ZITHOLELE CONSULTING (PTY) LTD

WASTE ASSESSMENT OF POWER STATION ASH AND REVERSE OSMOSIS PLANT EFFLUENT FROM THE CAMDEN POWER STATION

Report No.: JW164/11/D116 - REV 8

October 2014

59 Bevan Road PO Box 1434 Rivonia 2128 South Africa tel: 0027 11 519 0200 www.jaws.co.za email: post@jaws.co.za

ARL	Acceptable Risk Level. (ARL = 0.1 x LC ₅₀)
ARLP	South African Acid Rain Leach Procedure
ASLP	Australian Standard Leaching Procedure
DEA	Department of Environmental Affairs
DWA	Department of Water Affairs
DWAF	Department of Water Affairs and Forestry
DWS	Department of Water and Sanitation
G:L:B⁺	General waste landfill receiving more than 500 tonnes of waste per day with a barrier system containing a leachate detection and collection layer
H:H	Hazardous waste disposal facility suitable for the disposal of all Hazard Group 1, 2, 3, 4 and general wastes. Comply with the most conservative design as indicated in the DWAF's Minimum Requirements
H:h	Hazardous waste disposal facility suitable for the disposal of all Hazard Group 3 and 4 wastes, and general wastes. Comply with the second most conservative design as indicated in the DWAF's Minimum Requirements
LC	Leach concentration in mg/ℓ
LCT	Leach concentration threshold in mg/ℓ
LC ₅₀	The concentration at which 50% of test organisms will die after a certain exposure time
mg/kg	Milligram per kilogram
mg/ℓ	Milligram per litre
RO	Reverse osmosis
тс	Total concentration in mg/kg
тст	Total concentration threshold
TCLP	Toxic characteristic leach procedure
TDS	Total dissolved salts
μS/cm	Micro Siemens per centimetre

Acronyms and abbreviations used in this document:

DOCUMENT APPROVAL RECORD

Report No.: JW164/11/D116 - REV 8

ACTION	FUNCTION NAME		DATE	SIGNATURE
Prepared	Project Manager	M van Zyl	20 February 2014	Mran H
Reviewed	Environmental Scientist	T. Hopkins	24 February 2014	etteptius
Approved	Director	J Glendinning	25 February 2014	John
Revised	Project Manager	M van Zyl	9 October 2014	Mran H

RECORD OF REVISIONS AND ISSUES REGISTER

Date	Revision	Description	Issued to	Issue Format	No. Copies
21/10/2011	А	Draft for internal review	J Glendinning	Electronic	1
25/10/2011	00	Draft for Client Review	K Kruger	Electronic	1
07/11/2011	01	Draft for Client Review	K Kruger	Electronic	1
10/11/2011	02	Draft for Client Review	K Kruger	Electronic Hard copies	1 2
27/09/2011	03	Final	Willem Howell	Electronic	1
24/02/2014	04	Draft for internal review	T. Hopkins	Electronic	NA
25/02/2014	05	Final	M Warren	Electronic	NA
17/09/2014	06	Final	Tania Oosthuizen	Electronic	NA
7/10/2014	07	Final	Tania Oosthuizen	Electronic	NA
8/10/2014	08	Final (with additional information)	Tania Oosthuizen	Electronic	NA

ZITHOLELE CONSULTING (PTY) LTD

WASTE ASSESSMENT OF POWER STATION ASH AND REVERSE OSMOSIS PLANT EFFLUENT FROM THE CAMDEN POWER STATION

REPORT NO: JW164/11/D116 - REV 8

CONTE	ENTS	PAGE
1.	INTRODUCTION	1
1.1 1.2	Background Objectives	
2.	DEA WASTE ASSESSMENT SYSTEM	2
3.	TESTS CONDUCTED	4
4.	CAMDEN POWER STATION ASH AND REVERSE OSMOSIS ASSESSMENT	
4.1	Wet Ash	6
4.2	RO Plant Effluent	6
5.	DISCUSSION AND CONCLUSIONS	13
6.	RECOMMENDATIONS	14
7.	REFERENCES	1/

List of Tables

Table 2-1:	Organic limits for wastes to be assessed as Type 4 wastes
Table 4-1:	Corrected concentrations for dusting ash sample based on % contribution of ash carrier water and fine ash (dusting ash) content
Table 4-2:	De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Dusting sample)
Table 4-3:	Corrected concentrations for ashing sample based on % contribution of ash carrier water and ashing (coarse) ash content
Table 4-4:	De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Ashing sample)
Table 4-5:	Ash Seepage Water Concentrations versus LCT values
Table 4-6:	Concentrations of Constituents of the RO Plant Effluent versus LCT values. 12
Table 5-1:	Waste Type and Recommended Class of Landfill Required 14

List of Photo's & Figures

Photo 1:	Four samples used in the assessment of the Camden Power Station Ash, Asl	n
	Carrier Water and Ash Disposal Facility Seepage Water (Leachate)	5
Figure 5-1:	Class C landfill barrier system (DEA, 2013b)	1

APPENDICES

Appendix A

SGS SOUTH AFRICA: LABORATORY CERTIFICATES

Appendix B

CHEMICAL ANALYSES CONDUCTED ON THE REVERSE OSMOSIS EFFLUENT

ZITHOLELE CONSULTING (PTY) LTD

WASTE ASSESSMENT OF POWER STATION ASH AND REVERSE OSMOSIS PLANT EFFLUENT FROM THE CAMDEN POWER STATION

REPORT NO: JW164/11/D116 - REV 8

1. INTRODUCTION

1.1 Background

Zitholele Consulting (Pty) Ltd is currently in the process of conducting an Environmental Impact Assessment (EIA) and Waste Licence Application for a new wet ash disposal facility for the Camden Power Station. The new ash disposal site will be approximately 100 hectares in size with a further 25 hectares for associated infrastructure. The power station also operates a Reverse Osmosis (RO) plant in order to reduce the positive water balance of the ash water system. This plant generates an effluent, which is added to the ash water circuit.

The assessment of the ash from the wet-ash deposition process at Camden Power Station is required for input into both the EIA and Waste Licence Application Report. In addition, the ash assessment is required to determine its environmental risk profile and hence the barrier design criteria applicable to the new ash disposal facility. Assessment of the RO effluent was also requested in order to establish its risk profile, but it forms an integral part of the ash water system.

The ash was originally classified in terms of both the Department of Water Affairs and Forestry's (DWAF's) "*Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste*" of 1998 (DWAF, 1998a) and the Department of Environmental Affairs' draft "*National Environmental Management: Waste Act (Act 59 of 2008). Draft Standard for Assessment of Waste for Landfill Disposal*" (DEA, 2011). The outcome of this classification is dealt with in Jones & Wagener's report no JW164/11/D116 - REV 3 dated September 2012.

In January 2014 J&W was requested by Zitholele Consulting to update the classifications based on the DEA's "*National Norms and Standards for the Assessment of Waste for Landfill Disposal* (National Norms and Standards) (DEA, 2013a). The National Norms and Standards were promulgated in August 2013 and replaced the Minimum Requirements waste classification system. This report contains the results of the waste assessments.

1.2 Objectives

The objective was to assess the Camden Power Station's wet ash and RO plant effluent in terms of the DEA's Norms and Standards of 2013 for disposal purposes. The analytical results of the tests performed in 2012 on the wet ash were used for this assessment. The original assessment of the RO plant effluent was based on theoretical values

JONES & WAGENER (PTY) LTD REG NO. 1993/002655/07 VAT No. 4410136685

DIRECTORS: GR Wardle (Chairman) PrEng MSc(Eng) FSAICE D Brink (CEO) PrEng BEng(Hons) FSAICE JP van der Berg PrEng PhD MEng FSAICE JE Glendinning PrSciNat MSc(Env Geochem) MSAIEG A Oosthuizen (Alternate) PrEng BEng(Hons) MSAICE TECHNICAL DIRECTORS: PW Day PrEng DEng HonFSAICE PG Gage PrEng CEng BSc(Eng) GDE MSAICE Alstructe JR Shamrock PrEng MSc(Eng) MSAICE MWMSA NJ Vermeulen PrEng PhD MEng MSAICE HR Aschenborn PrEng BEng(Hons) MSAICE M van Zyl PrSciNat BSc(Hons) MIWMSA MW Palmer PrEng MSc(Eng) MSAICE TG Ie Roux PrEng MEng MSAICE AJ Bain PrEng BEng MSAICE M Rust PrEng PhD MSAICE M Theron PrEng PhD MEng MSAICE SSOCIATES: BR Antrobus PrSciNat BSc(Hons) MSAICE PJ JSmit BEng(Hons) AMSAICE R Puchner PrSciNat MSc(Geol) MSAIEG IMAEG M van Biljon PrSciNat MSc(Hydrogeology) JS Msiza PrEng BEng(Hons) MSAICE MIWMSA RA Nortjé PrEng MSc(Eng) MSAICE MIWMSA GB Simpson PrEng MEng MSAIAE MSAICE C Cilliers PrEng BEng(Hons) MSAICE NW xxumalo PrEng BSc(Eng) MSAICE CONSULTANT: JA Kempe PrEng BSc(Eng) GDE MSAICE AlstructE FINANCIAL MANAGER: HC Neveling BCom MBL provided, but for this revised assessment, chemical analyses were made available for some of the constituents listed in the National Norms and Standards.

2. <u>DEA WASTE ASSESSMENT SYSTEM</u>

The new waste assessment system, which replaced the Department of Water Affairs' Minimum Requirements classification system on 23 August 2013, focuses on the long term storage (in excess of 90 days) and disposal of waste on land or in waste disposal facilities. The system is based on the Australian State of Victoria's waste classification system for disposal, which uses the Australian Standard Leaching Procedure (ASLP) to determine the Leachable Concentrations (LCs) of pollutants (DEA, 2013a).

For waste to be disposed of with putrescible organic matter, an acetic acid leach solution is used. This leach solution is very similar to the US EPA TCLP leach solution used in the now outdated Minimum Requirements, except that the pH is 5.0, instead of pH 4.93. In cases where a waste has a high pH, and following an acid neutralisation capacity test, a pH 2.9 leach solution must be used.

In cases where non-organic waste, such as the power station ash, is to be co-disposed with other non-organic waste, a basic 0.10 M sodium tetraborate decahydrate (borax) solution of pH 9.2 \pm 0.10 should be used in addition to the acetic acid leach (DEA, 2012a). The objective of the sodium tetraborate test is to identify contaminants that are leached above the various Leachable Concentration Thresholds (LCTs) trigger values at a high pH¹.

For non-putrescible inorganic waste to be disposed of without any other wastes (monodisposal scenario), reagent water (distilled water) is used as a leach agent.

In addition to the above, the Total Concentrations (TCs) of the constituents of concern need to be determined and compared to specified Total Concentration Threshold (TCT) values (DEA, 2013a)².

The number of potentially hazardous substances in the new classification system has been significantly reduced from that listed in the old Minimum Requirements of 1998 and brought in line with the potentially hazardous substances being used in other parts of the world to classify waste for disposal purposes. However, if a generator is aware of a hazardous substance other than those listed by the DEA, they are obliged to indicate and analyse for this.

Once the analytical results are known, the waste is classified in line with the following approach:

¹ LCT1 limits have, where possible, been derived from the lowest value of the standard for human health effects listed for drinking water (LCT0) in South Africa (DWAF, SANS) by multiplying with a Dilution Attenuation Factor (DAF) of 50 as proposed by the Australian State of Victoria, "Industrial Waste Resource Guidelines: Solid Industrial Waste Hazard Categorisation and Management", June 2009 (www.epa.vic.gov.aus). If no standard was available in South Africa then the limits given by the WHO or other appropriate drinking water standard, such as those published in the California Regulations have been used.

LCT2 limits were derived by multiplying the LCT1 value with a factor of 2, and the LCT3 limits have been derived by multiplying the LCT2 value with a factor of 4. The factors applied represents a conservative assessment of the decrease in risk achieved by the increase in environmental protection provided by more comprehensive liner designs in higher classes of landfill and landfill operating requirements.

