Zitholele Consulting

Reg. No. 2000/000392/07

PO Box 6002 Halfway House 1685 South Africa Thandanani Park, Matuka Close Halfway Gardens, Midrand Tel + (27) 11 207 2060 Fax + (27) 86 674 6121 E-mail : mail@zitholele.co.za

DOCUMENT CONTROL SHEET

Project Title: Conceptual Design Report for the Extension of the Ash Dam at Camden Power Station

Project No: 12698

Document Ref. No: 12698-REP-ENG-01 Conceptual Design Report

DOCUMENT APPROVAL

ACTION	FUNCTION	NAME	DATE	SIGNATURE
Prepared	Project Engineer	N Rajasakran	13-04-2012	
Reviewed	Project Reviewer	M Gowan	19-04-2012	
Approved	Project Director	S Pillay	20-04-2012	

RECORD OF REVISIONS

Date	Revision	Author	Comments
25-04-2012	0	N Rajasakran	Concept Design Report Issued for Approval.
20-09-2012	1	N Rajasakran	Liner system revised. O&M info added.
09-11-2012	2	N Rajasakran	Incorporated comments from T Bokwe

Zitholele Consulting

Reg. No. 2000/000392/07

PO Box 6002 Halfway House 1685 South Africa Thandanani Park, Matuka Close Halfway Gardens, Midrand Tel + (27) 11 207 2060 Fax + (27) 86 674 6121 E-mail : mail@zitholele.co.za

CONCEPTUAL DESIGN REPORT FOR THE EXTENSION OF THE ASH DAM AT CAMDEN POWER STATION

Report No : 12670-Eng-01

Submitted to:

Eskom Holdings Client Address

DISTRIBUTION:

2 Copies -**Eskom Holdings**

1 Copy Zitholele Consulting (Pty) Ltd - Library -

20 September 2012

12670

Directors: S Pillay (Managing Director); N Rajasakran (Director); DR RGM Heath (Director)

EXECUTIVE SUMMARY

The Camden Power Station is located approximately 15 km to South East of the town of Ermelo in the Mpumalanga province and has a production capacity of 1,600 MW. The first of its eight units was commissioned in 1967. Half of the station was mothballed in 1988 with the rest of the station following suit in 1990. Increase in the demand for electricity lead to a decision being taken in 2003 to re-commission the Camden Power Station. The first unit was re-commissioned in 2005. The existing ash dam was adequate at that stage for future operation of the plant.

In 2010, following a stability assessment of the dam, it was revealed that due to the poor coal quality used at the power station, the ash dam has adequate capacity until 2014.

In June 2011 Eskom appointed Zitholele Consulting to conduct the EIA for the extension of the ash dam at the Camden Power Station. This conceptual engineering report was undertaken to underpin the Environmental application. Three alternate sites were looked at during the EIA process which was evaluated at an engineering level.

The scope of work for the conceptual designs entailed the following:

- Spatial modelling to determine the footprint.
- Design and layout of a leachate/drainage system.
- Design of surface/stormwater diversion/collection systems.
- Liner design, including a leak detection system.
- Design of ash return water dams.
- Layout for return water system.
- Layout of access roads.

The Phase I Geotechnical evaluation of the site revealed that Site 2 was not feasible due to the following site characteristics:

- It falls within the headwaters of a stream
- Shallow groundwater seepage
- Located on the geological contact between the dolerite and host sedimentary rocks. Fractures and joints are associated with this area.

The geotechnical evaluation also revealed that there are insufficient quantities of naturally graded clay available for the liner and alternatives must be looked at. This may entail using a geosynthetic clay liner (GCL).

The remaining sites were further evaluated. However, Site 3 was divided into two sites, 3A and 3B due to its topography and the watershed dividing the site equally. Conceptual designs were undertaken on these three sites.

The earthworks modelling of the site revealed that Site 1 is adequate for ash storage and is able to accommodate the entire 19 years production with a height restriction of 40 metres. Sites 3A and B could not achieve this individually and must be combined if this is to be achieved.

Sites 3A and B do not individually accommodate the ash production over the 19 years operation period and therefore cannot be compared directly to the cost of Site 1. However Sites 3A (R909,813,868) and 3B (R766,474,632) combined (R1,676,288,500) can be compared directly with Site 1 (R1,384,574,329) with regards to capital cost. However, this will entail operating one site first and on rehabilitation of the first site, commission the second site.

Site 1 is the preferred site as it can accommodate the full ash production for the 19 years ash production keeping within the 40 metres allowable height. The shape of the ash dam will also facilitate the ease of operations. The combination of Sites 3A and 3B may be looked at only as a back-up to Site 1.

The use of GCL in the liner system is recommended subject to detailed testing providing its acceptability. There exists a high probability of adequate quantities of natural clay not being available in close proximity to the site. Rates for the importation of clay from further away sources may increase the costs of the liner significantly. Other alternatives to the in-situ clay are HDPE and bauxite.

SECTION

PAGE

1		ODUCTION AND BACKGROUND	
2		FE CLASSIFICATION	
3	BASIS	S OF DESIGN	2
	3.1	Assumptions and Limitations	2
	3.2	Ash Characteristics	3
	3.3	Grading	3
	3.4	Stability	3
	3.5	Capacity Requirements	4
	3.6	Water Supply for Ashing	5
	3.7	Permeability	5
	3.8	Annual Rate of Rise	5
	3.9	Water Balance	
4	SITE	SELECTION AND OPTIONS ANALYSIS	5
	4.1	Description of Existing Site Conditions	
	4.2	Site Selection Process	
	4.2.1	Description of Shortlisted Sites	
	4.2.2	Site 1	
	4.2.3	Site 2	
	4.2.4	Site 3	
	4.3	Engineering Geological Evaluation	
	4.3.1	Site 1	
	4.3.2	Site 2	
	4.3.3	Site 3	
	4.3.4	Geotechnical recommendations	
5	-	ER BALANCE	
6		CEPTUAL DESIGN	
0	6.1	Site Access and Roads	
	6.2		
	• • •	Site Services	
	6.3	Ash Disposal	
	6.4	Pipelines	
	6.5	Liner System	
	6.5.1	Liner Design	
	6.5.2	Liner Installation	
	6.6	Storm Water Management	1/
	6.7	Leachate Collection and Management	
	6.8	Return Water Dam	
	6.9	Construction Methods and Sequencing	
	6.10	Capacity Modelling for Selected Sites	
_	6.11	Relocation of services	
7		RATION AND MAINTENANCE PLAN	
	7.1	Introduction	
	7.2	Code requirements in terms of SABS 0286	
	7.2.1	Management	
	7.2.2	Operational phase appointments	
	7.2.3	Facility audit	
	7.2.4	Hazard classification (See clause 7.4 of the code)	
	7.2.5	Operating manual	
	7.3	Operation of the ash dam	28

