Appendix F.1B

PRELIMINARY GEOTECHNICAL SCOPE

BAV Consulting (Pty) Ltd

T: +27 31 350 3370 | C: 078 764 3935

W: www.bavconsulting.co.za

A: 22 Frara Drive, Pinelands, Pinetown, 3610

FINAL REPORT

PRELIMINARY GEOTECHNICAL INVESTIGATIONS SCOPE & SPECIFICATION FOR THE PROPOSED KOMATI REPOWERING & REPURPOSING PROJECT

Report no.: BAV152.12.23 Status: Final Date: Feb 2024

Eskom Holdings SOC Limited

T: +27 11 800 6824 | F: +27 11 800 4472

W: www.eskom.co.za

A: Eskom Megawatt Park, 2 Maxwell Drive, Sunninghill, Sandton, 2157
P.O. Box 1091 Johannesburg 2000

TABLE OF CONTENTS

		NARY GEOTECHNICAL INVESTIGATIONS SCOPE & SPECIFICATION FOR THE PI REPOWERING & REPURPOSING PROJECT	
		VE SUMMARY	
1		RODUCTION	
	1.1 1.2 1.3 1.4 1.5	Terms of Reference Proposed Developments Scope of Work Report Provisions and Exclusions Approach Sources of Information	1 2 2
2	SITE	LOCATION AND DESCRIPTION	4
	2.1 2.2 2.3 2.4 2.5 2.6	GEOGRAPHIC DESCRIPTION TOPOGRAPHIC AND DRAINAGE CLIMATE AND WEATHERING VEGETATION LAND-USE MINING ACTIVITIES	4
3	GEC	DLOGY SETTING	8
	3.1 3.2 3.3 3.4	Regional Geology Local Geology Geological Structures Regional Geohydrology	8 9
4	GEC	OPHYSICAL SURVEY	
	4.1	RESISTIVITY METHOD	
5	FIEL	DWORK RESULTS	17
	5.1 5.2 5.3 5.4 5.4. 5.5 5.5.	ROTARY CORE DRILLING RESULTS 1 Material Description	19222226
6	LAB	ORATORY TEST RESULTS	31
	6.1 6.2 6.3 6.4	General	31 31
7	GEC	DTECHNICAL ASSESSMENT	37
	7.1 7.2 7.3 7.4 7.5	EXPANSIVE SOIL PROFILE COLLAPSIBLE/COMPRESSIBLE SOIL PROFILE ERODIBILITY OF SOIL EXCAVATION CLASSIFICATION UNDERMINED GROUND	37 37 37

7.6 7.7 7.8 7.9	AREAS SUBJECT TO FLOODING	38 39
	NCLUSION AND RECOMMENDATIONS	
	ERENCES	
	IX A: SOIL PROFILES	
	IX B: DYNAMIC CONE PENETROMETER TEST RESULTS	
	IX C: LABORATORY TEST RESULTS	
	IX D: DYNAMIC PROBING TEST RESULTS (DPSH)4	
	IX E: PERCUSSION DRILLING LOGS	
	IX F: ROTARY CORE DRILLING LOGS	
APPEND	IX F: KOTARY CORE DRILLING LOGS4	ŀY
	TABLE OF FIGURES	
Figure 2	2-1: Macro Climatic Regions of Southern Africa (Adapt from Weinert, 1980)	5
_	2-2: Topographic map showing the location of project sites in the vicinity of	_
	Village2-3: Site locality map showing the location of Komati within Steve Tshwete	6
	Aunicipality	7
	3-1: Groundwater conditions obtained from boreholes drilled on site	
_	3-2: The general geology of the sites interpreted from BH61	
	3-3: Map showing the regional geology of Komati and surrounding areas1	.1
_	4-1: Geophysical survey for soil resistivity by means of ABEM terrameter 01	2
	4-2: Resistivity survey profile at Solar PV Site 1 along a 1.2 km traverse line	.3
•	g east-west (KOM Line 1)	.3
	4-3: Resistivity survey profile at Solar PV Site 1 along a 500 m traverse line	
	g northwest-southeast (KOM Line 2)1	.3
	4-4: Resistivity survey profile at Solar PV Site 1 along a 400 m traverse line	1
	g northwest-southeast (KOM Line 3)1 4-5: Resistivity survey profile at BESS 4 along a 215 m traverse line trending eas	
	OM Line 5)	
•	4-6 Resistivity survey profile at BESS 4 along a 144 m traverse line trending	
	outh (KOM Line 6)1	.4
_	4-7: Resistivity survey profile at Solar PV Site 2 along an 800 m traverse line	
	g east-west (KOM Line 7)1 4-8: Resistivity survey profile at Solar PV Site 2 along a 700 m traverse line	.4
	g north-south (KOM Line 8)	4
	4-9: Resistivity survey profile at Solar PV Site 2 along a 700 m traverse line	
	g north-south (KOM Line 9)1	.5
_	4-10: Resistivity survey profile at Solar PV Site 2 along a 690 m traverse line	_
	g north-south (KOM Line 10)1 3: Geotechnical map showing all testing and sampling points undertaken with the sites 1	
i igui e 0	5. Secretarinear map showing an resume and sampling points undertaken with the sites I	.0

Figure 6-1: Estimation of bearing capacity based on Meyerhof's, where kd=1.0 and	d
n=Average DPSH/SPT value, note that 1 kN/m² =1kPa	21
Figure 6-2: Summary of dynamic probing results	21
Figure 6-3: Geotechnical map showing all testing and sampling points undertaker	
with the sites	30
Figure 7-1: The illustrations of the potential expansiveness for materials encountere	d
within the sites	
Figure 7-2: The typical illustrations of the plasticity for material encountered within t	
sites	
Figure 7-3: Soil gradation curves showing the particle size distribution for materials	
encountered within the sites	34
Figure 8-1: Seismic Hazard Map showing the Peak Ground Acceleration with 10%	
probability of being exceeded in a 50-year period	39
, , ,	
	•
Table 3-1: The geology of Komati and neighbouring areas	
Table 6-1: Summary of soil layers encountered in test pits	
Table 6-2: Summary of percussion borehole results	
Table 6-3: The summary of Standard Penetration tests undertaken at Solar PV Site	
and 2	
Table 6-4: Summary of rotary core borehole results	
Table 7-1: Summary of the Basson Index test results	
Table 7-2: Summary of Laboratory Test Results	35
Table 8-1: Geotechnical classification for urban development (Partridge et al. 199	3).
	40

CORPORATE INFORMATION											
Client		Eskom Holdings SOC Ltd									
Consultant		BAV Consulting (Pty) I	td								
Contact Perso	n	Melusi Ndluvu									
Address		A: 22 Frara Drive, Pinelai	nds, Pinetown, 3610								
Contact Detail	ls	Email: Info@bav.co.zo	1								
		Tel: +27 31 350 3370									
		Web: www.bavconsultir	ng.co.za								
Contract Num	ber										
Project Team		Andries Vukeya Cand.Sci.Nat									
		Geological Science									
		Hudson Mabelane Pr.Sci.Nat									
		Geological Science and Earth Science									
		Melusi Ndluvu									
		Civil Engineering									
		INVESTIGATIONS SCOPI		ON FOR THE							
REPORT NO.:				STATUS:							
BAV152.12.23				Final							
Verification	Capacity	Name	Signature	Date							
By Author	Senior Geologist	H Mabelane Pr.Sci.Nat	Almh	11/Feb/24							
Checked by	Civil Engineer	Melusi Ndlovu									

Melusi Ndlovu

Authorised by

Civil Engineer

EXECUTIVE SUMMARY

BAV Consulting Pty Ltd was appointed by **Eskom Holdings SOC Limted** to conduct a preliminary geotechnical investigation in order to determine and asses the subsurface soil conditions at selected sites for the renewable energy project. The sites of investigation are situated within and/or near Komati Power Station on Eskom owned land within Steve Tswhete Local Municipality.

The proposed Eskom sites are situated adjacent to several operational coal mines currently exploited for coal seams in excess of 45 meters by either board and pillar of open-pit mining. The Blinkpan underground operation located just west of the Komati area which utilises a mechanised bord-and-pillar underground mining method confirmed that there's no past of on-going mining operation underneath the proposed site.

Komati Village and its neighbouring areas are regionally characterized by rocks of the Karoo Supergroup covered by Quaternary deposits. The Karoo Supergroup rocks in the area can be further classified as the Vryheid Formation of the Ecca Group. The rocks of the Vryheid Formation typically include sandstone, siltstone, shale and coal beds. These were later intruded by Jurassic dolerite dykes and sills.

There are no soluble rocks such as dolomite or limestone underlying the sites, therefore, the presence of karst-related subsurface topography leading to the formation of sinkholes and subsidence features is unlikely. However, the area is known to have been previously undermined, therefore further studies should be undertaken to asses possible land-subsidence events resulting from the mobilisation of overburden material into underlying abandoned mines.

Additional percussion drilling is recommended at Solar PV Site 1 and 2 in order to accurately confirm and delineate areas affected by previous mining activities. Furthermore, rotary core drilling and associated strength tests such as SPT, UCS, pile tests, etc. are recommended at the footprint of the proposed structures.

Conditions prevailing on site suggest that no problems are foreseen for the development of agrivoltaics, wind turbines and a BESS system, provided that the contents of this report are acknowledged, and recommendations, as outlined in the report, are adhered to. Note that heavy loaded structures such as the proposed wind turbines are not recommended at Solar PV Site 1 due to the presence of cavities that can manifest into subsidence or sinkholes triggered by continued weathered of overburden material, groundwater level fluctuations, and collapse of underground mine pillars.

1 INTRODUCTION

1.1 Terms of Reference

Komati Power Station is planning to develop and implement a renewable energy project through the use of Solar PV Agrivoltaics, Wind turbines and a BESS system to generate and store power; thus, a geotechnical investigation is required to determine the subsurface soil conditions.

The proposed Solar PV plant, Battery Storages and Wind turbines for Komati Power Station is located within the boundary of Eskom-owned land. The area is in Mpumalanga Province between Middleburg and Bethal. Suitable areas for renewable energy project were identified considering the wetlands, ash dams, existing underground and above ground services (electrical cables and overhead lines).

BAV Consulting Pty Ltd was appointed by **Eskom Holdings SOC Limited** to conduct a preliminary geotechnical investigation in order to determine and asses the subsurface soil conditions at selected sites for the renewable energy project. The sites of investigation are situated within and/or near Komati Power Station on Eskom owned land within Steve Tshwete Local Municipality, Nkangala District Municipality, Mpumalanga Province.

1.2 Proposed Developments

Eskom Generation is planning to implement the BESS in phase 1 of solar PV at the Komati Power Station in Mpumalanga. Suitable areas for renewable energy project were identified considering the wetlands, ash dams, existing underground and above ground services (electrical cables and overhead lines). The proposed development would include the installation of the following typical equipment:

- Solar PV
- Battery Storage (BESS Unit)
- Wind Turbines
- Power Transformers
- Electrical Transformer
- Shunt Reactors
- Low Voltage Switchgear
- Instrument Transformers
- Surge Arrestors
- Control and Ancillary Buildings

1.3 Scope of Work

The geotechnical investigation included the following key components:

- Health, Safety and Environment
- Desktop studies to review of existing regional, site and surface information.
- Services detection by means of Ground Penetration Radar (GPR)
- Resistivity survey for near-surface soil conductivity
- Excavation of test pits, soil profiling and sampling
- Dynamic probing by DPSH Testing
- Geotechnical core drilling including SPT tests at intervals of 1.5 m
- Investigate potential undermined ground at Solar PV site 1 by percussion drilling
- Laboratory testing by a SANAS accredited civil engineering laboratory
- Prepare a factual report
- Compile an interpretive report

1.4 Report Provisions and Exclusions

This report is specifically suitable for use in preliminary design purposes for structures imposing pressures equal to or less than 300 kPa and the planning of additional geotechnical investigations. It is meant solely for use in the above manner. Other infrastructure and service developments on this site, such as high-rise buildings, bridges, underground works etc. fall outside the scope of this report.

Any form of development, outside the boundaries of the investigated areas as per the attached site layout plan, is not covered by this report.

1.5 Approach

The approach in respect of the fieldwork phase is in conformance with the Site Investigation Code of Practice, published by The Geotechnical Division of the South African Institution of Civil Engineering (SAICE), 2008. A systematic approach was followed consisting of:

- Desktop studies and information gathering
- Site visit, area identification and field reconnaissance survey
- Geophysical surveys including GPR and resistivity survey
- Excavation of test pits, soil profiling and sampling
- In-situ testing such as DCP and DPSH tests
- Percussion drilling and sampling
- Core drilling including SPT tests

1.6 Sources of Information

The following were studied prior to the investigation taking place:

- 1: 250 000 Geological map sheet 2628 East Rand, Copyright Geological Survey of South Africa (Council for Geosciences)
- SANS 633: Soil profiling and rotary percussion borehole logging on dolomite
 land in Southern Africa for engineering purposes
- Site Investigation Code of Practice, 1st Edition, South African Institution of Civil Engineering Geotechnical Division, January, 2010.
- Eskom 2023: Preliminary geotechnical investigations scope & specification for the proposed Komati Repowering & Repurposing Project
- Satellite Imagery (Esri Satellite Imagery/Google earth, 2023)

2 SITE LOCATION AND DESCRIPTION

2.1 Geographic Description

The sites for the proposed development of agrivoltaics, wind turbines and a BESS system are located on portions 10, 11 and the remainder of the farm Komati Power Station 56 IS, near Komati Village. Komati village is situated in between the towns of Middelburg and Bethal within the Steve Tshwete Local Municipality of the Nkangala District, Mpumalanga Province (refer **Figure 2-3**).

2.2 Topographic and Drainage

The area is generally characterised by near-horizontal natural slopes inclined predominantly towards the north. The average slope gradient ranges between 1.2 to 2.0%, hence it is considered to be naturally stable as far as slope instability is concerned. This topographic assessment was based on Google Earth sourced elevations in conjunction with site walk-over survey. It is worth noting that the topography heights are only for relative height differences and cannot be concluded as standard survey heights. **Figure 2-2** below shows the general aerial view of the area.

Surface run-off from the Eskom sites is generally by means of sheetwash towards the north and ultimately into northwest flowing streams traversing the Komati the region. It is the author's view that flood-lines may affect certain sections of the sites, particularly areas adjacent to streams and wetlands. Calculated flood lines for all nearby watercourses and streams should be available from the Local authority's town planning department or landowner. If not, a hydrologist should undertake this determination.

2.3 Climate and Weathering

The climate of Komati is similar to that of Middelburg. It is classified as subtropical highland climate (Cwb) according to Köppen and Geiger classification and the climate is characterised by long, warm and cloudy summers, while the winters are short, cold and clear. Majority of rain falls within the summer months from October until March. The mean precipitation for the area is approximately 650 mm per year. The long-term average high temperatures are in December with an average high of 28°C. The coldest and driest month is June with an average temperature of 8°C and approximately 5 mm precipitation, while the wettest month is January with approximately 170 mm of rainfall.

The site falls within an area with a climatic N-value of between 2 and 5 (Weinert, 1980). This simply means that chemical weathering processes predominate over mechanical weathering, thus the formation of thick layers of residual soil is anticipated. According to Thornthwaite's moisture index, the area is between -20 and 0, which indicates a sub-humid environment (Schultze, 1958).

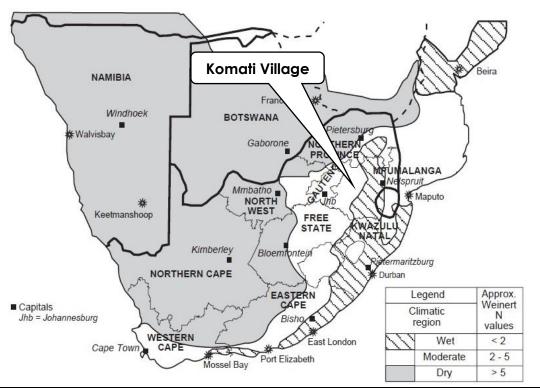


Figure 2-1: Macro Climatic Regions of Southern Africa (Adapt from Weinert, 1980)

2.4 Vegetation

According to Accocs (1980), Komati area falls under the Bankenveld vegetation type. Satellite images and site walkover shows that the area is mainly characterized by grass, weeds, and planted trees. It must be pointed out that this site has been interfered with by anthropogenic activities and therefore, the vegetation noted on site may not represent the genuine site conditions.

2.5 Land-Use

Land use across the project area is predominantly for farming and mining purposes. In terms of this study, it therefore, presents a brownfields type of study necessitating alterations and modification, particularly areas within the main power station.

2.6 Mining Activities

The proposed Eskom sites are situated adjacent to several operational coal mines currently exploited for coal seams in excess of 45 meters by either board and pillar of open-pit mining. The Blinkpan underground operation located just west of the Komati area which utilises a mechanised bord-and-pillar underground mining method confirmed that there's no past of on-going mining operation underneath the proposed site. No credible information was received from the Koornfontein operation located in the north. Nonetheless, the presence of undermined ground at the proposed site cannot be discounted with certainty. Therefore, further studies focusing on undermining are necessary.

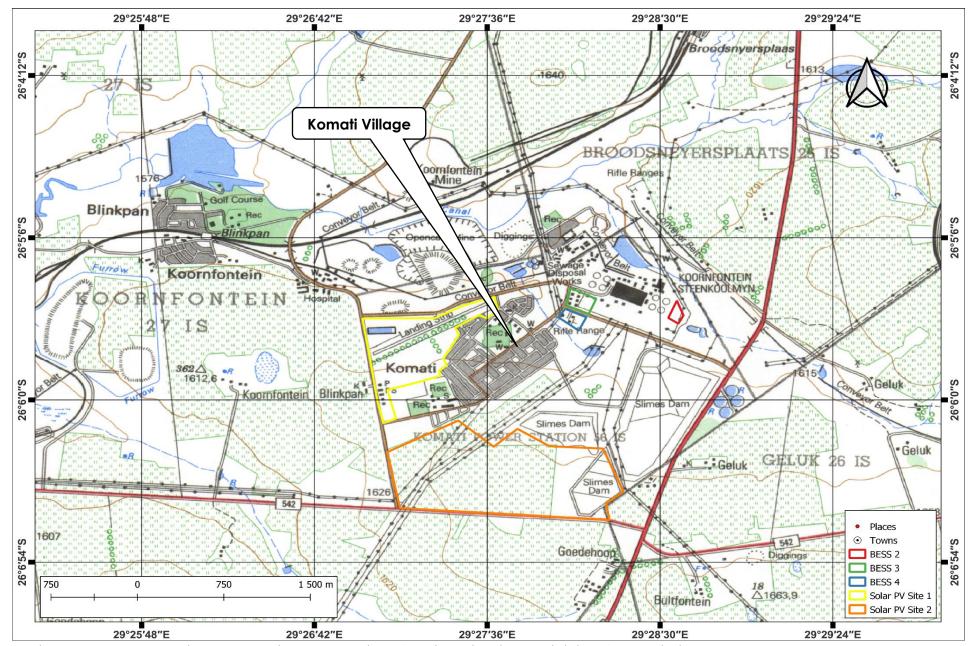


Figure 2-2: Topographic map showing the location of project sites in the vicinity of Komati Village.

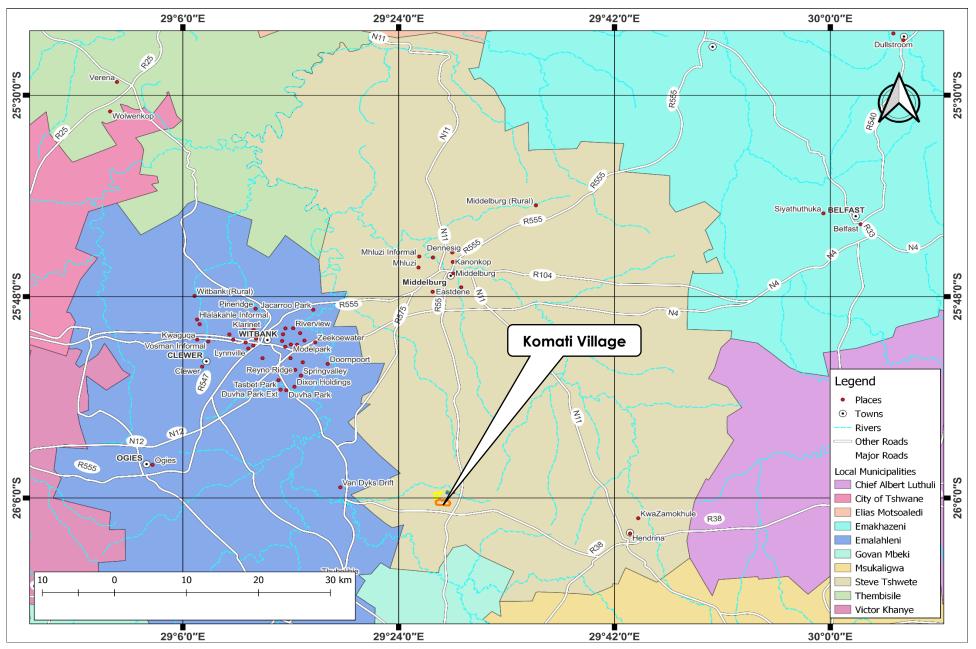


Figure 2-3: Site locality map showing the location of Komati within Steve Tshwete Local Municipality.

3 GEOLOGY SETTING

3.1 Regional Geology

According to the 1:250 000-scale regional geological map sheet 2628 East Rand, Komati Village and its neighbouring areas are regionally characterized by rocks of the Karoo Supergroup covered by Quaternary deposits (refer **Figure 3-3**). The Karoo Supergroup rocks in the area can be further classified as the Vryheid Formation of the Ecca Group. The rocks of the Vryheid Formation typically include sandstone, siltstone, shale and coal beds. These were later intruded by Jurassic dolerite dykes and sills.

There are no soluble rocks such as dolomite or limestone underlying the sites, therefore, the presence of karst-related subsurface topography leading to the formation of sinkholes and subsidence features is unlikely. However, the area is known to have been previously undermined, therefore further studies should be undertaken to asses possible land-subsidence events resulting from the mobilisation of overburden material into underlying abandoned mines.

3.2 Local Geology

The local geological conditions of the Komati area may be interpreted from fieldwork results. The area is generally covered by transported soils, underlain by pedogenic material, residual soils and weathered sedimentary rocks of the Vryheid Formation, respectively (refer *Figure 3-2*).

- Transported soils These are soils that have been transported by a natural agent (imported fill, wind-blown sand, colluvium, hillwash, etc.) during relatively recent geological times and which have not undergone lithification into sedimentary rocks or cementation into a pedogenic material.
- **Residual soils** Soils derived from the weathering of the underlying rock and have not moved from the place of origin as with transported soils.
- **Weathered rock** Rock that is/has been altered from its original state through the process of weathering by natural agents.
- Pedogenic rock Weathered rock that is/has been cemented by chemical agent(s).

3.3 Geological Structures

As could further be seen on the geological map and satellite images, there are no geological structures such faults traversing the sites. However, a northeast-southwest trending lineament, possibly a dyke is indicted on the regional geological map. Furthermore, intrusive material interpreted as dolerite was encountered in some of the boreholes drilled as shown in **Figure 3-2** below.

3.4 Regional Geohydrology

The site is located within the Upper Olifants Groundwater Management Unit (GMU) in the B12 Quaternary Catchment Region. According to the regional hydrogeological map Sheet 2526 Johannesburg at a scale of 1: 500 000 published by the Department of Water Affairs (DWA, 1998), the inferred geohydrology of the site is characterized by an intergranular and fractured aquifer system with predominant arenaceous rocks. This aquifer type is characterised by deep weathering of sedimentary rocks imparting intergranular properties of the weathered zones.

The average borehole yield is expected to range from 0.1 to 0.5 l/s indicating that the site is located within a moderate yielding aquifer. The groundwater quality from the contoured geohydrological map suggest that the Electrical Conductivity (EC) range from 0 to 70 mS/m. The mean annual precipitation of the site area ranges from 600 to 800 mm while the groundwater level is expected to range between 10 and 50 mbgl.

Figure 3-1 below shows the local groundwater levels obtained from percussion drilling at Solar PV Site 1.

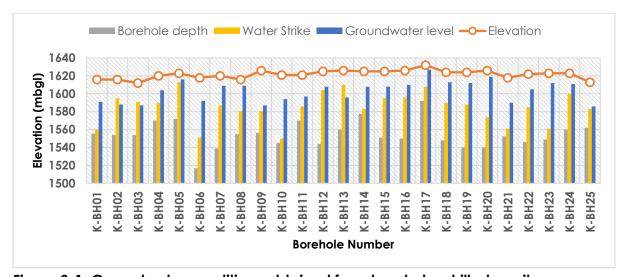


Figure 3-1: Groundwater conditions obtained from boreholes drilled on site.

Table 3-1: The geology of Komati and neighbouring areas

Era/Period	Stratigraphy	Group	Formation	Lithology
Quaternary	-	-	-	(Q) Alluvium
Jurassic	-	-	-	(Jd) Dolerite
Permian	Karoo	Ecca Group	Vryheid	(Pv) Sandstone, shale,
	Supergroup		Formation	coal beds
Vaalian	-	-	-	(Vdi) Diabase
	Transvaal	Pretoria	Selons River	Porphyritic rhyolite, with
	Supergroup	Group	Formation	interbedded mudstone
				& sandstone

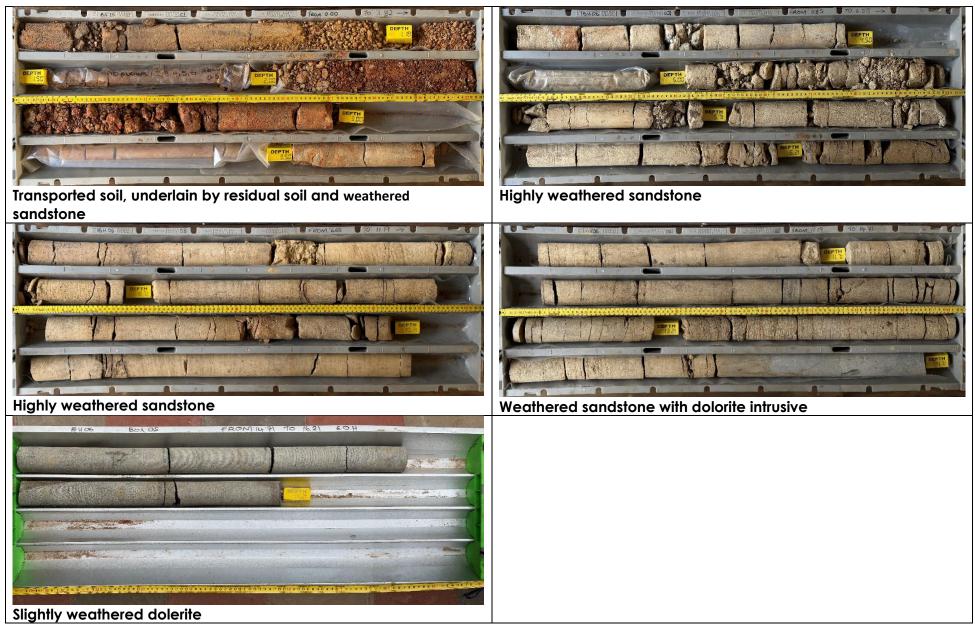


Figure 3-2: The general geology of the sites interpreted from BH6.

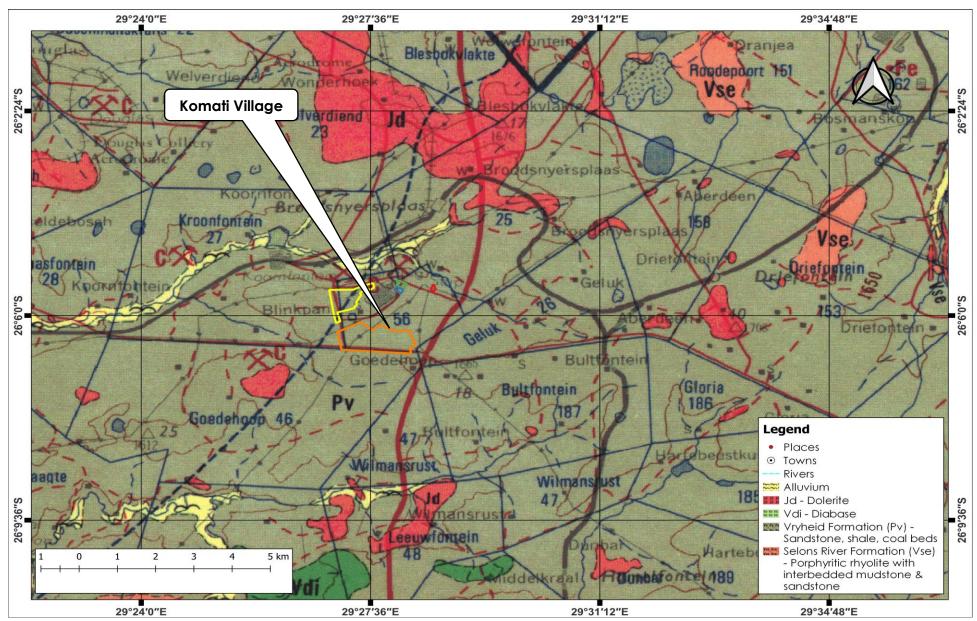


Figure 3-3: Map showing the regional geology of Komati and surrounding areas.

4 GEOPHYSICAL SURVEY

4.1 Resistivity Method

Soil resistivity surveys were carried out in accordance with the 240-96393507: Soil Resistivity Testing Guidelines provided by Eskom as part of the scope. The resistivity survey was undertaken by the ABEM Terrameter SAS1000 system using the Werner protocol (refer **Figure 4-1**). The apparent resistivity data acquired in the field were inverted using the RES2DINV software to provide a true-depth resistivity section.

The resistivity method was used to locate lateral and vertical changes in electrical properties of the sub-surface that may be related to changes in formation properties. The resistivity tomography method provides pseudo-sections of change in electrical properties in the subsurface along a specified line.

The resistivity of a material describes how difficult it is for electrical current to flow through the material. It is a property of the material, independent of the shape (geometry) of the object consisting of the material. This method is extensively used in the exploration of groundwater resources and mineral exploration.

The following geophysical traverses were undertaken with ABEM Terrameter SAS1000 along nine (9) traverse lines at Solar PV Site 1, Solar PV Site 2 and Bess Unit 4 and summarised below. The inverted resistivity data profiles for traverse lines undertaken at the various sites are shown in the figures below. The resistivity values can be interpreted as follows:

- Dark blue to light blue contours is likely indicative of highly saturated sandy material.
- Green to yellow is likely indicative of highly weathered material above bedrock which comprises weathered sedimentary rocks.
- Red to purple or dark red is likely indicative of a fractured to competent bedrock.

The sites are generally blanketed by a laterally persistent layer of sandy clay/clayey sand with low resistivity values and inversely moderate to high conductivity as a result of the moisture content for the upper unconsolidated soils. This is underlain by highly weathered layers of siltstone interlayered with fine sandstone, carbonaceous shale, and shaly coal, all showing moderate to high resistivity values. The weathered layers above were possibly underlain and intruded by slightly weathered to unweathered sandstone and dolerite with high resistivity values. The figures below show resistivity models obtained from field measurements.

Figure 4-1: Geophysical survey for soil resistivity by means of ABEM terrameter SAS1000.

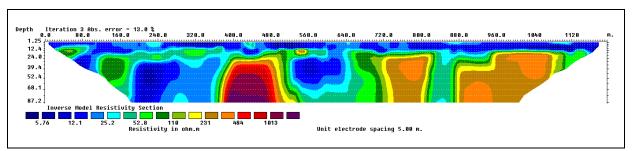


Figure 4-2: Resistivity survey profile at Solar PV Site 1 along a 1.2 km traverse line trending east-west (KOM Line 1).

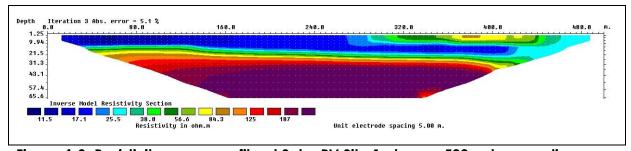


Figure 4-3: Resistivity survey profile at Solar PV Site 1 along a 500 m traverse line trending northwest-southeast (KOM Line 2).

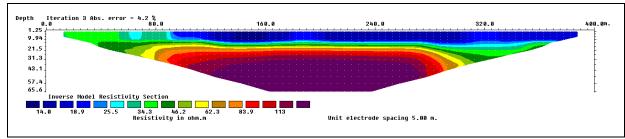


Figure 4-4: Resistivity survey profile at Solar PV Site 1 along a 400 m traverse line trending northwest-southeast (KOM Line 3).

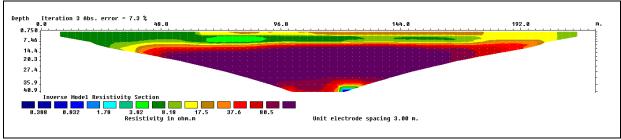


Figure 4-5: Resistivity survey profile at BESS 4 along a 215 m traverse line trending east-west (KOM Line 5).

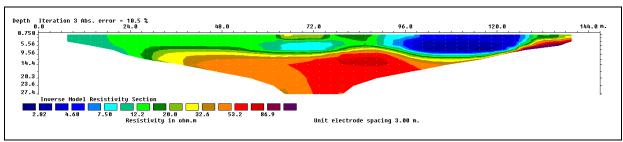


Figure 4-6 Resistivity survey profile at BESS 4 along a 144 m traverse line trending north-south (KOM Line 6).

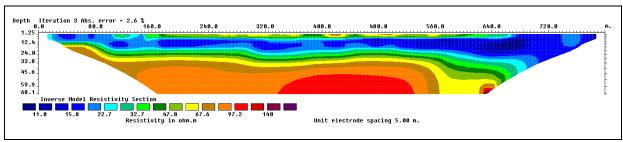


Figure 4-7: Resistivity survey profile at Solar PV Site 2 along an 800 m traverse line trending east-west (KOM Line 7).

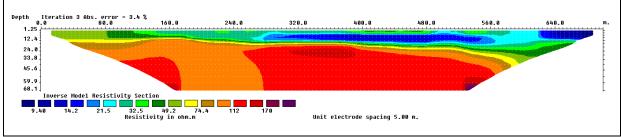


Figure 4-8: Resistivity survey profile at Solar PV Site 2 along a 700 m traverse line trending north-south (KOM Line 8).

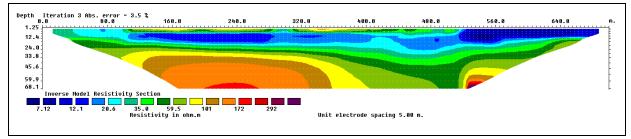


Figure 4-9: Resistivity survey profile at Solar PV Site 2 along a 700 m traverse line trending north-south (KOM Line 9).

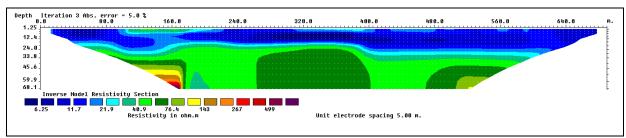


Figure 4-10: Resistivity survey profile at Solar PV Site 2 along a 690 m traverse line trending north-south (KOM Line 10).

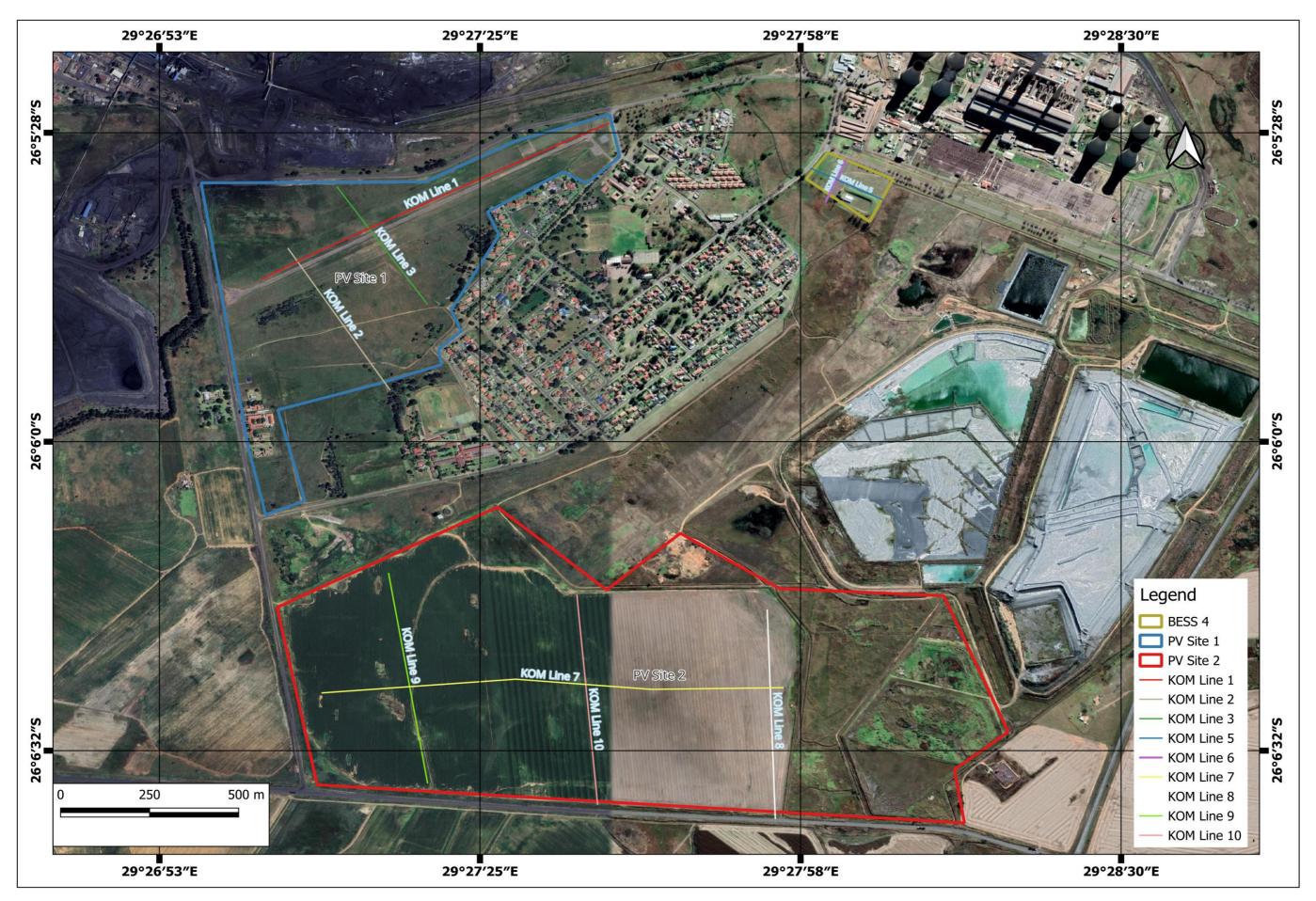


Figure 4-11: Geophysical map showing resistivity survey lines

5 FIELDWORK RESULTS

5.1 Test Pitting Results

Fieldwork was conducted on the 22nd until 25th August 2023. A total of forty-seven (47) shallow test pits were excavated by means of a BELL TLB (named KTP1 to KTP47). Soil horizons in each of the pits were identified and described comprehensively applying the MCCSSO technique as advocated by Jennings *et al* (1973). The acronym – MCCSSO – stands for Moisture, Colour, Consistency, Structure, Texture and Origin. Note that due to erratic GPS satellite signal reception, the coordinates and elevations recorded will have an accuracy of only +/- 5 m. Disturbed soil samples were collected from the excavated test pits in the project area, for identification and analysis.

Their layout across the site is shown in **Figure 5-3**, while the detailed profile descriptions are presented in **APPENDIX A: SOIL PROFILES**.

The excavation of several test pits revealed material consistent with the regional geology of the area. The area is covered by transported soils underlain by pedogenic soils, residual soil and weathered sedimentary rocks, respectively. The profiles were encountered at the various site:

Soil Profile A: Solar PV Site 1

- Moist to very moist, brown, medium dense, intact, silty SAND. Hillwash.
- Moist to very moist, brown, medium dense, intact, clayey SAND with minor ferricrete. Residual soil.

Soil Profile B: Solar PV Site 2

- Fine to medium, sub-angular, closely packed GRAVEL of quartzite in a matrix of moist, brown, silty SAND. The overall consistency is very dense. Imported.
- Very moist, brown, medium dense, intact, clayey SAND. Hillwash.
- Moist to Very moist, orangey brown, firm to stiff, intact, CLAY. Hillwash.

Soil Profile C: BESS Unit 2

- Moist, brown, medium dense, intact, gravelly SAND. Hillwash.
- Moist to very moist, reddish brown, stiff, intact, clayey silty SAND. Hillwash.
- Moist to very moist, reddish brown, medium dense, intact, clayey silty SAND.
 Hillwash.

Soil Profile D: BESS Unit 3

 Moist to very moist, brown, medium dense, intact, clayey SAND with minor ferricrete. Residual soil.

Soil Profile E: BESS Unit 4

- Moist, brown, medium dense, intact, silty SAND. Hillwash.
- Moist to very moist, brown, medium dense, intact, clayey SAND with minor ferricrete. Residual soil.

Table 5-1: Summary of soil layers encountered in test pits

Site		Test Pit positions	Lay	yer thickness	(m)	
	Test Pit	Coordinates	Hillwash	Pedogenic	Residual	Seepage
Solar PV	KTP1	26.09103°S, 29.46031°E	0.0-0.7	-	0.7-2.2	-
Site 1	KTP2	26.09147°S, 29.45981°E	0.0-0.8	-	0.8-2.4	2.4 m
	KTP3	26.09211°S, 29.45872°E	0.0-0.4	-	0.4-1.8	-
	KTP4	26.09249°S, 29.45752°E	0.0-0.3	-	0.3-2.3	-
	KTP5	26.09342°S, 29.45654°E	0.0-0.4	-	0.4-2.5	-
	KTP6	26.09348°S, 29.45528°E	0.0-0.1	-	0.1-2.4	-
	KTP7	26.09448°S, 29.45366°E	-	0.0-1.9	-	-
	KTP8	22.09541°S, 29.45200°E	0.0-0.4	-	0.4-2.3	-
	KTP9	26.09517°S, 29.45013°E	0.0-0.5	1.0-1.5	0.5-1.0	-
	KTP10	26.09451°S, 29.45136°E	0.0-0.6	-	0.6-2.2	2.1 m
	KTP11	26.09395°S, 29.45266°E	0.0-0.7	-	0.7-2.4	-
	KTP12	26.09299°S, 29.45473°E	0.0-0.6	-	0.6-1.0	2.2 m
	KTP13	26.09207°S, 29.45693°E	0.0-0.3	-	0.3-1.8	-
	KTP14	26.09101°S, 29.45912°E	0.0-0.3	-	0.3-1.8	-
	KTP15	26.09648°S, 29.45065°E	0.0-0.6	-	0.6-2.5	-
	KTP16	26.09714°S, 29.45249°E	0.0-0.3	-	0.3-2.1	-
	KTP17	26.09634°S, 29.45518°E	0.0-0.2	-	0.2-2.2	-
	KTP18	26.09752°S, 29.45380°E	0.0-0.2	0.2-2.3		-
	KTP19	26.09809°S, 29.45230°E	0.0-0.6	-	0.6-2.3	-
	KTP20	26.10502°S, 29.45183°E	0.0-0.1	0.1-2.7		-
Solar PV	KTP21	26.10459°S, 29.45453°E	0.0-0.1	0.1-2.4		-
Site 2	KTP22	26.10280°S, 29.45677°E	0.0-0.2	-	0.2-2.3	-
	KTP23	26.10463°S, 29.45968°E	0.0-0.3	0.3-2.4		-
	KTP24	26.10455°S, 29.46198°E	0.0-0.2	0.2-2.4		-
	KTP25	26.10464°S, 29.46486°E	0.0-0.4	-	0.4-2.3	2.1 m
	KTP26	26.10768°S, 29.46568°E	0.0-0.6	-	0.6-2.1	1.9 m
	KTP27	26.11053°S, 29.46493°E	0.0-0.2	-	0.2-2.5	-
	KTP28	26.10930°S, 29.46242°E	0.0-0.2	-	0.2-2.2	-
	KTP29	26.10974°S, 29.45976°E	0.0-0.5	-	0.5-2.8	2.7 m
	KTP30	26.10929°S, 29.45623°E	0.0-0.2	-	0.2-2.4	-
	KTP31	26.10831°S, 29.45309°E	0.0-0.2	-	0.2-2.1	-

Site		Test Pit positions	Lay	Layer thickness (m)					
	Test Pit	Coordinates	Hillwash	Pedogenic	Residual	Seepage			
	KTP32	26.10666°S, 29.45509°E	0.0-0.2	-	0.2-2.2	-			
	KTP33	26.10634°S, 29.45810°E	0.0-0.2	-	0.2-2.4	-			
	KTP34	26.10734°S, 29.46017°E	0.0-0.4	-	0.4-2.1	-			
	KTP35	26.10676°S, 29.46280°E	0.0-0.2	-	0.2-2.6	-			
	KTP36	26.10323°S, 29.46236°E	-	-	0.0-1.9	-			
	KTP37	26.10548°S, 29.45538°E	0.0-0.3	-	0.3-2.4	-			
	KTP38	26.10744°S, 29.45743°E	0.0-0.4	-	0.4-2.7	-			
BESS Unit	KTP39	26.09237°S, 29.47603°E	0.0-3.2	-	-	-			
2	KTP40	26.09259°S, 29.47676°E	0.0-2.8	-	-	1.1 m			
	KTP41	26.09168°S, 29.47651°E	0.0-1.4	-	1.2-2.0	-			
BESS Unit	KTP42	26.09134°S, 29.46811°E	0.0-2.5	-	-	-			
3	KTP43	26.09128°S, 29.46880°E	0.0-2.4	-	-	-			
	KTP44	26.09124°S, 29.46712°E	0.0-1.0	-	0.1-2.6	2.4 m			
BESS Unit	KTP45	26.09263°S, 29.46832°E	0.0-0.1	-	0.1-2.2	-			
4	KTP46	26.09255°S, 29.46762°E	0.0-1.0	-	1.0-2.3	-			
	KTP47	26.09230°S, 29.46650°E	0.0-2.2	-	-	1.4 m			

5.2 Dynamic Cone Penetrometer Results (DCP)

A total of forty-seven (47) DCP tests were undertaken in order to estimate the in-situ material strength. Medium dense to very dense conditions best describe material consistency as tested on site. In terms of bearing the capacity of soils, the DCP tests conducted across the site revealed that the site soils can accommodate 80 - 100 kPa loads at an average depth of 1.0 m for low-rise masonry structures such as office buildings, control room, etc. The detailed DCP reports are presented in **APPENDIX B: DYNAMIC CONE PENETROMETER TEST RESULTS.**

5.3 Dynamic Probing Results (DPSH)

A total of twenty-three (23) DPSH tests were conducted to give an indication on soil strength and depth to competent bedrock where possible. Generally, the tests indicated medium dense to very dense material consistencies with refusal reached at a maximum depth of 7.2 meters, possibly on weathered sandstone and siltstone, thus indicating intermediate to hard rock conditions. The detailed DCP reports are presented in **APPENDIX D: DYNAMIC PROBING TEST RESULTS (DPSH)**.

The bearing capacity of soils encountered on site was evaluated based on Meyerhof (1956, 1974) expressions. **Figure 5-1** shows the estimated bearing capacity (q_a) vs the width of foundation (B). In terms of the above, the tested materials can accommodate a bearing capacity of between kPa loads at or below the

recommended founding depth of 1.0 m for low-rise masonry structures below the surface (Applied FOS=1.5).

Dynamic probing tests DPSH1 – DPSH10 were undertaken at Solar PV Site 1. These indicated dense to very dense material consistency within a profile depth 0-7.5 meters. The material can accommodate a bearing capacity of 180-300 kPa between 0.3 and 4.5 m; whereas a bearing capacity in excess of 300 kPa can be achieved between 4.5 and 7.5 m.

Dynamic probing tests DPSH11 – DPSH20 were undertaken at Solar PV Site 2. These indicated medium dense to very dense material consistency within a profile depth 0 – 6.9 meters. The material can accommodate a bearing capacity of 80 – 300 kPa between 0.3 and 1.5 m; whereas a bearing capacity in excess of 300 kPa can be achieved between 1.5 and 6.9 m.

Dynamic probing test DPSH21 was undertaken at BESS Unit 2. The test indicated medium dense to very dense material consistency within a profile depth 0-2.7 meters. The material can accommodate a bearing capacity in excess 300 kPa from 1.8 to 2.7 m.

Dynamic probing test DPSH22 was undertaken at BESS Unit 3. The test indicated medium dense to very dense material consistency within a profile depth 0-6.3 meters. The material can accommodate a bearing capacity of between 80 and 180 kPa from 0.3 to 1.2 m; whereas a bearing capacity in excess of 300 kPa can be achieved between 3.9 m. A section of very loose material consistency was encountered 1.5 to 2.7 m.

Dynamic probing test DPSH22 was undertaken at BESS Unit 4. The test medium dense to very dense material consistency within a profile depth 0-6.0 meters. The material can accommodate a bearing capacity of 100-300 kPa between 0.6 and 2.4 m; whereas a bearing capacity in excess of 300 kPa can be achieved between 2.4 and 6.0 m.

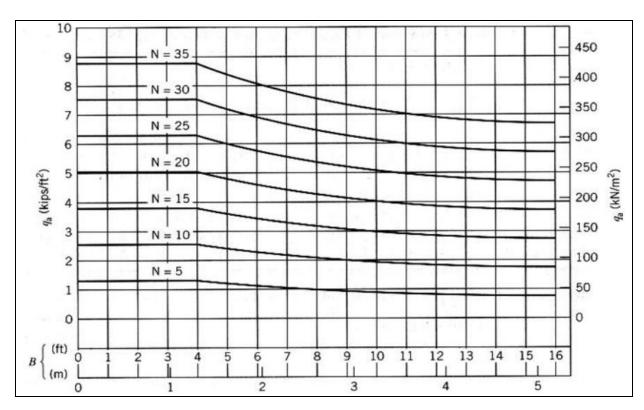


Figure 5-1: Estimation of bearing capacity based on Meyerhof's, where kd=1.0 and n=Average DPSH/SPT value, note that 1 kN/ m^2 =1kPa

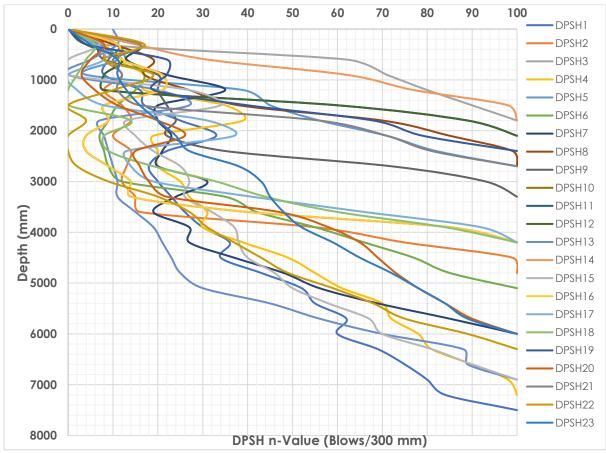


Figure 5-2: Summary of dynamic probing results

5.4 Percussion Borehole Results

A total of twenty-five (25) boreholes (named K-BH01 to K-BH25) were drilled at selected positions using a percussion drilling rig equipped with a compressor capable of reaching 21-bar. Chip samples were collected per meter drilled on-site and described according to the current industry standards as described in SANS 633. The main purpose of the percussion drilling at Solar PV site 1 (airstrip), was to investigate possible undermined ground and the depth thereof.

The drilling at Solar PV Site 1 generally revealed transported soils, underlain by residual sandstone, sandstone interlayered with siltstone, carbonaceous shale, shaly coal, and thin layers of coal, and diamictite, respectively. Some intrusive material interpreted as dolerite were encountered in places, particularly within the Vryheid Formation. Drilling results can be summarised as follows:

5.4.1 Material Description

The site is covered by a layer of transported soil (hillwash). This layer was generally dark brown to brown, clayey sand. The average thickness of this layer is 2.0 meters. The transported layer was encountered in all boreholes from surface up to 2.0 meter.

The transported soil is mostly underlain by a residual sandstone layer. The residual soil underlying the hillwash was generally greyish brown mottled orange, clayey sand of completely to highly weathered sandstone. The average thickness of this material is 4.0 meters and attains a maximum of 5.0 meters in other boreholes.

Greyish brown, highly to moderately weathered sandstone was encountered in all boreholes interlayered with siltstone. The combined thickness of the sandstone-siltstone interlayers can be in excess of 30 meters.

Layers of shale, shaly coal, and coal were encountered underneath the sandstone-siltstone interlayers. These were generally described as dark grey to black, moderate to highly weathered, soft rock carbonaceous shale of the Vryheid Formation with interlayered coal. The combined thickness of this layers is about 40 meters.

A layer of greyish pink, slightly weathered diamictite of the Dwyka Group was encountered in six (6) boreholes viz. K-BH6, K-BH7, K-BH8, K-BH10, K-BH20, and K-BH22 mainly at depths 65 meters underneath the coal layers.

Table 5-2 below summary of layers encountered, whereas detailed percussion borehole profiles are presented in **APPENDIX E: PERCUSSION DRILLING LOGS**.

Table 5-2: Summary of percussion borehole results

Hole	Quaterna	ry Soils		Vry	heid Form	ation		Intrusive	Dwyka Group	Cavity	Water	Water
No.	Transported Soils	Residual Soils	Sandstone	Siltstone	Shale	Shaly coal	Coal	Dolerite	Diamictite		Strike	Level
	0.0 - 2.0	2.0 - 4.0	4.0 - 15	15 - 20	52 - 57	28 - 29	26 - 27			58 - 60.5	56	25
K-BH01			20 - 23	23 - 26			57 - 58					
к-впот			27 - 28	29 - 31								
			31 - 41	41 - 52								
K-BH02	0.0 - 2.0	2.0 - 7.0	7.0 - 22	36 - 40	22 - 25		25 - 26			60 - 62	21	28
K-BH02			26 - 27	43 - 46	46 - 49		27 - 29					
K-DIIUZ			29 - 36	49 - 58			58 - 60					
			40 - 43									
	0.0 - 1.0	1.0 - 3.0	3.0 - 16	16 - 20						55 - 58	21	25
K-BH03			20 - 21	21 - 26								
K-BH04			26 - 34	34 - 55								
K-BH04	0.0 - 2.0	2.0 - 5.0	5.0 - 20			20 - 29	29 - 30	30 - 50			30	16
K-BH05	0.0 - 2.0	2.0 - 5.0	5.0 - 11	31 - 41	11 - 28	28 - 31		41 - 51			10	6.8
11 21100	0.0 - 2.0	2.0 - 5.0	24 - 27	41 - 70	5.0 - 24	70 - 72	30 - 31		89 - 101		67	26
K-BH06			33 - 41	76 - 89	27 - 30		32 - 33					
					31 - 32		72 - 76					
	0.0 - 2.0	2.0 - 6.0	33 - 40	26 -28	6.0 - 9.0	60 - 62	28 - 29	9.0 - 12	66 - 81		33	11
				29 - 30	12 - 26		30 - 32					
K-BH07				32 - 33			43 - 45					
				40 - 43			62 - 66					
				45 - 60								
K-BH08	0.0 - 2.0	2.0 - 6.0	9.0 - 12	33 - 42	6.0 - 9.0		45277		48 - 61		35	7
к-впоо			21 - 33		17 - 21		42 - 48					
	0.0 - 2.0	2.0 - 7.0	28 - 33	33 - 35	7.0 - 13	35 - 36	36 - 38	13 - 28		68 - 69.5	45	39
K-BH09			40 - 48	38 - 40			48 - 52					
				52 - 66			66 - 68					
	0.0 - 2.0	2.0 - 5.0	25 - 28	31 - 33	5.0 - 13	66 - 71	33 - 36	13 - 16	71 - 76		71	27
K-BH10			37 - 46	36 - 37	16 - 20		46 - 49	20 - 25				
				49 - 63	28 - 31		63 - 66					

Hole	Quaterna	ry Soils		Vry	heid Form	ation		Intrusive	Dwyka Group	Constitut	Water	Water
No.	Transported Soils	Residual Soils	Sandstone	Siltstone	Shale	Shaly coal	Coal	Dolerite	Diamictite	Cavity	Strike	Level
	0.0 - 2.0	2.0 -6.0	18 - 21	21 - 26	6.0 - 18	37 - 38	26 - 30				35	24
K-BH11			31 - 37	30 - 31		41 - 46	38 - 41					
			46 - 51									
	0.0 - 5.0	2.0 - 5.0	5.0 - 19	44 - 47	56 - 70	36 - 44	53 - 56	19 - 33			21	17
K-BH12			33 - 36	76 - 77	78 - 81	77 - 78	70 - 76					
			47 - 53									
	0.0 - 5.0	2.0 - 5.0	25 - 28	7.0 - 25	5.0 - 7.0	28 - 32	32 - 36			65 - 66	16	30
K-BH13			36 - 45	51 - 63		45 - 51	64 - 65					
						63 - 64						
	0.0 - 1.0	1.0 - 4.0	4.0 - 15	32 - 34	30 - 32	34 - 38	46 - 47	15 - 26		46 - 47	42	17
K-BH14			26 - 30	38 - 39								
			39 - 46									
K-BH15	0.0 - 1.0	1.0 - 3.0	3.0 - 15	35 - 38	15 - 17	38 - 39	52 - 55	17 - 29		71 - 74	30	17
			29 - 35	35 - 38			70 - 71					
к-впіз			44 - 52	39 - 44								
				55 - 70								
	0.0 - 1.0	1.0 - 3.0	3.0 - 15	59 - 69			33 - 36	15 - 25			30	16
			25 - 33									
K-BH16			36 - 45				45 - 47					
K-BHIO			47 - 50				50 - 51					
			51 - 59				69 - 74					
			74 - 76									
K-BH17	0.0 - 1.0	1.0 - 4.0	4.0 - 30								24	5
	0.0 - 1.0	1.0 - 3.0	3.0 - 17	36 - 41	17 - 19		41 - 43	19 - 31			34	11
			31 - 36	53 - 58	66 - 70		51 - 53					
K-BH18			43 - 51	61 - 66			70 - 75					
			58 - 61									
			75 - 76									
	0.0 - 1.0	1.0 - 4.0	4.0 - 17	38 - 41	17 - 19	57 - 58	42 - 44	20 - 34			36	12
K-BH19			19 - 20	56 - 57	78 - 79		75 - 78					
			34 - 38	58 - 75			79 - 81					

Hole	Quaterna	ry Soils		Vry	heid Form	ation	Intrusive	Dwyka Group	C multiple	Water	Water	
No.	Transported Soils	Residual Soils	Sandstone	Siltstone	Shale	Shaly coal	Coal	Dolerite	Diamictite	Cavity	Strike	Level
			41 - 42									
			44 - 56									
			81 - 84									
	0.0 - 1.0	1.0 - 4.0	4.0 - 17	17 - 19	76 - 77		42 - 44	19 - 33	82 - 86		52	7
K-BH20			33 - 38	38 - 42			73 - 76					
K-BHZU			44 - 51	51 - 73			77 - 78					
				78 - 82								
	0.0 - 2.0	2.0 - 7.0	36 - 45	46 - 52	7.0 -18	34 - 35	27 - 28	18 - 25		65 - 65.5	57	28
				61 - 62	25 - 27	52 - 61	30 - 31					
K-BH21					28 - 30		32 - 34					
					31 - 32		45 - 46					
							62 - 65					
	0.0 - 2.0	2.0 - 6.0	23 - 25	18 - 23	6.0 - 10	60 - 62	30 - 31	10 - 13	71 - 76		37	17
K DU00			31 - 32	33 - 35	13 - 18	66 - 71	32 - 33					
K-BH22			35 - 43	47 - 57	25 - 30		43 - 47					
					57 - 60		62 - 66					
	0.0 - 2.0	2.0 - 5.0	5.0 - 34	35 - 37		50 - 51	34 - 35			71 - 74	62	11
K-BH23			38 - 39	39 - 42		69 - 70	37 - 38					
K-BH23			42 - 50	56 - 69			51 - 53					
			53 - 56				70 - 71					
	0.0 - 2.0	2.0 - 6.0	20 - 25	57 - 63	6.0 - 8.0		29 - 31	8.0 - 20			23	12
K-BH24			28 - 29		25 - 27	27 - 28	40 - 41					
N-D∏Z4			31 - 40		41 - 47							
			47 - 57									
	0.0 - 2.0	2.0 - 6.0	6.0 - 14		14 - 26	46 - 47	26 - 29				30	27
K-BH25			29 - 30	30 - 40			40 - 46					
			47 - 51	_								

5.5 Rotary Core Drilling Results

A total of fifteen (15) rotary core boreholes (named BH1 to BH15) were planned and drilled to depths between 15 to 20 meters or 6 meters into hard rock, whichever comes first. All fifteen (15) boreholes have been completed. Standard Penetration Tests (SPT) were also conducted at 1.5-meter intervals and where clayey material was encountered.

SPTs, at 1.5 m intervals and commencing at a depth of 1.5 m. Below SPT refusal depths, NWD4 rotary drilling followed in through the underlying gravel/boulder beds and/or bedrock. Temporary steel casings (N-size) were used to stabilise the boreholes during the drilling.

Boreholes were terminated at depths of between 15 – 20 meters within the underlying bedrock. The soil samples obtained from the SPTs and the core recovered from the rotary drilling were profiled and logged in detail according to the Guidelines for Soil and Rock Logging in South Africa. The following parameters were recorded:

- For soil: colour, consistency, structure (where evident), soil type and origin.
- For rock: colour, weathering, structure, hardness, rock type and origin.

In addition to the description of the soil and rock layers, the following drilling attributes were also recorded:

- Depth below ground level and reduced level relative to mean sea level.
- Drilling method.
- Core recovery (%CR).
- Rock quality designation (%RQD).

5.5.1 Material Description

- 0.0 1.0 m Dark grey, clayey sand. Transported soil.
- 1.0 4.50 m Grey, clayey sand with ferricrete gravel. Residual soil.
- 4.50 9.0 m Light grey, moderately weathered, coarse-grained, jointed and medium to thinly layered, medium hardrock, siltstone. Vryheid Formation.
- 9.0 13.0 m Grey, highly weathered, fine-grained, thinly layered, highly fractured, soft rock, carbonaceous shale. Vryheid Formation.
- 13.0 14.0 m Shaly Coal: Black, highly weathered, thinly layered, highly fractured, very soft rock, shaly coal. Vryheid Formation.
- 14.0 20.0 m Grey, moderately weathered, coarse grained, layered, medium hardrock, sandstone. Vryheid Formation
- 7.0 16.0 m Grey, moderately weathered, coarse grained, hard rock, ~dolerite (intrusive).

5.5.2 Standard Penetration Test

SPT tests were carried out in accordance with the method specifications given in the ASTM using a Raymond Split-spoon sampler. In all cases, the blow count for the advance over a distance of 75mm for a total run length of 450mm (where possible) was recorded, with refusal defined as less than 75mm advance for 25 blows. The SPT-N values were determined by omitting the first two 75mm advance blow count intervals and summing the remaining four intervals (300mm). The correlation between SPT-N value and consistency of the soil horizons, relative density (%) and friction angle (degrees) is given in **Table 5-3**.

Table 5-3: The summary of Standard Penetration tests undertaken at Solar PV Site 1 and 2.

Hole	SPT Depth	5	SPT Tes	t Resu	Its	n-Value	Consistency	Relative Density	Friction Angle
No.	оттверш	75	150	225	450	ii valoc	Consistency	%	(°)
BH01	1.50 - 2.00 m	17	18	20	22	n = 77	Very dense	> 80	> 45
БПОТ	3.00 - 3.50 m	1	2	4	5	n = 12	Medium dense	40 - 60	35 - 40
	1.50 - 2.00 m	4	4	4	4	n = 16	Medium dense	40 - 60	35 - 40
BH02	3.00 - 3.50 m	4	4	4	5	n = 17	Medium dense	40 - 60	35 - 40
	4.12 - 4.70 m	Ref				Ref	Very dense	> 80	> 45
	1.50 - 2.00 m	3	3	3	4	n = 13	Medium dense	40 - 60	35 - 40
вн03	3.00 - 3.50 m	1	2	3	4	n = 10	Medium dense	40 - 60	35 - 40
	4.50 - 5.00 m	4	6	6	10	n = 26	Medium dense	40 - 60	35 - 40
	1.50 - 2.00 m	2	2	3	4	n = 11	Medium dense	40 - 60	35 - 40
вн04	3.00 - 3.50 m	1	2	3	4	n = 10	Medium dense	40 - 60	35 - 40
	4.50 - 5.00 m	Ref					Very dense	> 80	> 45
	1.50 - 2.00 m	3	3	4	4	n = 14	Medium dense	40 - 60	35 - 40
BH05	3.00 - 3.50 m	5	7	9	9	n = 30	Dense	60 - 80	40 - 45
	4.50 - 5.00 m	6	6	6	6	n = 24	Medium dense	40 - 60	35 - 40
	1.50 - 2.00 m	3	4	5	6	n = 18	Medium dense	40 - 60	35 - 40
BH06	3.00 - 3.50 m	4	5	5	5	n = 19	Medium dense	40 - 60	35 - 40
	4.50 - 5.00 m	Ref				Ref	Very dense	> 80	> 45
D1107	1.50 - 2.00 m	1	2	2	3	n = 8	Loose	20 - 40	30 - 35
BH07	3.00 - 3.50 m	2	3	6	6	n = 17	Medium dense	40 - 60	35 - 40
	1.50 - 2.00 m	Ref				Ref	Very dense	> 80	> 45
вн08	3.00 - 3.50 m	2	3	6	6	n = 17	Medium dense	40 - 60	35 - 40
	4.50 - 5.00 m	6	7	10	11	n = 34	Dense	60 - 80	40 - 45
DUGG	1.50 - 2.00 m	3	4	6	7	n = 20	Medium dense	40 - 60	35 - 40
BH09	3.00 - 3.50 m	4	4	10	10	n = 28	Dense	60 - 80	40 - 45

Hole No.	SPT Depth	9	SPT Tes	t Resu	lts	n-Value	Consistency	Relative Density	Friction Angle
NO.		75	150	225	450			%	(°)
	4.50 - 5.00 m	4	5	Ref		n = 9	Medium dense - very dense	40 - 60	35 - 40
	1.50 - 2.00 m	Ref				Ref	Very dense	> 80	> 45
BH10	3.00 - 3.50 m	6	7	9	11	n = 33	Dense	60 - 80	40 - 45
	4.50 - 5.00 m	13	19	23	Ref	n = 55	Very dense	> 80	> 45
BH11	1.50 - 2.00 m	2	3	4	5	n = 14	Medium dense	40 - 60	35 - 40
ВПІІ	3.00 - 4.21 m	Ref					Very dense	> 80	> 45
DU10	1.50 - 2.00 m	7	11	12	14	n = 44	Dense	60 - 80	40 - 45
BH12	3.00 - 3.00 m	Ref				Ref	Very dense	> 80	> 45
DIII 2	1.50 - 2.00 m	5	6	6	7	n = 24	Medium dense	40 - 60	35 - 40
BH13	3.00 - 3.50 m	4	6	6	7	n = 23	Medium dense	40 - 60	35 - 40
	1.84 - 2.34 m	4	4	5	5	n = 18	Medium dense	40 - 60	35 - 40
BH14	3.00 - 3.50 m	4	5	7	9	n = 25	Medium dense	40 - 60	35 - 40
	4.00 - 4.50 m	Ref				Ref	Very dense	> 80	> 45
BH15	1.80 - 2.30 m	7	25	Ref		n = 32	Dense -very dense	60 - 80	40 - 45
2	3.50 - 3.90 m	12	13	20	20	n = 65	Very dense	> 80	> 45

Table 5-4: Summary of rotary core borehole results

Hole No.	Layers encountered (mbgl)							
	Transported soils	Residual Soils	Sandstone	Shale	Sandstone interlayered with Siltstone	Shaly coal	E.O.H (mbgl)	
BH01	0.0 - 0.95	0.95 - 3.68		9.25 - 12.85	3.68 - 9.25	12.85 - 14.08	15.07	
				14.08 - 15.07	8.11 - 8.80			
вн02	0.0 - 0.86	0.86 - 3.45			3.45 - 12.25	12.25 - 13.00	19.2	
					13.00 - 15.35	15.35 - 17.54		
					17.54 - 19.12			
DUIGO	0.0 - 1.23	1.23 - 5.0	5.0 - 5.39	5.39 - 8.11	8.11 - 8.80		20.30	
BH03			8.80 - 20.30					
вно4	0.0 - 0.56	0.56 - 3.50	3.50 - 4.68		4.68 - 14.50		19.98	
					14.50 - 18.20			
					18.20 - 19.98			
BH05	0.0 - 0.82	0.82 - 4.02	4.02 - 7.74			7.74 - 15.47	15. 47	
BH06	0.0 - 0.80	0.80 - 5.55	_		5.55 - 14.25	14.25 - 16.21	16.21	

Hole No.	Layers encountered (mbgl)							
	Transported soils	Residual Soils	Sandstone	Shale	Sandstone interlayered with Siltstone	Shaly coal	E.O.H (mbgl)	
вно7	0.0 - 1.18		1.18 - 11.30	11.30 - 11.42			15.55	
			11.42 - 15.55					
вн08	0.0 - 1.50			1.50 - 2.00	2.00 - 15.41		15.41	
вн09	0.0 - 1.16	1.16 - 1.5	1.5 - 5.81		5.81 - 14.16		15.38	
					14.16 - 15.38			
BH10	0.0 - 0.96	0.96 - 2.58	2.58 - 5.61		5.61 - 15.26		15.26	
BH11	0.0 - 8.7	0.87 - 2.73	2.73 - 4.78	4.78 - 11.70	11.70 - 16.21		16.21	
DUITO	0.0 - 0.5	0.5 - 1.20	1.20 - 8.66		8.66 - 11.88		15.07	
BH12					11.88 - 15.07			
BH13	0.0 - 0.45	0.45 - 3.62	3.62 - 4.22		4.22 - 7.11		16.21	
			7.11 - 10.21		10.21 - 16.21			
BH14	0.0 - 1.45	1.45 - 4.40			4.40 - 16.21		16.21	
BH15	0.0 - 0.94	0.94 - 2.83	12.91 - 16.21		2.83 - 8.71		16.21	
					8.71 - 12.91			



Figure 5-3: Geotechnical map showing all testing and sampling points undertaken with the sites

6 LABORATORY TEST RESULTS

6.1 General

A total of thirty-five (35) disturbed samples were recovered from representative soil horizons in selected test pits across the sites and submitted to Specialised Testing Laboratory Pty Ltd (STLLAB), a SANAS accredited civil engineering laboratory for further classification. These were ordered for foundation indicator tests comprising Atterberg Limits (<0.425mm), Sieve Analysis (<0.075mm), Heave Classification (<0.002 mm), and Particle Size Distribution in order to determine basic engineering properties for soils encountered within the sites. Due to the crumbling nature of the material, no undisturbed sample were taken test pits. Furthermore, twenty-two (22) bulk samples were taken for compaction tests including Moisture Density Relationship (MDR) and California Bearing Ratio (CBR) at Mod. AASTHO density.

The laboratory results are summarized in **Table 6-2** below, while detailed test results are presented in **APPENDIX C: LABORATORY TEST RESULTS**. The following tests were undertaken:

- **Foundation Indicator Tests** (Atterberg Limits, Grading Analysis, etc.) used to establish the soil type, its potential for heave and give an indication of its suitability for use in pavement layers.
- Compaction Tests (CBR & MOD) used to assess the potential for to be used in pavement layers.
- Chemical Tests (pH & EC)— to assess the potential for soils to corrode materials and to assess the extent of soil contamination.

6.2 Indicator Testing

The tested soils generally graded as clayey sand and sandy clay within minor gravel. The plasticity index (PI) for the material ranged between 0 and 23%; the Liquid limit ranged from 0 to 40%; the linear shrinkage ranged from 0 to 12.0%; whereas the grading modulus ranged between 0.54 and 1.96, all indicating low to medium potential expansiveness for the material encountered within the site (refer **Figure 6-1**).

6.3 Compaction Test Results

The maximum dry density (MDD) for the tested soil ranged between 1675 and 2095 kg\m³ at an optimum moisture content (OMC) of between 9.4 and 18.9%. The CBR values for this material ranged between 2.8 and 16 at 93%, 3.3 and 19 at 95%, 5.2 and 24 at 100% Mod AASHTO dry density. In terms of the COLTO, the material tested can be classified as G7 to worse than G9 quality soil mixtures.

6.4 Aggressiveness Towards Concrete

The aggressiveness of the soils encountered on site was analysed based on the method developed by JJ Basson (1989). **Table 6-1** below shows the determined chemical indices used to evaluate the corrosivity and aggressiveness of soil towards concrete.

The pH and conductivity of soil were determined to get an indication of the potential corrosiveness of the soil towards metals. Corrosion on metals may take place in acidic soils with a pH-value of less than 6. It is, however, dependent on various factors, including; soil resistivity, pH, chloride content, sulphate content, sulphide ion content, soil moisture and oxygen content.

The tested soil samples indicated a general pH-value of between 5.4 to 7.0, which may be interpreted as corrosive towards metals.

Table 6-1: Summary of the Basson Index test results

Test Pit	Depth (m)	Ch	emical	Analy	sis	Corrosivity	Basson Index	
No.		pH Stability	LI	RI	Nc	Indices		
KTP6	0.0 – 1.0	9.5	-3.1	12.5	2607	Corrosive	Aggressive	
KTP11	0.7 – 2.4	9.8	-3.1	13.0	2646	Corrosive	Aggressive	
KTP17	0.2 – 2.2	10.4	-4.3	14.7	3463	Corrosive	Aggressive	
KTP24	0.2 – 2.4	9.9	-3.3	13.2	2744	Corrosive	Aggressive	
KTP27	0.2 – 2.5	9.3	-2.9	12.1	2468	Corrosive	Aggressive	
KTP34	0.4 – 2.1	9.5	-3.0	12.5	2549	Corrosive	Aggressive	
KTP38	0.4 – 2.7	9.9	-3.6	13.5	2978	Corrosive	Aggressive	
KTP40	0.1 – 1.1	8.6	-1.1	9.7	1204	Corrosive	Aggressive	
KTP45	0.1 – 2.2	10.0	-4.6	14.7	3720	Corrosive	Aggressive	

 $LI = Langelier Index, RI = Ryznar Index, N_c = Aggressiveness Index$

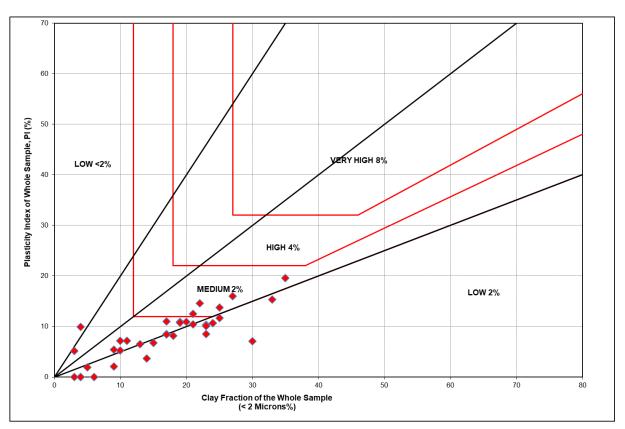


Figure 6-1: The illustrations of the potential expansiveness for materials encountered within the sites.



Figure 6-2: The typical illustrations of the plasticity for material encountered within the sites.