² TCT1 limits were derived from the land remediation values for commercial/industrial land determined by the Department of Environmental Affairs' "Framework for the Management of Contaminated Land". The TCT2 limits were derived by multiplying TCT1 by a factor of 4, as used by the Environmental Protection Agency, Australian State of Victoria

- Wastes with <u>any</u> element or chemical substance concentration above the LCT3 or TCT2 values (LC > LCT3 or TC > TCT2) are Type 0 Wastes. Type 0 wastes (extremely hazardous waste), require treatment/stabilisation before disposal;
- Wastes with <u>any</u> element or chemical substance concentration above the LCT2 but below LCT3 values, or above the TCT1 but below TCT2 values (LCT2 < LC ≤ LCT3 or TCT1 < TC ≤ TCT2), are Type 1 Wastes (highly hazardous waste, which must be disposed of on a Class A landfill constructed with the most conservative barrier system);
- Wastes with <u>any</u> element or chemical substance concentration above the LCT1 but below the LCT2 values and <u>all</u> concentrations below the TCT1 values (LCT1 < LC ≤ LCT2 and TC ≤ TCT1) are Type 2 Wastes (moderate hazardous waste, which must be disposed of on a Class B landfill);
- Wastes with any element or chemical substance concentration above the LCT0 but below LCT1 values and all concentrations below the TCT1 values (LCT0 < LC ≤ LCT1 and TC ≤ TCT1) are Type 3 Wastes (low hazardous waste, which must be disposed of on a Class C landfill);
- Wastes with all elements and chemical substance concentration levels for metal ions and inorganic anions below the LCT0 and TCT0 values (LC ≤ LCT0 and TC ≤ TCT0), as well as below the limits for organics and pesticides as in Table 2-1, are Type 4 Wastes (near inert wastes, which must be disposed of on sites with some base preparation, but no formal barrier system):

Table 2-1:	Organic limits for wastes to be assessed as Type 4 wastes.
	Organic minits for wastes to be assessed as Type + wastes.

Chemical Substances in Waste	Total Concentration (mg/kg)
Organic co	nstituents
Total organic carbon (TOC)	30 000 (3%)
Benzene, toluene, ethyl benzene and xylenes (BTEX)	6
Polychlorinated Biphenyls (PCBs)	1
Mineral Oil (C10 to C40)	500
Pestic	ides
Aldrin + Dieldrin	0.05
DDT + DDD + DDE	0.05
2,4-D	0.05
Chlordane	0.05
Heptachlor	0.05

 Wastes with all element or chemical substance leachable concentration levels for metal ions and inorganic anions below or equal to the LCT0 limits are considered to be Type 3 waste, irrespective of the total concentration of elements or chemical substances in the waste, provided that:

Jones & Wagener (Pty) Ltd

- All chemical substance concentration levels are below the total concentration limits for organics and pesticides in the **Table 2-1**;
- The inherent physical and chemical character of the waste is stable and will not change over time; and,
- The waste is disposed of to landfill without any other waste.
- Wastes with the TC of an element or chemical substance above the TCT2 limit, and where the concentration cannot be reduced to below the TCT2 limit, but the LC for the particular element or chemical substance is below the LCT3 limit, is considered to be Type 1 Wastes (DEA, 2013a).

3. TESTS CONDUCTED

Camden Power Station supplied representative samples of dry ash, two wet ash samples, namely a fine ash [dusting ash] and coarse ash [ashing ash], and ash disposal site leachate (toe seepage water) – see **Photo 1**. The samples were then sent to the SGS Laboratory in Randburg for various leach analyses, total concentration (TC) determination and quantitative x-ray diffraction (XRD) analysis to determine the mineralogy.

The SGS laboratory subjected the dry ash to a Minimum Requirements' Acid Rain Leach Procedure (ARLP). The ARLP leach procedure was used in the 1998 Minimum Requirements waste classification system where a waste is mono-disposed or stored or where it is co-disposed with other inorganic waste types not containing any decomposable compounds.

The dry ash sample was also subjected to a total extraction procedure in order to determine the TCs of the various elements.

In addition, the dry ash sample was subjected to a XRD analysis to determine the mineralogy.

Following the new DEA assessment system for the mono storage and disposal of a waste, solids were firstly separated from the liquid fraction and the percentage solids determined. The solids fractions were then subjected to a deionised (DI) (South African Standard Leach Procedure) water leach test, where after the leach solution was analysed for various metals and other inorganic constituents. The water fractions of the two wet ash samples were also analysed for the various metals and inorganic constituents listed in the National Norms and Standards. The organic components listed in the National Norms and Standards were not analysed for as it is highly unlikely that organics will occur in the wet ash at concentrations above the LCT0 and TCT0 values of the National Norms and Standards.)

The two wet ash samples provided were termed dusting ash, that is the fine ash-water mixture used to develop the outer walls of the current ash disposal facility and ashing ash, the coarse ash-water mixture. The coarse ash is deposited in the middle of the ash disposal facility. It is noted that the effluent from the RO plant is added to the ash water system.

A sample of leachate collected at the toe of the ash disposal facility (seepage water) was also analysed for various inorganic constituents.

The certificates of the results of the various tests conducted on the ash and leachate are included in **Appendix A**.

Although a sample of effluent from the RO plant was requested for analyses at the time, the plant was not operative on the day that the ash samples were collected. Theoretical

values for the various constituents of concern were provided by Eskom Camden Power Station and these values were used in the initial classification. However, for this updated classification, Mrs I. Hodgson of the Camden Power Station provided some analyses performed on the RO plant effluent to J&W on 20 February 2014 and also determined the conductivity of the effluent on 20 February 2014 – see **Appendix B**. The conductivity of the effluent was verbally reported as $3 309 \,\mu$ S/cm (330.9 mS/m). For the assessment of the effluent, the 70% water recovery rate results were used, which provides a more concentrated effluent, therefore the more conservative scenario was used for the assessment. In addition, the RO plant effluent was analysed in November of 2012 by Waterlab for a different waste assessment exercise and that analytical information has now also been used in this assessment – see **Appendix B** for lab certificate.

5

For the assessment of the wet ash in terms of the DEA's National Norms and Standards the analytical results from the ARLP were ignored. Only the results obtained from the DI water leach and the TCs were used for the assessment of the wet ash.

Photo 1:

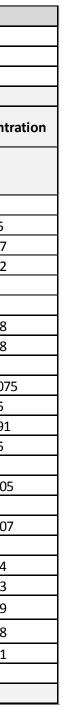
Four samples used in the assessment of the Camden Power Station Ash, Ash Carrier Water and Ash Disposal Facility Seepage Water (Leachate)

4. <u>CAMDEN POWER STATION ASH AND REVERSE OSMOSIS EFFLUENT</u> <u>ASSESSMENT</u>

4.1 Wet Ash

In order to assess the wet dusting ash (fine ash) and wet ashing ash (coarse ash) for disposal, the percentage contributions of the concentrations of the constituents in the liquid fractions (which also contains a percentage of RO plant effluent) and the leach concentrations were calculated based on the percentage liquids to solids – see **Table 4-1** and **Table 4-3**. The corrected concentrations were then used for the classification – see **Table 4-2** and **Table 4-4**. This method is in line with the Australian leach procedure methodology, which was adopted in the South African National Norms and Standards. Based on the corrected concentrations, both the dusting and ashing ash are assessed as Type 3 wastes.

In addition, the concentrations of the listed constituents were also determined on the ash seepage water collected at the base of the existing ash disposal facility. Based on these concentrations, the ash is also assessed as a Type 3 waste. It is noted that the TDS of the seepage water (764 mg/ ℓ) is significantly lower than the average TDS of the dusting and ashing ash water fractions (1 424 mg/ ℓ). The ash has a significant adsorption capacity for certain salts, while significant amounts of calcium sulfate will also precipitate out in the ash body.


Type 3 wastes should be disposed of on waste disposal facilities with Class C landfill barrier systems.

4.2 RO Plant Effluent

Based on the theoretical and actual concentrations provided for the RO plant effluent, the effluent is classified as a Type 3 liquid waste – see **Table 4-6.** The effluent is classified as a Type 3 waste due to the concentrations of TDS, chloride, sulphate, fluoride, lead, boron, total chromium, chromium VI, molybdenum and selenium being above their respective LCT0 values. The theoretical values supplied by Eskom are indicated in red in **Table 4-6.**

			DUSTING S	AMPLE		1	
Percentage solids	48.30%						
			WATER LEACH: DUS				
			WATER LEACH: DUS	STING SAIVIPLE			
		Solid Phase			Water Phase		Leach Concentr
Element/Compound	mg/e	Contribution Factor	Corrected concentration in mg/&	mg/ℓ	Contribution Factor	Corrected concentration in mg/&	mg/ℓ
	0.0015	0.402	0.0007345	0.0015	0.517	0.0007755	0.0015
As, Arsenic	0.0015	0.483	0.0007245	0.0015	0.517	0.0007755	0.0015
B, Boron	0.2	0.483	0.0966	0.11	0.517	0.05687	0.15347
Ba, Barium	0.84	0.483	0.40572	1.3	0.517	0.6721	1.07782
Cd, Cadmium	0.001	0.483	0.000483	0.001	0.517	0.000517	0.001
Co, Cobalt	0.001	0.483	0.000483	0.001	0.517	0.000517	0.001
Cr, Chromium - total	0.11	0.483	0.05313	0.15	0.517	0.07755	0.13068
Cr VI, Chromium VI	0.11	0.483	0.05313	0.15	0.517	0.07755	0.13068
Cu, Copper	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
Hg, Mercury	0.0003	0.483	0.0001449	0.00005	0.517	0.00002585	0.00017075
Mn, Manganese	0.0015	0.483	0.0007245	0.0015	0.517	0.0007755	0.0015
Mo, Molydenum	0.067	0.483	0.032361	0.19	0.517	0.09823	0.130591
Ni, Nickel	0.0035	0.483	0.0016905	0.0035	0.517	0.0018095	0.0035
Pb, Lead	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
Sb, Antimony	0.0035	0.483	0.0016905	0.000	0.517	0	0.0016905
Se, Selenium	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
V, Vanadium	0.045	0.483	0.021735	0.0021	0.517	0.0010857	0.0228207
Zn, Zinc	0.005	0.483	0.002415	0.005	0.517	0.002585	0.005
TDS, Total dissolved salts	272	0.483	131.376	1992	0.517	1029.864	1161.24
Cl, Chloride	2.1	0.483	1.0143	120	0.517	62.04	63.0543
SO ₄ , Sulphate	13	0.483	6.279	210	0.517	108.57	114.849
NO ₃ , Nitrate	1.5	0.483	0.7245	0.64	0.517	0.33088	1.05538
F, Fluoride	0.3	0.483	0.1449	0.73	0.517	0.37741	0.52231
Note: In order to calcuate t	he % contibution	of each phase, values le	ss than (<) the limit of rep	oort (LOR) were di	ivided by 2		

 Table 4-1:
 Corrected concentrations for dusting ash sample based on % contribution of ash carrier water and fine ash (dusting ash) content