ZITHOLELE CONSULTING

7.3.1	Commencement of operations	28
7.3.1.1	Starter walls	28
7.3.1.2	The initial covering of the main filter drain:	29
7.3.1.3	Initial deposition of fly ash on the daywall	29
7.3.1.4	Initial wall building	
7.3.2	Normal operation of the ash disposal facility	31
7.3.2.1	Wall building	32
7.3.2.2	Construction specification for the daywall, night-wall and innerwall	
	sections	
7.3.2.3	Control of the pool on top of the ash disposal facility	
7.3.2.4	Penstocks	
7.3.2.5	Stormwater management	
7.3.2.6	Solution trench	
7.3.2.7	Stormwater diversion canal	
7.3.2.8	Grass and reed cutting	
7.3.2.9	Roads	
	Walkway to penstock	
	Piezometers	
	Rainfall	
	Ash disposal facility office	
7.3.3 7.3.3.1	Water management Flushing of ash delivery lines	
7.3.3.1		
7.3.3.Z 7.3.4	Drainage channels Emergency procedure	
7.3.4.1	Inadequate freeboard	
7.3.4.1	Inadequate distance between the edge of the pool and the facility	
1.3.4.2	wall.	41
7.3.4.3	Inadequate storage capacity in the AWR-dam	
7.3.4.4	Polluted water spillage	
7.3.4.5	Penstock failure	
7.3.4.6	Slope failure	
7.4	Operation of silt traps and ash water return dam	
7.4.1	Ash water return dam	
7.5	Monitoring and maintenance requirements	
7.5.1	Ash disposal facility monitoring.	
7.5.2	Piezometers	
7.5.3	Ash water return dam monitoring	
7.5.4	Silt trap monitoring	
7.5.5	Groundwater monitoring	46
7.5.6	Ash disposal facility contour survey	46
7.5.7	Coordination meetings	46
7.5.8	Maintenance	
7.5.9	Legal and safety requirements	
7.5.10	Monitoring requirements during high rainfall periods	
7.6	Rehabilitation and environmental considerations	47
7.6.1	Environmental responsibilities	
7.6.1.1	General	
7.6.1.2	Water quality	
7.6.1.3	Air quality	
7.6.1.4	Waste management	
7.6.1.5	Land management	
7.6.2	Rehabilitation requirements	
7.6.2.1	General	
7.6.2.2	Materials	52

7.6.2.3 Equipment	53
7.6.2.4 Preliminary works	
7.6.2.7 Maintenance	
COST ESTIMATE / TRADE OFF STUDY	
RECOMMENDATION	
CONCLUDING REMARKS	
	COST ESTIMATE / TRADE OFF STUDY RECOMMENDATION

LIST OF FIGURES

Figure 4-1: Proposed Ash Disposal Sites
Figure 6-1: Typical Ash Slurry Discharge11
Figure 6-2: Typical Ash Distribution Channel11
Figure 6-3: Typical Penstock Decant12
Figure 6-4: H:H Lagoon Barrier System14
Figure 6-5: Phased Installation of Liner System for Site 115
Figure 6-6: Phased Installation of Liner System for Site 3A15
Figure 6-7: Phased Installation of Liner System for Site 3B16
Figure 6-8: Ash Dam Stage Curve for Site 122
Figure 6-9: Ash Dam Stage Curve for Site 3A22
Figure 6-10: Ash Dam Stage Curve for Site 3B23
Figure 6-11: Relocation of Services24
Figure 7-1: Construction of first ash berms28
Figure 7-2: Construction of first berm and step29
Figure 7-3: Wall building method29
Figure 7-4: Daywall step-in process
Figure 7-5: Roadway detail

ZITHOLELE CONSULTING

Figure 7-6: Da	ywall and nightwall construction34
Figure 7-7: Ty	pical walkway elevation38
Figure 7-8: Ty	pical piezometer detail39
LIST OF TAB	LES
Table 1: Ash (Characteristics
Table 2: Ash F	Production4
Table 3: Liner	Required for Site 116
Table 4: Liner	Required for Site 3A16
Table 5: Liner	Required for Site 3B17
Table 6: Phase	ed Installation of Liner System17
Table 7: Sizing	g of Clean Water Diversion Trench18
Table 8: Sizing	g of Solution Trenches18
Table 9: Leach	nate Flow Rates19
Table 10: Sizir	ng of Return Water Dam19
Table 11: Haz	ard Classification27
Table 12: Cap	ital Cost Estimate for Site 159
	ENDICES
Appendix A	Waste Classification Report
Appendix B	Phase I Geotechnical Investigation report
Appendix C	Conceptual Engineering Drawings

- Appendix D Design Calculations for Stormwater Management
- Appendix E Stage Curves for the 3 Options
- Appendix F Capital Cost Estimate Breakdown

1 INTRODUCTION AND BACKGROUND

The Camden Power Station is located approximately 15 km to South East of the town of Ermelo in the Mpumalanga province and has a production capacity of 1,600 MW. The first of its eight units was commissioned in 1967.

Half of the station was mothballed in 1988 with the rest of the station following suit in 1990. Increase in the demand for electricity lead to a decision being taken in 2003 to recommission the Camden Power Station. The first unit was re-commissioned in 2005.

As part of the re-commissioning process, Eskom commissioned a study to verify the stability of the existing ash facility to cope with the increase in ash production and disposal. The investigations concluded that the existing facility was suitable for re-commissioning. An investigation in 2010 by Nico Barnard however concluded that the existing ash dam had adequate capacity until 2014. The reduction in the life span of the existing dam is due to the poor quality of coal supplied to station and hence the increase in the ash content.

In June 2011 Eskom appointed Zitholele Consulting to conduct the EIA for the extension of the ash disposal facility at the Camden Power Station. This report documents the conceptual engineering design of the new facility to support the EIA application.

The scope of work for the conceptual designs will entail the following:

- Spatial modelling to determine the footprint.
- Design and layout of a leachate/drainage system.
- Design of surface/stormwater diversion/collection systems.
- Liner design, including a leak detection system.
- Design of ash return water dams.
- Layout for return water system.
- Layout of access roads.

The current ash disposal facility is operated safely and therefore it is anticipated that the current method of operations will be retained. In the project initiation stage the design team will meet with the operational staff of the Power Station to establish the following amongst others:

- The method of ashing, including method of mixing (i.e. is the slurry a combination of course and fly ash or are they pumped separately),
- The ratio of ash to water (consistency of slurry),

- Slurry density,
- Method of deposition, including number of discharge points,
- Number of compartments operated,
- Method of daywall construction,
- Preferred method of decant (i.e. via decant penstocks or barge pumps),
- Safe angle for the outer slope,
- Starter wall heights and slopes and
- Preferred rate of raise (m/year).

The existing ash water return dam is a natural Pan (De Jagers Pan). New Return Water Dams are proposed to comply with the latest legislation.

2 WASTE CLASSIFICATION

A classification of the ash produced at the Camden Power Station was undertaken by Jones and Wagener (Report No.: JW1664/11/D116) in November 2011. The report is attached to the appendices.

3 BASIS OF DESIGN

3.1 Assumptions and Limitations

The following assumptions were made in developing the conceptual design:

- The life of the power station was taken as 2014 to 2033.
- The existing method of mixing, transporting and placing of ash would be retained.
- The sizing of the ash return water dam was based on the water balancing.
- The soils on and around the power station are unsuitable for use in the liner construction.
- The existing ash return water dam (De Jagers Pan) is unsuitable for reuse and hence a new return water dam (RWD) is required.
- None of the options have taken into account the requirements for the closure of the existing ash dam.
- As the current facility is operated safely operating methods are to be retained, it will be assumed that for the conceptual designs no stability analysis or material testing is required.

- The requirements for clean and dirty water systems stipulated in Regulation 704 (Section 6) and Regulation 1560 of the National Water Act will be adhered to.
- The quality of the coal will not change and hence the volume of ash produced will not change.
- The quality of the ash and hence the water to ash ratio will not change from what is currently being placed on the existing ash disposal facility.