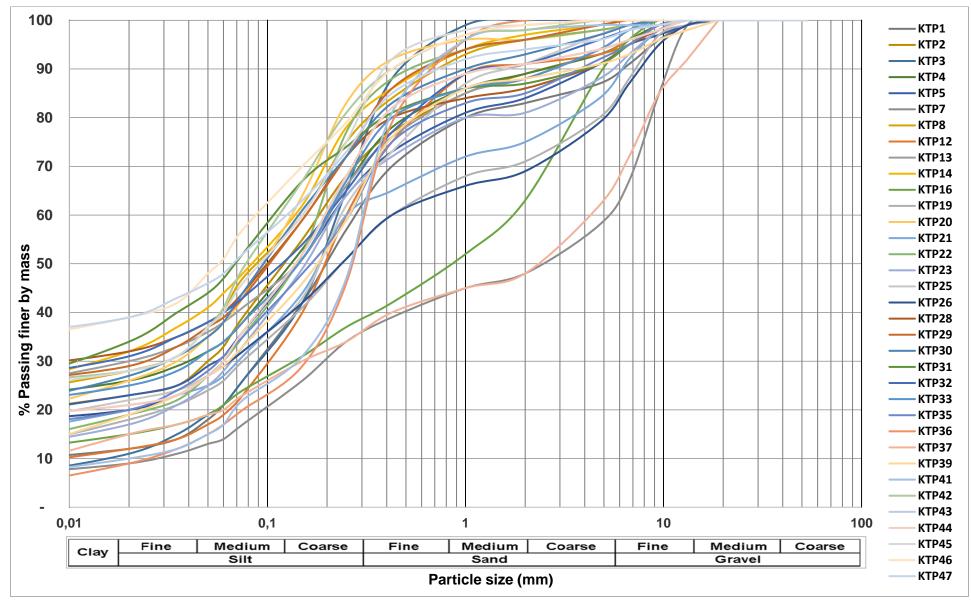


Figure 6-3: Soil gradation curves showing the particle size distribution for materials encountered within the sites

Table 6-2: Summary of Laboratory Test Results

		% Clay	Foundation Indicator Test					Compaction Test				0					
Test	Sample Depth		Atterberg Limits					MDR		CBR at % Mod, AASHTO			СОПО	USCS	pH-Value	EC (S,	
Pit			wPI	PI (%)	11 (%)	LS (%)	% 0,425	GM	MDD	OMC	100%	95%	93%	Class	i i i	alue	(S/m)
KTP1	0.7 - 2.2	9	2	3	17	2.5	70	1.21	2062	9.4	11.6	9.0	8.1	G9	sc-sm	-	-
KTP2	0.8 - 2.4	17	8	11	23	5.0	77	0.95	1951	11.9	9.0	6.7	5.9	-	SC	-	-
KTP3	0.0 -0.4	4	0	0	0	0.5	88	0.86	-	-	-	-	-	-	SM	6.2	0.014
KTP4	0.3 - 2.3	21	12	16	29	8.0	78	0.95	1835	15.6	5.2	3.3	2.8	-	SC	-	-
KTP5	0.4 - 2.5	19	11	15	29	7.5	73	1.07	1872	13.9	5.5	3.6	3.0	-	SC	-	-
KTP7	0.0 - 1.9	5	2	5	20	2.5	39	1.96	-	-	-	-	-	-	gc-gm	6.1	0.005
KTP8	0.4 - 2.3	20	11	13	26	6.0	84	0.73	-	-	-	-	-	-	SC	-	-
KTP12	0.0 - 0.6	6	0	0	0	0.5	75	1.11	-	-	-	-	-	-	SM	-	-
KTP13	0.3 - 1.8	24	11	14	29	7.0	76	0.95	1883	13.9	8.2	6.9	5.9	-	SC	-	-
KTP14	0.3 - 1.8	22	15	17	33	8.5	86	0.69	-	-	-	-	-	-	SC	6.4	0.018
KTP16	0.3 - 2.1	9	5	13	29	6.5	42	1.71	2017	9.5	22	19	16	G7	SC	-	-
KTP19	0.6 - 2.3	10	7	12	26	5.5	60	1.39	-	-	-	-	-	-	SC	-	-
KTP20	0.1 - 2.7	17	11	12	27	6.0	92	0.69	1843	13.1	5.8	4.1	3.5	-	SC	6.1	0.017
KTP21	0.1 - 2.4	13	7	10	26	5.0	65	1.29	2095	10.7	24	19	16	G7	SC	-	-
KTP22	0.2 - 2.3	10	5	6	20	3.0	88	0.81	-	-	-	-	-	-	sc-sm	7.0	0.007
KTP23	0.3 - 2.4	11	7	10	25	5.0	72	1.14	1991	11.7	10.5	8.2	7.5	G9	SC	-	-
KTP25	0.4 - 2.3	14	4	5	19	2.5	73	1.04	2000	12.5	15	9.0	6.0	-	sc-sm	-	-

	Foundation Indicator Test						Compaction Test					C					
Test Pit	Sample Depth	% Clay	Atterberg Limits					MDR		CBR at % Mod, AASHTO			ОПО	USCS	pH-Value	EC (S,	
PIT			wPI	PI (%)	11 (%)	LS (%)	% 0,425	GM	MDD	омс	100%	95%	93%	Class	κ̈	ilue	(S/m)
KTP26	0.6 - 2.1	17	8	14	30	6.5	60	1.39	1968	11.6	8.2	6.0	5.3	-	SC	-	-
KTP28	0.2 - 2.2	27	16	20	38	9.5	80	0.90	-	-	-	-	-	-	SC	6.1	0.023
KTP29	0.5 - 2.8	23	10	12	29	6.0	86	0.75	1872	13.5	8.7	6.8	5.3	-	SC	-	-
KTP30	0.2 - 2.4	19	11	13	35	7.0	83	0.80	1675	18.9	10.0	8.6	6.1	-	SC	-	-
KTP31	0.2 - 2.1	25	14	17	36	8.5	81	0.80	-	-	-	-	-	-	CL	5.9	0.015
KTP32	0.2 - 2.0	23	8	11	28	5.5	77	0.89	2022	11.1	15	12	10	G8	SC	-	-
КТР33	0.2 - 2.4	21	10	13	30	6.5	80	0.94	1965	11.7	13	10	9.0	-	SC	-	-
KTP35	0.2 - 2.6	15	7	9	25	4.0	75	1.05	2030	10.3	16	12	11	G9	SC	-	-
KTP36	0.9 - 1.9	3	0	0	0	0.0	79	1.01	1914	10.5	13	10	8.0	G9	SM	-	-
KTP37	0.3 - 2.4	3	5	13	29	6.5	40	1.89	-	-	-	-	-	-	SC	5.5	0.007
КТР39	1.1 - 3.2	4	10	13	27	6.5	76	1.03	1910	12.0	7.6	4.9	3.7	-	SC	4.7	0.070
KTP41	1.4 - 2.0	4	0	0	0	0.0	81	0.99	1937	10.0	21	14	12	G8	SM	-	-
KTP42	0.7 - 2.5	25	12	13	28	6.5	90	0.63	1889	13.9	15	11	9.0	-	SC	5.4	0.014
KTP43	0.1 - 2.4	30	7	8	22	4.0	89	0.57	-	-	-	_	-	-	CL	-	-
KTP44	0.1 - 2.6	18	8	10	25	5.0	82	0.91	1942	11.1	17	13	11	G8	SC	-	-
KTP45	0.1 - 2.2	23	10	11	29	6.0	92	0.63	-	-	-	-	-	-	SC	-	-
KTP46	1.0 - 2.3	33	15	17	32	8.5	90	0.54	1911	12.9	11	8	6	-	CL	-	-
KTP47	0.4 - 2.2	35	20	23	40	12.0	85	0.69	-	-	-	-	-	-	CL	6.4	0.027

7 GEOTECHNICAL ASSESSMENT

The purpose of this section is to evaluate the likely geohazards for the project area against the typical geotechnical constraints for urban development as identified by Partridge, Wood & Brink (Ref.6). A geologic hazard is a natural geologic event that can endanger human lives and threaten infrastructure developments. Earthquakes, geomagnetic storms, landslides, sinkholes, tsunamis, volcanoes and even the less dramatic slower, but nevertheless costly problem soils (expansive, shrinking, collapsing, consolidating, dispersive [erosion], acidic), are all types of geologic hazards that can occur.

7.1 Expansive Soil Profile

Damage to structures erected on potentially active soils occurs where the expansiveness has not been determined and necessary remedial measures not employed. The potential expansiveness of a soil depends upon its clay content, the type of clay mineral present, its chemical composition and mechanical character. A material is potentially expansive if it exhibits the following properties:

- Clay content of more than 12%.
- Plasticity index of more than 12.
- Liquid limit of more than 30%.
- Linear shrinkage of more than 8%.

Based on fieldwork coupled with laboratory testing, the potential expansiveness for the soils encountered within the sites is generally "Low to Medium". The possibility of structural distress resulting from cyclic drying shrinkage in dry seasons and swell after wetting is therefore anticipated to be low to moderate.

7.2 Collapsible/Compressible Soil Profile

The site is generally characterised by transported clayey soils underlain residual sandy soils with low potential collapsibility. Furthermore, none of the horizons profiled show any typical characteristics associated with compressible soils.

7.3 Erodibility of Soil

The site is located in a region with the erodibility index of 9-15, thus indicating a Low to medium soil erodibility potential according to the national erodibility potential map presented in the National Housing Code (2009).

7.4 Excavation Classification

The excavatability of materials across the site has been evaluated according to the South African Bureau of Standards' Standardized Specification for Civil Engineering Construction classification for earthworks (Ref.9). Soft excavation conditions in terms of the above standard are expected up to an average depth of 2.5 meters. In terms

of this classification and the in-situ soil/rock consistencies as profiled, the relationships given below are generally applicable:

- Soft Excavation: Material which can be efficiently removed by a back-acting excavator of flywheel power > 0, 10 kW for each mm of tined-bucket width
- Intermediate Excavation: Material which can be removed by a back-acting excavator having flywheel power > 0,10 kW for each mm of tined-bucket width or with the use of pneumatic tools before removal by a machine capable of removing soft material.
- Hard Excavation: Material that cannot be removed without blasting or wedging and splitting.

7.5 Undermined Ground

Subsidence in the order of centimetres and even metres, typically occurs in areas with large shallow (i.e.: at<180 m depth) underground cavities typically resulting from spatially extensive, shallow to very shallow mining (e.g.: coal, platinum) and also from dolomite/limestone dissolution over geological time.

The proposed Eskom sites are situated adjacent to several operational coal mines currently exploited for coal seams in excess of 45 meters by board-and-pillar mining. The undertaken percussion drilling revealed several cavities with the average thickness of 3 meters at depths between 45 – 74 meters corresponding to the average depth of the mined coal seams in the area. Although no signs of any on-going or historical subsidence features were observed, such events may be triggered by loss of support from the existing mining pillars, thus resulting in ground subsidence. Further studies focusing on underming in the vicinity of Komati are therefore recommended in order to delineate and quantify the risks associated with undermined ground.

7.6 Areas Subject to Flooding

Surface run-off from the Eskom sites is generally by means of sheetwash towards the north and ultimately into northwest flowing streams traversing the Komati the region. It is the author's view that flood-lines may affect certain sections of the sites, particularly areas adjacent to streams and wetlands.

Due to the risk of flood leading to property damage and life hazards, it is recommended that flood line investigation is undertaken so as to delineate the 1:50-year and 1:100-year flood lines.

7.7 Steep Slopes and Unstable Natural Slopes

Slope stability is a function of slope height, slope face angle, soil and rock shear and cohesive properties, presence of unfavourably oriented discontinuities (joints, faults), plus external influences such as seismic accelerations, crest loading, and toe erosion (rivers, sea waves, man-made excavations).

There are no signs of the presence of unstable natural slope observed within the area. Furthermore, consequent shallow slope gradients encountered are insufficient to overcome resisting forces to initiate material movement under the action of gravity.

7.8 Instability of Soluble Rock

The site is not characterised by soluble rocks such as dolomite or limestone, therefore the formation of karst-related subsurface topography leading to sinkholes and subsidences is unlikely.

7.9 Seismic Activity

The seismic hazard map of South Africa indicates that the area generally lies within an area where there is a 10% probability that Peak Ground Accelerations of 0.12 g will be exceeded in 50 years, which corresponds to a seismic intensity of VII on the Modified Mercalli Scale (refer **Figure 7-1**).

Figure 7-1: Seismic Hazard Map showing the Peak Ground Acceleration with 10% probability of being exceeded in a 50-year period.

Table 7-1: Geotechnical classification for urban development (Partridge et al. 1993).

CC	ONSTRAINT	Most Favorable(1)	Intermediate (2)	Least favorable (3)
Α	Collapsible Soil	Any collapsible horizon or consecutive horizons totaling depth of less than 750mm in thickness.*	Any collapsible horizon or consecutive horizons with a depth of more than 750 mm in thickness.	A least favorable* situation for this constraint does not occur.
В	Seepage	Permanent or perched water table more than 1,5m below ground surface	Permanent or perched water table less than 1,5m below ground surface.	Swamps and marshes
С	Active Soil	Low soil-heave potential predicted*	Moderate soil heave potential predicted.	High soil heave potential predicted
D	Highly compressible Soil	Low soil compressibility expected *	Moderate soil compressibility expected	High soil compressibility expected
E	Erodibility of soil	Low	Intermediate	High
F	Difficulty of excavation to 1.5m depth	Scattered or occasional boulders less than 10% of the total volume	Rock or hardpan pedocretes between 10 and 40% of the total volume	Rock or hardpan pedocretes more than 40% of the total volume.
G	Undermined ground –	Undermining at a depth greater than 100m below surface	Old undermined areas to a depth of 100m below surface where stope closure has ceased	Mining within less than 100m of surface or where extraction mining total has taken place.
Н	Instability in areas of soluble rock - No soluble rocks	Possibly unstable	Probably unstable	Known sinkholes and dolines
I	Steep slopes	Between 2 and 6 degrees (all regions)	Slopes between 6 and 18 degrees and less than 2 degrees (Natal and Western Cape). Slopes between 6 and 12 degrees and less than 2 degrees	More than 18 degrees (Natal and Western Cape) More than 12 degrees (all other regions)
J	Areas of unstable natural slope	Low risk	Intermediate risk	High risk (especially in areas subject to seismic activity)
K	Areas subject to seismic activity	10% probability of an event less than 100 cm/s² within 50 years	Mining-induced seismic activity more than 100cm/s²	Natural seismic activity more than 100 cm/s ²
L	Areas subject to flooding.	A "most favorable" situation for this constraint does not occur.	Areas adjacent to a known drainage channel or floodplain with slope less than 1%	Areas within a known drainage channel or floodplain.

8 CONCLUSION AND RECOMMENDATIONS

BAV Consulting Pty Ltd was appointed by **Eskom Holdings SOC Limited** to conduct a preliminary geotechnical investigation in order to determine and asses the subsurface soil conditions at selected sites for the renewable energy project. The sites of investigation are situated within and/or near Komati Power Station on Eskom owned land within Steve Tshwete Local Municipality.

The proposed Eskom sites are situated adjacent to several operational coal mines currently exploited for coal seams in excess of 45 meters by either board and pillar of open-pit mining. The Blinkpan underground operation located just west of the Komati area which utilises a mechanised bord-and-pillar underground mining method confirmed that there's no past of on-going mining operation underneath the proposed site.

Komati Village and its neighbouring areas are regionally characterized by rocks of the Karoo Supergroup covered by Quaternary deposits. The Karoo Supergroup rocks in the area can be further classified as the Vryheid Formation of the Ecca Group. The rocks of the Vryheid Formation typically include sandstone, siltstone, shale and coal beds. These were later intruded by Jurassic dolerite dykes and sills.

There are no soluble rocks such as dolomite or limestone underlying the sites, therefore, the presence of karst-related subsurface topography leading to the formation of sinkholes and subsidence features is unlikely. However, the area is known to have been previously undermined, therefore further studies should be undertaken to asses possible land-subsidence events resulting from the mobilisation of overburden material into underlying abandoned mines.

A total of twenty-five (25) boreholes were drilled at selected positions at Solar PV Site 1. The borehole drilling at generally revealed transported soils, underlain by residual sandstone, sandstone interlayered with siltstone, shale, shaly coal, and coal, and diamictite, respectively. Some intrusive material interpreted as dolerite sills were encountered at variable depths.

Underground cavities were intercepted a various locations at depths in excess of 45 meters corresponding with layers of coal, thus pointing to previous mining activities at that depth. The drilling further revealed that the cavities were filled with groundwater, however, the quantity is unknown. Therefore, groundwater yield testing is recommended in order to estimate the Storativity (S) and Specific yield (Sy) of the underlying cavities. Note that groundwater strikes were generally shallower than the cavities in the majority of boreholes, thus, a leaky aquifer situation may exist at Solar PV Site 1.

The stability of the sites mainly depends on the type and thickness of the overburden material, degree of weathered, and to a certain extent groundwater level drawdown. The overburden material consists of alternating layers of slightly

weathered to highly weathered, shale, siltstone, sandstone and dolerite sills with the estimated total thickness in excess of 45 meters. Thus, the likelihood of the formation of sinkhole or subsidence features at Solar PV Site 1 is **low**, owing to the type of overburden and the thickness thereof.

The likelihood of sinkhole and subsidence formations at Solar PV Site 2 was not evaluated. Therefore, additional investigations such as percussion drilling, rotary core drilling, SPT testing are recommended in order to assess the foundation parameters and the long-term stability of the site. The implementation of photovoltaics and battery energy storage systems is provisionally supported at Solar PV Site 1, 2 and all BESS sites, subject to additional investigations.

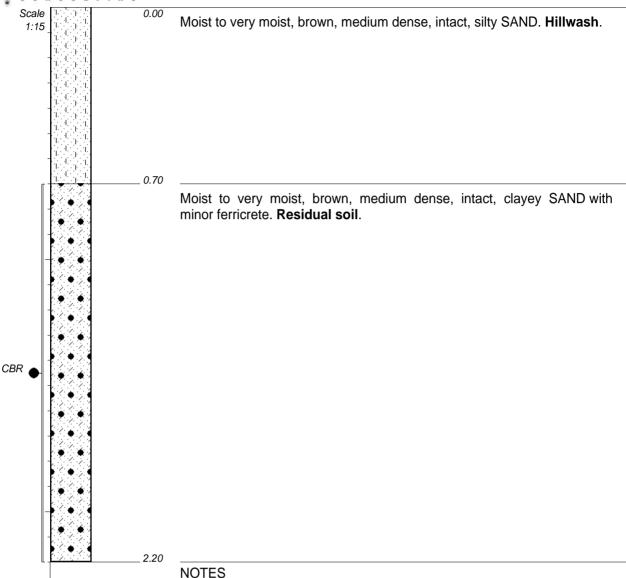
Additional percussion drilling is recommended at Solar PV Site 1 and 2 in order to accurately confirm and delineate areas affected by previous mining activities. Furthermore, rotary core drilling and associated strength tests such as SPT, UCS, pile tests, etc. are recommended at the footprint of the proposed structures.

The presence of water in the cavities may not necessarily negate the durability and strength of the pillars, but sudden excessive groundwater level drawdown without rehabilitation may induce roof collapse leading to sinkhole and subsidences on surface.

Conditions prevailing on site suggest that no problems are foreseen for the development of agrivoltaics, wind turbines and a BESS system, provided that the contents of this report are acknowledged, and recommendations, as outlined in the report, are adhered to. Note that heavy loaded structures such as the proposed wind turbines are not recommended at Solar PV Site 1 due to the presence of cavities that can manifest into subsidence or sinkholes triggered by continued weathered of overburden material, groundwater level fluctuations, and collapse of underground mine pillars. It recommended that formal mining layouts or documents be sourced from the neighbouring mines.

The comments and recommendations contained in this report are based on a limited number of data points. It is, therefore recommended that all excavations and foundation be inspected by a geotechnical engineer or engineering geologist to verify that the founding conditions are not at variance with those described herein.

9 REFERENCES


- 1) Acocks JPH (1988) Veld types of South Africa. (Third edition) Mem. Bot. Surv. S. Afr. No. 57: 1-146
- 2) Basson J.J. (1989). Deterioration of concrete in aggressive waters Measuring aggressiveness and taking countermeasures. Concrete Durability Bureau of the Portland Cement Institute. Midrand, South Africa.
- 3) Brink, A.B.A. and Bruin, R.M.H. (2002). Guidelines for soil and rock logging in South Africa, 2nd impression, 2002.
- 4) Jennings JE., Brink, AAB. and Williams, A.A.B. 1973. Revised guide to soil profiling for civil engineering purposes in South Africa. The Civil Engineer in South Africa, Vol. 15, January 1973, pp. 3-12.
- 5) Johnson, M.R., Anhaeusser, C.R. And Thomas, R.J. (Eds.) (2006). The geology of South Africa. Geological Society of South Africa. Johannesburg/Council for Geoscience, Pretoria, 691 pp.
- 6) Partridge T.C., Wood C.K. and Brink A.B.A. (1993). Priorities for urban expansion within the PWV metropolitan region. The primacy of geotechnical constraints. South African Geographical Journal: Vol. 75, pp 9 13.
- 7) South African Institution of Civil Engineering (SAICE) Geotechnical Division, (2010). Site Investigation Code of Practice, 1st Edition.
- 8) SANS 1936, Development on dolomite land -Part 1: (2012) General Principles and Requirements.
- 9) South African Bureau of Standards SANS 1200D. Standardised specification for civil engineering construction Section D: Earthworks. Pretoria 2002.
- 10) Van der Merwe, D.H. 1964 The Prediction of heave from the Plasticity Index and Percentage Clay Fraction. Trans. S.A. Ins. Civ. Eng. No.6, pp103-107.
- 11) Weinert, HH 1980. The Natural Road Construction Materials of Southern Africa. H & R Academia Publ., Pretoria, 298 pp.

APPENDIX A: SOIL PROFILES
(SANS 633: 2012-Soil Profiling and Rotary percussion borehole drilling on dolomite land in Southern Africa for engineering purposes)
44 Pag

HOLE No: KTP1 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.2m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.7--2.2m: CBR, F-IND.

CONTRACTOR:

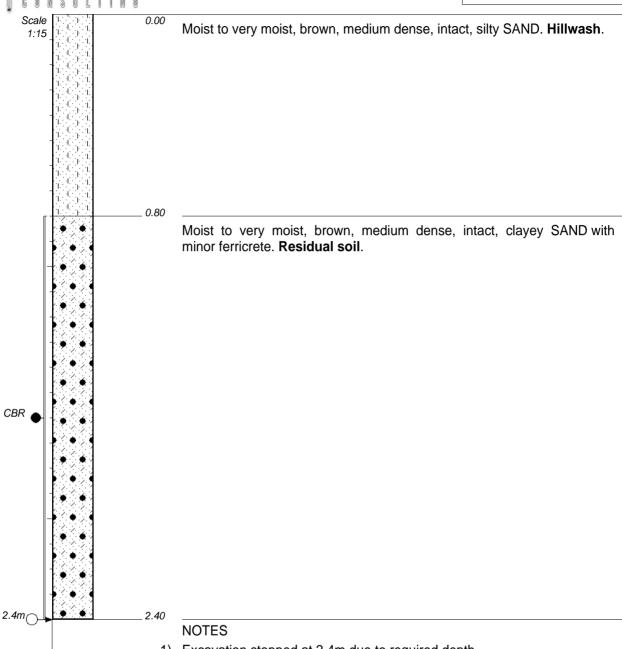
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION :

DIAM: DATE: 22-08-2023 DATE: 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1614 m X-COORD: 29.46031°E

Y-COORD: 26.09103°S

HOLE No: KTP2 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.4m due to required depth.
- 2) Groundwater seepage at 2.4m.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.8--2.4m: CBR, F-IND.

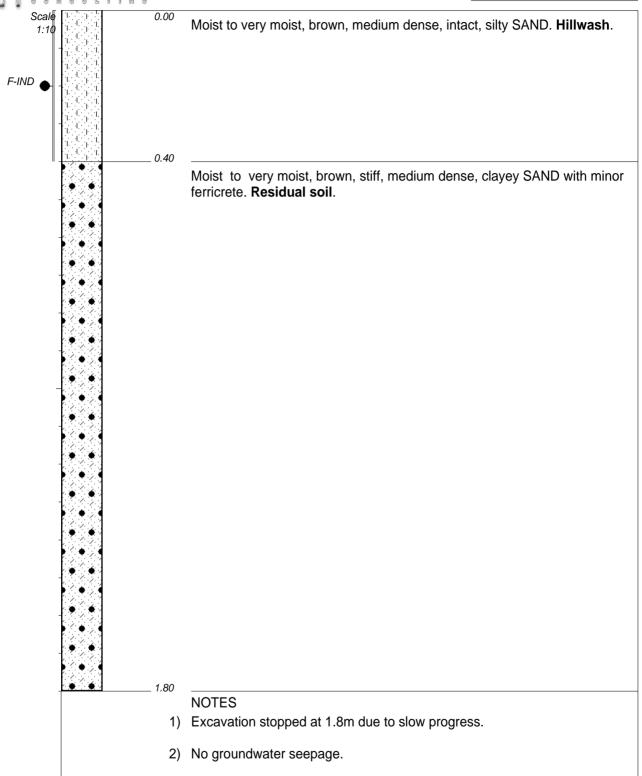
CONTRACTOR: MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya SETUP FILE: STANDARD.SET INCLINATION:

DIAM:

DATE: 22-08-2023 DATE: 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1614 m

X-COORD: 29.45981°E Y-COORD: 26.09147°S

HOLE No: KTP3
Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

MACHINE : BELL TLB

DRILLED BY: Xolani Shabangu PROFILED BY: Andries Vukeya

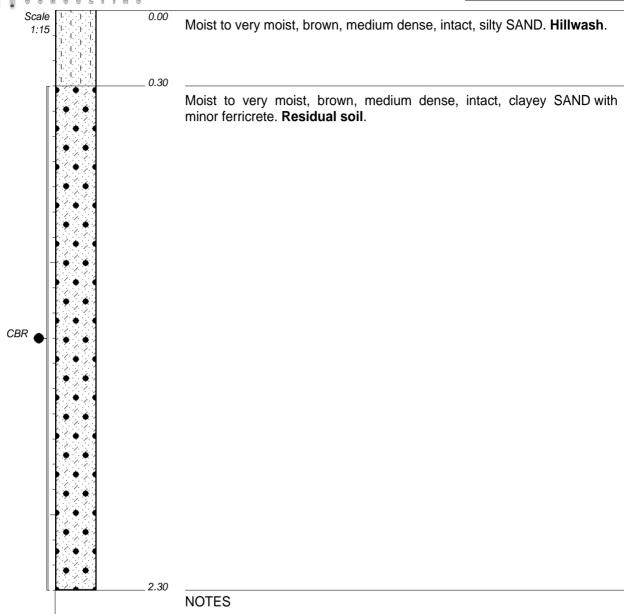
TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

Sidewall stable.

DIAM :

4) Disturbed sample at 0.0--0.4m: F-IND.

DIAM : DATE : 22-08-2023 DATE : 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1611 m

X-COORD: 29.45872°E Y-COORD: 26.09211°S

HOLE No: KTP4 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.3m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.3--2.3m: CBR, F-IND.

CONTRACTOR:

MACHINE: BELL TLB

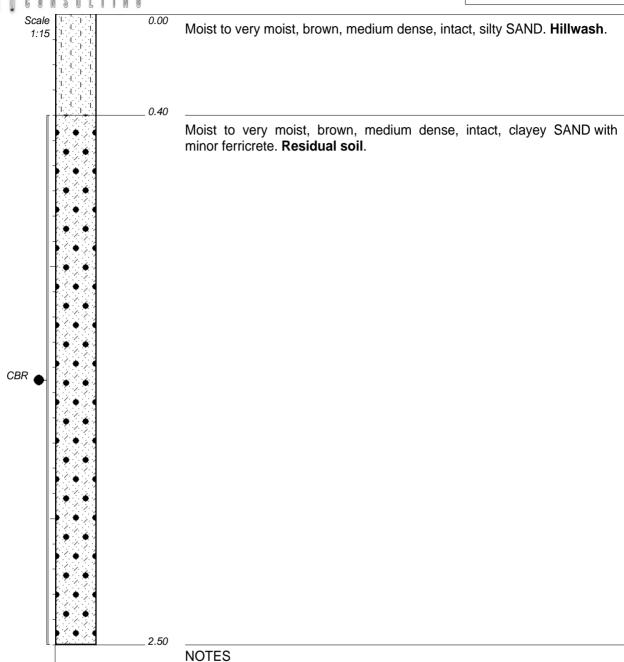
DRILLED BY: Xolani Shabangu

PROFILED BY : Andries Vukeya

TYPE SET BY : Andries Vukeya

SETUP FILE: STANDARD.SET

INCLINATION :


DIAM:
DATE: 22-08-2023
DATE: 20-09-2023
DATE: 06/12/2023 13:50

DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1607 m X-COORD: 29.45752°E Y-COORD: 26.09249°S

HOLE No: KTP5 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.5m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.4--2.5m: CBR, F-IND.

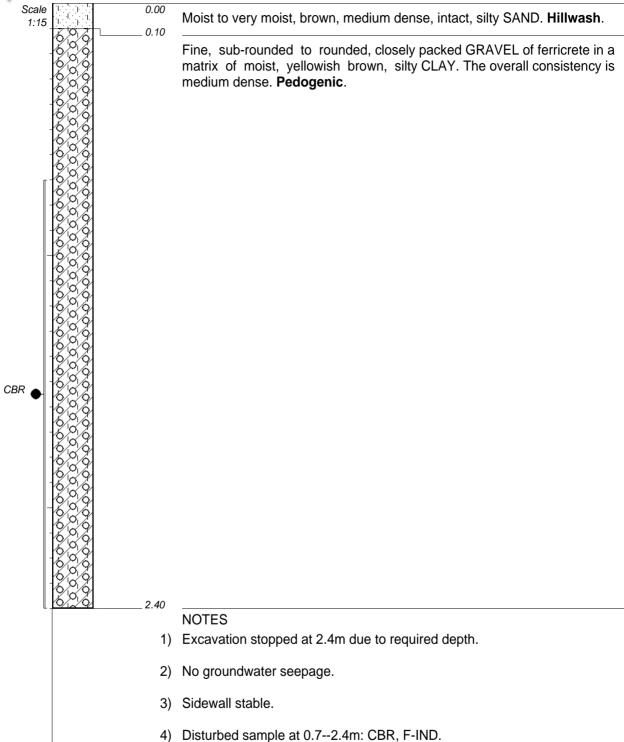
CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION :


DIAM:
DATE: 22-08-2023
DATE: 20-09-2023
DATE: 06/12/2023 13:5

DATE: 06/12/2023 13:50 TEXT:..ppendixASoilProfiles.txt ELEVATION: 1608 m X-COORD: 29.45654°E Y-COORD: 26.09342°S

HOLE No: KTP6 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

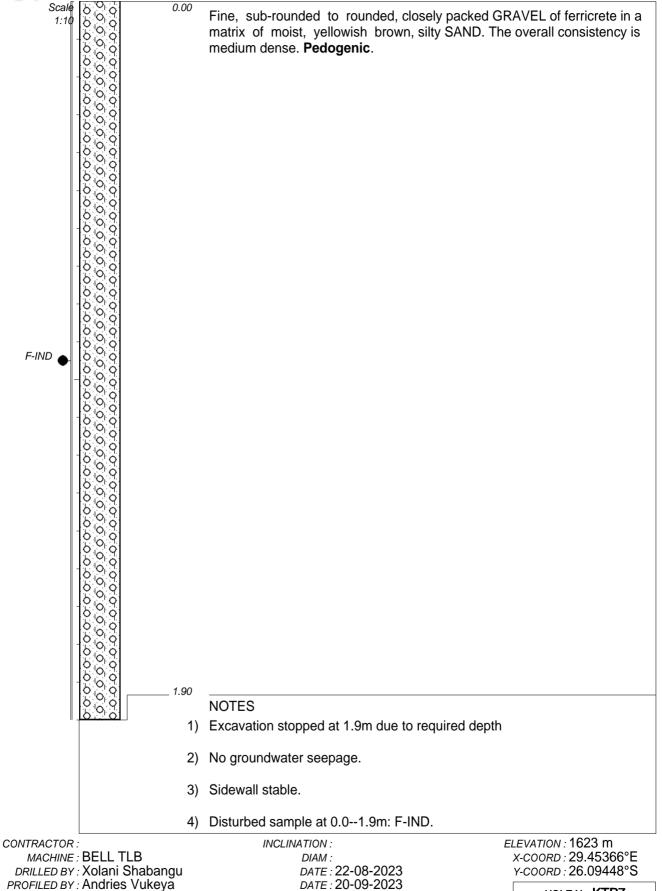
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION :

DIAM : DATE : 22-08-2023 DATE : 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1617 m

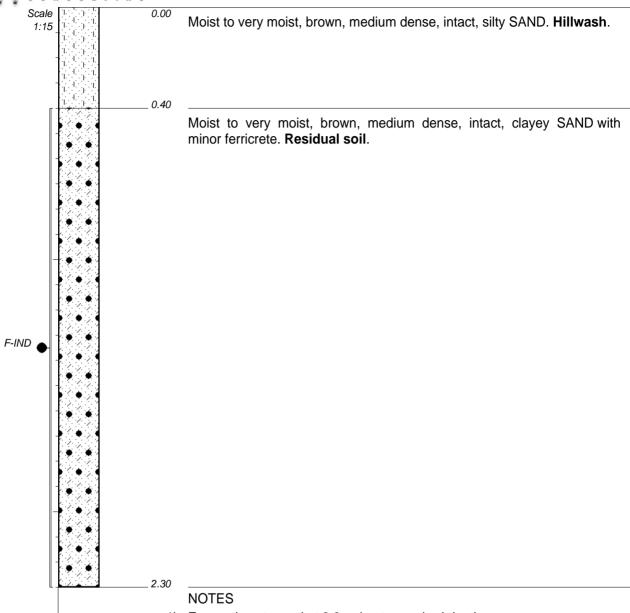
X-COORD: 29.45528°E Y-COORD: 26.09348°S

HOLE No: KTP7 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt


TYPE SET BY: Andries Vukeya

SETUP FILE: STANDARD.SET

HOLE No: KTP8 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.3m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.4--2.3m: F-IND.

CONTRACTOR:

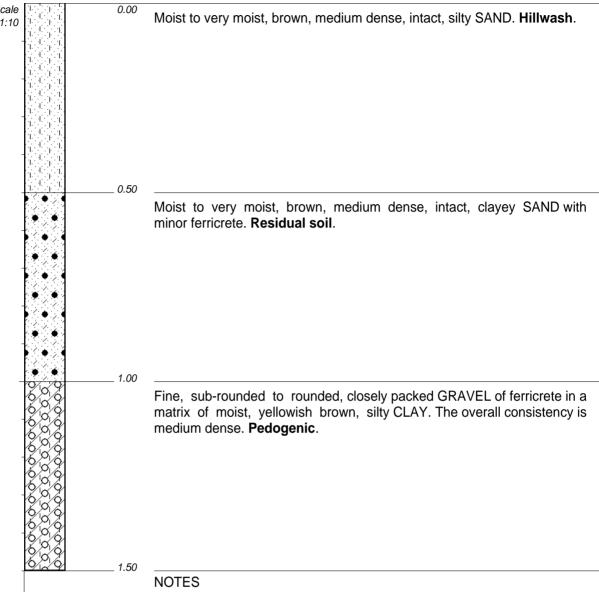
MACHINE: BELL TLB

PRINTED BY: Yoloni Shahana

DRILLED BY: Xolani Shabangu PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM : DATE : 22-08-2023 DATE : 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1620 m

X-COORD: 29.45200°E Y-COORD: 22.09541°S

HOLE No: KTP9 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 1.5 m due to slow progress.
- 2) No groundwater seepage.
- 3) Sidewall stable.

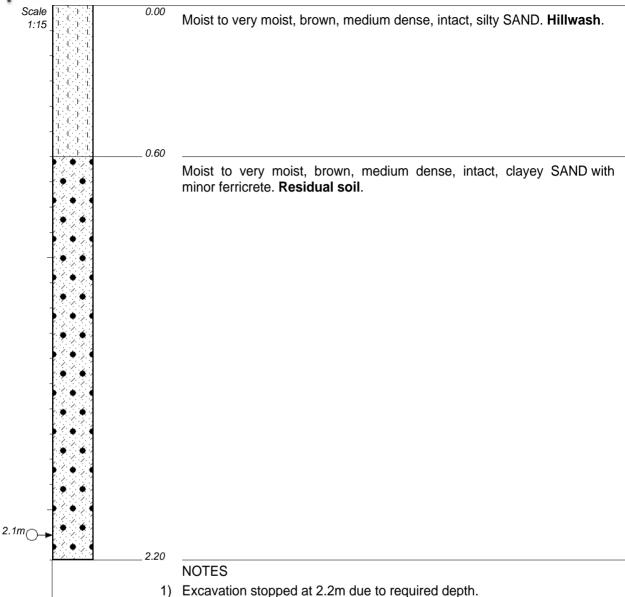
CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION :


DIAM : DATE : 22-08-2023 DATE : 20-09-2023

DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1621 m X-COORD: 29.45013°E Y-COORD: 26.09517°S

HOLE No: KTP10 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

MACHINE: BELL TLB
DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya

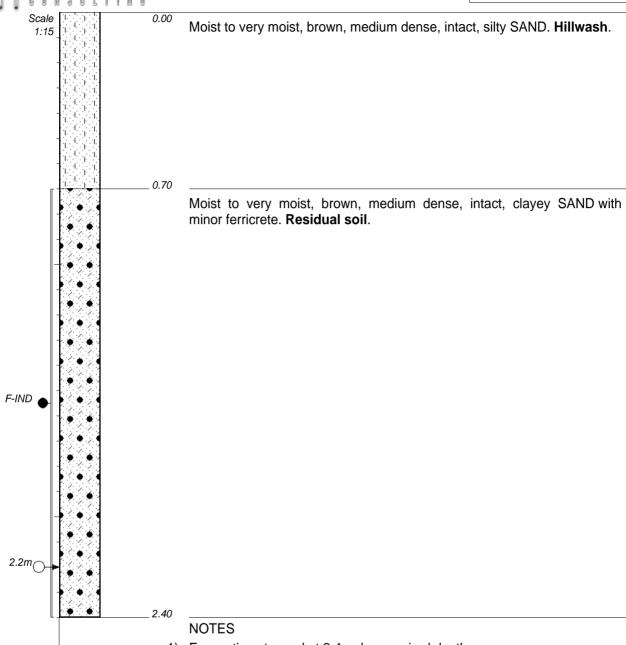
TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

2) Groundwater seepage at 2.1m.

3) Sidewall stable.

DIAM :

DATE: 22-08-2023 DATE: 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1614 m

X-COORD: 29.45136°E Y-COORD: 26.09451°S

HOLE No: KTP11 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.4m due required depth.
- 2) Groundwater seepage at 2.2m.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.7--2.4m: F-IND.

CONTRACTOR:

MACHINE: BELL TLB

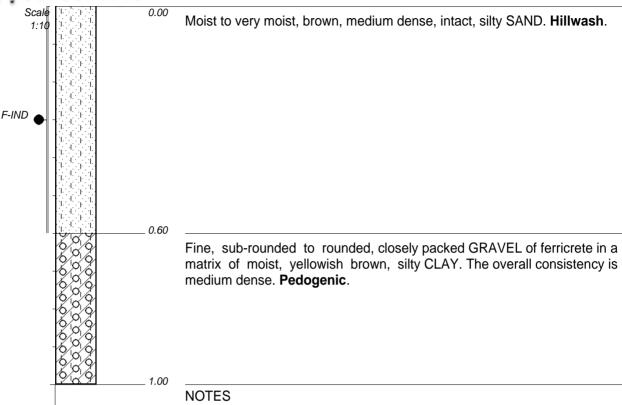
DRILLED BY: Xolani Shabangu

PROFILED BY : Andries Vukeya

TYPE SET BY : Andries Vukeva

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM : DATE : 22-08-2023 DATE : 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1617 m X-COORD: 29.45266

X-COORD: 29.45266°E Y-COORD: 26.09395°S

HOLE No: KTP12 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 1.0m due to refusal on hardpan ferricrete.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.0--0.6m: F-IND.

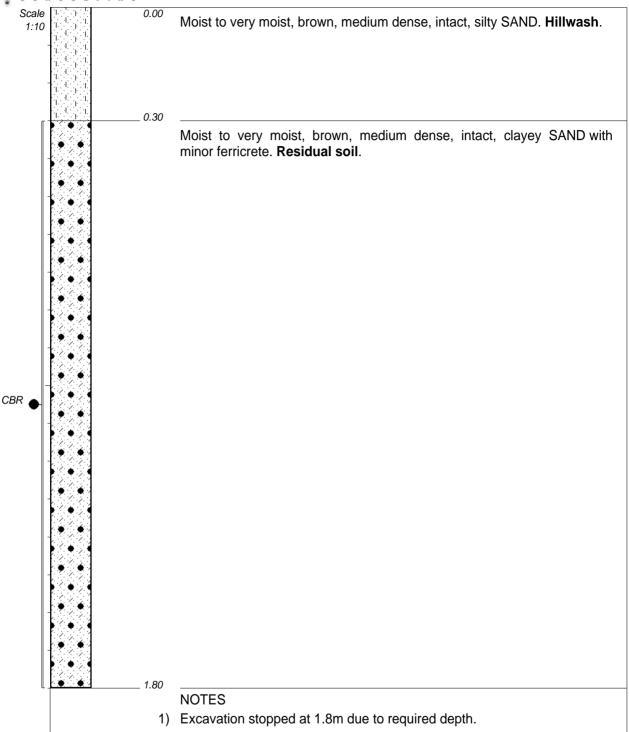
CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION :


DIAM:
DATE: 22-08-2023
DATE: 20-09-2023

DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1616 m X-COORD: 29.45473°E Y-COORD: 26.09299°S

HOLE No: KTP13
Sheet 1 of 1

JOB NUMBER: MAK152.08.23

2) No groundwater seepage.

Sidewall stable.

4) Disturbed sample at 0.3--1.8m: CBR, F-IND.

CONTRACTOR:

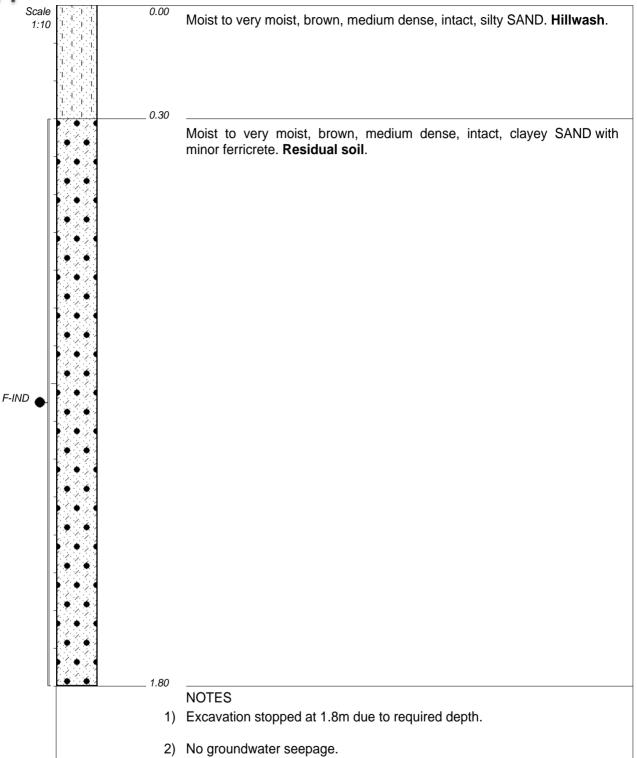
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION : 1612 m X-COORD : 29.45693°E Y-COORD : 26.09207°S

HOLE No: KTP14 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

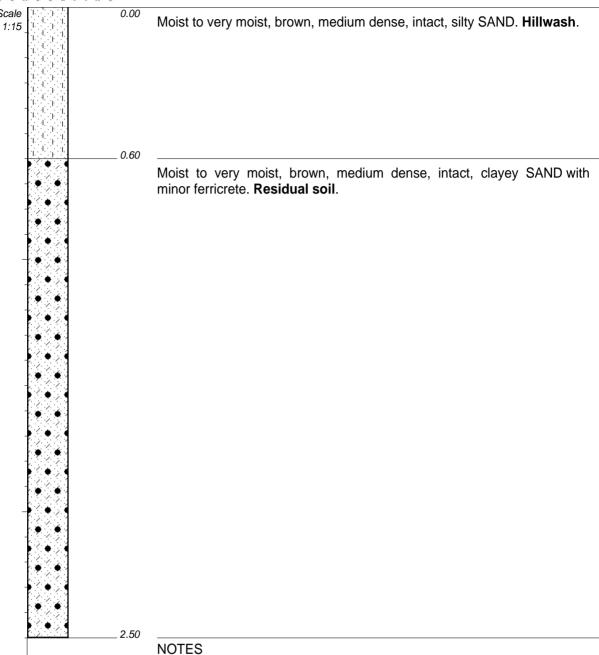
MACHINE : BELL TLB DRILLED BY : Xolani Shabangu PROFILED BY : Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

4) Disturbed sample at 0.3--1.8m: F-IND.

Sidewall stable.

DIAM: DATE: 22-08-2023 DATE: 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1615 m

X-COORD: 29.45912°E Y-COORD: 26.09101°S

HOLE No: KTP15 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.5m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.

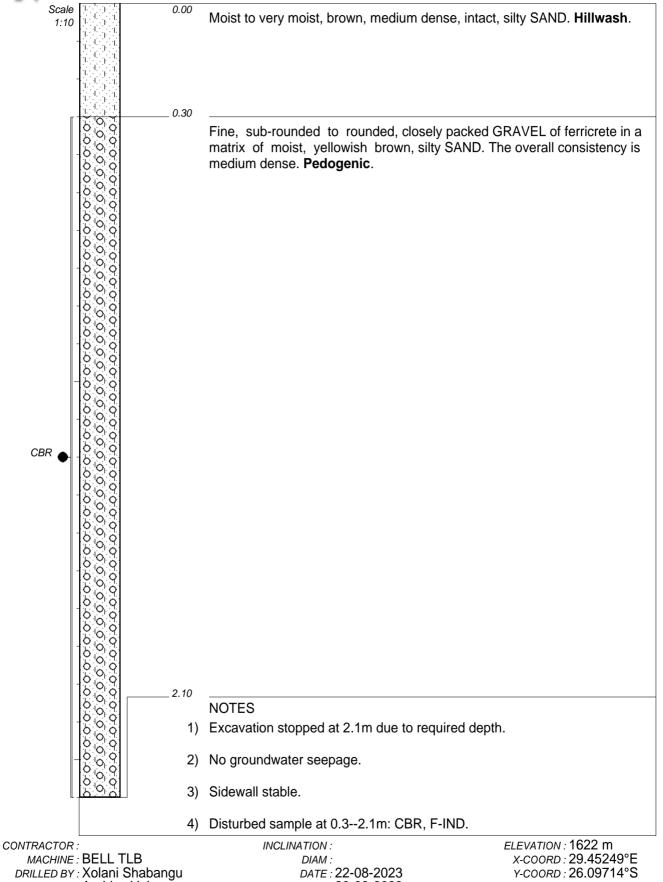
CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION :


DIAM : DATE : 22-08-2023 DATE : 20-09-2023

DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1617 m X-COORD: 29.45065°E Y-COORD: 26.09648°S

HOLE No: KTP16 Sheet 1 of 1

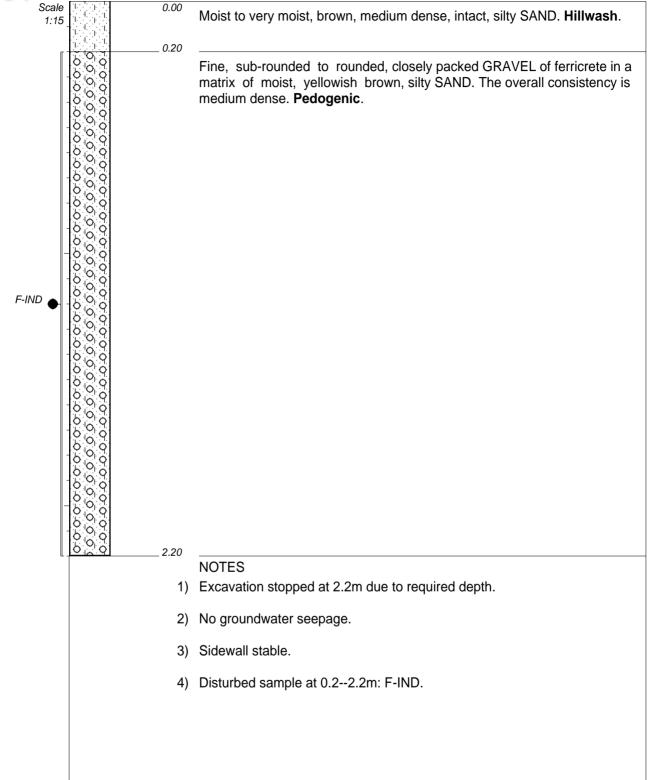
JOB NUMBER: MAK152.08.23

DATE: 20-09-2023

DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt

PROFILED BY: Andries Vukeya


TYPE SET BY: Andries Vukeya

SETUP FILE: STANDARD.SET

HOLE No: KTP17 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

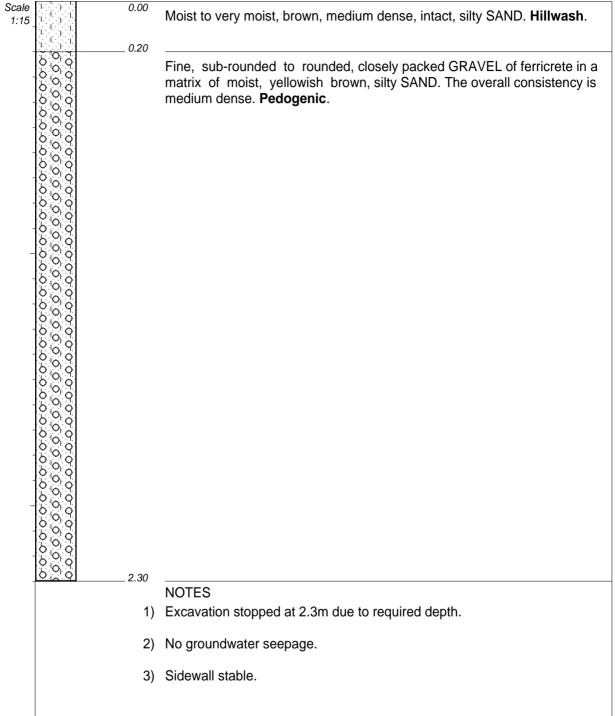
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION : 1624 m X-COORD : 29.45518°E Y-COORD : 26.09634°S

HOLE No: KTP18
Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

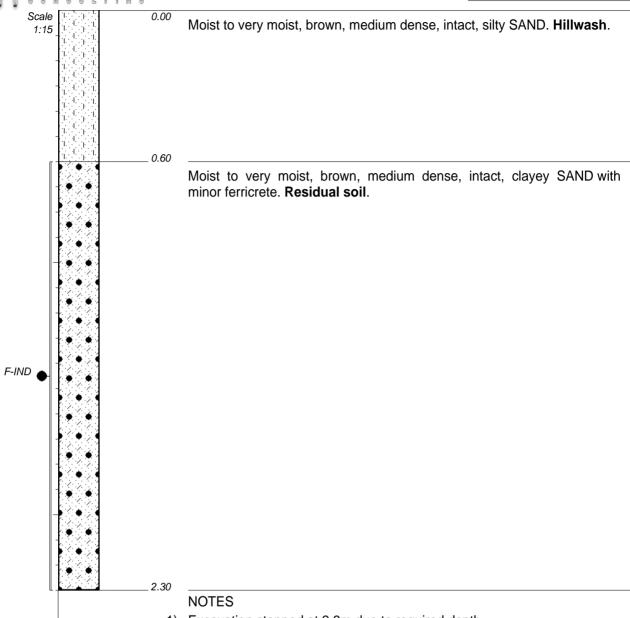
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1626 m X-COORD: 29.45380°E Y-COORD: 26.09752°S

HOLE No: KTP19 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.3m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.6--2.3m: F-IND.

CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

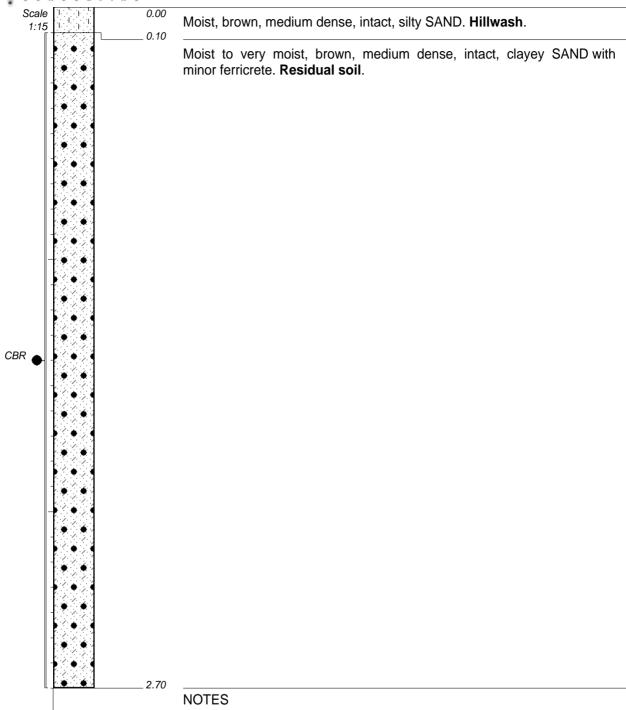
PROFILED BY : Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM : DATE : 22-08-2023

DATE: 20-09-2023

DATE: 06/12/2023 13:50


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1624 m

X-COORD: 29.45230°E Y-COORD: 26.09809°S

HOLE No: KTP20 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

1) Excavation stopped at 2.7m due to required depth.

2) No groundwater seepage.

Sidewall stable.

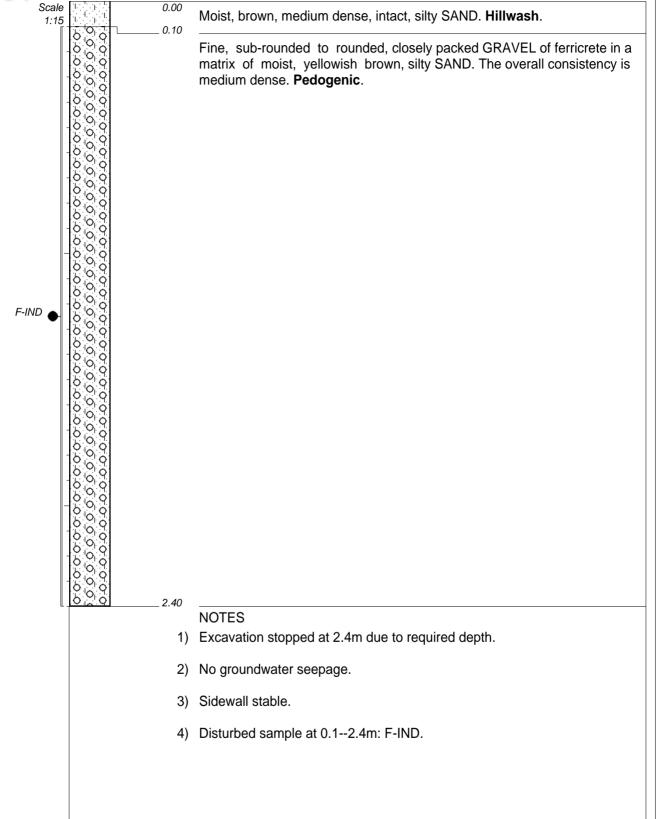
4) Disturbed sample at 0.1--2.7m: CBR, F-IND.

CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu
PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:


DIAM:
DATE: 22-08-2023
DATE: 20-09-2023
DATE: 06/12/2023 13:50

DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1629 m X-COORD: 29.45183°E Y-COORD: 26.10502°S

HOLE No: KTP21 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION : DIAM :

DATE: 22-08-2023
DATE: 20-09-2023
DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1641 m X-COORD: 29.45453°E Y-COORD: 26.10459°S

HOLE No: KTP22 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.3m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.2--2.3m: F-IND.

CONTRACTOR:

MACHINE: BELL TLB

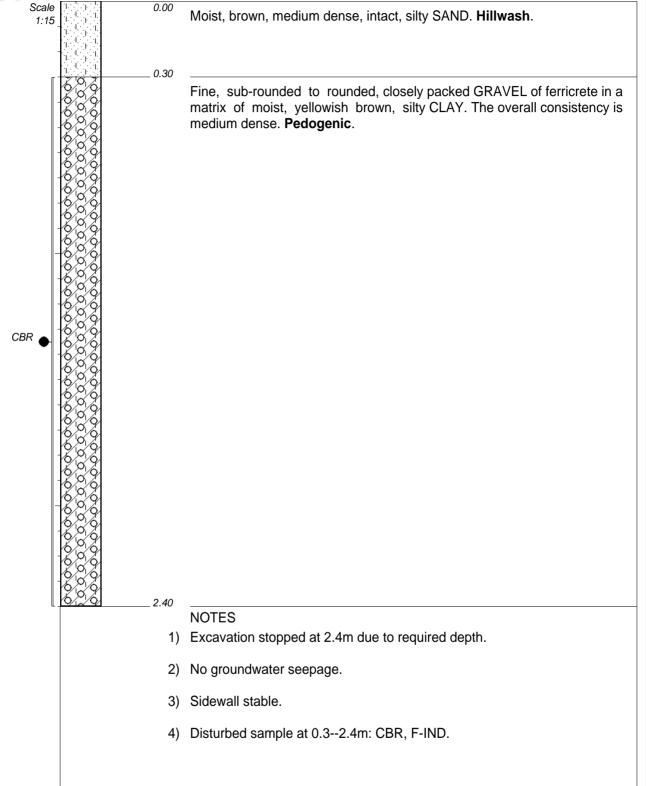
DRILLED BY: Xolani Shabangu

PROFILED BY : Andries Vukeya

TYPE SET BY : Andries Vukeya

SETUP FILE : STANDARD.SET

INCLINATION : DIAM :


DATE: 22-08-2023
DATE: 20-09-2023
DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1641 m X-COORD: 29.45677°E Y-COORD: 26.10280°S

HOLE No: KTP23 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

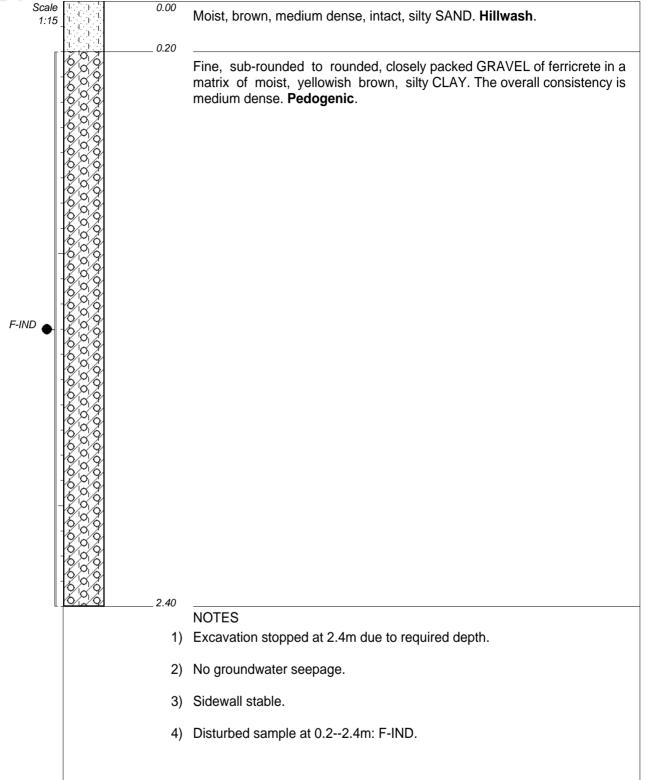
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1646 m X-COORD: 29.45968°E Y-COORD: 26.10463°S

HOLE No: KTP24 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

MACHINE: BELL TLB

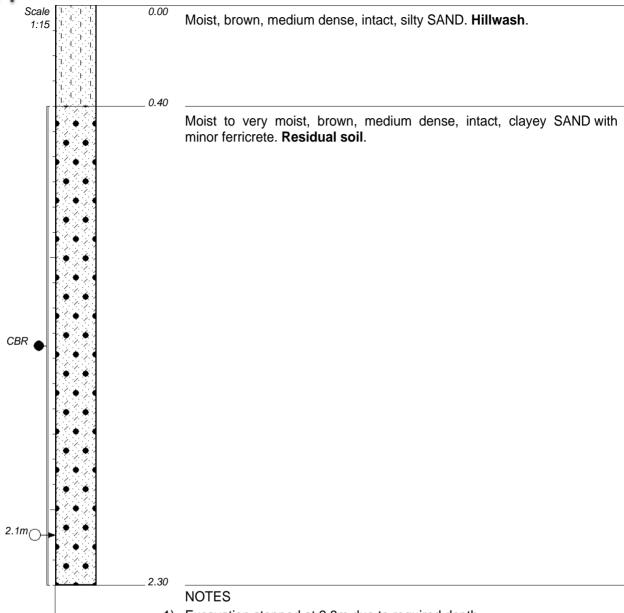
DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023

DATE: 06/12/2023 13:50


TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1644 m X-COORD: 29.46198°E Y-COORD: 26.10455°S

HOLE No: KTP25 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.3m due to required depth.
- 2) Groundwater seepage at 2.1m.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.4--2.3m: CBR, F-IND.

CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

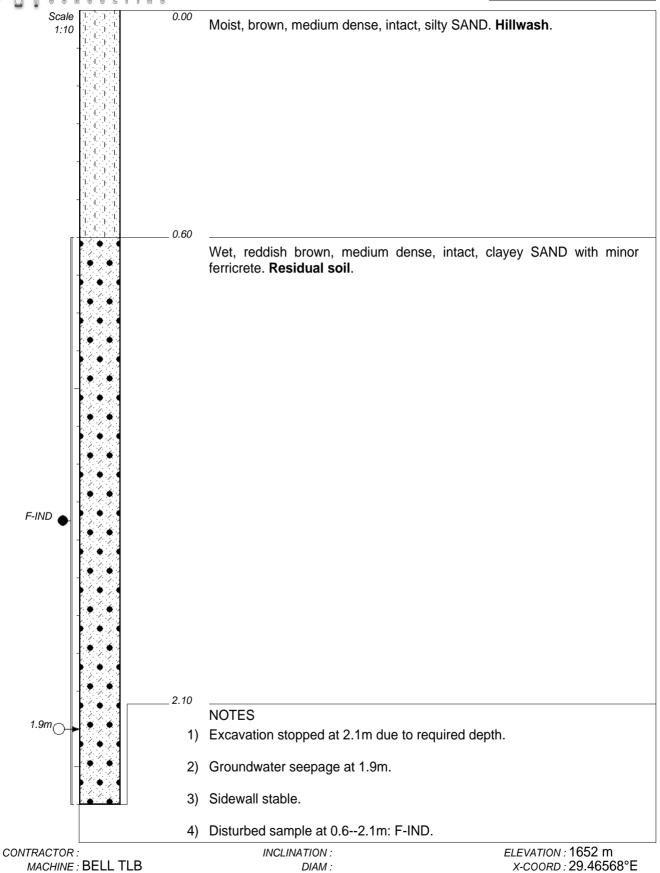
PROFILED BY : Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM : DATE : 22-08-2023

DATE: 20-09-2023

DATE: 06/12/2023 13:50


TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1647 m X-COORD: 29.46486°E Y-COORD: 26.10464°S

HOLE No: KTP26 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

DATE: 22-08-2023

DATE: 20-09-2023

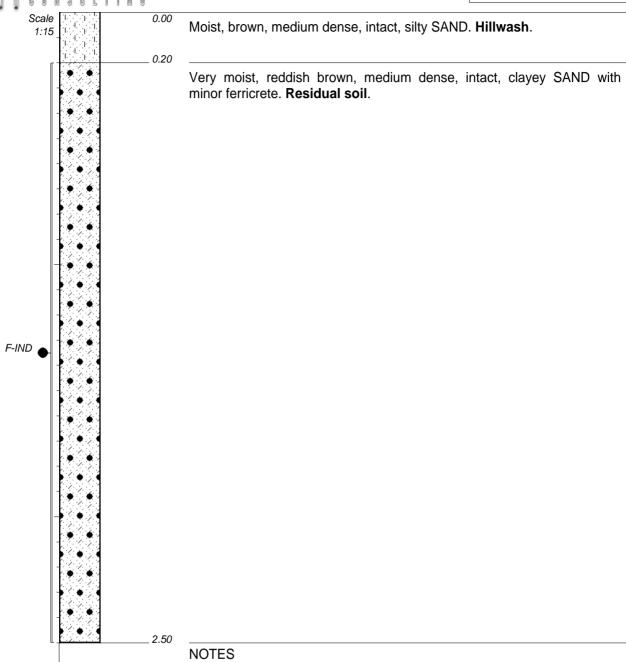
DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya


SETUP FILE: STANDARD.SET

Y-COORD: 26.10768°S

HOLE No: KTP27 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.5m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.2--2.5m: F-IND.

CONTRACTOR:

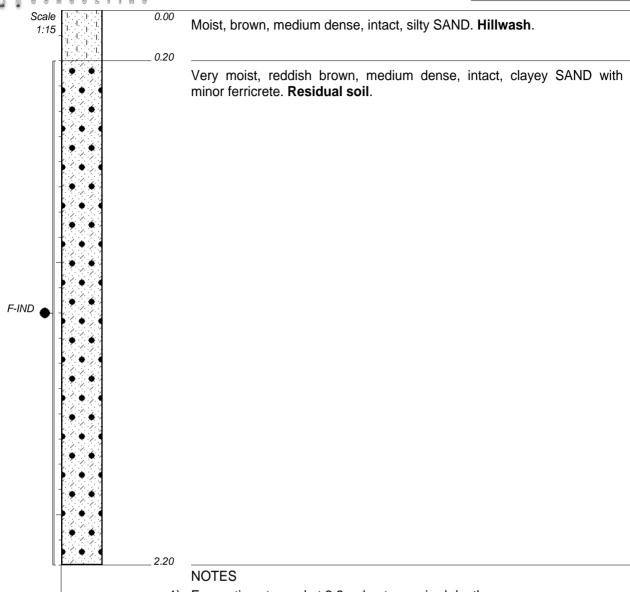
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

DRILLED BY: Xolani Shabangu PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM : DATE : 22-08-2023 DATE : 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1658 m

X-COORD: 29.46493°E Y-COORD: 26.11053°S

HOLE No: KTP28 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.2m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.2--2.2m: F-IND.

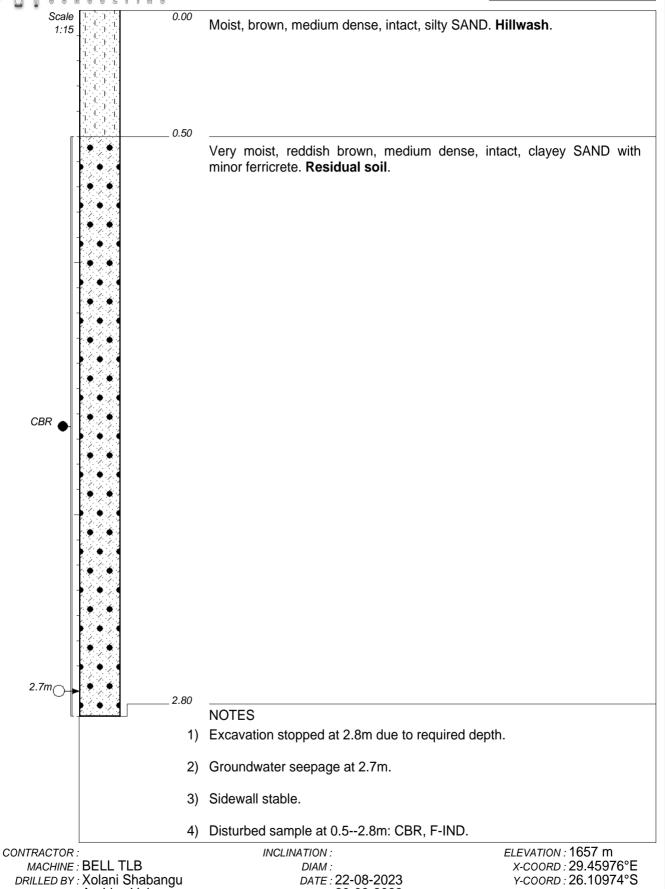
CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION :


DIAM: DATE: 22-08-2023 DATE: 20-09-2023

DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1660 m X-COORD: 29.46242°E Y-COORD: 26.10930°S

HOLE No: KTP29 Sheet 1 of 1

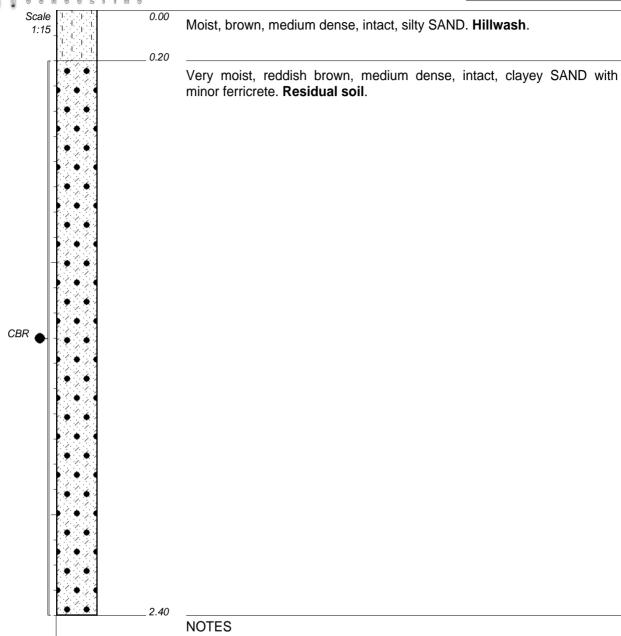
JOB NUMBER: MAK152.08.23

DATE: 20-09-2023

DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt

PROFILED BY: Andries Vukeya


TYPE SET BY: Andries Vukeya

SETUP FILE: STANDARD.SET

HOLE No: KTP30 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.4m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.2--2.4m: CBR, F-IND.

CONTRACTOR: MACHINE: BELL TLB

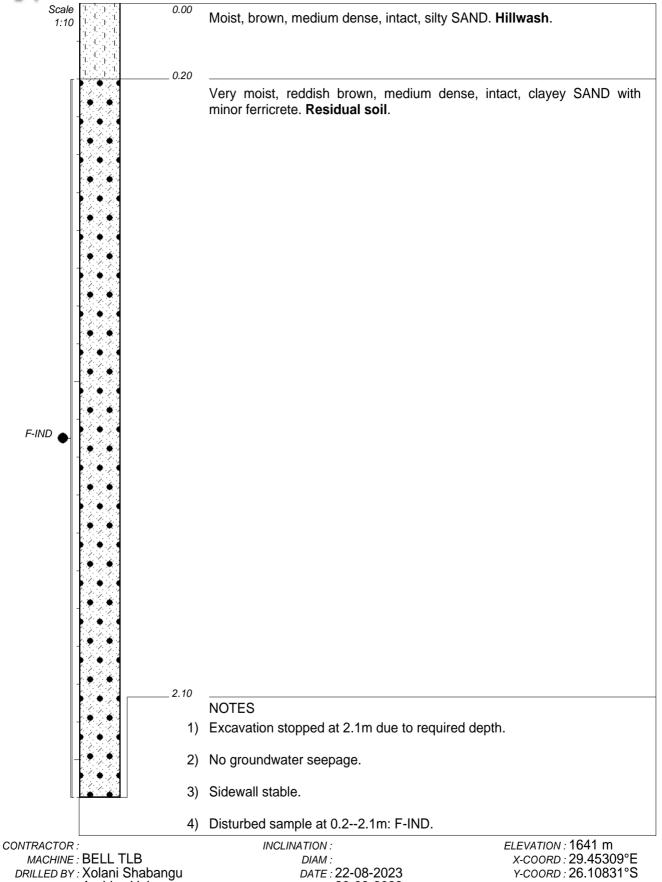
DRILLED BY: Xolani Shabangu PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya SETUP FILE: STANDARD.SET INCLINATION:

DIAM:

DATE: 22-08-2023 DATE: 20-09-2023 DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt


ELEVATION: 1649 m

X-COORD: 29.45623°E Y-COORD: 26.10929°S

HOLE No: KTP31 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

DATE: 20-09-2023

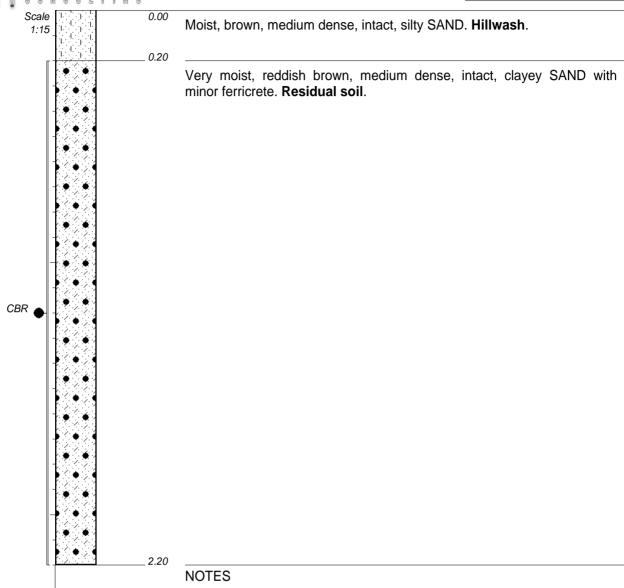
DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya


SETUP FILE: STANDARD.SET

Y-COORD: 26.10831°S

HOLE No: KTP32 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.2m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.2--2.2m: CBR, F-IND.

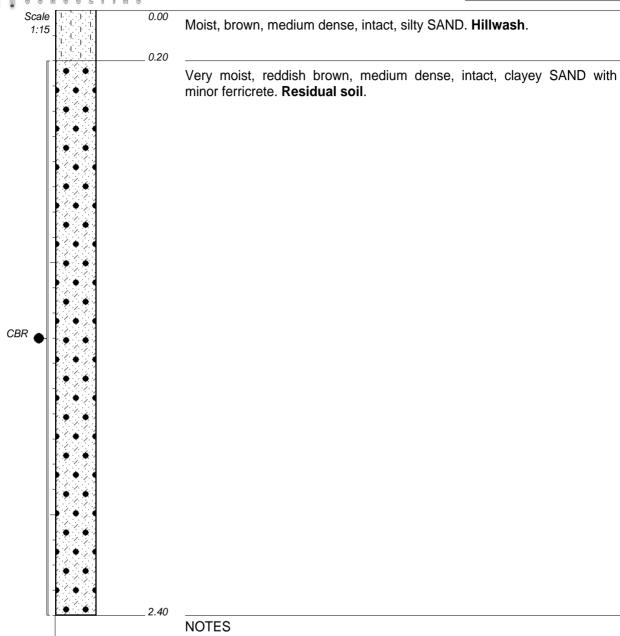
CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:


DIAM: DATE: 22-08-2023 DATE: 20-09-2023

DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1646 m X-COORD: 29.45509°E Y-COORD: 26.10666°S

HOLE No: KTP33 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

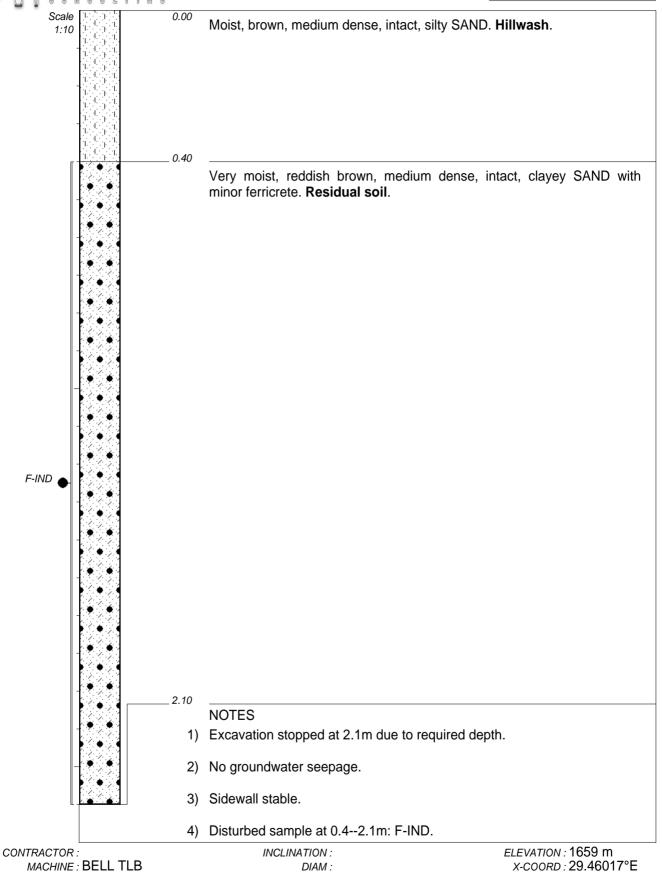
- 1) Excavation stopped at 2.4m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.2--2.4m: CBR, F-IND.

CONTRACTOR: MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM : DATE : 22-08-2023 DATE : 20-09-2023


DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION: 1654 m

X-COORD: 29.45810°E Y-COORD: 26.10634°S

HOLE No: KTP34 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

DATE: 22-08-2023

DATE: 20-09-2023

DATE: 06/12/2023 13:50 TEXT:..ppendixASoilProfiles.txt

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya

SETUP FILE: STANDARD.SET

Y-COORD: 26.10734°S

HOLE No: KTP35 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

NOTES

- 1) Excavation stopped at 2.6m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.2--2.6m: CBR, F-IND.