	Camden Por	wer Station Ash: D	usting Ash													
Chemical Species	Deionised Water Leach (LC)	Total Concentration (TC)	Limit of Report for LC		LCT0	тсто		LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
	mg/ℓ	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	0.0015	13	0.0030		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	0.15	NA	0.220		0.50	150		25	15 000		50	15 000		200	60 000	_
Ва	1.1	716	0.030		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	0.0010	<0.020	0.0020		0.003	7.5		0.15	260		0.30	260		1.2	1 040	
Со	0.0010	16	0.0020		0.50	50	Т	25	5 000	_ _	50	5 000		200	20 000	т
Cr	0.13	113	0.040	Y	0.10	46 000	Y	5.0	800 000	Y	10	800 000	Y	40		Y
Cr(VI)	0.13	NA	0.010	Р	0.050	6.5	Р	2.5	500	Р	5.0	500	Р	20	2 000	Р
Cu	0.0020	59	0.0040	E	2.0	16	Е	100	19 500	Е	200	19 500	Е	800	78 000	E
Hg	0.00017	<3.0	0.00010	4	0.006	0.93	3	0.30	160	2	0.6	160	1	2.4	640	0
Mn	0.0015	488	0.060		0.50	1 000		25	25 000	2	50	25 000		200	100 000	
Мо	0.13	5.2	0.020	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	W
Ni	0.0035	51	0.0070	A	0.070	91	A	3.5	10 600	A	7.0	10 600	A	28	42 400	A
Pb	0.0020	41	0.0040	S T	0.010	20	S T	0.50	1 900	S T	1.0	1 900	S T	4.0	7 600	S T
Sb	0.0017	0.89	0.0070	Ē	0.02	10	Ē	1.00	75	Ē	2.00	75	Ē	8.00	300	Ē
Se	0.0020	<2.0	0.0040		0.010	10		0.50	50		1.0	50		4.0	200	
V	0.023	68	0.0030		0.20	150		10	2 680		20	2 680		80	10 720	
Zn	0.0050	314	0.080		5.0	240		250	160 000		500	160 000		2 000	640 000	
TDS	1 161		21		1 000			12 500			25 -000	N/A		100 000	N/A	
Chloride	63		0.50		300			15 000			30 000	N/A		120 000	N/A	
Sulphate as SO ₄	115		0.40		250			12 500			25 000	N/A		100 000	N/A	
NO ₃ as N	1.1		0.40		11			550			1 100	N/A		4 400	N/A	
Fluoride	0.52	NA	0.30		1.5	100		75	10 000		150	10 000		600	40 000	
NA	Not analysed							1	•		-			-	I	I
N/A	Not available															
	LC ≤ LCT0 <u>and</u> TC ≤	STCT0: Type 4 wastes														
	LCT0 < LV ≤ LCT1 3 Wastes	and_TC ≤ TCT1: Type														
	LCT1< LC ≤ LCT2 <u>a</u> Waste	<u>nd T</u> C ≤ TCT1: Type 2														
	LCT2< LC ≤ LCT3 <u>c</u> Type 1 Wastes	<u>or</u> TCT1 < TC ≤ TCT2:														
	LC > LCT3 <u>or</u> TC > 1	ICT2: Type 0	1													

Table 4-2: De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Dusting sample)

			ASHING SAMP	LE (Wet)			
Percentage solids	6.37%						
			WATER LEACH: ASH	IING SAMPLE			
		Solid Phase			Water Phase		Leach Concentration
Element/Compound	mg/ℓ	Contribution Factor	Corrected concentration in mg/୧	mg/e	Contribution Factor	Corrected concentration in mg/୧	mg/e
As, Arsenic	0.012	0.064	0.00076	0.0015	0.9363	0.0014	0.0022
B, Boron	0.39	0.064	0.025	1.1	0.9363	1.03	1.1
Ba, Barium	0.059	0.064	0.0038	0.34	0.9363	0.32	0.32
Cd, Cadmium	0.0024	0.064	0.00015	0.0010	0.9363	0.00094	0.0011
Co, Cobalt	0.0027	0.064	0.00017	0.0010	0.9363	0.00094	0.0011
Cr, Chromium - total	0.0075	0.064	0.00048	0.029	0.9363	0.027	0.028
Cr VI, Chromium VI	0.0050	0.064	0.00032	0.030	0.9363	0.028	0.028
Cu, Copper	0.0020	0.064	0.00013	0.0020	0.9363	0.0019	0.0020
Hg, Mercury	0.00015	0.064	0.000096	0.0012	0.9363	0.0011	0.0011
Mn, Manganese	0.0097	0.064	0.00062	0.0015	0.9363	0.0014	0.0020
Mo, Molydenum	0.012	0.064	0.00076	0.18	0.9363	0.17	0.17
Ni, Nickel	0.0035	0.064	0.00022	0.0035	0.9363	0.0033	0.0035
Pb, Lead	0.0020	0.064	0.00013	0.0020	0.9363	0.0019	0.0020
Sb, Antimony	0.0035	0.064	0.00022		0.9363	0	0.00022
Se, Selenium	0.0020	0.064	0.00013	0.0094	0.9363	0.0088	0.0089
V, Vanadium	0.022	0.064	0.0014	0.020	0.9363	0.019	0.020
Zn, Zinc	0.0050	0.064	0.00032	0.0050	0.9363	0.0047	0.0050
TDS, Total dissolved solids	64	0.064	4.1	856	0.9363	801	806
Cl, Chloride	1.7	0.064	0.11	97	0.9363	91	91
SO ₄ , Sulphate	19	0.064	1.2	380	0.9363	356	357
NO ₃ , Nitrate	0.28	0.064	0.018	3.2	0.9363	3.0	3.0
F, Fluoride	0.025	0.064	0.0016	0.74	0.9363	0.69	0.69
Note: In order to calcuate the	e % contibution	of each phase, values les	ss than (<) the limit of report	(LOR) were divid	ed by 2		

Table 4-3: Corrected concentrations for ashing sample based on % contribution of ash carrier water and ashing (coarse) ash content

Table 4-4:	De-ionised Water Leach Test Resu	ults of	Camden Power Stat	tion A	sh (TC Dry Ash, LC Ashi	ng san	nple)
	Consider Device Clother Ask, Asking Consula						

	Camden Pow	ver Station Ash: As	shing Sample													
Chemical Species	Deionised Water Leach (LC)	Total Concentration (TC)	Limit of Report for LC		LCT0	тсто		LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
	mg/ℓ	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	0.0022	13	0.0030		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	1.1	NA	0.220		0.50	150		25	15 000		50	15 000		200	60 000	
Ва	0.32	716	0.030		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	0.0011	<0.020	0.0020		0.003	7.5		0.15	260		0.30	260		1.2	1 040	
Со	0.0011	16	0.0020	т	0.50	50	т	25	5 000	т	50	5 000	т	200	20 000	т
Cr	0.028	113	0.040	Ý	0.10	46 000	Ŷ	5.0	800 000	Ý	10	800 000	Ý	40		Ŷ
Cr(VI)	0.028	NA	0.010	Р	0.050	6.5	Р	2.5	500	Р	5.0	500	Р	20	2 000	Р
Cu	0.0020	59	0.0040	E	2.0	16	E	100	19 500	E	200	19 500	E	800	78 000	E
Hg	0.0011	<3.0	0.00010	4	0.006	0.93	3	0.30	160	2	0.60	160	1	2.40	640	0
Mn	0.0020	488	0.060] '	0.50	1 000	Ĵ	25	25 000		50	25 000		200	100 000	Ĵ
Мо	0.17	5.2	0.020	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	W
Ni	0.0035	51	0.0070	A	0.070	91	A	3.5	10 600	A	7.0	10 600	A	28	42 400	A
Pb	0.0020	41	0.0040	S T	0.010	20	S T	0.50	1 900	S T	1.0	1 900	- S T	4.0	7 600	S T
Sb	0.00022	0.89	0.0070	E	0.020	10	Ē	1.00	75	Ē	2.00	75	Ē	8.00	300	E
Se	0.0089	<2.0	0.0040		0.010	10		0.50	50		1.0	50		4.0	200	
V	0.020	68	0.0030		0.20	150		10	2 680		20	2 680		80	10 720	
Zn	0.0050	314	0.080		5.0	240		250	160 000		500	160 000		2 000	640 000	
TDS	806		21		1 100			12 500			25 000			100 000		
Chloride	91		0.50		300			15 000			30 000			120 000		
Sulphate as SO ₄	357		0.40		250			12 500			25 000			100 000		
NO₃ as N	3.0		0.40		11			550			1 100			4 400		
Fluoride	0.69	NA	0.30	_	0 1.5	100		75	10 000		150	10 000		600	40 000	
NA	Not analysed								1							
N/A	Not available															
	LC ≤ LCT0 <u>and 1</u> wastes	TC ≤ TCT0: Type 4														
	3 Wastes	and_TC ≤ TCT1: Type														
	2 Waste	and TC ≤ TCT1: Type	•													
	Type 1 Wastes	o <u>r</u> TCT1 < TC ≤ TCT2:														
	LC > LCT3 <u>or</u> TC >	TCT2: Type 0														

	Camden Pow	er Station Ash: Se	epage Water													
Chemical Species	Seepage water (LC)	Total Concentration (TC)	Limit of Report for LC		LCT0	ТСТО		LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
	mg/ℓ	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	0.0049	NA	0.0030		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
	2.50	NA	0.220		0.50	150		25	15 000		50	15 000		200	60 000	
Ba	0.063	NA	0.030		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	<0.002	NA	0.0020		0.003	7.5		0.15	260		0.30	260		1.2	1 040	
Co	<0.002	NA	0.0020	- -	0.50	50	Ι _Τ	25	5 000		50	5 000		200	20 000	
Cr	0.0051	NA	0.0030		0.10	46000	Y	5.0	800 000	Y	10	800 000		40		
Cr(VI)	<0.01	NA	0.010	P	0.050	6.5	P	2.5	500	P	5.0	500	P	20	2 000	
Cu	<0.004	NA	0.0040	E	2.0	16	E	100	19 500	E	200	19 500	E	800	78 000	
Hg	0.00042	NA	0.00010	4	0.006	0.93	3	0.3	160	2	0.6	160		2.4	640	
Mn	<0.003	NA	0.0030	- 4	0.50	1 000	_ 3	25	25 000		50	25 000		200	100 000	
Мо	0.19	NA	0.020	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	
Ni	<0.007	NA	0.0070	A	0.070	91	Α	3.5	10 600	A	7.0	10 600	Α	28	42 400	
Ър	<0.004	NA	0.0040	S T	0.010	20	S T	0.50	1 900	S T	1.0	1 900	S T	4.0	7 600	
Sb	NA	NA	0.0070	E	0.02	10	Ē	1.00	75	E	2.0	75	E	8.00	300	
Se	0.0047	NA	0.0040		0.010	10		0.50	50		1.0	50		4.0	200	
V	<0.001	NA	0.001		0.20	150		10	2 680		20	2 680		80	10 720	
Zn	<0.01	NA	0.01		5.0	240		250	160 000		500	160 000		2 000	640 000	
TDS	764		21		1 000			12 500			25 000	N/A		100 000	N/A	
Chloride	160		0.50		300			15 000			30 000	N/A		120 000	N/A	
Sulphate as SO ₄	450		0.40		250	_		12 500			25 000	N/A		100 000	N/A	
NO₃ as N	<0.1		0.10		11			550			1 100	N/A		4 400	N/A	
Fluoride	<0.05	NA	0.30		1.5	100		75	10 000		150	10 000		600	40 000	
NA	Not analysed										I	I			I	
N/A	Not available															
	LC ≤ LCT0 <u>and </u> TC ≤	TCT0: Type 4 wastes														
	LCT0 < LV ≤ LCT1 a 3 Wastes	and_TC ≤ TCT1: Type														
	LCT1< LC ≤ LCT2 <u>a</u> Wastes	nd_TC ≤ TCT1: Type 2														
	LCT2< LC ≤ LCT3 <u>o</u> Type 1 Wastes	<u>r</u> TCT1 < TC ≤ TCT2 :														
	LC > LCT3 <u>or</u> TC > 1	CT2: Type 0 Wastes														

 Table 4-5:
 Ash Seepage Water Concentrations versus LCT values

Table 4-6: Concentrations of Constituents of the RO Plant Effluent versus LCT values