3.2 Ash Characteristics

Based on previous studies on the existing ash disposal facility and literature the following ash characteristics were assumed:

Parameter	Unit	Value
Specific Gravity	N/A	2.1
Dry Density	kg/m³	1,000
Slurry Density	kg/m ³	1,096
Ash to water ratio	N/A	1:5
Angle of friction	degrees	34

Table 1: Ash Characteristics

3.3 Grading

The fly ash varies from silty sand to silty clay using a triangular soil classification chart (US corps of Engineers). The grading curve exhibits a uniform particle size distribution. Crushed coarse bottom ash particle sizes ranges between 0.001 mm and 10 mm (Brackley et al, 1987). If not crushed, particles can be larger, possibly up 150 mm. These can be broken up during mixing and transport.

3.4 Stability

The stability of the residue and embankment walls must be ensured throughout the design life of the facility. No stability analyses were carried out for this study. However based on studies such as Brackley et al (1987) and stability analysis of the existing facility, the ash will be stable with an outer slope of 1:3. This is however dependent on a well-managed pool and drainage system.

The compacted earth starter walls with a crest width of 5 m, inner slope of 1:1.5 and outer operational slope of 1:3 and closure slope of 1:5 is considered stable founding conditions will have to be assessed later and modified if required.

Similarly the anticipated height of 40 m for some of the options must be evaluated as part of the next phase. A suitable and safe engineered wall and slope geometry must be determined.

The angle of friction of the ash at 20% moisture content and 1,000 kg/m³ bulk density (simulating loosely placed ash dump conditions) is 35° and zero cohesion (Smith).

Pozzolanic properties of the ash can influence its strength.

3.5 Capacity Requirements

Eskom commissioned an investigation in 2010 by Nic Barnard on the life span of the existing ash disposal facility. The investigation concluded that the existing facility will run out of capacity by 2014. As the power station is expected to be operational until the year 2033, a new facility will have to be constructed to provide disposal capacity for 19 years.

The Camden Power Station burns on average 5,000,000 tons of coal annually. The ash content in the coal is taken as 32%. The Unit Weight of the ash is taken as 1t/m³. The table below reflects the ash production for the life of the new ash disposal facility.

YEAR	COAL BURN (TON)	ASH PERCENTAGE	ASH PRODUCTION (TON)	ASH PRODUCTION (M ³)	CUMULATIVE ASH PRODUCTION (M ³)
2011	5,039,000	32	1,612,480	1,612,480	1,612,480
2012	5,545,000	32	1,774,400	1,774,400	3,386,880
2013	5,096,000	32	1,630,720	1,630,720	5,017,600
2014	4,989,000	32	1,596,480	1,596,480	6,614,080
2015	5,195,000	32	1,662,400	1,662,400	8,276,480
2016	4,832,000	32	1,546,240	1,546,240	9,822,720
2017	4,960,000	32	1,587,200	1,587,200	11,409,920
2018	4,997,000	32	1,599,040	1,599,040	13,008,960
2019	5,194,000	32	1,662,080	1,662,080	14,671,040
2020	4,829,000	32	1,545,280	1,545,280	16,216,320
2021	4,829,000	32	1,545,280	1,545,280	17,761,600
2022	4,829,000	32	1,545,280	1,545,280	19,306,880
2023	4,829,000	32	1,545,280	1,545,280	20,852,160
2024	4,829,000	32	1,545,280	1,545,280	22,397,440
2025	4,829,000	32	1,545,280	1,545,280	23,942,720
2026	4,829,000	32	1,545,280	1,545,280	25,488,000
2027	4,829,000	32	1,545,280	1,545,280	27,033,280
2028	4,829,000	32	1,545,280	1,545,280	28,578,560

Table 2: Ash Production

2029	4,829,000	32	1,545,280	1,545,280	30,123,840
2030	4,829,000	32	1,545,280	1,545,280	31,669,120
2031	4,829,000	32	1,545,280	1,545,280	33,214,400
2032	4,829,000	32	1,545,280	1,545,280	34,759,680
2033	4,829,000	32	1,545,280	1,545,280	36,304,960

5

3.6 Water Supply for Ashing

Water from the RWD, supplemented by blow down water, will be utilised in creating the ash slurry that is required for pumping to the ash disposal facility. The water requirement will be the same for the existing operations as it is assumed that the ash production, and disposal thereof, will be the same. Current operations will also continue.

3.7 Permeability

The permeability is largely dependent on the density of the ash on the facility. A value of 11.5 m/year for medium dense ash was assumed. This is the mean of 3 m/y (dense ash) to 20 m/year (loose ash) (Brackley et al, 1987) ($6.34*10^{-7}$ m/sec). This is required for calculating seepage from the pool to the leachate collection system.

3.8 Annual Rate of Rise

A preferred maximum rate of rise of 2.0 m/year was assumed for sizing the ash disposal facility. This is a manageable rate in terms of operating the facility using a cycled daywall construction method. Also, the 2 m/year rate of rise is below the accepted maximum for well drained disposal facilities.

3.9 Water Balance

A copy of the existing water balance for the Camden Power Station is attached to the appendices. The system does not generate excess water and hence no spillages are expected from the ashing system.

4 SITE SELECTION AND OPTIONS ANALYSIS

4.1 Description of Existing Site Conditions

The site of the existing ash disposal facility is situated outside the north western boundary of the power station and covers a total area of 120 hectares.

The study area is in a summer rainfall area with the annual precipitation in the 650 to 900 mm range with January being statistically the highest rainfall month. Average daily temperatures vary from 7°C minimum to 20°C maximum with extremes of -8° C and 32° C.