CONTRACTOR:

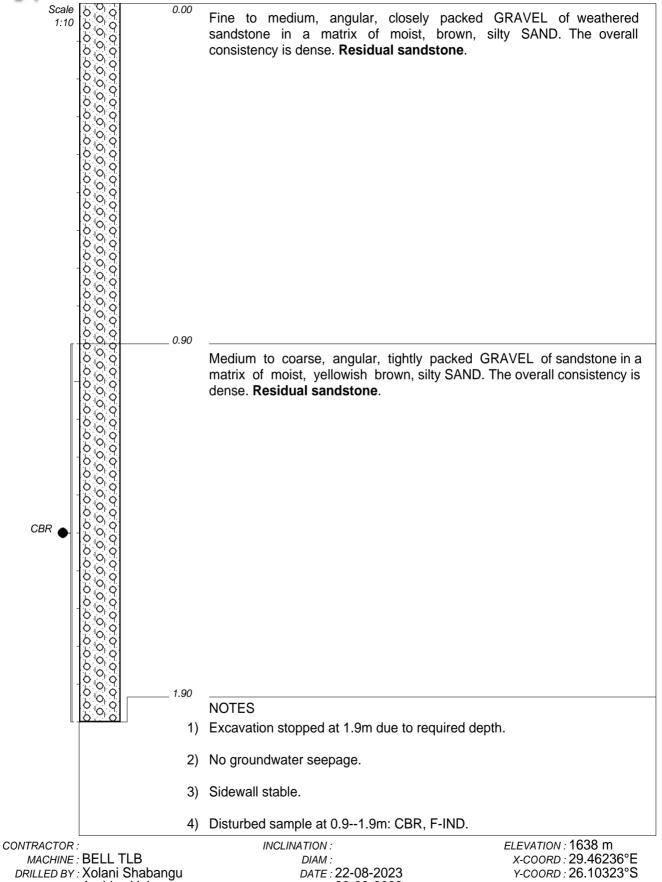
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1656 m X-COORD: 29.46280°E Y-COORD: 26.10676°S

HOLE No: KTP36 Sheet 1 of 1

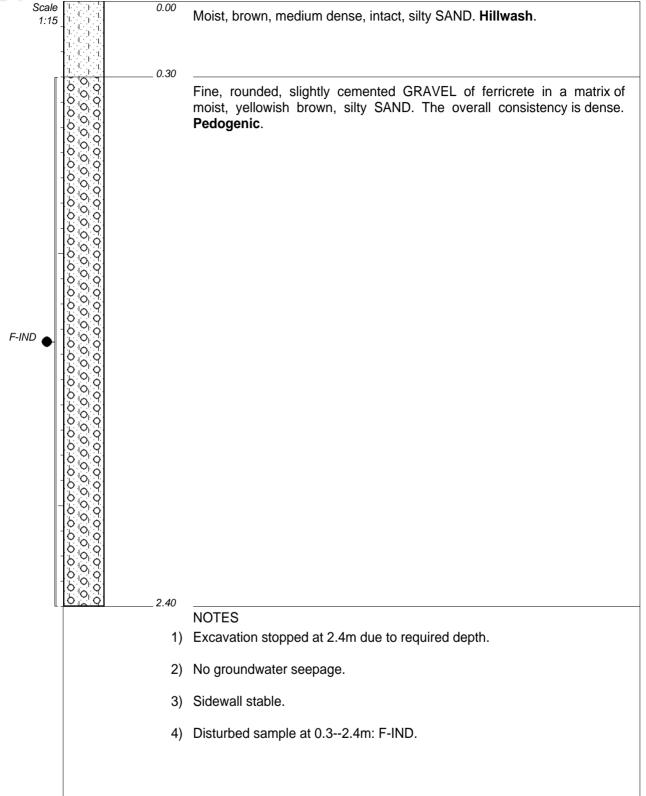
JOB NUMBER: MAK152.08.23

DATE: 20-09-2023

DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt

PROFILED BY: Andries Vukeya


TYPE SET BY: Andries Vukeya

SETUP FILE: STANDARD.SET

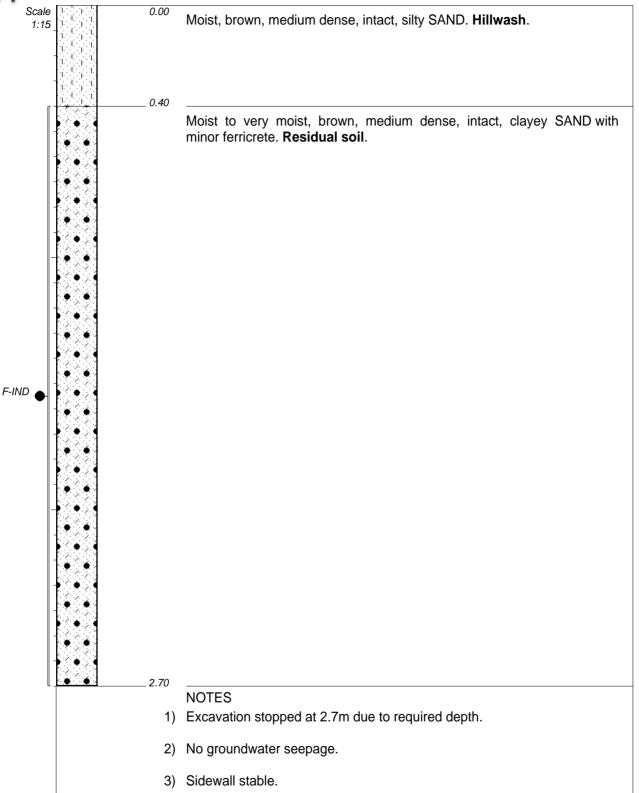
HOLE No: KTP37 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR: MACHINE: BELL TLB DRILLED BY: Xolani Shabangu PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya SETUP FILE: STANDARD.SET INCLINATION:

DIAM: DATE: 22-08-2023 DATE: 20-09-2023 DATE: 06/12/2023 13:50


TEXT: ..ppendixASoilProfiles.txt

ELEVATION: 1648 m X-COORD: 29.45538°E Y-COORD: 26.10548°S

HOLE No: KTP38 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

MACHINE: BELL TLB

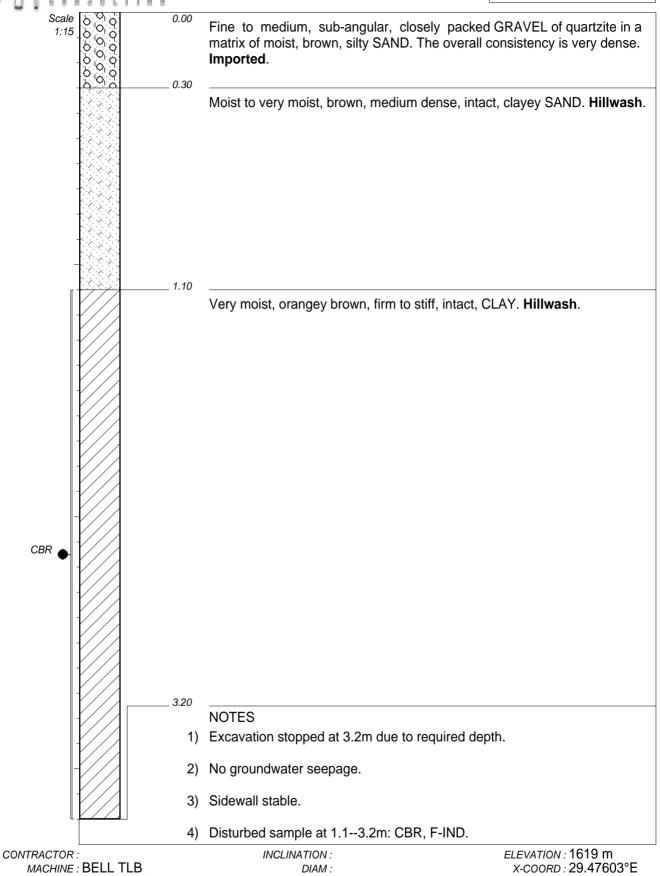
DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

4) Disturbed sample at 0.4--2.7m: F-IND.

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ..ppendixASoilProfiles.txt

ELEVATION : 1656 m X-COORD : 29.45743°E Y-COORD : 26.10744°S

HOLE No: KTP39 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

DATE: 22-08-2023

DATE: 20-09-2023

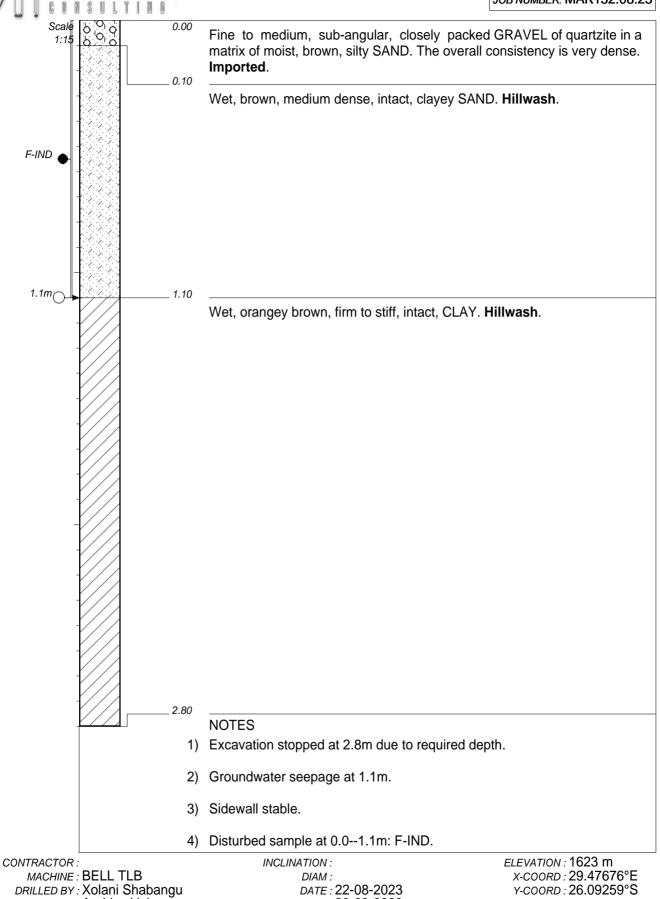
DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya


SETUP FILE: STANDARD.SET

Y-COORD: 26.09237°S

HOLE No: KTP40 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

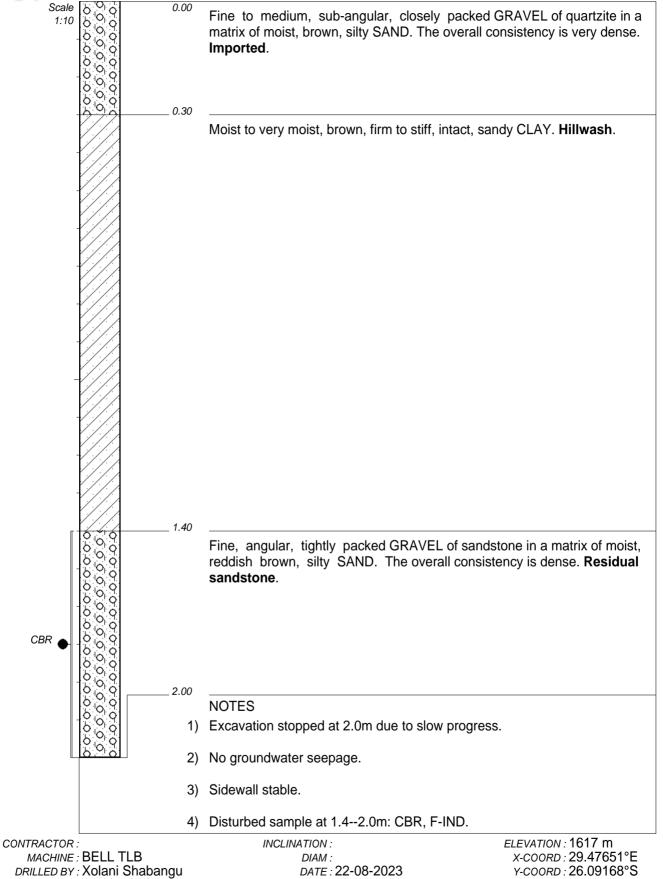
DATE: 20-09-2023

DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt

PROFILED BY: Andries Vukeya

TYPE SET BY: Andries Vukeya


SETUP FILE: STANDARD.SET

Y-COORD: 26.09259°S

HOLE No: KTP41 Sheet 1 of 1

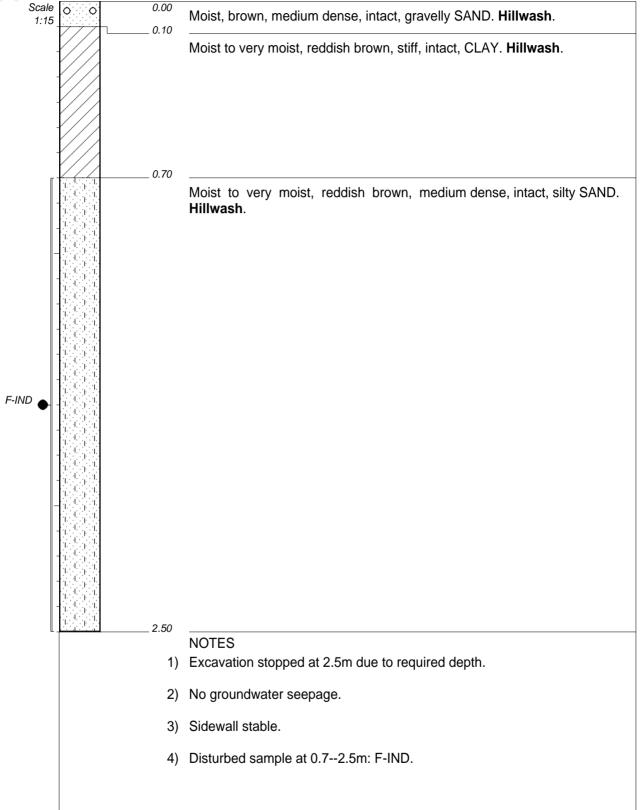
JOB NUMBER: MAK152.08.23

DATE: 20-09-2023

DATE: 06/12/2023 13:50

TEXT: ..ppendixASoilProfiles.txt

PROFILED BY: Andries Vukeya


TYPE SET BY: Andries Vukeya

SETUP FILE: STANDARD.SET

HOLE No: KTP42 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

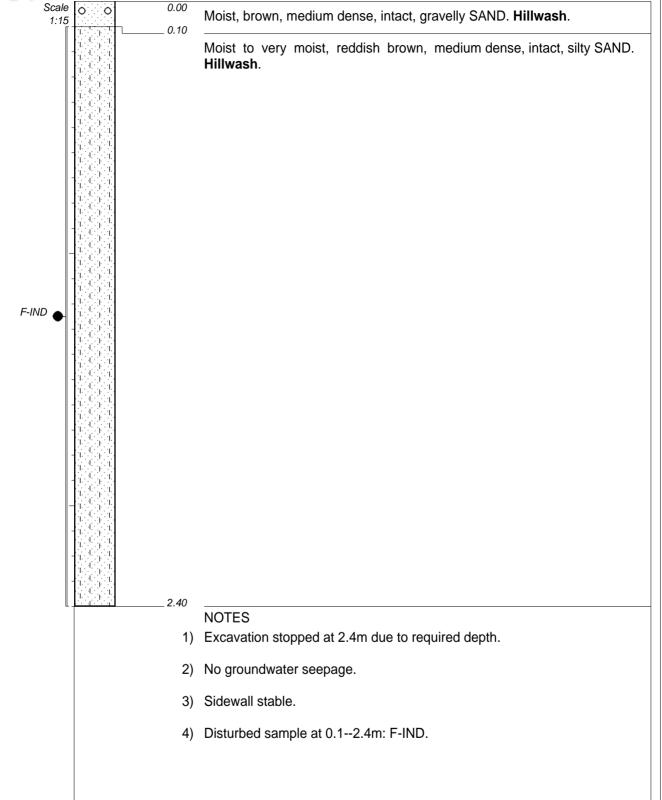
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1616 m X-COORD: 29.46811°E Y-COORD: 26.09134°S

HOLE No: KTP43 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

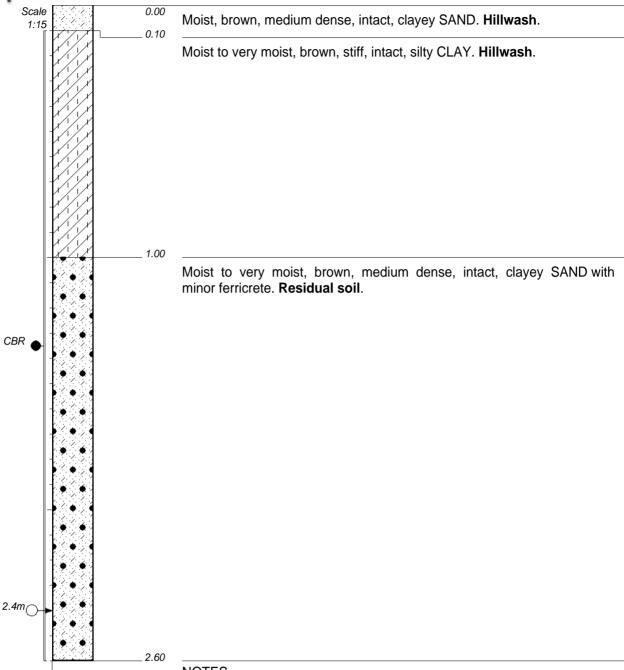
MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ..ppendixASoilProfiles.txt

ELEVATION: 1617 m X-COORD: 29.46880°E Y-COORD: 26.09128°S

HOLE No: KTP44 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

NOTES

- 1) Excavation stopped at 2.4m due to required depth.
- 2) Groundwater seepage at 2.4m.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.1--2.6m: CBR, F-IND.

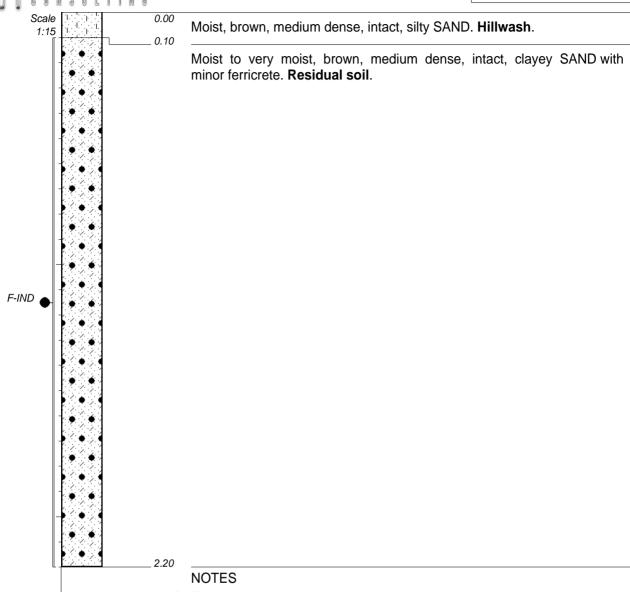
CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu
PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023


DATE: 06/12/2023 13:50
TEXT: ..ppendixASoilProfiles.txt

ELEVATION: 1609 m X-COORD: 29.46712°E Y-COORD: 26.09124°S

HOLE No: KTP45 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

- 1) Excavation stopped at 2.2m due to required depth.
- 2) No groundwater seepage.
- 3) Sidewall stable.
- 4) Disturbed sample at 0.1--2.2m: F-IND.

CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

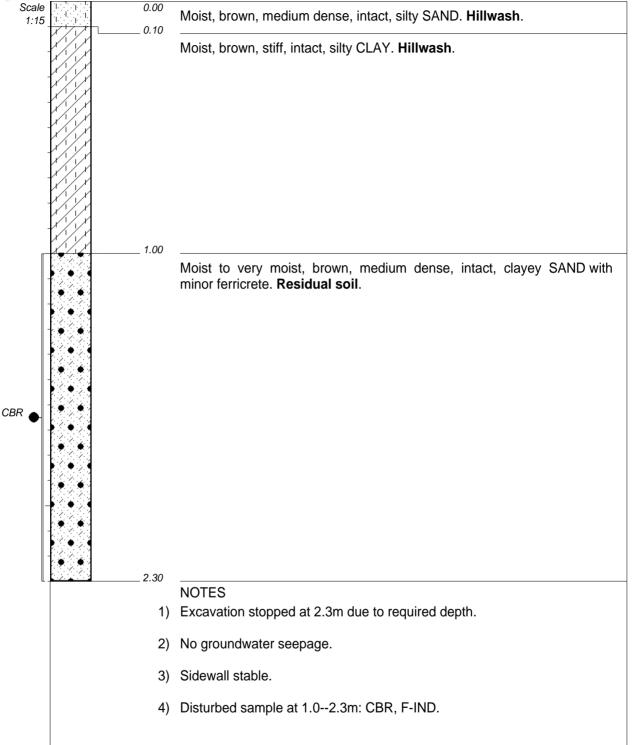
PROFILED BY : Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM : DATE : 22-08-2023

DATE: 20-09-2023

DATE: 06/12/2023 13:50


TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1622 m X-COORD: 29.46832°E Y-COORD: 26.09263°S

HOLE No: KTP46 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

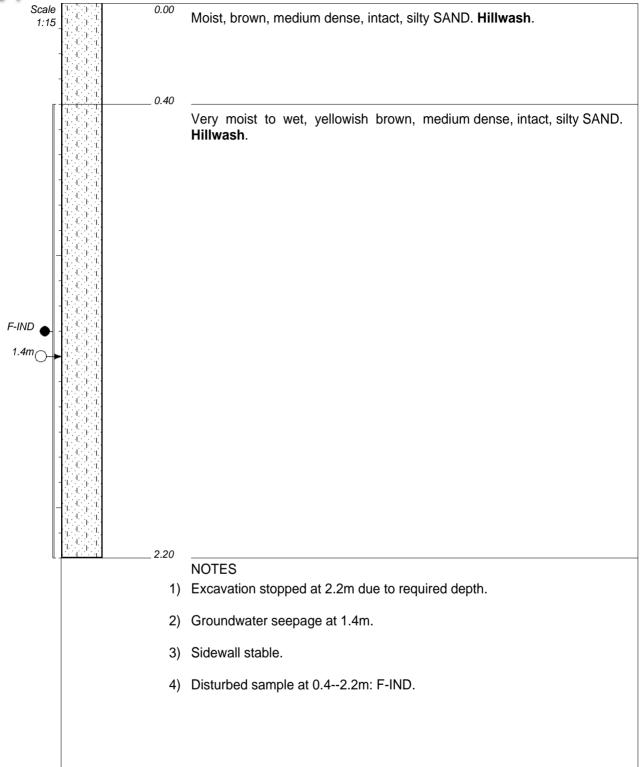
CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION :


DIAM:
DATE: 22-08-2023
DATE: 20-09-2023
DATE: 06/12/2023 13:50

DATE: 06/12/2023 13:50 TEXT: ..ppendixASoilProfiles.txt ELEVATION : 1617 m X-COORD : 29.46762°E Y-COORD : 26.09255°S

HOLE No: KTP47 Sheet 1 of 1

JOB NUMBER: MAK152.08.23

CONTRACTOR:

MACHINE: BELL TLB

DRILLED BY: Xolani Shabangu

PROFILED BY: Andries Vukeya

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET INCLINATION:

DIAM:
DATE: 22-08-2023
DATE: 20-09-2023

DATE: 06/12/2023 13:50
TEXT: ...ppendixASoilProfiles.txt

ELEVATION: 1610 m X-COORD: 29.46650°E Y-COORD: 26.09230°S

APPENDIX B: DYNAMIC CONE PENETROMETER TEST R	RESULTS
(Use and interpretation of the dynamic cone penetrometer test (DCP), Pc et al (2009)	aige-Green
	45 Page

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

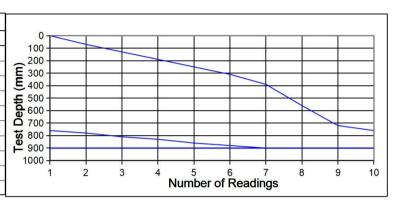
DATE REPORTED: 22/08/2023

DATE TESTED:

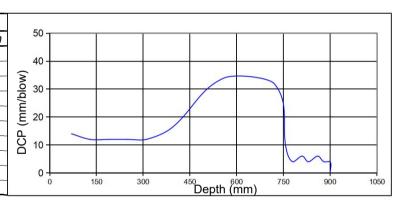
OUR REF: MAK1520823

22/08/2023

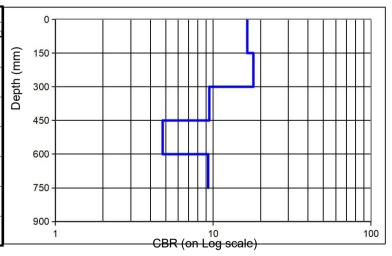
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP1 at TP1


DCP Re	ading	JS			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	70	11	810	21		31		41	
2	130	12	830	22		32		42	
3	190	13	860	23		33		43	
4	250	14	880	24		34		44	
5	310	15	900	25		35		45	
6	390	16		26		36		46	
7	560	17		27		37		47	
8	720	18		28		38		48	
9	760	19		29		39		49	
10	780	20		30		40		50	

DCP nu	mber	(mm	ı / Blo	w) I	NC				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
14	70	6	810						
12	130	4	830						
12	190	6	860						
12	250	4	880						
12	310	4	900						
16	390								
34	560								
32	720								
8	760								
4	780								

	Dep	oth (n	nm)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mr
1	1	-	150	12,9	16	12	12,1
2	151	-	300	12,0	18	13	12,1
3	301	-	450	19,7	9	8	6,0
4	451	-	600	33,4	5	4	0,0
5	601	-	750	20,0	9	8	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

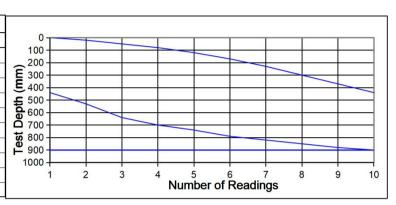
DATE REPORTED: 22/08/2023

DATE TESTED:

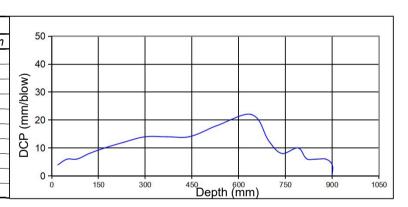
OUR REF: MAK1520823

22/08/2023

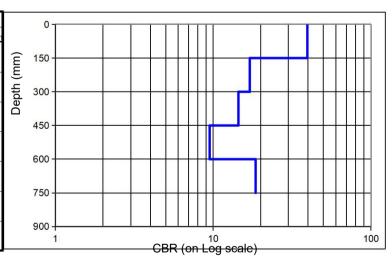
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP2 at TP2


DCP Re	ading	JS			Bl	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	20	11	640	21		31		41	
2	50	12	700	22		32		42	
3	80	13	740	23		33		43	
4	120	14	790	24		34		44	
5	170	15	820	25		35		45	
6	230	16	850	26		36		46	
7	300	17	880	27		37		47	
8	370	18	900	28		38		48	
9	440	19		29		39		49	
10	530	20		30		40		50	

DCP nu	ımber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mn
4	20	22	640						
6	50	12	700						
6	80	8	740						
8	120	10	790						
10	170	6	820						
12	230	6	850						
14	300	6	880						
14	370	4	900						
14	440								
18	530								

	Dep	oth (n	nm)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mr
1	1	-	150	6,5	40	23	17,5
2	151	-	300	12,5	17	12	17,5
3	301	-	450	14,2	14	11	9,1
4	451	-	600	19,7	9	8	3,1
5	601	-	750	11,7	19	13	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

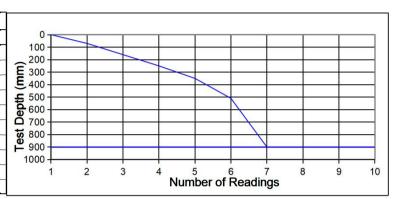
DATE REPORTED: 22/08/2023

DATE TESTED:

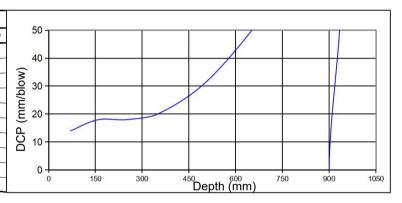
OUR REF: MAK1520823

22/08/2023

PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP3 at TP3


DCP Re	ading	JS			Bl	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	70	11		21		31		41	
2	160	12		22		32		42	
3	250	13		23		33		43	
4	350	14		24		34		44	
5	510	15		25		35		45	
6	900	16		26		36		46	
7		17		27		37		47	
8		18		28		38		48	
9		19		29		39		49	
10		20		30		40		50	

DCP nu	mber	(mm	ı / Blo	w) l	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
14	70								
18	160								
18	250								
20	350								
32	510								
78	900								

	Dep	oth (n	nm)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mr
1	1	-	150	15,9	13	9	8,8
2	151	-	300	18,6	10	8	0,0
3	301	-	450	26,7	6	6	4,3
4	451	-	600	49,5	3	3	4,3
5	601	-	750	78,0	2	2	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mr

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

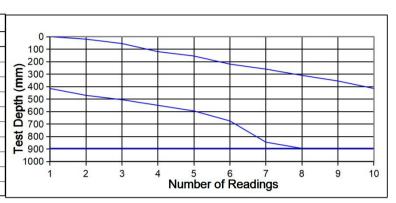
DATE REPORTED: 22/08/2023

DATE TESTED:

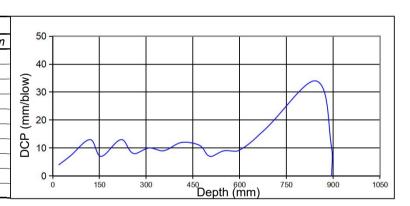
OUR REF: MAK1520823

22/08/2023

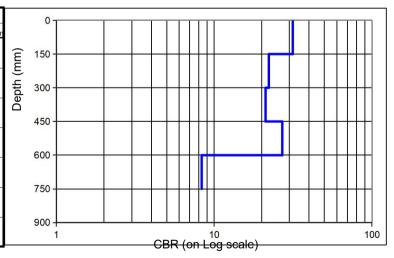
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP4 at TP4


DCP Re	ading	JS			Bl	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	20	11	505	21		31		41	
2	55	12	550	22		32		42	
3	120	13	595	23		33		43	
4	155	14	675	24		34		44	
5	220	15	845	25		35		45	
6	260	16	895	26		36		46	
7	310	17		27		37		47	
8	355	18		28		38		48	
9	415	19		29		39		49	
10	470	20		30		40		50	

DCP nu	ımber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mn
4	20	7	505						
7	55	9	550						
13	120	9	595						
7	155	16	675						
13	220	34	845						
8	260	10	895						
10	310								
9	355								
12	415								
11	470								

	Dep	oth (m	ım)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mm
1	1	-	150	7,8	32	19	17,0
2	151	-	300	10,2	22	15	17,0
3	301	-	450	10,6	21	14	15,7
4	451	-	600	8,8	27	17	15,7
5	601	-	750	21,8	8	7	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

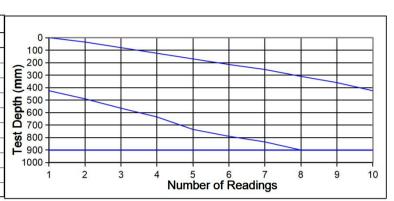
DATE REPORTED: 22/08/2023

DATE TESTED:

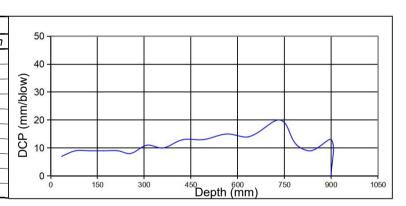
OUR REF: MAK1520823

22/08/2023

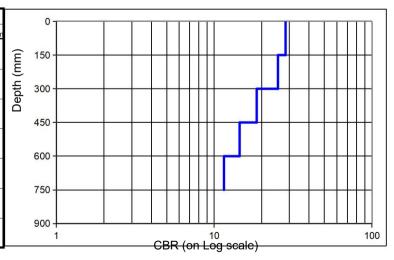
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP5 at TP5


DCP Re	ading	JS	Blows per reading: 5								
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm		
1	35	11	565	21		31		41			
2	80	12	635	22		32		42			
3	125	13	735	23		33		43			
4	170	14	790	24		34		44			
5	215	15	835	25		35		45			
6	255	16	900	26		36		46			
7	310	17		27		37		47			
8	360	18		28		38		48			
9	425	19		29		39		49			
10	490	20		30		40		50			

DCP nui	mber	(mm	/ Blo	w) I	NC				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
7	35	15	565						
9	80	14	635						
9	125	20	735						
9	170	11	790						
9	215	9	835						
8	255	13	900						
11	310								
10	360								
13	425								
13	490								

	Dep	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mm
1	1	-	150	8,4	28	18	17,0
2	151	-	300	9,2	25	16	17,0
3	301	-	450	11,7	19	13	11,7
4	451	-	600	14,2	14	11	11,7
5	601	-	750	16,9	12	9	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mn

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

10

830

20

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

DATE REPORTED: 22/08/2023

DATE TESTED:

OUR REF: MAK1520823

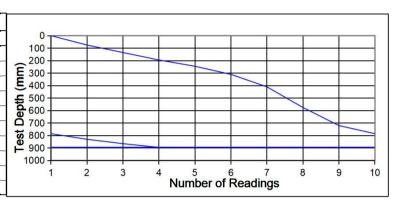
22/08/2023

PROJECT: Geotechnical Investigation: Komati Power Station

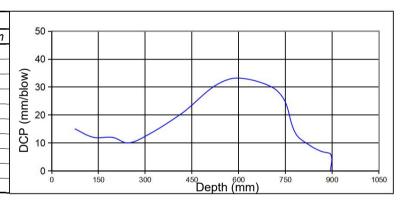
ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM

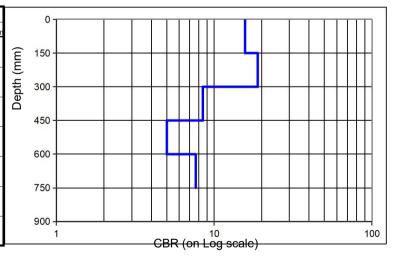
DESCRIPTION: DCP test was done from existing ground level


DCP No: DCP6 at TP6

DCP Re	ading	JS	Blows per reading: 5							
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm	
1	75	11	865	21		31		41		
2	135	12	895	22		32		42		
3	195	13		23		33		43		
4	245	14		24		34		44		
5	310	15		25		35		45		
6	410	16		26		36		46		
7	575	17		27		37		47		
8	720	18		28		38		48		
q	785	19		29		30		49		


30

40


50

DCP nu	mber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
15	75	7	865						
12	135	6	895						
12	195								
10	245								
13	310								
20	410								
33	575								
29	720								
13	785								
9	830								

	Dep	oth (m	ım)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mm
1	1	-	150	13,3	16	11	12,1
2	151	-	300	11,6	19	13	12,1
3	301	-	450	21,5	8	7	5,8
4	451	-	600	32,3	5	5	5,0
5	601	-	750	23,3	8	6	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

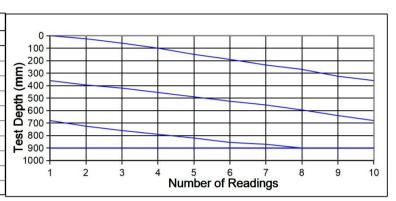
DATE REPORTED: 22/08/2023

DATE TESTED:

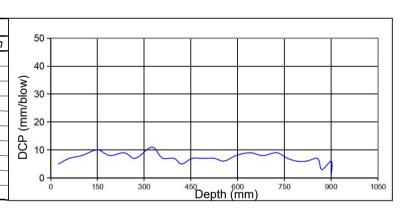
OUR REF: MAK1520823

22/08/2023

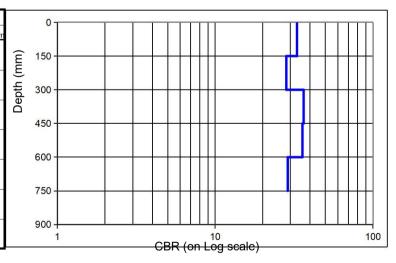
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP7 at TP7


DCP Re	eading	JS			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	25	11	420	21	790	31		41	
2	60	12	455	22	820	32		42	
3	100	13	490	23	855	33		43	
4	150	14	525	24	870	34		44	
5	190	15	555	25	900	35		45	
6	235	16	595	26		36		46	
7	270	17	640	27		37		47	
8	325	18	680	28		38		48	
9	360	19	725	29		39		49	
10	395	20	760	30		40		50	

DCP nu	DCP number (mm / Blow) DN											
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm			
5	25	5	420	6	790							
7	60	7	455	6	820							
8	100	7	490	7	855							
10	150	7	525	3	870							
8	190	6	555	6	900							
9	235	8	595									
7	270	9	640									
11	325	8	680									
7	360	9	725									
7	395	7	760									

	Dep	oth (n	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mn
1	1	-	150	7,5	33	20	18,9
2	151	-	300	8,5	28	18	10,9
3	301	-	450	7,0	36	22	21,4
4	451	-	600	7,1	36	21	21,4
5	601	-	750	8,3	29	18	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

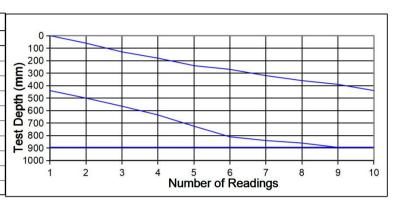
DATE REPORTED: 22/08/2023

DATE TESTED:

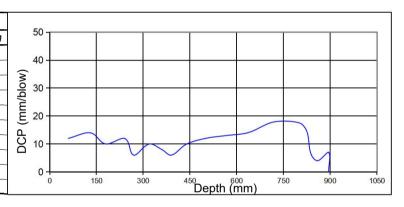
OUR REF: MAK1520823

22/08/2023

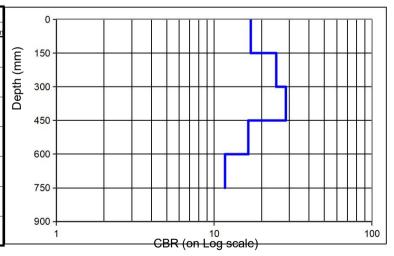
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP8 at TP8


DCP Re	ading	JS	Blows per reading: 5							
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm	
1	60	11	565	21		31		41		
2	130	12	635	22		32		42		
3	180	13	725	23		33		43		
4	240	14	810	24		34		44		
5	270	15	840	25		35		45		
6	320	16	860	26		36		46		
7	360	17	895	27		37		47		
8	390	18		28		38		48		
9	440	19		29		39		49		
10	500	20		30		40		50		

DCP nu	DCP number (mm / Blow) DN											
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm			
12	60	13	565									
14	130	14	635									
10	180	18	725									
12	240	17	810									
6	270	6	840									
10	320	4	860									
8	360	7	895									
6	390											
10	440											
12	500											

	oth (m	nm)		In situ	Blows	s/mm	
no.	From -		Το	DN	CBR	150mm	300mm
1	1	-	150	12,5	17	12	14,0
2	151	-	300	9,4	25	16	14,0
3	301	-	450	8,4	28	18	14,8
4	451	-	600	12,9	16	12	14,0
5	601	-	750	16,7	12	9	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				_
14	1801	-	1950				
15	1951	-	2100				_

REMARKS:

Max penetration depth

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

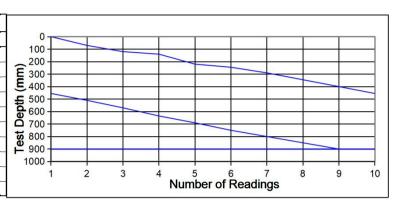
DATE REPORTED: 22/08/2023

DATE TESTED:

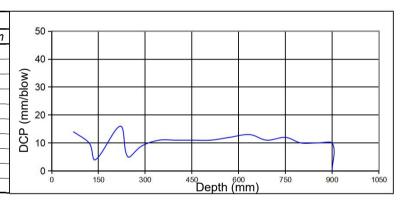
OUR REF: MAK1520823

22/08/2023

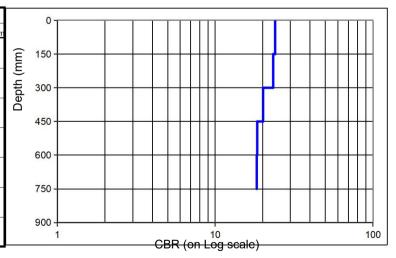
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP9 at TP9


DCP Readings			Blows per reading: 5							
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm	
1	70	11	570	21		31		41		
2	120	12	635	22		32		42		
3	140	13	690	23		33		43		
4	220	14	750	24		34		44		
5	245	15	800	25		35		45		
6	290	16	850	26		36		46		
7	345	17	900	27		37		47		
8	400	18		28		38		48		
9	455	19		29		39		49		
10	510	20		30		40		50		

DCP number (mm / Blow) DN										
DN	mm	DN	mm	DN	mm	DN	mm	DN	mn	
14	70	12	570							
10	120	13	635							
4	140	11	690							
16	220	12	750							
5	245	10	800							
9	290	10	850							
11	345	10	900							
11	400									
11	455									
11	510									

	Donth (mm)				In situ	Blows/mm		
	Depth (mm)					BIOWS	s/mm	
no.	From	-	То	DN	CBR	150mm	300mn	
1	1	-	150	9,6	24	16	15,5	
2	151	-	300	9,8	23	15	13,3	
3	301	-	450	11,0	20	14	13,2	
4	451	-	600	11,8	18	13	13,2	
5	601	-	750	11,8	18	13		
6	751	-	900					
8	901	-	1050					
9	1051	-	1200					
10	1201	-	1350					
11	1351	-	1500					
12	1501	-	1650					
13	1651	-	1800					
14	1801	-	1950					
15	1951	-	2100					

REMARKS:

Max penetration depth 900 mn

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

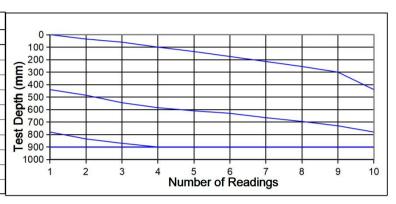
BY TEST METHOD TMH6-ST6

DATE REPORTED: 22/08/2023

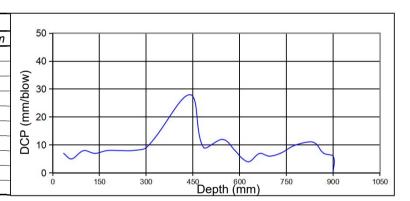
OUR REF: MAK1520823

PROJECT: Geotechnical Investigation: Komati Power Station

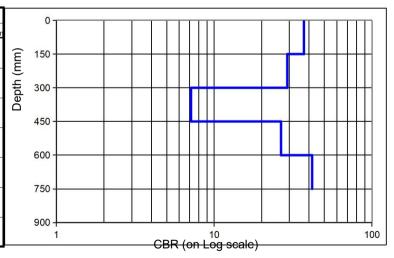
ATTENTION: Eskom Tel/Email: 031 350 3370


CLIENT: ESKOM

DESCRIPTION: DCP test was done from existing ground level


DCP No: DCP10 at TP10

DATE	TESTED:	22/08/2023


DCP Re	ading	JS			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	35	11	545	21	900	31		41	
2	60	12	585	22		32		42	
3	100	13	610	23		33		43	
4	135	14	630	24		34		44	
5	175	15	665	25		35		45	
6	215	16	695	26		36		46	
7	255	17	730	27		37		47	
8	300	18	780	28		38		48	
9	440	19	835	29		39		49	
10	485	20	870	30		40		50	
		·				·			

DCP nu	mber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mn
7	35	12	545	6	900				
5	60	8	585						
8	100	5	610						
7	135	4	630						
8	175	7	665						
8	215	6	695						
8	255	7	730						
9	300	10	780						
28	440	11	835						
9	485	7	870						

	Dep	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mm
1	1	-	150	6,9	37	22	20,0
2	151	-	300	8,3	29	18	20,0
3	301	-	450	24,5	7	6	11,5
4	451	-	600	8,9	27	17	11,5
5	601	-	750	6,3	42	24	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

DATE REPORTED: 22/08/2023

DATE TESTED:

OUR REF: MAK1520823

22/08/2023

10

PROJECT: Geotechnical Investigation: Komati Power Station

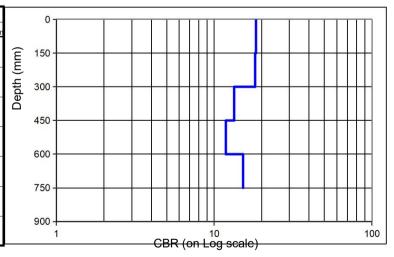
ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM

DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP11 at TP11

0 - 100 -					
100 - 200 - 300 - 400 -					
E 400 -					
000 - 700 - 700 -					
700 -					
- 008			2		


Number of Readings

DCP Re	ading	JS			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	70	11	745	21		31		41	
2	120	12	820	22		32		42	
3	175	13	855	23		33		43	
4	235	14	895	24		34		44	
5	295	15		25		35		45	
6	370	16		26		36		46	
7	445	17		27		37		47	
8	535	18		28		38		48	
9	610	19		29		39		49	
10	685	20		30		40		50	

DCP nu	mber	(mm	/ Blo	w) l	DN				3	
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm	50
14	70	12	745							40
10	120	15	820							17-51
11	175	7	855							Ño 30 -
12	235	8	895							
12	295									Ē 20
15	370									
15	445									0 10
18	535									
15	610									0
15	685									0 150 300 450 600 750 900 1050 Depth (mm)

1000

	Dep	oth (m	ım)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mm
1	1	-	150	11,8	18	13	12,7
2	151	-	300	11,9	18	13	12,7
3	301	-	450	15,1	13	10	9,5
4	451	-	600	16,6	12	9	9,5
5	601	-	750	13,6	15	11	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 8

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

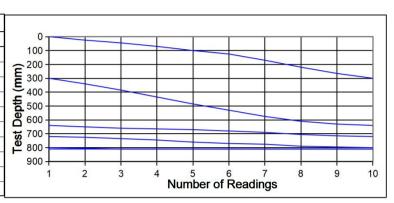
DATE REPORTED: 22/08/2023

DATE TESTED:

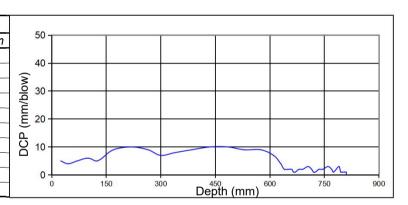
OUR REF: MAK1520823

22/08/2023

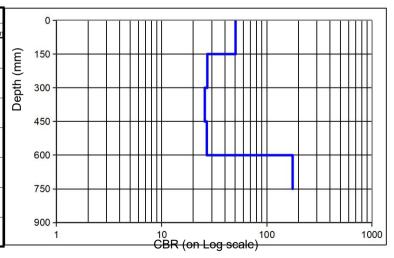
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP12 at TP12


DCP Re	ading	JS		Blows per reading: 5							
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm		
1	25	11	385	21	665	31	760	41			
2	45	12	435	22	670	32	770	42			
3	70	13	485	23	680	33	775	43			
4	100	14	530	24	690	34	790	44			
5	125	15	575	25	705	35	795	45			
6	170	16	610	26	715	36	800	46			
7	220	17	630	27	720	37	805	47			
8	265	18	640	28	725	38	810	48			
9	300	19	650	29	735	39		49			
10	340	20	660	30	745	40		50			

5 25 9 385 1 665 3 760 4 45 10 435 1 670 2 770 5 70 10 485 2 680 1 775 6 100 9 530 2 690 3 790										
5 25 9 385 1 665 3 760 4 45 10 435 1 670 2 770 5 70 10 485 2 680 1 775 6 100 9 530 2 690 3 790	DCP nui	mber	P number (mn	ı / Blo	w) [ON				
4 45 10 435 1 670 2 770 5 70 10 485 2 680 1 775 6 100 9 530 2 690 3 790	DN	mm	DN mm DN	mm	DN	mm	DN	mm	DN	mn
5 70 10 485 2 680 1 775 6 100 9 530 2 690 3 790	5	25	5 25 9	385	1	665	3	760		
6 100 9 530 2 690 3 790	4	45	4 45 10	435	1	670	2	770		
	5	70	5 70 10	485	2	680	1	775		
5 125 9 575 3 705 1 795	6	100	6 100 9	530	2	690	3	790		
	5	125	5 125 9	575	3	705	1	795		
9 170 7 610 2 715 1 800	9	170	9 170 7	610	2	715	1	800		
10 220 4 630 1 720 1 805	10	220	10 220 4	630	1	720	1	805		
9 265 2 640 1 725 1 810	9	265	9 265 2	640	1	725	1	810		
7 300 2 650 2 735	7	300	7 300 2	650	2	735				
8 340 2 660 2 745	8	340	8 340 2	660	2	745				

-					1	1	
	Dep	oth (n	ım)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mm
1	1	-	150	5,4	50	28	22,5
2	151	-	300	8,7	27	17	22,5
3	301	-	450	9,1	26	17	16,8
4	451	-	600	8,8	27	17	10,0
5	601	-	750	2,1	176	73	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 810 mi

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

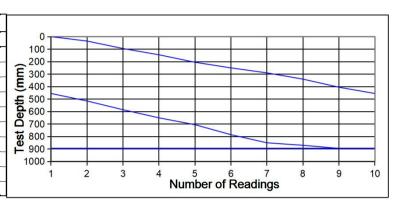
DATE REPORTED: 22/08/2023

DATE TESTED:

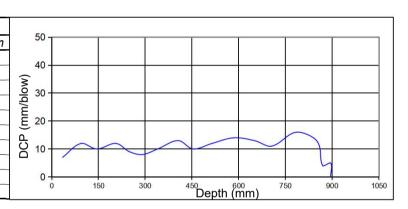
OUR REF: MAK1520823

22/08/2023

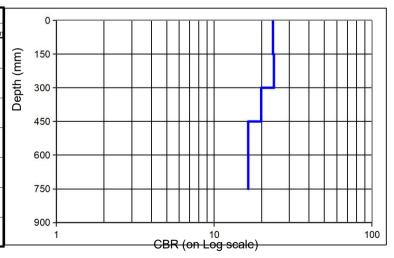
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP13 at TP13


DCP Re	ading	JS	Blows per reading: 5							
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm	
1	35	11	585	21		31		41		
2	95	12	650	22		32		42		
3	145	13	705	23		33		43		
4	205	14	785	24		34		44		
5	250	15	850	25		35		45		
6	290	16	870	26		36		46		
7	340	17	895	27		37		47		
8	405	18		28		38		48		
9	455	19		29		39		49		
10	515	20		30		40		50		

DCP nu	ımber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
7	35	14	585						
12	95	13	650						
10	145	11	705						
12	205	16	785						
9	250	13	850						
8	290	4	870						
10	340	5	895						
13	405								
10	455								
12	515								

	Der	th (m	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mm
1	1	-	150	9,7	24	15	15,5
2	151	-	300	9,6	24	16	15,5
3	301	-	450	11,1	20	14	12,6
4	451	-	600	12,9	16	12	12,0
5	601	-	750	12,9	16	12	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

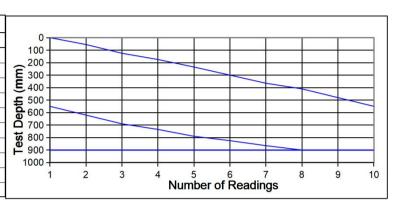
DATE REPORTED: 22/08/2023

DATE TESTED:

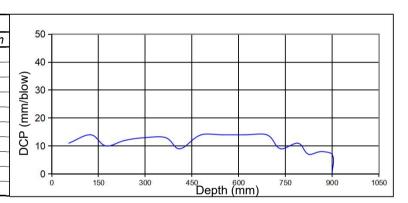
OUR REF: MAK1520823

22/08/2023

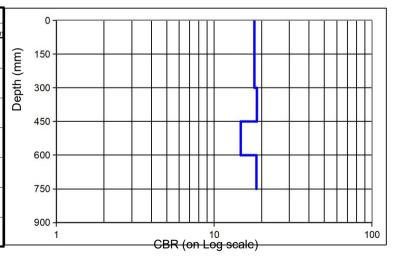
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP14 at TP14


DCP Re	ading	JS			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	55	11	690	21		31		41	
2	125	12	735	22		32		42	
3	175	13	790	23		33		43	
4	235	14	825	24		34		44	
5	300	15	865	25		35		45	
6	365	16	900	26		36		46	
7	410	17		27		37		47	
8	480	18		28		38		48	
9	550	19		29		39		49	
10	620	20		30		40		50	

	er	(mm	/ Blo	w) [JNI							
DM		DCP number (mm / Blow) DN										
DN m	m	DN	mm	DN	mm	DN	mm	DN	mn			
11 5	5	14	690	i								
14 12	25	9	735	İ								
10 17	75	11	790									
12 23	35	7	825									
13 30	00	8	865									
13 36	35	7	900									
9 4	10											
14 48	30											
14 5	50											
14 62	20											

	Der	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	Το	DN	CBR	150mm	300mm
1	1	-	150	12,0	18	13	40.5
2	151	-	300	12,0	18	13	12,5
3	301	-	450	11,7	19	13	11,8
4	451	-	600	14,0	15	11	11,0
5	601	-	750	11,7	19	13	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mr

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

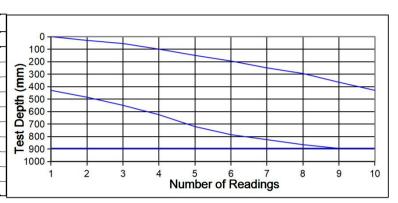
DATE REPORTED: 22/08/2023

DATE TESTED:

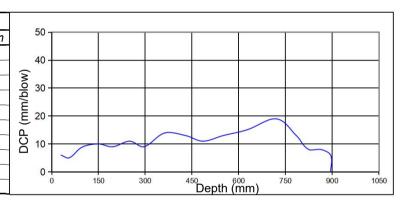
OUR REF: MAK1520823

22/08/2023

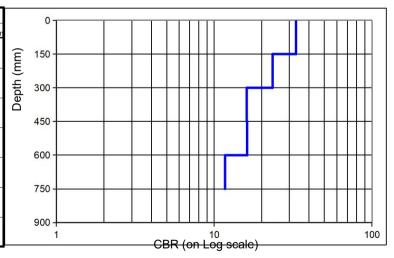
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP15 at TP15


DCP Re	ading	JS			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	30	11	550	21		31		41	
2	55	12	625	22		32		42	
3	100	13	720	23		33		43	
4	150	14	785	24		34		44	
5	195	15	825	25		35		45	
6	250	16	865	26		36		46	
7	295	17	895	27		37		47	
8	365	18		28		38		48	
9	430	19		29		39		49	
10	485	20		30		40		50	

DCP nu	mber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
6	30	13	550						
5	55	15	625						
9	100	19	720						
10	150	13	785						
9	195	8	825						
11	250	8	865						
9	295	6	895						
14	365								
13	430								
11	485								

	Dep	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mn
1	1	-	150	7,5	33	20	17,7
2	151	-	300	9,8	23	15	'','
3	301	-	450	13,1	16	11	11,5
4	451	-	600	13,0	16	12	11,3
5	601	-	750	16,7	12	9	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

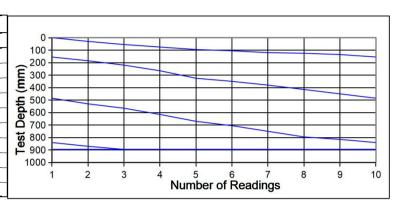
DATE REPORTED: 22/08/2023

DATE TESTED:

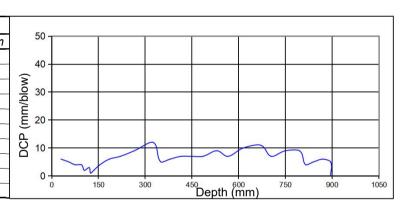
OUR REF: MAK1520823

22/08/2023

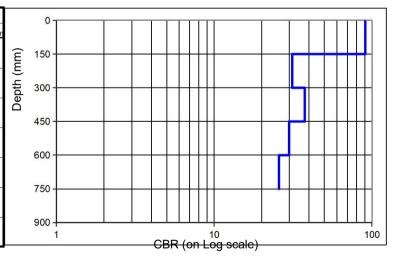
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP16 at TP16


DCP Re	ading	JS		Blows per reading: 5							
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm		
1	30	11	220	21	615	31		41			
2	55	12	265	22	670	32		42			
3	75	13	325	23	705	33		43			
4	95	14	350	24	750	34		44			
5	105	15	380	25	795	35		45			
6	120	16	415	26	815	36		46			
7	125	17	450	27	840	37		47			
8	135	18	485	28	870	38		48			
9	155	19	530	29	895	39		49			
10	185	20	565	30		40		50			

DCP nu	mber	(mm	ı / Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mn
6	30	7	220	10	615				
5	55	9	265	11	670				
4	75	12	325	7	705				
4	95	5	350	9	750				
2	105	6	380	9	795				
3	120	7	415	4	815				
1	125	7	450	5	840				
2	135	7	485	6	870				
4	155	9	530	5	895				
6	185	7	565						

	Dep	oth (n	ım)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mm
1	1	-	150	3,4	91	44	31,5
2	151	-	300	7,8	31	19	31,5
3	301	-	450	6,8	38	22	20,3
4	451	-	600	8,1	30	19	20,3
5	601	-	750	9,1	26	17	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

DCP Readings

no.

mm

Email: info@bavconsulting.co.za

Rea: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

DATE REPORTED: 22/08/2023

DATE TESTED:

OUR REF: MAK1520823

22/08/2023

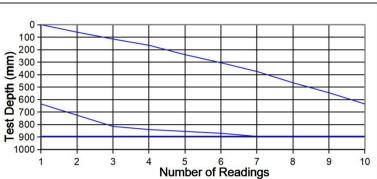
PROJECT: Geotechnical Investigation: Komati Power Station

mm

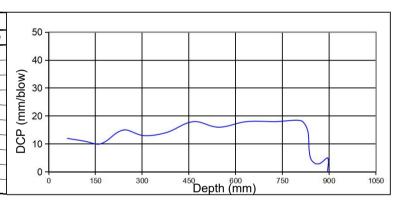
ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM

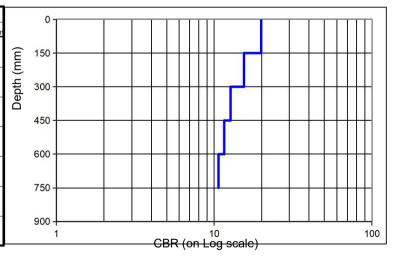
DESCRIPTION: DCP test was done from existing ground level


no.

DCP No: DCP17 at TP17


no.

mm


ВІ	ows p	er rea	ding:	5			
n	no.	mm	no.	mm	0 7		\neg
	31		41		100 - 200 -		
	32		42		£ 300		
	33		43		300 -		_
	34		44		⊊ 500 -	+	+
	35		45		900 - 007 Oet		\dashv
	36		46		700		
	37		47		900 -		
	38		48		1000	+	_
	30		40		I 4	2	2

DCP nu	DCP number (mm / Blow) DN													
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm					
12	60	18	815											
11	115	5	840											
10	165	3	855											
15	240	3	870											
13	305	5	895											
14	375													
18	465													
16	545													
18	635													
18	725													

	Dep	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mm
1	1	-	150	11,1	20	14	12,3
2	151	-	300	13,5	15	11	12,3
3	301	-	450	15,7	13	10	9,2
4	451	-	600	16,9	12	9	9,2
5	601	-	750	18,0	11	8	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

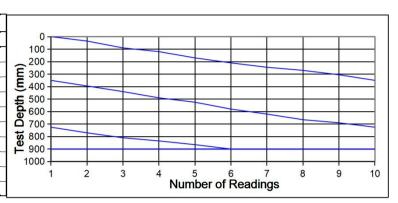
DATE REPORTED: 22/08/2023

DATE TESTED:

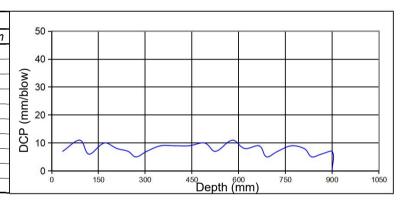
OUR REF: MAK1520823

22/08/2023

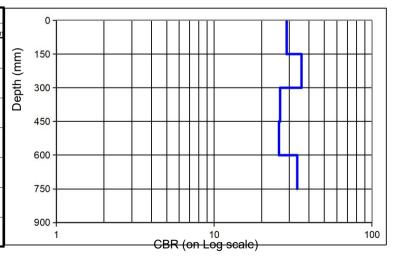
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP1 at TP1


DCP Re	ading	JS	Blows per reading: 5								
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm		
1	35	11	440	21	835	31		41			
2	90	12	490	22	865	32		42			
3	120	13	525	23	900	33		43			
4	170	14	580	24		34		44			
5	210	15	620	25		35		45			
6	245	16	665	26		36		46			
7	270	17	690	27		37		47			
8	305	18	725	28		38		48			
9	350	19	770	29		39		49			
10	395	20	810	30		40		50			

DCP nu	mber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mn
7	35	9	440	5	835				
11	90	10	490	6	865				
6	120	7	525	7	900				
10	170	11	580						
8	210	8	620						
7	245	9	665						
5	270	5	690						
7	305	7	725						
9	350	9	770						
9	395	8	810						

	Dep	th (n	nm)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mn
1	1	-	150	8,3	29	18	19,6
2	151	-	300	7,0	36	21	19,0
3	301	-	450	9,0	26	17	16,6
4	451	-	600	9,1	26	17	10,0
5	601	-	750	7,4	34	20	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mn

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

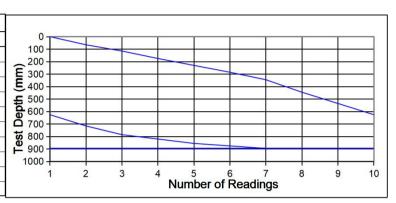
DATE REPORTED: 22/08/2023

DATE TESTED:

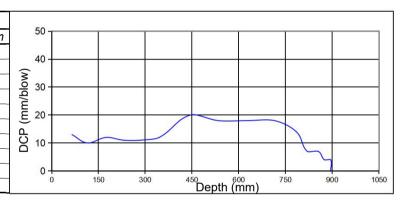
OUR REF: MAK1520823

22/08/2023

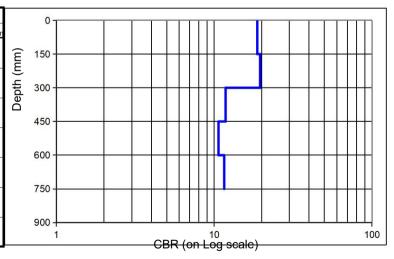
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP19 at TP19


DCP Re	ading	js	Blows per reading: 5								
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm		
1	65	11	785	21		31		41			
2	115	12	820	22		32		42			
3	175	13	855	23		33		43			
4	230	14	875	24		34		44			
5	285	15	895	25		35		45			
6	345	16		26		36		46			
7	445	17		27		37		47			
8	535	18		28		38		48			
9	625	19		29		39		49			
10	715	20		30		40		50			

DCP nu	DCP number (mm / Blow) DN													
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm					
13	65	14	785											
10	115	7	820											
12	175	7	855											
11	230	4	875											
11	285	4	895											
12	345													
20	445													
18	535													
18	625													
18	715													

	Dep	oth (n	nm)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mr
1	1	-	150	11,6	19	13	13,1
2	151	-	300	11,3	20	13	13,1
3	301	-	450	16,6	12	9	0.7
4	451	-	600	18,0	11	8	8,7
5	601	-	750	16,9	12	9	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

DATE REPORTED: 22/08/2023

DATE TESTED:

OUR REF: MAK1520823

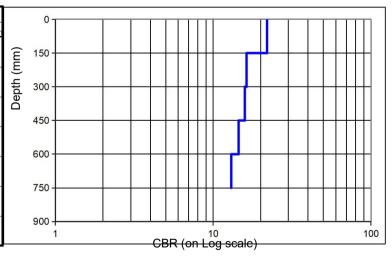
22/08/2023

PROJECT: Geotechnical Investigation: Komati Power Station

ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM

DESCRIPTION: DCP test was done from existing ground level


DCP No: DCP20 at TP20

	0 - 100 - 200 -									
(mm) thus	300 - 400 -									
Test Denth	700 - 800 - 900 -									
1	1000	1	2	3	4 Num	ber of l	¦ R <mark>eadi</mark> n	7 (I gs	3 9	10

DCP Re	ading	JS	Blows per reading: 5							
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm	
1	55	11	705	21		31		41		
2	95	12	785	22		32		42		
3	155	13	815	23		33		43		
4	215	14	855	24		34		44		
5	285	15	895	25		35		45		
6	350	16		26		36		46		
7	415	17		27		37		47		
8	485	18		28		38		48		
9	560	19		29		39		49		
10	625	20		30		40		50		

DCP nu	mber	(mm	/ Blo	w) l	DN					
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm	50
11	55	16	705							40
8	95	16	785							17-1
12	155	6	815							<u>∞</u> 30
12	215	8	855							
14	285	8	895							20
13	350									
13	415									Ö 10
14	485									
15	560									0
13	625									0 150 300 450 600 750 900 1050 Depth (mm)

	Don	th (n	a ma 1		In oitu	Play	2/102/102
		th (n	1m)		In situ	Blows	S/MM
no.	From	-	То	DN	CBR	150mm	300mr <u>r</u>
1	1	-	150	10,3	22	15	13,1
2	151	-	300	13,0	16	12	13,1
3	301	-	450	13,2	16	11	11,0
4	451	-	600	14,2	14	11	11,0
5	601	-	750	15,4	13	10	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Rev 0 2015.11.19

Max penetration depth

895

.....

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

MST013/1

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

DATE REPORTED: 22/08/2023

DATE TESTED:

OUR REF: MAK1520823

22/08/2023

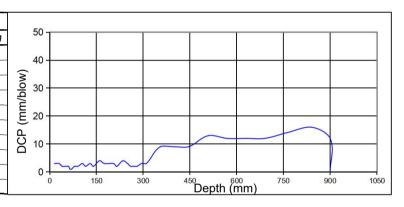
10

PROJECT: Geotechnical Investigation: Komati Power Station

ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM

DESCRIPTION: DCP test was done from existing ground level


DCP No: DCP41 at TP41

0 - 100 -					
100 - 200 - 300 - 400 -					
£ 400 -					
Test Depth (500 - 700 - 700 - 900 -					
900 -					
1000 -					


Number of Readings

DCP Re	ading	JS			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	15	11	115	21	260	31	630	41	
2	30	12	130	22	270	32	690	42	
3	40	13	140	23	280	33	760	43	
4	50	14	160	24	295	34	840	44	
5	60	15	175	25	310	35	900	45	
6	65	16	190	26	355	36		46	
7	70	17	205	27	400	37		47	
8	80	18	215	28	445	38		48	
9	90	19	235	29	510	39		49	
10	105	20	250	30	570	40		50	
		·						•	

DCP nu	mber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
3	15	2	115	2	260	12	630		
3	30	3	130	2	270	12	690		
2	40	2	140	2	280	14	760		
2	50	4	160	3	295	16	840		
2	60	3	175	3	310	12	900		
1	65	3	190	9	355				
1	70	3	205	9	400				
2	80	2	215	9	445				
2	90	4	235	13	510				
3	105	3	250	12	570				

	Der	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mn
1	1	-	150	2,2	159	68	
2	151	-	300	2,8	120	54	60,8
3	301	-	450	8,0	30	19	15,4
4	451	-	600	12,4	17	12	15,4
5	601	-	750	12,7	17	12	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

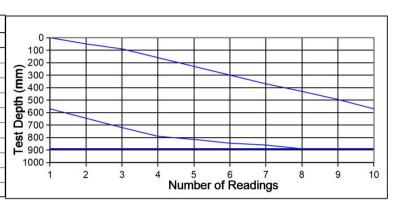
DATE REPORTED: 22/08/2023

DATE TESTED:

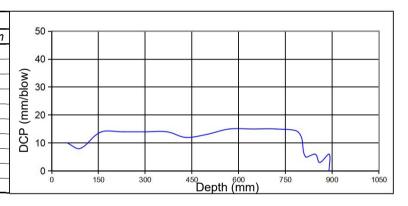
OUR REF: MAK1520823

22/08/2023

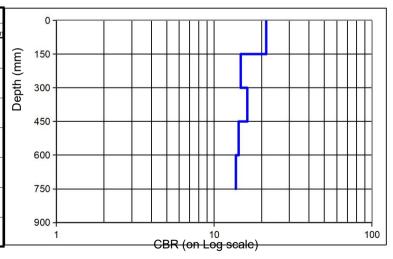
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP42 at TP42


DCP Re	ading	JS			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	50	11	720	21		31		41	
2	90	12	790	22		32		42	
3	160	13	815	23		33		43	
4	230	14	845	24		34		44	
5	300	15	860	25		35		45	
6	370	16	890	26		36		46	
7	430	17		27		37		47	
8	495	18		28		38		48	
9	570	19		29		39		49	
10	645	20		30		40		50	

DCP nu	mber	(mm	/ Blo	w) I	DN				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
10	50	15	720						
8	90	14	790						
14	160	5	815						
14	230	6	845						
14	300	3	860						
14	370	6	890						
12	430								
13	495								
15	570								
15	645								

	Dep	oth (n	nm)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mr
1	1	-	150	10,5	21	14	12.5
2	151	-	300	14,0	15	11	12,5
3	301	-	450	13,0	16	12	11.0
4	451	-	600	14,3	14	10	11,0
5	601	-	750	14,8	14	10	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

890

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

DATE REPORTED: 22/08/2023

DATE TESTED:

OUR REF: MAK1520823

22/08/2023

10

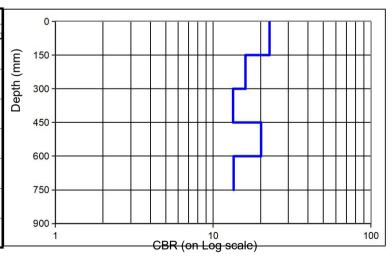
PROJECT: Geotechnical Investigation: Komati Power Station

ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM

DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP43 at TP43


0	1
100	
100	
200	-
300 400	
£ 300 1	
5 400	
5 500	
\$ 500 	
0,600	
700	
800	
Ö 000	
\$500 600 700 \$800 900	
1000	

5 6 7 Number of Readings

DCP Re	ading	JS			BI	ows p	31 41 32 42 33 43 34 44 35 45 36 46 37 47		
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	65	11	675	21		31		41	
2	90	12	750	22		32		42	
3	150	13	805	23		33		43	
4	210	14	840	24		34		44	
5	280	15	875	25		35		45	
6	350	16	900	26		36		46	
7	435	17		27		37		47	
8	490	18		28		38		48	
9	555	19		29		39		49	
10	600	20		30		40		50	
						<u> </u>			

		,	·							
DCP nu	mber	(mm	1 / Blo	W) I	אכ					
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm	50
13	65	15	675							40
5	90	15	750							
12	150	11	805							(No 10 10 10 10 10 10 10 10 10 10 10 10 10
12	210	7	840							
14	280	7	875							Ē 20
14	350	5	900							
17	435									0 10
11	490									
13	555									0 +
9	600									0 150 300 450 600 750 900 1050 Depth (mm)

	Dep	oth (n	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mm
1	1	-	150	10,0	23	15	42.2
2	151	-	300	13,1	16	11	13,2
3	301	-	450	15,1	13	10	11,8
4	451	-	600	11,0	20	14	11,0
5	601	-	750	15,0	13	10	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

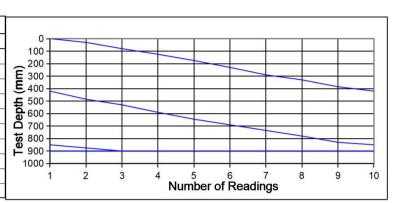
DATE REPORTED: 22/08/2023

DATE TESTED:

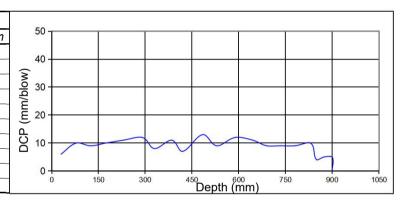
OUR REF: MAK1520823

22/08/2023

PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP44 at TP44

DCP Re	ading	js			BI	ows p	er rea	ding:	5
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm
1	30	11	530	21		31		41	
2	80	12	590	22		32		42	
3	125	13	645	23		33		43	
4	175	14	690	24		34		44	
5	230	15	735	25		35		45	
6	290	16	780	26		36		46	
7	330	17	830	27		37		47	
8	385	18	850	28		38		48	
9	420	19	875	29		39		49	
10	485	20	900	30		40		50	

DCP nu	mber	(mm	/ Blo	w) I	NC				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
6	30	9	530						
10	80	12	590						
9	125	11	645						
10	175	9	690						
11	230	9	735						
12	290	9	780						
8	330	10	830						
11	385	4	850						
7	420	5	875						
13	485	5	900						

	Dep	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mn
1	1	-	150	8,6	28	18	15,6
2	151	-	300	10,9	20	14	13,0
3	301	-	450	9,3	25	16	14,8
4	451	-	600	11,0	20	14	14,0
5	601	-	750	9,5	24	16	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

BY TEST METHOD TMH6-ST6

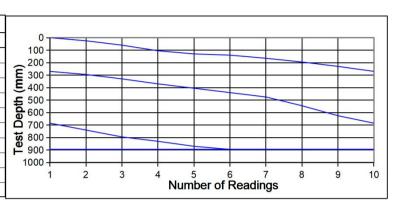
DATE REPORTED: 22/08/2023

DATE TESTED:

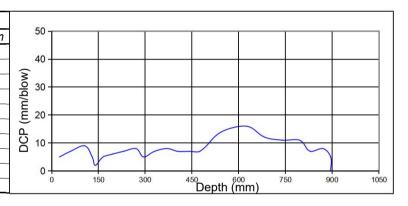
OUR REF: MAK1520823

22/08/2023

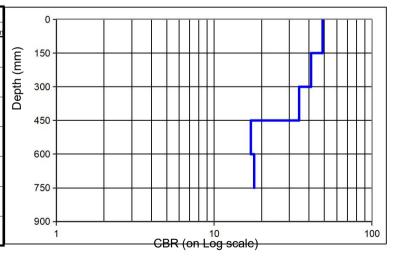
PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP45 at TP45


DCP R	eading	JS		Blows per reading: 5						
no.	mm	no.	mm	no.	mm	no.	mm	no.	mm	
1	25	11	330	21	830	31		41		
2	60	12	370	22	870	32		42		
3	105	13	405	23	895	33		43		
4	130	14	440	24		34		44		
5	140	15	475	25		35		45		
6	165	16	545	26		36		46		
7	195	17	625	27		37		47		
8	230	18	685	28		38		48		
9	270	19	740	29		39		49		
10	295	20	795	30		40		50		

D	CP nu	mber	(mm	/ Blo	w) I	NC				
	DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
	5	25	7	330	7	830				
	7	60	8	370	8	870				
	9	105	7	405	5	895				
	5	130	7	440						
	2	140	7	475						
	5	165	14	545						
	6	195	16	625						
	7	230	12	685						
	8	270	11	740						
	5	295	11	795						

	Dep	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mm
1	1	-	150	5,6	49	27	25,4
2	151	-	300	6,3	41	24	25,4
3	301	-	450	7,2	35	21	16,4
4	451	-	600	12,5	17	12	10,4
5	601	-	750	12,0	18	12	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

895

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

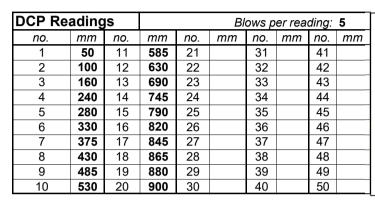
TEST REPORT FOR DYNAMIC CONE PENETROMETER

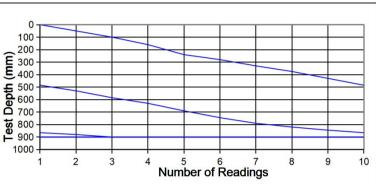
BY TEST METHOD TMH6-ST6

DATE REPORTED: 22/08/2023

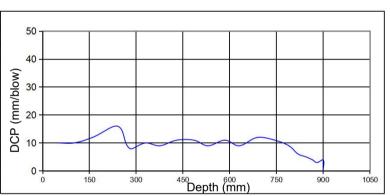
OUR REF: MAK1520823

PROJECT: Geotechnical Investigation: Komati Power Station

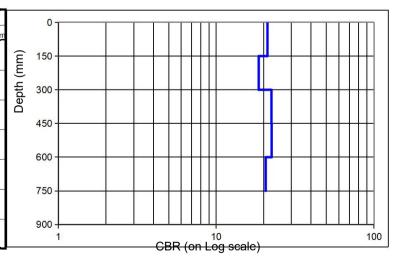

ATTENTION: Eskom Tel/Email: 031 350 3370


CLIENT: ESKOM

DESCRIPTION: DCP test was done from existing ground level


DCP No: DCP46 at TP46

DATE	TESTED:	22/08/2023



DCP	nur	nber	(mm	ı / Blo	w) I	NC				
D٨	1	mm	DN	mm	DN	mm	DN	mm	DN	mm
10)	50	11	585						
10)	100	9	630						
12	2	160	12	690						
16	6	240	11	745						
8		280	9	790						
10)	330	6	820						
9		375	5	845						
11		430	4	865						
11		485	3	880						
9		530	4	900						

	Dep	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	То	DN	CBR	150mm	300mr
1	1	-	150	10,6	21	14	13,5
2	151	-	300	11,7	19	13	13,5
3	301	-	450	10,1	22	15	14,8
4	451	-	600	10,1	22	15	14,0
5	601	-	750	10,8	21	14	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth 900 mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

Cell: 031 350 3370

Email: info@bavconsulting.co.za

Reg: 2017/499605/07

TEST REPORT FOR DYNAMIC CONE PENETROMETER

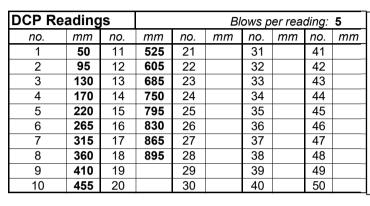
BY TEST METHOD TMH6-ST6

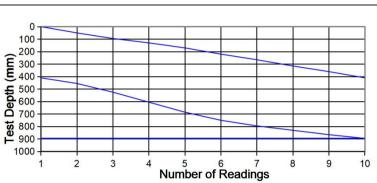
DATE REPORTED: 22/08/2023

DATE TESTED:

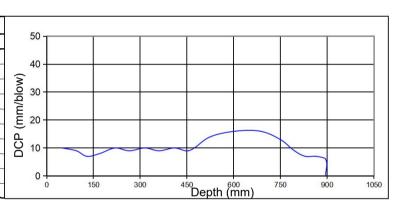
OUR REF: MAK1520823

22/08/2023

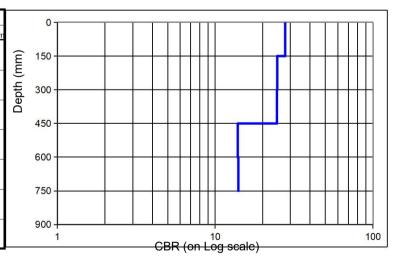

PROJECT: Geotechnical Investigation: Komati Power Station


ATTENTION: Eskom Tel/Email: 031 350 3370

CLIENT: ESKOM


DESCRIPTION: DCP test was done from existing ground level

DCP No: DCP47 at TP47



DCP nui	mber	(mm	/ Blo	w) I	ON				
DN	mm	DN	mm	DN	mm	DN	mm	DN	mm
10	50	14	525						
9	95	16	605						
7	130	16	685						
8	170	13	750						
10	220	9	795						
9	265	7	830						
10	315	7	865						
9	360	6	895						
10	410								
9	455								

	Dep	oth (m	nm)		In situ	Blows	s/mm
no.	From	-	To	DN	CBR	150mm	300mn
1	1	-	150	8,6	28	18	16,8
2	151	-	300	9,4	25	16	10,0
3	301	-	450	9,4	25	16	13,1
4	451	-	600	14,6	14	10	13,1
5	601	-	750	14,5	14	10	
6	751	-	900				
8	901	-	1050				
9	1051	-	1200				
10	1201	-	1350				
11	1351	-	1500				
12	1501	-	1650				
13	1651	-	1800				
14	1801	-	1950				
15	1951	-	2100				

REMARKS:

Max penetration depth

95

mm

Where values are presented as continued "cont", refer to the adjacent graphs where DN values vs depth and penetration vs depths can be read.