	Ca	mden Power Stati	on													
Chemical Species	Effluent from RO Plant(LC) Theoretical and Actual	Effluent from RO Plant(LC) Actual (Nov 2012)	Limit of Report for LC		LCT0	тсто	_	LCT1	TCT1		LCT2	TCT1		LCT3	TCT2	
	mg/ℓ	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	N/A	<0.010	0.010		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	N/A	3.13	0.025		0.50	150		25	15 000		50	15 000		200	60 000	
Ва	0.0250	0.207	0.025		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	<0.0050	<0.005	0.005		0.003	7.5		0.15	260		0.30	260		1.2	1 040	
Со	<0.0050	<0.025	0.025		0.50	50		25	5 000	 	50	5 000		200	20 000	т
Cr	0.10	0.148	0.025	Y	0.10	46 000	Y	5.0	800 000	Y	10	800 000	Y	40		Y
Cr(VI)	N/A	0.071	0.010	Р	0.050	6.5	Р	2.5	500	Р	5.0	500	Р	20	2 000	Р
Cu	<0.0050	<0.025	0.025	E	2.0	16	E	100	19 500	E	200	19 500	E	800	78 000	E
Hg	0.0040	<0.001	0.001	4	0.006	0.93	3	0.03	160	2	0.6	160	1	2.4	640	0
Mn	<0.005	<0.025	0.025	-	0.50	1 000	- 5	25	25 000	2	50	25 000		200	100 000	0
Мо	0.10	1.64	0.025A	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	W
Ni	<0.0050	<0.025	0.025	A	0.070	91	A	3.5	10 600	A	7.0	10 600	A	28	42 400	A
Pb	0.27	<0.020	0.020	S T	0.010	20	S T	0.50	1 900	S T	1.0	1 900	- S T	4.0	7 600	S T
Sb	N/A	<0.010	0.010	E	0.02	10	E	1.00	75	Ē	2.00	75	Ē	8.00	300	Ē
Se	N/A	0.050	0.020		0.010	10		0.50	50		1.0	50		4.0	200	
V	0.10	<0.025	0.025		0.20	150		10	2 680		20	2 680		80	10 720	
Zn	<0.0050	<0.025	0.025		5.0	240		250	160 000		500	160 000		2 000	640 000	
TDS	2 150*	3 398	Not given		1 000			12 500			25 000	N/A		100 000	N/A	
Chloride	380	283	Not given		300			15 000			30 000	N/A		120 000	N/A	
Sulphate as SO ₄	2 080	1 811	Not given		250			12 500			25 000	N/A		100 000	N/A	
NO₃ as N	3.32	3.0	0.20		11			550			1 100	N/A		4 400	N/A	
Fluoride	3.47	3.70	0.20		1.5	100		75	10 000		150	10 000		600	40 000	
NA	Not analysed															
N/A	Not available															
	Values in red are the	eoretical														
*		t 60% clean water g a µS/cm to mg/ℓ 0.65														
	LC ≤ LCT0 <u>and</u> TC ≤	≤ TCT0: Type 4 wastes														
	LCT0 < LV ≤ LCT1 3 Wastes	and_TC ≤ TCT1: Type														
	LCT1< LC ≤ LCT2 <u>a</u> Waste	<u>nd </u> TC ≤ TCT1: Type 2														
	LCT2< LC ≤ LCT3 <u>c</u> Type 1 Wastes	<u>or</u> TCT1 < TC ≤ TCT2:														
	LC > LCT3 <u>or</u> TC > ⁻	ГСТ2: Туре 0	1													

5. DISCUSSION AND CONCLUSIONS

In terms of the DEA's National Norms and Standards, the Camden ash was subjected to a TC extract and DI water leaches. Two samples were used in the assessment, namely dusting ash (fine ash) and ashing ash (course) ash. In addition, the water leaching from the base or toe of the existing ash disposal facility was also analysed and compared to the respective LCT values. The seepage water was therefore also classified in terms of the National Norms and Standards, as it is seen as the actual risk posed by the ash disposal facility to the receiving environment.

The DI water leach scenario is applicable in the case that ash is mono-disposed or stored in the environment at a permanent storage facility, i.e., the waste is stored for longer than 90 days. Based on the DI water leach results, and taking the concentrations of the water fractions of the wet ash samples into account, both the dusting and ashing ash samples are classified as Type 3 wastes requiring disposal on a landfill with a Class C barrier system – see **Figure 5-1**.

This barrier system is considered appropriate for the wet ash disposal facility provided the drainage layer on top of the barrier system contains drainage pipes of adequate size, spacing and strength to ensure atmospheric pressure within the drainage application for the service life of the ash disposal facility (DEA, 2013b). It should be noted that the National Norms and Standards require that the disposal of liquid waste must be phased out over a period of six years from the date that the National Norms and Standards were promulgated. If the authorities insist on this approach, it may have significant cost implications for the Camden Power Station, which was not designed as a dry ash power plant. Therefore it is recommended that agreement be reached with the authorities on the long term management scenario of the ash disposal facility prior to the barrier system being designed.

The RO plant effluent is also classified as a Type 3 waste. This effluent is added to the ash water circuit. A Class C landfill barrier is considered appropriate for the wet ash and RO plant effluent disposal facility. As with the wet ash only disposal scenario, it is a requirement that liquid waste should be disposed of in hazardous lagoon facilities, but provided the drainage layer on top of the Class C barrier system contains drainage pipes of adequate size, spacing and strength to ensure atmospheric pressure within the drainage application for the service life of the ash disposal facility, the co-disposal scenario is considered appropriate.

It has been shown that ash has significant capacity to adsorb and precipitate salts, which is also the case at Camden. The TDS of the ashing water (average of the dusting and ashing ash water fraction values is $1 \ 424 \ mg/l$) has a significantly higher TDS value than that of the seepage water reporting at the toe of the existing wet ash disposal facility (764 mg/l) – see **Table 4-1**, **Table 4-3** and **Table 4-5**. The adding of the RO plant effluent into the ash water circuit can therefore be regarded as treatment of the RO effluent and the ash carrier water itself.

It is important to note that the disposal of brines or wastes with a high salt content (TDS > 5% [5 grams per 100 ml]) and a leachable concentration for TDS of more than 100 000 mg/l needs to be phased out within eight (8) years from the date of promulgation of the National Norms and Standards (DEA, 2013b). However, the effluent from the RO plant at Camden has a TDS of only 2 150 mg/l (0.215% [0.215 grams per 100 ml), therefore it does not comply with the definition of a brine as given in the National Norms and Standards. Therefore the requirement of phasing out the disposal of the Camden RO plant effluent is not applicable as the TDS is lower than 5%. In addition, the RO plant

effluent is added to the ash carrier water system and as a result a significant percentage of the salt is adsorbed/precipitated in the ash body itself.

Table 5-1 below summarises the assessment of the wet ash and RO plant effluent and also indicates the recommended barrier systems for the various disposal scenarios.

Waste Type and Recommended Class of Landfill Required

Waste	Type of Waste	Recommended Barrier System
Ash + Ash Carrier Water	Type 3: Low Risk Waste	Class C
Ash + Ash Carrier Water + RO Plant Effluent	Type 3: Low Risk Waste	Class C

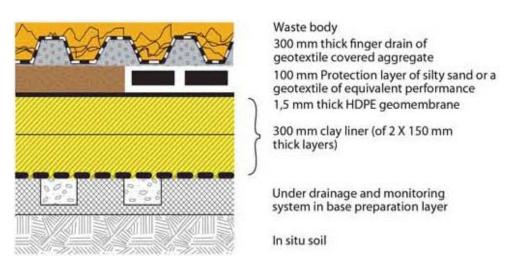


Figure 5-1: Class C landfill barrier system (DEA, 2013b)

6. **<u>RECOMMENDATIONS</u>**

Table 5-1:

The following recommendations are made:

- The intended barrier design of the new wet ash disposal facility for Camden Power Station should be presented, discussed and agreed upon with the Department of Water and Sanitation prior to the design being developed;
- A Class C barrier design, which is the recommended barrier system by J&W, for the new wet ash disposal facility should incorporate a drainage layer on top of the barrier system containing drainage pipes of adequate size, spacing and strength to ensure atmospheric pressure within the drainage application for the service life of the ash disposal facility as per the DEA National Norms and Standards or as agreed with the Department of Water and Sanitation.

7. <u>REFERENCES</u>

- i. Department of Water Affairs and Forestry, 1998a. Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste, Second Edition. Department of Water Affairs, Pretoria.
- ii. Department of Water Affairs and Forestry, 1998b. Minimum Requirements for Waste Disposal by Landfill, Second Edition. Department of Water Affairs, Pretoria.

- iii. Department of Environmental Affairs and Tourism, 2008. Waste delisting procedure, April 2008. Department of Environmental Affairs and Tourism, Pretoria.
- iv. Department of Environmental Affairs, 2013a. National norms and standards for the assessment of waste for landfill disposal. R635 of 23 August 2013, Government Gazette 36784 of 23 August 2013, Government Printer, Pretoria.
- Department of Environmental Affairs, 2013b. National norms and standards for ٧. disposal of waste to landfill. R636 of 23 August 2013, Government Gazette 36784 of 23 August 2013, Government Printer, Pretoria.
- vi. Legge, K., 2011. Verbal communication. Department of Water Affairs.
- Hodgskin, I., 2011. Verbal communication. Eskom, Camden Power Station. viii.

Manff

Marius van Zyl **Project Manager**

Tolmay Hopkins Reviewer

Jun,

John Glendinning **Project Director**

8 October 2014

Document source: C:\Alljobs\D116 Camden Ash Classification\Report\Final\D116_00_REP_Rev8_LAP_MvZ_JG_CamdenAshClassification_Zitholele_8102014.docx Document template: Report Clean_tem_Rev1_Jan10.dotx

ZITHOLELE CONSULTING (PTY) LTD

WASTE ASSESSMENT OF POWER STATION ASH AND REVERSE OSMOSIS PLANT EFFLUENT FROM THE CAMDEN POWER STATION

Report: JW164/11/D116 - REV 8

Appendix A

SGS SOUTH AFRICA: LABORATORY CERTIFICATES

CLIENT DETAILS		LABORATORY DETAILS	
Contact Client Address	Marius Van Zyl Jones & Wagener (Pty) Ltd P.O. Box 1434 Rivonia 2128	Laboratory Address Telephone	SGS South Africa (Pty) Limited 259 Kent Avenue Ferndale, 2194 +27 (0)11 781 5689
Telephone Facsimile Email Project Order Number Samples Sample matrix	011 519 0200 011 519 0201 vanzyl@jaws.co.za 11521195 DI66/MVZ/19829 3 WATER	Laboratory Manager SGS Reference Report Number Date Received Date Reported	Mark Baird (acting) JB11-01869 R0 0000001519 2011/09/12 10:00:46AM 2011/09/30 09:26:12AM

- COMMENTS -

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

Sanas Testing Laboratory

Samples filtered prior to analysis.

SIGNATORIES

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

JB11-01869 R0

Report number Client reference: 0000001519 **11521195**

					Client referen
		nple Number ample Name	JB11-01869.001 Seepage Water	JB11-01869.002 Ashing Water	JB11-01869.00 Dusting Wate
Parameter	Units	LOR			
pH in water Method: ME-ANA-AN-016					
рН		0.10	8.4	11.4	12.2
Conductivity - Water Method: ME-ANA-AN-007					
Conductivity	mS/m	2.0	160	190	740
Total Dissolved Solids (TDS) in water Method: M	IE-ANA-AN-011				
Total Dissolved Solids	mg/l	21.0	764	856	1992
Anions by Ion Chromatography Method: ME-ANA	A-AN-AN014 mg/l	0.050	<0.050	0.74	0.73
Chloride	mg/l	0.050	160	97	120
Nitrate	mg/l	0.10	<0.10	3.2	0.64
Sulphate	 mg/l	0.050	450	380	210
Ammonia as N by UV Method: APHA4500_NH3 Ammonia* Hexavalent Chromium by UV-VIS Method: ME-AI	mg/l	0.050	<0.050	<0.050	0.066
Hexavalent Chromium*	mg/l	0.010	<0.010	0.030	0.15
ICP-OES Metals in Water (Dissolved) Method: M Silver	E-ANA-AN-027	0.0020	0.0037	0.0041	0.026
Aluminium	mg/l	0.0020	<0.020	1.2	0.026
Boron	mg/l	0.0050	2.5	1.2	0.19
Barium	mg/l	0.0020	0.063	0.34	1.3
Beryllium	mg/l	0.00010	-1.30551E-	-2.85557E-	-6.56818E-
Calcium	mg/l	0.50	110	190	760
Iron	mg/l	0.050	<0.050	<0.050	<0.050
Potassium	mg/l	0.20	39	27	68
Lithium	mg/l	0.0050	0.61	0.85	3.8
Magnesium	mg/l	0.010	8.7	0.072	<0.010
Sodium	mg/l	0.50	240	160	210

Potassium	mg/l	0.20	39	27	68	
Lithium	mg/l	0.0050	0.61	0.85	3.8	
Magnesium	mg/l	0.010	8.7	0.072	<0.010	
Sodium	mg/l	0.50	240	160	210	
Silicon	mg/l	1.0	1.7	7.6	<1.0	
Strontium	mg/l	0.0010	3.9	3.6	39	
Titanium	mg/l	0.0050	<0.0050	<0.0050	0.0098	
Vanadium	mg/l	0.0010	<0.0010	0.020	0.0021	
Zinc	mg/l	0.010	<0.010	<0.010	<0.010	_

ICP-MS Metals (Dissolved) Method: ME-ANA-AN-026

Arsenic	mg/l	0.0030	0.0049	<0.0030	<0.0030
Bismuth	mg/l	0.0010	<0.0010	<0.0010	<0.0010
Cadmium	mg/l	0.0020	<0.0020	<0.0020	<0.0020
Cobalt	mg/l	0.0020	<0.0020	<0.0020	<0.0020
Chromium	mg/l	0.0030	0.0051	0.029	0.15
Copper	mg/l	0.0040	<0.0040	<0.0040	<0.0040
Mercury	mg/l	0.00010	0.00042	0.0012	<0.00010
Manganese	mg/l	0.0030	<0.0030	<0.0030	<0.0030
Molybdenum	mg/l	0.0070	0.19	0.18	0.19
Nickel	mg/l	0.0070	<0.0070	<0.0070	<0.0070
Lead	mg/l	0.0040	<0.0040	<0.0040	<0.0040
Selenium	mg/l	0.0040	0.0047	0.0094	<0.0040
Tin	mg/l	0.0070	<0.0070	<0.0070	<0.0070

METHOD SUMMARY

JB11-01869 R0

Report number Client reference:

0000001519 **11521195**

– METHOD -

METHODOLOGY SUMMARY

FOOTNOTES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis. QFH QC result is above the upper tolerance

- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS *Environmental* Services *Randburg* is accredited by *SANAS* and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za.