4.2 Site Selection Process

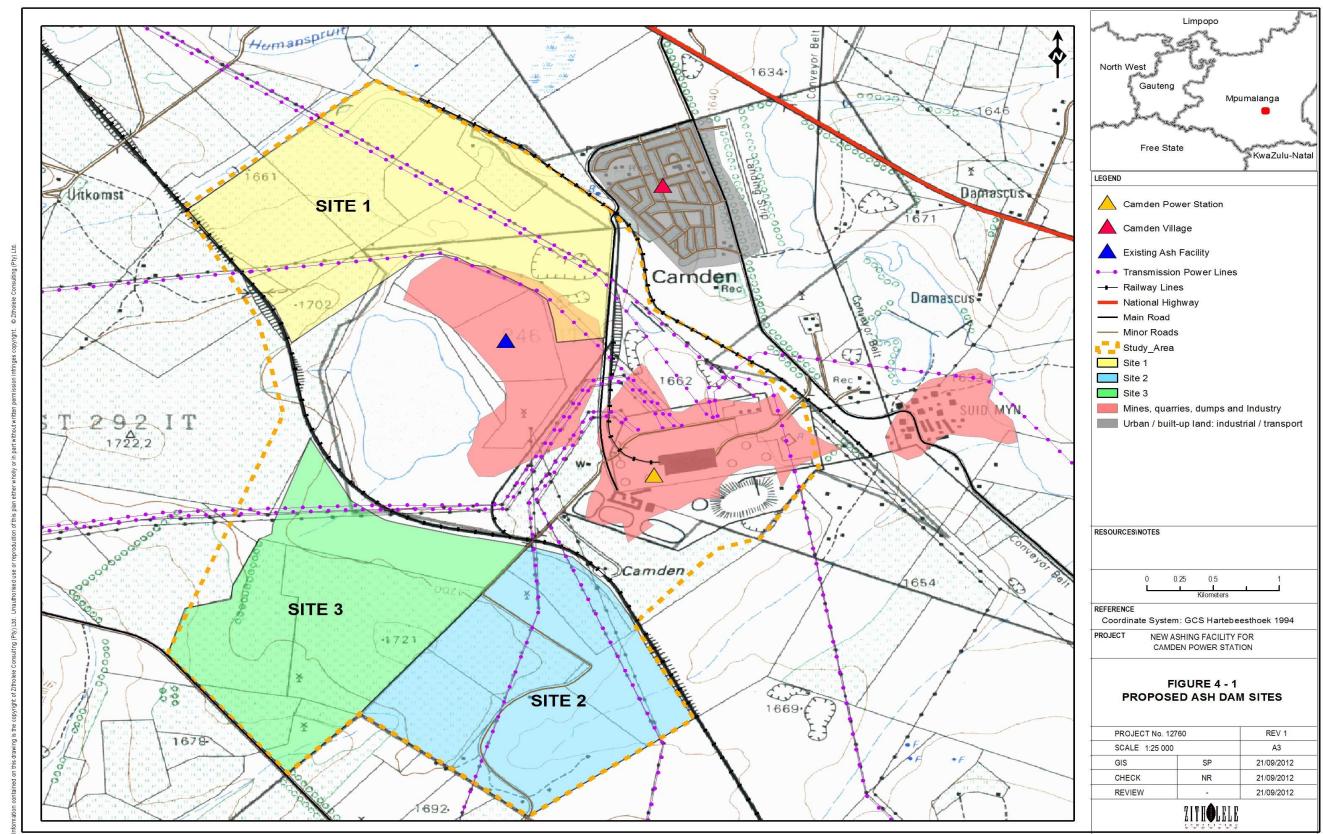
Four potential sites were identified initially using the following criteria:

- Ability to link into existing ash disposal facilities
- Must be within a 10 km radius from the existing disposal site and its associated facilities
- Had to have a minimum footprint area of 120 hectares

The four sites were identified during a workshop with all relevant stakeholders. These four sites were further evaluated using several "fatal flaw" identification criteria. Of the four sites, one was deemed to be fatally flawed and three were assessed further. This is discussed in detail in the Environmental Scoping Report. The proposed short listed sites are shown on Figure 4-1.

4.2.1 Description of Shortlisted Sites

The three sites chosen above are shown on the attached Site Locality drawing. All three sites are in close proximity to the existing site and are subject to similar site conditions as documented in the previous section.


4.2.2 Site 1

This site is located immediately north of the existing ash disposal facility and approximately 2.8 km north-west of the Camden Power Station. Approximately 300 m to the east of the proposed site is the village of Camden. The total area chosen is 272 hectares with the terrain sloping in the northerly direction (away from De Jagers Pan) at 2.6%. Vegetation cover consists of typical Highveld grass. The site is currently not used for any activities.

4.2.3 Site 2

The second site is located approximately 1.2 km south of the Camden power Station and immediately south of the South African Railways (SAR) servitude. Coal stockpiles and water storage facilities are located to the north and northwest of this area. The total area potentially available for development is 291 hectares. Natural drainage over the site is split in the north easterly and south easterly directions at approximately 4%. The site is currently undeveloped and there are no visible farming activities.

The site is situated within the headwaters of a non-perennial north flowing stream that flows into the Witpuntspruit approximately 3 km to the north-east.

Z\Projects\12670 - EIA for ash disposal facilities at Camden Power Station\Drawings\MXD\12670-Proposed-ash-dam-sites-Rev1- A3-19Sep2012.mxd

Figure 4-1: Proposed Ash Disposal Sites

4.2.4 Site 3

This site is located immediately south of De Jagers Pan and the SAR servitude, approximately 3 km south west of the Camden Power Station. The total area available for development is 322 hectares. A natural watershed divides the site, sloping in a north easterly direction towards De Jagers Pan and in a south easterly direction away from the Pan at a constant grade of 4%. Some form of agricultural activity is currently taking place at this site.

The eastern side of the site partially encroaches a drainage course of a small north easterly flowing non-perennial stream.

4.3 Engineering Geological Evaluation

An Engineering Geological Evaluation of the shortlisted sites was then commissioned. A report of the investigation and findings is attached as Appendix B.

The objectives of the evaluation were to determine the geotechnical and geological conditions that prevail beneath each of the three shortlisted sites and to provide an assessment of:

- the soil conditions at surface
- the nature and extent of near surface and outcropping strata
- existence of potential fatal flaws
- comment on any geotechnical problems that may impact upon the site selection
- recommendations for mitigation

A brief summary for each site is given below.

4.3.1 Site 1

The entire site appears to be underlain by inter bedded sandstone and siltstone of the Vryheid formation. No evidence of the presence of intruded sills and dykes were identified. Groundwater seepage was not observed on the site and no seepage was recorded in the test pits. The underlying soils consist of a shallow horizon of transported soils to an approximate depth of 500 mm which is overly ferruginised, jointed re-worked residual siltstone. Weathering is expected to extend to a depth of between 3 to 5 m.

4.3.2 Site 2

From the geological information available it is apparent that the site straddles the contact between the host sedimentary formations on the western side and an intruded dolerite sill to the east. The contact between the two geological lithologies is approximately along the perennial stream mentioned above. Due to the emplacement of the igneous material, the contact zone is typically fractured and differential weathering of the rock may result in deep residual soils occurring along the boundary. The underlying soils on the site consist of a shallow horizon transported silty and clayey soils to an approximate depth of between 500 mm and one metre, which is overly ferruginised, jointed re-worked residual siltstone. The depth of weathering is anticipated to extend to a depth of between 3 to 5 m.

Shallow ground water seepage was observed on the northern portion of the site and due to the topographic setting, significant seepage and surface runoff must be expected during periods of high rainfall.

4.3.3 Site 3

The entire site is appears to be underlain by inter bedded sandstone and siltstone of the Vryheid formation. No evidence of the presence of intruded sills and dykes were identified. Groundwater seepage was not observed on the site and no seepage was recorded in the test pits. However, it is likely that the area may be subjected to seasonal seepage. The underlying soils consist of a shallow horizon of transported soils to an approximate depth of 500 mm which is overly ferruginised, jointed re-worked residual siltstone. Weathering is expected to extend to a depth of between 3 to 5 m.

4.3.4 Geotechnical recommendations

On the basis of this evaluation, it was derived that Site 2 is not suitable for the intended development and should not be considered for further investigation. This is due to the following site characteristics:

- It falls within the headwaters of a stream
- Shallow groundwater seepage
- Located on the geological contact between the dolerite and host sedimentary rocks. Fractures and joints are associated with this area.

The remaining sites are both considered to be suitable for further evaluation. From a geological and geotechnical perspective, Site 1 is the preferred site.

5 WATER BALANCE

It is assumed that there will be insignificant change to the overall water balance as the return water to the plant will be the same as the current operations. The current ratio of mixing and the slurry discharge rate will be maintained.

6 CONCEPTUAL DESIGN

6.1 Site Access and Roads

The site will be accessed via extensions to the existing roads. An access road exists on the eastern side of the existing ash dam and a road leads to the return water dam to the west of it. The roads are gravel and are in fair condition. It is proposed to link the new roads to the existing roads. A 5 m step-in is proposed on the ash dam for vehicular access. A gravel base with a stabilised wearing course is proposed for the site access roads. All accesses to the new facility will be fully secured by means of 1.8 m high diamond mesh fencing.