Signature

ADDENIDIV C. I ADODATORY TEST DES	ште
APPENDIX C: LABORATORY TEST RES (SANS 3001-GR1, GR3, GR10, GR20, GR30, GR40, PR5: 2013 – C	
methods – Foundation Indicator Tests – SANS Accredited Soil Laboration	

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Job Number: PVT-291 Date: 26-Oct-23

		SUMMA	RY OF TES	T DATA				eference: 88 Rev01
		G	rading & Hydr	ometer Analys	is (% Passing)		!	
Sample	KTP1	KTP2	KTP3	KTP4	KTP5	KTP7	KTP8	KTP12
Depth (m)	0.7 - 2.2	0.8 - 2.4	0.0 - 0.4	0.3 - 2.3	0.4 - 2.5	0.0 - 1.9	0.4 - 2.3	0.0 - 0.6
Lab No	PVT-291-2026	PVT-291-2027	PVT-291-2028	PVT-291-2029	PVT-291-2030	PVT-291-2032	PVT-291-2033	PVT-291-203
53.0	100	100	100	100	100	100	100	100
37.5	100	100	100	100	100	100	100	100
26.5	100	100	100	100	100	100	100	100
19.0	100	100	100	100	100	100	100	100
13.2	99	100	100	100	99	99	100	100
9.5	96	99	100	99	97	85	100	98
6.7	91	95	100	96	95	67	99	96
4.75	87	93	100	93	91	58	98	93
2.0	83	89	100	89	84	48	96	91
1.0	80	85	99	86	81	45	93	89
0.425	70	77	88	78	73	39	84	75
0.250	57	68	65	66	64	34	75	60
0.150	42	55	41	53	51	26	60	40
0.075	26	39	26	38	36	17	47	23
0.060	21	33	21	34	31	14	40	19
0.050	18	30	19	32	29	13	37	17
0.035	14	25	15	29	25	11	31	14
0.020	12	23	11	26	23	9	28	12
0.006	10	20	7	23	20	7	24	9
0.002	9	17	4	21	19	5	20	6
GM	1.21	0.95	0.86	0.95	1.07	1.96	0.73	1.11
	•	!	At	tterberg Limits	!		!	
LL (%)	17	23	-	29	29	20	26	-
PI (%)	3	11	SP	16	15	5	13	SP
LS (%)	2.5	5.0	0.5	8.0	7.5	2.5	6.0	0.5
	•	I.	pН	& Conductivit	у			
рН			6.2			6.1		
EC (S/m)			0.014			0.005		
	•	!		MDD / OMC	!		!	
MDD (kg/m³)	2062	1951		1835	1872			
OMC (%)	9.4	11.9		15.6	13.9			
• •		•		CBR	•		•	
100%	11.6	9.0		5.2	5.5			
98%	10.6	8.0		4.4	4.7			
97%	10.1	7.6		4.0	4.4			
95%	9.0	6.7		3.3	3.6			
93%	8.1	5.9		2.8	3.0			
90%	6.8	4.9		2.1	2.3			
Swell (%)	0.1	0.2		1.0	0.5			
, ,	•			UCS (MPa)			-	
100%								
97%								
90%								
	•		COL	TO Classification	on		-	
	G9	*		*	*			

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Job Number: PVT-291 Date: 26-Oct-23

		SUMMA	RY OF TEST	T DATA				eference: 88 Rev01
		G	Grading & Hydr	ometer Analys	is (% Passing)			
Sample	KTP13	KTP14	KTP16	KTP19	KTP20	KTP21	KTP22	KTP23
Depth (m)	0.3 - 1.8	0.3 - 1.8	0.3 - 2.1	0.6 - 2.3	0.1 - 2.7	0.1 - 2.4	0.2 - 2.3	0.3 - 2.4
Lab No	PVT-291-2036	PVT-291-2037	PVT-291-2038	PVT-291-2040	PVT-291-2041	PVT-291-2042	PVT-291-2043	PVT-291-204
53.0	100	100	100	100	100	100	100	100
37.5	100	100	100	100	100	100	100	100
26.5	100	100	100	100	100	100	100	100
19.0	100	100	100	100	100	100	100	100
13.2	100	100	100	99	100	100	100	100
9.5	100	100	100	97	100	98	100	98
6.7	98	100	96	88	99	92	99	93
4.75	94	99	89	80	98	84	98	88
2.0	88	97	63	71	96	75	96	81
1.0	85	94	52	68	96	72	94	80
0.425	76	86	42	60	92	65	88	72
0.250	66	78	37	51	83	60	77	64
0.150	51	62	31	41	64	44	52	49
0.075	41	48	24	30	43	31	35	33
0.060	38	44	21	26	38	27	30	28
0.050	36	41	19	24	35	25	27	25
0.035	33	37	17	21	30	23	22	21
0.020	30	32	15	18	26	20	19	17
0.006	26	26	12	13	20	16	14	13
0.002	24	22	9	10	17	13	10	11
GM	0.95	0.69	1.71	1.39	0.69	1.29	0.81	1.14
	•		At	terberg Limits				
LL (%)	29	33	29	26	27	26	20	25
PI (%)	14	17	13	12	12	10	6	10
LS (%)	7.0	8.5	6.5	5.5	6.0	5.0	3.0	5.0
			pН	& Conductivit	у			
рН		6.4			6.1		7.0	
EC (S/m)		0.018			0.017		0.007	
	•		•	MDD / OMC				
MDD (kg/m³)	1883		2071		1843	2095		1991
OMC (%)	13.9		9.5		13.1	10.7		11.7
				CBR				
100%	8.2		22		5.8	24		10.5
98%	7.6		21		5.1	22		9.5
97%	7.3		20		4.8	21		9.0
95%	6.7		19		4.1	19		8.2
93%	5.9		16		3.5	16		7.5
90%	4.1		13		2.8	13		6.6
Swell (%)	0.3		0.3		0.6	0.0		0.2
				UCS (MPa)				
100%								
97%								
90%								
			COL	TO Classification				
	*		G7		*	G7		G9

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Job Number: PVT-291 Date: 26-Oct-23

		SUMMA	RY OF TEST	T DATA				eference: 88 Rev01
		G	rading & Hydr	ometer Analys	is (% Passing)			
Sample	KTP25	KTP26	KTP28	KTP29	KTP30	KTP31	KTP32	KTP33
Depth (m)	0.4 - 2.3	0.6 - 2.1	0.2 - 2.2	0.5 - 2.8	0.2 - 2.4	0.2 - 2.1	0.2 - 2.2	0.2 - 2.4
Lab No	PVT-291-2046	PVT-291-2047	PVT-291-2049	PVT-291-2050	PVT-291-2051	PVT-291-2052	PVT-291-2053	PVT-291-205
53.0	100	100	100	100	100	100	100	100
37.5	100	100	100	100	100	100	100	100
26.5	100	100	100	100	100	100	100	100
19.0	100	100	100	100	100	100	100	100
13.2	100	99	100	100	100	100	100	100
9.5	99	95	98	100	100	99	99	100
6.7	99	87	95	100	99	95	98	98
4.75	97	79	91	99	97	91	96	94
2.0	91	69	86	96	93	87	91	88
1.0	87	66	84	94	90	86	89	86
0.425	73	60	80	86	83	81	77	80
0.250	62	51	72	72	72	74	65	67
0.150	43	42	59	59	61	67	54	51
0.075	32	32	44	43	44	52	43	38
0.060	29	29	40	39	38	47	40	34
0.050	27	27	38	37	35	44	38	32
0.035	24	23	35	33	31	40	35	28
0.020	22	20	32	29	27	34	31	25
0.006	18	18	29	26	22	27	27	22
0.002	14	17	27	23	19	25	23	21
GM	1.04	1.39	0.90	0.75	0.80	0.80	0.89	0.94
	<u> </u>			terberg Limits				
LL (%)	19	30	38	29	35	36	28	30
PI (%)	5	14	20	12	13	17	11	13
LS (%)	2.5	6.5	9.5	6.0	7.0	8.5	5.5	6.5
. ,		I .	На	& Conductivit		I.	I .	
рН			6.1		,	5.9		
EC (S/m)			0.023			0.015		
- (-, ,	<u> </u>	<u> </u>		MDD / OMC			<u> </u>	
MDD (kg/m³)	2000	1968		1872	1675		2022	1965
OMC (%)	12.5	11.6		13.5	18.9		11.1	11.7
(, . ,				CBR		I		
100%	15	8.2		8.7	10.0		15	13
98%	13	7.2		8.2	9.8		14	12
97%	12	6.8		7.7	9.4		13	11
95%	9	6.0		6.8	8.6		12	10
93%	6	5.3		6.1	7.0		10	9
90%	4	4.4		5.1	6.8		8	7
Swell (%)	0.0	0.1		0.0	0.4		0.1	0.3
- (/-/			1	UCS (MPa)				
100%								
97%								
90%								
	1		COL	TO Classification	on			1
	*	*		*	*	l	G8	*

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Job Number: PVT-291 Date: 26-Oct-23

		SUMMA	RY OF TEST	T DATA			Sheet Re R-STL-03	ference: 88 Rev01
		G	Grading & Hydr	ometer Analys	is (% Passing)			
Sample	KTP35	KTP36	KTP37	KTP39	KTP41	KTP42	KTP43	KTP44
Depth (m)	0.2 - 2.6	0.9 - 1.9	0.3 - 2.4	1.1 - 3.2	1.4 - 2.0	0.7 - 2.5	0.1 - 2.4	0.1 - 2.6
Lab No	PVT-291-2056	PVT-291-2057	PVT-291-2058	PVT-291-2060	PVT-291-2062	PVT-291-2063	PVT-291-2064	PVT-291-20
53.0	100	100	100	100	100	100	100	100
37.5	100	100	100	100	100	100	100	100
26.5	100	100	100	100	100	100	100	100
19.0	100	100	100	100	100	100	100	100
13.2	100	100	92	98	100	100	100	100
9.5	99	100	85	96	99	100	100	98
6.7	95	100	72	93	99	100	100	96
4.75	92	100	62	91	99	100	100	94
2.0	85	100	48	88	98	98	100	91
1.0	83	96	45	86	96	97	99	89
0.425	75	79	40	76	81	90	89	82
0.250	59	46	34	59	47	81	78	68
0.150	48	29	30	46	31	67	68	52
0.075	35	20	23	33	22	49	54	36
0.060	31	17	20	29	17	41	47	30
0.050	28	15	19	27	15	37	44	27
0.035	24	12	17	23	12	31	40	23
0.020	20	9	15	19	10	28	37	21
0.006	17	5	9	12	7	26	33	19
0.002	15	3	3	4	4	25	30	18
GM	1.05	1.01	1.89	1.03	0.99	0.63	0.57	0.91
				terberg Limits		0.00	0.07	0.52
LL (%)	25	_	29	27	_	28	22	25
PI (%)	9	NP	13	13	NP	13	8	10
LS (%)	4.0	0.0	6.5	6.5	0.0	6.5	4.0	5.0
25 (70)	1.0	0.0		& Conductivit		0.5	4.0	5.0
рН			5.5	4.7	, 	5.4		
EC (S/m)			0.007	0.070		0.014		
20 (3/111)	<u> </u>			MDD / OMC		0.014		
MDD (kg/m³)	2030	1914		1910	1937	1889		1942
OMC (%)	10.3	10.5		12.0	10.0	13.9		11.1
OIVIC (70)	10.3	10.5		CBR	10.0	13.3		11,1
100%	16	13		7.6	21	15		17
98%	15	12		6.6	18	14		16
97%	14	11		6.2	16	13		15
95%	12	10		4.9	14	11		13
93%	11	8		3.7	12	9		11
90%	9	5		2.5	9	7		9
Swell (%)	0.1	0.0		0.7	0.1	0.0		0.0
3vven (/0)	J 0.1	0.0		UCS (MPa)	0.1	0.0		0.0
100%								
97%								
90%								
			COL	TO Classification		1	,	
	G9	G9 able		*	G8	*		G8

Project Name: Komati Power Station Repurposing

Job Number: PVT-291 Date: 26-Oct-23

		SUMMA	RY OF TEST	T DATA				et Reference: TL-038 Rev01
		G	irading & Hydr	ometer Analy	sis (% Passin	g)		
Sample	KTP45	KTP46	KTP47		<u> </u>			
Depth (m)	0.1 - 2.2	1.0 - 2.3	0.4 - 2.2					
Lab No	PVT-291-2066	PVT-291-2067	PVT-291-2068					
53.0	100	100	100					
37.5	100	100	100					
26.5	100	100	100					
19.0	100	100	100					
13.2	100	100	100					
9.5	100	100	99					
6.7	100	100	98					
4.75	100	100	96					
2.0	99	99	94					
1.0	98	97	92					
0.425	92	90	85					
0.250	75	79	73					
0.150	60	70	63					
0.075	46	57	52					
0.060	40	51	48					
0.050	37	48	46					
0.035	31	42	43					
0.020	28	39	39					
0.006	25	35	36					
0.002	23	33	35					
GM	0.63	0.54	0.69					
				terberg Limits	:	Į.	.	
LL (%)	29	32	40					
PI (%)	11	17	23					
LS (%)	6.0	8.5	12.0					
(, -)				& Conductivit	tv			
рН			6.4		1			
EC (S/m)			0.027					
(-,,				MDD / OMC	!	· ·	<u> </u>	<u> </u>
DD (kg/m³)		1911						
OMC (%)		12.9						
01110 (70)	1	12.5		CBR	I			
100%		11						
98%		10						
97%		9						
95%	1	8						
93%	1	6						
90%	1	4						
Swell (%)	1	0.1						
	1	1 2.2	ı	UCS (MPa)	1		1	I
100%				,				
97%	1							
90%								
3070	I	<u>I</u>	CUI	TO Classificati	on			
	1	*			T	1		

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Job Number: PVT-291 **Date:** 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

		FOUNDA	ATION INE	DICATOR		Sheet Reference: R-STL-011 Rev02		
	ading & Hydr article Size (m	-		Atterberg Limits & Classification				
Sample	KTP1	KTP2	KTP3	Sample	KTP1	KTP2	KTP3	
Depth (m)	0.7 - 2.2	0.8 - 2.4	0.0 - 0.4	Depth (m)	0.7 - 2.2	0.8 - 2.4	0.0 - 0.4	
Lab No	PVT-291-2026	PVT-291-2027	PVT-291-2028	Lab No	PVT-291-2026	PVT-291-2027	PVT-291-2028	
53.0	100	100	100	Liquid Limit (%)	17	23	-	
37.5	100	100	100	Plastic Limit (%)	14	12	-	
26.5	100	100	100	Plasticity Index (%)	3	11	SP	
19.0	100	100	100	Linear Shrinkage (%)	2.5	5.0	0.5	
13.2	99	100	100	PI of whole sample	2	8	-	
9.5	96	99	100					
6.7	91	95	100	% Gravel	17	11	0	
4.75	87	93	100	% Sand	62	56	79	
2.00	83	89	100	% Silt	12	16	17	
1.00	80	85	99	% Clay	9	17	4	
0.425	70	77	88	Activity	0.3	0.7	0.0	
0.250	57	68	65					
0.150	42	55	41	% Soil Mortar	83	89	100	
0.075	26	39	26					
0.060	21	33	21	Grading Modulus	1.21	0.95	0.86	
0.050	18	30	19	Moisture Content (%)	N/T	N/T	N/T	
0.035	14	25	15	Relative Density (SG)*	2.65	2.65	2.65	
0.020	12	23	11					
0.006	10	20	7	Unified (ASTM D2487)	SC-SM	SC	SM	
0.002	9	17	4	AASHTO (M145-91)	A - 2 - 4	A - 6	A - 2 - 4	

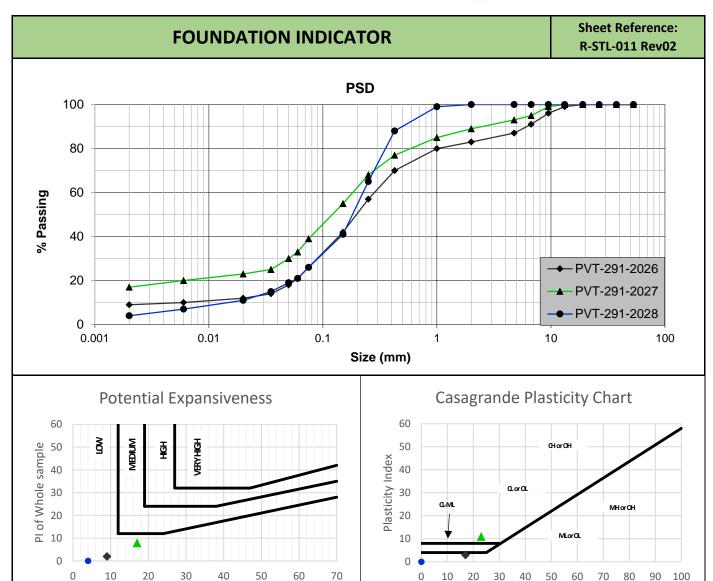
Remarks: *: Assumed

N / T: Not Tested

Ithough everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality statement: Unless the release of information is required by law or covered by confidentiality agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

Project Name: Komati Power Station Repurposing

Clay Fraction of Whole sample


▲ PVT-291-2027

◆ PVT-291-2026

 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality statement: Unless the release of information is required by law or covered by confidentiallity agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

◆ PVT-291-2026

PVT-291-2028

Liquid Limit

• PVT-291-2028

▲ PVT-291-2027

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

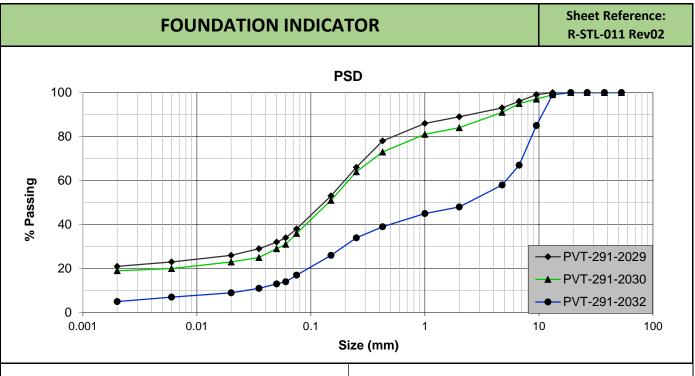
 Date:
 2023-10-26

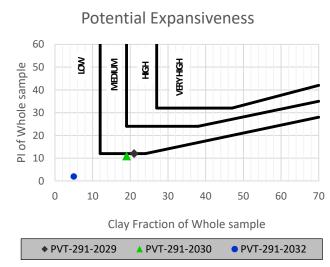
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

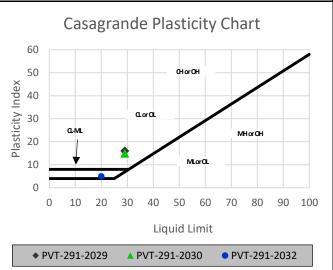
		FOUNDA	ATION IND	DICATOR		Sheet Reference: R-STL-011 Rev02	
	ading & Hydr	-		Atterberg	g Limits & Clas	ssification	
(P	article Size (m	· ·	<u>. </u>			1	•
Sample	KTP4	KTP5	KTP7	Sample	KTP4	KTP5	KTP7
Depth (m)	0.3 - 2.3	0.4 - 2.5	0.0 - 1.9	Depth (m)	0.3 - 2.3	0.4 - 2.5	0.0 - 1.9
Lab No	PVT-291-2029	PVT-291-2030	PVT-291-2032	Lab No	PVT-291-2029	PVT-291-2030	PVT-291-2032
53.0	100	100	100	Liquid Limit (%)	29	29	20
37.5	100	100	100	Plastic Limit (%)	13	14	15
26.5	100	100	100	Plasticity Index (%)	16	15	5
19.0	100	100	100	Linear Shrinkage (%)	8.0	7.5	2.5
13.2	100	99	99	PI of whole sample	12	11	2
9.5	99	97	85				
6.7	96	95	67	% Gravel	11	16	52
4.75	93	91	58	% Sand	55	53	34
2.00	89	84	48	% Silt	13	12	9
1.00	86	81	45	% Clay	21	19	5
0.425	78	73	39	Activity	0.8	0.8	1.0
0.250	66	64	34				
0.150	53	51	26	% Soil Mortar	89	84	48
0.075	38	36	17				
0.060	34	31	14	Grading Modulus	0.95	1.07	1.96
0.050	32	29	13	Moisture Content (%)	N/T	N/T	N/T
0.035	29	25	11	Relative Density (SG)*	2.65	2.65	2.65
0.020	26	23	9				
0.006	23	20	7	Unified (ASTM D2487)	sc	SC	GC-GM
0.002	21	19	5	AASHTO (M145-91)	A - 6	A - 6	A - 1 - b

Remarks: *: Assumed

N / T: Not Tested


Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error mad in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality as statement: Unless the release of information is required by law or covered by confidentiallity agreements all information obtained or created during the performance of laboratory activities will be kept confidential.


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error mad in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality as statement: Unless the release of information is required by law or covered by confidentially agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

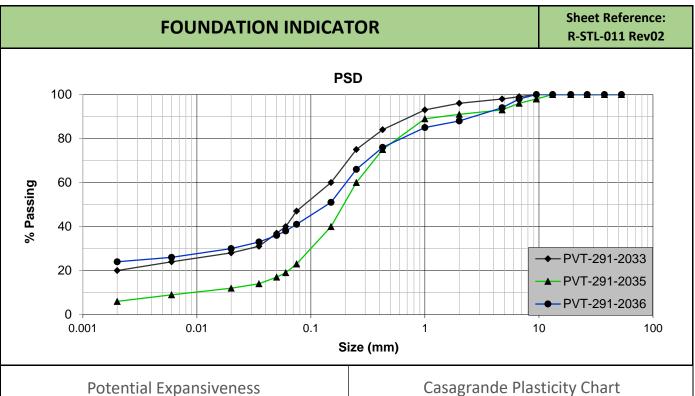
 Date:
 2023-10-26

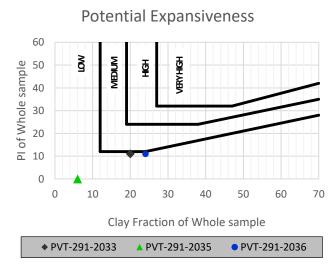
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

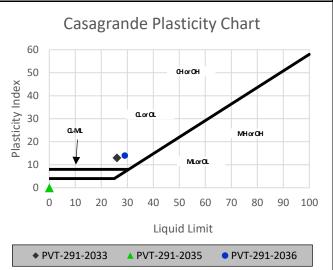
		FOUNDA	ATION IND	DICATOR		Sheet Reference: R-STL-011 Rev02		
	ading & Hydr	-		Atterberg	g Limits & Clas	ssification		
(P	article Size (m	· ·	<u>. </u>		T			
Sample	KTP8	KTP12	KTP13	Sample	KTP8	KTP12	KTP13	
Depth (m)	0.4 - 2.3	0.0 - 0.6	0.3 - 1.8	Depth (m)	0.4 - 2.3	0.0 - 0.6	0.3 - 1.8	
Lab No	PVT-291-2033	PVT-291-2035	PVT-291-2036	Lab No	PVT-291-2033	PVT-291-2035	PVT-291-2036	
53.0	100	100	100	Liquid Limit (%)	26	-	29	
37.5	100	100	100	Plastic Limit (%)	13	-	15	
26.5	100	100	100	Plasticity Index (%)	13	SP	14	
19.0	100	100	100	Linear Shrinkage (%)	6.0	0.5	7.0	
13.2	100	100	100	PI of whole sample	11	•	11	
9.5	100	98	100					
6.7	99	96	98	% Gravel	4	9	12	
4.75	98	93	94	% Sand	56	72	50	
2.00	96	91	88	% Silt	20	13	14	
1.00	93	89	85	% Clay	20	6	24	
0.425	84	75	76	Activity	0.7	0.0	0.6	
0.250	75	60	66					
0.150	60	40	51	% Soil Mortar	96	91	88	
0.075	47	23	41					
0.060	40	19	38	Grading Modulus	0.73	1.11	0.95	
0.050	37	17	36	Moisture Content (%)	N/T	N/T	N/T	
0.035	31	14	33	Relative Density (SG)*	2.65	2.65	2.65	
0.020	28	12	30					
0.006	24	9	26	Unified (ASTM D2487)	sc	SM	SC	
0.002	20	6	24	AASHTO (M145-91)	A - 6	A - 2 - 4	A - 6	

Remarks: *: Assumed

N / T: Not Tested


Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error mad in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality assume that the statement: Unless the release of information is required by law or covered by confidentiallity agreements all information obtained or created during the performance of laboratory activities will be kept confidential.


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality astronomy activatives will be kept confidential.

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

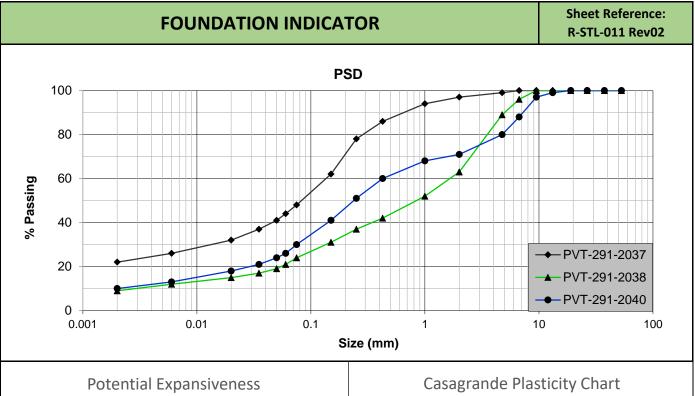
 Date:
 2023-10-26

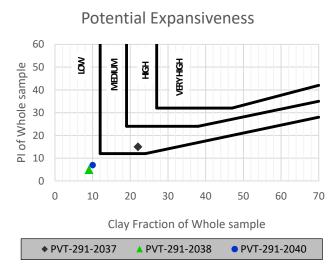
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

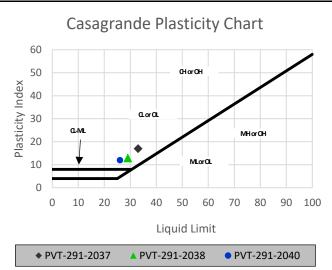
		FOUNDA	ATION IND	DICATOR		Sheet Reference: R-STL-011 Rev02		
	ading & Hydr	-		Atterberg	g Limits & Clas	ssification		
(P:	article Size (m	m) & % Passir	ng)	•	1			
Sample	KTP14	KTP16	KTP19	Sample	KTP14	KTP16	KTP19	
Depth (m)	0.3 - 1.8	0.3 - 2.1	0.6 - 2.3	Depth (m)	0.3 - 1.8	0.3 - 2.1	0.6 - 2.3	
Lab No	PVT-291-2037	PVT-291-2038	PVT-291-2040	Lab No	PVT-291-2037	PVT-291-2038	PVT-291-2040	
53.0	100	100	100	Liquid Limit (%)	33	29	26	
37.5	100	100	100	Plastic Limit (%)	16	16	14	
26.5	100	100	100	Plasticity Index (%)	17	13	12	
19.0	100	100	100	Linear Shrinkage (%)	8.5	6.5	5.5	
13.2	100	100	99	PI of whole sample	15	5	7	
9.5	100	100	97					
6.7	100	96	88	% Gravel	3	37	29	
4.75	99	89	80	% Sand	53	42	45	
2.00	97	63	71	% Silt	22	12	16	
1.00	94	52	68	% Clay	22	9	10	
0.425	86	42	60	Activity	0.8	1.4	1.2	
0.250	78	37	51					
0.150	62	31	41	% Soil Mortar	97	63	71	
0.075	48	24	30					
0.060	44	21	26	Grading Modulus	0.69	1.71	1.39	
0.050	41	19	24	Moisture Content (%)	N/T	N/T	N/T	
0.035	37	17	21	Relative Density (SG)*	2.65	2.65	2.65	
0.020	32	15	18					
0.006	26	12	13	Unified (ASTM D2487)	sc	sc	SC	
0.002	22	9	10	AASHTO (M145-91)	A - 6	A - 2 - 6	A - 2 - 6	

Remarks: *: Assumed

N / T: Not Tested


Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error mad in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality assume that the statement: Unless the release of information is required by law or covered by confidentiallity agreements all information obtained or created during the performance of laboratory activities will be kept confidential.


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error mad in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality as statement: Unless the release of information is required by law or covered by confidentiallity agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

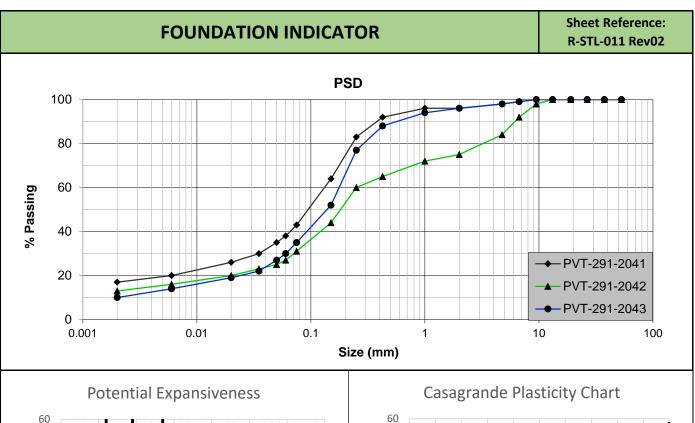
 Date:
 2023-10-26

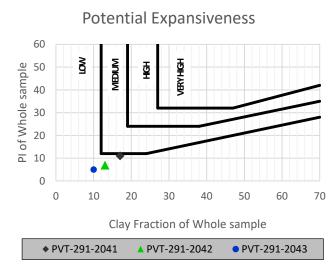
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

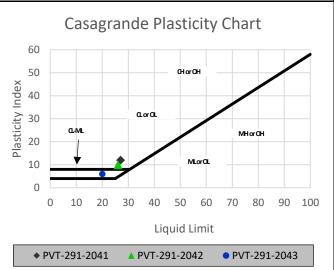
		FOUNDA	ATION INE	DICATOR		Sheet Reference: R-STL-011 Rev02	
	ading & Hydr	-		Atterberg	g Limits & Clas	ssification	
(P	article Size (m	m) & % Passir	ng)	•		ı	
Sample	KTP20	KTP21	KTP22	Sample	KTP20	KTP21	KTP22
Depth (m)	0.1 - 2.7	0.1 - 2.4	0.2 - 2.3	Depth (m)	0.1 - 2.7	0.1 - 2.4	0.2 - 2.3
Lab No	PVT-291-2041	PVT-291-2042	PVT-291-2043	Lab No	PVT-291-2041	PVT-291-2042	PVT-291-2043
53.0	100	100	100	Liquid Limit (%)	27	26	20
37.5	100	100	100	Plastic Limit (%)	15	16	14
26.5	100	100	100	Plasticity Index (%)	12	10	6
19.0	100	100	100	Linear Shrinkage (%)	6.0	5.0	3.0
13.2	100	100	100	PI of whole sample	11	7	5
9.5	100	98	100				
6.7	99	92	99	% Gravel	4	25	4
4.75	98	84	98	% Sand	58	48	66
2.00	96	75	96	% Silt	21	14	20
1.00	96	72	94	% Clay	17	13	10
0.425	92	65	88	Activity	0.7	0.8	0.6
0.250	83	60	77				
0.150	64	44	52	% Soil Mortar	96	75	96
0.075	43	31	35				
0.060	38	27	30	Grading Modulus	0.69	1.29	0.81
0.050	35	25	27	Moisture Content (%)	N/T	N/T	N/T
0.035	30	23	22	Relative Density (SG)*	2.65	2.65	2.65
0.020	26	20	19				
0.006	20	16	14	Unified (ASTM D2487)	SC	sc	SC-SM
0.002	17	13	10	AASHTO (M145-91)	A - 6	A - 2 - 4	A - 2 - 4

Remarks: *: Assumed

N / T: Not Tested


Ithough everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality statement: Unless the release of information is required by law or covered by confidentiality agreements all information obtained or created during the performance of laboratory activities will be kept confidential.


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality astronomy activatives the release of information is required by law or covered by confidential; agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

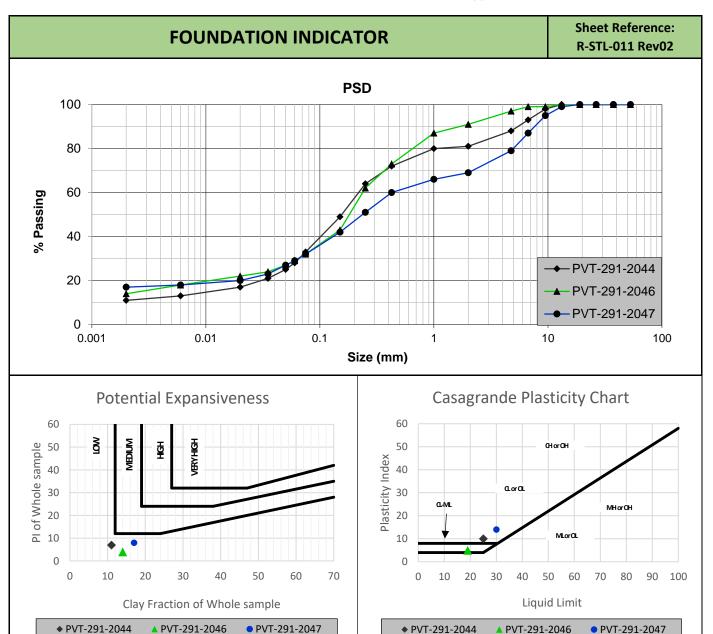
 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

		FOUNDA	ATION INE	DICATOR		Sheet Reference: R-STL-011 Rev02		
	ading & Hydr	-		Atterberg	g Limits & Clas	ssification		
(P:	article Size (m	m) & % Passir	ng)	•				
Sample	KTP23	KTP25	KTP26	Sample	KTP23	KTP25	KTP26	
Depth (m)	0.3 - 2.4	0.4 - 2.3	0.6 - 2.1	Depth (m)	0.3 - 2.4	0.4 - 2.3	0.6 - 2.1	
Lab No	PVT-291-2044	PVT-291-2046	PVT-291-2047	Lab No	PVT-291-2044	PVT-291-2046	PVT-291-2047	
53.0	100	100	100	Liquid Limit (%)	25	19	30	
37.5	100	100	100	Plastic Limit (%)	15	14	16	
26.5	100	100	100	Plasticity Index (%)	10	5	14	
19.0	100	100	100	Linear Shrinkage (%)	5.0	2.5	6.5	
13.2	100	100	99	PI of whole sample	7	4	8	
9.5	98	99	95					
6.7	93	99	87	% Gravel	19	9	31	
4.75	88	97	79	% Sand	53	62	40	
2.00	81	91	69	% Silt	17	15	12	
1.00	80	87	66	% Clay	11	14	17	
0.425	72	73	60	Activity	0.9	0.4	0.8	
0.250	64	62	51					
0.150	49	43	42	% Soil Mortar	81	91	69	
0.075	33	32	32					
0.060	28	29	29	Grading Modulus	1.14	1.04	1.39	
0.050	25	27	27	Moisture Content (%)	N/T	N/T	N/T	
0.035	21	24	23	Relative Density (SG)*	2.65	2.65	2.65	
0.020	17	22	20					
0.006	13	18	18	Unified (ASTM D2487)	SC	SC-SM	SC	
0.002	11	14	17	AASHTO (M145-91)	A - 2 - 4	A - 2 - 4	A - 2 - 6	

Remarks: *: Assumed

N / T: Not Tested


Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality statement: Unless the release of information is required by law or covered by confidentiality agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality streaments all information obtained or created during the performance of laboratory activities will be kept confidential.

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

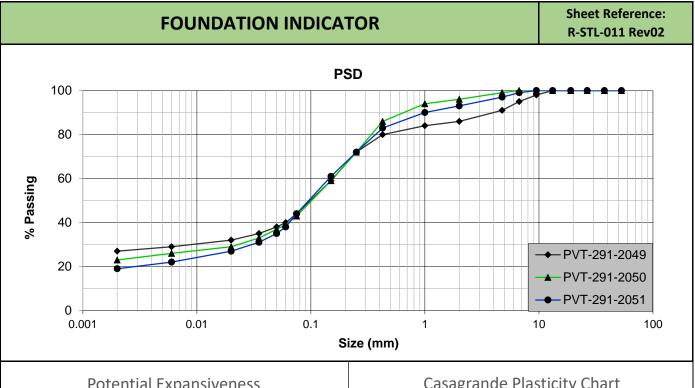
 Date:
 2023-10-26

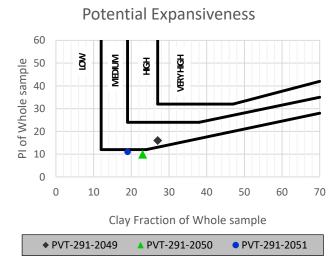
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

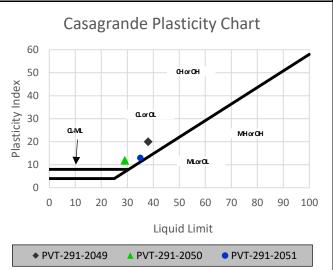
		Sheet Reference: R-STL-011 Rev02								
	ading & Hydr article Size (m	-		Atterberg Limits & Classification						
Sample	KTP28	KTP29	KTP30	Sample	KTP28	KTP29	KTP30			
Depth (m)	0.2 - 2.2	0.5 - 2.8	0.2 - 2.4	Depth (m)	0.2 - 2.2	0.5 - 2.8	0.2 - 2.4			
Lab No	PVT-291-2049	PVT-291-2050	PVT-291-2051	Lab No	PVT-291-2049	PVT-291-2050	PVT-291-2051			
53.0	100	100	100	Liquid Limit (%)	38	29	35			
37.5	100	100	100	Plastic Limit (%)	18	17	22			
26.5	100	100	100	Plasticity Index (%)	12	13				
19.0	100	100	100	Linear Shrinkage (%) 9.5 6.0 7.0						
13.2	100	100	100	PI of whole sample 16 10 11						
9.5	98	100	100							
6.7	95	100	99	% Gravel	14	4	7			
4.75	91	99	97	% Sand	46	57	55			
2.00	86	96	93	% Silt	13	16	19			
1.00	84	94	90	% Clay	27	23	19			
0.425	80	86	83	Activity	0.7	0.5	0.7			
0.250	72	72	72							
0.150	59	59	61	% Soil Mortar	86	96	93			
0.075	44	43	44							
0.060	40	39	38	Grading Modulus	0.90	0.75	0.80			
0.050	38	37	35	Moisture Content (%) N/T		N/T	N/T			
0.035	35	33	31	Relative Density (SG)*	2.65	2.65	2.65			
0.020	32	29	27							
0.006	29	26	22	Unified (ASTM D2487) SC SC SC			SC			
0.002	27	23	19	9 AASHTO (M145-91) A - 6 A - 6 A - 6						

Remarks: *: Assumed

N / T: Not Tested


Client Name: BAV Consulting (Pty) Ltd


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

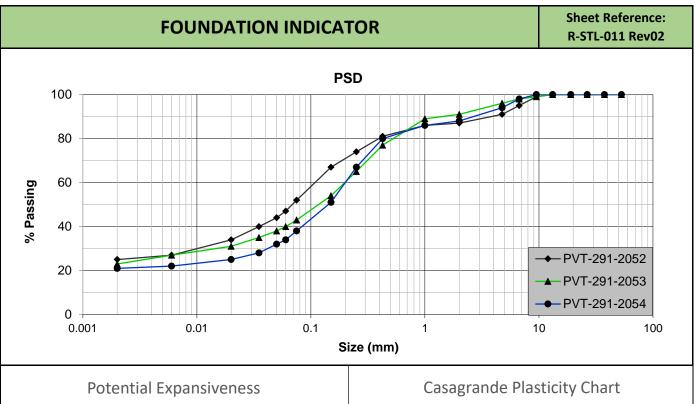
 Date:
 2023-10-26

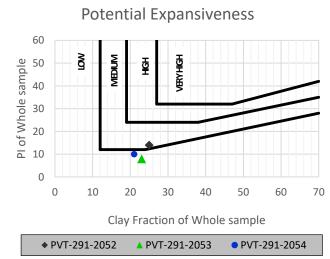
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

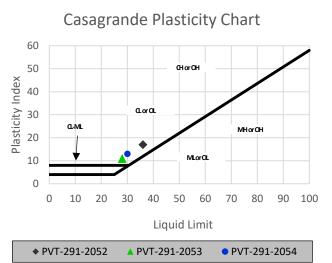
		Sheet Reference: R-STL-011 Rev02								
	ading & Hydr	-		Atterberg	g Limits & Cla	ssification				
(P	article Size (m	m) & % Passir	ng)	•		T				
Sample	KTP31	KTP32	KTP33	Sample	KTP31	KTP32	KTP33			
Depth (m)	0.2 - 2.1	0.2 - 2.2	0.2 - 2.4	Depth (m)	0.2 - 2.1	0.2 - 2.2	0.2 - 2.4			
Lab No	PVT-291-2052	PVT-291-2053	PVT-291-2054	Lab No	PVT-291-2052	PVT-291-2053	PVT-291-2054			
53.0	100	100	100	Liquid Limit (%)	36	28	30			
37.5	100	100	100	Plastic Limit (%)	19	17	17			
26.5	100	100	100	Plasticity Index (%)	17	11	13			
19.0	100	100	100	Linear Shrinkage (%) 8.5 5.5 6.5						
13.2	100	100	100	PI of whole sample 14 8 10						
9.5	99	99	100							
6.7	95	98	98	% Gravel	13	9	12			
4.75	91	96	94	% Sand	40	51	54			
2.00	87	91	88	% Silt	22	17	13			
1.00	86	89	86	% Clay	25	23	21			
0.425	81	77	80	Activity	0.7	0.5	0.6			
0.250	74	65	67							
0.150	67	54	51	% Soil Mortar	87	91	88			
0.075	52	43	38							
0.060	47	40	34	Grading Modulus	0.80	0.89	0.94			
0.050	44	38	32	Moisture Content (%)	N/T	N/T	N/T			
0.035	40	35	28	Relative Density (SG)*	2.65	2.65				
0.020	34	31	25							
0.006	27	27	22	2 Unified (ASTM D2487) CL SC SC			SC			
0.002	25	23	21	AASHTO (M145-91)	A - 6	A - 6	A - 6			

Remarks: *: Assumed

N / T: Not Tested


Client Name: BAV Consulting (Pty) Ltd


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality astronomy activatives will be kept confidential.

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

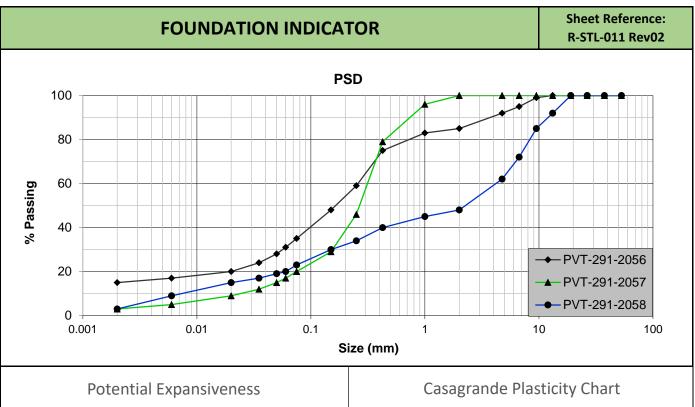
 Date:
 2023-10-26

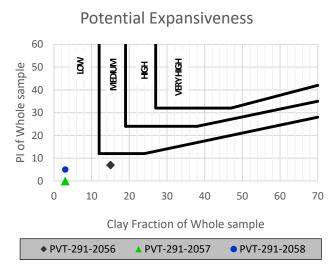
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

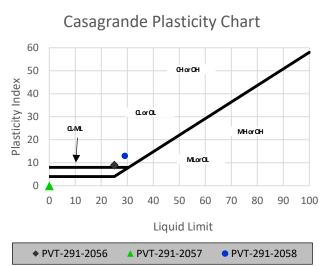
		Sheet Reference: R-STL-011 Rev02								
	ading & Hydr article Size (m	-		Atterberg Limits & Classification						
Sample	KTP35	KTP36	KTP37	Sample	KTP35	KTP36	KTP37			
Depth (m)	0.2 - 2.6	0.9 - 1.9	0.3 - 2.4	Depth (m)	0.2 - 2.6	0.9 - 1.9	0.3 - 2.4			
Lab No	PVT-291-2056	PVT-291-2057	PVT-291-2058	Lab No	PVT-291-2056	PVT-291-2057	PVT-291-2058			
53.0	100	100	100	Liquid Limit (%)	25	-	29			
37.5	100	100	100	Plastic Limit (%)	16	-	16			
26.5	100	100	100	Plasticity Index (%)	NP	13				
19.0	100	100	100	Linear Shrinkage (%) 4.0 0.0 6.5						
13.2	100	100	92	PI of whole sample 7 - 5						
9.5	99	100	85							
6.7	95	100	72	% Gravel	15	0	52			
4.75	92	100	62	% Sand	54	83	28			
2.00	85	100	48	% Silt	16	14	17			
1.00	83	96	45	% Clay	15	3	3			
0.425	75	79	40	Activity	0.6	0.0	4.3			
0.250	59	46	34							
0.150	48	29	30	% Soil Mortar	85	100	48			
0.075	35	20	23							
0.060	31	17	20	Grading Modulus	1.05	1.01	1.89			
0.050	28	15	19	Moisture Content (%) N/T		N/T	N/T			
0.035	24	12	17	Relative Density (SG)*	2.65	2.65				
0.020	20	9	15							
0.006	17	5	9	Unified (ASTM D2487) SC SM SG			SC			
0.002	15	3	3	AASHTO (M145-91) A-4 A-2-4 A-2-6						

Remarks: *: Assumed

N / T: Not Tested


Client Name: BAV Consulting (Pty) Ltd


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

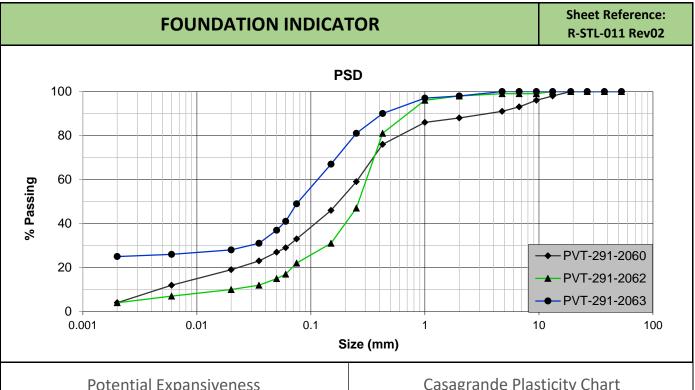
Job Number: PVT-291 **Date:** 2023-10-26

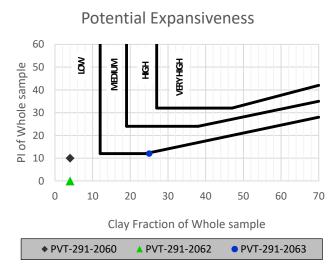
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

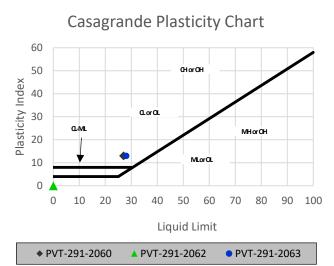
		Sheet Reference: R-STL-011 Rev02								
	ading & Hydr article Size (m	-		Atterberg	g Limits & Cla	ssification				
Sample	KTP39	KTP41	KTP42	Sample	KTP39	KTP41	KTP42			
Depth (m)	1.1 - 3.2	1.4 - 2.0	0.7 - 2.5	Depth (m)	1.1 - 3.2	1.4 - 2.0	0.7 - 2.5			
Lab No	PVT-291-2060	PVT-291-2062	PVT-291-2063	Lab No	PVT-291-2060	PVT-291-2062	PVT-291-2063			
53.0	100	100	100	Liquid Limit (%)	27	-	28			
37.5	100	100	100	Plastic Limit (%)	14	-	15			
26.5	100	100	100	Plasticity Index (%) 13 NP 13						
19.0	100	100	100	Linear Shrinkage (%) 6.5 0.0 6.5						
13.2	98	100	100	PI of whole sample 10 - 12						
9.5	96	99	100							
6.7	93	99	100	% Gravel	12	2	2			
4.75	91	99	100	% Sand	59	81	57			
2.00	88	98	98	% Silt	25	13	16			
1.00	86	96	97	% Clay	4	4	25			
0.425	76	81	90	Activity	3.3	0.0	0.5			
0.250	59	47	81							
0.150	46	31	67	% Soil Mortar	88	98	98			
0.075	33	22	49							
0.060	29	17	41	Grading Modulus	1.03	0.99	0.63			
0.050	27	15	37	Moisture Content (%) N/T		N/T	N/T			
0.035	23	12	31	Relative Density (SG)* 2.65		2.65	2.65			
0.020	19	10	28							
0.006	12	7	26	6 Unified (ASTM D2487) SC SM SC			SC			
0.002	4	4	25	5 AASHTO (M145-91) A - 2 - 6 A - 2 - 4 A - 6						

Remarks: *: Assumed

N / T: Not Tested


Client Name: BAV Consulting (Pty) Ltd


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

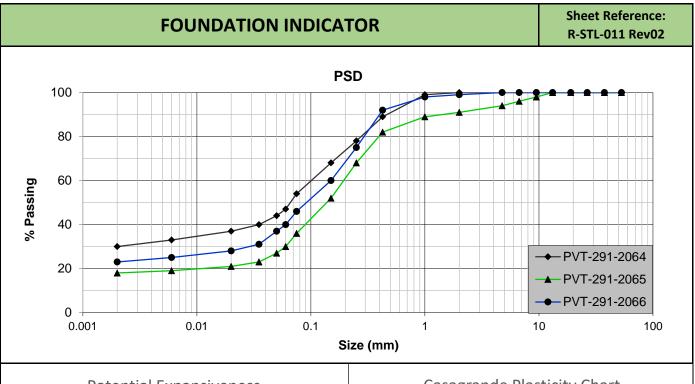
Job Number: PVT-291 **Date:** 2023-10-26

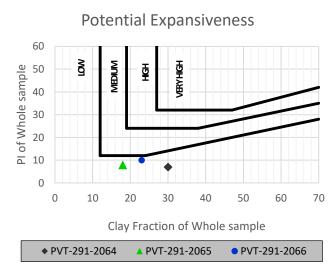
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

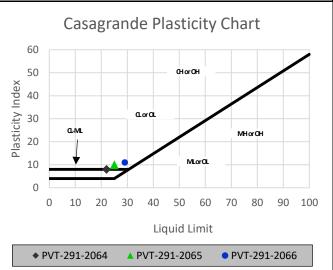
		Sheet Reference: R-STL-011 Rev02								
	ading & Hydr	-		Atterberg	g Limits & Clas	ssification				
(P:	article Size (m	m) & % Passir	ng)			1				
Sample	KTP43	KTP44	KTP45	Sample	KTP43	KTP44	KTP45			
Depth (m)	0.1 - 2.4	0.1 - 2.6	0.1 - 2.2	Depth (m)	0.1 - 2.4	0.1 - 2.6	0.1 - 2.2			
Lab No	PVT-291-2064	PVT-291-2065	PVT-291-2066	Lab No	PVT-291-2064	PVT-291-2065	PVT-291-2066			
53.0	100	100	100	Liquid Limit (%)	22	25	29			
37.5	100	100	100	Plastic Limit (%)	14	15	18			
26.5	100	100	100	Plasticity Index (%) 8 10 11						
19.0	100	100	100	Linear Shrinkage (%) 4.0 5.0 6.0						
13.2	100	100	100	PI of whole sample 7 8 10						
9.5	100	98	100							
6.7	100	96	100	% Gravel	0	9	1			
4.75	100	94	100	% Sand	53	61	59			
2.00	100	91	99	% Silt	17	12	17			
1.00	99	89	98	% Clay	30	18	23			
0.425	89	82	92	Activity	0.3	0.6	0.5			
0.250	78	68	75							
0.150	68	52	60	% Soil Mortar	100	91	99			
0.075	54	36	46							
0.060	47	30	40	Grading Modulus	0.57	0.91	0.63			
0.050	44	27	37	Moisture Content (%)	N/T	N/T				
0.035	40	23	31	Relative Density (SG)*	2.65	2.65				
0.020	37	21	28							
0.006	33	19	25	5 Unified (ASTM D2487) CL SC SC			sc			
0.002	30	18	23	AASHTO (M145-91)						

Remarks: *: Assumed

N / T: Not Tested


Client Name: BAV Consulting (Pty) Ltd


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Job Number:
 PVT-291

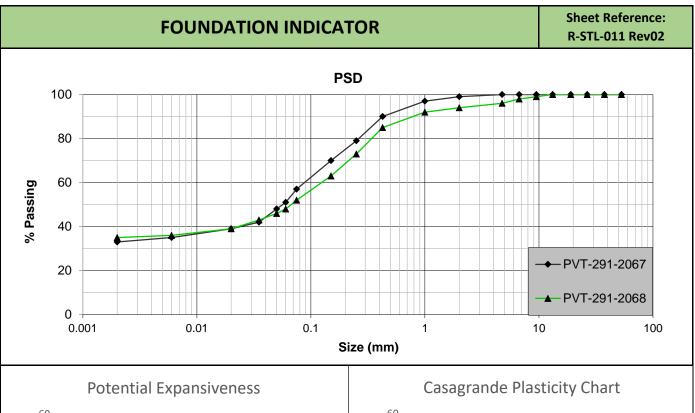
 Date:
 2023-10-26

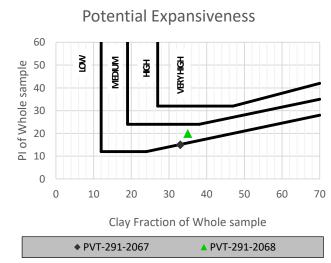
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

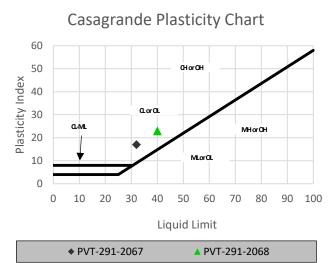
	FOUNDATION INDICATOR								
	ading & Hydr article Size (m	-		Atterberg Limits & Classification					
Sample	KTP46	KTP47		Sample	KTP46	KTP47			
Depth (m)	1.0 - 2.3	0.4 - 2.2		Depth (m)	1.0 - 2.3	0.4 - 2.2			
Lab No	PVT-291-2067	PVT-291-2068		Lab No	PVT-291-2067	PVT-291-2068			
53.0	100	100		Liquid Limit (%)	32	40			
37.5	100	100		Plastic Limit (%)	15	17			
26.5	100	100		Plasticity Index (%)	23				
19.0	100	100		Linear Shrinkage (%)	12.0				
13.2	100	100		PI of whole sample	20				
9.5	100	99							
6.7	100	98		% Gravel	% Gravel 1				
4.75	100	96		% Sand	48	46			
2.00	99	94		% Silt	18	13			
1.00	97	92		% Clay	33	35			
0.425	90	85		Activity	0.5	0.7			
0.250	79	73							
0.150	70	63		% Soil Mortar	99	94			
0.075	57	52							
0.060	51	48		Grading Modulus	0.54	0.69			
0.050	48	46		Moisture Content (%) N/T		N/T			
0.035	42	43		Relative Density (SG)*	2.65	2.65			
0.020	39	39			•				
0.006	35	36		Unified (ASTM D2487) CL		CL			
0.002	33	35		AASHTO (M145-91) A - 6 A - 6					

Remarks: *: Assumed

N / T: Not Tested


Client Name: BAV Consulting (Pty) Ltd


Project Name: Komati Power Station Repurposing


 Job Number:
 PVT-291

 Date:
 2023-10-26

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

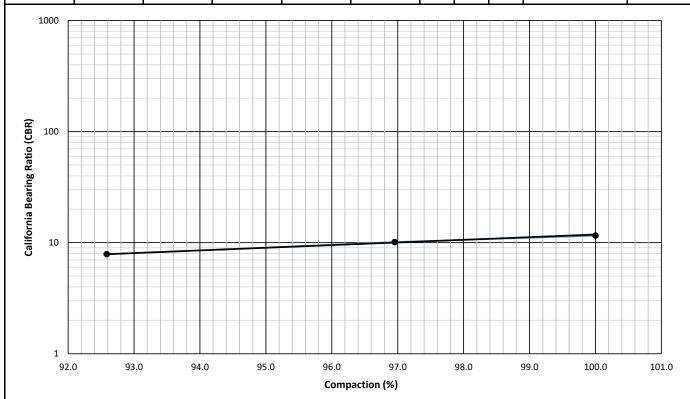
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP1

 Depth: (m)
 0.7 - 2.2

Job Number: PVT-291


Lab Number: PVT-291-2026 Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASI	HTO Values	Com	paction Data:	: CBR	Swell	CD	D at /m	1	CDB Volu	
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CBR at (mm)		ım <i>ı</i>	CBR Values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	11.6
2062	9.4	2036	9.6	100.0	0.1	12	12	12	98	10.6
									97	10.1
2062	9.4	1974	9.6	97.0	0.2	10	10	11	95	9.0
									93	8.1
2062	9.4	1885	9.6	92.6	0.2	8	7	6	90	6.8

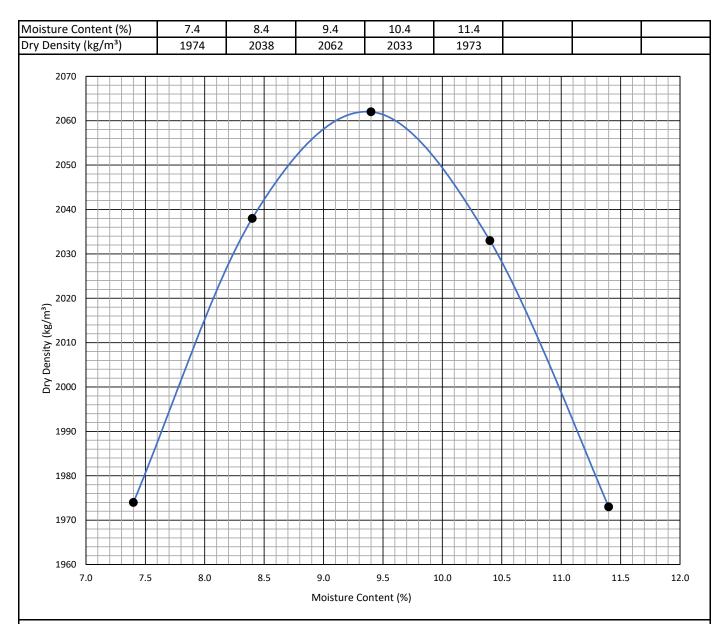
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP1 **Depth: (m)** 0.7 - 2.2

Job Number: PVT-291
Lab Number: PVT-291-2026


Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 2062 kg/m³ Optimum Moisture Content: 9.4 %

SANS 3001 GR40

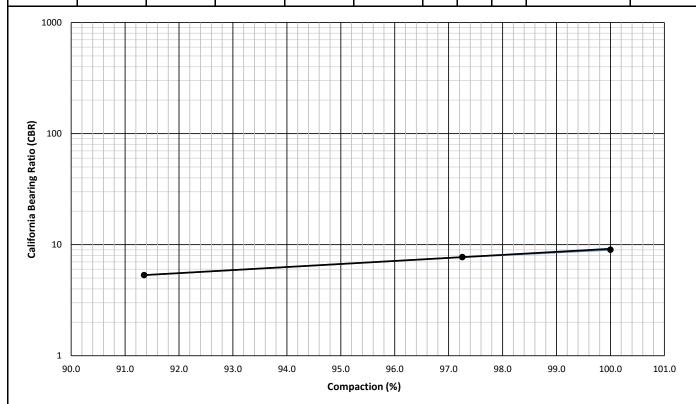
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP2

 Depth: (m)
 0.8 - 2.4

Job Number: PVT-291 Lab Number: PVT-291-2027


Date: 26-Oct-23

Method:

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	HTO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		CBR at (mm) CBR Values		00
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	6	CBR at (mm)		CDR Valu	es
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	9.0
1951	11.9	1966	11.9	100.0	0.2	9	7	7	98	8.0
									97	7.6
1951	11.9	1912	11.9	97.3	0.3	8	7	6	95	6.7
									93	5.9
1951	11.9	1796	11.9	91.4	0.3	5	5	4	90	4.9

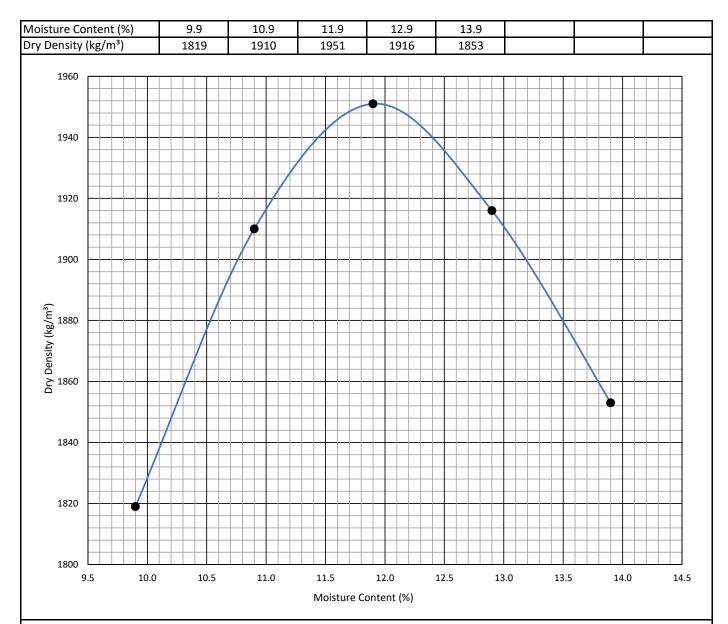
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP2
Depth: (m) 0.8 - 2.4

Job Number: PVT-291


Lab Number: PVT-291-2027
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1951 kg/m³ Optimum Moisture Content: 11.9

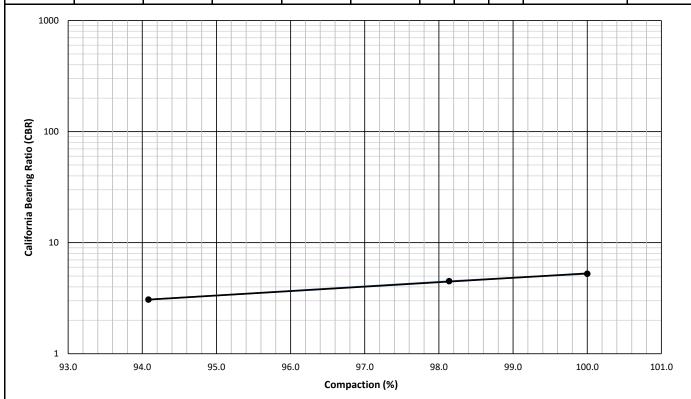
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP4

Depth: (m) 0.3 - 2.3

Job Number: PVT-291


Lab Number: PVT-291-2029 Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASI	HTO Values	Com	paction Data:	: CBR	Swell	CB	D at /m	\	CBR Valu	
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CBR at (mm)			CBN values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	5.2
1835	15.6	1825	14.7	100.0	1.0	5	4	3	98	4.4
									97	4.0
1835	15.6	1791	14.7	98.1	1.1	4	3	3	95	3.3
									93	2.8
1835	15.6	1717	14.7	94.1	1.5	3	3	2	90	2.1

Quality | Excellence | On Time

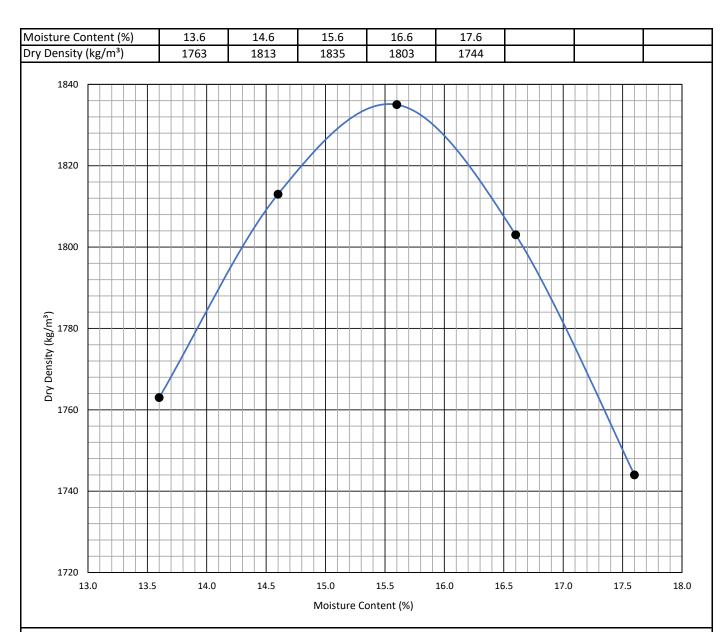
Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP4

Depth: (m) 0.3 - 2.3

Job Number: PVT-291


Lab Number: PVT-291-2029
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1835 kg/m³ Optimum Moisture Content: 15.6 %

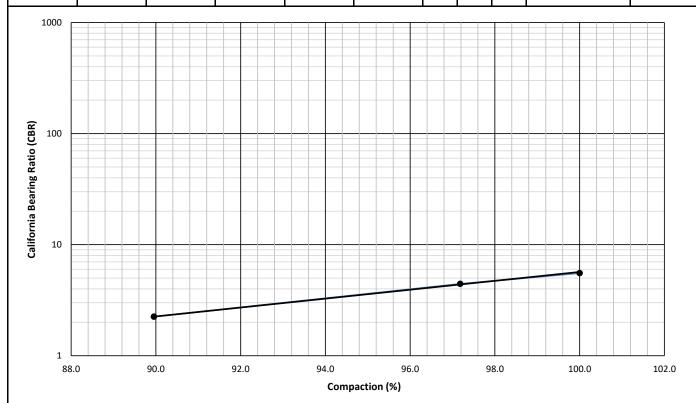
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP5

Depth: (m) 0.4 - 2.5

Job Number: PVT-291


Lab Number: PVT-291-2030
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	ITO Values	Com	paction Data:	CBR	Swell	well CBR at (mm)		.ml	CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CDR at (mm)			CDR Values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR	
									100	5.5	
1872	13.9	1881	14.1	100.0	0.5	6	5	4	98	4.7	
									97	4.4	
1872	13.9	1828	14.1	97.2	0.6	4	4	3	95	3.6	
									93	3.0	
1872	13.9	1692	14.1	90.0	1.0	2	2	2	90	2.3	

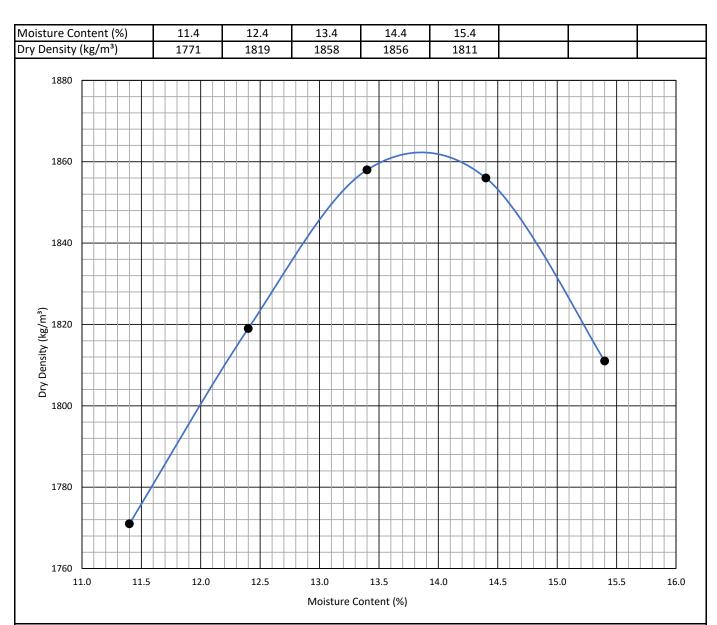
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP5 **Depth: (m)** 0.4 - 2.5

Job Number: PVT-291
Lab Number: PVT-291-2030


Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1872 kg/m³ Optimum Moisture Content: 13.9 %

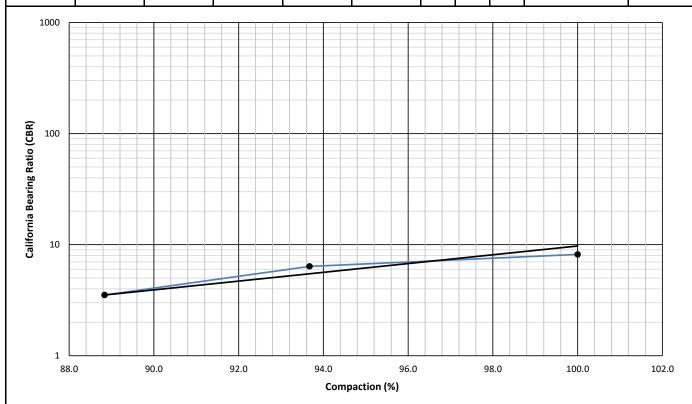
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP13

Depth: (m) 0.3 - 1.8

Job Number: PVT-291


Lab Number: PVT-291-2036
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

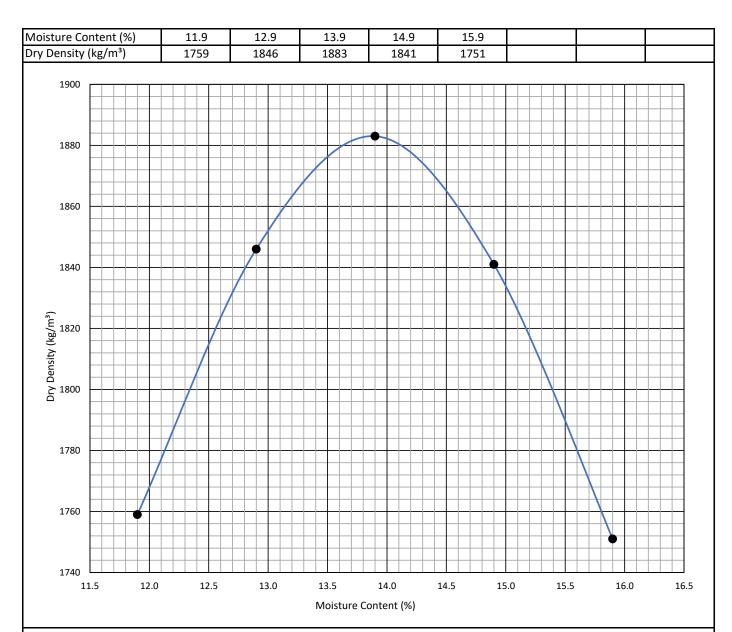
Mod. AASI	ITO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		R at (mm) CBR Values		••
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	CBR at (mm)			CDN Values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	8.2
1883	13.9	1881	14.6	100.0	0.3	8	7	6	98	7.6
									97	7.3
1883	13.9	1762	14.6	93.7	0.4	6	5	5	95	6.7
									93	5.9
1883	13.9	1671	14.6	88.8	0.5	4	3	3	90	4.1

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP13
Depth: (m) 0.3 - 1.8


Job Number: PVT-291
Lab Number: PVT-291-2036

Method: SANS 3001 GR30 Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1883 kg/m³ Optimum Moisture Content: 13.9

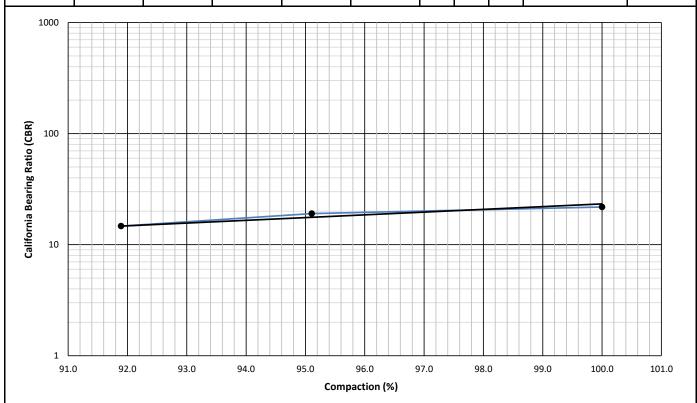
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP16

 Depth: (m)
 0.3 - 2.1

Job Number: PVT-291 Lab Number: PVT-291-2038


 Method:
 SANS 3001 GR40

 Date:
 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	HTO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		.ml	CBR Values	
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CBR at (mm)			CDR Values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	22
2071	9.5	2084	9.9	100.0	0.3	22	27	30	98	21
									97	20
2071	9.5	1982	9.9	95.1	0.4	19	21	20	95	19
									93	16
2071	9.5	1915	9.9	91.9	0.5	15	13	12	90	13

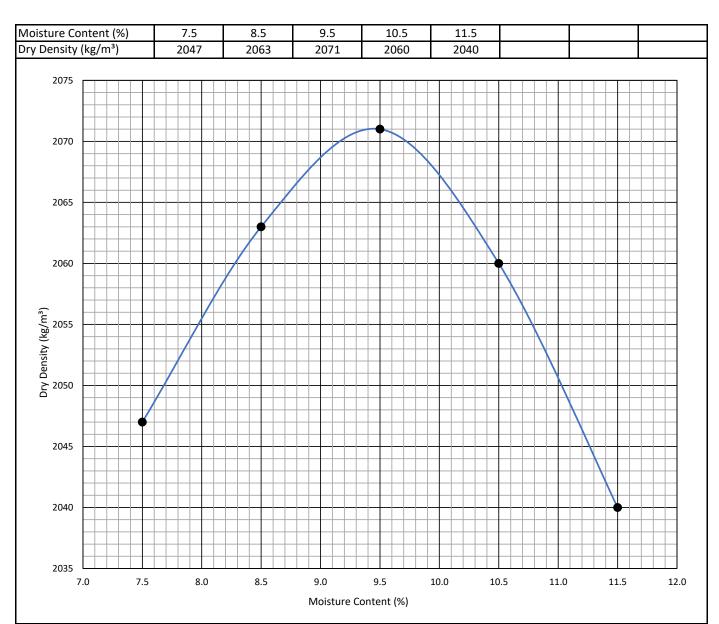
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP16
Depth: (m) 0.3 - 2.1

Job Number: PVT-291


Lab Number: PVT-291-2038
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

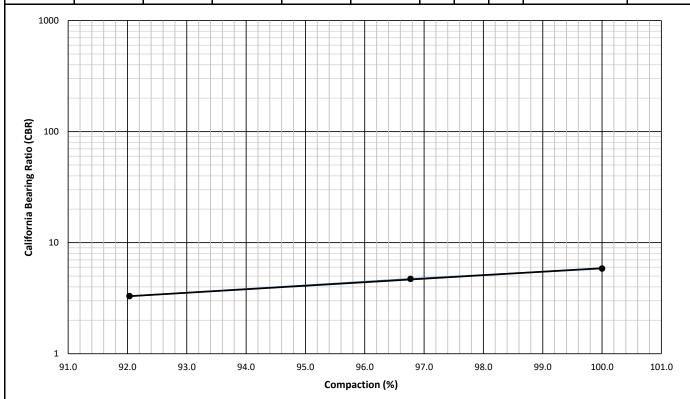
Maximum Dry Density: 2071 kg/m³ Optimum Moisture Content: 9.5 %

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP20 **Depth: (m)** 0.1 - 2.7

Job Number: PVT-291


Lab Number: PVT-291-2041
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASHTO Values		Compaction Data: CBR			Swell	CBR at (mm)			CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CDR at (mm)			CBR values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR	
									100	5.8	
1843	13.1	1858	13.6	100.0	0.6	6	6	6	98	5.1	
									97	4.8	
1843	13.1	1798	13.6	96.8	0.9	5	5	5	95	4.1	
									93	3.5	
1843	13.1	1710	13.6	92.0	1.1	3	3	3	90	2.8	

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Sample:
 KTP20

 Depth: (m)
 0.1 - 2.7

Job Number: PVT-291
Lab Number: PVT-291-

Lab Number: PVT-291-2041
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

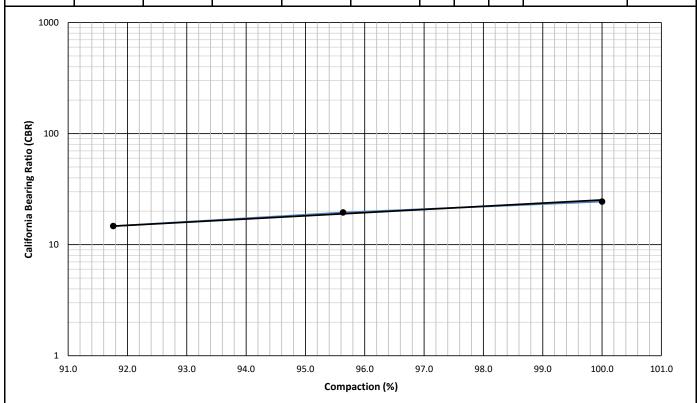
Maximum Dry Density: 1843 kg/m³ Optimum Moisture Content: 13.1 %

Moisture Content (%) 11.1 12.1 13.1 14.1 15.1 Dry Density (kg/m³) 1825 1837 1843 1838 1829 1844 1842 1840 1838 1836 y Density (kg/m³) 1837 1837 1830 1828 1826 1824 11.5 12.0 12.5 13.0 13.5 10.5 11.0 14.0 14.5 15.0 15.5 Moisture Content (%)

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP21
Depth: (m) 0.1 - 2.4


Job Number: PVT-291
Lab Number: PVT-291-2042
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	Mod. AASHTO Values		Compaction Data: CBR			CDD at /mm)			CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CBR at (mm)			CDR values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5 5.0 7.5			Compaction (%)	CBR	
									100	24	
2095	10.7	2039	10.8	100.0	0.0	24	21	19	98	22	
									97	21	
2095	10.7	1950	10.8	95.6	0.0	19	21	21	95	19	
									93	16	
2095	10.7	1871	10.8	91.8	0.0	15	12	10	90	13	

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP21
Depth: (m) 0.1 - 2.4

Job Number: PVT-291
Lab Number: PVT-291-2042

Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 2095 kg/m³ Optimum Moisture Content: 10.7 %

Moisture Content (%) 8.7 9.7 10.7 11.7 12.7 Dry Density (kg/m³) 1880 2024 2095 2027 1896 2150 2100 2050 Dry Density (kg/m³) 1950 1900 1850 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 8.0 8.5 13.0 Moisture Content (%)

Quality | Excellence | On Time

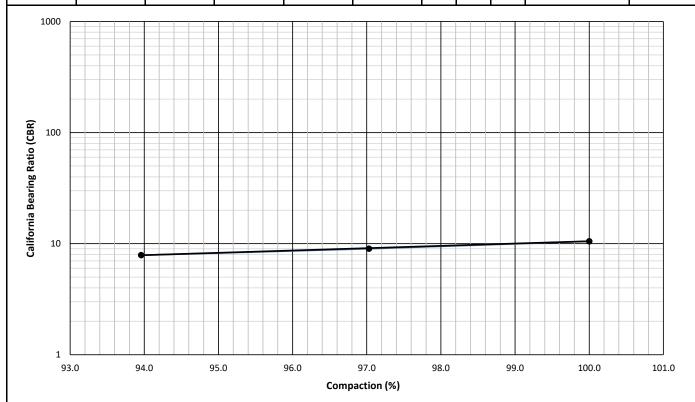
Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP23