ANALYTICAL REPORT (Amended)

CLIENT DETAILS		LABORATORY DETAILS	
Contact Client	Marius Van Zyl Jones & Wagener (Pty) Ltd	Laboratory Address	SGS South Africa (Pty) Limited 259 Kent Avenue
Address	P.O. Box 1434	Address	Ferndale, 2194
	Rivonia 2128	Telephone	+27 (0)11 781 5689
Telephone	011 519 0200		
Facsimile	011 519 0201	Laboratory Manager	Mark Baird (acting)
Email	vanzyl@jaws.co.za 11521198	SGS Reference	JB11-01870 R0
Project Order Number	DI66/MVZ/19829	Report Number	000001540
	2	Date Received	2011/09/12 11:20:06AM
Samples	SOIL	Date Reported	2011/10/03 11:26:35AM
Sample matrix	JOIL		

COMMENTS -

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

This report/certificate is a re-issued copy and replaces the originally issued document dated 2011-09-30. The reason for re-issue is that percent solids results were omitted from the original report.

Filter cake samples not dried prior to testing.

Sample(s) leached using deionised water. Results reported on leachate.

SIGNATORIES

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

JB11-01870 R0

Report number Client reference: 0000001540 **11521198**

	Sa	ple Number ample Name mple Matrix	JB11-01870.001 Ashing Ash Ash sample	JB11-01870.00 Dusting Ash Ash sample
Parameter	Units	LOR		
Moisture Method:				
Solids content*	%	0.050	6.37	48.3
South African Standard Leach Procedure	Method: AS 4439.3			
Final pH	-	-	10.9	11.8
Conductivity Total Dissolved Solids (TDS) in water	mS/m Method: ME-ANA-AN-011	2.0	24	160
Total Dissolved Solids	mg/l	21.0	64	272
Anions by Ion Chromatography Metho	d: ME-ANA-AN-AN014			
Fluoride	mg/l	0.050	<0.050	0.30
Chloride	mg/l	0.050	1.7	2.1
Nitrate	mg/l	0.10	0.28	1.5
Sulphate	mg/l	0.050	19	13
Hexavalent Chromium by UV-VIS Meth	od: ME-ANA-AN-018			
Hexavalent Chromium*	mg/l	0.010	<0.010	0.11
Ammonia as N by UV Method: APHA4		0.050	-0.050	-0.050
Ammonia*	mg/l	0.050	<0.050	<0.050
ICP-OES Metals in Water (Dissolved)	Method: ME-ANA-AN-027			
Silver	mg/l	0.0020	<0.0020	<0.0020
Aluminium	mg/l	0.020	1.6	4.4
Boron	mg/l	0.0050	0.39	0.20
		0.0020	0.059	0.84

Silver	mg/l	0.0020	<0.0020	<0.0020
Aluminium	mg/l	0.020	1.6	4.4
Boron	mg/l	0.0050	0.39	0.20
Barium	mg/l	0.0020	0.059	0.84
Beryllium	mg/l	0.00010	<0.00010	<0.00010
Calcium	mg/l	0.50	28	130
Iron	mg/l	0.050	<0.050	<0.050
Potassium	mg/l	0.20	0.45	1.0
Lithium	mg/l	0.0050	0.011	0.068
Magnesium	mg/l	0.010	0.46	0.018
Sodium	mg/l	0.50	3.5	5.0
Silicon	mg/l	1.0	7.1	4.3
Strontium	mg/l	0.0010	0.41	2.1
Titanium	mg/l	0.0050	<0.0050	<0.0050
Vanadium	mg/l	0.0010	0.022	0.045
Zinc	mg/l	0.010	<0.010	<0.010

ICP-MS Metals (Dissolved) Method: ME-ANA-AN-026

Arsenic	mg/l	0.0030	0.012	<0.0030
Bismuth	mg/l	0.0010	0.0020	<0.0010
Cadmium	mg/l	0.0020	0.0024	<0.0020
Cobalt	mg/l	0.0020	0.0027	<0.0020
Chromium	mg/l	0.0030	0.0075	0.11
Copper	mg/l	0.0040	<0.0040	<0.0040
Mercury	mg/l	0.00010	0.00015	0.00030
Manganese	mg/l	0.0030	0.0097	<0.0030
Molybdenum	mg/l	0.0070	0.012	0.067
Nickel	mg/l	0.0070	<0.0070	<0.0070

Selenium

Tin

ANALYTICAL REPORT

< 0.0040

<0.0070

<0.0040 <0.0070

JB11-01870 R0

Report number Client reference: 0000001540 **11521198**

	Sa	ble Number mple Name nple Matrix	Ashing Ash	JB11-01870.002 Dusting Ash Ash sample
Parameter	Units	LOR		
ICP-MS Metals (Dissolved) Method: ME-ANA-AN-02	6 (continued)			
Lead	mg/l	0.0040	<0.0040	<0.0040
Antimony	mg/l	0.0070	<0.0070	<0.0070

mg/l

mg/l

0.0040

0.0070

METHOD SUMMARY

JB11-01870 R0

Report number Client reference: 0000001540 11521198

– METHOD -

METHODOLOGY SUMMARY

EO	OTN	IOT	ES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis. QFH QC result is above the upper tolerance

- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS *Environmental* Services *Randburg* is accredited by *SANAS* and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za.

CLIENT DETAILS		LABORATORY DETAILS	3
Contact Client Address	Marius Van Zyl Jones & Wagener (Pty) Ltd P.O. Box 1434 Rivonia 2128	Laboratory Address Telephone	SGS South Africa (Pty) Limited 259 Kent Avenue Ferndale, 2194 +27 (0)11 781 5689
Telephone Facsimile Email Project Order Number Samples Sample matrix	011 519 0200 011 519 0201 vanzyl@jaws.co.za 11521199 DI66/MVZ/19829 1 SOIL	Laboratory Manager SGS Reference Report Number Date Received Date Reported	Mark Baird (acting) JB11-01871 R0 0000001521 2011/09/12 11:49:42AM 2011/09/30 09:33:06AM

- COMMENTS -

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

Filter cake samples not dried prior to testing.

Sample(s) leached using ARLP leachate. Results reported on leachate.

SIGNATORIES

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

JB11-01871 R0

Report number Client reference: 0000001521 **11521199**

	Sample Number Sample Name		JB11-01871.001 Dusting Ash
Parameter	Units	LOR	
Acid Rain Leaching Procedure (ARLP) Method:			
Final pH*	-	-	7.9
Conductivity - Water Method: ME-ANA-AN-007			
Conductivity	mS/m	2.0	120

Total Dissolved Solids (TDS) in water Method: ME-ANA-AN-011

Total Dissolved Solids	mg/l	21.0	528

Anions by Ion Chromatography Method: ME-ANA-AN-AN014

Fluoride	mg/l	0.050	<0.050
Chloride	mg/l	0.050	2.5
Nitrate	mg/l	0.10	15
Sulphate	mg/l	0.050	180

Hexavalent Chromium by UV-VIS Method: ME-ANA-AN-018

Hexavalent Chromium*	mg/l	0.010	0.40

Ammonia as N by UV Method: APHA4500_NH3

		-	
Ammonia*	mg/l	0.050	<0.050

ICP-OES Metals in Water (Dissolved) Method: ME-ANA-AN-027

Silver	mg/l	0.0020	<0.0020
Aluminium	mg/l	0.020	0.069
Boron	mg/l	0.0050	2.3
Barium	mg/l	0.0020	0.21
Beryllium	mg/l	0.00010	<0.00010
Calcium	mg/l	0.50	200
Iron	mg/l	0.050	<0.050
Potassium	mg/l	0.20	1.4
Lithium	mg/l	0.0050	0.073
Magnesium	mg/l	0.010	45
Sodium	mg/l	0.50	5.4
Silicon	mg/l	1.0	11
Strontium	mg/l	0.0010	2.6
Titanium	mg/l	0.0050	0.023
Vanadium	mg/l	0.0010	0.38
Zinc	mg/l	0.010	<0.010

ICP-MS Metals (Dissolved) Method: ME-ANA-AN-026

Arsenic	mg/l	0.0030	0.080
Bismuth	mg/l	0.0010	<0.0010
Cadmium	mg/l	0.0020	<0.0020
Cobalt	mg/l	0.0020	<0.0020
Chromium	mg/l	0.0030	0.40
Copper	mg/l	0.0040	<0.0040
Mercury	mg/l	0.00010	0.0020
Manganese	mg/l	0.0030	0.049
Molybdenum	mg/l	0.0070	0.14
Nickel	mg/l	0.0070	0.014
Lead	mg/l	0.0040	<0.0040
Antimony	mg/l	0.0070	0.013
Selenium	mg/l	0.0040	0.026
Tin	mg/l	0.0070	<0.0070

METHOD SUMMARY

JB11-01871 R0

Report number Client reference:

0000001521 **11521199**

– METHOD -

METHODOLOGY SUMMARY

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis. QFH QC result is above the upper tolerance

- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS *Environmental* Services *Randburg* is accredited by *SANAS* and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za.

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Marius Van Zyl	Laboratory	SGS South Africa (Pty) Limited
Client	Jones & Wagener (Pty) Ltd	Address	259 Kent Avenue
Address	P.O. Box 1434 Rivonia 2128	Telephone	Ferndale, 2194 +27 (0)11 781 5689
Telephone	011 519 0200		
Facsimile Email Project	011 519 0201 vanzyl@jaws.co.za (Not specified)	Laboratory Manager SGS Reference	Mark Baird (acting) JB11-01881 R0
Order Number	DI66/MVZ/19829	Report Number	000001593
Samples	1	Date Received	2011/09/13 12:15:20PM
Sample matrix	SOIL	Date Reported	2011/10/10 11:32:03AM

- COMMENTS ·

Whilst SGS laboratories conform to ISO/IEC 17025 standards, results of analysis in this report fall outside of the current scope of accreditation.

Testing subcontracted to SGS Booysens.

Mineralogy results contained in their report, MIN 0911/192, appended.

SIGNATORIES

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

JB11-01881 R0

Report number Client reference:

0000001593 DI66/MVZ/19829

		Sa	ole Number mple Name nple Matrix	JB11-01881.001 Dry Ash Soil
Parameter SUB_Mineralogy	Method: SUB	Units	LOR	
XRD scan		No unit	-	MIN 0911/192

SUB_SGS Booysens Method: SUB_BOOY

Silver	ppm	0.020	<0.020
Aluminium	%	0.010	11
Arsenic	ppm	1.0	13
Barium	ppm	5.0	720
Beryllium	ppm	0.10	5.6
Bismuth	ppm	0.040	1.2
Calcium	%	0.010	3.5
Cadmium	ppm	0.020	<0.020
Chromium	ppm	1.0	110
Cobalt	ppm	0.10	16
Copper	ppm	0.50	59
Iron	%	0.010	6.9
Mercury	ppm	3.0	<3.0
Potassium	%	0.010	0.50
Lithium	ppm	1.0	180
Magnesium	%	0.010	0.82
Manganese	ppm	5.0	490
Molybdenum	ppm	0.050	5.2
Sodium	%	0.010	0.12
Nickel	ppm	0.50	51
Phosphorus	ppm	50	1100
Lead	ppm	0.50	41
Sulphur	%	0.010	0.20
Antimony	ppm	0.050	0.89
Selenium	ppm	2.0	<2.0
Silicon	%	0.10	19
Tin	ppm	0.30	4.4
Strontium	ppm	0.50	1000
Titanium	%	0.010	0.71
Vanadium	ppm	1.0	68
Zinc	ppm	1.0	310
Zirconium	ppm	0.50	250

METHOD SUMMARY

JB11-01881 R0

Report number Client reference:

0000001593 DI66/MVZ/19829

- METHOD -

METHODOLOGY SUMMARY

FOOTNOTES .