6.2 Site Services

Apart from the access roads, no other services are envisaged for the new development. Pipelines are discussed in subsequent sections.

6.3 Ash Disposal

The ash slurry is pumped from the power station to a central distribution point situated at a high point on the southern perimeter of the ash disposal facility. From the distribution point the fly ash and the coarse ash are channelled through various open trenches and allowed to gravitate into the appropriate paddocks.

The ash disposal deposition method will be the same for each option. Initial deposition needs to be contained using a starter earth wall for each compartment. This initial deposition area is thus very small and grows as the compartment basin fills. Due to the small area the rate of rise is high initially. The ash does not have enough time to consolidate and gain sufficient strength to support itself. The starter wall is thus built to a height where the rate of rise is 2 m/year. A transition from open end deposition to a spiggotting or daywall method is required once the starter wall height is reached. This is required for two reasons.

- Firstly the ash cannot be gravitated to the upper compartment from the level of the distribution box.
- Secondly, at this point the ash may be used to build walls in an upstream direction.

Spiggotting in a cycle around the entire perimeter of each compartment allows the walls to be built in a stable way and enables proper pool and freeboard control.

Spiggotting allows for the slurry to be deposited in thin layers, which are then allowed to dry out and consolidate. A specified cycle time is allowed between the layers which is dependent on the geometry of the deposit and consolidation parameters. The deposit thus gains sufficient strength and rises continuously. An increase of 2 m in height over a year period was accepted for this study.

Figure 6-1: Typical Ash Slurry Discharge

Figure 6-2: Typical Ash Distribution Channel

Water will be decanted from the pool using penstocks. Up to two temporary penstock inlets per compartment in the initial phases will be required. A permanent penstock, central to each compartment will then be installed and operated for the life of the facility.

Figure 6-3: Typical Penstock Decant

In developing these options various operational aspects were assumed which help reduce risks associated with the operation of the ash dam and reduce potential environmental impacts. These include, inter alia:

- The pool will be operated at a minimum level; i.e. water will not be stored on the ash dam except during major storm events, in which case the water will be decanted as quickly as the penstock will safely allow. If water is stored on the dam the ash dam will need to be licensed as a water dam with the dam safety office according to regulation 1560 of the National Water Act (1998).
- More than one compartment allows flexibility in terms of deposition if a compartment requires maintenance.

A penstock consists of a vertical decant tower and an inclined horizontal conduit. The penstock's function is to remove the free water from the top surface of the ash disposal facility, thereby recovering the water for re-use in the next cycle of ashing. The penstock has been designed to decant all the water from the ashing operations and is also capable of removing the storm water from a 1 in 50 year 24 hour storm in 96 hours off the facility with one penstock functioning, or 48 hours with two penstocks functioning.

Penstocks are a very important part of an ash disposal facility operation but are notoriously unreliable. For this reason most slimes dams have two penstocks. Should a penstock fail and need replacement, ashing could continue without disruption using the other penstock. There are currently two penstocks on either side of the dividing wall of the ash disposal facility. Theoretical calculations show that the concrete penstock rings can safely carry the forces resulting from an ash height of 24m. The rings will experience crushing failure from 35m of ash onwards.

In order to reduce the risk of cavity formation in the future, it is important to double wrap the vertical sections of the penstock decant tower with a U24 geotextile once the rings have been placed.

6.4 Pipelines

Once the existing ashing facility has reached its design capacity, the slurry pipeline will be discontinued to this discharge point. The pipeline will be extended from the existing pipeline to the new facility by a 6 mm thick, 350 mm diameter steel pipeline and approximately 2 kilometres long to the preferred site. This will be installed above surface and fixed to concrete plinths.

The existing return water pipeline from De Jagers Pan will need to remain in place after the existing facility has reached its design capacity. This will be required in order to manage stormwater that either runs off the contaminated terrain and side slopes of the facility or any stormwater that recharges through the facility before it is capped. A new return water pipeline will need to be installed from the return water dam back to the power station. A new 400 mm diameter High Density Polyethylene (HDPE) pipeline with a rating of PE80 PN 12.5 approximately 5 km long is proposed for the return water pipeline. This pipeline will be buried within a trench approximately 1.5 m deep.

6.5 Liner System

6.5.1 Liner Design

It should be noted that wet ashing is not a new solution for ash disposal and Eskom has developed this technology for a number of their power stations between 1960 and 1980 however, but the requirements for lining of the ash disposal facilities is new. This poses new challenges to the operating methods of ash disposal facilities. With the introduction of a liner system the management of compartments becomes critical, as it will not be practical to line the entire facility on initiation as the risk of liner damage will be high. The number and sequencing of compartments will have to be discussed and agreed with the operational staff and Eskom's technical managers/engineers as this impacts the cash flow of the project.

The interaction between the liner and the ash also needs to be investigated (both chemically and structurally). The Waste Classification report, attached to the appendices, proposes a Class C barrier as per the DEA's regulations (not promulgated as yet) for both the codisposal as well as mono-disposal of ash. However, DWA Minimum requirements indicates that a H:H Lagoon Barrier System is required and this has been included in the design. The typical cross section of the H:H Lagoon Barrier System is given in Figure 6-4: H:H Lagoon Barrier System

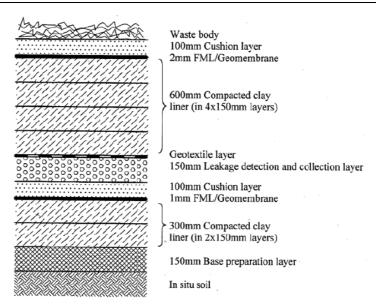


Figure 6-4: H:H Lagoon Barrier System

An HDPE sheet is used for the geomembrane indicated in Figure 6-4 above. The thickness of the HDPE sheet is indicated in the figure. River sand is proposed to be used for the cushion layer. Grade A4 bidim is proposed for the geotextile layer.

The liner system also calls for a 900mm clay layer. Large quantities of clay are not available on site. Importation of clay is possible however may not be economically viable. The following are alternatives to the clay liner:

- HDPE
- Geosynthetic Clay liner (GCL)
- Bauxite

These options need to be investigated during detailed design of the facility.

6.5.2 Liner Installation

For each option, the footprint area was determined at each 8 m height interval. These are shown in the three figures below. This was done in order to propose an optimal way of constructing the liner system for the facility without creating delays in deposition of the ash. It was assumed that the installed liner system must create adequate storage capacity for at least three years of operation.

This proposed exercise is carried forward to the staged costing of the facility and the applicable operating costs.