Depth: (m) 0.3 - 2.4

Job Number: PVT-291

 Lab Number:
 PVT-291-2044


 Method:
 SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

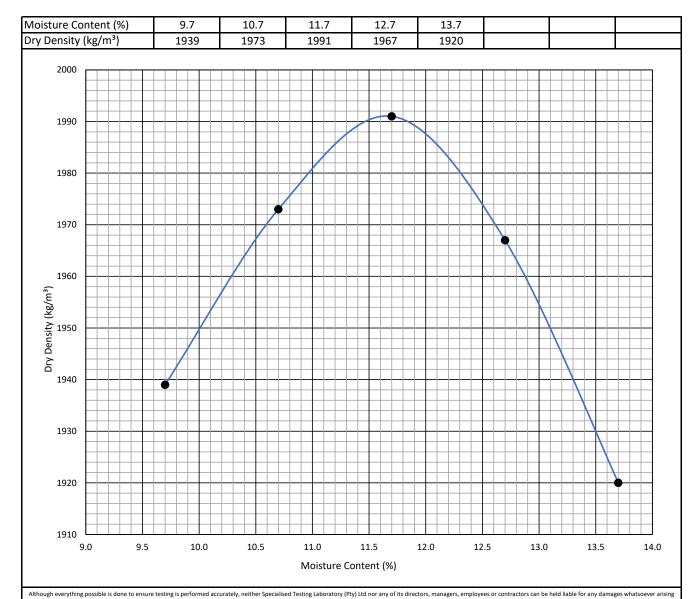
Mod. AASHTO Values		Compaction Data: CBR			Swell	CDD at /mm)			CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	CBR at (mm)			CBR values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5 5.0 7.5			Compaction (%)	CBR	
									100	10.5	
1991	11.7	1986	11.6	100.0	0.2	10	9	9	98	9.5	
									97	9.0	
1991	11.7	1927	11.6	97.0	0.2	9	9	9	95	8.2	
									93	7.5	
1991	11.7	1866	11.6	94.0	0.3	8	7	7	90	6.6	

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP23

 Depth: (m)
 0.3 - 2.4


Job Number: PVT-291
Lab Number: PVT-291-2044
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1991 kg/m³ Optimum Moisture Content: 11.7 %

from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality statement: Unless the release of information is required by law or covered by confidentiality agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

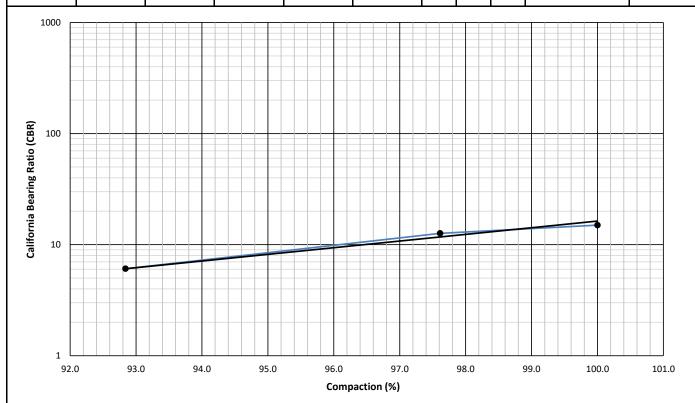
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP25

 Depth: (m)
 0.4 - 2.3

Job Number: PVT-291


Lab Number: PVT-291-2046
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	HTO Values	Com	paction Data:	Data: CBR Swell		CPP at /mm)		.ml	CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CBR at (mm)					
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5 5.0 7.5			Compaction (%)	CBR	
									100	15	
2000	12.5	2053	9.9	100.0	0.0	15	15	14	98	13	
									97	12	
2000	12.5	2004	9.9	97.6	0.1	13	17	20	95	9	
									93	6	
2000	12.5	1906	9.9	92.8	0.1	6	9	11	90	4	

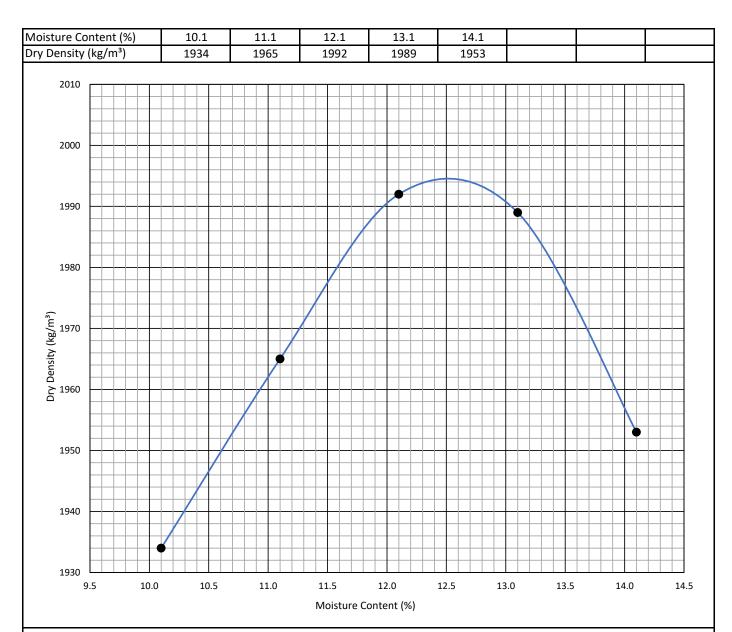
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP25 **Depth: (m)** 0.4 - 2.3

Job Number: PVT-291


Lab Number: PVT-291-2046
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 2000 kg/m³ Optimum Moisture Content: 12.5 %

Quality | Excellence | On Time

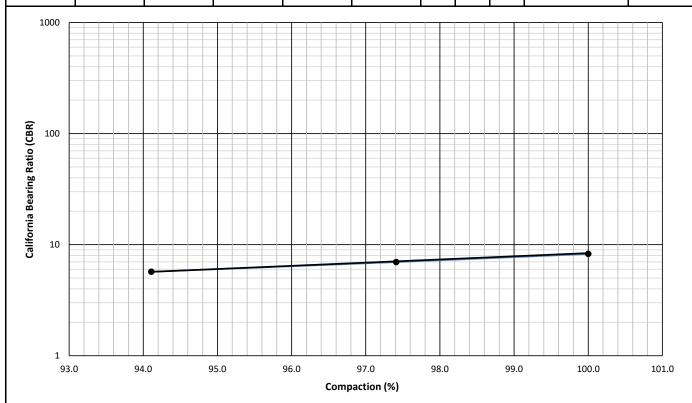
Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP26

 Depth: (m)
 0.6 - 2.1

Lab Number: PVT-291-2047
Method: SANS 3001 GR40

PVT-291


Date: 26-Oct-23

Job Number:

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	Mod. AASHTO Values		Compaction Data: CBR			CDD at /mm)			CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CBR at (mm)			CDR values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5 5.0 7.5			Compaction (%)	CBR	
									100	8.2	
1968	11.6	1969	11.9	100.0	0.1	8	7	6	98	7.2	
									97	6.8	
1968	11.6	1918	11.9	97.4	0.2	7	7	6	95	6.0	
									93	5.3	
1968	11.6	1853	11.9	94.1	0.2	6	5	5	90	4.4	

Quality | Excellence | On Time

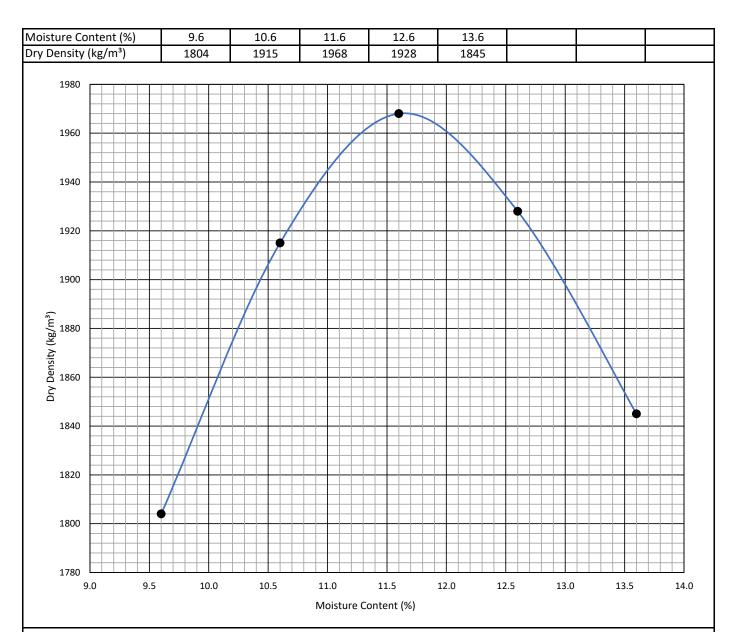
Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Sample:
 KTP26

 Depth: (m)
 0.6 - 2.1

Job Number: PVT-291
Lab Number: PVT-291-2047


Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1968 kg/m³ Optimum Moisture Content: 11.6

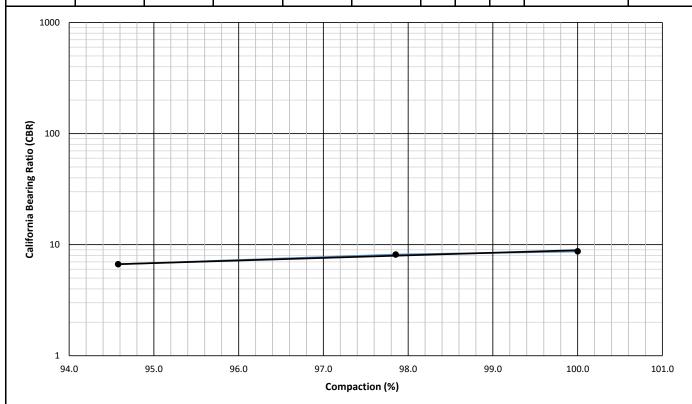
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP29

 Depth: (m)
 0.5 - 2.8

Job Number: PVT-291 Lab Number: PVT-291-2050


 Method:
 SANS 3001 GR40

 Date:
 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASHTO Values		Compaction Data: CBR			Swell	CDD at (man)			CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CBR at (mm)			CBN values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR	
									100	8.7	
1872	13.5	1863	13.8	100.0	0.0	9	8	7	98	8.2	
									97	7.7	
1872	13.5	1823	13.8	97.9	0.1	8	7	6	95	6.8	
									93	6.1	
1872	13.5	1762	13.8	94.6	0.1	7	6	6	90	5.1	

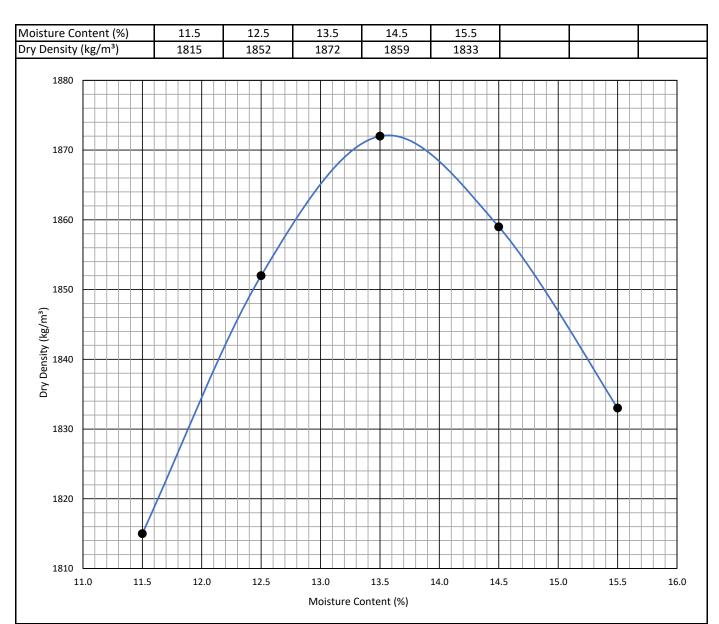
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP29
Depth: (m) 0.5 - 2.8

Job Number: PVT-291


Lab Number: PVT-291-2050
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1872 kg/m³ Optimum Moisture Content: 13.5 %

SANS 3001 GR40

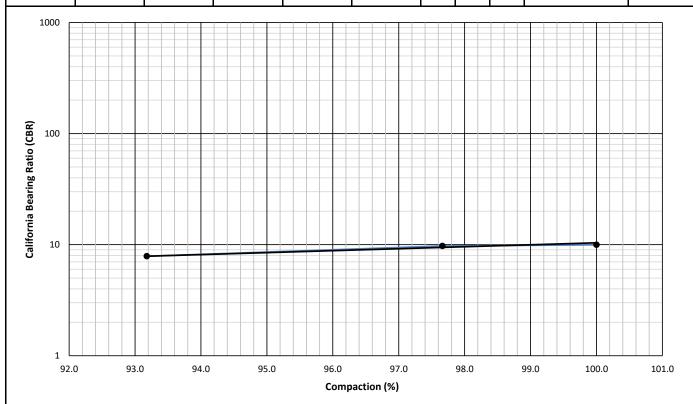
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP30

 Depth: (m)
 0.2 - 2.4

Job Number: PVT-291 Lab Number: PVT-291-2051


Date: 26-Oct-23

Method:

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASI	HTO Values	Com	paction Data:	: CBR	Swell	CBR at (mm)			CDD Volu	
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	6	CBR at (mm)		CBR Values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	10.0
1675	18.9	1627	19.9	100.0	0.4	10	10	9	98	9.8
									97	9.4
1675	18.9	1589	19.9	97.7	0.5	10	10	10	95	8.6
									93	7.8
1675	18.9	1516	19.9	93.2	0.7	8	8	8	90	6.8

Quality | Excellence | On Time

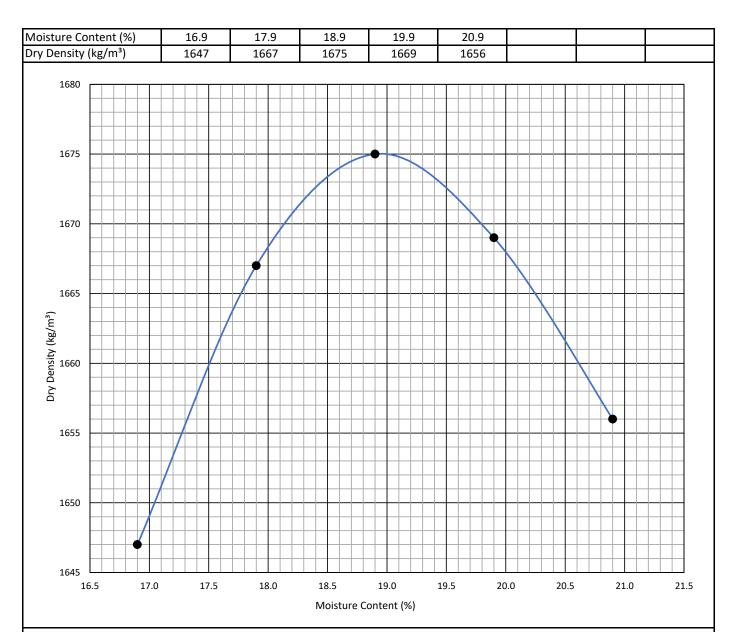
Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP30

Depth: (m) 0.2 - 2.4

Job Number: PVT-291
Lab Number: PVT-291-2051


Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1675 kg/m³ Optimum Moisture Content: 18.9

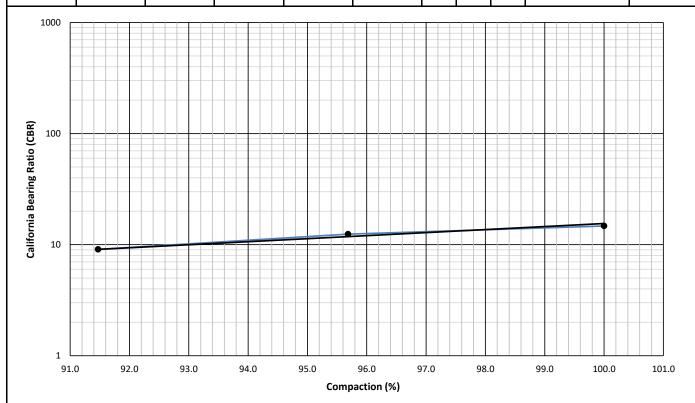
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP32

 Depth: (m)
 0.2 - 2.2

Job Number: PVT-291


Lab Number: PVT-291-2053
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	HTO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		.ml	CBR Valu	05
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	L CB	CBR at (mm)		CBR values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	15
2022	11.1	1993	11.0	100.0	0.1	15	15	15	98	14
									97	13
2022	11.1	1907	11.0	95.7	0.1	12	13	12	95	12
									93	10
2022	11.1	1823	11.0	91.5	0.2	9	8	7	90	8

Quality | Excellence | On Time

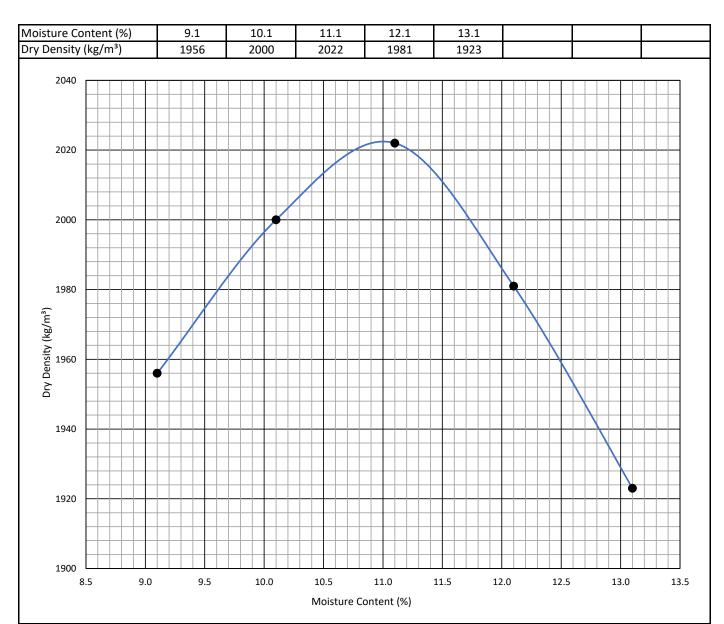
Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Sample:
 KTP32

 Depth: (m)
 0.2 - 2.2

Job Number: PVT-291
Lab Number: PVT-291-2053


Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 2022 kg/m³ Optimum Moisture Content: 11.1 %

Quality | Excellence | On Time

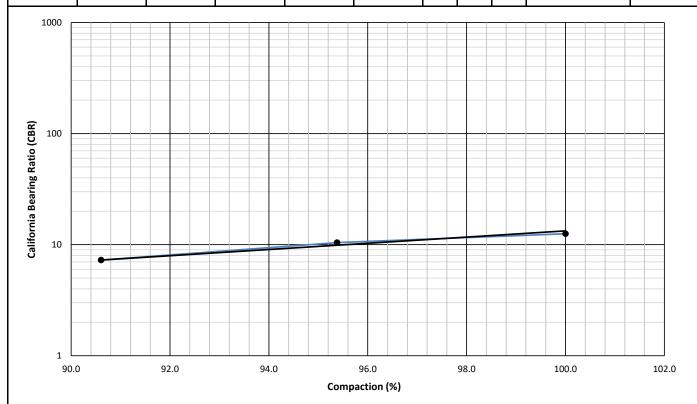
Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP33

 Depth: (m)
 0.2 - 2.4

Lab Number:PVT-291-2054Method:SANS 3001 GR40

PVT-291


Date: 26-Oct-23

Job Number:

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	ITO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		1	CDD Volu	-
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	L CB	CBR at (mm)		CBR Values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	13
1965	11.7	1948	11.5	100.0	0.3	13	12	11	98	12
									97	11
1965	11.7	1858	11.5	95.4	0.3	10	10	9	95	10
									93	9
1965	11.7	1765	11.5	90.6	0.4	7	6	5	90	7

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP33 **Depth: (m)** 0.2 - 2.4

Job Number: PVT-291

Lab Number: PVT-291-2054
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1965 kg/m³ Optimum Moisture Content: 11.7 %

Moisture Content (%) 9.7 10.7 11.7 12.7 13.7 Dry Density (kg/m³) 1913 1946 1965 1941 1896 1970 1960 1950 1940 Dry Density (kg/m^3) 1930 1910 1900 1890 10.0 10.5 11.0 11.5 12.0 12.5 13.0 9.0 9.5 13.5 14.0 Moisture Content (%)

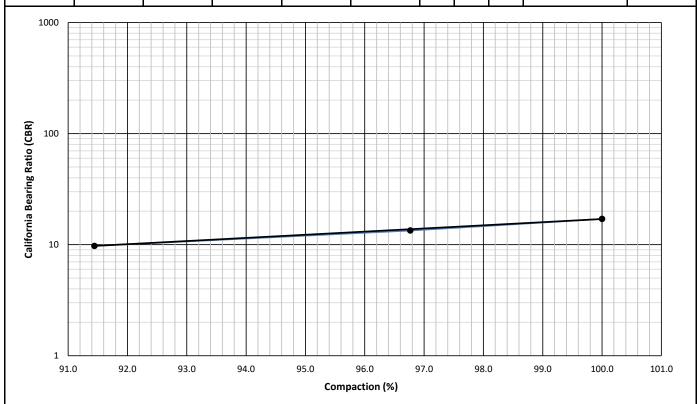
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP35

 Depth: (m)
 0.2 - 2.6

Job Number: PVT-291


Lab Number: PVT-291-2056
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASI	HTO Values	Com	paction Data:	: CBR	Swell	CBR at (mm))	CBR Valu	
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	6	CBR at (mm)		CBR values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	17
2030	10.3	2010	10.5	100.0	0.1	17	17	17	98	15
									97	14
2030	10.3	1945	10.5	96.8	0.1	13	14	14	95	12
									93	11
2030	10.3	1838	10.5	91.4	0.2	10	8	7	90	9

Quality | Excellence | On Time

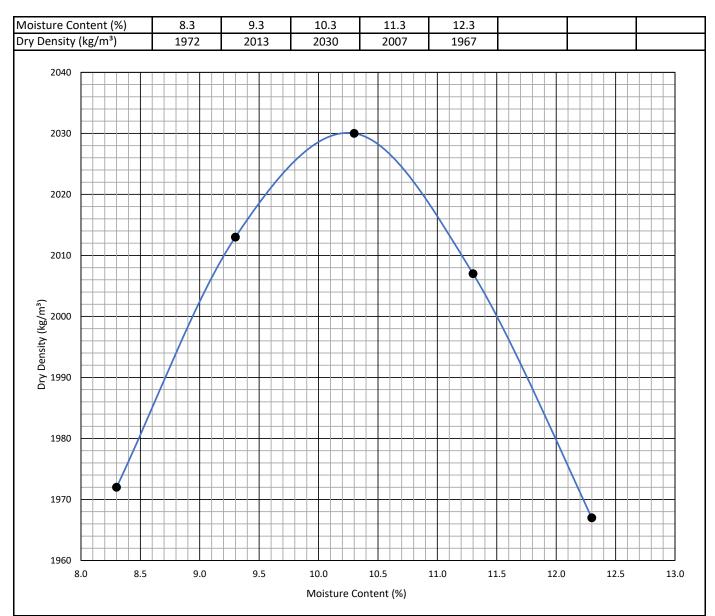
Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

 Sample:
 KTP35

 Depth: (m)
 0.2 - 2.6

Job Number: PVT-291


Lab Number: PVT-291-2056
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

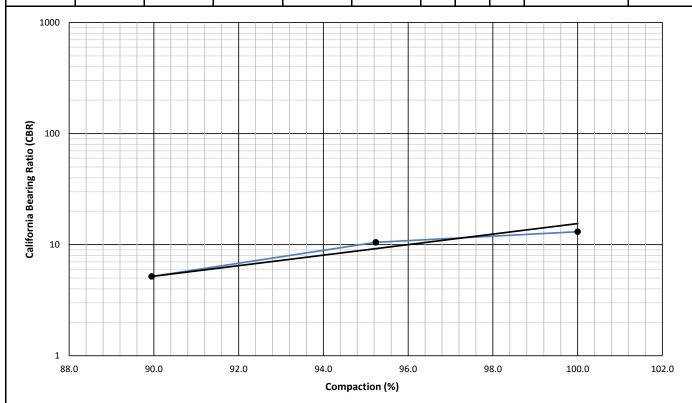
Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 2030 kg/m³ Optimum Moisture Content: 10.3 %

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP36 **Depth: (m)** 0.9 - 1.9


Job Number: PVT-291
Lab Number: PVT-291-2057
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	HTO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		.ml	CBR Valu	05
MDD	OMC	Dry Dens.	MC	Comp.	Swell	СВ	CBR at (mm)		CBR values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	13
1914	10.5	1890	10.3	100.0	0.0	13	19	24	98	12
									97	11
1914	10.5	1800	10.3	95.2	0.1	10	15	18	95	10
									93	8
1914	10.5	1700	10.3	89.9	0.1	5	6	7	90	5

Quality | Excellence | On Time

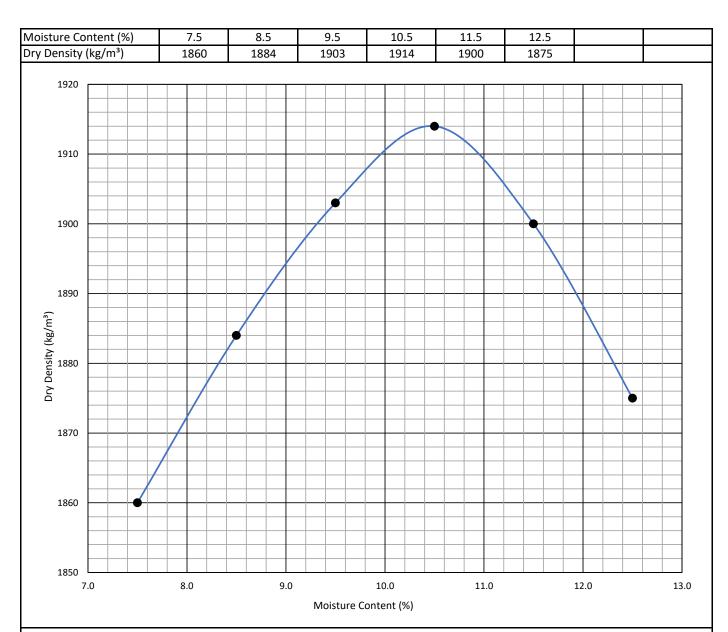
Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP36

Depth: (m) 0.9 - 1.9

Job Number: PVT-291


Lab Number: PVT-291-2057
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1914 kg/m³ Optimum Moisture Content: 10.5

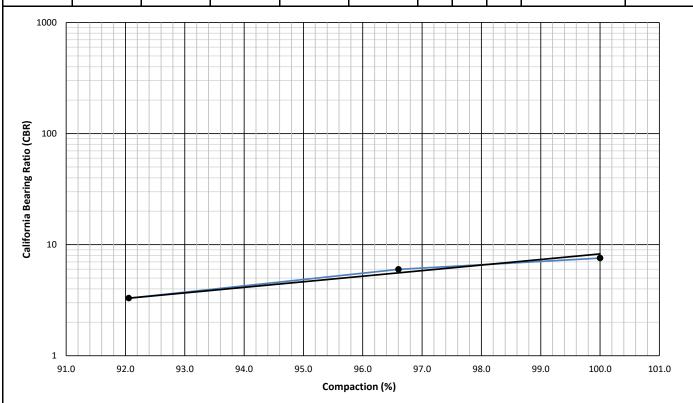
SANS 3001 GR40

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP39 **Depth: (m)** 1.1 - 3.2

Job Number: PVT-291 Lab Number: PVT-291-2060


Date: 26-Oct-23

Method:

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	HTO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		.ml	CBR Valu	05
MDD	OMC	Dry Dens.	MC	Comp.	Swell	L CB	CBR at (mm)		CDR Values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	7.6
1910	12.0	1913	11.8	100.0	0.7	8	7	6	98	6.6
									97	6.2
1910	12.0	1848	11.8	96.6	0.8	6	6	5	95	4.9
									93	3.7
1910	12.0	1761	11.8	92.1	0.9	3	4	3	90	2.5

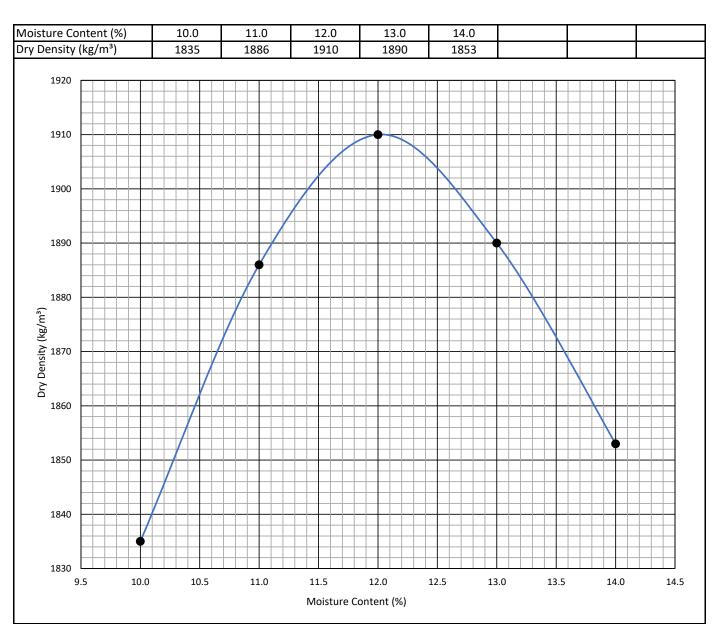
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP39 **Depth: (m)** 1.1 - 3.2

Job Number: PVT-291


Lab Number: PVT-291-2060
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

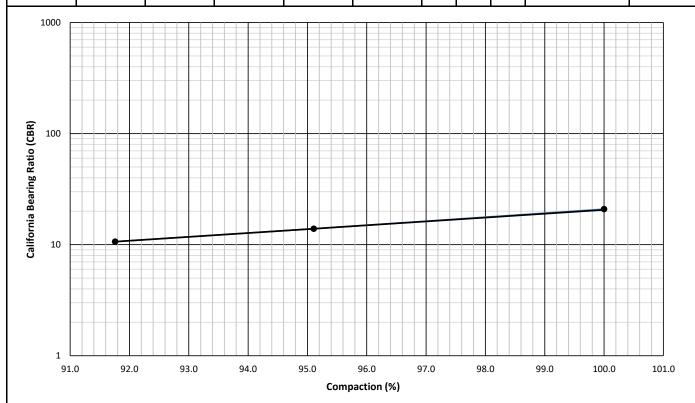
Maximum Dry Density: 1910 kg/m³ Optimum Moisture Content: 12.0 %

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP41
Depth: (m) 1.4 - 2.0

Job Number: PVT-291


Lab Number: PVT-291-2062
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

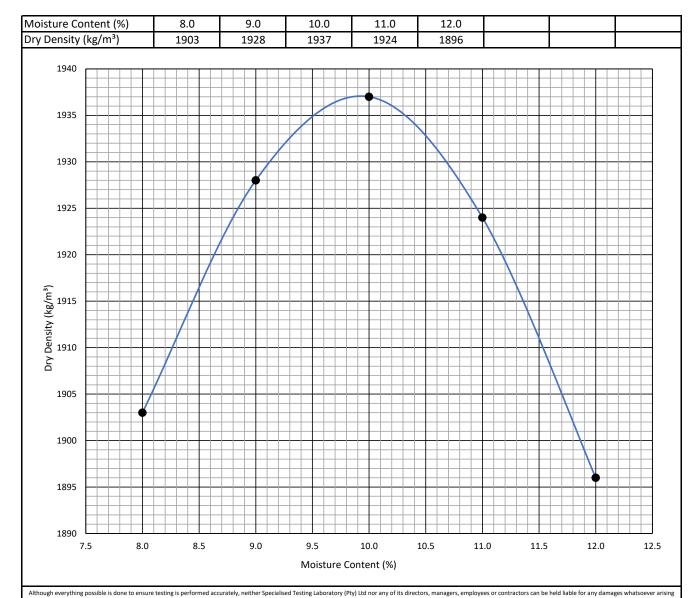
Mod. AASH	ITO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		.ml	CBR Valu	05
MDD	OMC	Dry Dens.	MC	Comp.	Swell	СВ	CBR at (mm)		CDR Values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	21
1937	10.0	1941	9.9	100.0	0.1	21	28	32	98	18
									97	16
1937	10.0	1846	9.9	95.1	0.2	14	14	14	95	14
									93	12
1937	10.0	1781	9.9	91.8	0.3	11	13	15	90	9

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP41

 Depth: (m)
 1.4 - 2.0


Job Number: PVT-291
Lab Number: PVT-291-2062
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

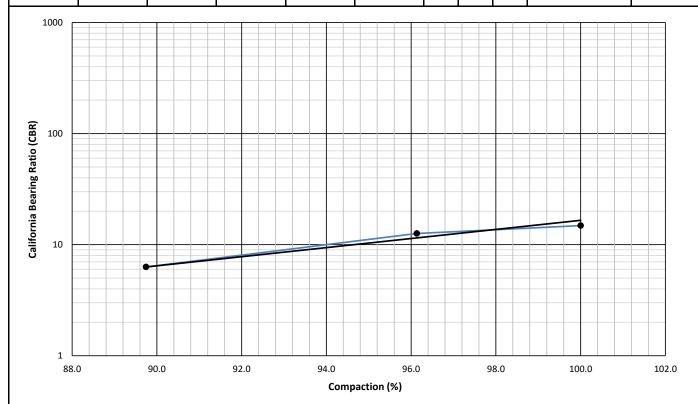
Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1937 kg/m³ Optimum Moisture Content: 10.0 %

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP42 **Depth: (m)** 0.7 - 2.5


Job Number: PVT-291
Lab Number: PVT-291-2063
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

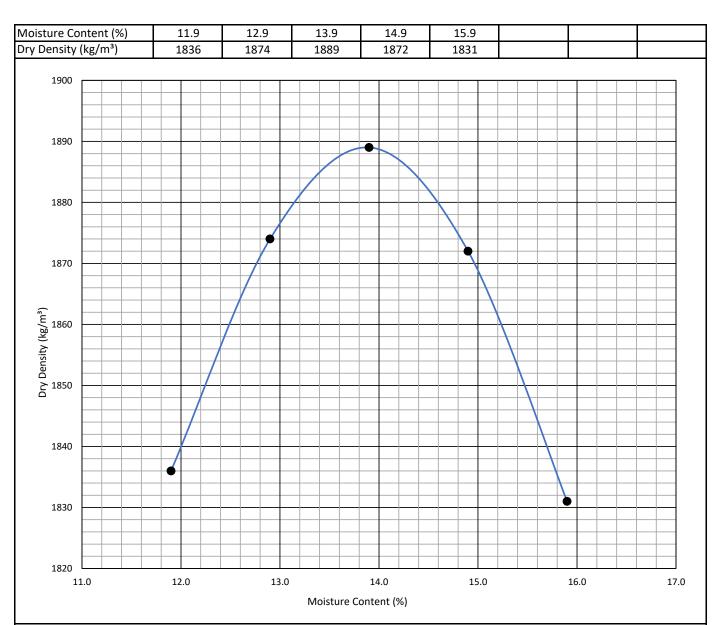
Mod. AASI	ITO Values	Com	paction Data:	CBR	Swell	CBR at (mm)			CBR Valu	••
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	6	CBR at (mm)		CDR Values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	15
1889	13.9	1862	13.6	100.0	0.0	15	12	10	98	14
									97	13
1889	13.9	1790	13.6	96.1	0.0	13	11	10	95	11
									93	9
1889	13.9	1671	13.6	89.7	0.1	6	5	4	90	7

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP42
Depth: (m) 0.7 - 2.5


Job Number: PVT-291
Lab Number: PVT-291-2063
Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1889 kg/m³ Optimum Moisture Content: 13.9 %

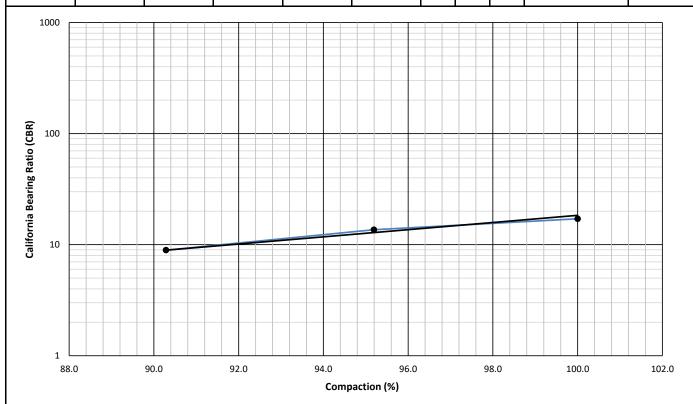
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

Sample: KTP44 **Depth: (m)** 0.1 - 2.6

: (m) 0.1 - 2.6 Date:

Job Number: PVT-291


Lab Number: PVT-291-2065
Method: SANS 3001 GR40

Date: 26-Oct-23

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASI	HTO Values	Com	paction Data:	: CBR	Swell	CBR at (mm)			CBR Valu	
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	6	CBR at (mm)		CBR values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	17
1942	11.1	1935	11.9	100.0	0.0	17	16	15	98	16
									97	15
1942	11.1	1842	11.9	95.2	0.0	14	12	11	95	13
									93	11
1942	11.1	1747	11.9	90.3	0.0	9	7	6	90	9

Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP44

Depth: (m) 0.1 - 2.6

Job Number: PVT-291
Lab Number: PVT-291-2065

Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1942 kg/m³ Optimum Moisture Content: 11.1 %

Moisture Content (%) 9.1 10.1 11.1 12.1 13.1 Dry Density (kg/m³) 1914 1934 1942 1933 1912 1945 1940 1935 1930 Dry Density (kg/m³) 56 57 1920 1915 1910 9.5 10.0 10.5 11.5 12.0 12.5 8.5 9.0 11.0 13.0 13.5 Moisture Content (%)

Quality | Excellence | On Time

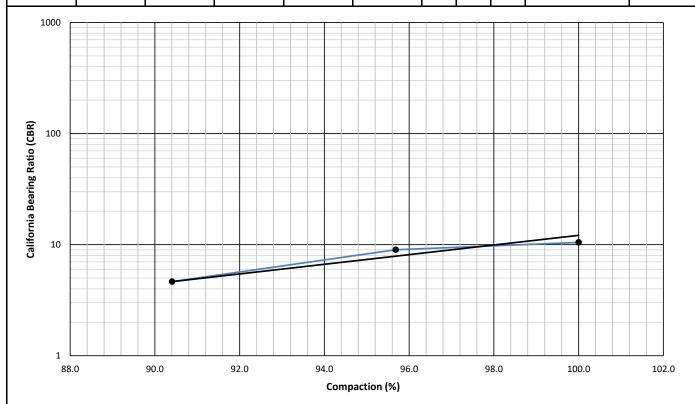
Client Name: BAV Consulting (Pty) Ltd
Project Name: Komati Power Station Repurposing

 Sample:
 KTP46

 Depth: (m)
 1.0 - 2.3

ver Station Repurposing Lab Number: PVT-291-2067
Method: SANS 3001 GR40

Job Number:


Date: 26-Oct-23

PVT-291

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	HTO Values	Com	paction Data:	CBR	Swell	CBR at (mm)		.ml	CBR Valu	00
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	6	CBR at (mm)		CBN values	
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	11
1911	12.9	1876	13.0	100.0	0.1	10	9	8	98	10
									97	9
1911	12.9	1795	13.0	95.7	0.1	9	7	6	95	8
									93	6
1911	12.9	1696	13.0	90.4	0.1	5	4	3	90	4

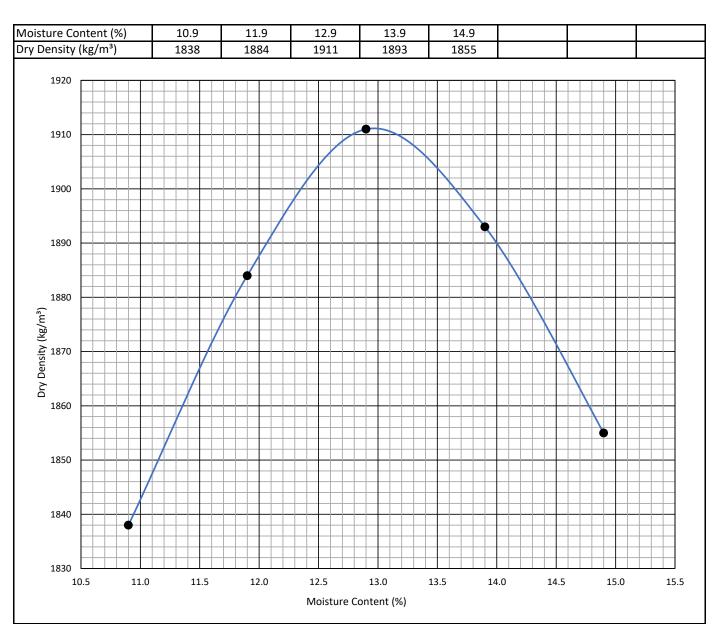
Quality | Excellence | On Time

Client Name: BAV Consulting (Pty) Ltd

Project Name: Komati Power Station Repurposing

Sample: KTP46 **Depth: (m)** 1.0 - 2.3

Job Number: PVT-291
Lab Number: PVT-291-2067


Method: SANS 3001 GR30

Date: 26-Oct-23

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1911 kg/m³ Optimum Moisture Content: 12.9 %

WATERLAB

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria V.A.T. No.: 4130107891

P.O. Box 283
Persequor Park, 0020
Tel: +2712 – 349 –

Tel: +2712 - 349 - 1066 Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2023-10-18 Date completed: 2023-10-30

Project number: 1000 Report number: 125716 Order number: T 050

Client name: Specialised Testing Laboratory Contact person: Thinus Hofsink

Address: Unit 1, 13 Bloubokkie Street, Koedoespoort, 0186 Email: thinus@stlab.co.za Cell: 082 309 4448 (Gerrie)

Analyses in ma/0		Sample Ide	entification:
Analyses in mg/ℓ (Unless specified otherwise)	Method Identification	KTP6 0.0 - 1.0m PVT-291-2031	KTP11 0.7 - 2.4m PVT-291-2034
Sample Number		23-25483	23-25484
Leachate used	WLAB075	Distilled Water	Distilled Water
Mass Used (g)		500	500
Volume Used (mℓ)		1000	1000
pH Value at 25°C	WLAB001	6.4	6.7
pHs Value at 20°C (calc)	WLAB053b	9.5	9.8
Electrical Conductivity in mS/m at 25°C	WLAB002	10.7	3.4
Total Dissolved Solids (calc)	WLAB068	72	23
Total Alkalinity as CaCO₃	WLAB007	16	24
Total Hardness as CaCO ₃ (calc)	WLAB051b	36	9
Calcium Hardness as CaCO₃ (calc)	WLAB051a	20	5
Calcium as Ca	WLAB015	8	2
Magnesium as Mg	WLAB015	4	1
Free & Saline Ammonia	WLAB046	<0.1	<0.1
Ammonium as NH₄ (calc)	WLAB068	<0.3	<0.3
Sulphate as SO ₄	WLAB046	31	8
Chloride as Cl	WLAB046	4	<2
Langelier Index at 20°C (calc)	WLAB053c	-3.1	-3.1
Ryznar Index at 20°C (calc)	WLAB053d	12.5	13.0
Corrosivity Ratio (calc)	WLAB054	2.4	0.4
Leaching Index [LCSI] (calc)*		2603	2645
Spalling Index [SCSI] (calc)*		4	1
Aggressiveness Index [N₀] (calc)*		2607	2646

Please note:

- The blank is subtracted from all leach results, except pH and Electrical Conductivity.
- * = Not SANAS Accredited
- Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.
- [o] = Analyses performed by an Outsourced Laboratory
- Results marked "Outsourced Test" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory

S. Laubscher

Technical Signatory

WATERI AR

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria V.A.T. No.: 4130107891 P.O. Box 283

Persequor Park, 0020 Tel: +2712 - 349 - 1066

Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2023-10-18 Date completed: 2023-10-30

Project number: 1000 Report number: 125716 Order number: T 050

Client name: Specialised Testing Laboratory Contact person: Thinus Hofsink

Address: Unit 1, 13 Bloubokkie Street, Koedoespoort, 0186 Email: thinus@stlab.co.za Cell: 082 309 4448 (Gerrie)

Analyses in mg/ℓ		Sample Ide	entification:
(Unless specified otherwise)	Method Identification	KTP17 0.2 - 2.2m PVT-291-2039	KTP24 0.2 - 2.4m PVT-291-2045
Sample Number		23-25485	23-25486
Leachate used	WLAB075	Distilled Water	Distilled Water
Mass Used (g)		500	500
Volume Used (mℓ)		1000	1000
pH Value at 25°C	WLAB001	6.1	6.6
pHs Value at 20°C (calc)	WLAB053b	10.4	9.9
Electrical Conductivity in mS/m at 25°C	WLAB002	1.4	8.4
Total Dissolved Solids (calc)	WLAB068	<10	5.6
Total Alkalinity as CaCO₃	WLAB007	12	12
Total Hardness as CaCO₃ (calc)	WLAB051b	7	26
Calcium Hardness as CaCO₃ (calc)	WLAB051a	2	10
Calcium as Ca	WLAB015	<1	4
Magnesium as Mg	WLAB015	<1	4
Free & Saline Ammonia	WLAB046	<0.1	<0.1
Ammonium as NH ₄ (calc)	WLAB068	<0.3	<0.3
Sulphate as SO ₄	WLAB046	<2	23
Chloride as Cl	WLAB046	2	2
Langelier Index at 20°C (calc)	WLAB053c	-4.3	-3.3
Ryznar Index at 20°C (calc)	WLAB053d	14.7	13.2
Corrosivity Ratio (calc)	WLAB054	0.3	2.2
Leaching Index [LCSI] (calc)*		3462	2740
Spalling Index [SCSI] (calc)*		1	4
Aggressiveness Index [N _c] (calc)*		3463	2744

Please note:

- The blank is subtracted from all leach results, except pH and Electrical Conductivity.
- * = Not SANAS Accredited
- Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.
- [o] = Analyses performed by an Outsourced Laboratory
- Results marked "Outsourced Test" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory

S. Laubscher

Technical Signatory

WATERI AR

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria V.A.T. No.: 4130107891

P.O. Box 283
Persequor Park, 0020
Tel: +2712 – 349 -

Tel: +2712 - 349 - 1066 Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2023-10-18 Date completed: 2023-10-30

Project number: 1000 Report number: 125716 Order number: T 050

Client name: Specialised Testing Laboratory Contact person: Thinus Hofsink

Address: Unit 1, 13 Bloubokkie Street, Koedoespoort, 0186 Email: thinus@stlab.co.za Cell: 082 309 4448 (Gerrie)

Analyses in male		Sample Identification:		
Analyses in mg/ℓ (Unless specified otherwise)	Method Identification	KTP27 0.2 - 2.5m PVT-291-2048	KTP34 0.4 - 2.1m PVT-291-2055	
Sample Number] [23-25487	23-25488	
Leachate used	WLAB075	Distilled Water	Distilled Water	
Mass Used (g)		500	500	
Volume Used (mℓ)		1000	1000	
pH Value at 25°C	WLAB001	6.4	6.5	
pHs Value at 20°C (calc)	WLAB053b	9.3	9.5	
Electrical Conductivity in mS/m at 25°C	WLAB002	14.3	8.6	
Total Dissolved Solids (calc)	WLAB068	96	58	
Total Alkalinity as CaCO₃	WLAB007	16	20	
Total Hardness as CaCO₃ (calc)	WLAB051b	61	31	
Calcium Hardness as CaCO₃ (calc)	WLAB051a	32	15	
Calcium as Ca	WLAB015	13	6	
Magnesium as Mg	WLAB015	7	4	
Free & Saline Ammonia	WLAB046	<0.1	<0.1	
Ammonium as NH₄ (calc)	WLAB068	<0.3	<0.3	
Sulphate as SO ₄	WLAB046	44	23	
Chloride as Cl	WLAB046	3	3	
Langelier Index at 20°C (calc)	WLAB053c	-2.9	-3.0	
Ryznar Index at 20°C (calc)	WLAB053d	12.1	12.5	
Corrosivity Ratio (calc)	WLAB054	3.1	1.4	
Leaching Index [LCSI] (calc)*		2462	2546	
Spalling Index [SCSI] (calc)*		6	4	
Aggressiveness Index [N₀] (calc)*		2468	2549	

Please note:

- The blank is subtracted from all leach results, except pH and Electrical Conductivity.
- * = Not SANAS Accredited
- Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.
- [o] = Analyses performed by an Outsourced Laboratory
- Results marked "Outsourced Test" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory

S. Laubscher

Technical Signatory

WATERLAB

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria V.A.T. No.: 4130107891 P.O. Box 283

Persequor Park, 0020 Tel: +2712 - 349 - 1066

Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2023-10-18 Date completed: 2023-10-30

Project number: 1000 Report number: 125716 Order number: T 050

Client name: Specialised Testing Laboratory Contact person: Thinus Hofsink

Address: Unit 1, 13 Bloubokkie Street, Koedoespoort, 0186 Email: thinus@stlab.co.za Cell: 082 309 4448 (Gerrie)

Analyses in mg/ℓ		Sample Identification:		
(Unless specified otherwise)	Method KTP38 0.4 - 2.7m ldentification PVT-291-2059		KTP40 0.1 - 1.1m PVT-291-2061	
Sample Number		23-25489	23-25490	
Leachate used	WLAB075	Distilled Water	Distilled Water	
Mass Used (g)		500	500	
Volume Used (mℓ)		1000	1000	
pH Value at 25°C	WLAB001	6.3	7.5	
pHs Value at 20°C (calc)	WLAB053b	9.9	8.6	
Electrical Conductivity in mS/m at 25°C	WLAB002	12.7	27.6	
Total Dissolved Solids (calc)	WLAB068	85	185	
Total Alkalinity as CaCO₃	WLAB007	12	52	
Total Hardness as CaCO ₃ (calc)	WLAB051b	26	66	
Calcium Hardness as CaCO₃ (calc)	WLAB051a	10	50	
Calcium as Ca	WLAB015	4	20	
Magnesium as Mg	WLAB015	4	4	
Free & Saline Ammonia	WLAB046	<0.1	<0.1	
Ammonium as NH₄ (calc)	WLAB068	<0.3	<0.3	
Sulphate as SO ₄	WLAB046	47	75	
Chloride as Cl	WLAB046	3	3	
Langelier Index at 20°C (calc)	WLAB053c	-3.6	-1.1	
Ryznar Index at 20°C (calc)	WLAB053d	13.5	9.7	
Corrosivity Ratio (calc)	WLAB054	4.4	1.6	
Leaching Index [LCSI] (calc)*		2972	1195	
Spalling Index [SCSI] (calc)*		6	9	
Aggressiveness Index [N _c] (calc)*		2978	1204	

Please note:

- The blank is subtracted from all leach results, except pH and Electrical Conductivity.
- * = Not SANAS Accredited
- Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.
- [o] = Analyses performed by an Outsourced Laboratory
- Results marked "Outsourced Test" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory

S. Laubscher

Technical Signatory

WATERLAB

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria V.A.T. No.: 4130107891 P.O. Box 283

Persequor Park, 0020 Tel: +2712 - 349 - 1066

Fax: +2712 – 349 – 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2023-10-18 Date completed: 2023-10-30

Project number: 1000 Report number: 125716 Order number: T 050

Client name: Specialised Testing Laboratory Contact person: Thinus Hofsink

Address: Unit 1, 13 Bloubokkie Street, Koedoespoort, 0186 Email: thinus@stlab.co.za Cell: 082 309 4448 (Gerrie)

Analyses in ma/8		Sample Identification:
Analyses in mg/ℓ (Unless specified otherwise)	Method Identification	KTP45 0.1 - 2.2m PVT-291-2066
Sample Number		23-25491
Leachate used	WLAB075	Distilled Water
Mass Used (g)		500
Volume Used (mℓ)		1000
pH Value at 25°C	WLAB001	5.4
pHs Value at 20°C (calc)	WLAB053b	10.0
Electrical Conductivity in mS/m at 25°C	WLAB002	15.6
Total Dissolved Solids (calc)	WLAB068	105
Total Alkalinity as CaCO₃	WLAB007	<5
Total Hardness as CaCO₃ (calc)	WLAB051b	55
Calcium Hardness as CaCO₃ (calc)	WLAB051a	22
Calcium as Ca	WLAB015	9
Magnesium as Mg	WLAB015	8
Free & Saline Ammonia	WLAB046	<0.1
Ammonium as NH₄ (calc)	WLAB046	<0.3
Sulphate as SO ₄	WLAB046	51
Chloride as Cl	WLAB046	5
Langelier Index at 20°C (calc)	WLAB053c	-4.6
Ryznar Index at 20°C (calc)	WLAB053d	14.7
Corrosivity Ratio (calc)	WLAB054	15
Leaching Index [LCSI] (calc)*		3713
Spalling Index [SCSI] (calc)*		7
Aggressiveness Index [N₀] (calc)*		3720

Please note:

- The blank is subtracted from all leach results, except pH and Electrical Conductivity.
- * = Not SANAS Accredited
- Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.
- [o] = Analyses performed by an Outsourced Laboratory
- Results marked "Outsourced Test" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory

S. Laubscher

Technical Signatory

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07 V.A

23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria V.A.T. No.: 4130107891 P.O. Box 283

Persequor Park, 0020 Tel: +2712 - 349 - 1066

Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2023-10-18 Date completed: 2023-10-30

Project number: 1000 Report number: 125716 Order number: T 050

Client name: Specialised Testing Laboratory Contact person: Thinus Hofsink

Address: Unit 1, 13 Bloubokkie Street, Koedoespoort, 0186 Email: thinus@stlab.co.za Cell: 082 309 4448 (Gerrie)

Important notes (see table for corrections on p.8):

- 1. The above aggressiveness index is only applicable for conditions of laminar flow at a mean annual temperature of 20°C.
- 2. For stagnant/turbulent conditions the aggressiveness index must be corrected.
- 3. For wet/dry cycling conditions (for example in tidal zones) the aggressiveness index must be corrected.
- 4. For mean annual temperatures lower/higher than 20°C the aggressiveness index must be corrected.

S. Laubscher

Technical Signatory

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria

P.O. Box 283 Persequor Park, 0020

+2712 - 349 - 1066 Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Tel:

Date received: 2023-10-18 Date completed: 2023-10-30

Project number: 1000 Report number: 125716 Order number: T 050

Client name: Specialised Testing Laboratory **Contact person: Thinus Hofsink**

Address: Unit 1, 13 Bloubokkie Street, Koedoespoort, 0186 Email: thinus@stlab.co.za Telephone: ---Cell: 082 309 4448 (Gerrie)

Guidelines for assessing overall aggressiveness (N_c):

Nc	Aggressiveness
Not greater than 300	None to mild
400-700	Mild to moderate
800-1000	High
= or > 1 100	Very high

Aggressiveness Towards Concrete and Fibre Cement Pipes			
Index	Aggressive	Neutral	Non- Aggressive
a) Stability pH (pHs)	> pH	= pH	<ph< td=""></ph<>
b) Langelier Index	Neg. Value	Zero	Pos. Value
c) Ryznar Index	>7.5	6-7	<6

Corrosiveness Towards metals	
Corrosivity	>0.2

Sample Name	Sample Number	Corrosivity Indices	Basson Index
KTP6 0.0 - 1.0m PVT-291-2031	23-25483	Corrosive	Aggressive
KTP11 0.7 - 2.4m PVT-291-2034	23-25484	Corrosive	Aggressive
KTP17 0.2 - 2.2m PVT-291-2039	23-25485	Corrosive	Aggressive
KTP24 0.2 - 2.4m PVT-291-2045	23-25486	Corrosive	Aggressive
KTP27 0.2 - 2.5m PVT-291-2048	23-25487	Corrosive	Aggressive
KTP34 0.4 - 2.1m PVT-291-2055	23-25488	Corrosive	Aggressive
KTP38 0.4 - 2.7m PVT-291-2059	23-25489	Corrosive	Aggressive
KTP40 0.1 - 1.1m PVT-291-2061	23-25490	Corrosive	Aggressive
KTP45 0.1 - 2.2m PVT-291-2066	23-25491	Corrosive	Aggressive

S. Laubscher_

Technical Signatory

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria V.A.T. No.: 4130107891

P.O. Box 283
Persequor Park, 0020
Tel: +2712 – 349 –

Tel: +2712 - 349 - 1066 Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2023-10-18 Date completed: 2023-10-30

Project number: 1000 Report number: 125716 Order number: T 050

Client name: Specialised Testing Laboratory Contact person: Thinus Hofsink

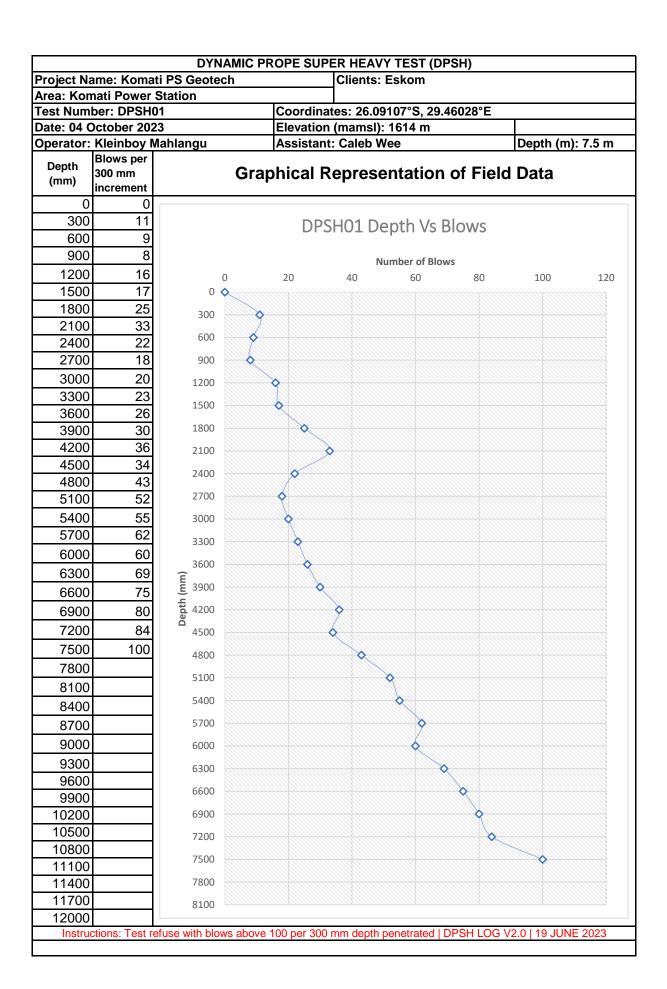
Address: Unit 1, 13 Bloubokkie Street, Koedoespoort, 0186 Email: thinus@stlab.co.za
Telephone: --- Cell: 082 309 4448 (Gerrie)

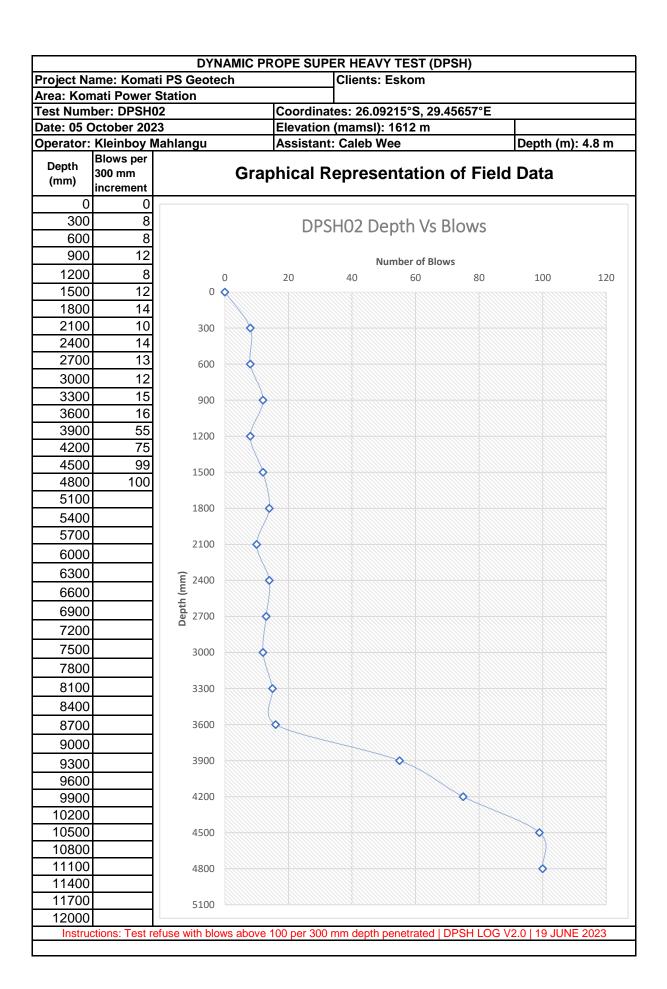
To correct for:	Multiply	By: (see Notes 2 to 5 below)
Turbulence	LCSI	1.75
Stagnance	LCSI	0.5
Temperature	LCSI, SCSI, N7 Where N7=0.2 x CI in mg/l	(1+ [0.05 x (T-20)])
Wet-dry cycles	SCSI	0.23 x 10 ⁻⁶ x TDS x DTF x CPA Where: DTF = Dry Time Fraction CPA = wet-dry cycles per annum

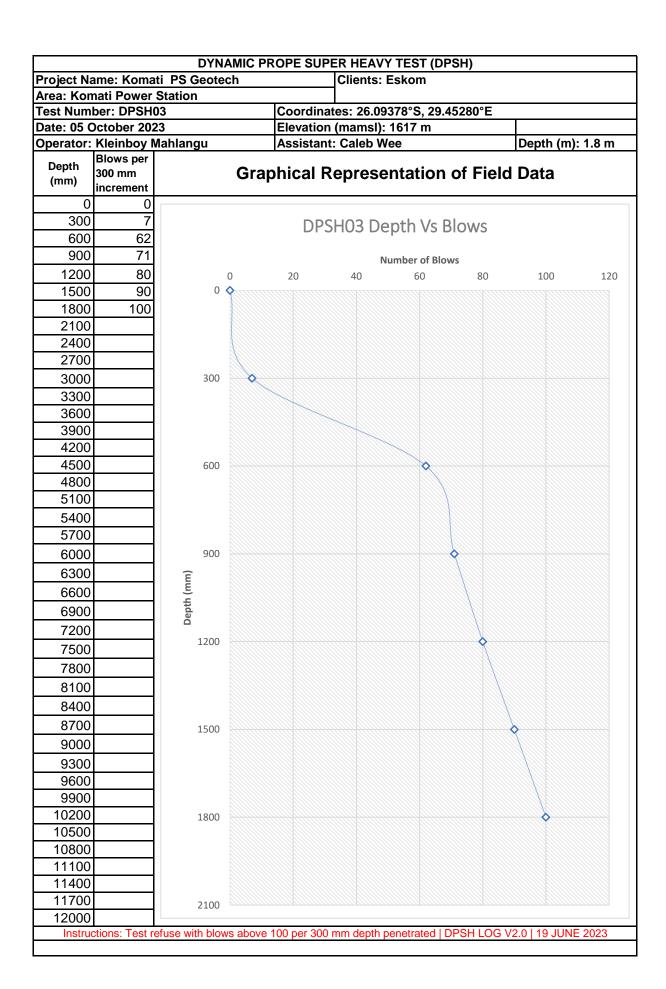
Note 1: Only if the concrete contains embedded steel.

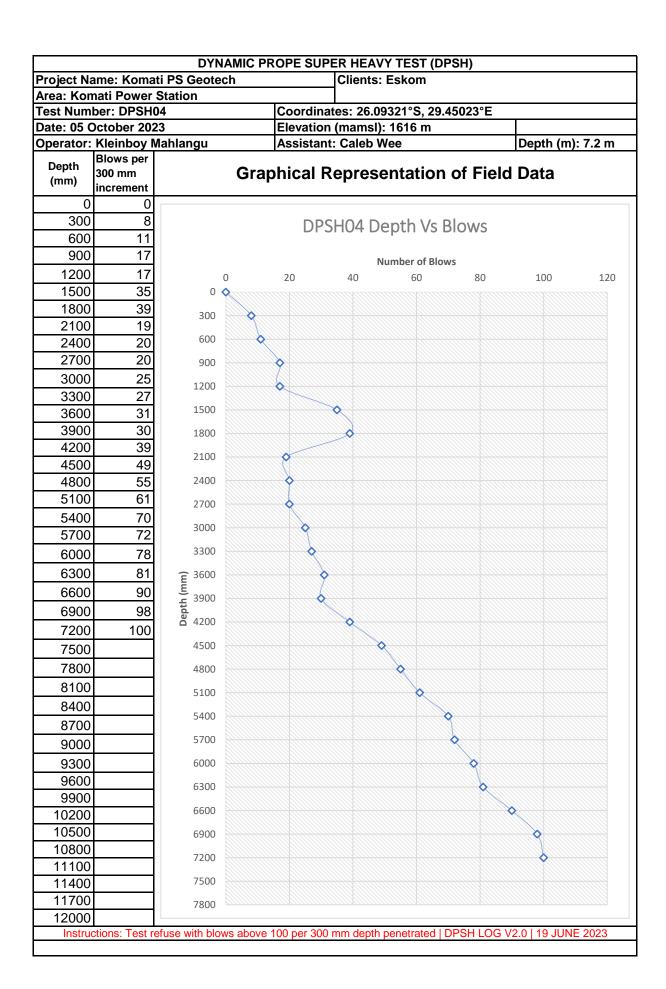
Note 2: To preserve the correct logical relationships when dealing with the negative sub-indices (i.e. LCSI or SCSI having minus values) they should be multiplied by the reciprocal of the relevant factor indicated in this column

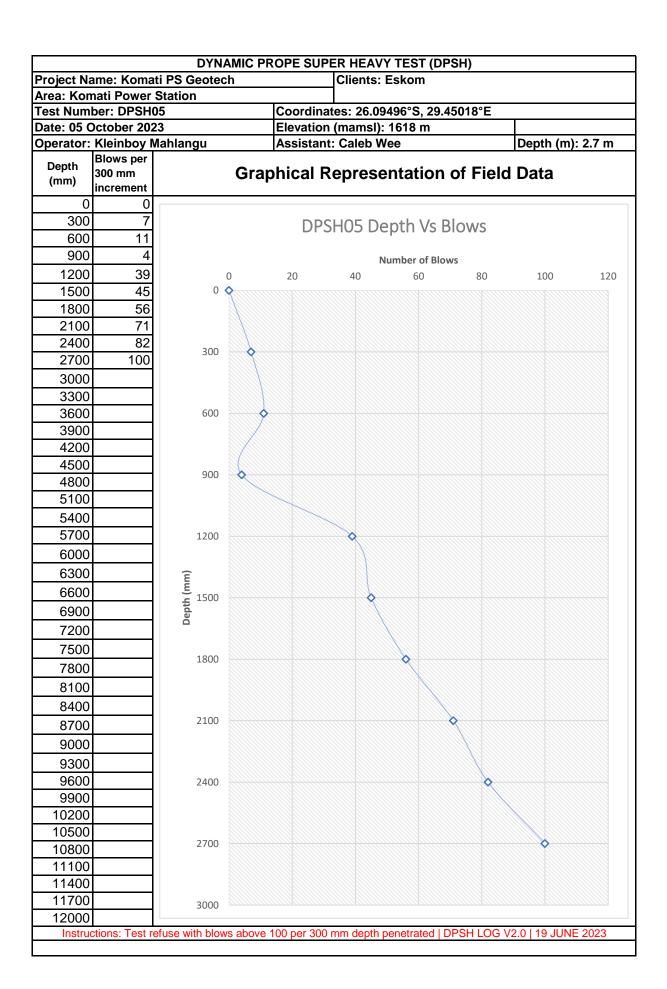
Note 3: If more than one correction is required, multiply by the product of the individual correction factors

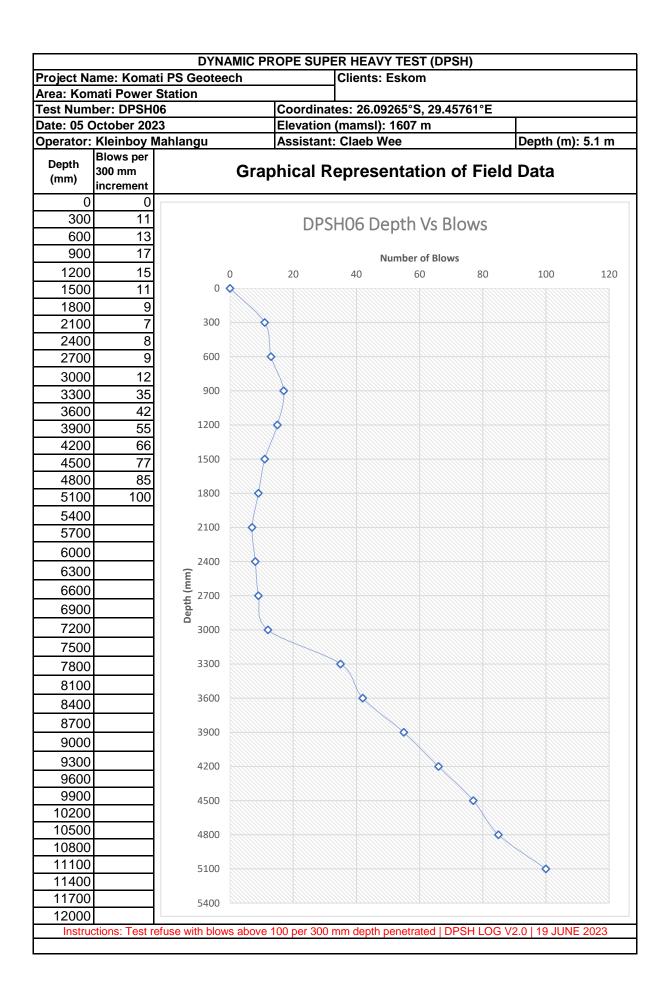

Note 4: Use subscript c to indicate that the index has been corrected, e.g. for turbulent conditions LCSIc = LCSI x 1.75

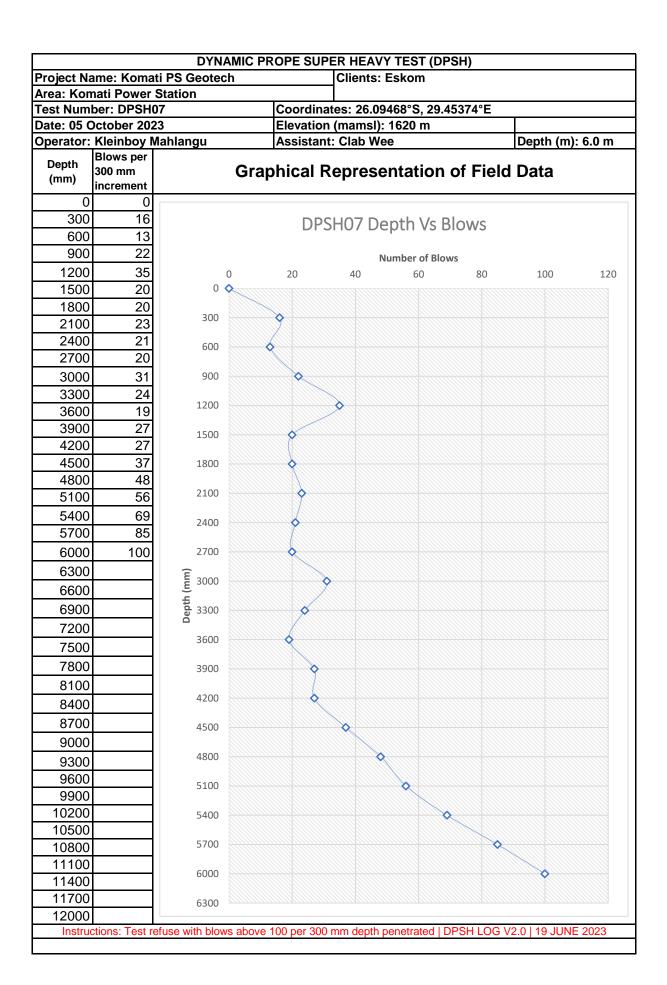

Note 5: Round off corrected indices to the nearest 100.