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis. QFH QC result is above the upper tolerance

- QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to

Any unautionized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Marius Van Zyl	Laboratory	SGS South Africa (Pty) Limited
Client	Jones & Wagener (Pty) Ltd	Address	259 Kent Avenue
Address	P.O. Box 1434 Rivonia 2128	Telephone	Ferndale, 2194 +27 (0)11 781 5689
Telephone	011 519 0200		
Facsimile Email Project	011 519 0201 vanzyl@jaws.co.za (Not specified)	Laboratory Manager SGS Reference	Mark Baird (acting) JB11-01881 R0
Order Number	DI66/MVZ/19829	Report Number	000001593
Samples	1	Date Received	2011/09/13 12:15:20PM
Sample matrix	SOIL	Date Reported	2011/10/10 11:32:03AM

- COMMENTS ·

Whilst SGS laboratories conform to ISO/IEC 17025 standards, results of analysis in this report fall outside of the current scope of accreditation.

Testing subcontracted to SGS Booysens.

Mineralogy results contained in their report, MIN 0911/192, appended.

SIGNATORIES

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

JB11-01881 R0

Report number Client reference:

0000001593 DI66/MVZ/19829

		Sa	ole Number mple Name nple Matrix	JB11-01881.001 Dry Ash Soil
Parameter SUB_Mineralogy	Method: SUB	Units	LOR	
XRD scan		No unit	-	MIN 0911/192

SUB_SGS Booysens Method: SUB_BOOY

Silver	ppm	0.020	<0.020
Aluminium	%	0.010	11
Arsenic	ppm	1.0	13
Barium	ppm	5.0	720
Beryllium	ppm	0.10	5.6
Bismuth	ppm	0.040	1.2
Calcium	%	0.010	3.5
Cadmium	ppm	0.020	<0.020
Chromium	ppm	1.0	110
Cobalt	ppm	0.10	16
Copper	ppm	0.50	59
Iron	%	0.010	6.9
Mercury	ppm	3.0	<3.0
Potassium	%	0.010	0.50
Lithium	ppm	1.0	180
Magnesium	%	0.010	0.82
Manganese	ppm	5.0	490
Molybdenum	ppm	0.050	5.2
Sodium	%	0.010	0.12
Nickel	ppm	0.50	51
Phosphorus	ppm	50	1100
Lead	ppm	0.50	41
Sulphur	%	0.010	0.20
Antimony	ppm	0.050	0.89
Selenium	ppm	2.0	<2.0
Silicon	%	0.10	19
Tin	ppm	0.30	4.4
Strontium	ppm	0.50	1000
Titanium	%	0.010	0.71
Vanadium	ppm	1.0	68
Zinc	ppm	1.0	310
Zirconium	ppm	0.50	250

METHOD SUMMARY

JB11-01881 R0

Report number Client reference:

0000001593 DI66/MVZ/19829

- METHOD -

METHODOLOGY SUMMARY

FOOTNOTES .

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis. QFH QC result is above the upper tolerance

- QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Sarah Newton

SGS Environmental Services SA P.O. Box 82582

Southdale 2135

TEST REP	ORT
----------	-----

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Product Code	SOLIDS
Status	Final
Received	14/09/11
Reported	10/10/11
Samples First Sample Last Sample Pages	2 1881 - 001 WASTE ROCK 10

Notes	
Technical Signatory Name:	Signature:
Technical Signatory Name:	Signature:
Technical Signatory Name:	Signature:
On behalf of: SGS South Africa	

The results in the following analytical report pertain to this laboratory for preparation and/or analysis as requested by SGS Environmental Services SA.

The analytical results reported herein refer to the samples as received and are based on a dry basis where applicable.

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Reported	10/10/11
Status	Final
Page	Page 2 of 10

TEST REPORT

	WtRec	Al	Ba	Ca	Cr	Cu
Scheme	WGH79	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	g	%	ppm	%	ppm	ppm
Detection Limit	0.01	0.01	5	0.01	1	0.5
1881 - 001	34.50	10.5	716	3.50	113	59.4
WASTE ROCK	-	0.28	94	0.03	22	14.6
GEOSTATS		4.34	36	1.13	1750	3880
LKSD-3SA		5.67	638	1.49	-	-
OREAS 100A		5.58	417	1.05	39	183
OREAS 101A		5.78	180	1.23	39	-
BLANK		<0.01	<5	<0.01	<1	<0.5
1881 - 001		10.8	777	3.63	119	62.4

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Reported	10/10/11
Status	Final
Page	Page 3 of 10

TEST REPORT

	Fe	K	Li	Mg	Mn	Na
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	%	%	ppm	%	ppm	%
Detection Limit	0.01	0.01	1	0.01	5	0.01
1881 - 001	6.86	0.50	181	0.82	488	0.12
WASTE ROCK	0.72	0.08	<1	<0.01	128	0.02
GEOSTATS	4.75	3.41	9	0.52	5230	1.60
LKSD-3SA	4.01	2.02	27	1.14	1410	1.97
OREAS 100A	4.21	3.79	20	0.85	579	0.14
OREAS 101A	10.4	2.26	44	1.24	1020	0.08
BLANK	<0.01	<0.01	<1	<0.01	<5	<0.01
1881 - 001	7.03	0.52	188	0.86	508	0.12

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

 Reg No 1949/032643/07

 58 Melville

 Booysens

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Reported	10/10/11
Status	Final
Page	Page 4 of 10

TEST REPORT

	Р	S	Sr	Ti	V	Zn
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	ppm	%	ppm	%	ppm	ppm
Detection Limit	50	0.01	0.5	0.01	1	1
1881 - 001	1130	0.20	1010	0.71	68	314
WASTE ROCK	210	0.04	<0.5	0.01	3	39
GEOSTATS	460	0.96	43.7	0.21	45	5230
LKSD-3SA	1110	-	237	-	-	-
OREAS 100A	510	0.06	22.5	-	-	41
OREAS 101A	-	0.13	10.0	-	-	101
BLANK	<50	<0.01	<0.5	<0.01	<1	5
1881 - 001	1190	0.22	1050	0.74	77	336

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Reported	10/10/11
Status	Final
Page	Page 5 of 10

TEST REPORT

	Zr	Ag	As	Be	Bi	Cd
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	ppm	ppm	ppm	ppm	ppm	ppm
Detection Limit	0.5	0.02	1	0.1	0.04	0.02
1881 - 001	254	<0.02	13	5.6	1.24	<0.02
WASTE ROCK	54.2	<0.02	2	0.1	0.31	<0.02
GEOSTATS	68.2	48.0	13	-	-	-
LKSD-3SA	-	2.87	27	1.8	-	-
OREAS 100A	121	-	-	-	-	-
OREAS 101A	91.0	-	-	-	-	-
BLANK	<0.5	<0.02	<1	<0.1	<0.04	<0.02
1881 - 001	275					
1881 - 001		<0.02	13	5.8	1.25	<0.02

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

 Reg No 1949/032643/07

 58 Melville

 Booysens

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Reported	10/10/11
Status	Final
Page	Page 6 of 10

TEST REPORT

	Со	Мо	Ni	Pb	Sb	Se
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	ppm	ppm	ppm	ppm	ppm	ppm
Detection Limit	0.1	0.05	0.5	0.5	0.05	2
1881 - 001	16.4	5.18	51.3	41.4	0.89	<2
WASTE ROCK	1.6	3.71	5.3	7.6	0.17	<2
GEOSTATS	2070	-	4030	1.21%	11.3	-
LKSD-3SA	29.0	-	46.7	29.3	1.36	-
OREAS 100A	16.4	20.7	-	13.4	-	-
OREAS 101A	47.0	20.5	-	21.3	-	-
BLANK	<0.1	<0.05	<0.5	<0.5	0.09	<2
1881 - 001	16.6	5.22	52.0	41.7	0.90	<2

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

 Reg No 1949/032643/07

 58 Melville

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Reported	10/10/11
Status	Final
Page	Page 7 of 10

TEST REPORT

	Sn	Hg	Si
Scheme	ICM40B	IMS12B	ICP90A
Units	ppm	ppm	%
Detection Limit	0.3	3	0.1
1881 - 001	4.4	<3	19.2
WASTE ROCK	0.5	<3	20.8
GEOSTATS	-		
LKSD-3SA	-		
OREAS 100A	-		
OREAS 101A	-		
BLANK	<0.3		
BLANK		<3	
SARM5			-
BLANK			<0.1
1881 - 001			19.9
BCS176/2			1.27
1881 - 001		<3	
CCU-1C		30	
GXR-1		4	
1881 - 001	4.4		

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

 Reg No 1949/032643/07

 58 Melville

 Booysens
 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

 Lab Ref
 LA117646

 Client Ref
 JB11 - 01881

 Project
 DEFAULT

 Reported
 10/10/11

 Status
 Final

 Page
 Page 8 of 10

APPENDIX A - METHODS

TEST REPORT

METHOD NUMBER	METHOD DESCRIPTION	SCHEME CODE
ME-ZA-[MINANA]-[BYZ(FAS)]AN-001	Au by Lead Fusion followed by Atomic Absorption analysis or Gravimetric analysis	FAALA01, FAALA01D, FAGLA01, FAGLA02, FAGLA03, FAGLA04, FAGLA05
ME-ZA-[MINANA]-[BYZ(FAS)]AN-002	Au, Pt, Pd by Lead Fusion followed by	FAI313
ME-ZA-[MINANA]-[BYZ(FAS)]AN-003	Pt, Pd, Rh, Ru, Ir by Nickel Sulphide, ICP-OES finish	FAI363
ME-ZA-[MINANA]-[BYZ(XRF)]AN-001	Major Element Oxides by Borate fusion XRF	XRF79V, XRF79C
ME-ZA-[MINANA]-[BYZ(XRF)]AN-002	Base Metals by Potassium Pyrosulphate Fusion XRF	XRF77R
ME-ZA-[MINANA]-[BYZ(AAS)]AN-001	Acid Soluble Cu and Ni by Acid digestion and analysis by AAS	AAS13C
ME-ZA-[MINANA]-[BYZ(LEC)]AN-001	Total Sulphur and Carbon by Leco Combustion Infrared Detection	CSALA01, CSALA06
ME-ZA-[MINANA]-[BYZ(ICM)]AN-001	Total & Dissolved metals by ICP-OES & ICP-MS	ICP84T & IMS84T
ME-ZA-[MINANA]-[BYZ(XRF)]AN-003	Uranium Oxide, pressed powder analysis using XRF spectrometer	XRF75G
ME-ZA-[MINANA]-[BYZ(FAS)]AN-005	Rh by Pd fusion by ICP-OES finish	FAI353
ME-ZA-[MINANA]-[BYZ(WET)]AN-001	Chloride by Potentiometric titration	CLA27V

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

Reg No 1949/032643/07 58 Melville Street Booysens 2091 Phone: +27 (11) 6803466 +27 (11) 4333654 Fax: Email: South.Africa@sgs.com Internet: www.sgs.com

SCHEME CODE

LA117646 Lab Ref JB11 - 01881 Client Ref DEFAULT Project 10/10/11 Reported Status Final Page Page 9 of 10