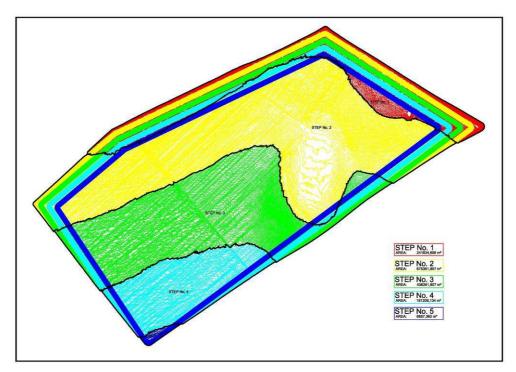


Figure 6-5: Phased Installation of Liner System for Site 1

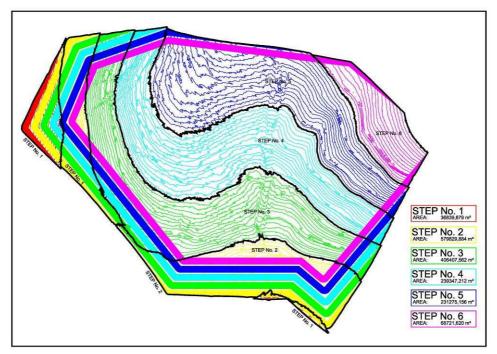


Figure 6-6: Phased Installation of Liner System for Site 3A

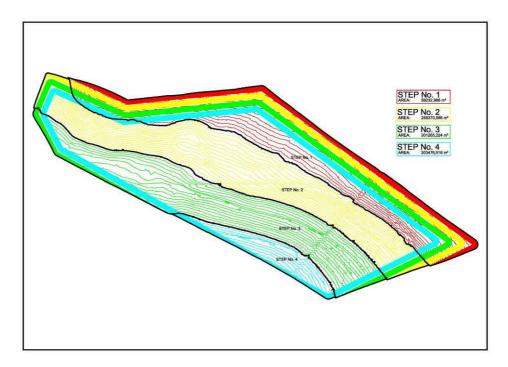


Figure 6-7: Phased Installation of Liner System for Site 3B

Each of the options was assessed in terms of the above methodology. The tables below summarise what is indicated graphically above and puts it into perspective by showing a time line.

Step No	Elevation	Footprint	Acc. Foot	Volume	Ye	ar
	mamsl	m²	m²	m³	From	То
						2014
1	1669.3	241,800	241,800	468,700	2014	2014
2	1677.3	675,400	917,200	4,425,200	2014	2015
3	1685.3	438,300	1,355,500	12,570,500	2015	2020
4	1693.3	181,200	1,536,700	22,192,100	2020	2027
5	1701.3	6,800	1,543,500	31,134,600	2027	2032

Table 3: Liner Required for Site 1

Table 4: Liner Required for Site 3A

Step No	Elevation	Footprint	Acc. Foot	Volume	Year	
	mamsl	m²	m²	m³	From	То
						2014
1	1673.5	36,840	36,840	98,292	2014	2014
2	1681.5	579,830	616,670	906,215	2014	2014
3	1689.5	406,408	1,023,078	3,161,205	2014	2014
4	1697.5	239,347	1,262,425	6,876,435	2014	2017
5	1705.5	231,275	1,493,700	12,080,773	2017	2020
6	1713.5	68,722	1,562,422	17,379,228	2020	2023

Step No	Elevation	Footprint	Acc. Foot	Volume	Ye	ar
	mamsl	m²	m²	m³	From	То
						2014
1	1693	58,233	58,233	934,204	2014	2014
2	1701	258,371	316,604	3,950,256	2014	2015
3	1709	301,265	617,869	8,731,753	2015	2018
4	1717	303,477	921,346	13,995,091	2018	2021

Table 5: Liner Required for Site 3B

In order to achieve liner preparation for a minimum of three years, all three options can be achieved in three phases. However, due to the small quantities of the remaining footprint area, it is proposed that all three options be undertaken in two phases. This is summarised in the table below.

Table 6: Phased Installation of Liner System

Site No	Phase	Liner Area m ²
1		1,355,459
	II	188,066
3A	I	1,262,425
	II	299,997
3B	I	617,869
	II	303,477

There are several other methods of obtaining a phased approach of the liner installation. This may include determining the footprint area of the ash disposal site on a yearly basis. This will not be addressed at conceptual stage but should be looked at during preliminary design phase. A methodology for the phased approach is only demonstrated here.

6.6 Storm Water Management

For each of the feasible proposed sites, an upstream lined channel shall be constructed to divert clean water around the proposed facility and discharge into the natural environment. The channel will be sized to accommodate the 1 in 100 year storm event. Each site is positioned such that the area between the natural watershed and the proposed facility that is not impacted by ash is a minimum. The proposed sizes of the trapezoidal channels, with side slopes of 1.5:1 (h:v) and base width of 1 m, required are listed in the table below:

Site No	"Clean" Area (ha)	Flow Rate (m ³ /s)	Channel Length (m)	Channel Height (mm)	Channel Top Width (mm)
1	30.1	11.0	2100	800	3400
ЗA	13.1	10.1	1700	700	3100
3B	28.2	11.4	1800	700	3100
3B	27.5	10.4	1200	700	3100

 Table 7: Sizing of Clean Water Diversion Trench

The channels will be concrete lined in order to facilitate cleaning. The slope of the channels for Sites 3A and B are marginally steeper than that of Site 1.

Dirty water run-off generated off the side slopes will drain into a suitable sized "solution trench" running around the facility. These trenches will be designed to receive and convey run-off generated after a 50 year storm event. The solution trenches will also receive discharge from the leachate collection system and this flow will also be required to be included in its sizing. Conceptual sizes of the trapezoidal channels, with side slopes of 1.5:1 (h:v) and base width of 1 m, required are listed in the table below:

Site No	Channel ID	Flow Rate (m ³ /s)	Channel Length (m)	Channel Height (mm)	Channel Top Width (mm)
1	A	3.7	850	500	2,500
	В	8.3	1,900	700	3,100
	С	14.4	900	900	3,700
	D	18.6	1,650	1,000	4,000
3A	A	6.3	1,700	500	2,500
	В	13.7	800	800	3,400
	С	5.9	580	500	2,500
	D	3.4	730	500	2,500
3B	A	7.5	1,300	600	2,800
	В	2.6	400	400	2,200
	С	6.6	700	600	2,800
	D	16.9	1,150	900	3,700
	E	22.9	570	1,000	4,000
	F	10.5	350	700	3,100

Table 8: Sizing of Solution Trenches

6.7 Leachate Collection and Management

The leachate collection system will comprise of a toe drain as well as a main drain system. A leachate collection system will be designed such that a maximum leachate head of 300

18

mm will be maintained over the liner system. The leachate will be drained to the solution trench, discussed below, which ultimately discharges to the RWD.

The leachate collection system will be designed using a cuspated drain with geomesh above to ensure structural integrity of the system. This will be located above the liner system. The permeability, as discussed in a previous section, varies between 3 to 20 m per year. Based on this, a conservative drainage rate of 5mm/h was assumed in order to determine the size of cuspated drain required for the leachate collection system. Conceptual flows draining to the respective return water dams via the solution trenches indicated in the previous section is indicated in the table below:

 Table 9: Leachate Flow Rates

Site No	Max Area for Leachate (ha)	Flow Rate (m³/s)
1A	154	2.2
3A	101	1.4
3B	92	1.3

6.8 Return Water Dam

All run-off generated within the footprint area of the facility will be captured in the new Return Water Dam (RWD). Although Government Notice 704 (GN704) stipulates that the RWD shall be sized to accommodate the 50 year 24 hour storm event, this is based on the assumption that the RWD is empty prior to this storm event. However, this is rarely the case and a more realistic approach should be adopted. It is Best Practice to undertake continuous modelling (a daily time step model) of the system in order to ascertain a more realistic capacity of the dam. This method takes into account the operating philosophy of the facility as well any abstractions from the dam including evaporation. As this report is of a conceptual nature, this will not be undertaken here but at preliminary design stage. In order to simulate this, an assumption was made that the RWD will be 25% full prior to the 1 in 50 year storm event. The table below gives the proposed sizes of the RWD for each of the proposed options for this method which complies with the requirements of GN704

Table 10:	Sizing of	Return	Water Dam
-----------	-----------	--------	-----------

Site No	"Contaminated" Area (ha)	Crest Height (mamsl)	RWD Size (m ³)
1A	198.0	1663.65	174,800
3A	162.3	1669.80	153,400
3B	214.5	1682.55	180,600

Stormwater captured at the Ash disposal site pool level will be conveyed to the RWD via penstocks. The penstocks and the discharge pipes will be design such that the flow is attenuated at the pool level and drained over a 24 hour period (with two penstock inlets in operation) to the RWD.