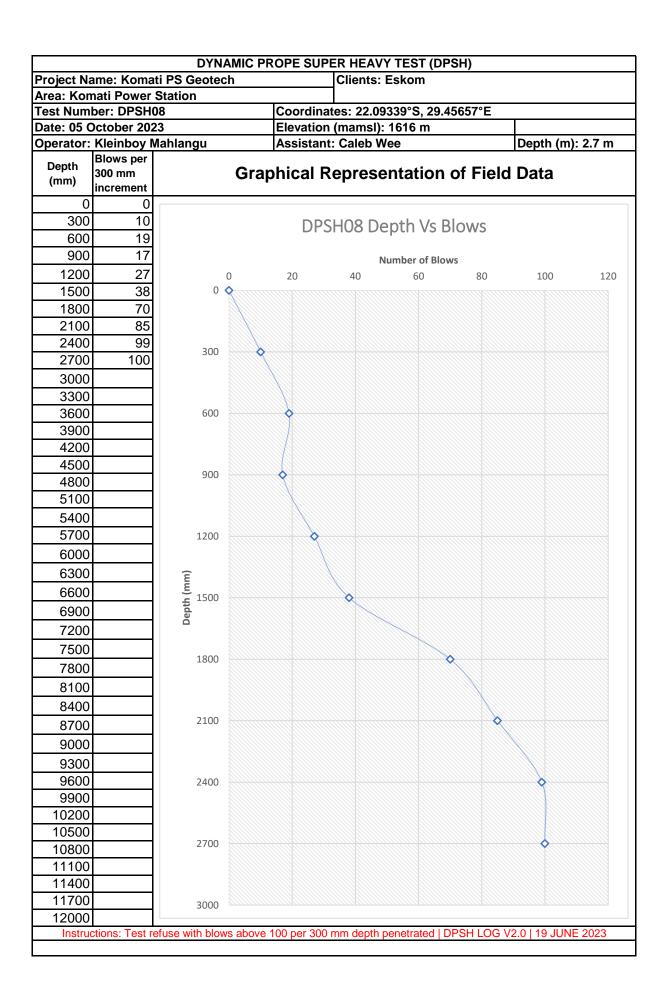

S. Laubscher_

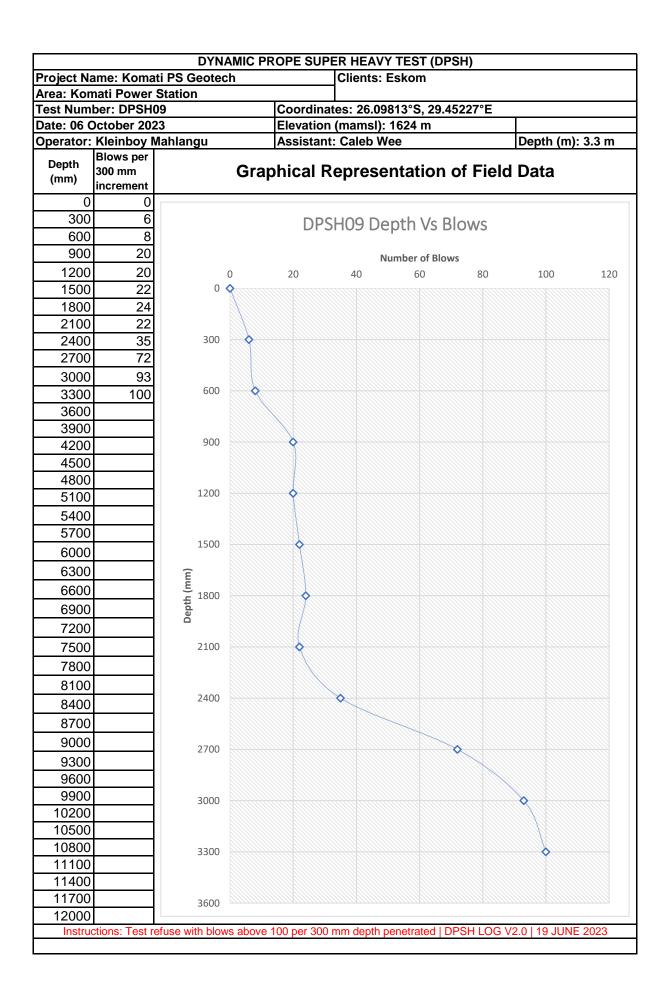

Technical Signatory

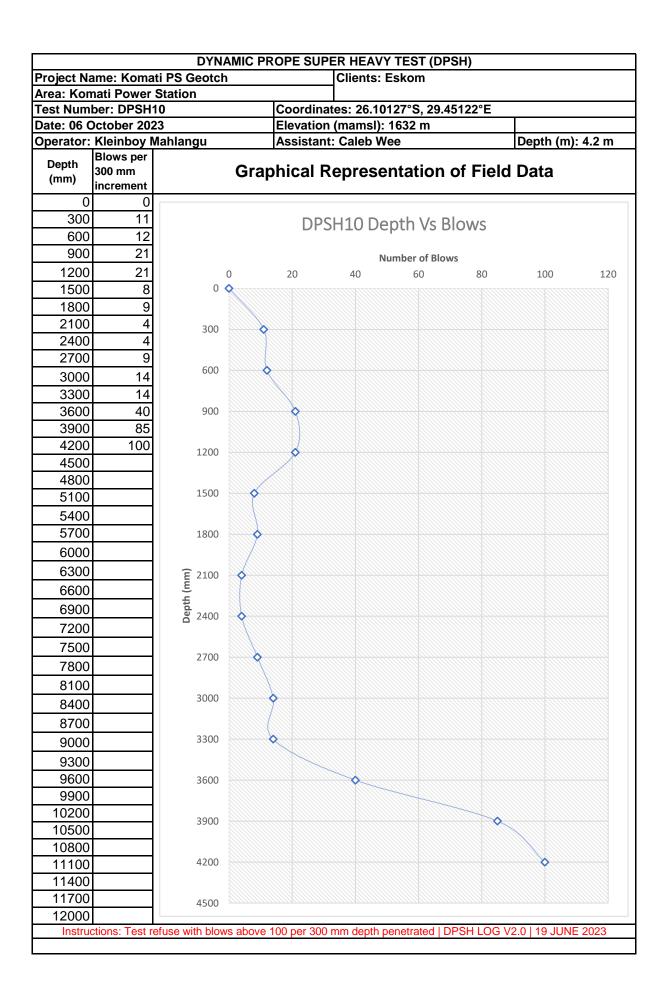

APPENDIX D: DYNAMIC PROBING TEST RES	SULTS (DPSH)

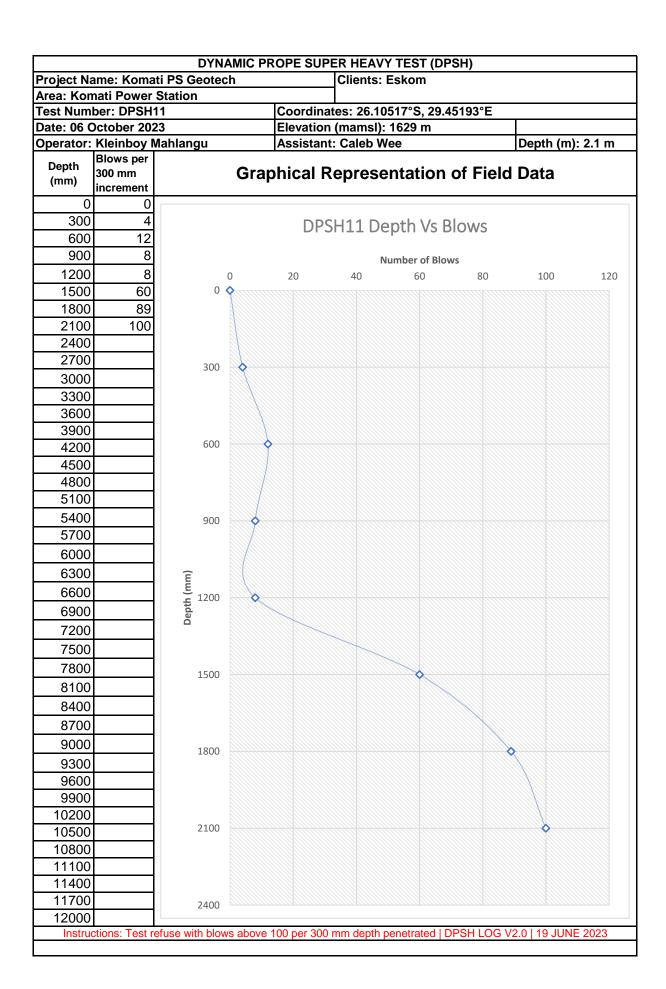


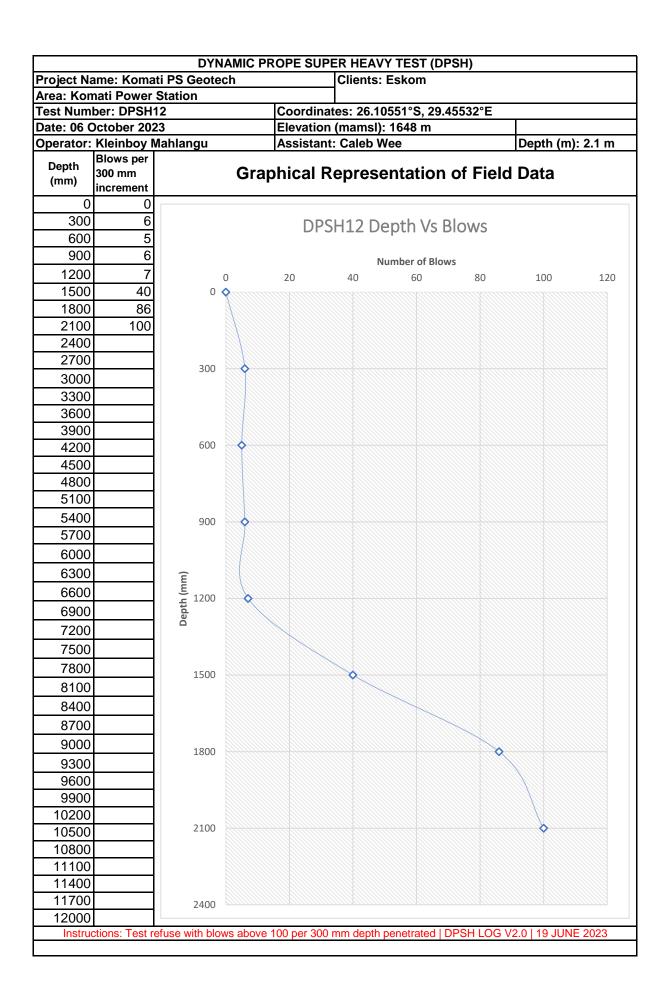


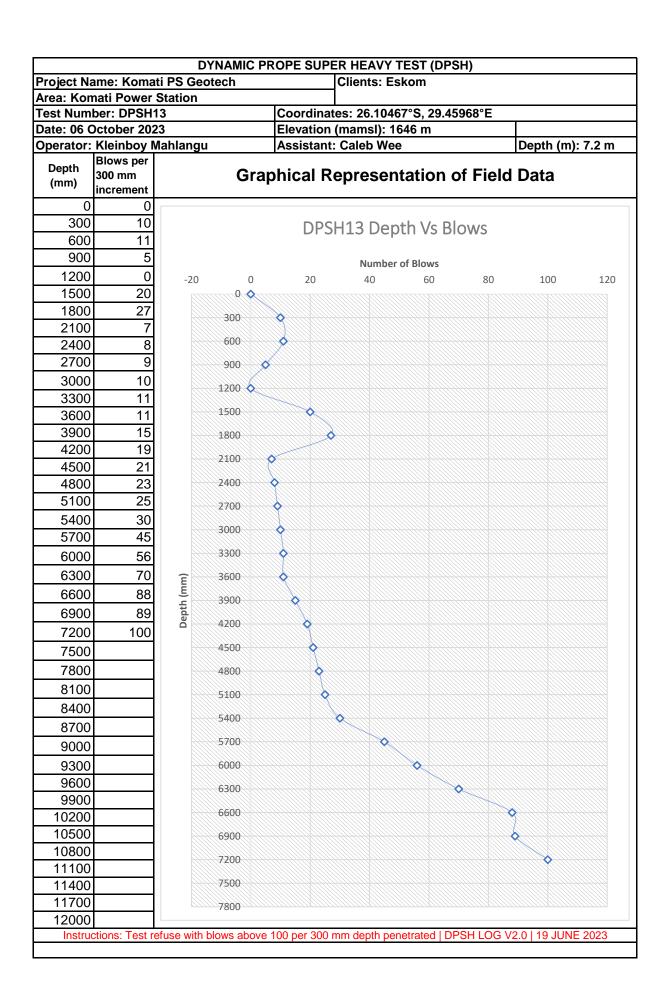


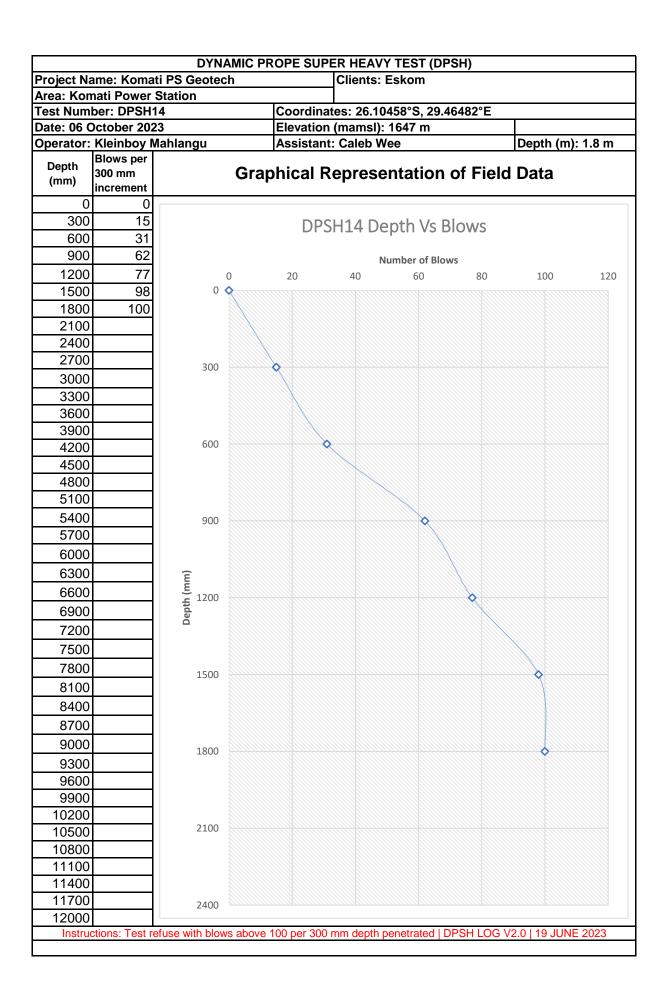


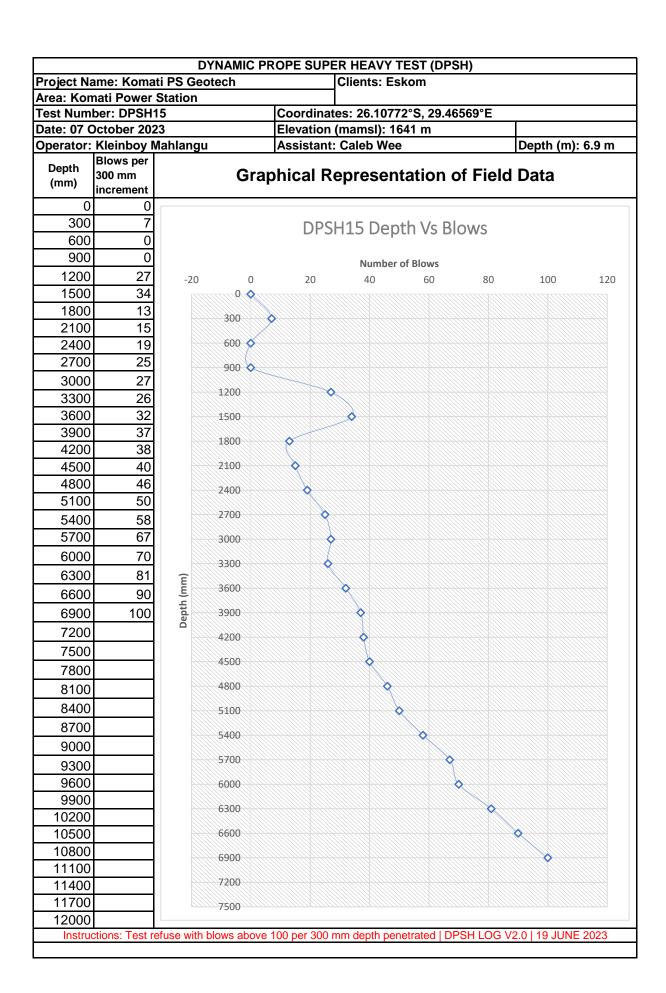


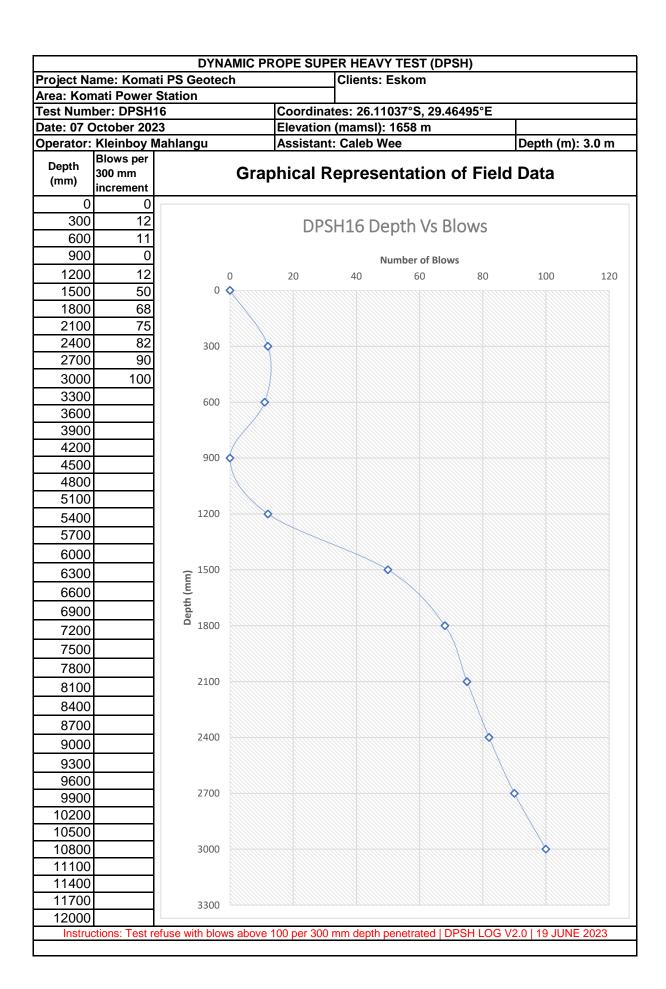


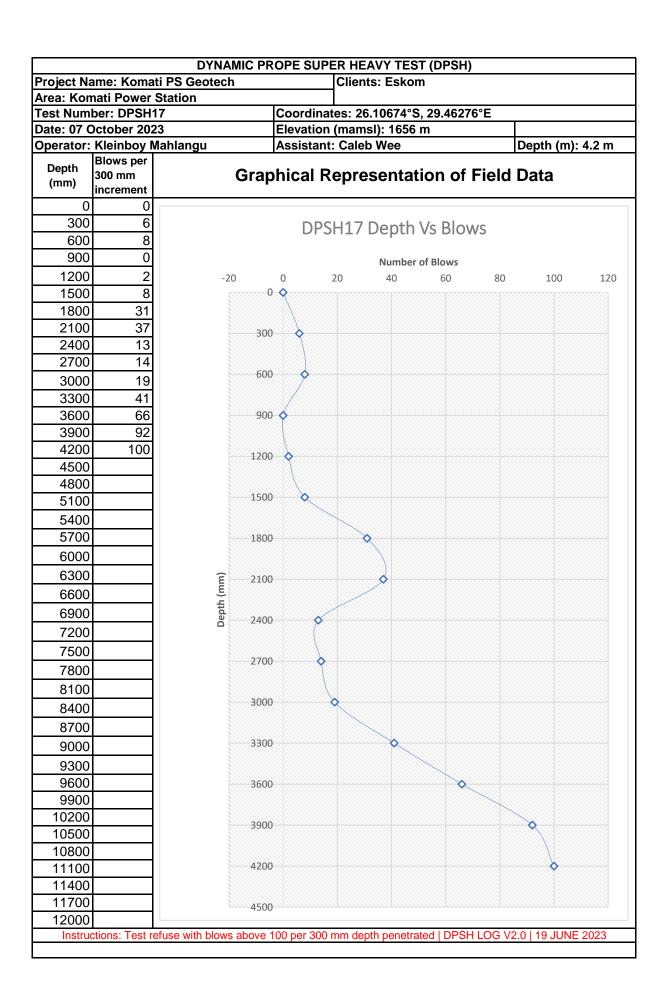


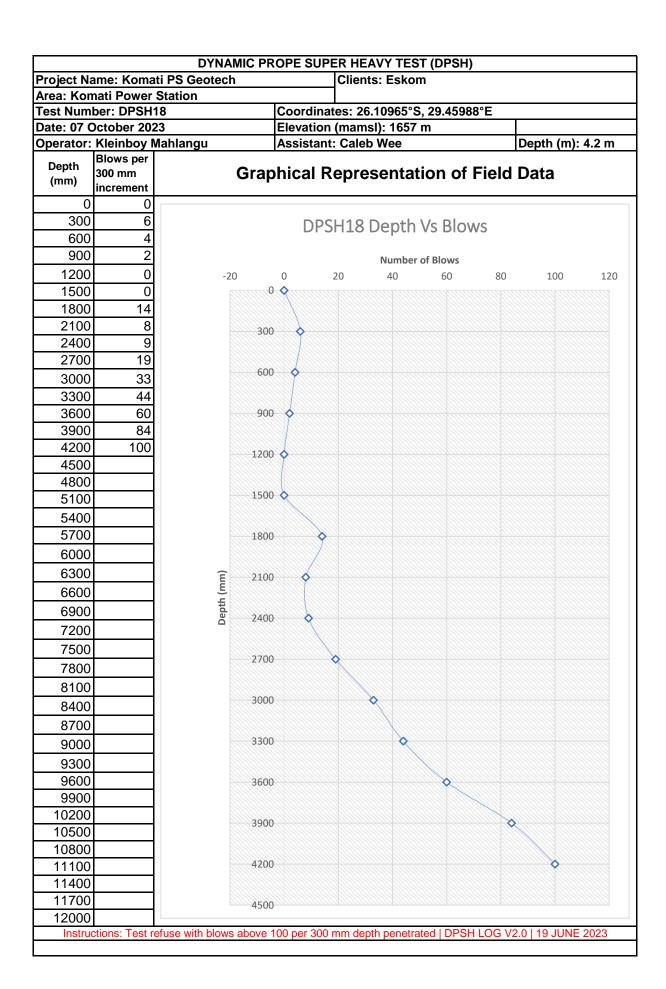


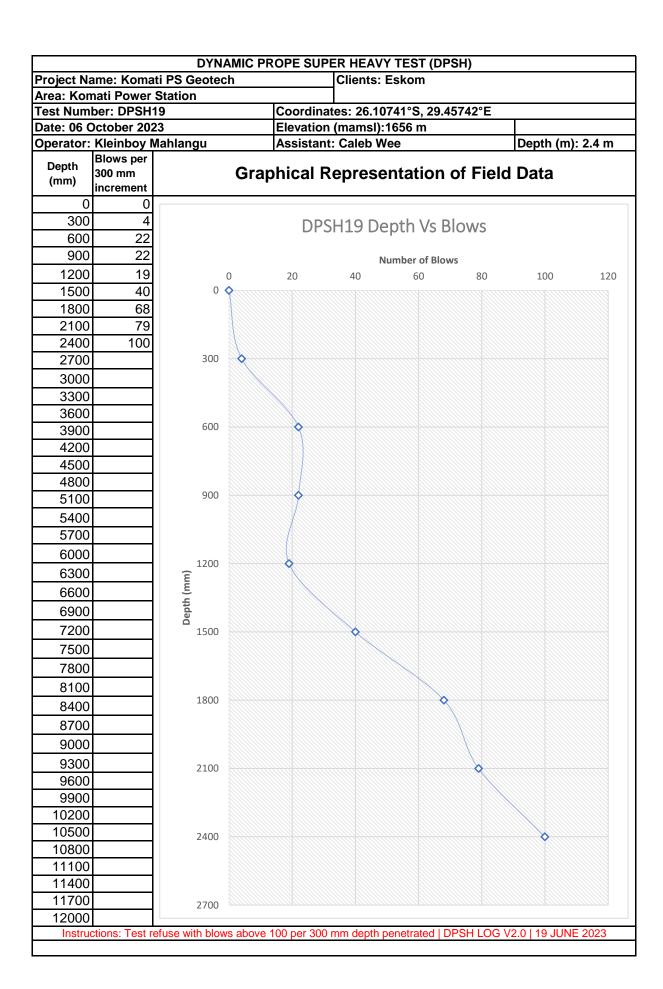


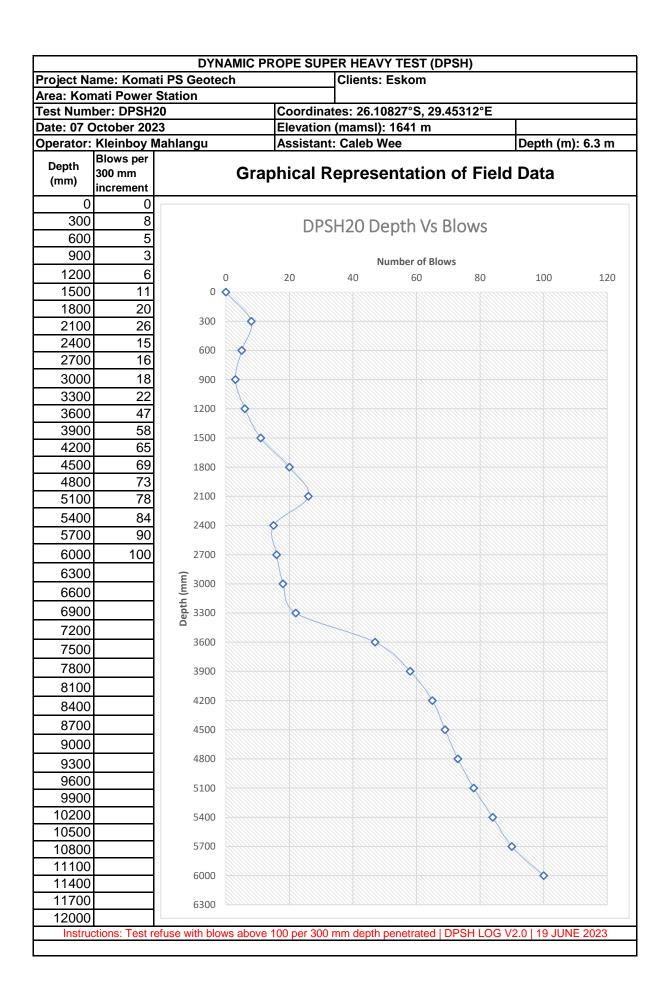


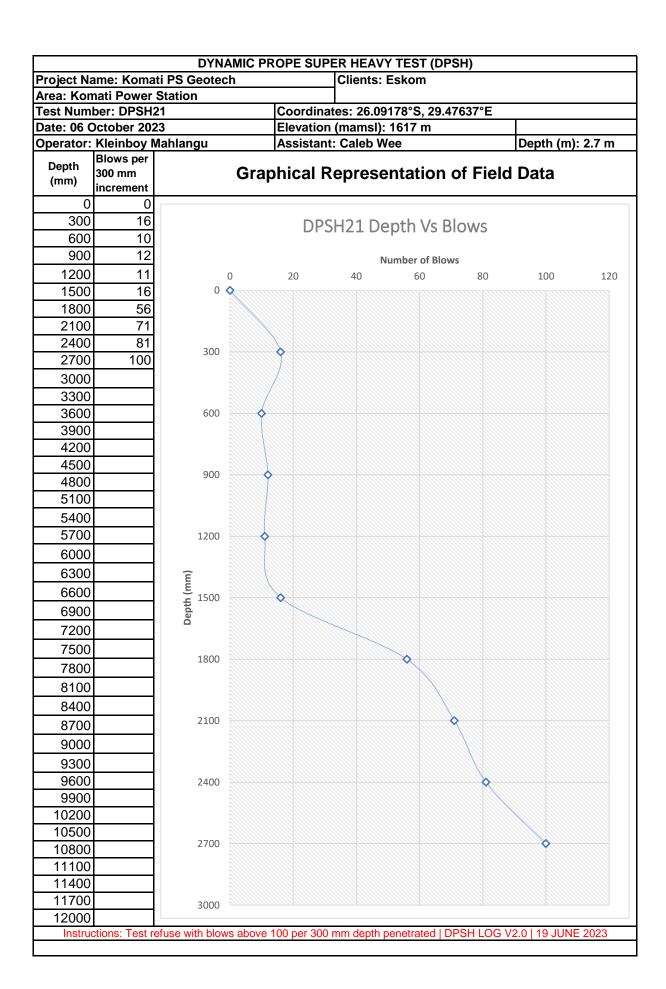


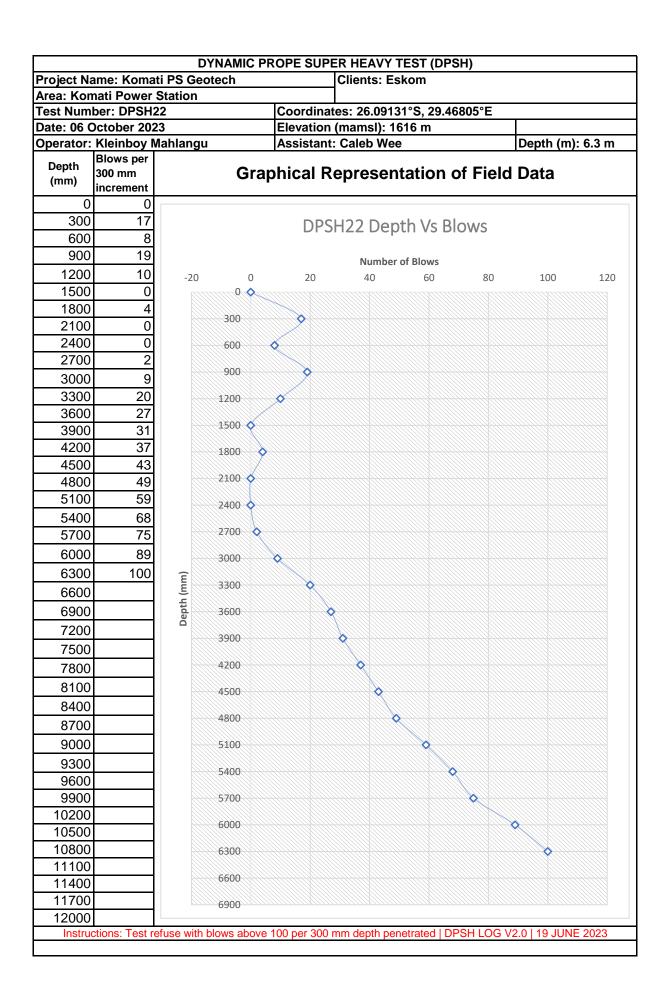


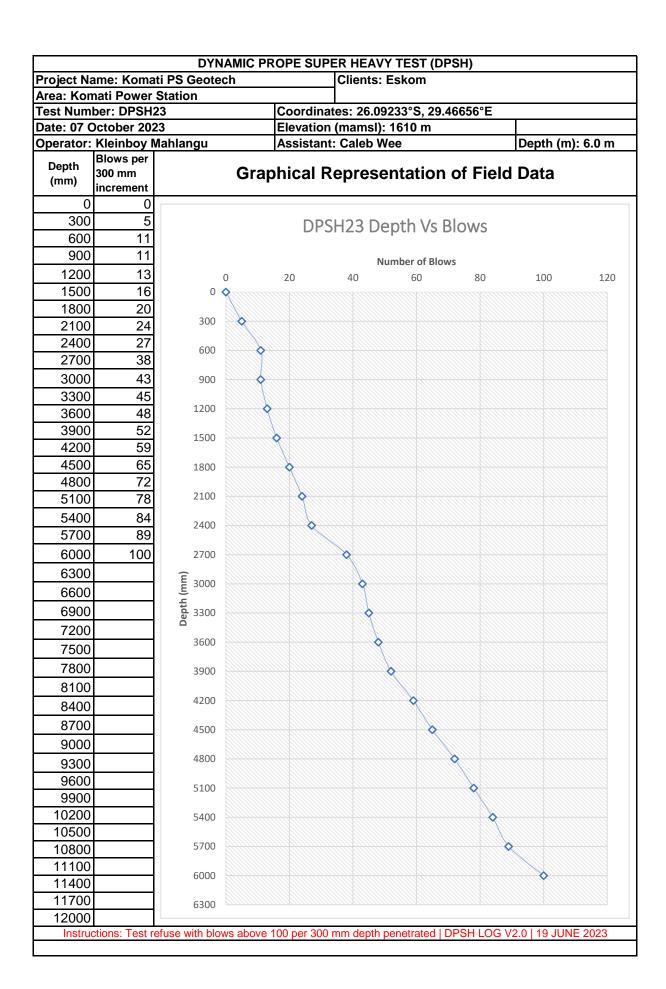


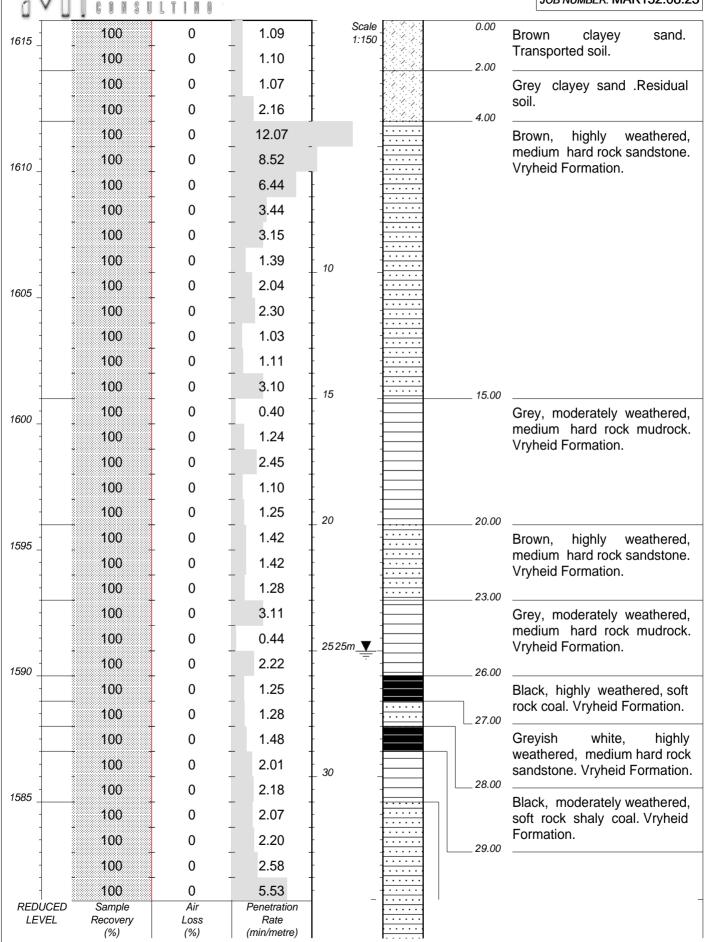


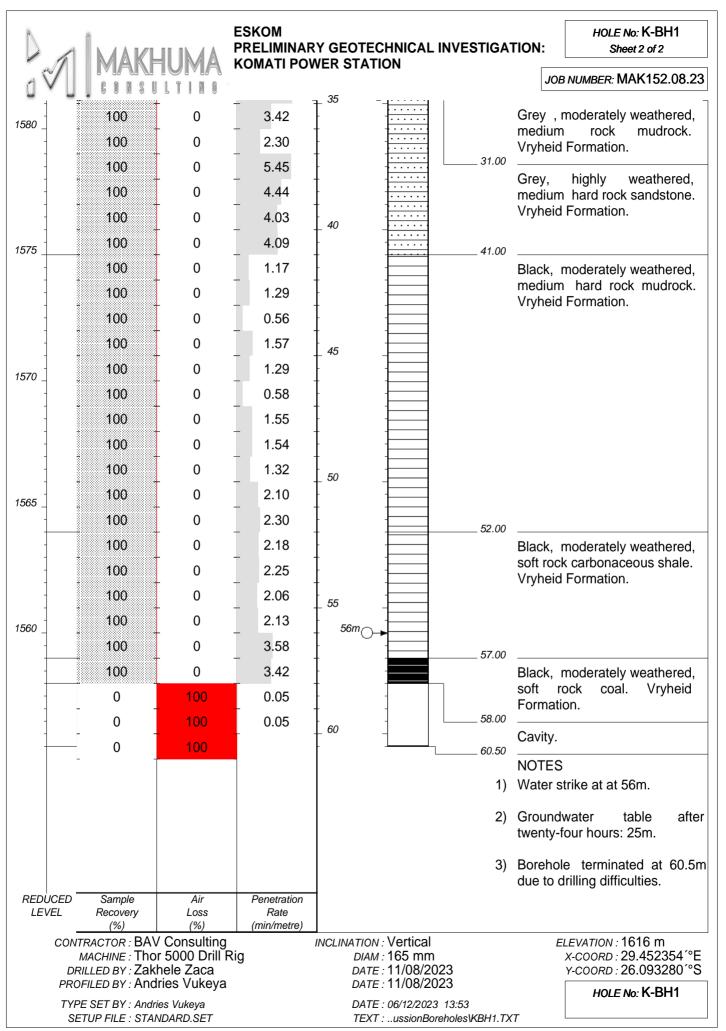


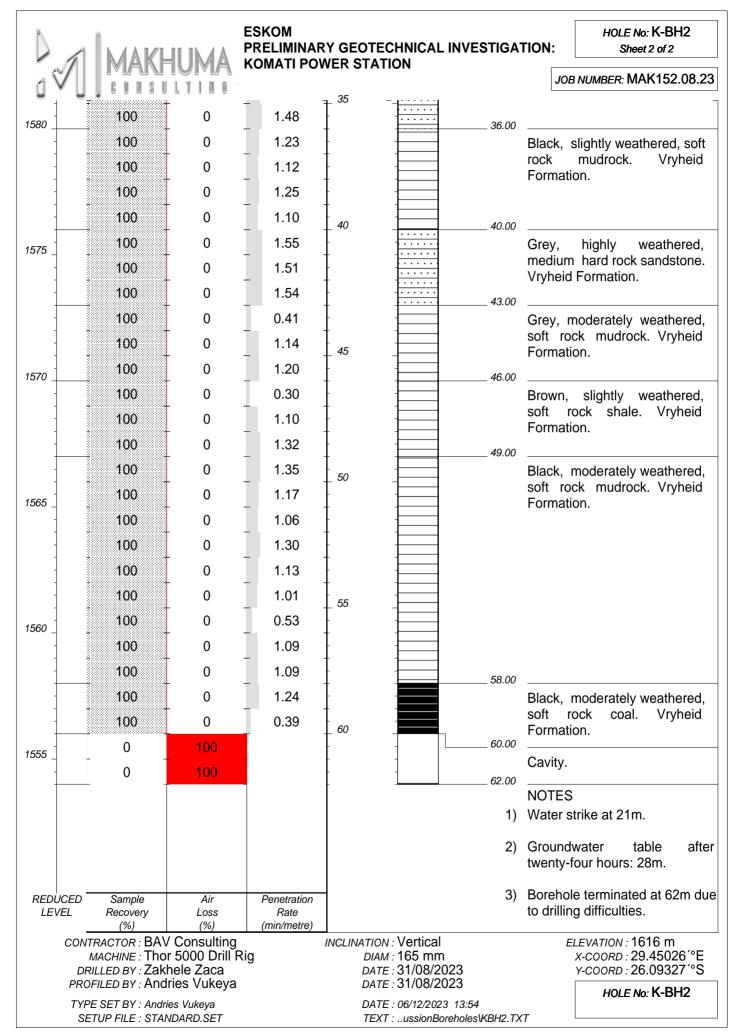




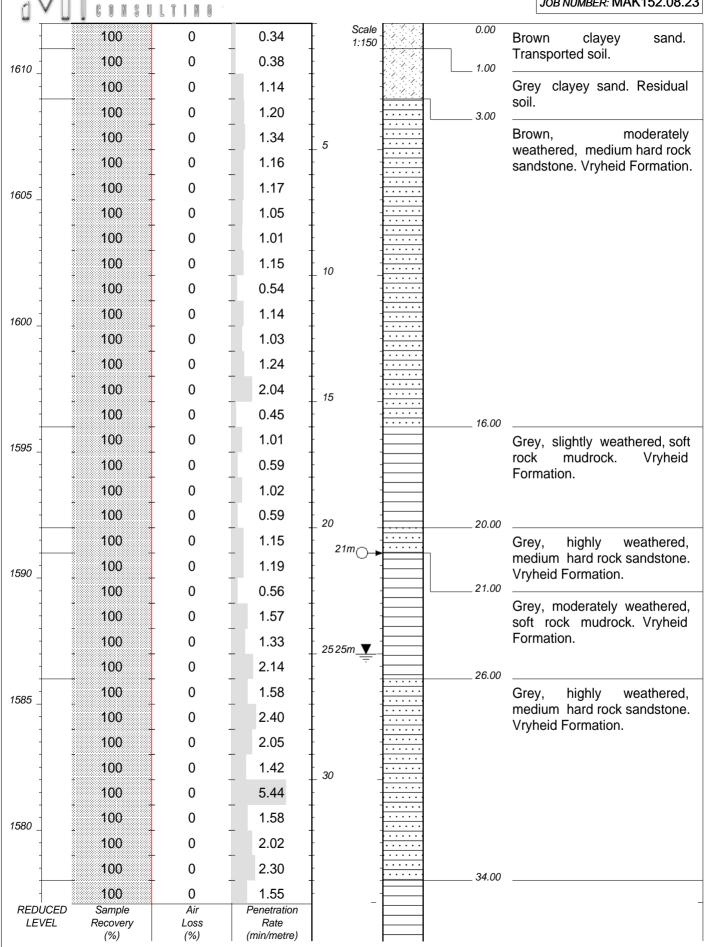


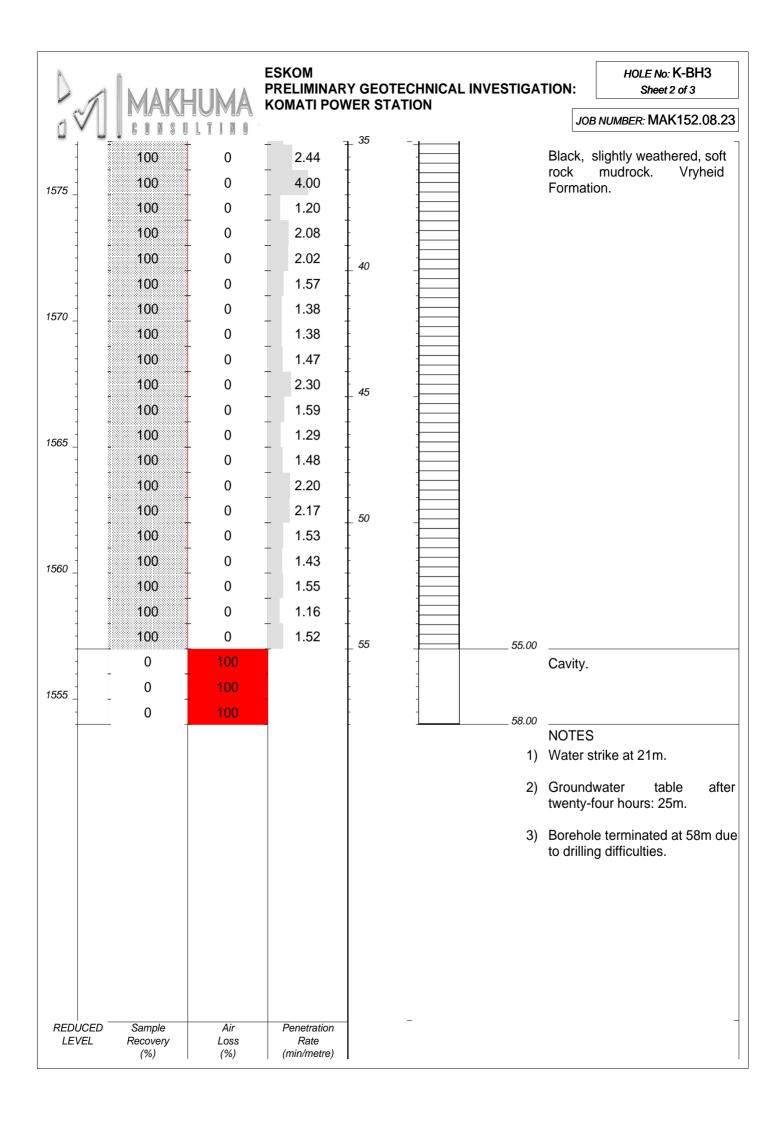





 APPENDIX E:	PERCUSSION	DRILLING LOGS	<u> </u>
			40 1 0

HOLE No: K-BH1 Sheet 1 of 2





ESKOM HOLE No: K-BH2 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 1 of 2 **KOMATI POWER STATION** JOB NUMBER: MAK152.08.23 0.00 Scale 100 0 0.14 Brown sandy clay. Transported 1:150 1615 0 100 0.35 2.00 100 0 0.44 Kakhi clayey sand. Residual 100 0 2.14 100 0 5.27 5 100 0 5.56 1610 100 0 4.18 7.00 100 0 4.06 Yellowish brown, highly weathered, medium hard rock 100 0 3.29 sandstone. Vryheid Formation. 100 0 2.40 10 100 0 3.58 1605 100 0 1.54 100 0 2.29 100 0 0.51 0 0.58 100 15 0.54 100 0 1600 100 0 0.50 0 1.44 100 100 1.27 0 100 0 1.06 20 100 0 1.09 21m(1595 100 0.39 0 22.00 100 0 0.49 Black, moderately weathered, soft rock carbonecous shale. 100 0 0.55 Vryheid Formation. 100 0 1.04 25 25.00 100 0 0.47 Black, slightly weathered, soft 1590 rock coal. Vryheid Formation. 100 0 1.33 26.00 100 0 0.46 Grey, moderately weathered, 28m_**▼** medium hard rock, sandstone. 100 0 0.39 Vryheid Formation. 27.00 100 0 1.24 30 Black, moderately weathered, 100 0 1.07 soft rock coal. Vryheid 1585 Formation. 100 0 1.20 29.00 100 0 2.40 Grey, highly weathered. medium hard sandstone. 100 0 0.51 Vryheid Formation. 100 0 1.31 REDUCED Sample Air Penetration LEVEL Recovery Loss Rate (%) (%) (min/metre)

HOLE No: K-BH3 Sheet 1 of 3

	MANI		ESKOM PRELIMINAR	Y GEOTECHNICAL INVESTIGATION	:	HOLE No: K-BH3 Sheet 3 of 3
ű V			KOMATIPOV	VER STATION	JOB I	NUMBER: MAK152.08.23
			_	_		-
REDUCED _ LEVEL	Sample Recovery	Air Loss	Penetration Rate			
,	(%)	(%)	(min/metre)			

CONTRACTOR: BAV Consulting MACHINE: Thor 5000 Drill Rig DRILLED BY: Zakhele Zaca PROFILED BY: Andries Vukeya

(%)

TYPE SET BY: Andries Vukeya SETUP FILE: STANDARD.SET INCLINATION: Vertical **DIAM** : 165 mm DATE: 11/08/2023 DATE: 11/08/2023 DATE: 06/12/2023 13:54

TEXT: ..ussionBoreholes\KBH3.TXT

ELEVATION: 1612 m X-COORD: 29.45448°E Y-COORD: 26.09316°S

HOLE No: K-BH3

ESKOM HOLE No: K-BH4 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 1 of 2 **KOMATI POWER STATION** JOB NUMBER: MAK152.08.23 0.00 Scale 100 0 0.33 Brown clayey sand. 1:150 Transported soil. 100 0 0.30 2.00 100 0 3.38 Kakhi clayey sand. Residual soil. 100 0 12.02 100 0 9.59 1615 5.00 100 0 6.33 Brown, moderately weathered, medium hard rock 100 0 4.48 sandstone. Vryheid Formation. 100 0 4.37 100 0 1.18 0.55 100 0 1610 10 0.58 100 0 100 0 0.55 100 0 0.57 100 0 0.56 100 0 0.54 1605 15 1.06 100 0 16m_**▼** 100 0 1.00 100 0 2.08 100 0 1.25 100 0 1.08 1600 20 20.00 100 0 1.10 Black, slightly weathered, soft rock shaly coal. Vryheid 100 0 1.22 Formation. 1.09 100 0

100

100

100

100

100

100

100

100

100

100

100

100

Sample

Recovery

(%)

1595

1590

REDUCED

LEVEL

0

0

0

0

0

0

0

0

0

0

0

0

Air

Loss

(%)

0.59

0.57

1.06

2.03

2.18

2.22

2.03

1.25

2.08

2.44

4.29

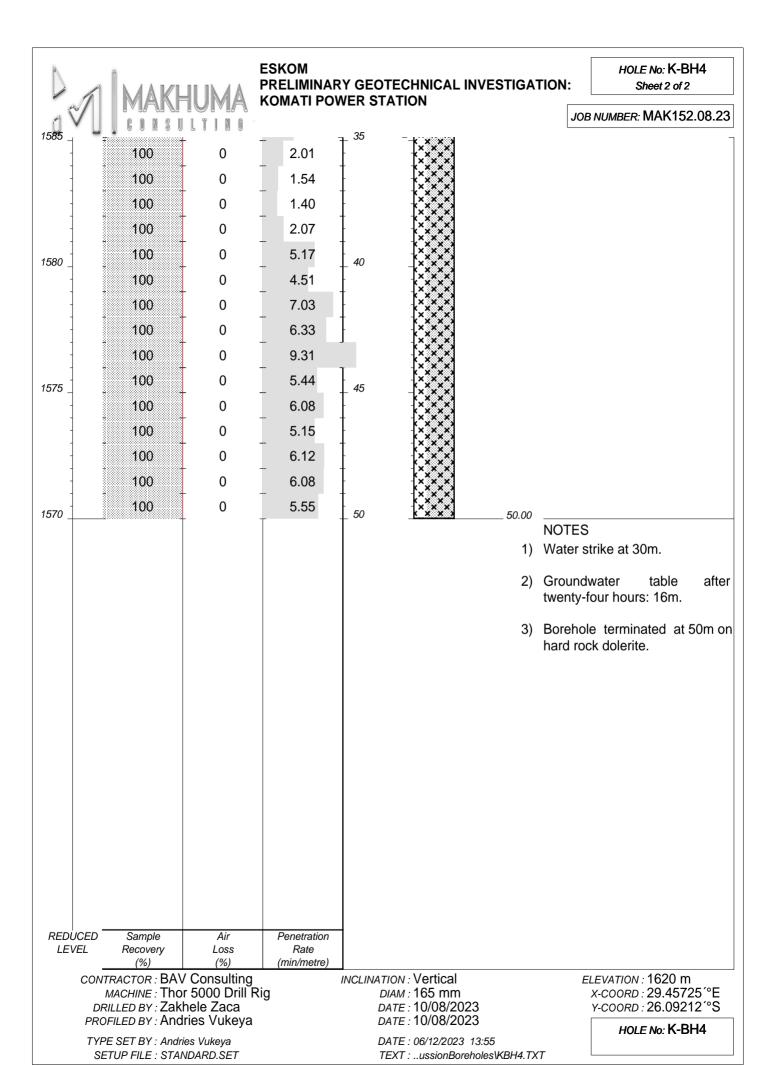
3.08

Penetration

Rate

(min/metre)

25

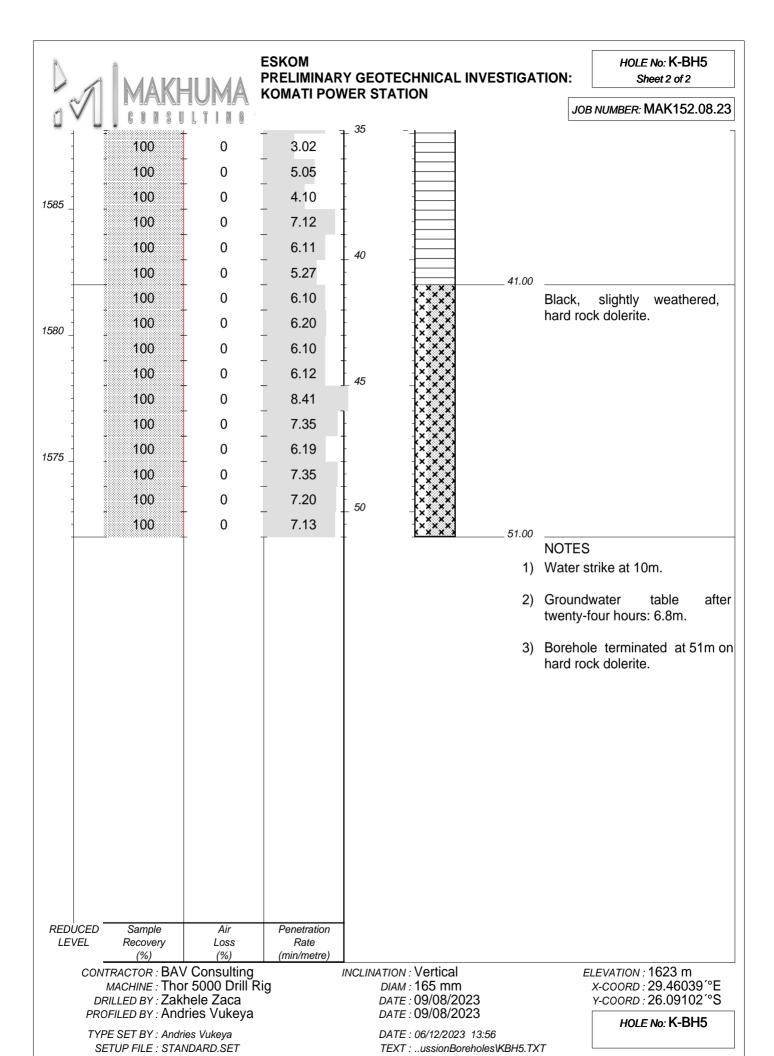

30 30m₍₎-

Black, moderately weathered, soft rock coal. Vryheid Formation.

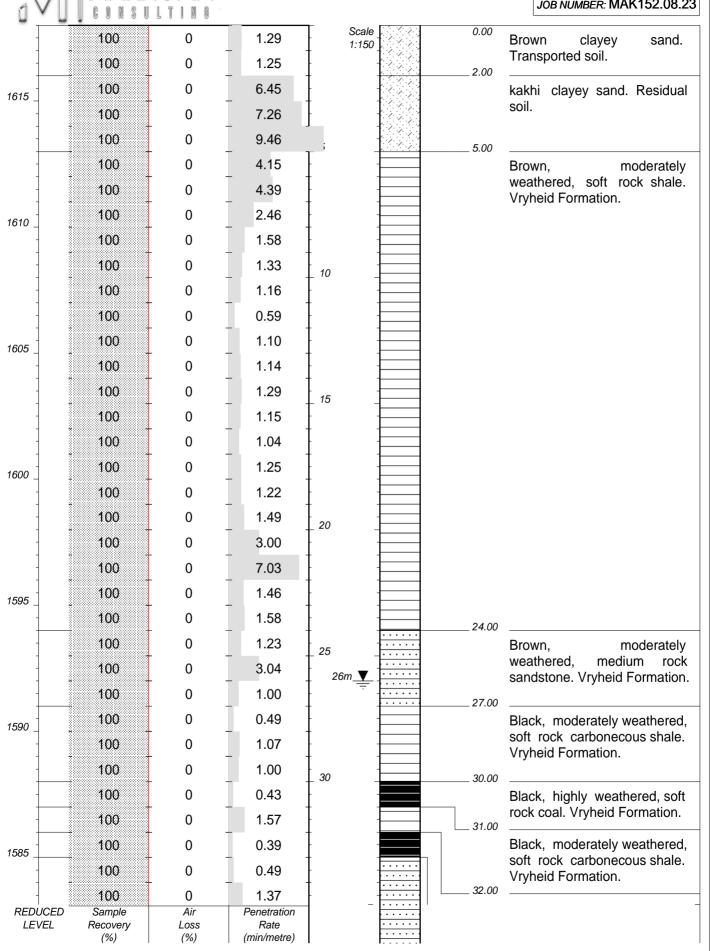
29.00

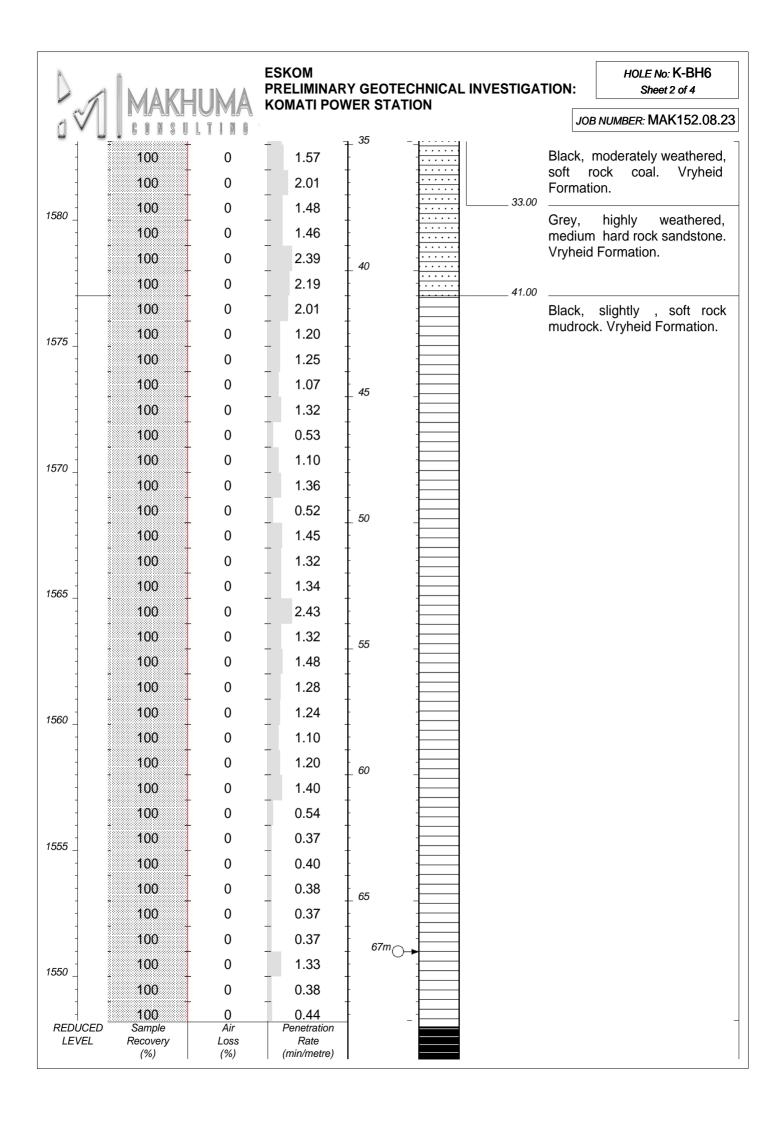
30.00

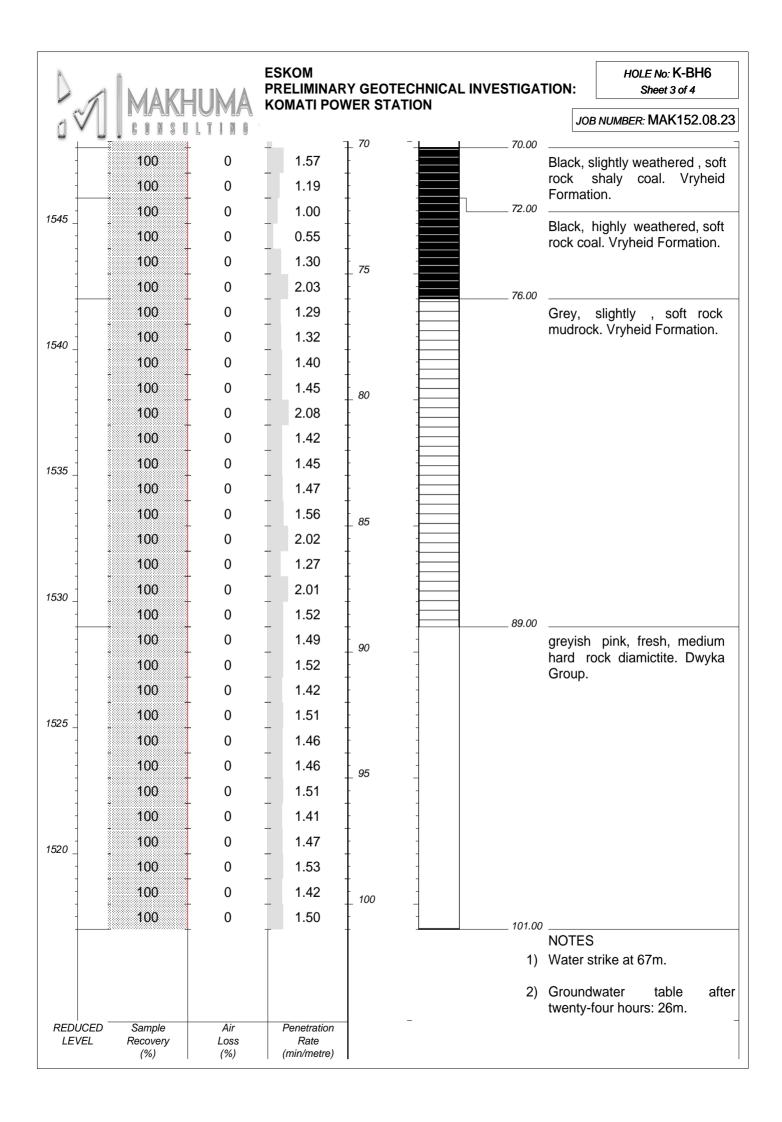
Black, slightly weathered, hard rock dolerite. Karoo Supergroup.



ESKOM HOLE No: K-BH5 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 1 of 2 **KOMATI POWER STATION** JOB NUMBER: MAK152.08.23 0.00 Scale 100 0 1.02 Brown silty clay. Transported 1:150 soil. 100 0 1.07 2.00 100 0 2.30 Brown clayey sand. Residual 1620 100 0 1.04 100 0 11.52 5.00 100 0 5.42 Brown, moderately weathered, medium hard rock 100 0 1.01 6.8m<u>▼</u> sandstone. Vryheid Formation. 100 0 1.03 1615 100 0 1.18 100 0 1.15 10 10m 2.17 100 0 11.00 100 0 3.22 Black, slightly weathered, soft rock carbonecous shale. 100 0 1.50 Vryheid Formation. 1610 100 0 1.16 100 0 1.04 15 1.08 100 0 100 0 1.17 100 0 1.13 1605 1.06 100 0 100 0 1.14 20 100 0 1.05 100 0 1.10 100 0 1.10 1600 100 0 1.11 100 0 1.05 25 1.09 100 0 100 0 1.02 100 0 1.05 1595 28.00 100 0 1.05 Black, moderately weathered, soft rock shaly coal. Vryheid 100 0 1.07 30 Formation. 100 0 1.18 31.00 100 0 1.18 Black, slightly weathered, soft rock mudrock. Vryheid 100 0 1.58 1590 Formation. 100 0 4.58 100 0 6.11 REDUCED Sample Air Penetration Recovery LEVEL Loss Rate


(%)


(%)

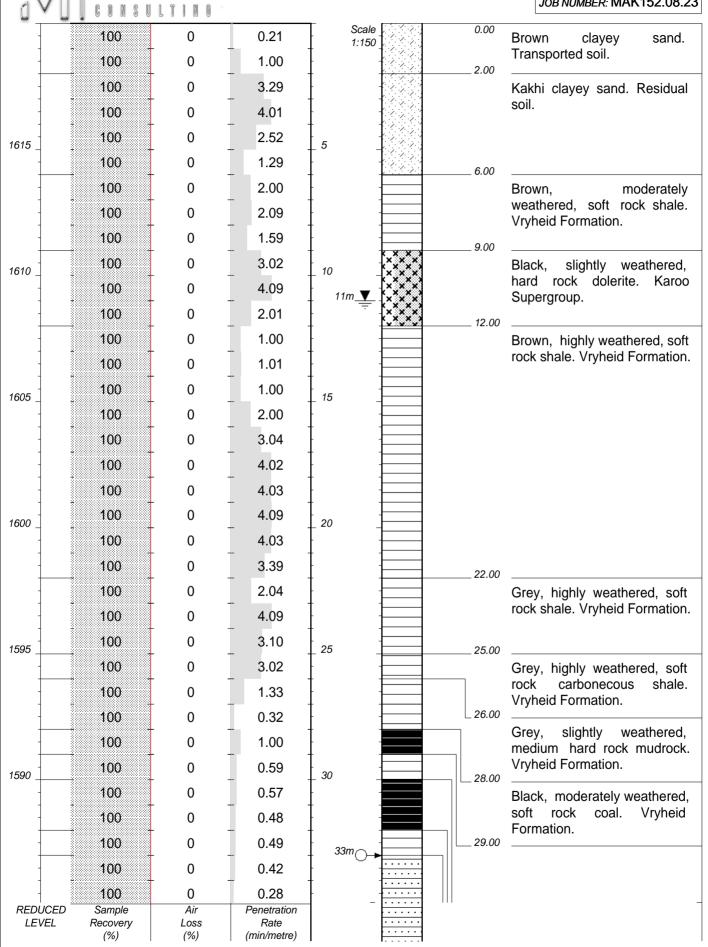

(min/metre)

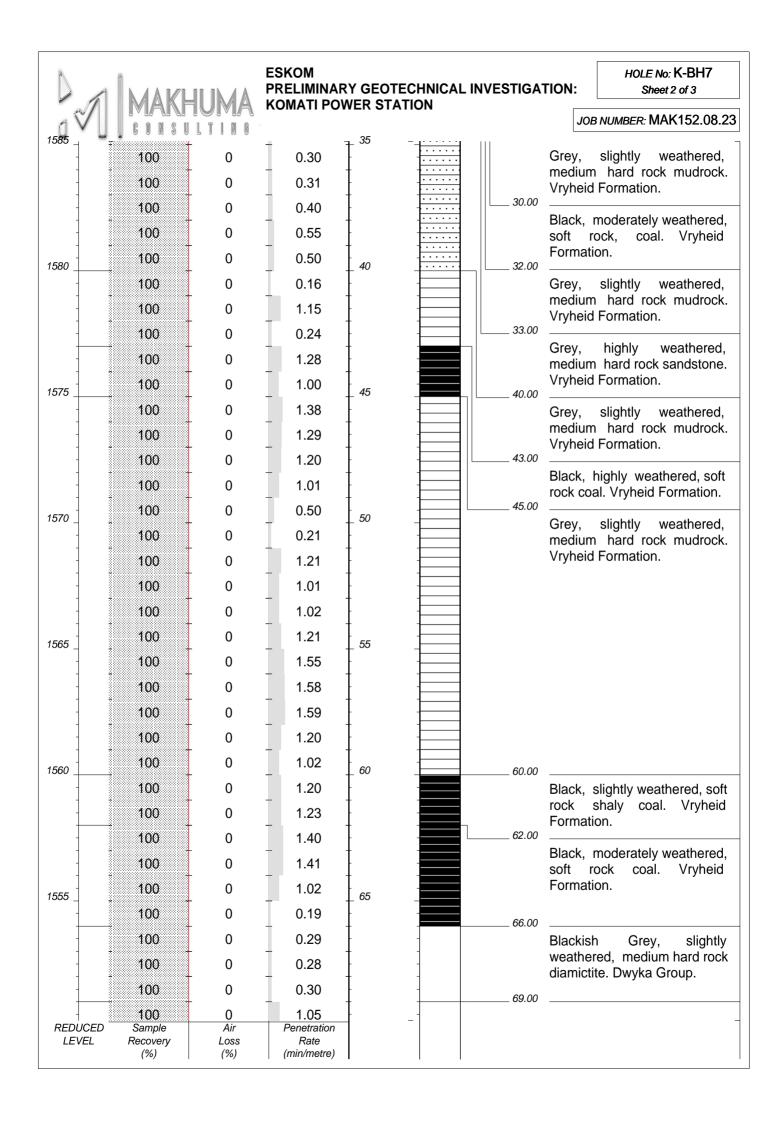
HOLE No: K-BH6 Sheet 1 of 4

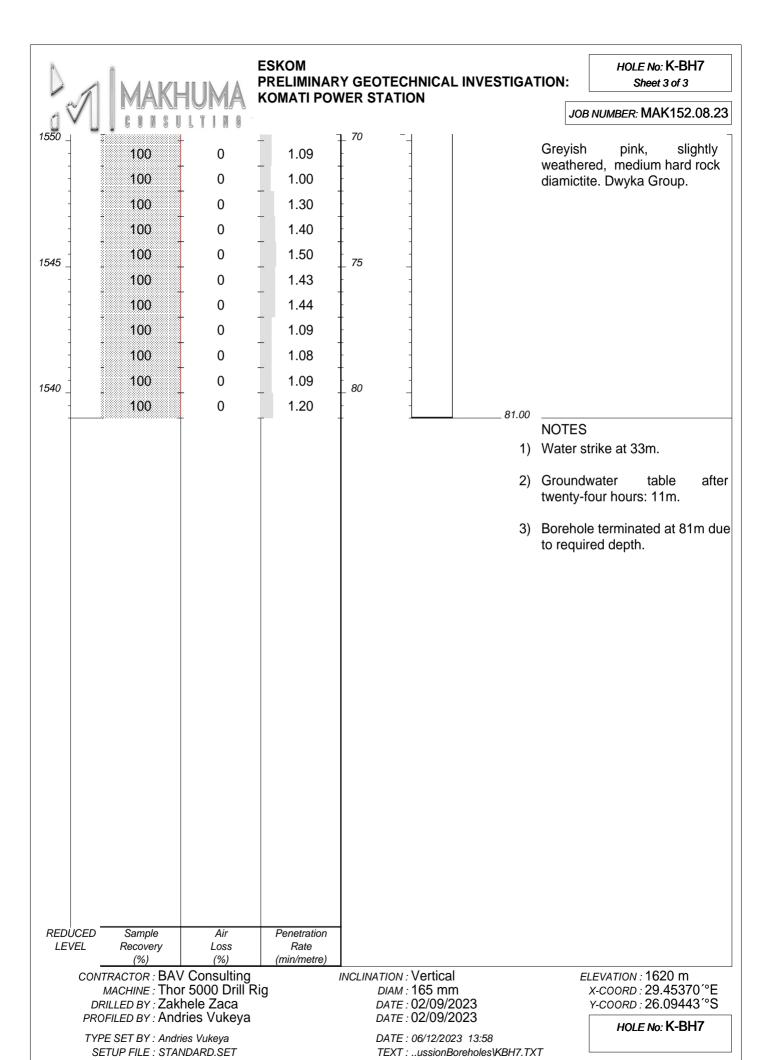
ESKOM ESKUM PRELIMINARY GEOTECHNICAL INVESTIGATION:

HOLE No: K-BH6 Sheet 4 of 4

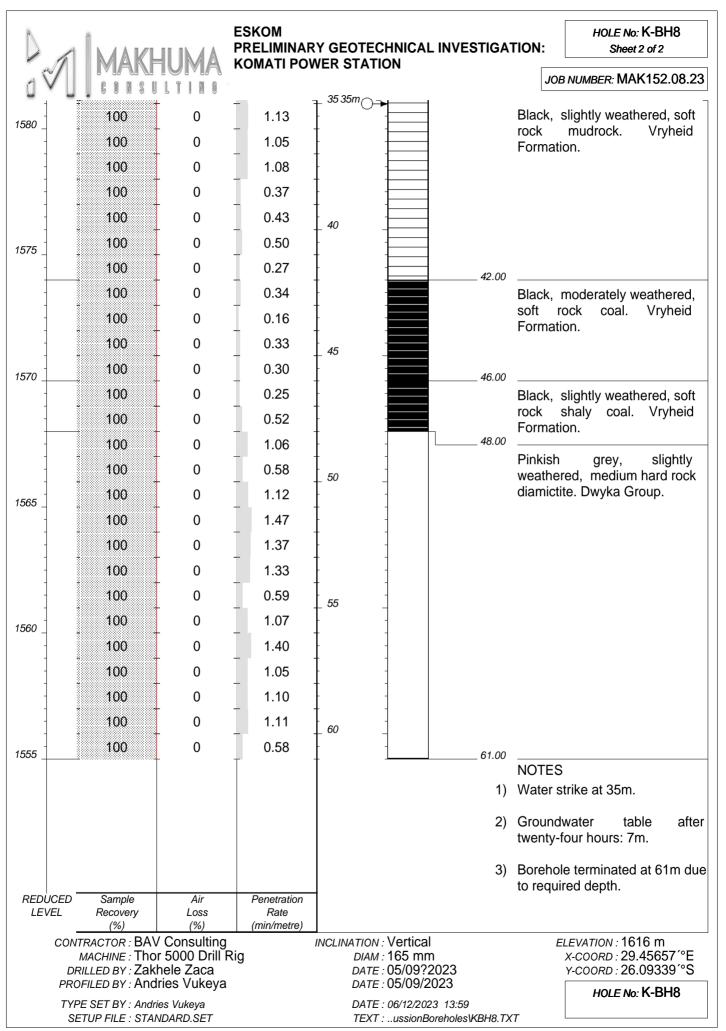
/	MAKE		KOMATI POV	VER STATION		3.000.7077
4				TER STATION		JOB NUMBER: MAK152.08.23
u ' u_			- I	ı -		7
					3)	Borehole terminated at 101m
						due to required depth.
REDUCED _	Sample	Air	Penetration	4		
LEVEL	Sample Recovery	Loss	Penetration Rate			
	(%)	(%)	(min/metre)			
CONT	RACTOR : BAV	/ Consulting r 5000 Drill Ri	. . .	INCLINATION: Vertical		ELEVATION: 1618 m
DD	MACHINE: I NO	r 5000 Drill Ri	g	DIAM: 165 mm		X-COORD: 29.45138°°E

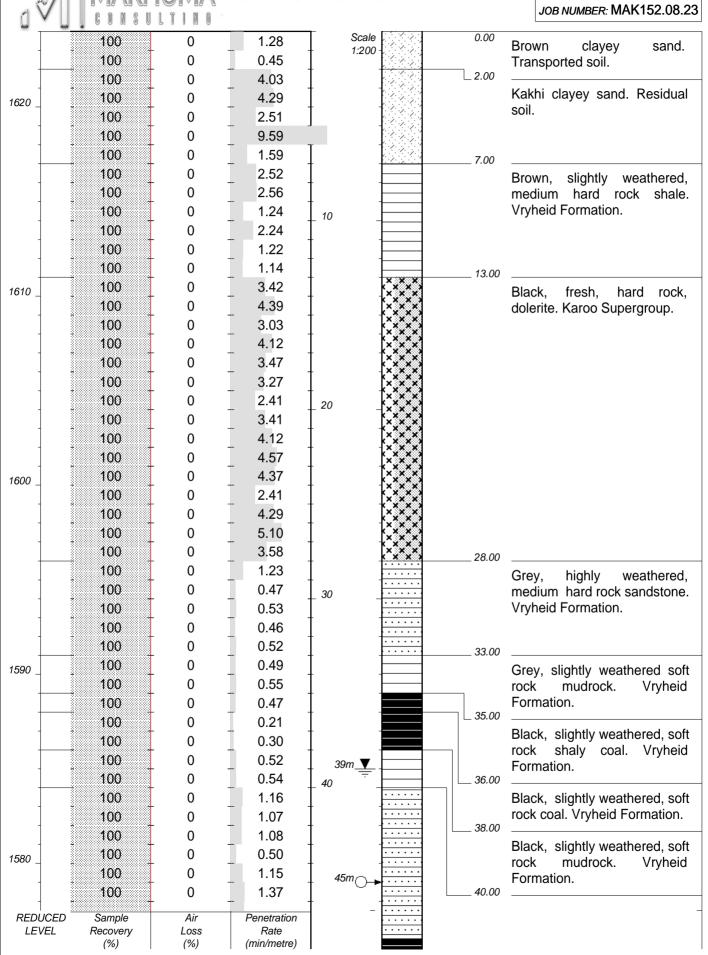

DRILLED BY : Zakhele Zaca PROFILED BY : Andries Vukeya

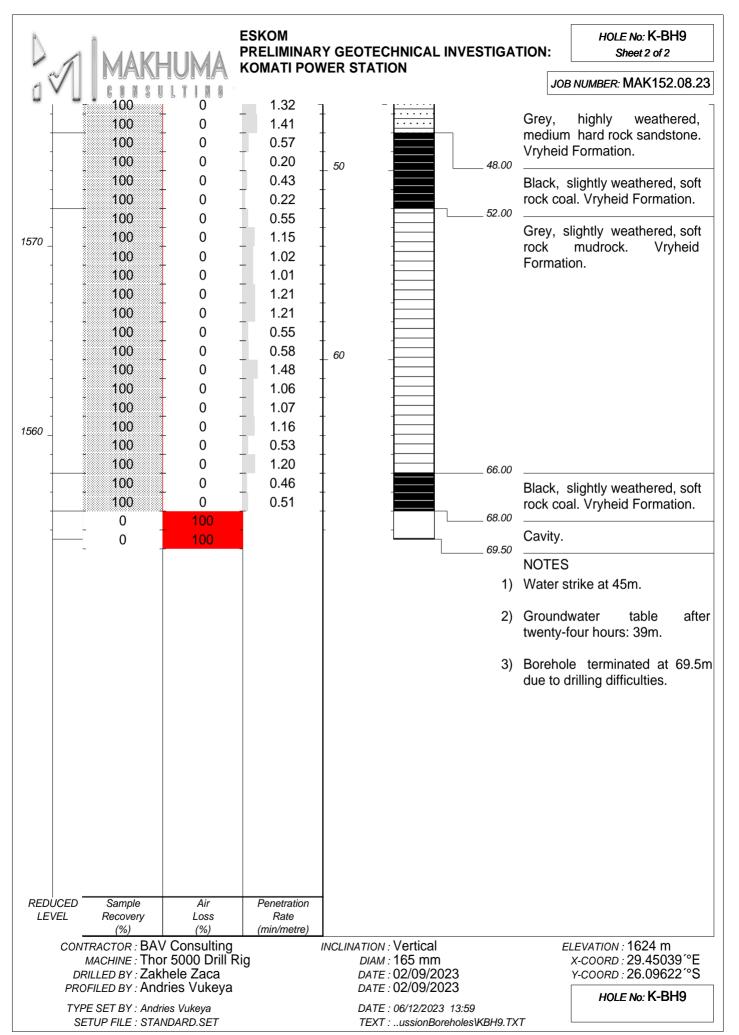

TYPE SET BY: Andries Vukeya SETUP FILE : STANDARD.SET DATE: 14/08/2023 DATE: 06/12/2023 13:58


TEXT: ..ussionBoreholes\KBH6.TXT

HOLE No: K-BH6

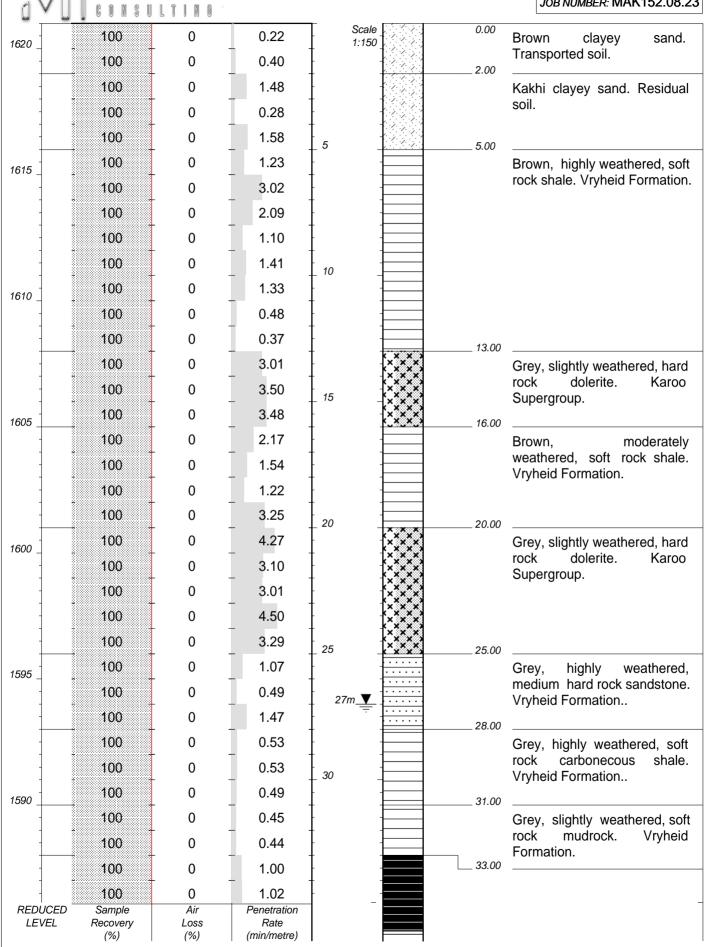

HOLE No: K-BH7 Sheet 1 of 3

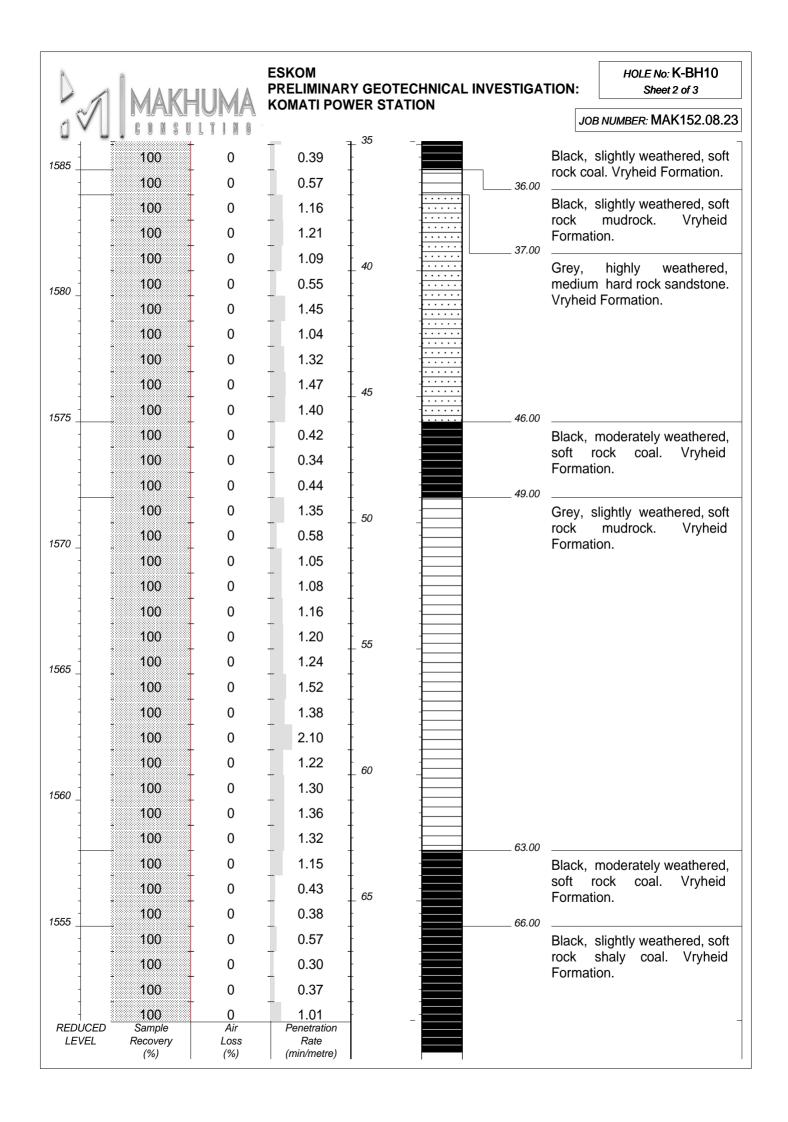

ESKOM HOLE No: K-BH8 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 1 of 2 **KOMATI POWER STATION** JOB NUMBER: MAK152.08.23 0.00 Scale 100 0 2.33 Brown clayey sand 1:150 1615 .Transported soil. 0 100 2.48 2.00 100 0 4.37 Kakhi clayey sand. Residual soil. 100 0 5.46 100 0 10.13 100 0 9.00 1610 6.00 100 0 6.35 Brown, highly weathered, soft 7m_**▼** rock shale. Vryheid Formation. 100 0 6.45 100 0 1.23 9.00 100 0 0.49 Brown. moderately 10 weathered, medium hard rock 100 0 1.19 1605 sandstone. Vryheid Formation. 100 0 0.28 12.00 100 0 1.15 Grey, highly weathered, soft carbonecous shale. 100 0.56 0 Vryheid Formation. 0 100 0.49 15 15.00 0.28 100 0 Grey, highly weathered, 1600 medium. hard rock sandstone. 100 0 0.50 Vryheid Formation. _ 16.00 0 1.11 100 Black, highly weathered, soft 0.34 100 0 rock shaly coal. Vryheid Formation. 100 0 0.57 20 17.00 100 0 0.54 Grey, highly weathered, soft 1595 carbonecous rock shale. 0.45 100 0 Vryheid Formation. 0.33 21.00 100 0 highly weathered. Grey, 100 0 0.50 medium hard rock sandstone. Vryheid Formation. 100 0 0.51 25 100 0 0.49 1590 100 0 0.53 100 0 0.41 100 0 0.55 100 0 1.47 30 100 0 0.31 1585 100 0 0.43 100 0 0.55 33.00 100 0 0.59 0 1.07 100 REDUCED Sample Air Penetration LEVEL Recovery Loss Rate (%) (%) (min/metre)

