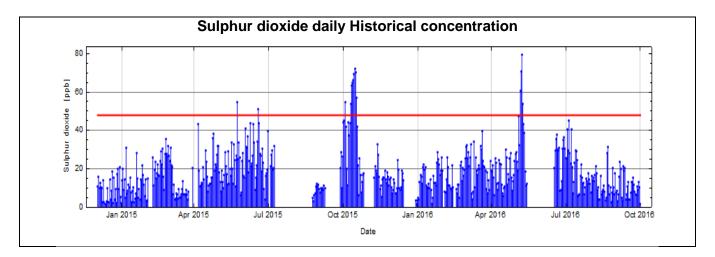


Figure 13: SO₂ daily monthly concentrations

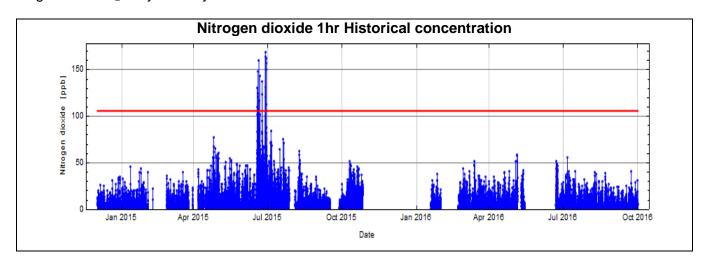


Figure 14: NO₂ 1hr monthly concentration

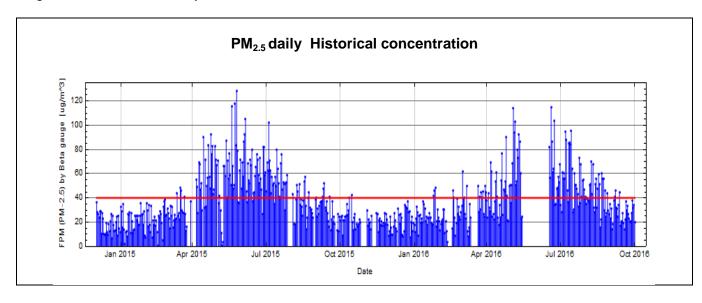


Figure 15: PM_{2.5} daily monthly concentration

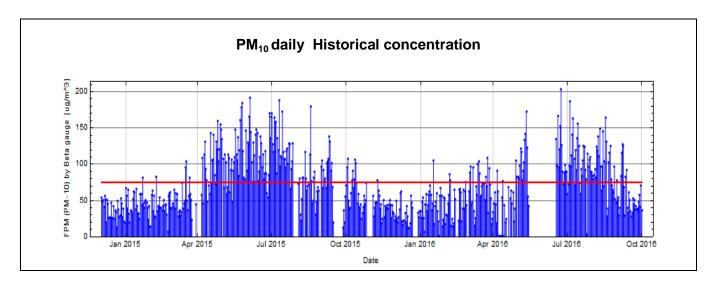


Figure 16: PM_{2.5} daily monthly concentrations

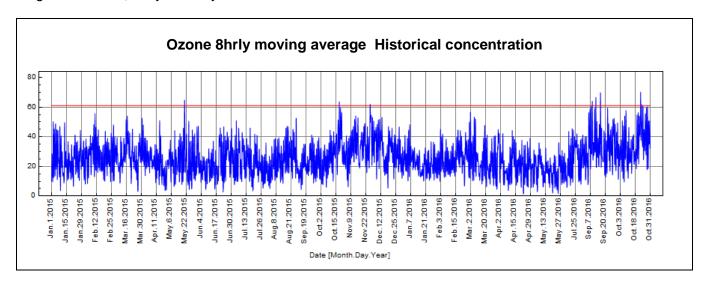


Figure 17: O₃ 8hrs moving average

Table 13: Monthly means for the calendar year 2016

Parameter measured	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
PM _{2.5} (μg/m³)	21	25.2	25.5	32.6	41.6	72.4	63.9	56.7	42.1	27.3
PM ₁₀ (μg/m³)	32.5	44.1	47.9	67	43	99.8	107.5	106.3	94.1	57.5
NO ₂ (ppb)		8.2	9.7	10.1	8.3	11.2	12.4	9.4	7.3	6.3
O ₃ (ppb)	22.4	25.5	23.5	20.3	17.2	18.7	37.5	22.9	34.3	34.1
SO ₂ (ppb)	10.9	13.7	16	20.6	17.3	39.7	38	19.2	12.1	10.6

The monthly means show the trends of the pollutant monitored at the site from January to October 2016.