A silt trap will be installed to remove silt from the decanted water before is enters the lined return water dam. The amount of silt in the water will need to be determined and will provide input into the detailed sizing and cleaning frequency of the silt trap.

The positions of the RWD for the various options are shown on the General Arrangement drawing attached to the appendices. A well prepared and compacted base is essential for the liner. The liner requirement for the Return Water Dam is the same for the ash facility. The liner design is discussed in the previous sections.

A provisional position for the RWD is shown for the options. Refinement to fit within the property boundary and accommodate the silt trap at the inflow section will form part of the next design phase.

6.9 Construction Methods and Sequencing

The deposition method will be the same for each option. Initial deposition needs to be contained using a starter earth wall for each compartment. This initial deposition area is thus small and grows as the compartment basin fills. Due to the small area the rate of rise is high initially. The ash does not have enough time to consolidate and gain sufficient strength to support itself. The starter wall is thus built to a height where the rate of rise is 2.0 m/year. A transition from open end deposition to a spiggotting or daywall method is required once the starter wall height is reached. This is required for two reasons. Firstly the ash cannot be gravitated to the upper compartment from the level of the distribution box. Secondly, at this point the ash may be used to build walls in an upstream direction. Spiggotting in a cycle around the entire perimeter of each compartment allows the walls to be built in a stable way and enables proper pool and freeboard control.

Spiggotting allows for the slurry to be deposited in thin layers, which is then allowed to dry out and consolidate. A specified cycle time is allowed between the layers which is dependent on the geometry of the deposit and consolidation parameters. The deposit thus gains sufficient strength and rises continuously. An increase of 2.0 m increase in height over a year period was accepted for this study.

Water will be decanted from the pool using penstocks. Up to two temporary penstocks per compartment in the initial phases will be required. A permanent penstock, central to each compartment will then be installed and operated for an extended period.

A silt trap will be installed to remove silt from the decant water before is enters the lined return water dam. The amount of silt in the water will need to be determined and will provide input into the detailed sizing and cleaning frequency of the silt trap.

The positions of the RWD for each option are shown on the attached General Arrangement of the proposed works. The dam wall crest height for each of the options is given in the previous section. A well prepared and compacted base is essential for the liner. It is highly probable that a large amount of clay will need to be imported dependant on the costs. An alternative using a GCL should be considered. This will place the liner further below the NGL which could necessitate a complex drainage system below it to prevent uplift from underground water.

A provisional position for the dam is shown for the options. Refinement to fit within the property boundary and accommodate the silt trap at the inflow section will form part of the next design phase

In developing these options various operational aspects were assumed which help reduce risks associated with the operation of the ash dam and reduce potential environmental impacts. These include, inter alia:

- The pool will be operated at a minimum level; i.e., water will not be stored on the ash dam except during major storm events, in which case the water will be decanted as quickly as the penstock will safely allow. If water is stored on the dam the ash facility will need to be licensed as a water dam with the dam safety office according to regulation 1560 of the National Water Act (1998).
- The return water dam, containing dirty water, should not spill into the natural clean water environment. For this study it is assumed that a spill once in 50 years is acceptable. This conforms to the DWAF regulation 704 for mine waste disposal.
- More than one compartment allows flexibility in terms of deposition if a compartment requires maintenance.

6.10 Capacity Modelling for Selected Sites

Three sites were short listed after the initial workshop which was further subjected to a geotechnical assessment. Two of the sites were deemed feasible for further consideration following this assessment. One of the sites was eliminated due to underlying dolorites and fractures which compromised the bearing capacity of the proposed ash disposal facility footprint.

The proposed ash disposal facility shall have an overall capacity of 28.3 million m³ for an operational period from 2014 to 2033 (19 years including contingencies). A maximum height of 40 m has been adopted for the modelling exercise. A step height of 8 m with a benching

(roadway) of 5 m was used. Apart from the starter wall, all side slopes were taken as 1 in 3. The starter wall shall have an external side slope of 1 in 3.

An area-height method was used to model the capacity for the ash dam options. This includes the capacity within the compartment basin and the volume above this as the facility crest plan area diminishes. In order to evaluate the three options the height of the starter walls (and the respective earth volumes) was determined from a stage curve of the compartment basin. Thereafter the height to contain the total volume was determined. The capacity is based on 1 in 3 overall side slopes and a preferred maximum rate of rise is 2 m/year.

The stage curve for each option is given below. The stage curve does not taken into account the shape of the beach and this should be considered during the preliminary design phase of this project.