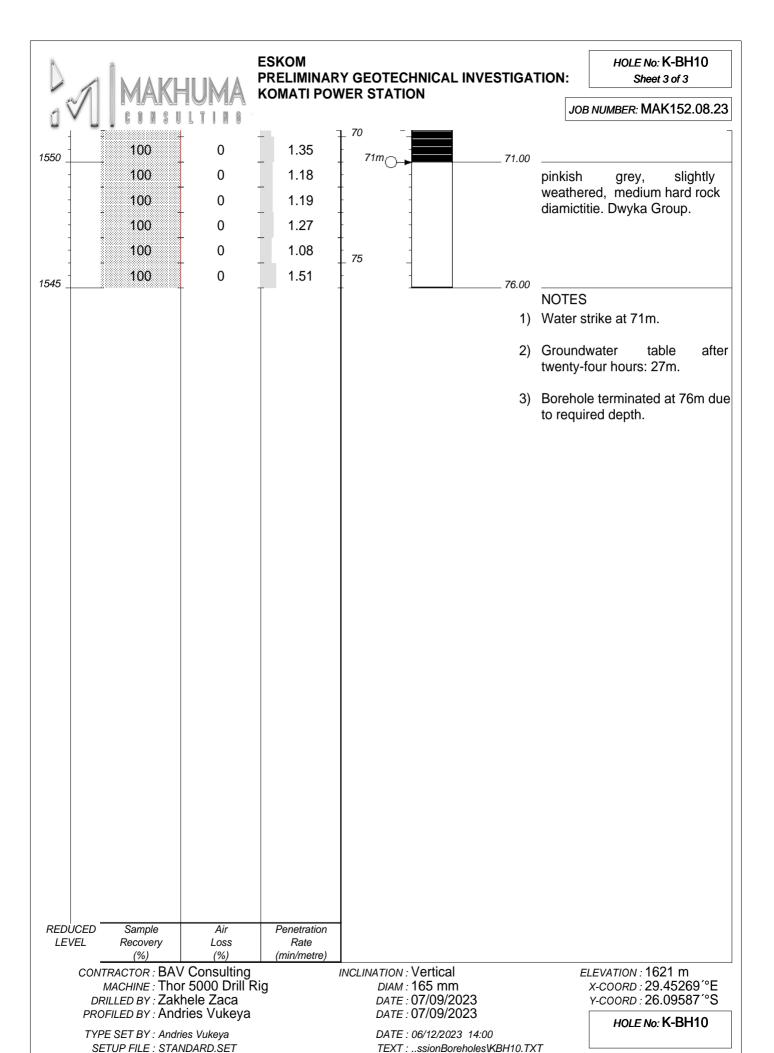


MAKHUMA GONSULTINO

ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION

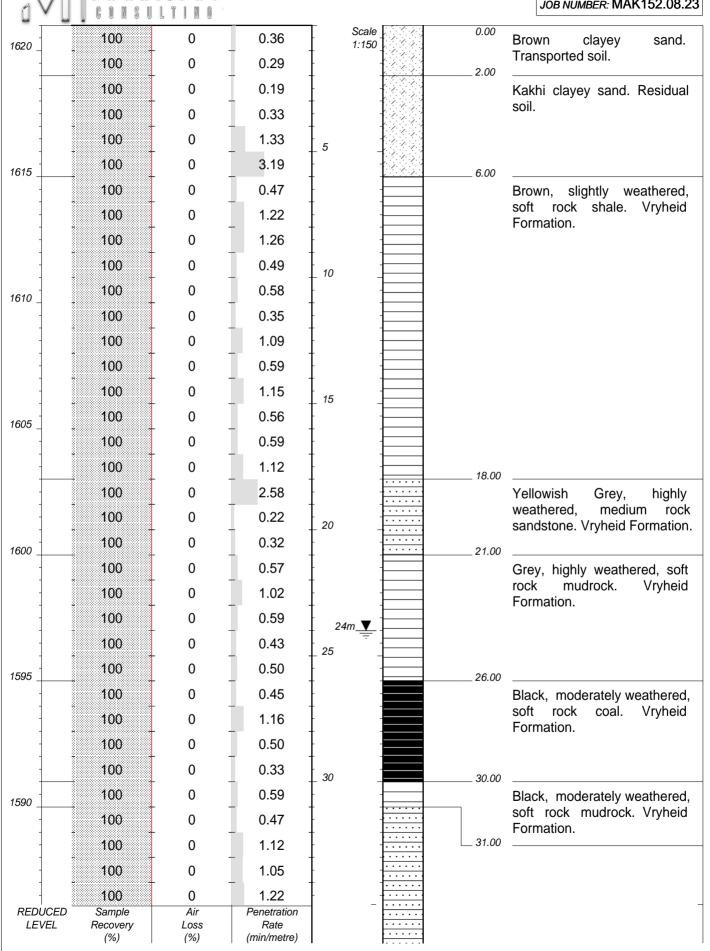

HOLE No: K-BH9 Sheet 1 of 2

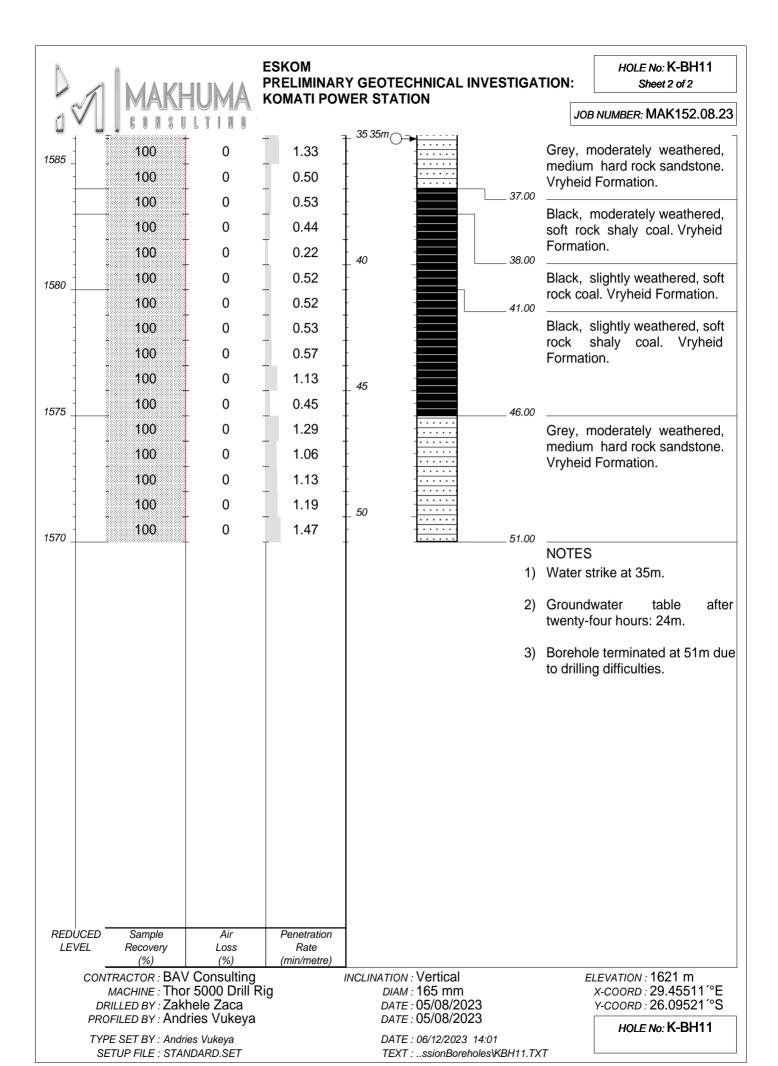




HOLE No: K-BH10 Sheet 1 of 3

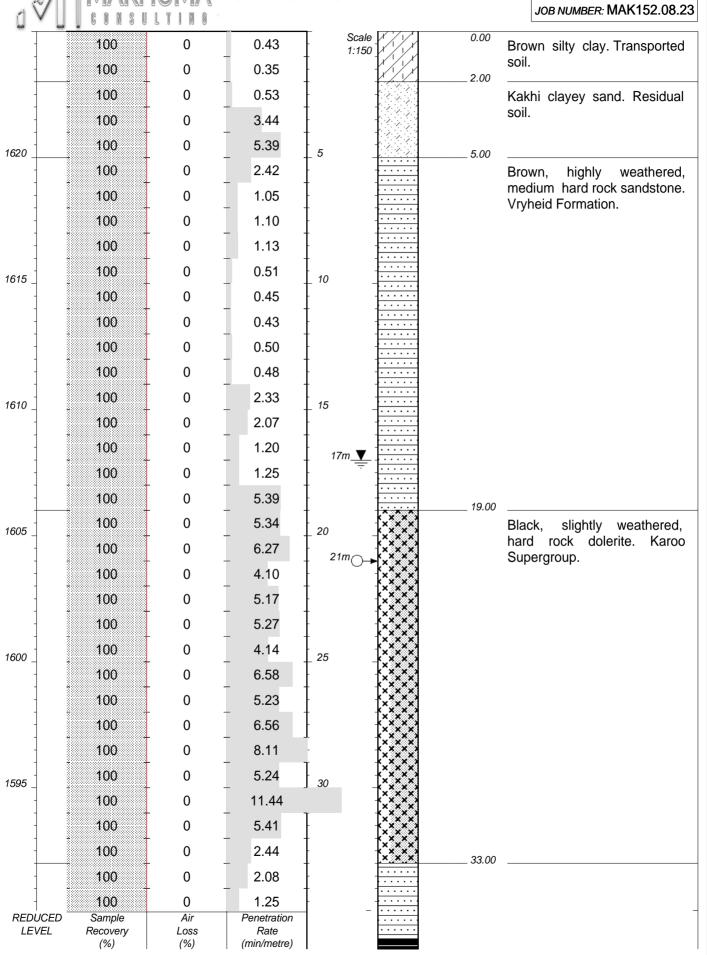
JOB NUMBER: MAK152.08.23

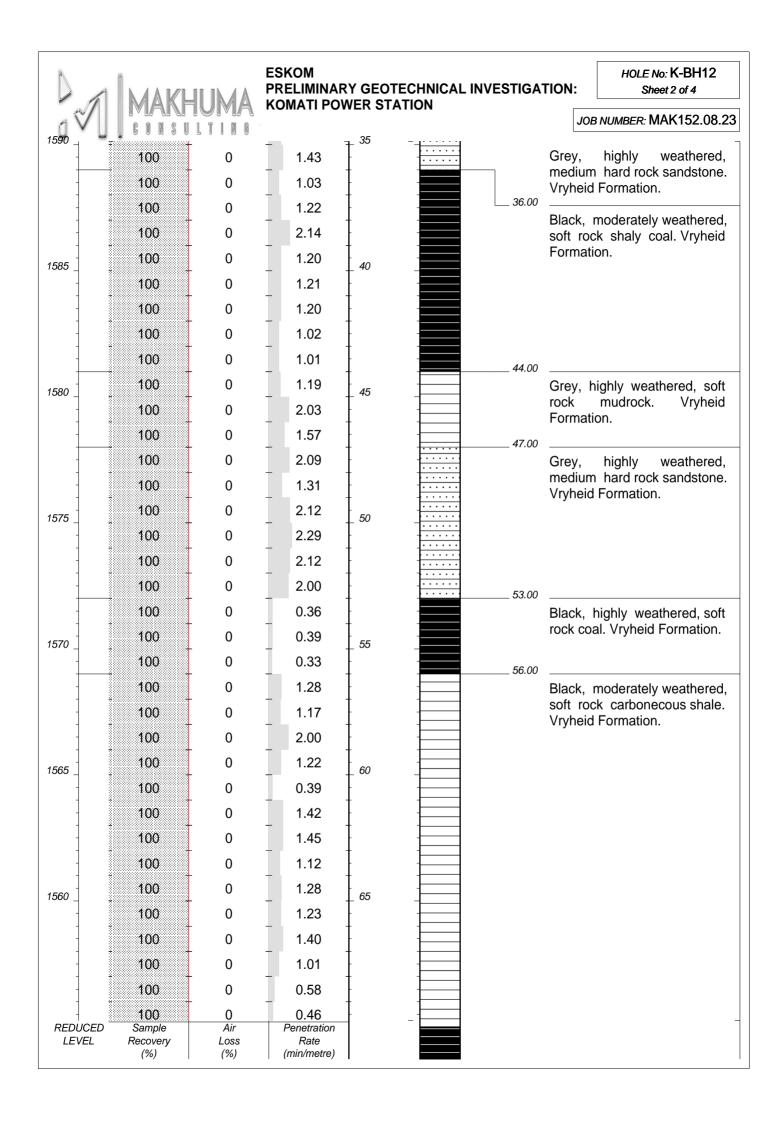


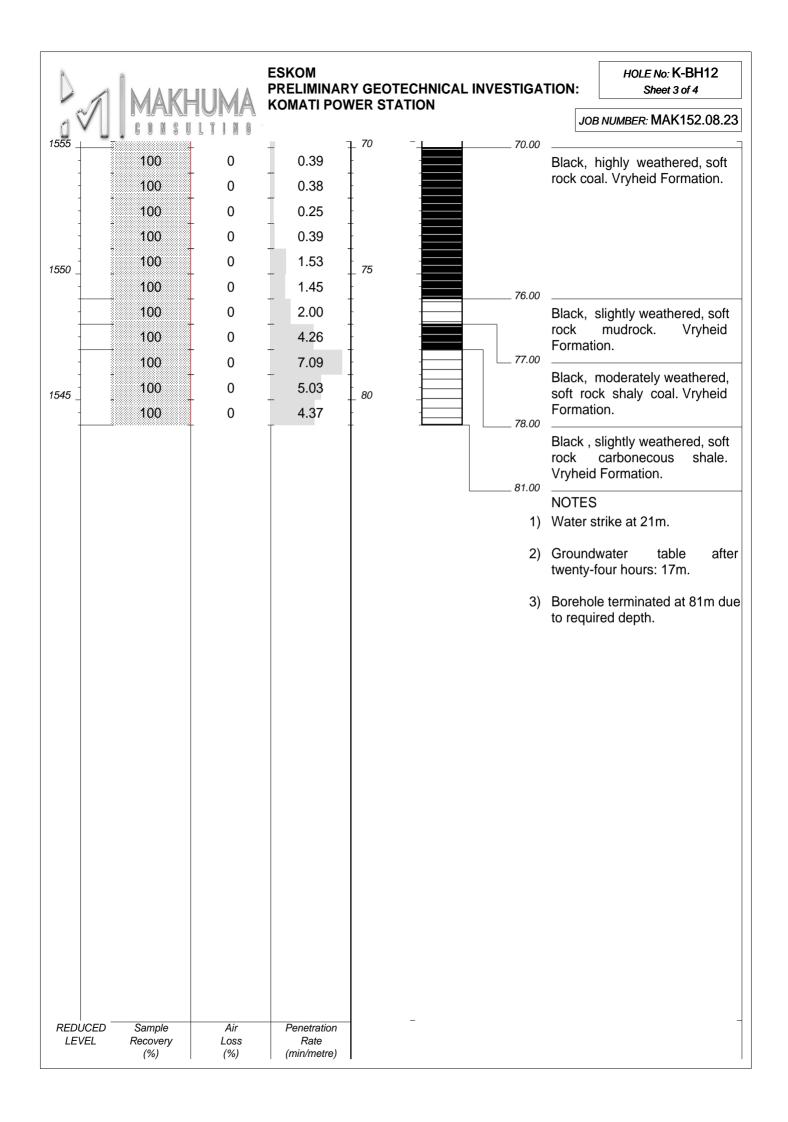


HOLE No: K-BH11 Sheet 1 of 2

JOB NUMBER: MAK152.08.23






MAKHUMA MAKHUMA

ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION

HOLE No: K-BH12 Sheet 1 of 4

D ST BANKLINAN			PRELIMINARY GEOTECHNICAL INVESTIGATION		HOLE No: K-BH12 Sheet 4 of 4	
ű			KOWATIPOV	VER STATION	JOB NUMBER: MAK152.08.2	3
			_	_		_
 REDUCED LEVEL	Sample Recovery	Air Loss	Penetration Rate			

CONTRACTOR: BAV Consulting
MACHINE: Thor 5000 Drill Rig
DRILLED BY: Zakhele Zaca
PROFILED BY: Andries Vukeya

(%)

TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET

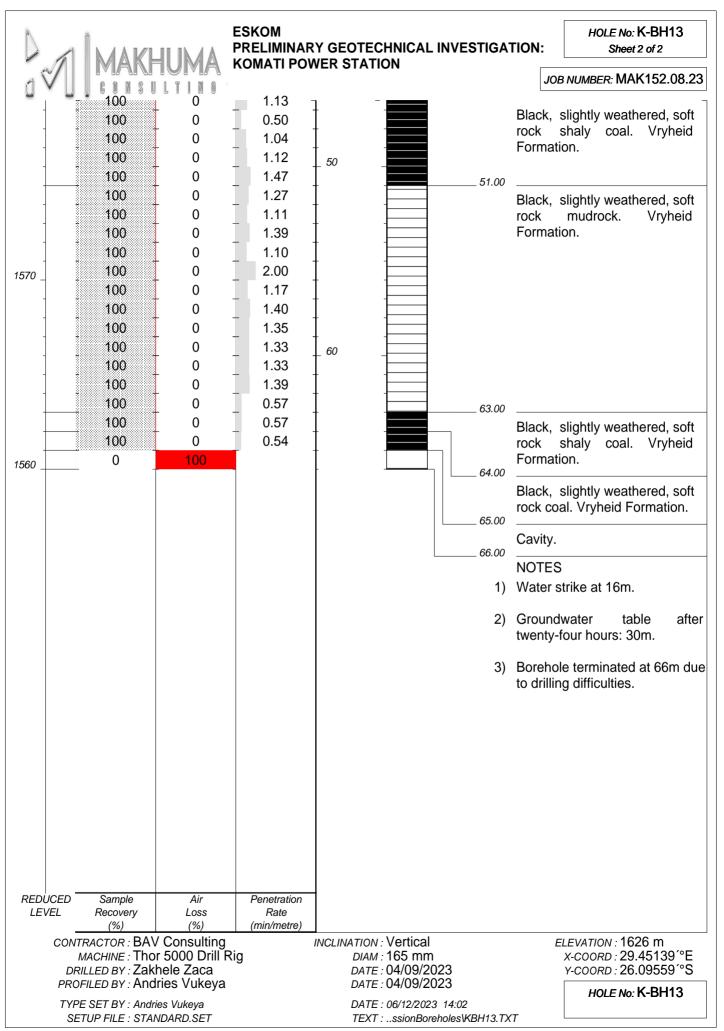
(%)

INCLINATION: Vertical
DIAM: 165 mm
DATE: 10/09/2023
DATE: 06/12/2023 14:01

(min/metre)

DATE: 06/12/2023 14:01 TEXT: ..ssionBoreholes\KBH12.TXT HOLE No: K-BH12

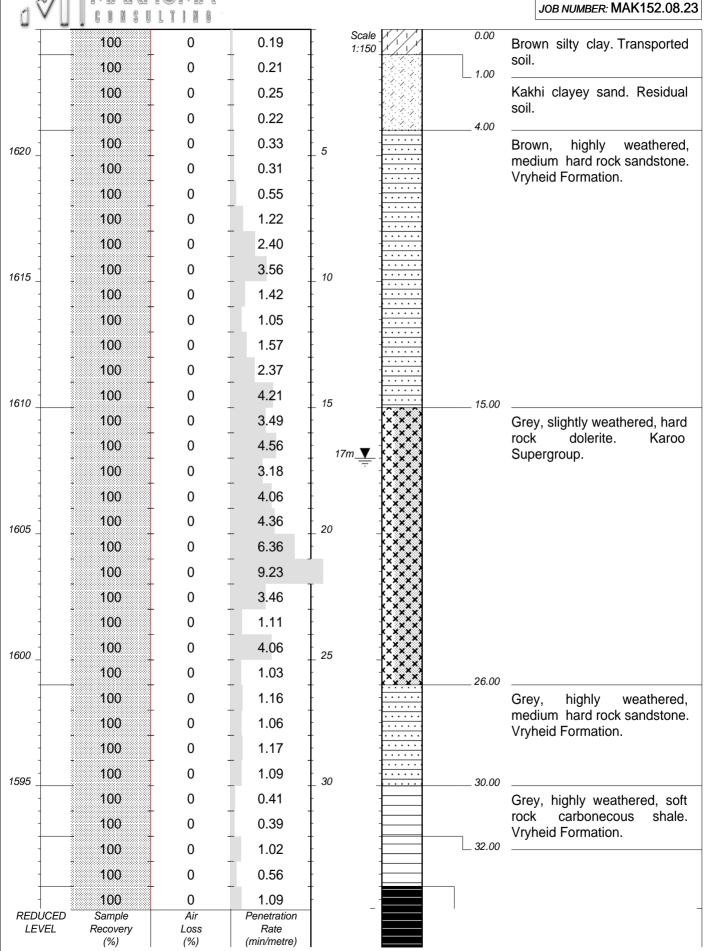
X-COORD: 29.44029°E Y-COORD: 26.09774°S

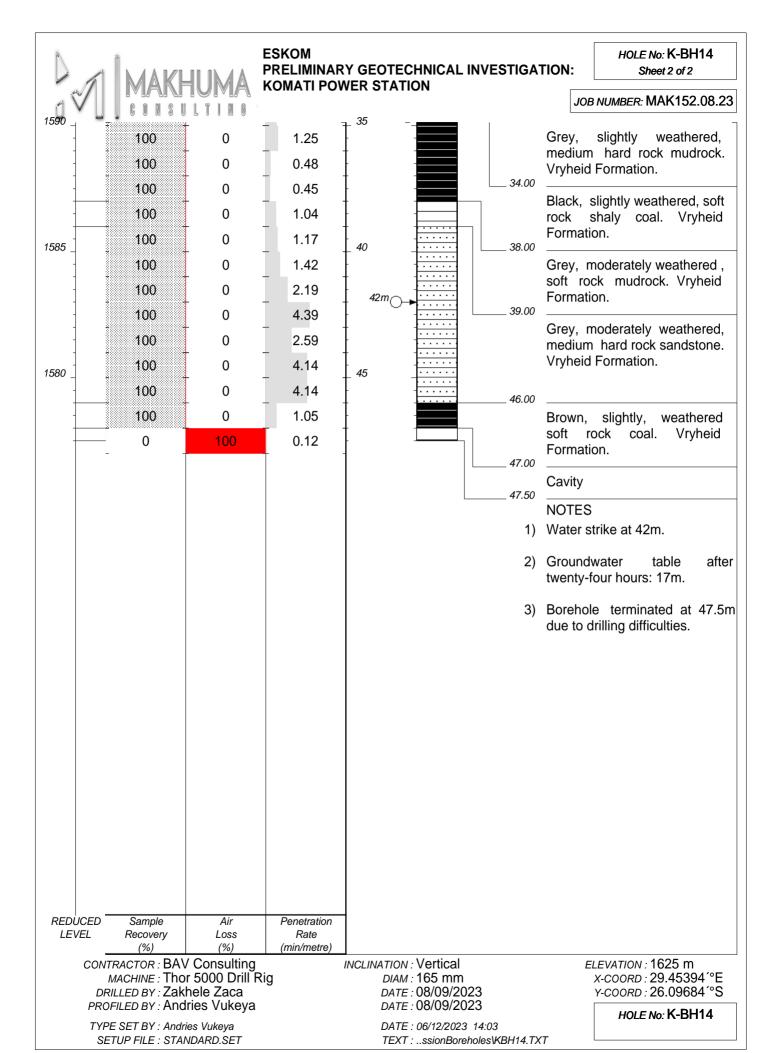

ELEVATION: 1625 m

ESKOM HOLE No: K-BH13 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 1 of 2 **KOMATI POWER STATION** JOB NUMBER: MAK152.08.23 0.00 100 0 0.11 Scale Brown clayey sand. 1:200 100 0 0.28 Transported soil. _ 2.00 100 0 0.43 Kakhi clayey sand. Residual 100 0 2.08 100 0 2.58 5.00 100 0 1.54 1620 Brown, moderately 100 0 2.25 weathered, soft rock shale. 0 3.37 Vryheid Formation. 100 7.00 100 0 3.56 Grey, slightly weathered, soft 0 1.42 100 10 Vryheid rock mudrock. 100 0 3.36 Formation. 100 0 1.23 3.25 100 0 100 0 5.45 100 0 4.42 100 0 4.47 ^{16m}⊖→ 1610 0 4.47 100 5.24 100 0 100 0 1.40 100 0 5.42 20 100 0 4.16 5.12 100 0 100 0 5.49 100 0 4.06 100 0 3.17 25.00 100 0 1.53 Grey, 1600 highly weathered. 100 0 1.25 medium hard rock sandstone. Vryheid Formation. 100 0 1.38 28.00 0 100 1.14 Balck, slightly weathered, soft 100 0 1.19 30 30m**▼** rock shaly coal. Vryheid 100 0 1.42 Formation. 100 0 0.53 32.00 100 0 1.41 Black, moderately weathered, 100 0 1.07 soft rock coal. Vryheid 100 Formation. 0 0.44 100 0 1.36 1590 36.00 100 0 1.47 Grey, highly weathered, 100 0 2.12 medium hard rock sandstone. Vryheid Formation. 100 0 2.06 1.21 100 0 40 0 1.43 100 100 0 2.31 100 0 1.50 0 3.37 100 0 2.18 100 45.00 0 3.50 100 1580 REDUCED Sample Air Penetration LEVEL Recovery Loss Rate

(%)

(%)

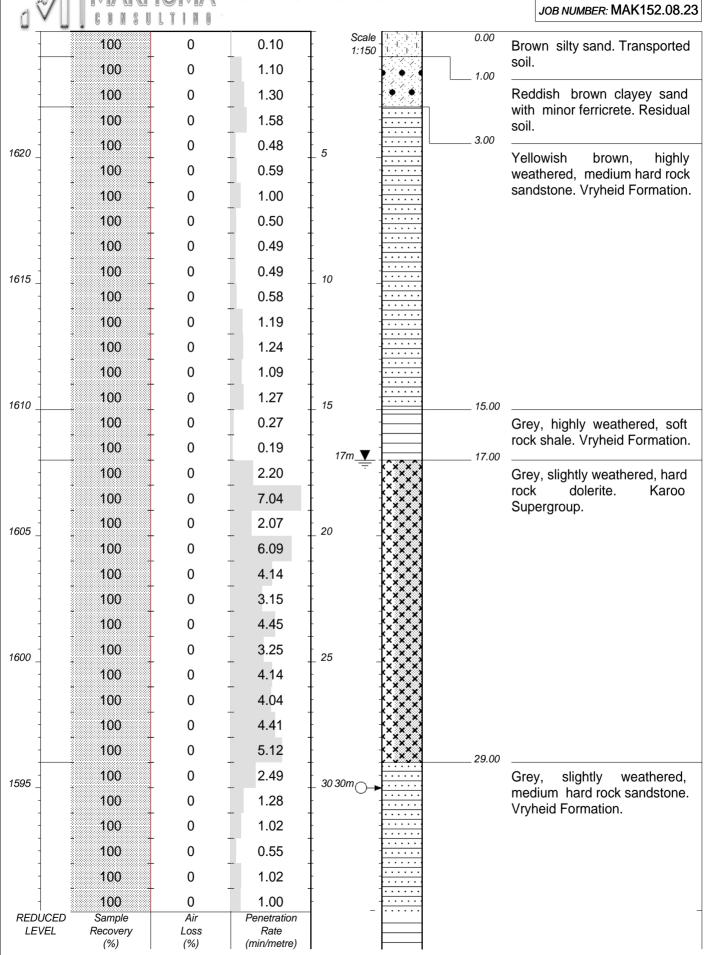

(min/metre)

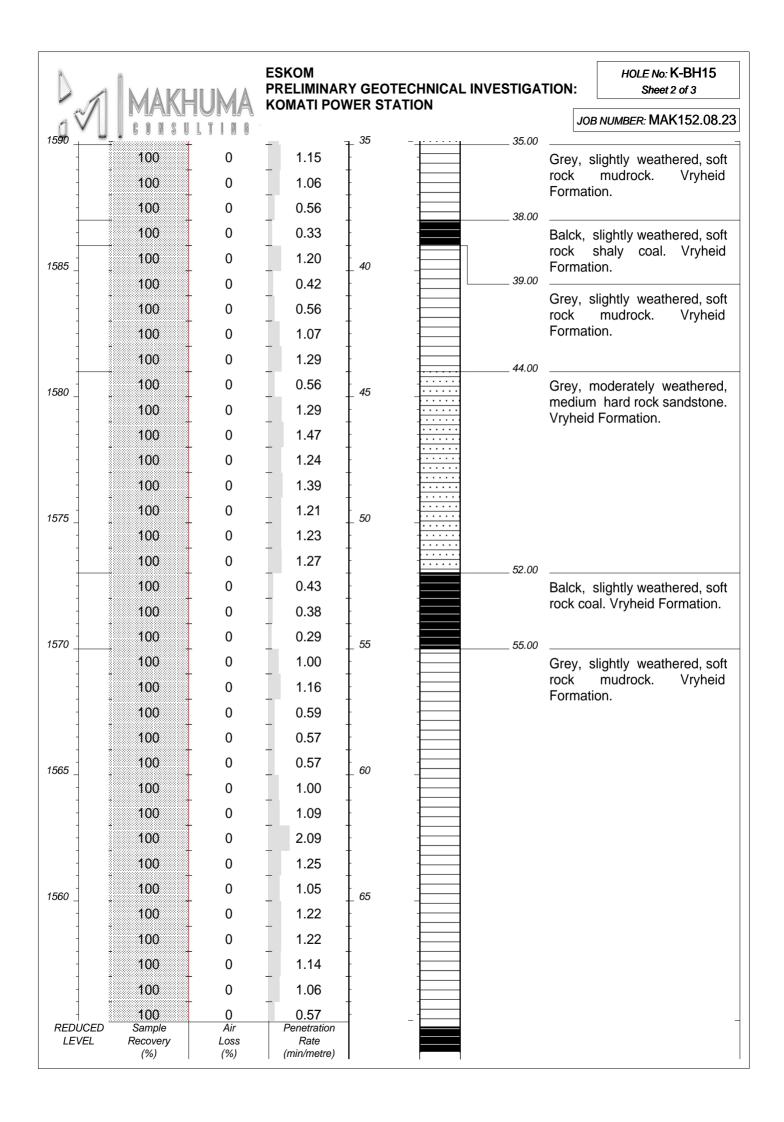


MAKHUMA

ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION

HOLE No: K-BH14 Sheet 1 of 2





MAKHUMA MAKHUMA

ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION

HOLE No: K-BH15 Sheet 1 of 3

ESKOM HOLE No: K-BH15 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 3 of 3 **KOMATI POWER STATION** JOB NUMBER: MAK152.08.23 70 70.00 100 0 0.49 Black, slightly weathered, soft rock coal. Vryheid Formation. 0 100 71.00 0 100 Cavity. 0 100 74.00 **NOTES** 1) Water strike at 30m. 2) Groundwater table after twenty-four hours: 17m. 3) Borehole terminated at 74m due to drilling difficulties. REDÜCED Penetration Sample Air LEVEL Recovery Loss Rate

CONTRACTOR: BAV Consulting
MACHINE: Thor 5000 Drill Rig
DRILLED BY: Zakhele Zaca
PROFILED BY: Andries Vukeya

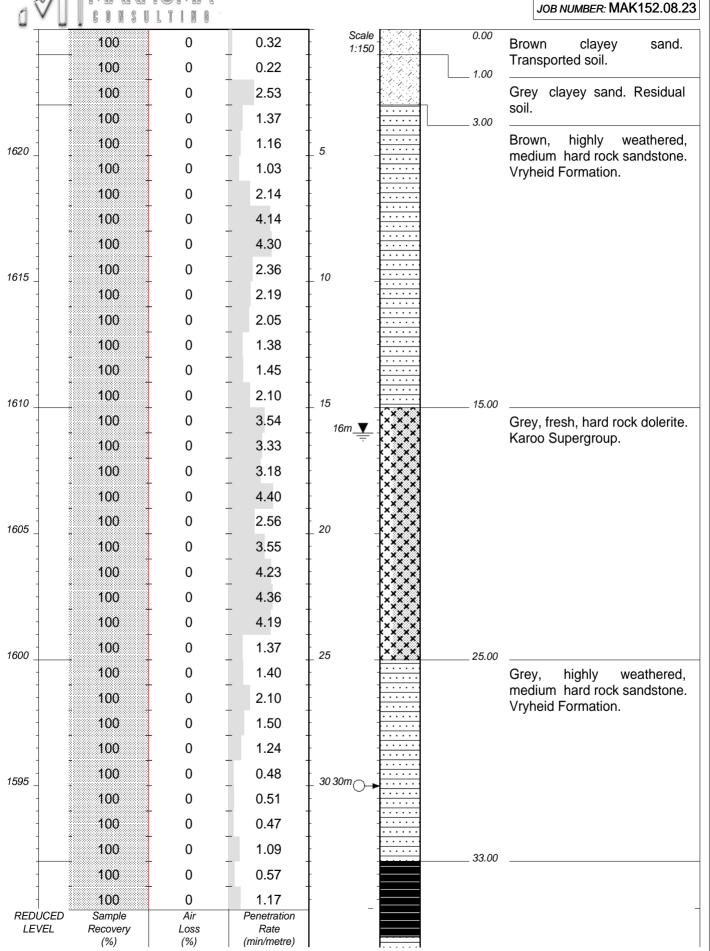
(%)

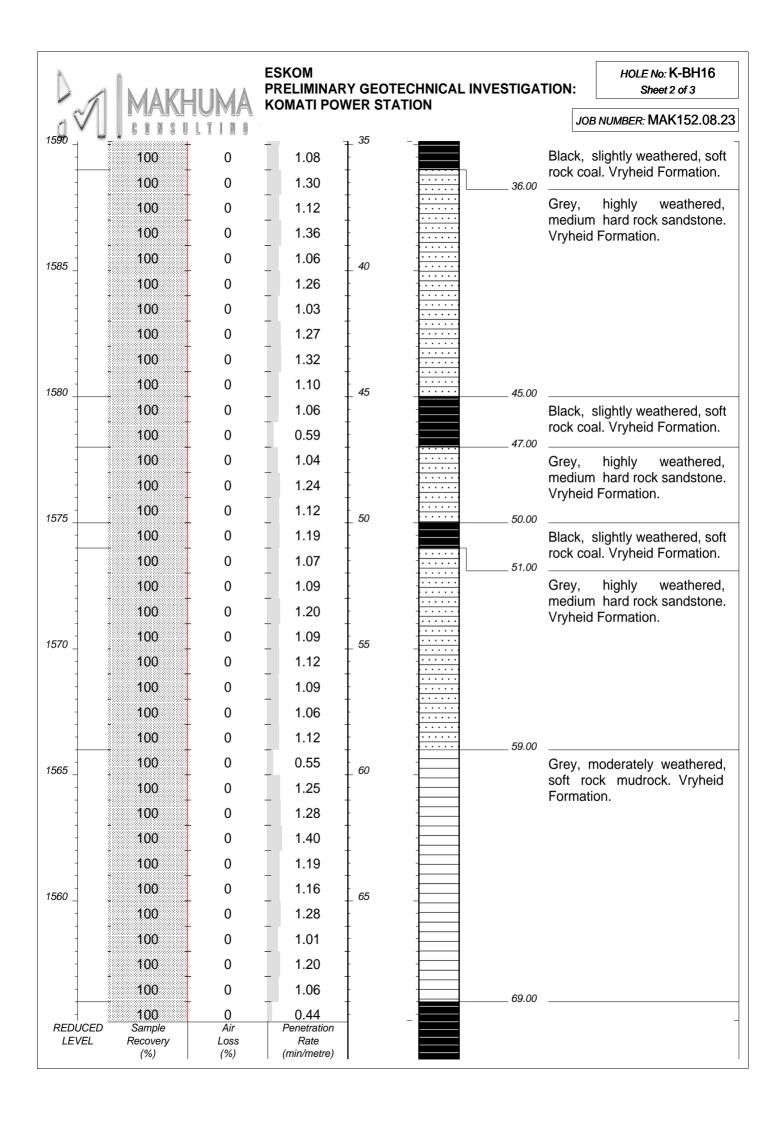
(min/metre)

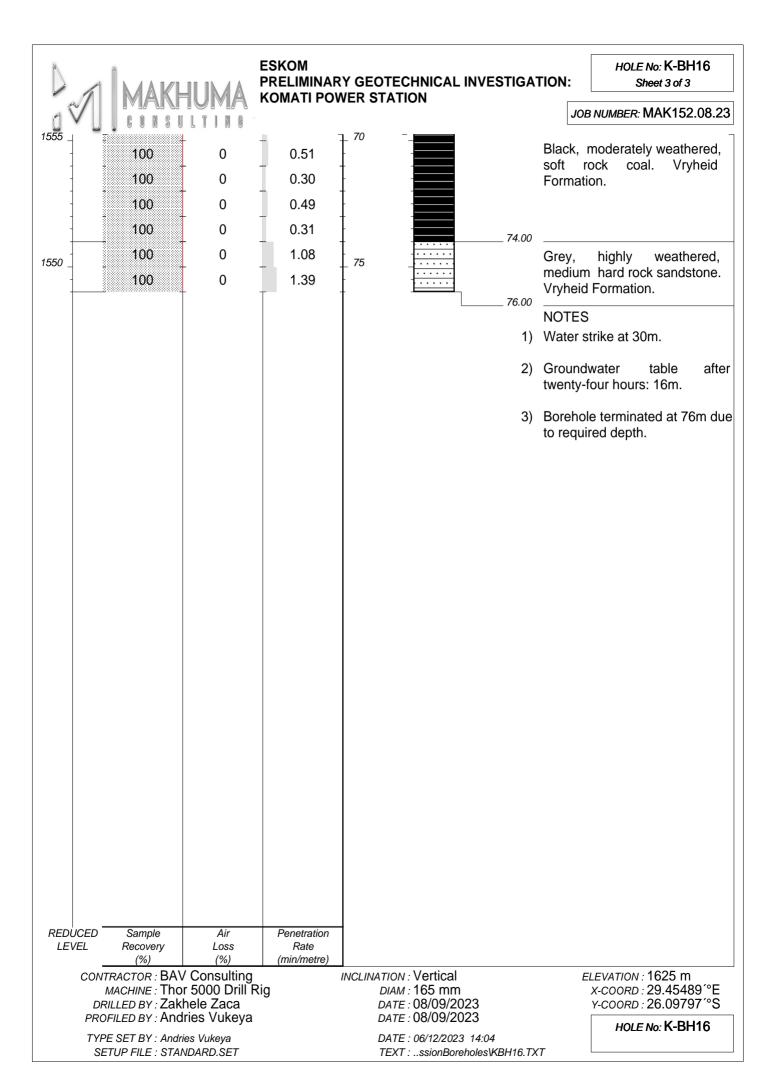
TYPE SET BY : Andries Vukeya SETUP FILE : STANDARD.SET

(%)

INCLINATION: Vertical
DIAM: 165 mm
DATE: 08/09/2023
DATE: 08/09/2023
DATE: 06/12/2023 14:03

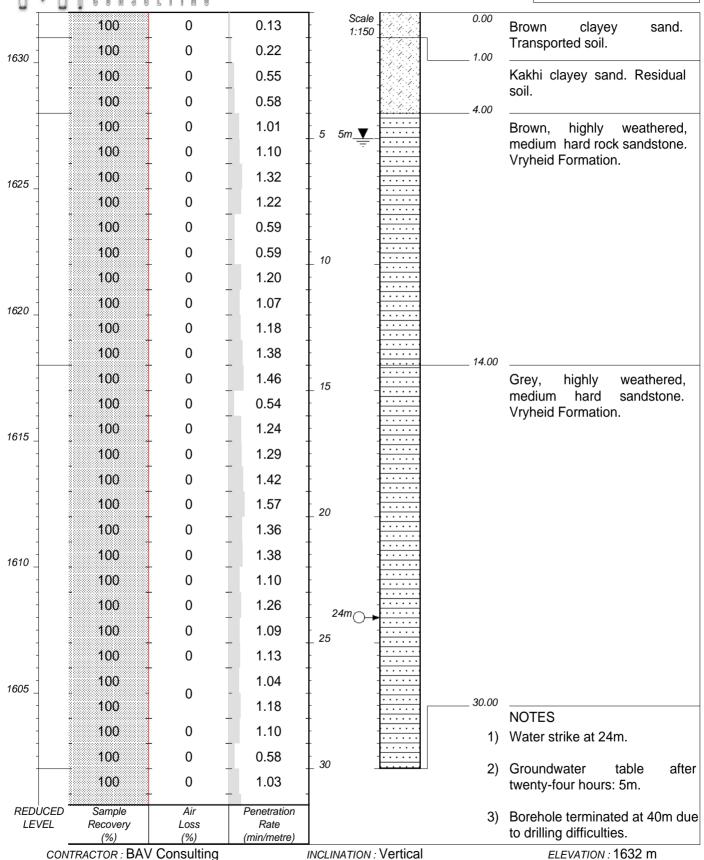

DATE: 06/12/2023 14:03 TEXT: ..ssionBoreholes\KBH15.TXT ELEVATION : 1625 m X-COORD : 29.45257°°E Y-COORD : 26.09741′°S


HOLE No: K-BH15


MAKHUMA CONSULTINO

ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION

HOLE No: K-BH16 Sheet 1 of 3



HOLE No: K-BH17 Sheet 1 of 1

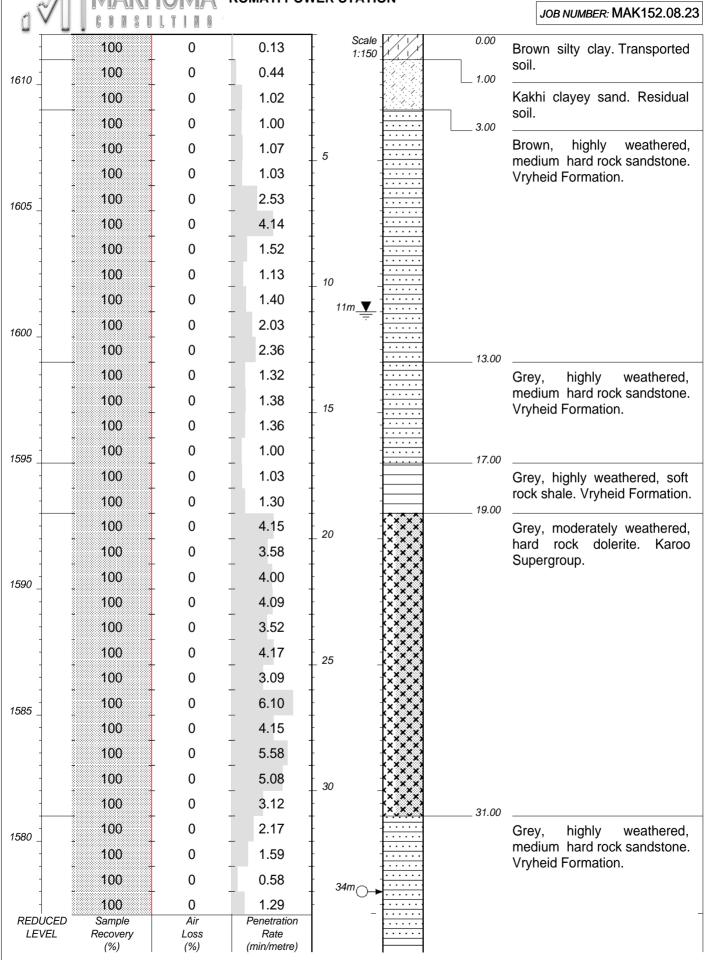
JOB NUMBER: MAK152.08.23

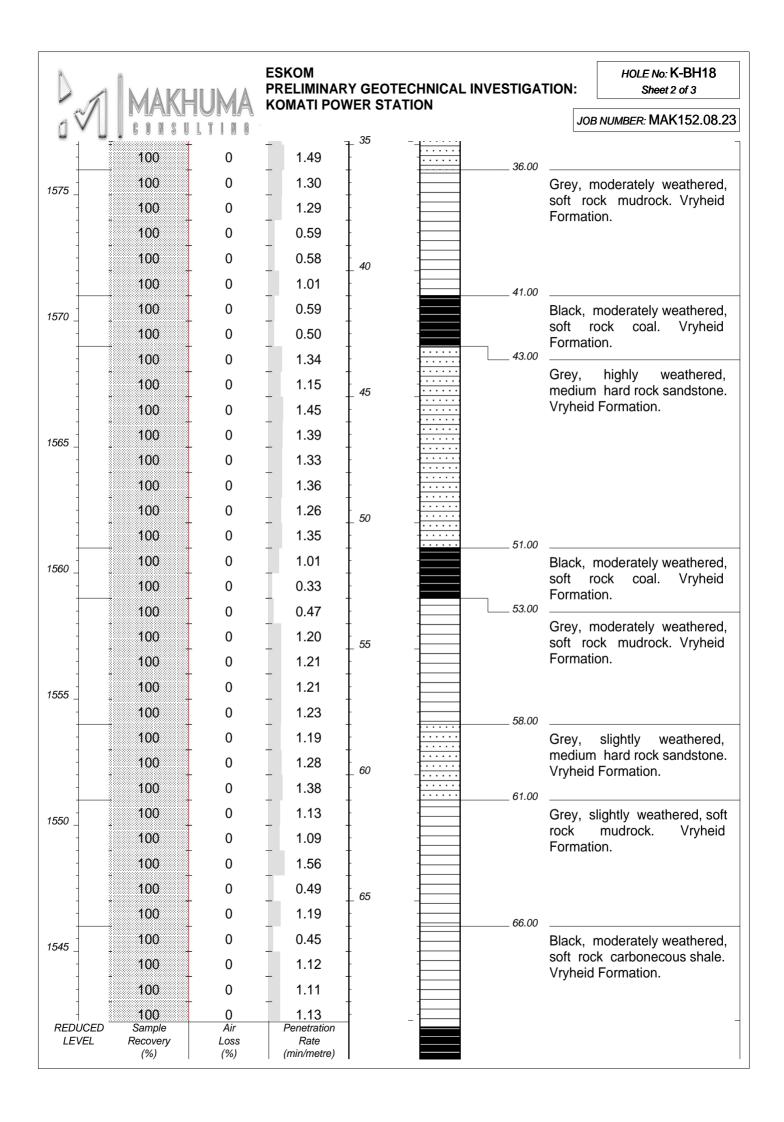
MACHINE: Thor 5000 Drill Rig DRILLED BY : Zakhele Zaca PROFILED BY: Andries Vukeya

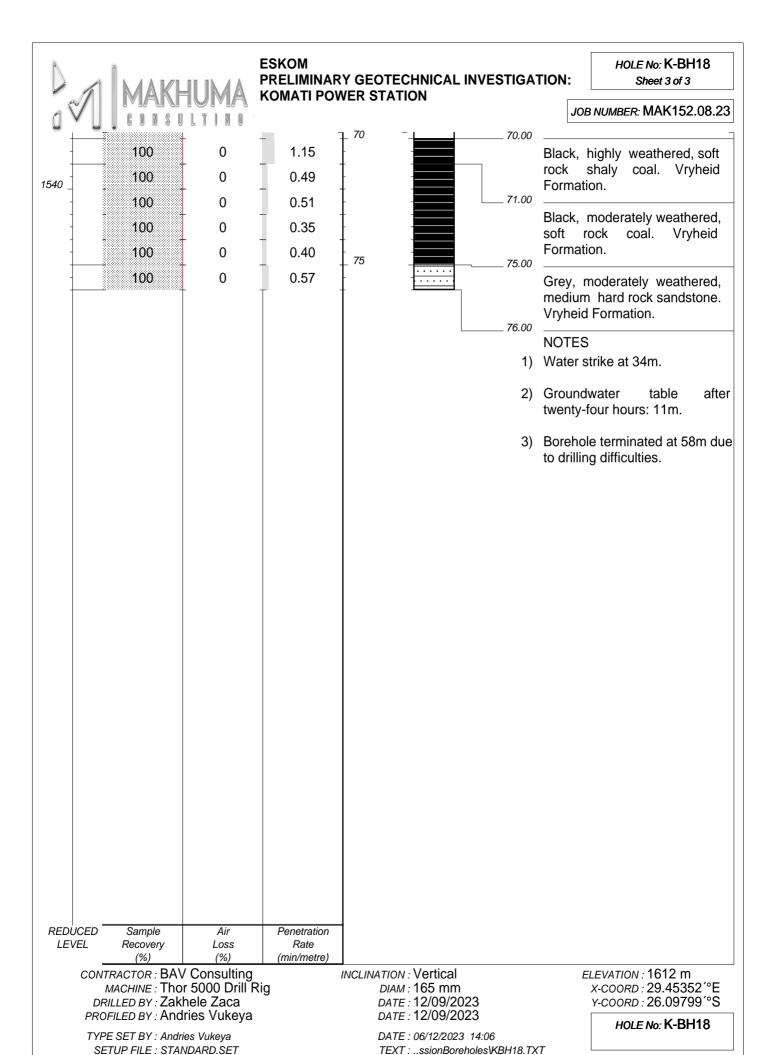
TYPE SET BY: Andries Vukeya SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM: 165 mm DATE: 11/09/2023 DATE: 11/09/2023

DATE: 06/12/2023 14:05 TEXT: ..ssionBoreholes\KBH17.TXT

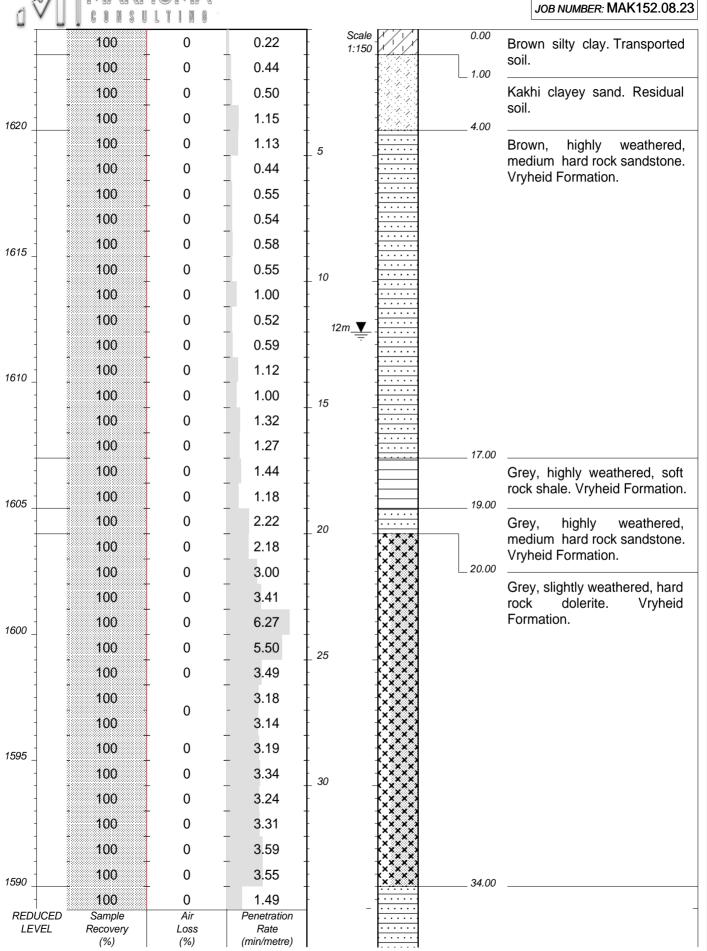

X-COORD: 29.45122 "E Y-COORD: 26.10133"S

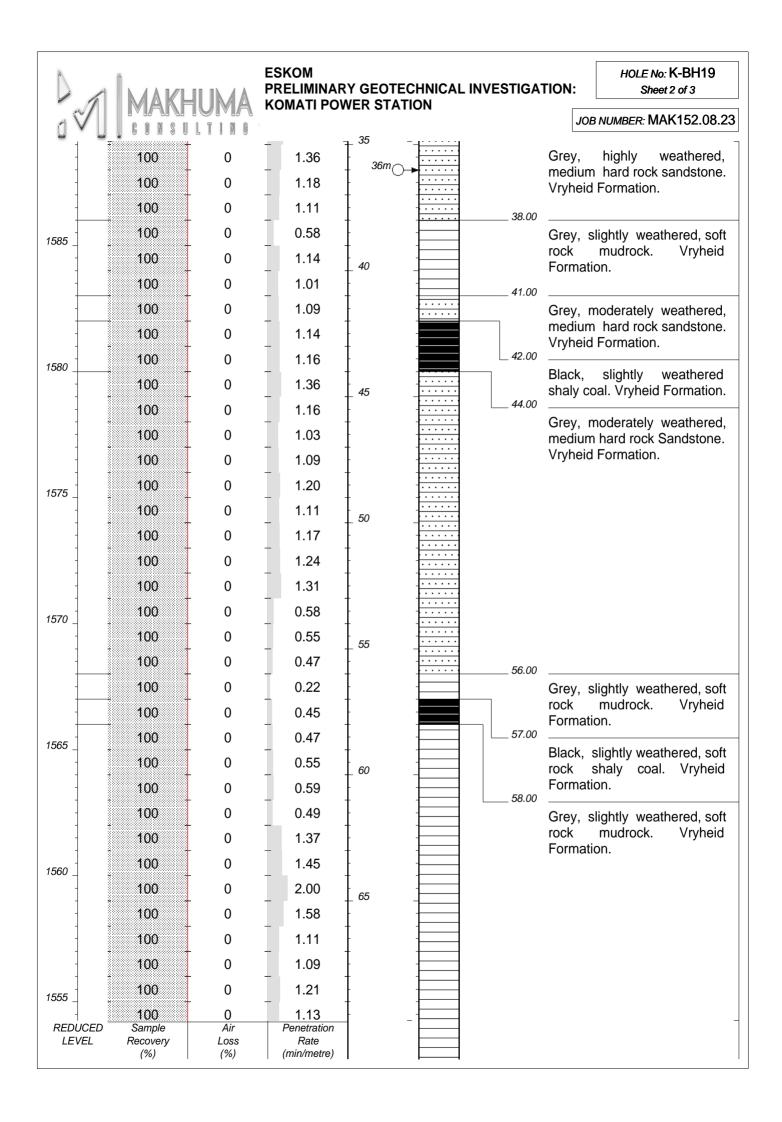

HOLE No: K-BH17

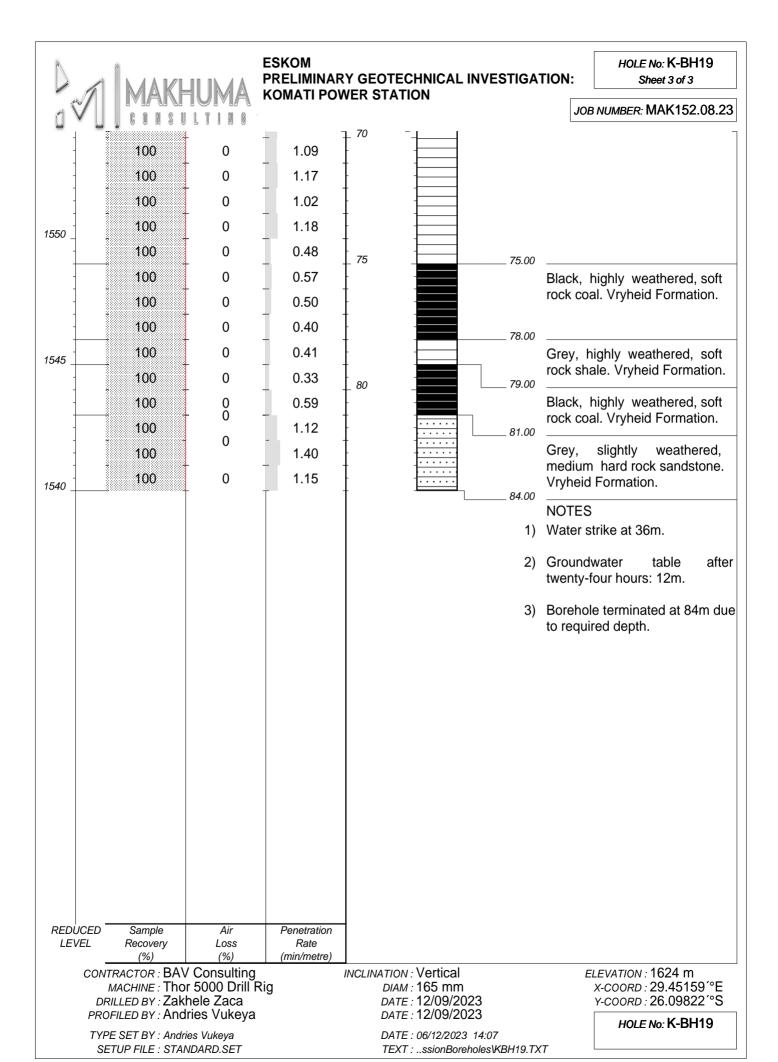

MAKHUMA CONSULTING

ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION

HOLE No: K-BH18 Sheet 1 of 3

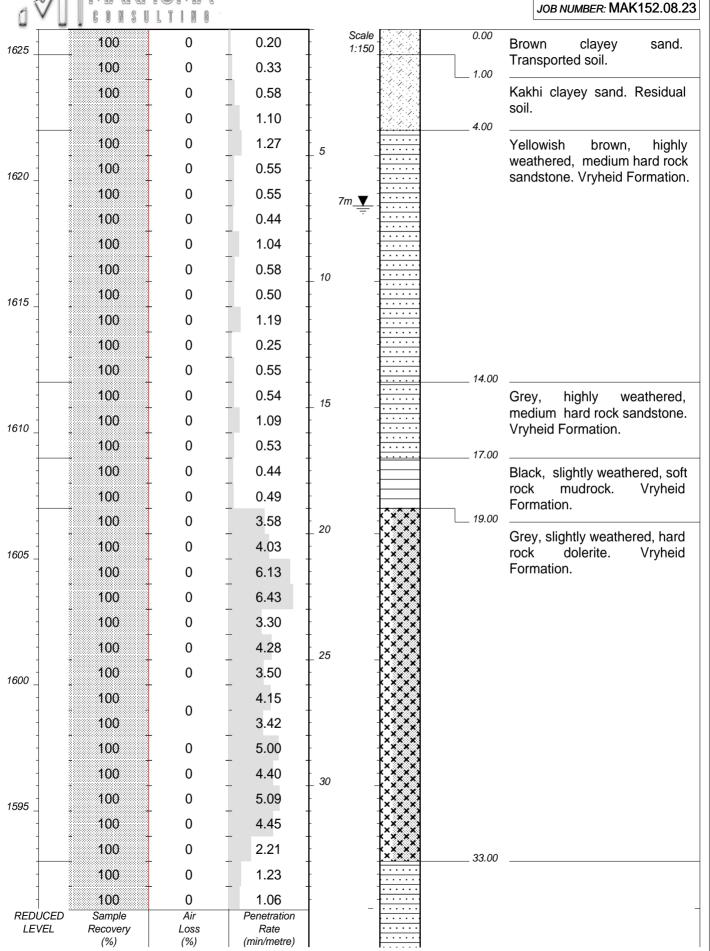


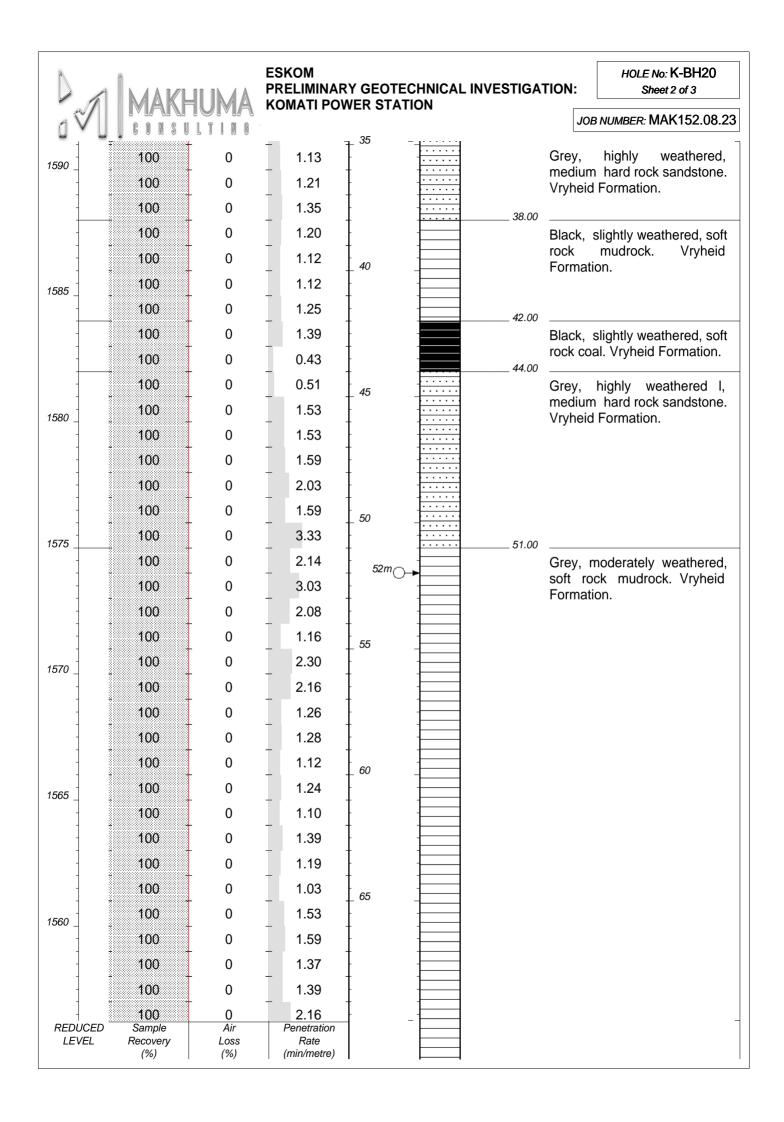


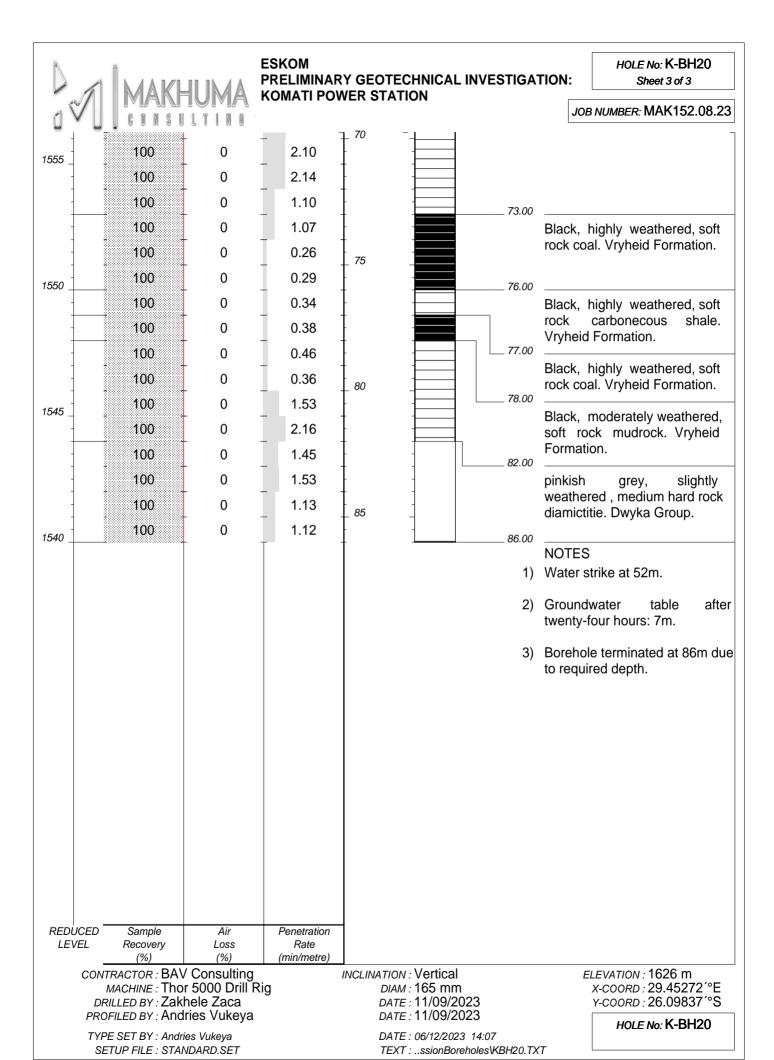

MAKHUMA KO

ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION

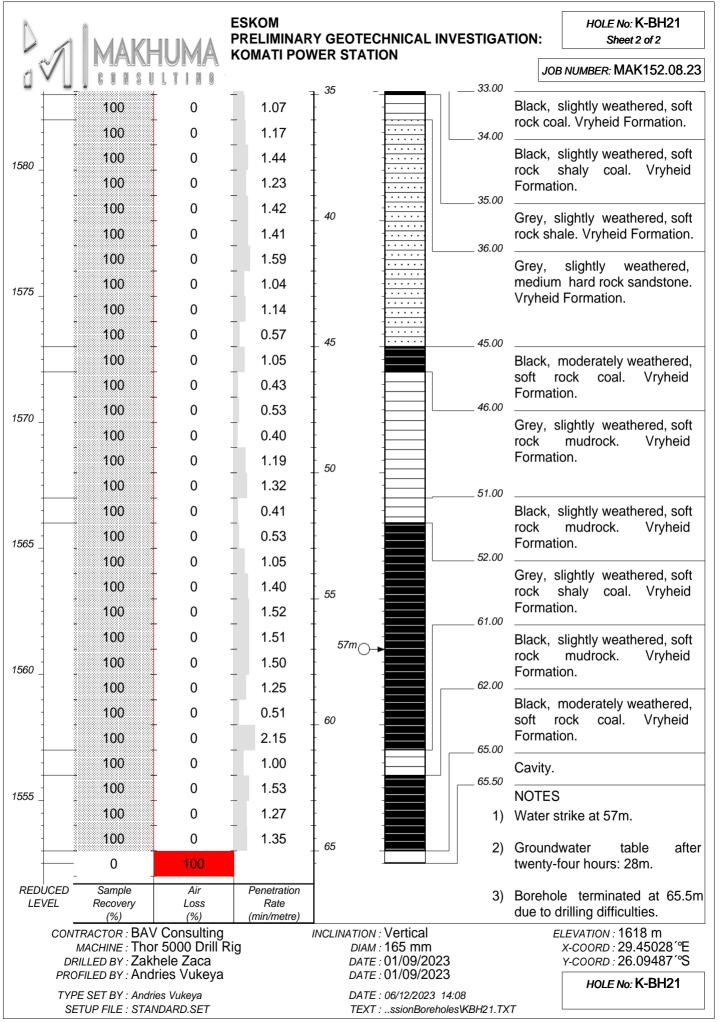
HOLE No: K-BH19 Sheet 1 of 3

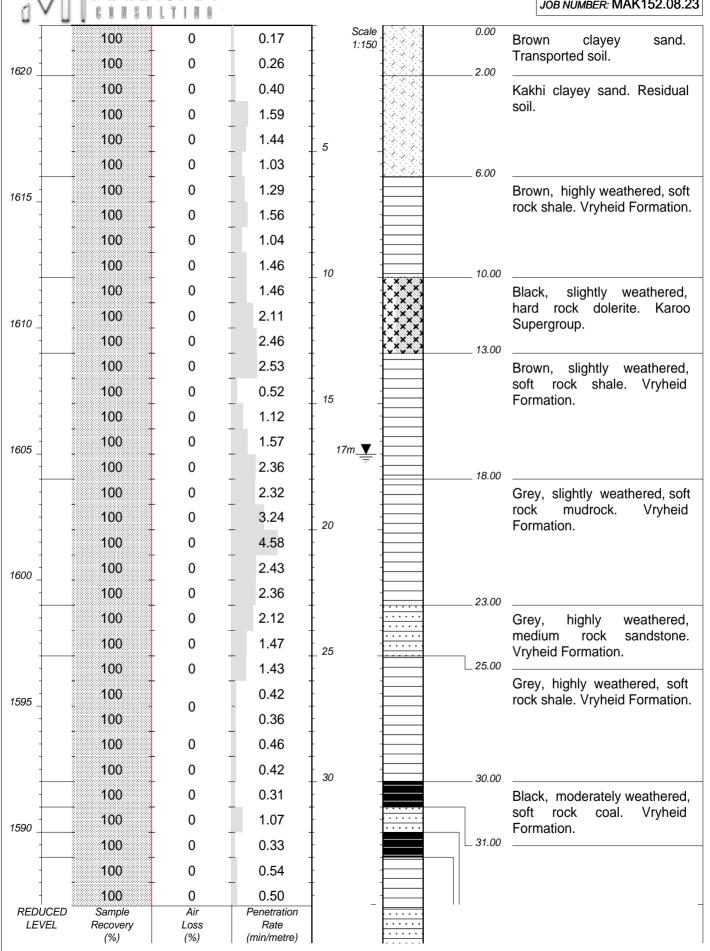


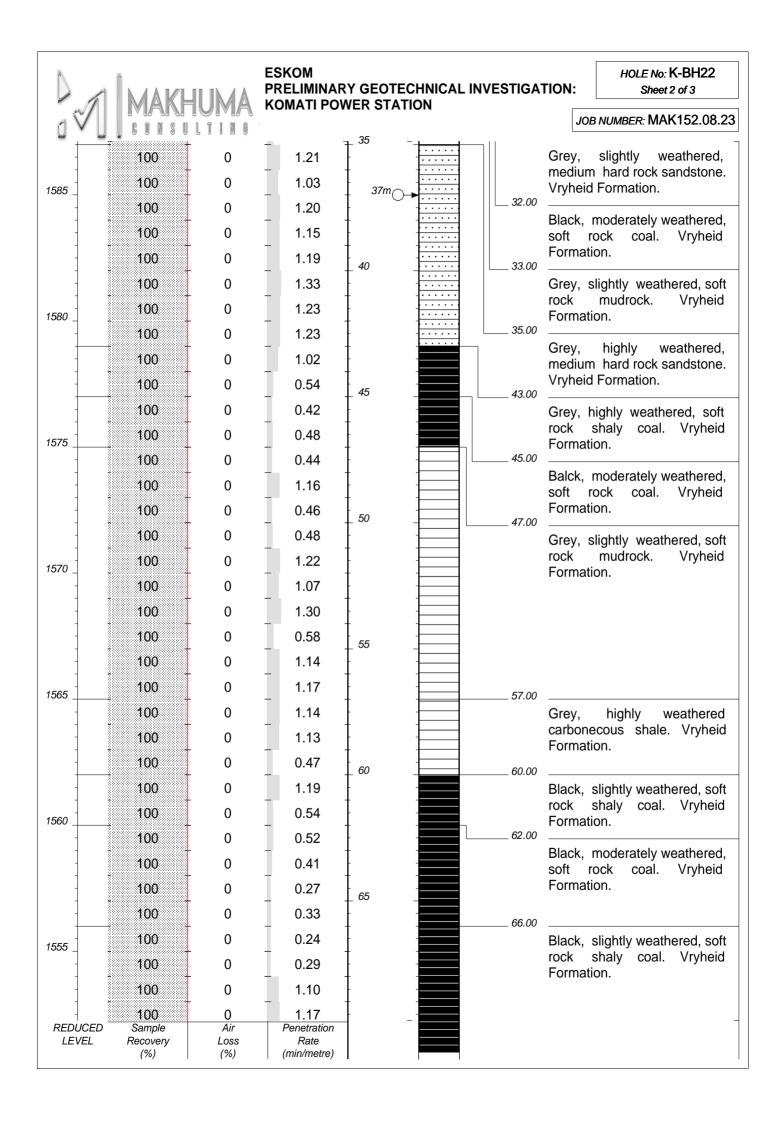


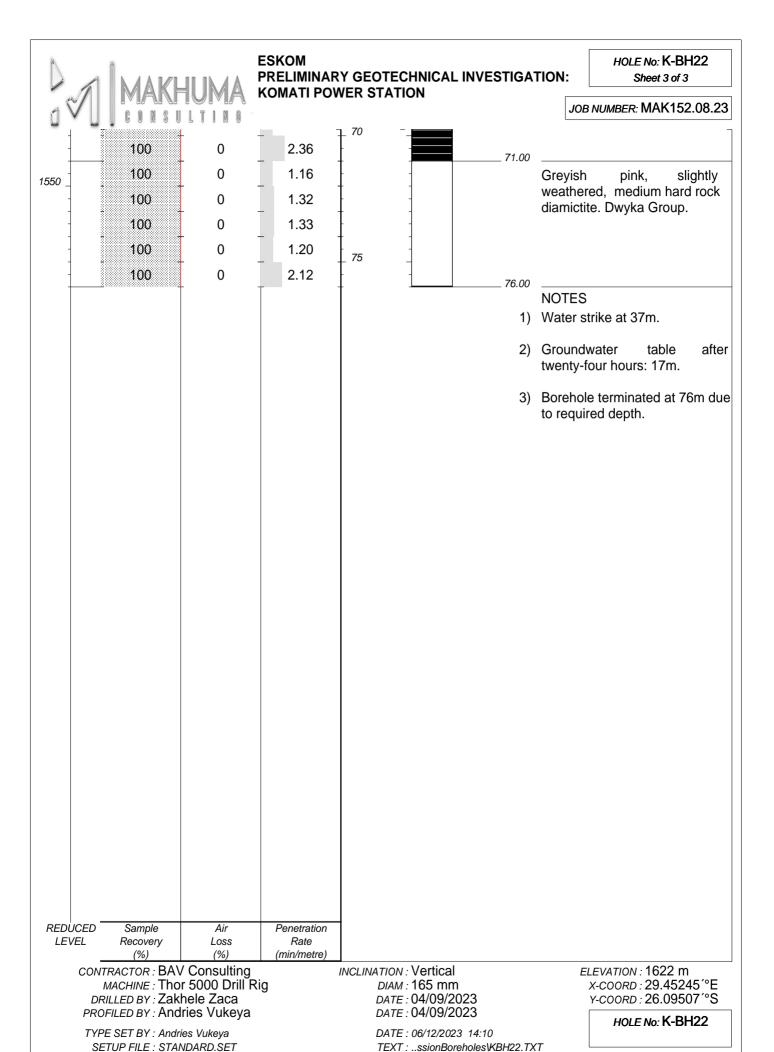

MAKHUMA E PROBLEM NO 1625

ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION


HOLE No: K-BH20 Sheet 1 of 3

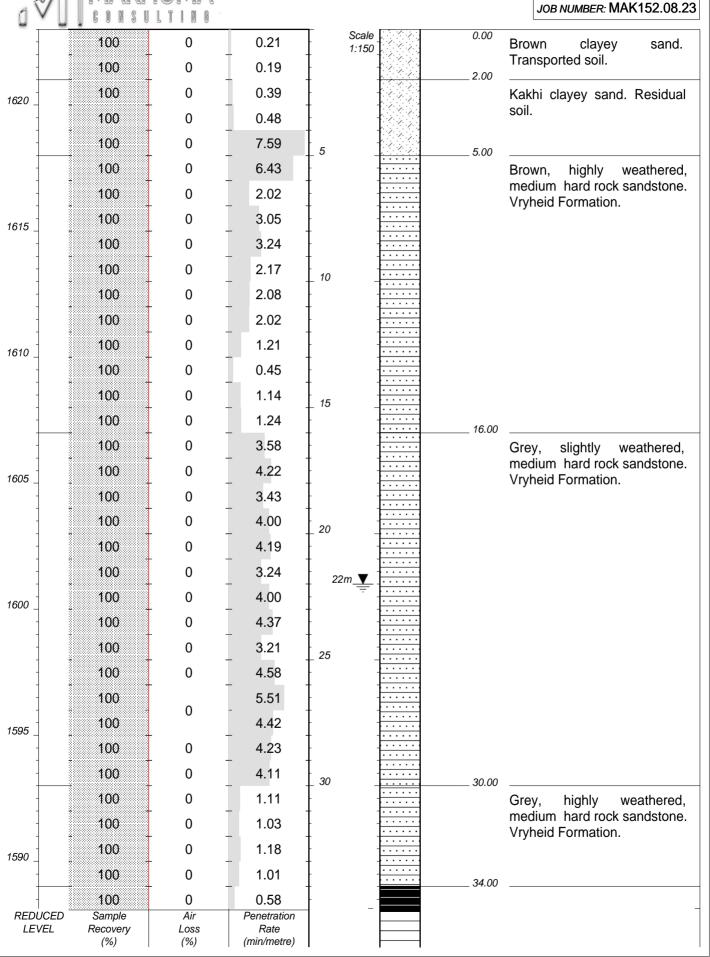


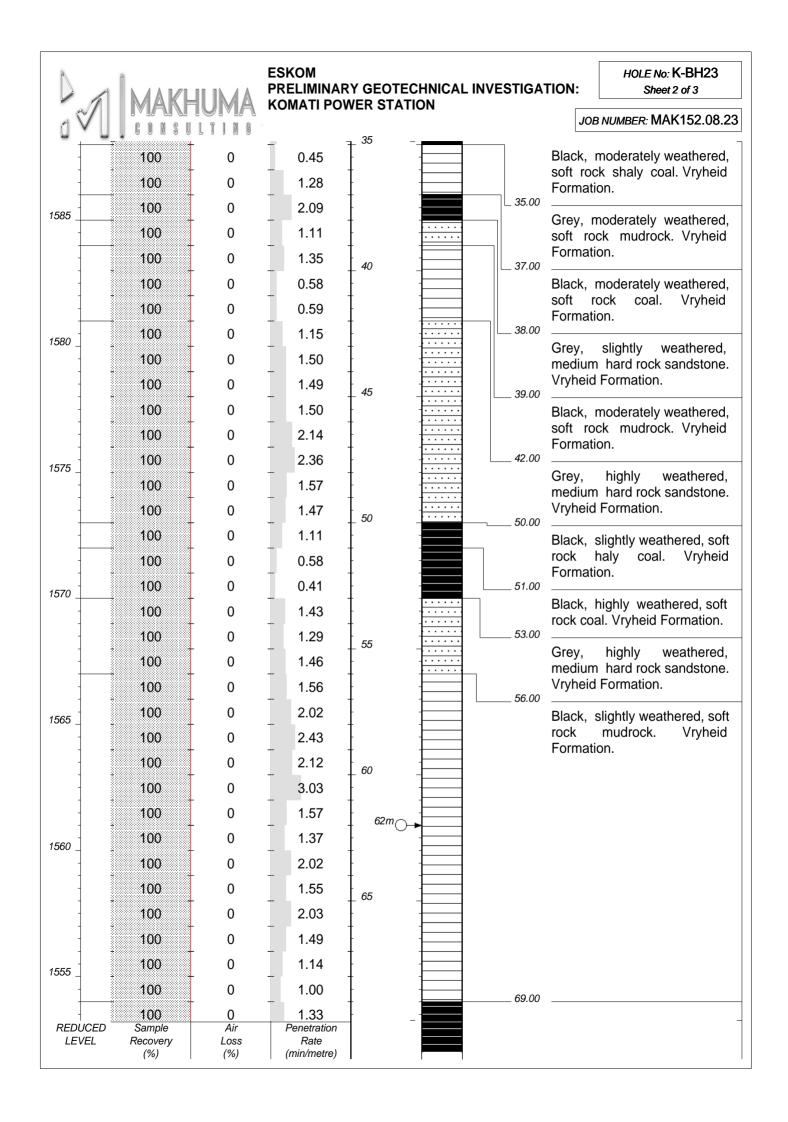

ESKOM HOLE No: K-BH21 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 1 of 2 **KOMATI POWER STATION** JOB NUMBER: MAK152.08.23 0.00 Scale 100 0 0.09 Brown, silty clay. Transported 1:150 soil. 0 100 0.23 100 0 0.28 1615 100 0 3.12 100 0 2.30 5 100 0 3.31 100 0 7.53 7.00 100 0 2.16 Brown, moderately 1610 weathered, soft rock shale. 100 0 1.40 Vryheid Formation. 100 0 0.54 10 100 0 1.40 0 0.59 100 100 0 1.07 1605 100 1.00 0 0 0.51 100 15 1.26 100 0 100 0 1.05 0 3.10 100 1600 18.00 3.58 100 0 Grey, slightly weathered, hard rock dolerite. Karoo 100 3.30 0 20 Supergroup. 100 0 3.26 25.00 5.00 100 0 slightly weathered, Brown. 100 0 4.48 soft rock shale. Vryheid 1595 Formation. 100 0 3.35 27.00 100 0 1.49 Black, highly weathered, soft 25 rock coal. Vryheid Formation. 100 0 1.10 28.00 100 1.05 Grey, moderately weathered, 0 soft rock shale. Vryheid 100 0.48 1590 28m_**▼** Formation. 30.00 100 0 0.46 Black, highly weathered, soft 100 0 1.01 rock coal. Vryheid Formation. 30 31.00 100 0 0.54 Grey, highly weathered, soft 100 0 1.19 rock shale. Vryheid Formation. __ 32.00 100 0 1.01 1585 Black, moderately weathered, 100 0 0.34 soft rock coal. Vryheid Formation. 0 1.00 100 33.00 REDUCED Sample Air Penetration Recovery LEVEL Loss Rate (%) (%) (min/metre)