TEST REPORT

METHOD DESCRIPTION

Trace elements by pressed pellet, XRF Sulphide Sulphur (S2-) by Leco Elemental sulphur (S2-) by gravimetric finish Aqueous sulphate (SO4) by Dionex Sulphate (SO4) on solids by Dionex Carbonate (CO3) by LECO Graphite carbon by LECO Organic carbon by LECO Organic carbon by LECO DH determination Conductivity (EC) determination Total Hardness as CaCO3 (calc from ICP Ca, Mg analyses) Anions by IC (F, Cl, NO2, NO3, SO4) Amonoia (NH3) by spectroquant Phosphate (PO4) by colourmetric analysis Chemical Oxygen Demand (COD) by spectroquant Suspended solids (TDS) Total dissolved solids (TDS), gravimetric finish (180 °C)/Electrometric, conductivity meter Alkalinity by titration Cholride (C1) by titration (solutions) Chloride (C1) by titration (solutions) Chloride (C1) by titration (solutions) Fluoride (F) by ISE (solids) Acid Base Accounting (ABA) Net acid generation (NAG) test (incl. S species) Short term leach testing (ARLP, TCLP, SPLP, etc) Deionised water (D1) leach (2 hours, L:S=10) Cyanide (CN) species - Free, WAD & Total Thiocyanate (SCN) by IC Metals by AAS (solutions) Gild (Au) in CN solutions by AAS Silver (Ag) by acid digestion, AAS Arsenic (As) by Aqua Regia digestion, AAS Argan Regia digestion, ICP-OES finish Nutli Acid digestion, ICP-OES finish Sodium Peroxide fusion, ICP-OES finish	CSA08V CSA12V CLA31V CSA11V CSA02V CSA03V ISE06T ISE09V ICP84B CLA31V CLA23V CLA22V CLA24V PHY18V ISE10V CLA24V PHY18V ISE10V CLA24V CLA24V CLA24V CLA24V CLA24V CLA27V CLA04E ISE07W ISELA01 CLA41V CLA43V CLA40V Leach CLA41V CLA43V CLA40V Leach CLA25V CLA31V AAS84T SOL81T AAS14E AAS11C AAS40D AAS72C ICP13E ICP40D ICP91B
--	---

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

 Reg No 1949/032643/07

 58 Melville

 Booysens
 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

SCHEME CODE

 Lab Ref
 LA117646

 Client Ref
 JB11 - 01881

 Project
 DEFAULT

 Reported
 10/10/11

 Status
 Final

 Page
 Page 10 of 10

TEST REPORT

METHOD DESCRIPTION

to the fullest extent of the law. ."

Semi quantative ICP-OES +ICP-MS scan, Aqua Regia digestion	ICM12B
As, Hg, Se, Te by Aqua Regia digestion, ICP-MS finish	IMS12Q
Multi Acid digestion, semi quantative scan, ICP-OES + ICP-MS	ICM40B
Multi acid digestion, ICP-MS	IMS40B
Rare Earth Elements (REE) by Na2O2 fusion, ICP-MS	IMS90A
Free acid titration	CLA15F
Chloride (CI) by manual titration (Metallurgical)	CLA26V
As 3+ by titration	CLA32V
As 5+ by calculation	CLA32V
Lime (CaO) by titration	CLA07C
Lime (CaO), calculation after AAS analysis	CLA07C
Ferrous (Fe2+) iron by titration (solids)	CLA34V
Ferrous (Fe2+) iron by titration (solutions)	CLA34V
Ferric (Fe3+) iron by diff (incl. Fe total, Fe2+) - solids	CLA34V
Ferric (Fe3+) iron by diff (incl. Fe total, Fe2+) - solutions	CLA35V
Iron (Fe) by titration (solids)	CLA35V
Tin (Sn) by titration (solids)	CON14V
Zinc (Zn) by EDTA titration (solids)	CON12V
Hexavalent chromium (Cr6+) in solutions	CLA21V
Manganese (Mn) by back titration	CON15V
Vanadium (V) by titration	CON16V
Chrome (Cr) by back titration	CON10B
Relative Density/Specific Gravity (by Le Chatelier flask)	PHY04V
Bulk density	PHY21V
Relative Density/Specific Gravity (by Helium pyncometer)	PHY03V
Grain density	PHY20V
Moisture (105 °C)	PHY08D
Ash/LOI (1050 °C)	PHY01K

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

TEST REPORT SGS South Africa (Pty) Ltd. 58 Melville Street Booysens Johannesburg

Sarah Newton SGS Environmental Services 259 Kent Avenue Randburg

MINERALOGICAL REPORT No: MIN 0911/192

Work Requested By:	Sarah Newton
On Behalf Of:	SGS Environmental
Date issued:	05 October 2011
Investigator:	O.D Mosinyi

Analysis of Sample 1881-001 by XRD

<u>O.D. Mosinyi</u>

Mineralogist

L.L. Coetzee

Manager: Mineralogy

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u> Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and/or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorised alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

1. INTRODUCTION

Sarah Newton, on behalf of SGS Environmental Services, submitted one sample for X-ray diffraction mineralogical examination. The sample was labelled 1881-001, a dry ash sample.

2. METHODOLOGY

The sample was pulverized and analysed by X-ray diffraction utilising a Panalytical X'pert Pro Diffractometer employing Co-K α radiation. Data interpretation was by means of Panalytical Highscore Plus analytical software, in conjunction with the PDF2 database. The XRD analysis was used to identify and quantify the crystalline phases present in the sample.

3. RESULTS

3.1 X-ray Diffraction Analyses

The crystalline phases that were detected by XRD are listed below in Table 1, and the diffractogram for the sample is shown in figure 1. There were four crystalline phases that were detected by XRD. These were mullite which made up 45.2%, of the sample, and quartz which also accounted for 45.2 % of the sample, calcite accounted for 6.5 % of the sample and lastly magnetite accounted for 3.1 % of the sample.

Mineral	Approx. Formula	01881-001 Mass %
Mullite	Al ₆ Si ₂ O ₁₃	45.2
Quartz	SiO ₂	45.2
Calcite	CaCO ₃	6.5
Magnetite	Fe ₃ O ₄	3.1

Table 1: Crystalline phases as determined by X-ray Diffraction

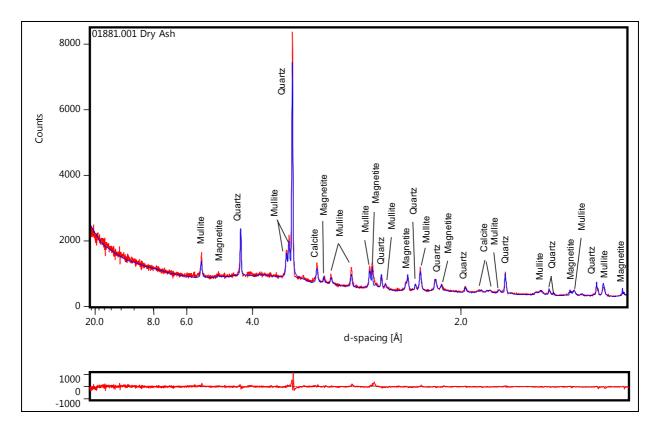


Figure 1: X-ray Diffractogram showing the composition of the sample 1881-001. The diffractogram in red shows the measured pattern, while the blue shows the calculated pattern obtained as part of the Rietveld refinement. The lower red pattern shows the difference between the measured and calculated pattern.

ZITHOLELE CONSULTING (PTY) LTD

WASTE ASSESSMENT OF POWER STATION ASH AND REVERSE OSMOSIS PLANT EFFLUENT FROM THE CAMDEN POWER STATION

Report: JW164/11/D116 - REV

Appendix B

CHEMICAL ANALYSES CONDUCTED ON THE REVERSE OSMOSIS EFFLUENT

Attention

Address

Telephone

Fax

Client Name

Central Water Laboratory

Final Task Report

Irma Hodgskin

Piet Retief Road

017 827 8115

017 827 8007

Camden Power Station

Report Reference

WL2012-010221

Date	2012/07/09
Tel. No.	+27 11 629 5596
Fax. No.	+27 11 629 5528

Report Title WMC

TEST RESULTS FOR THE ANALYSIS OF WATER

Number of Samples 1

Description of Samples	Acceptable
Date Registered	29-June-2012
Date Reported	09-July-2012

Task Comments:

Approved By :

Cody Makhuba Snr Technician 011 629 5596

Date :

Tests marked "Not SANAS accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Opinions and interpretations expressed herein are outside the scope of SANAS accredition,

PLEASE NOTE: The test results relate only to the specified samples tested as identified in this report.

This test report shall not be reproduced except in full, without written approval of ESKOM holdings (Cleveland) Chemical Technologies.

Lower Germiston Road Cleveland 2022 Private Bag 40175 Cleveland 2022 SA Tel +27 11 629 5596 Fax +27 11 629 5528 www.eskom.co.za Eskom Holdings Reg No 2002/015527/06

Sample ID 3906049 SAMPLE 1 RO BRINE	WMC-2012-06-29/13	WL2012-010221
Component	Unit	Value
Alkalinity Total	mg/l CaCO3	29.1
Aluminium as Al	mg/l	0.07
Barium as Ba	mg/l	0.25
Calcium as Ca	mg/l	640
Chloride as Cl	mg/l	380.00
Iron as Fe	mg/l	0.01
Flouride as F	mg/l	3.47
Magnesium as Mg	mg/l	0.60
Manganese as Mn	mg/l	<0.005
Sodium as Na	mg/l	570
Nitrate as N	mg/l	3.32
pH @ 25 °C		7.12
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	22
Sulphate as SO4	mg/l	2080
Strontium as Sr	mg/l	15

The analyses were performed using the following methods:

Alkalinity Total	ESKOM METHOD NO 304	Accredited
Aluminium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Barium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Calcium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Chloride IC (mg/l)	ESKOM METHOD NO 307	Accredited
Flouride IC (mg/l)	ESKOM METHOD NO 307	Not Accredited
Iron ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Magnesium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Manganese ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Nitrate as N IC (mg/l)	ESKOM METHOD NO 307	Accredited
Ortho Phosphate as PO4(mg/l)	ESKOM METHOD NO 72	Not Accredited
pH @ 25 °C	ESKOM METHOD NO 300A	Accredited
Silica as SiO2 ICP (mg/l)	ESKOM METHOD NO 417	Not Accredited
Sodium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Strontium ICP (mg/I)	ESKOM METHOD NO 412	Accredited
Sulphate IC (mg/l)	ESKOM METHOD NO 307	Accredited

Eskom Central Water Lab Disclaimer

The acceptance of an item for test and issue of a certificate of analysis are to the requirements laid down in Eskom Holding, R&S ISO 17025.

- If published or reproduced by the customer a test report shall be reproduced in full, ie the reproduction shall contain the printed as well as the typed parts of the report, nothing exempted. In special circumstance an abridged form of the report or certain parts of the report may be published or reproduced, provided that the abridged form or partial version of the report is approved in writing by the responsible Manager before publication or issue.
- 2. A certificate of analysis related only to an item submitted for the actual test. It furnishes or implies no guarentee whatsoever in respect of a similar item that has not been tested.
- 3. While every endeavour will be made to ensure that a test is representative and accurately performed, and that the report is accurate and the quoted results and conclusions drawn from the test, its officers shall in no way be liable for any error made in carrying out the test or for erronous statement, whether in fact or opinion, contained in a report persuant to a test.
- 4. With the exception of all microbiological analyses, unless otherwise stated, sampling is not carried out by the laboratory.
- 5. All water samples are preserved according to procedure P511 unless otherwise stated.
- 6. Unless otherwise specified all analyses on water samples give the dissolved constituents.

End of the Report

Attention

Address

Telephone

Fax

Client Name

Central Water Laboratory

Final Task Report

Irma Hodgskin

Piet Retief Road

017 827 8115

017 827 8007

Camden Power Station

Report Reference

WL2012-010199

Date	2012/06/25		
Tel. No.	+27 11 629 5596		
Fax. No.	+27 11 629 5528		

Report Title WMC

TEST RESULTS FOR THE ANALYSIS OF WATER

Number of Samples5Description of SamplesACCEPTABLEDate Registered12-June-2012Date Reported25-June-2012Task Comments:Comments

Approved By :

Cody Makhuba Snr Technician 011 629 5596

Date :

Tests marked "Not SANAS accredited" in this report are not included in the SANAS Schedule of Accreditation for this laboratory.

Opinions and interpretations expressed herein are outside the scope of SANAS accredition,

PLEASE NOTE: The test results relate only to the specified samples tested as identified in this report.

This test report shall not be reproduced except in full, without written approval of ESKOM holdings (Cleveland) Chemical Technologies.