Table 14: Number of exceedances of the National Ambient Air Quality Limits

hourly			NO_2	PM_{10}	$PM_{2.5}$	O ₃ 8-
	nimutes	daily	hourly	daily	daily	Hourly
0	0	0	0	0	0	0
0	0	0	0	1	2	0
0	0	0	0	3	2	0
2	3	0	0	9	8	0
0	0	0	0	5	16	0
18	21	9	0	25	27	3
6	9	6	0	26	26	81
3	8	0	0	26	24	0
1	1	0	0	21	15	13
0	0	0	0	6	3	7
28	39	15	0	122	183	104
88	526	4	88	4	4	11
	0 0 0 2 0 18 6 3 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 18 21 9 6 9 6 3 8 0 1 1 0 0 0 0 28 39 15	0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 18 21 9 0 6 9 6 0 3 8 0 0 1 1 0 0 0 0 0 0 28 39 15 0	0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 2 3 0 0 9 0 0 0 0 5 18 21 9 0 25 6 9 6 0 26 3 8 0 0 26 1 1 0 0 21 0 0 0 6 22 28 39 15 0 122	0 0

There is non-compliance with SO_2 daily, PM_{10} daily, $PM_{2.5}$ daily and ozone 8-hourly standards at KwaZamokuhle. This is a clear indication of a need for air quality improvement interventions that are focused on reducing particulate matter levels in the area.

8. CONCLUSION

There were six exceedances of the national ambient air quality for PM_{10} daily limit of $75\mu g/m^3$ and three of the $PM_{2.5}$ daily limit of $40\mu g/m^3$ recorded. The national ambient air quality for ozone 8-houlry limit of 61 ppb was exceeded seven times. There were no exceedances of the other national ambient air quality limits recorded for other parameters during the monitoring period under review.

Both SO_2 and NO_2 ambient concentrations at KwaZamokuhle monitoring site are influenced by the combination of low-level sources and tall stack emitters. Ambient fine particulate matter concentrations indicate the influence of low-level source emissions at KwaZamokuhle, probably domestic burning.

There is non-compliance with SO_2 daily, PM_{10} daily and $PM_{2.5}$ daily and ozone 8-hourly standards at KwaZamokuhle. All other parameters are still within their respective allowed number of exceedances per year.

Report compiled by: Trinity Ngomane

RT&D

Reviewed by: Bontle Monametsi

Air Quality, Climate Change & Ecosystem Management

RT&D

Approved by: Kristy Langerman

Air Quality Centre of Excellence - Eskom Environmental Management

9. **DISTRIBUTION LIST**

SUSTAINABILITY-ENVIRONMENTAL MWP

Attention: K Langerman

RT&D – Air Quality, Climate Change & Ecosystem management Attention: Gabi Mkhatshwa

RT&D

Project File RT&D

Project Leader

Attention: Trinity Ngomane

ABBREVIATIONS

µg/m³	Microgram per cubic meter					
DEA	Department of Environmental Affairs					
deg	Degree					
deg C	Degree Celsius					
E	East					
ENE	East-north-east					
ESE	East-south-east					
FPM	Fine particulate matter					
HUM	Humidity					
m/s	Meters per second					
MWP	Megawatt Park					
N	North					
NE	North-east					
NNE	North-north-east					
NNW	North-north-west					
NO ₁	Nitric oxide					
NO ₂	Nitrogen dioxide					
NO _X	Oxides of nitrogen					
NW	North-west					
Ozn/O ₃	Ozone					
PM- ₁₀	Particulate matter < 10 microns in diameter					
PM- _{2.5}	Particulate matter < 2.5 microns in diameter					
ppb	Parts per billion					
ppm	Parts per million					
PRS	Pressure					
RAD	Solar Radiation					
RFL	Rain Fall					

RT&D	Research, Testing and Development
S	South
SANAS	South African National Accreditation System
SE	South-east
SGT	Sigma theta
SO ₂	Sulphur Dioxide
SSE	South-south-east
SSW	South-south-west
SW	South-west
TMP	Ambient temperature
W	West
WDR	Wind direction from true North
WNW	West-north-west
WSP	Wind speed
WSW	West-south-west
WVL	Wind velocity