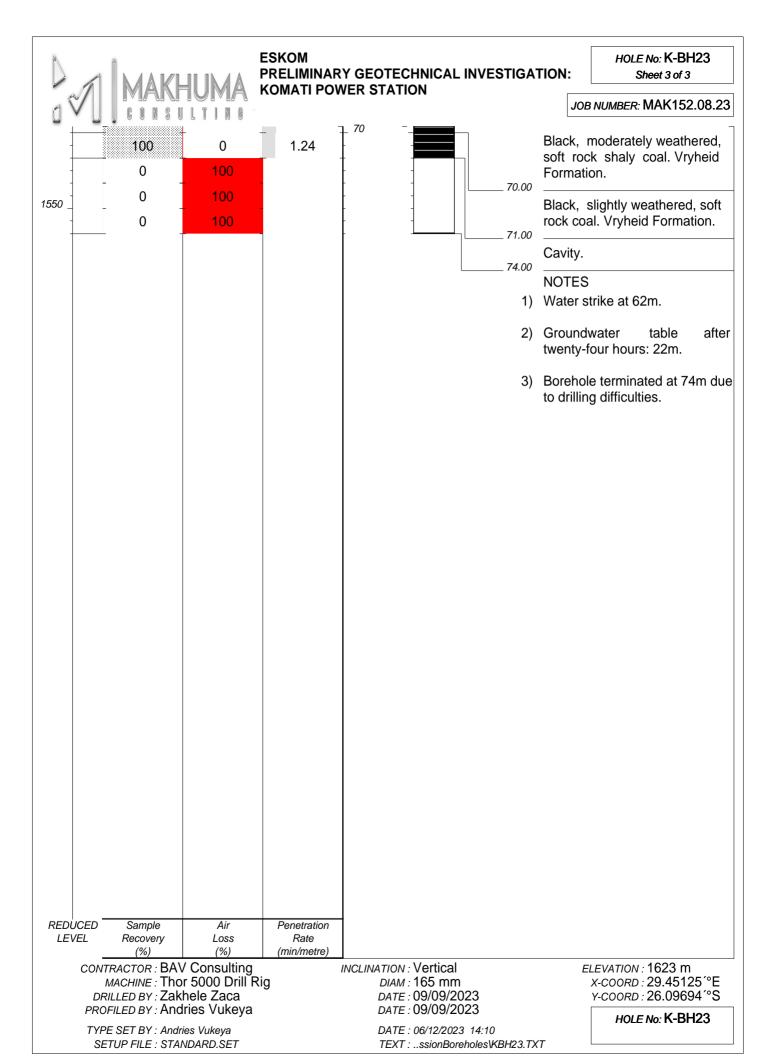


HOLE No: K-BH22 Sheet 1 of 3

JOB NUMBER: MAK152.08.23

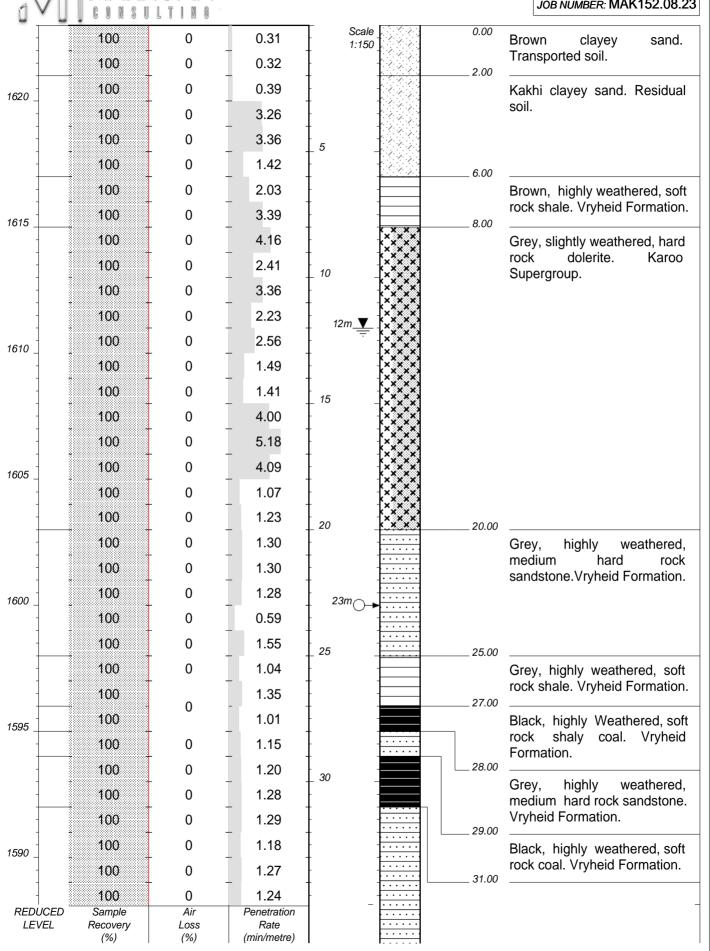


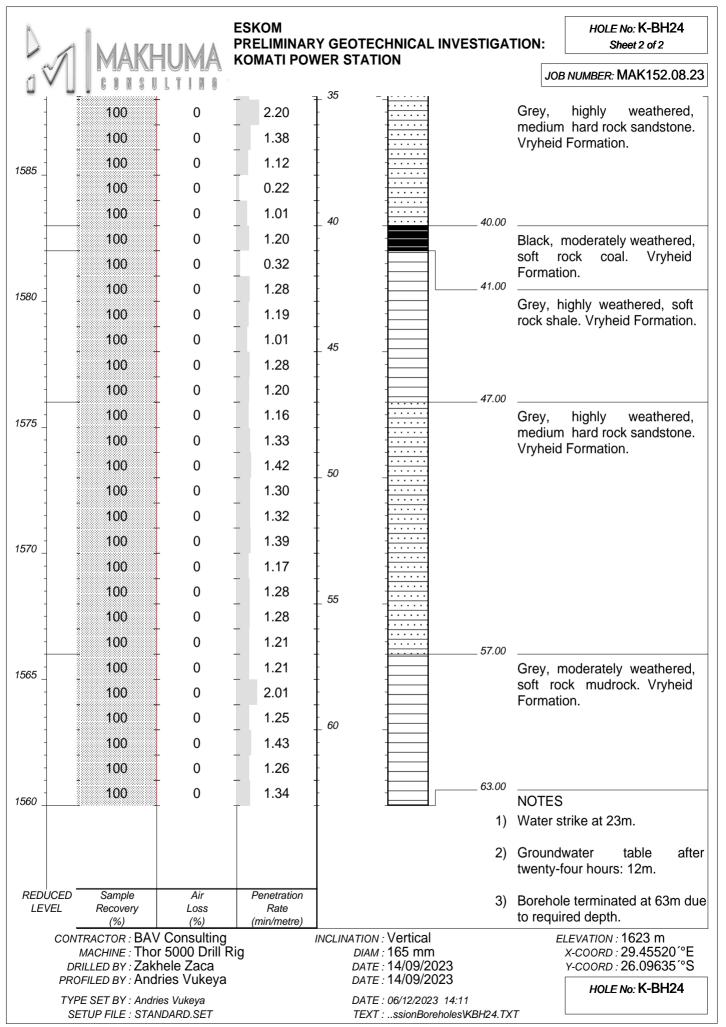




ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: **KOMATI POWER STATION**

HOLE No: K-BH23 Sheet 1 of 3

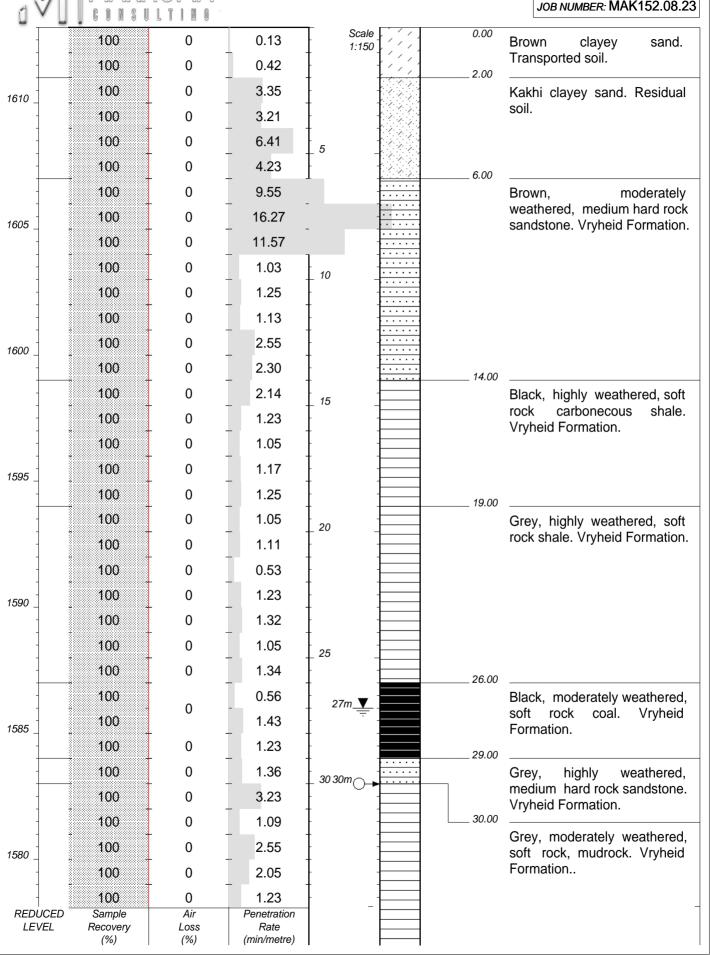


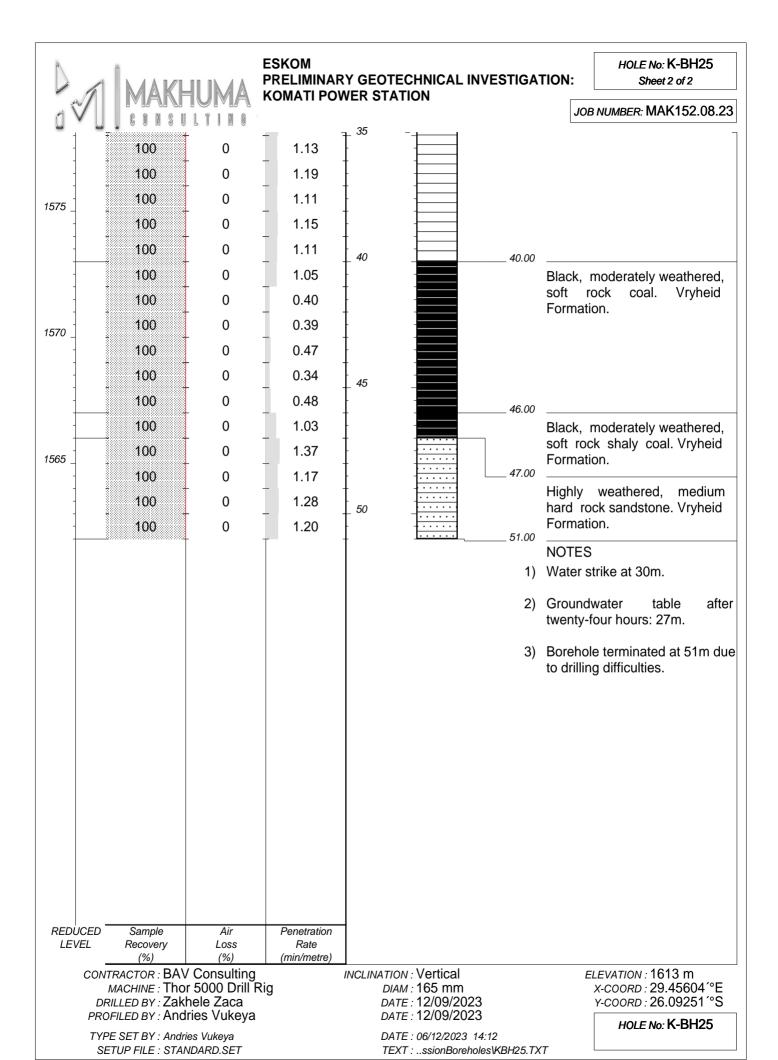


ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: **KOMATI POWER STATION**

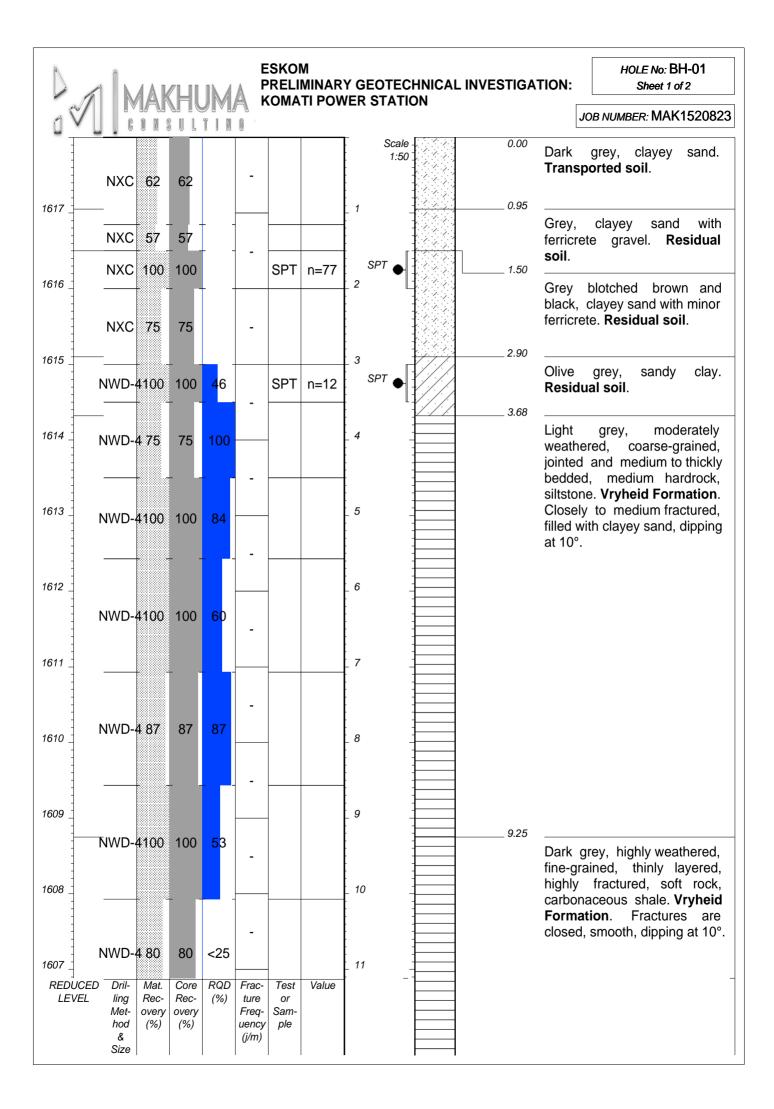
HOLE No: K-BH24 Sheet 1 of 2

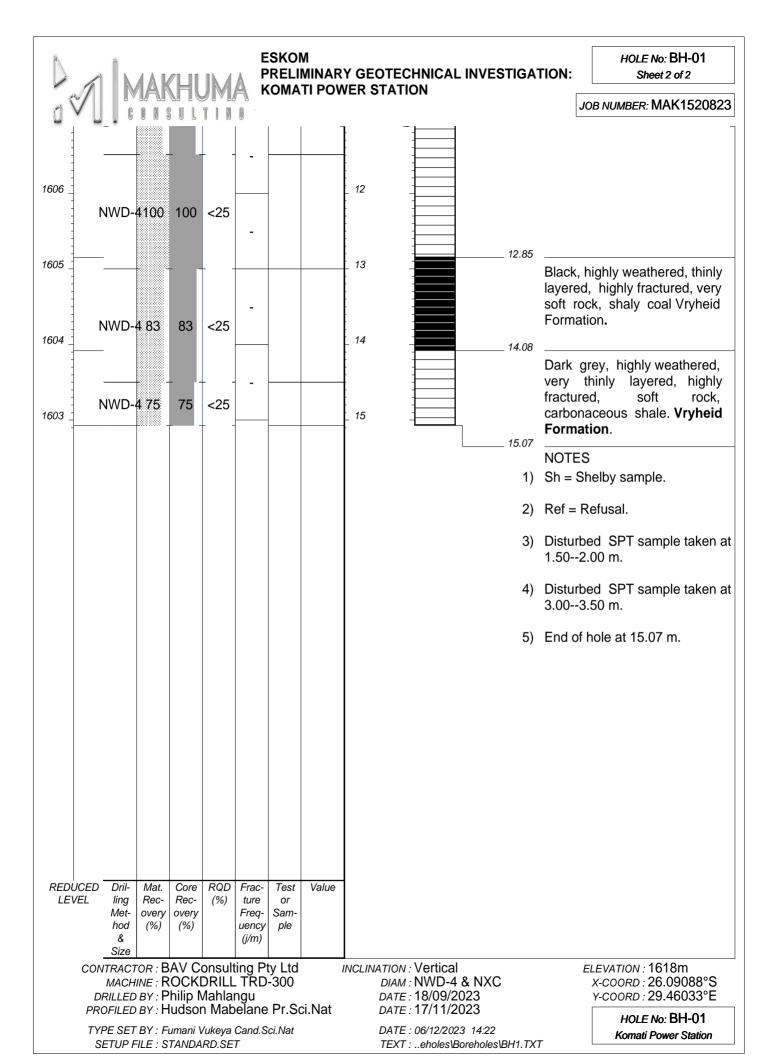
JOB NUMBER: MAK152.08.23

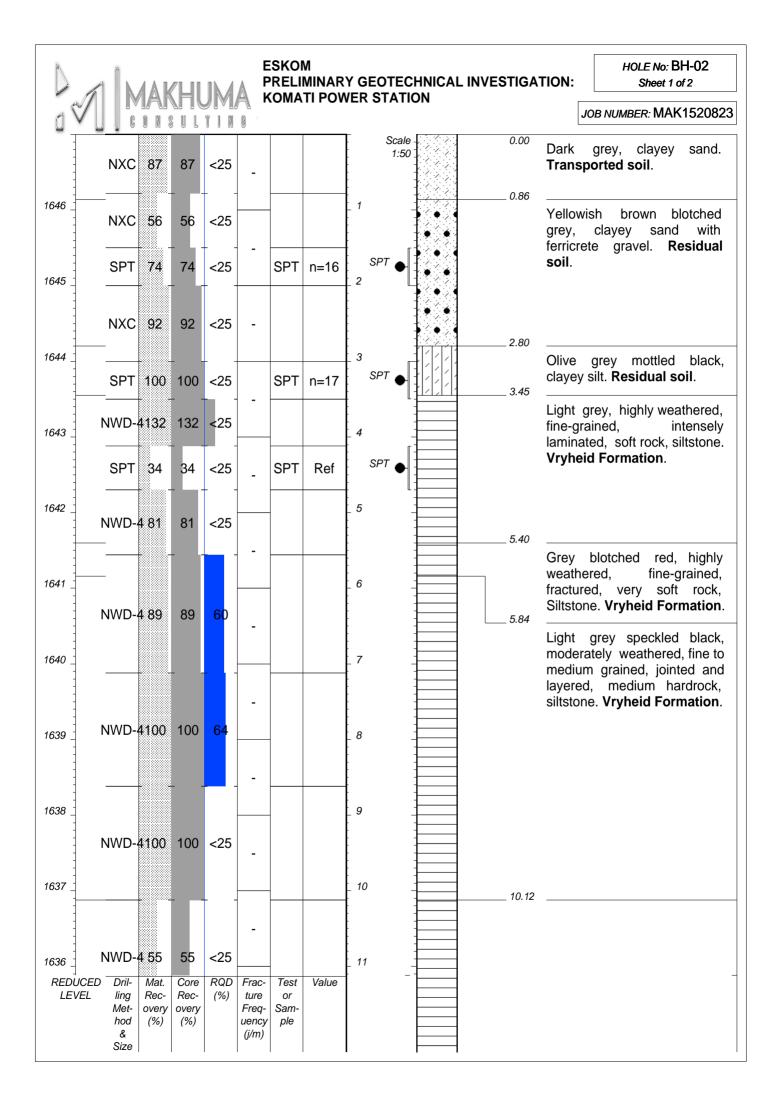


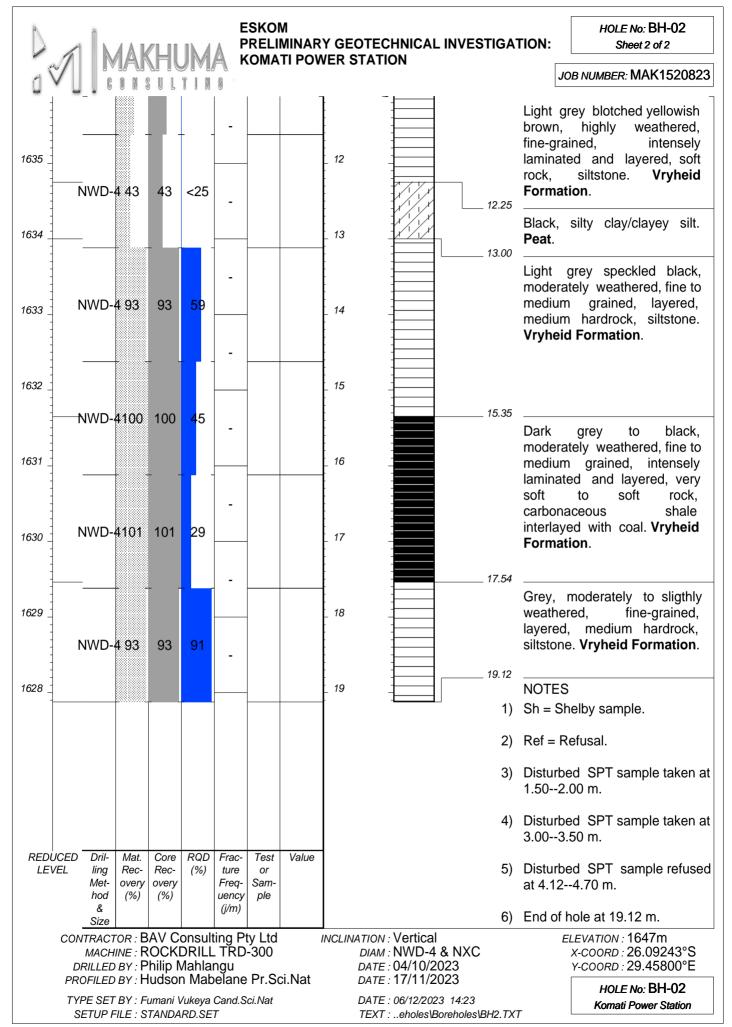


ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: **KOMATI POWER STATION**

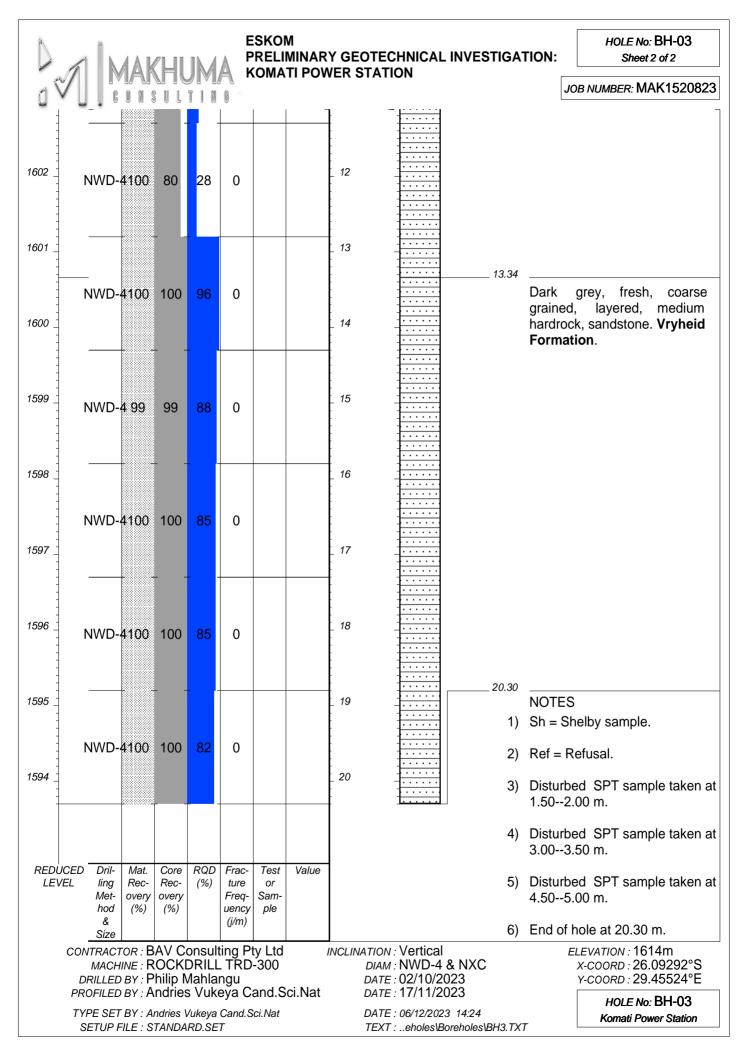

HOLE No: K-BH25 Sheet 1 of 2

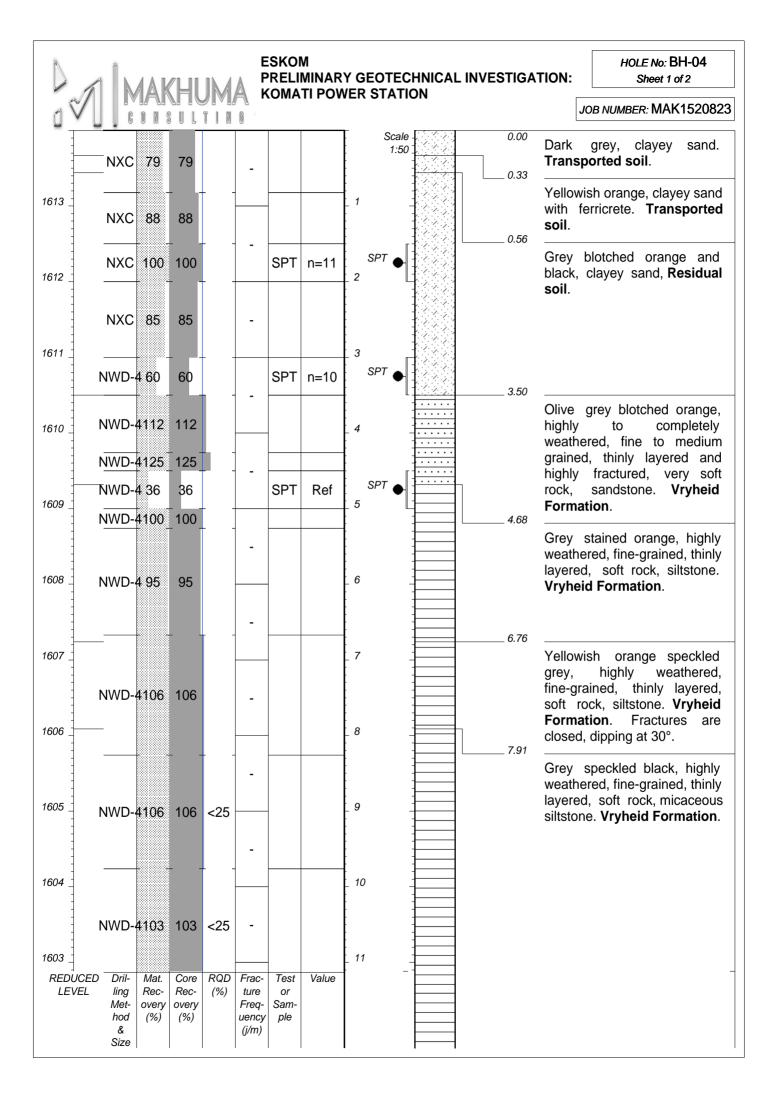

JOB NUMBER: MAK152.08.23

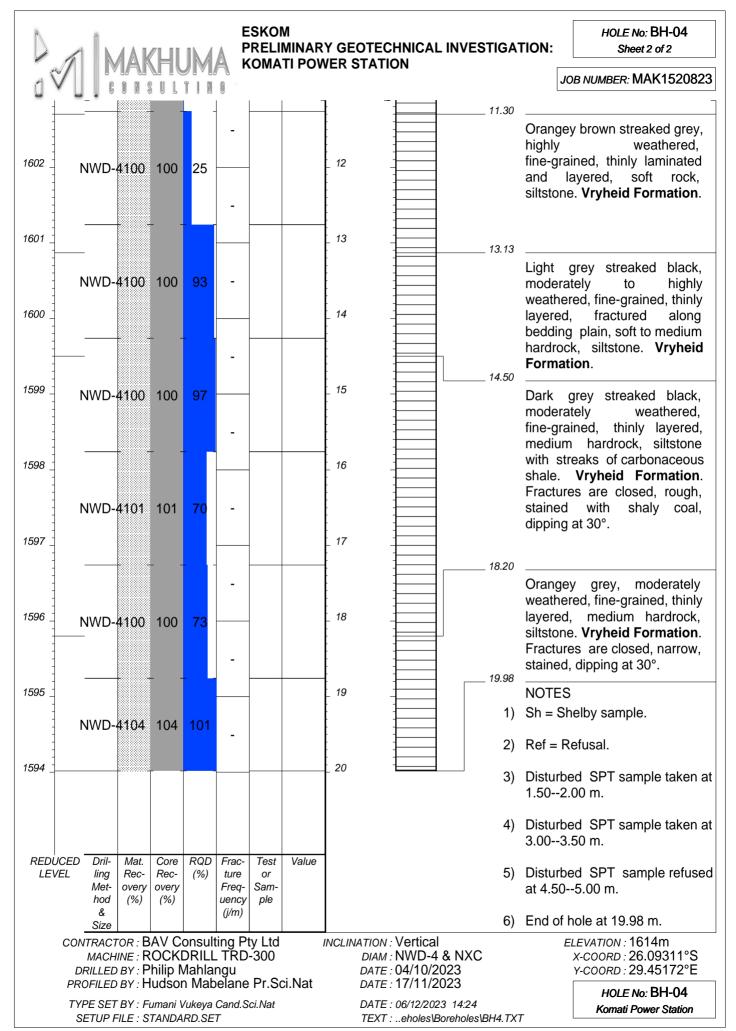




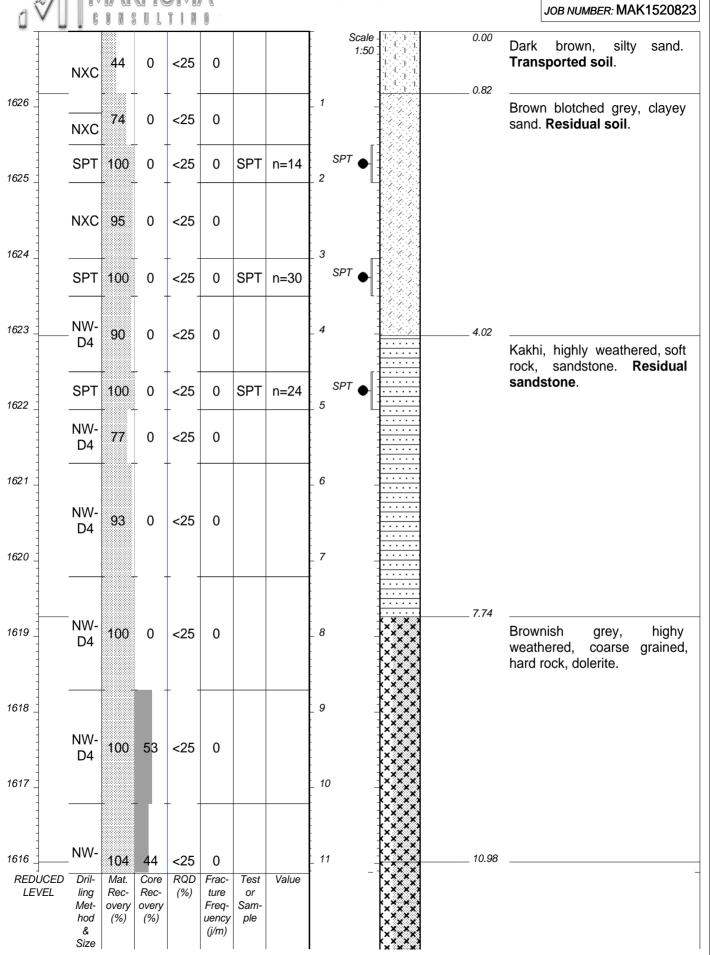
APPENDIX F: ROTARY CORE DRILLING LOGS	
	10 1 P a a a

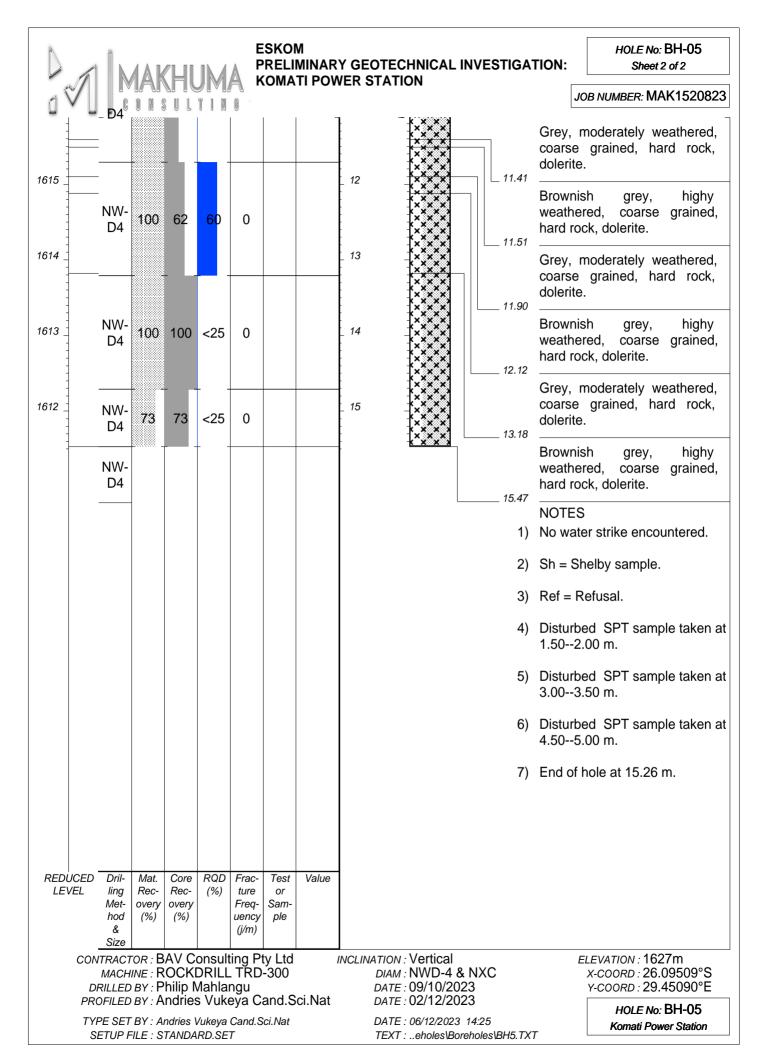


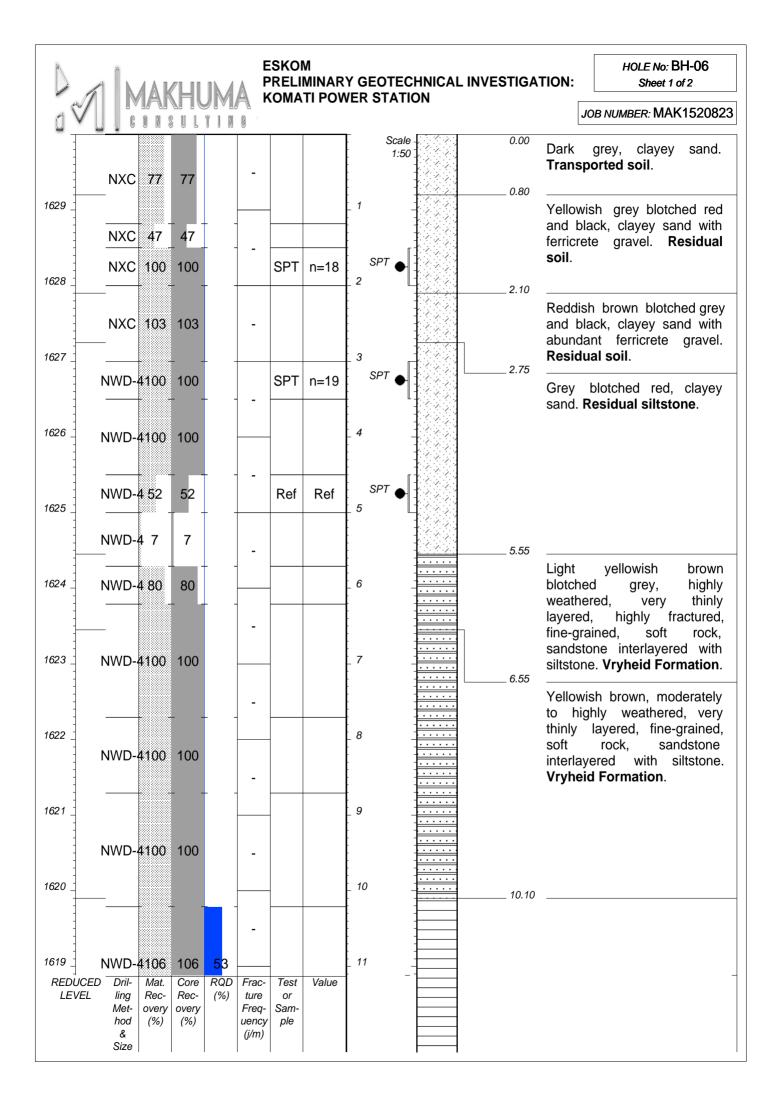


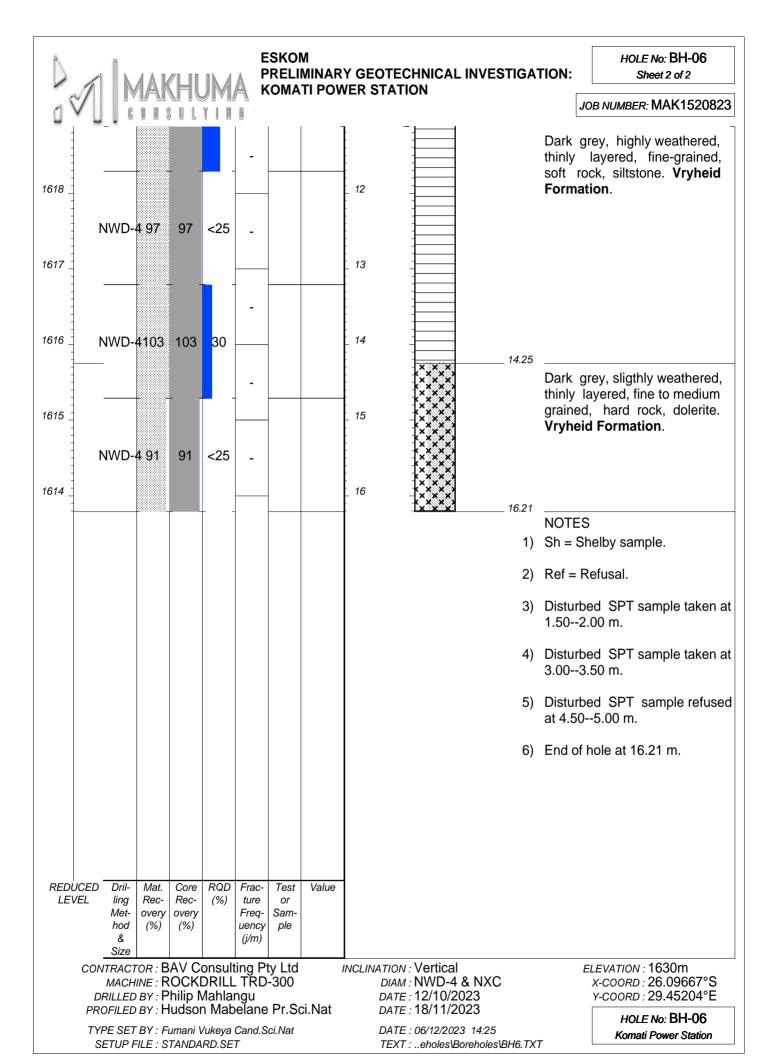


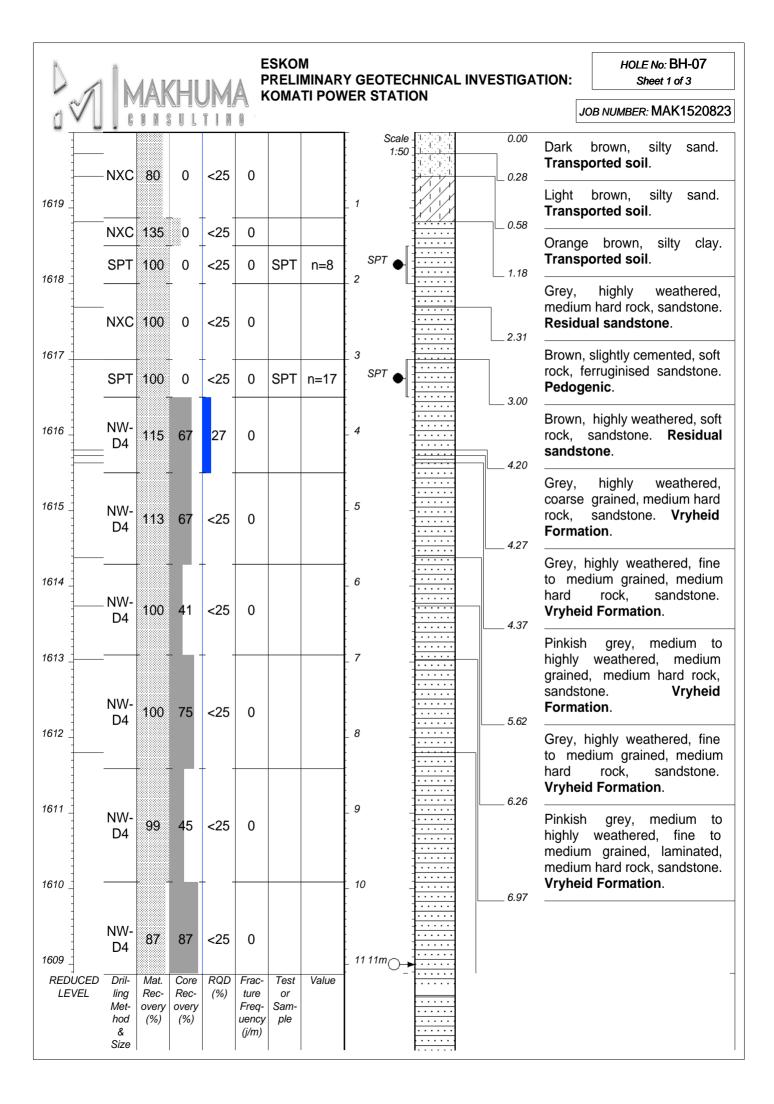
ESKOM HOLE No: BH-03 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 1 of 2 **KOMATI POWER STATION** JOB NUMBER: MAK1520823 0.00 Scale Dark grey, silty sand. 1:50 Transported soil. NXC 65 65 <25 0 1613 1.07 silty sand. Brown, NXC 110 110 <25 0 Transported soil. 1.23 SPT 100 100 SPT n=13 <25 0 Grey blotched orange, clayey 1612 sand. Residual soil. NXC 15 <25 15 0 1611 SPT SPT n=11 SPT 100 100 <25 0 NWD-488 88 <25 0 3.84 1610 Dark grey blotched orange, clayey sand. Residual soil. NWD-488 88 <25 0 SPT 100 0 SPT n=26 100 <25 1609 5 5.00 NWD-4100 73 <25 Grey, moderate to highly weathered, medium grained, jointed and layered, medium hardrock, sandstone. Vryheid 1608 6 Formation. NWD-4107 <25 <25 0 5.39 Dark grey, moderately weathered, fine to grained, soft rock. carbonaceous 1607 7 shale. Vryheid Formation. NWD-4107 91 31 0 1606 8 8.11 Dark grey to black, moderately weathered, fine grained, intensely laminated 1605 layered, soft rock, 9 NWD-485 51 <25 0 cabonaceous shale interlayed with fine siltstone. Vryheid Formation. 8.80 1604 10 Grey, moderately weathered, grained, layered, coarse medium hardrock, sandstone. NWD-4107 80 34 0 Vryheid Formation. 11 REDUCED Dril-Mat. Core RQD Frac-Test Value LEVEL Recture ling Rec-(%) or Freq-Sam-Metovery overy hod (%) (%) uency ple & (j/m) Size

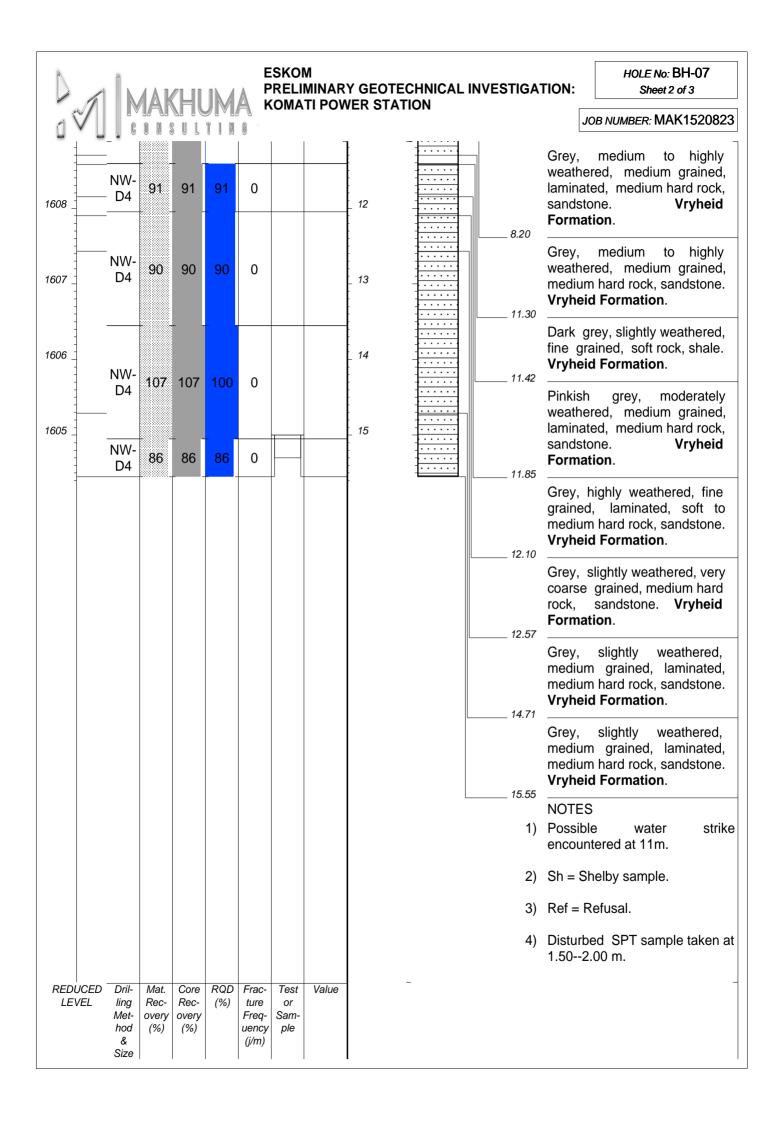





MAKHUMA KON


ESKOM PRELIMINARY GEOTECHNICAL INVESTIGATION: KOMATI POWER STATION


HOLE No: BH-05 Sheet 1 of 2



ESKOM

HOLE No: BH-07

MAXHUMA KOMATI POWER STATION JOB NUMBER: MAK15 5) Disturbed SPT sample to 3.00-3.50 m. 6) End of hole at 15.55 m.	/		AAL	/LII		A F	RELI	MINAR	Y GEOTE	CHNICA	AL INVE	STIGA	TION:		Sheet 3	of 3
5) Disturbed SPT sample ta 3.003.50 m.	4					Ar	COMA	II POV	VER STAT	ION				JOB NUM	MBER: MA	K1520823
3.003.50 m.		_ U G	W 100 6		U U 00	(i)	1 1	-	1	_						
6) End of hole at 15.55 m.												5)	Distu 3.00-	rbed SF -3.50 m.	PT sampl	e taken at
												6)				1.
REDUCED Dril- Mat. Core RQD Frac- Test Value LEVEL ling Rec- Rec- (%) ture or Met- overy overy hod (%) (%) Freq- Samuency ple	REDUCED LEVEL	ling Met-	Rec- overy	Rec- overy	RQD (%)	ture Freq-	or Sam-	Value								

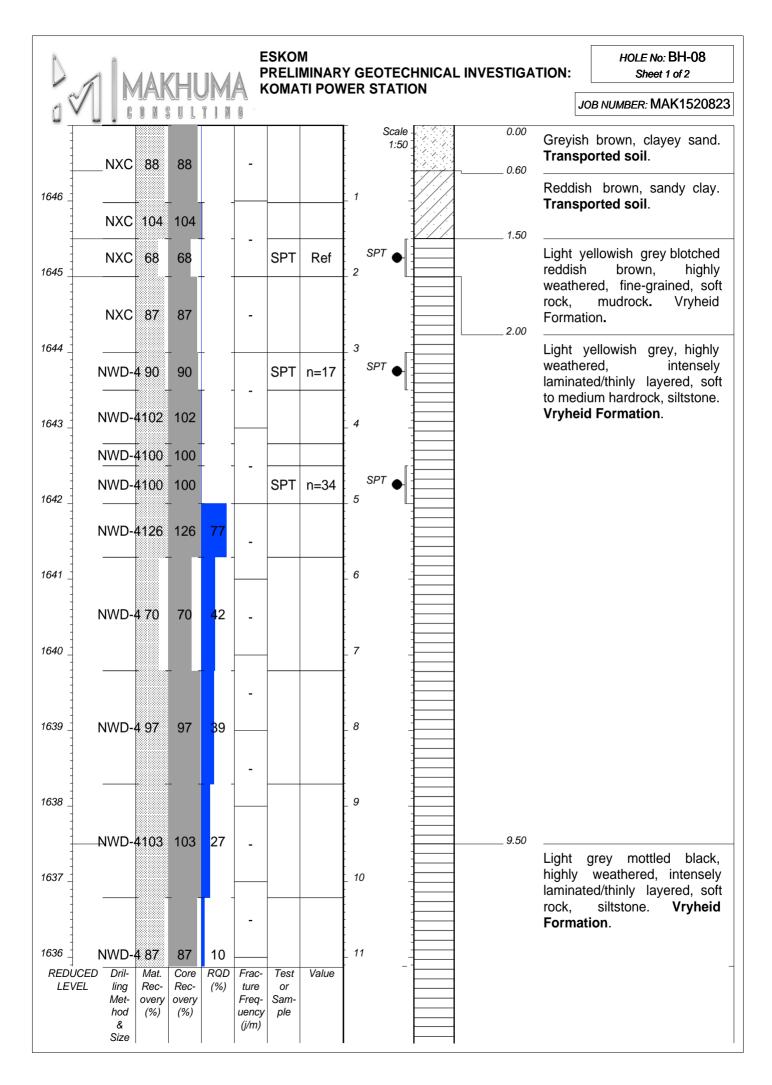
CONTRACTOR: BAV Consulting Pty Ltd

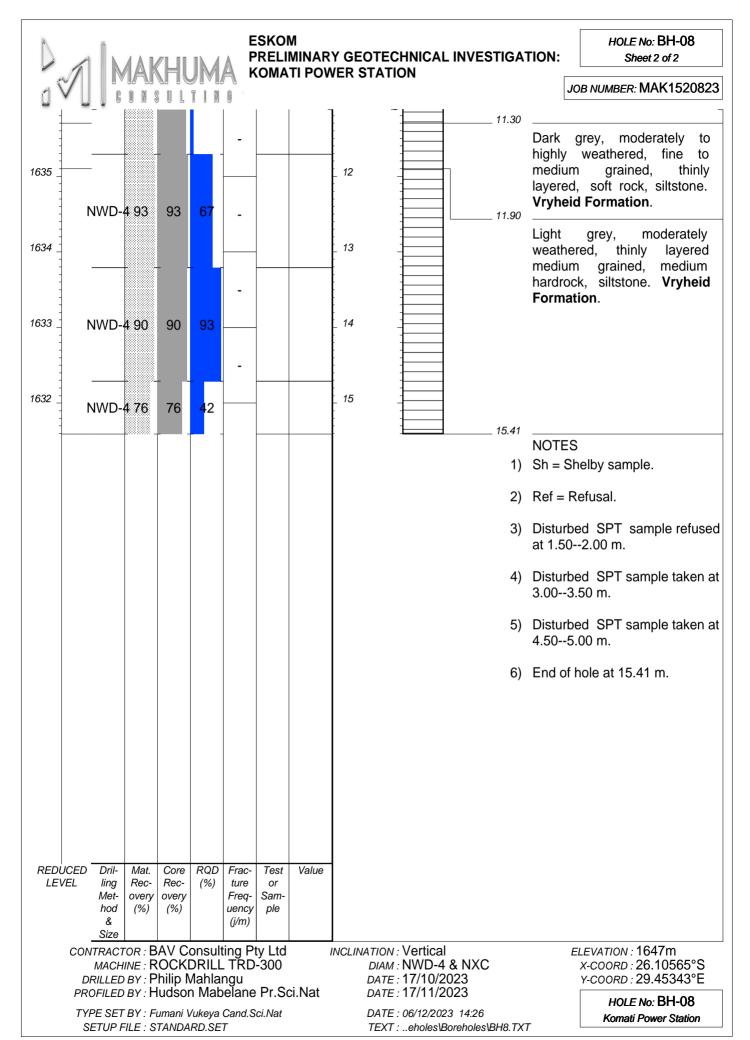
Size

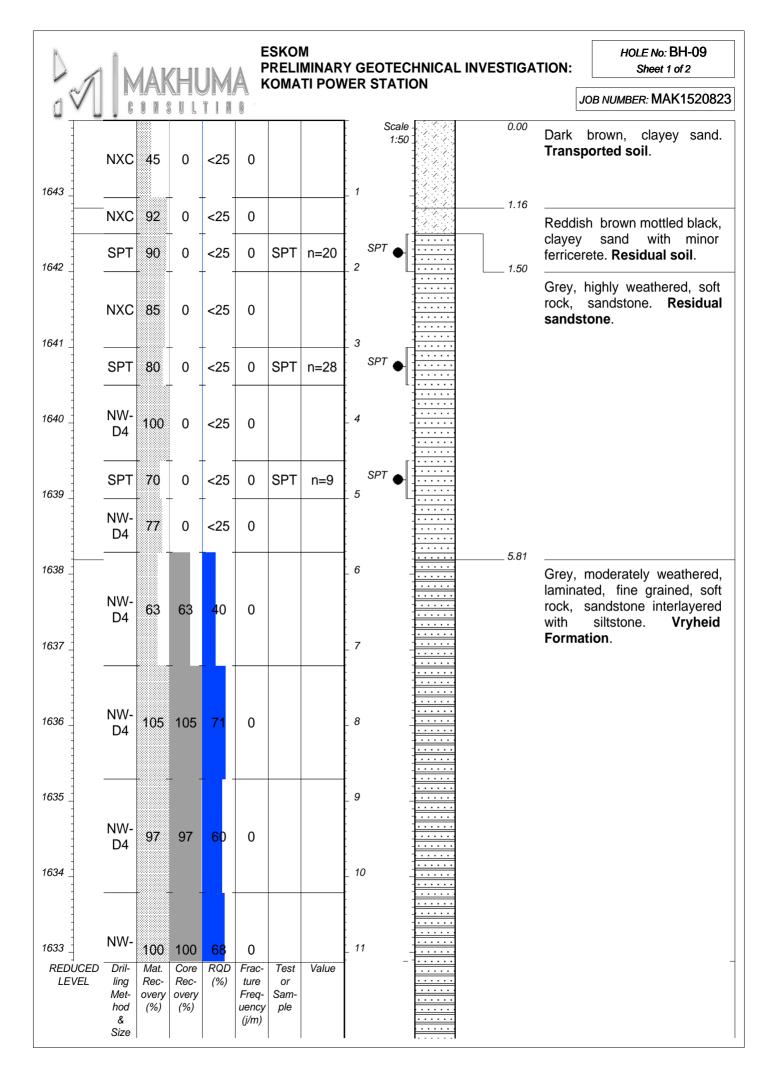
MACHINE: ROCKDRILL TRD-300

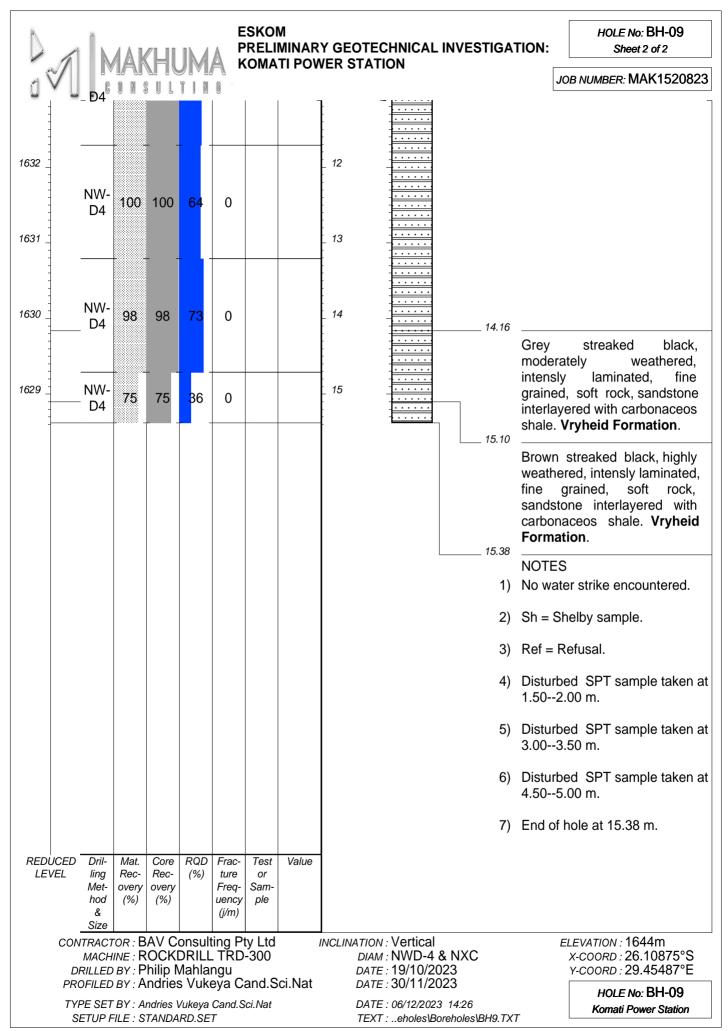
DRILLED BY: Philip Mahlangu

PROFILED BY: Andries Vukeya Cand.Sci.Nat

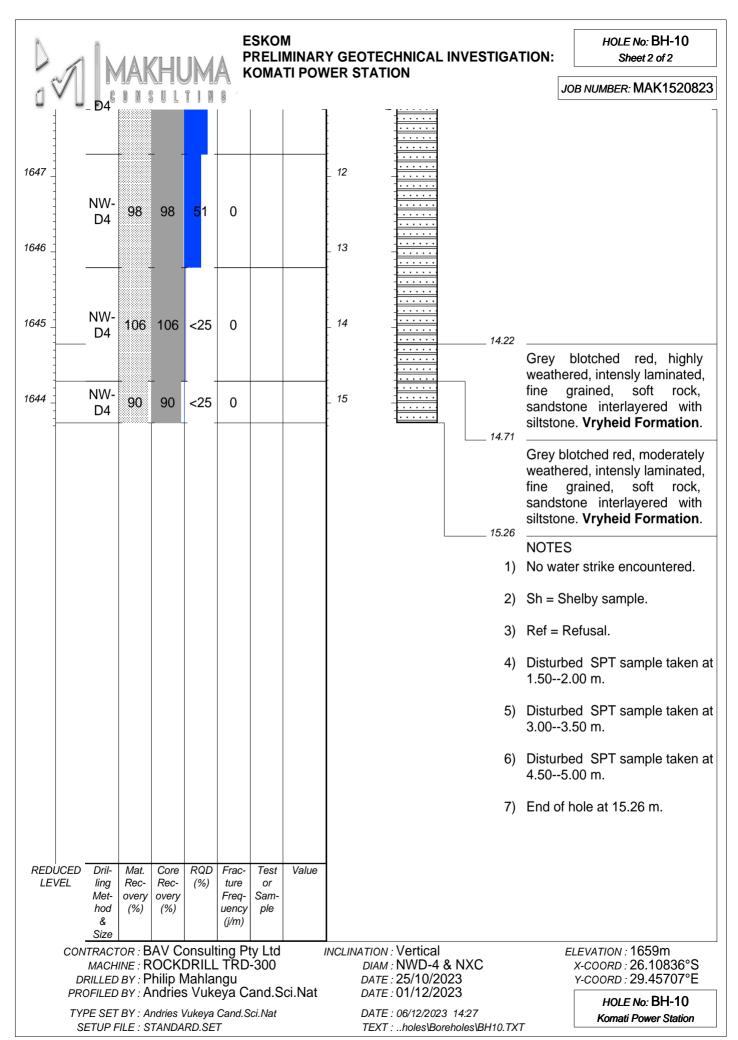

TYPE SET BY: Andries Vukeya Cand.Sci.Nat SETUP FILE: STANDARD.SET

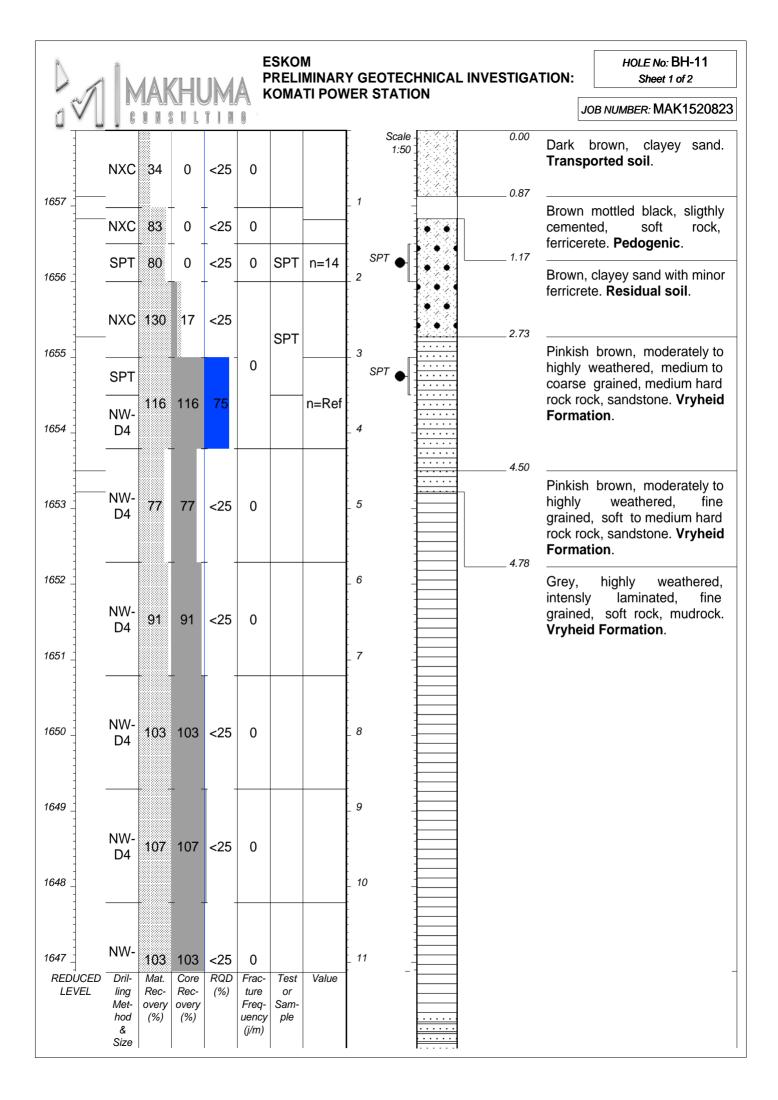

INCLINATION: Vertical DIAM: NWD-4 & NXC DATE: 14/10/2023 DATE: 30/11/2023

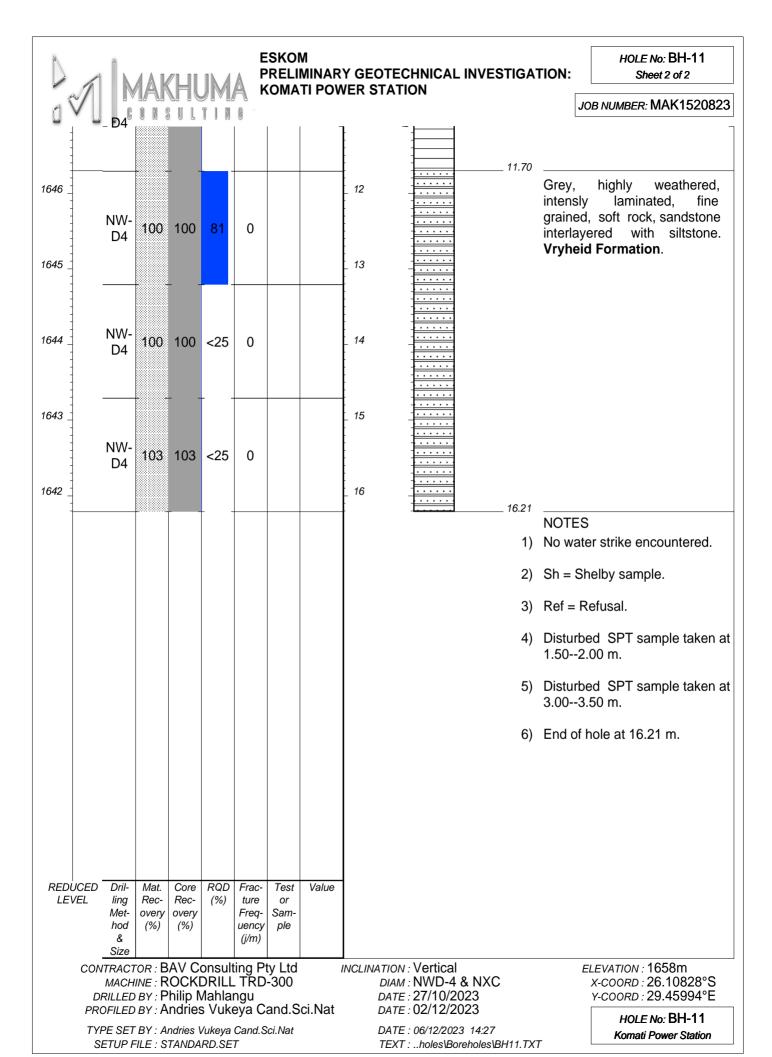

> DATE: 06/12/2023 14:25 TEXT: ..eholes\Boreholes\BH7.TXT

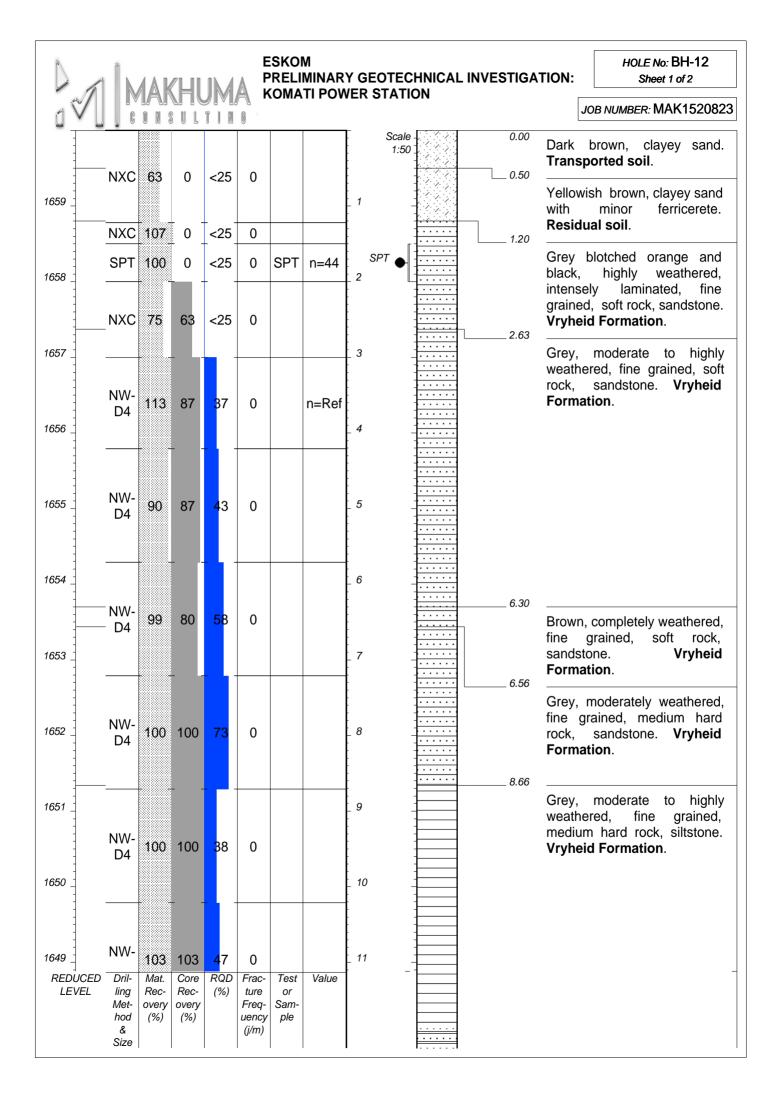

ELEVATION: 1620m X-COORD: 26.09992°S Y-COORD: 29.45487°E

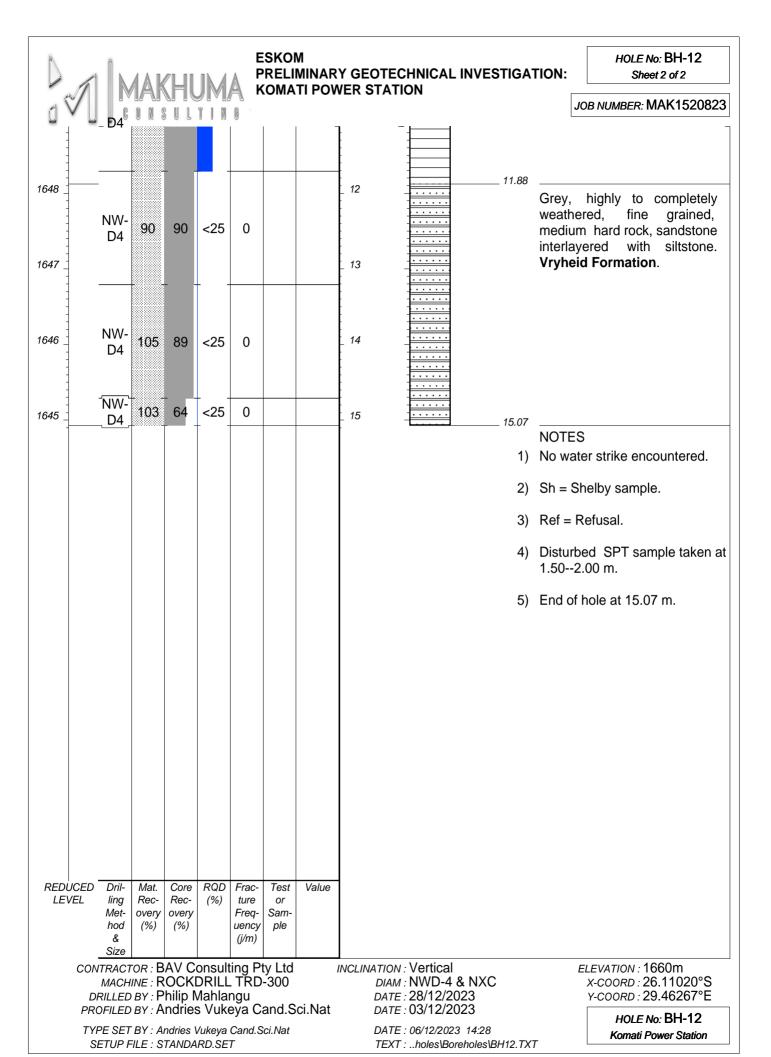
> HOLE No: BH-07 Komati Power Station










ESKOM HOLE No: BH-10 PRELIMINARY GEOTECHNICAL INVESTIGATION: Sheet 1 of 2 **KOMATI POWER STATION** JOB NUMBER: MAK1520823 Scale 0.00 Dark brown, clayey sand. 1:50 Transported soil. NXC 51 0 <25 0 0.96 1658 Reddish brown mottled black. NXC 107 0 <25 0 sand with minor clayey ferricerete. Residual soil. SPT 60 0 0 **SPT** n=0 <25 1657 NXC 100 0 <25 0 2.58 Grey, highly weathered, soft 1656 .3 rock, sandstone. Residual. SPT n=33 SPT 100 0 <25 0 NW-1655 75 0 <25 0 D4 4.28 Grey, moderately weathered, fine grained, soft rock, SPT 100 <25 0 SPT n=55 100 Vryheid sandstone. 1654 5 Formation. NW-106 106 35 0 D4 5.61 Grey blotched red, moderately 1653 6 weathered, intensly laminated, fine grained, soft rock, NWsandstone interlayered with 100 100 72 0 D4 siltstone. Vryheid Formation. 7 1652 NW-1651 8 107 97 <25 0 D4 9 1650 NW-**5**0 97 96 0 D4 1649 10 NW-1648 103 103 7 0 11 REDUCED Dril-Mat. Core RQD Frac-Test Value LEVEL ling Rec-Recture (%) Freq-Met-Samovery overy hod (%) (%) uency ple (j/m) & Size