Lower Germiston Road Cleveland 2022 Private Bag 40175 Cleveland 2022 SA Tel +27 11 629 5596 Fax +27 11 629 5528 www.eskom.co.za Eskom Holdings Reg No 2002/015527/06

Eskom Central Water Laboratory Test Results

Sample ID 3860564 Brine water sample	WMC-2012-06-12/91	WL2012-010199
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	26.7
Aluminium as Al	mg/l	0.67
Barium as Ba	mg/l	0.30
Calcium as Ca	mg/l	480
Chloride as Cl	mg/l	330.00
Iron as Fe	mg/l	<0.005
Flouride as F	mg/l	3.64
Magnesium as Mg	mg/l	0.73
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	420
Nitrate as N	mg/l	3.14
pH @ 25 °C		6.54
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	18
Sulphate as SO4	mg/l	2100
Strontium as Sr	mg/l	13

Sample ID 3860565 Raw Feed water sample	WMC-2012-06-12/92	WL2012-010199	
Component	Unit	Value	
Alkalinity Total	mg/I CaCO3	132	
Aluminium as Al	mg/l	0.94	
Barium as Ba	mg/l	0.18	
Calcium as Ca	mg/l	180	
Chloride as Cl	mg/l	130.00	
Iron as Fe	mg/l	<0.005	
Flouride as F	mg/l	1.47	
Magnesium as Mg	mg/l	0.18	
Manganese as Mn	mg/l	0.01	
Sodium as Na	mg/l	170	
Nitrate as N	mg/l	1.35	
pH @ 25 ℃		10.52	
Ortho Phosphate as PO4	mg/l	<0.090	
Silica as SiO2	mg/l	8.8	
Sulphate as SO4	mg/l	610	
Strontium as Sr	mg/l	4.8	

Eskom Central Water Laboratory Test Results

Sample ID 3860566 Maddox Out water sample	WMC-2012-06-12/93	WL2012-010199
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	13.6
Aluminium as Al	mg/l	0.21
Barium as Ba	mg/l	0.10
Calcium as Ca	mg/l	180
Chloride as Cl	mg/l	130.00
Iron as Fe	mg/l	0.02
Flouride as F	mg/l	1.48
Magnesium as Mg	mg/l	0.24
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	160
Nitrate as N	mg/l	1.36
pH @ 25 °C		5.97
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	7.2
Sulphate as SO4	mg/l	730
Strontium as Sr	mg/l	4.8

Sample ID 3860567 Gac Out water sample	WMC-2012-06-12/94	WL2012-010199
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	15.1
Aluminium as Al	mg/l	0.25
Barium as Ba	mg/l	0.14
Calcium as Ca	mg/l	180
Chloride as Cl	mg/l	130.00
Iron as Fe	mg/l	<0.005
Flouride as F	mg/l	1.46
Magnesium as Mg	mg/l	0.25
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	160
Nitrate as N	mg/l	1.35
pH @ 25 °C		5.81
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	7.4
Sulphate as SO4	mg/l	730
Strontium as Sr	mg/l	4.7

Sample ID 3860568 Pertmate Product water sample	WMC-2012-06-12/95	WL2012-010199
Component	Unit	Value
Alkalinity Total	mg/I CaCO3	3.7
Aluminium as Al	mg/l	0.04
Barium as Ba	mg/l	<0.005
Calcium as Ca	mg/l	1.9
Chloride as Cl	mg/l	5.28
Iron as Fe	mg/l	<0.005
Flouride as F	mg/l	0.08
Magnesium as Mg	mg/l	<0.005
Manganese as Mn	mg/l	0.01
Sodium as Na	mg/l	6.9
Nitrate as N	mg/l	0.27
pH @ 25 °C		5.75
Ortho Phosphate as PO4	mg/l	<0.090
Silica as SiO2	mg/l	0.16
Sulphate as SO4	mg/l	5.59
Strontium as Sr	mg/l	0.05

The analyses were performed using the following methods:

, ,	5 5	
Alkalinity Total	ESKOM METHOD NO 304	Accredited
Aluminium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Barium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Calcium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Chloride IC (mg/l)	ESKOM METHOD NO 307	Accredited
Flouride IC (mg/l)	ESKOM METHOD NO 307	Not Accredited
Iron ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Magnesium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Manganese ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Nitrate as N IC (mg/l)	ESKOM METHOD NO 307	Accredited
Ortho Phosphate as PO4(mg/l)	ESKOM METHOD NO 72	Not Accredited
pH @ 25 °C	ESKOM METHOD NO 300A	Accredited
Silica as SiO2 ICP (mg/l)	ESKOM METHOD NO 417	Not Accredited
Sodium ICP (mg/l)	ESKOM METHOD NO 415	Accredited
Strontium ICP (mg/l)	ESKOM METHOD NO 412	Accredited
Sulphate IC (mg/l)	ESKOM METHOD NO 307	Accredited

Eskom Central Water Lab Disclaimer

The acceptance of an item for test and issue of a certificate of analysis are to the requirements laid down in Eskom Holding, R&S ISO 17025.

- If published or reproduced by the customer a test report shall be reproduced in full, ie the reproduction shall contain the printed as well as the typed parts of the report, nothing exempted. In special circumstance an abridged form of the report or certain parts of the report may be published or reproduced, provided that the abridged form or partial version of the report is approved in writing by the responsible Manager before publication or issue.
- 2. A certificate of analysis related only to an item submitted for the actual test. It furnishes or implies no guarentee whatsoever in respect of a similar item that has not been tested.
- 3. While every endeavour will be made to ensure that a test is representative and accurately performed, and that the report is accurate and the quoted results and conclusions drawn from the test, its officers shall in no way be liable for any error made in carrying out the test or for erronous statement, whether in fact or opinion, contained in a report persuant to a test.
- 4. With the exception of all microbiological analyses, unless otherwise stated, sampling is not carried out by the laboratory.
- 5. All water samples are preserved according to procedure P511 unless otherwise stated.
- 6. Unless otherwise specified all analyses on water samples give the dissolved constituents.

End of the Report

Camden Projected Brine Quality

		Feed	PERMEATE	BRINE
FLOW RATE	m3/hr		145	36
Component	Unit	Average		
ALUMINIUM	mg/l	0.9	0.001	0.1
AMMONIA (AS N)	mg/l	0	0	0
BARIUM (AS BA)	mg/l	0.2	0	0.99
BERYLLIUM	mg/l	<.005	0	<.005
BORON (AS B)	mg/l	2.3	0.5	1.4
C.O.D	mg/l	61	0.1	3
CADMIUM	mg/l	<.005	0	<.005
CALCIUM (AS CA)	mg/l	177	1.57	877.02
CHLORIDE (AS CL)	mg/l	160	3.06	785.93
CHROMIUM	mg/l	0.03	0	0.1
COBALT (AS CO)	mg/l	<.005	0	<.005
CONDUCTIVITY (AT 25C	US/CM	2010		
TOTAL DISSOLVED SOLIDS	mg/l		16.88	7476.65
COPPER	mg/l	<.005	0	<.005
CYANIDE (AS CN)	mg/l	<.025	0	<.025
FATS, OILS AND GREASE	mg/l	1.3	0	0.1
FLUORIDE (AS F)	mg/l	0	0	0
IRON	mg/l	0.06	0	0.3
LEAD	mg/l	0.05	0	0.27
MAGNESIUM	mg/l	0.27	0	1.34
MANGANESE	mg/l	0.01	0	0.05
MERCURY	ug/l	1.03	0	4
MOLYBDENUM	mg/l	0.33	0	0.1
NICKEL	mg/l	<.005	0	<.005
NITRATE (AS NO3)	mg/l N	<.02	0	<.02
ORTHO PHOSPHATE (AS PO4)	mg/l	0	0	0
OXYGEN ABSORBED (AS O2)	mg/l	0.85		
РН	PH @25C	11.03	5.1	7.2
PHENOLS (AS PHENOL)	mg/l	0.01	0	0.03
POTASSIUM	mg/l	34	0.64	167.1
SODIUM	mg/l	210	3.51	1385.38
STRONTIUM	mg/l	4.9	0.04	24.28
SULPHATE (AS SO4)	mg/l	760	7.19	4009.28
SUSPENDED SOLIDS	mg/l	10.7	0	1
TOTAL ALKALINITY (AS CACO3)	mg/l	113.8	1	404
TOTAL HARDNESS (AS CACO3)	mg/l	442	4	2197
TOTAL PHOSPHATE (AS P)	mg/l	0	0	0
VANDIUM	mg/l	0.04	0	0.1
ZINC	mg/l	<.005	0	<.005

WATERLAB (Pty) Ltd Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

Building D The Woods 41 De Havilland Cresent Persequor Techno Park Meiring Naudé Drive Pretoria V.À.T. No.: 4130107891 P.O. Box 283 Persequor Park, 0020 Tel: +2712 – 349 – 1066 Fax: +2712 – 349 – 2064 e-mail: admin@waterlab.co.za

SANAS Accredited Testing Laboratory No. T0391

CERTIFICATE OF ANALYSES GENERAL WATER QUALITY PARAMETERS

Date received: 2012 - 11 - 08	Date co	mpleted: 201	2 - 11 – 16			
Project number: 132	Report number: 37483		Order number: D756/MVZ/22281			
Client name: Jones & Wagener Consulting Civil Engineers		Contact person: Mr. M. van Zyl				
Address: P.O. Box 1434 Rivonia 2128			e-mail: vanzyl@jaws.co.za			
Telephone: 011 519 0200		Facsimile: 011 519 0201 Mobile: 082 604 5137				
		n				
			Sample Identifi	cation: Camder	1	
Analyses in mg/ℓ (Unless specified otherwise)	Method Identification	Demin Plant: Clarifier Blow-down	Cooling Water Blow Down	RO Plant Brine	De Jagers Pan Water	
Sample Number		15500	15501	15502	15503	
Total Dissolved Solids at 180°C *	WLAB003	60	984	3 398	1 308	
Chloride as Cl *	WLAB046	8	81	283	133	
Sulphate as SO₄	WLAB046	10	371	1 811	668	
Fluoride as F	WLAB014	<0.2	1.3	3.7	1.2	
Nitrate as N *	WLAB046	<0.2	4.4	3.0	1.3	
Aluminium as Al	WLAB015	0.398	2.52	0.289	1.17	
Antimony as Sb *	WLAB015	<0.010	<0.010	<0.010	<0.010	
Arsenic as As *	WLAB015	<0.010	<0.010	<0.010	<0.010	
Barium as Ba *	WLAB015	0.084	0.151	0.207	0.139	
Boron as B *	WLAB015	<0.025	0.489	3.13	1.71	
Cadmium as Cd	WLAB015	<0.005	<0.005	<0.005	<0.005	
Total Chromium as Cr	WLAB015	<0.025	<0.025	0.148	0.051	
Hexavalent Chromium as Cr ⁶⁺ *	WLAB032	<0.010	<0.010	0.071	0.048	
Trivalent Chromium as Cr ³⁺ *		<0.025	<0.025	0.077	<0.025	
Cobalt as Co	WLAB015	<0.025	<0.025	<0.025	<0.025	
Copper as Cu	WLAB015	<0.025	0.743	<0.025	<0.025	
Iron as Fe	WLAB015	0.355	2.95	<0.025	<0.025	
Lead as Pb	WLAB015	<0.020	<0.020	<0.020	<0.020	
Manganese as Mn	WLAB015	1.65	0.452	<0.025	<0.025	
Mercury as Hg *	WLAB047	<0.001	<0.001	<0.001	<0.001	
Molybdenum as Mo *	WLAB015	<0.025	<0.025	1.64	0.436	
Nickel as Ni	WLAB015	<0.025	<0.025	<0.025	<0.025	
Selenium as Se *	WLAB015	<0.020	<0.020	0.050	<0.020	
Strontium as Sr *	WLAB015	0.034	0.829	13	4.93	
Thallium as TI *	WLAB015	<0.025	<0.025	<0.025	<0.025	
Vanadium as V *	WLAB015	<0.025	<0.025	<0.025	<0.025	
Zinc as Zn	WLAB015	<0.025	0.364	<0.025	<0.025	

* = Not SANAS Accredited

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.

A van de Wetering

Technical Signatory

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility of WATERLAB (Pty) Ltd. Except for the full report, part of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.