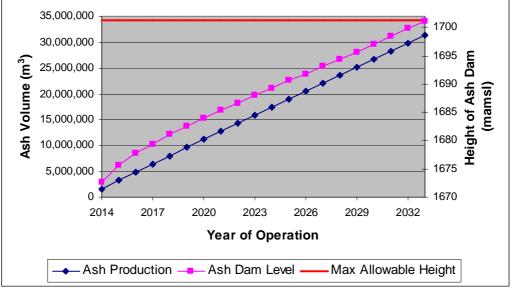


Figure 6-8: Ash Dam Stage Curve for Site 1

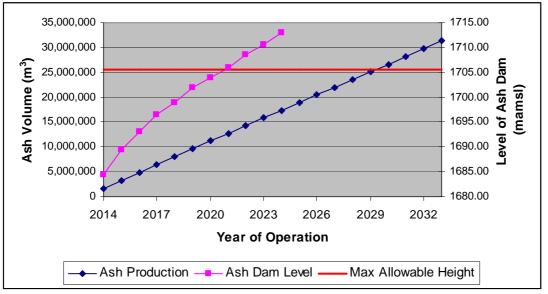
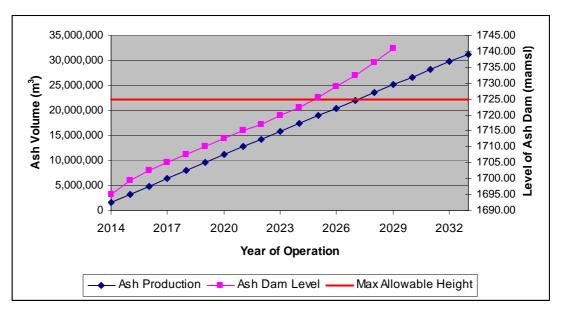
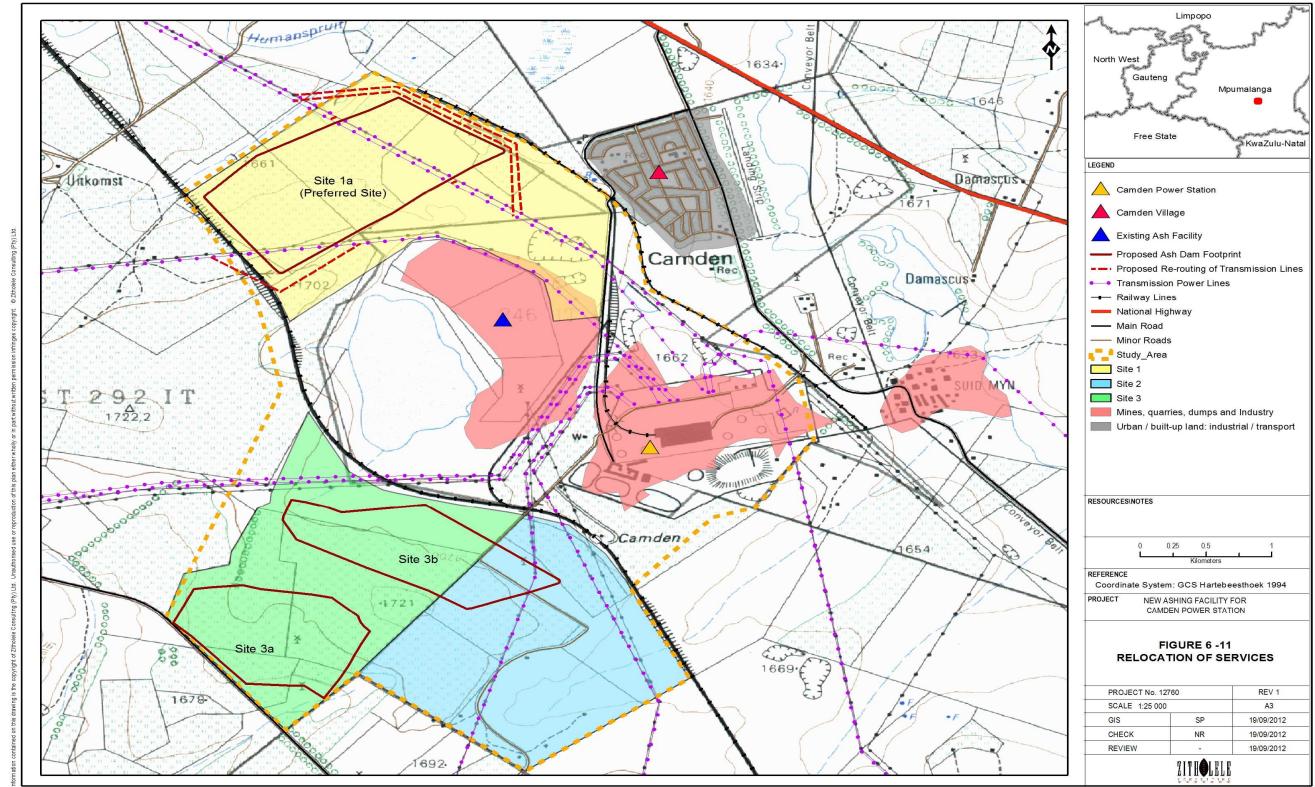



Figure 6-9: Ash Dam Stage Curve for Site 3A

ZITHOLELE CONSULTING

Figure 6-10: Ash Dam Stage Curve for Site 3B


The modelling indicates that only Site 1 is capable of achieving the height restrictions within the available footprint. Sites 3 A and B cannot accommodate the ash production over 19 years without significantly going over a maximum allowable height of 40 m. The model was run for Sites 3A and B up to a maximum height of 48 m and 56 m respectively. In both cases the total ash production could not be achieved, even at these heights, so the model was terminated without achieving the total required ash storage.

6.11 Relocation of services

The preferred site, Site 1, was revisited in order to determine services that may need to be relocated. There were no pipelines visible on the footprint of the site and the roads were restricted to informal tracks. This will not need relocation. Two sets of transmission lines will need realignment around the facility. A proposed route for realignment is shown on Figure 6-11.

There is sufficient area around the new facility to relocate this service.

23

Z\Projects\12670 - EIA for ash disposal facilities at Camden Power Station\Drawings\MXD\12670-Relocation of services-Rev1- A3-19Sep2012.mxd

Figure 6-11: Relocation of Services

7 OPERATION AND MAINTENANCE PLAN

7.1 Introduction

This Operations Manual is to be used for the correct and cost efficient operation and maintenance of the ash disposal facility/ies at Camden Power Station. For purposes of this report, the site referred to is Site 1, the preferred site for the ash facility.

The Operations Manual is intended to inform and guide Camden's ash disposal facility operations and maintenance personnel on the requirements for the operation and maintenance of the ash facility. The design philosophies are described to assist the Operator to understand the reasons for having to carry out certain actions.

The Operations Manual first describes the philosophy of the design of the various components of the ash disposal facility and then details the requirements for the operation and maintenance of the various components. It also details the requirements for monitoring of the ash disposal facility and return water dams, maintenance procedures, rehabilitation of the facilities and environmental considerations. Lastly the legal and safety aspects relevant to the ash disposal facility are summarized.

7.2 Code requirements in terms of SABS 0286

SABS 0286 is the code of practice that regulates deposition practices of all mine residues in South Africa. This code has been introduced after the Merriespruit disaster where many people lost their life during the failure of a gold tailings dam. The code clearly defines accountabilities for the safe operation of a tailings facility. The ash disposal facility/ies at Camden power station will be operated in accordance with the SABS 0286. All references in the code to The Owner or The Mine Manager shall be read to mean The Power Station Manager. The following points from the code are highlighted for ease of reference:

7.2.1 Management

Refer to Clause 6 in the code.

A management framework, based on the ISO 14000 system shall be followed and will include the following components:

- Policy making
- Operation
- Setting of objectives
- Operation

- Conformance assessment
- Management review
- On-going improvement

7.2.2 Operational phase appointments

Refer to Clause 5.2.6 in the code.

The Power Station Manager shall appoint a manager to manage the ash disposal operation. This person is referred to as the Project Manager in the Operation and Maintenance Manual. The Project Manager is to appoint an appropriately qualified professional person (the Professional Engineer) to advise on the structural stability of the ash disposal facility and a second appropriately experienced person (the Contractor) to operate this facility.

The Professional Engineer is an appropriately qualified and experienced professional civil engineer in the field of mine residue deposits, who is registered with the Engineering Council of South Africa as a professional engineer or technologist.

7.2.3 Facility audit

Refer to Clause 6.4.4.6 of the code.

Audits are to be performed annually by a professional engineer for all facilities with a high hazard classification.

7.2.4 Hazard classification (See clause 7.4 of the code)

Refer to Clause 7.4 of the code.

An ash disposal facility can be given a hazard classification based on the criteria stipulated in SABS Code No 0286. The zone of influence is defined as the zone which will be affected by a failure of the tailings facility. This code provides the following three criteria to be used in determining the zone of influence for any wet tailings facility:

- A distance of 5H (H=height of the ash disposal facility at the point of consideration) upstream of the ash deposit or the distance where the natural ground reaches H/2 above the toe of the facility (whichever is the lesser).
- A distance of 10H on sides parallel to the slope of the ground.
- A distance of 100H on the downstream face of the facility.

The hazard classification is based on a number of criteria and is based on the table below:

Workers	Property (Millions)	Depth to underground mine workings	Classification
<10	0-R2	>200	LOW
11-100	R2-R20	50 m -200 m	MEDIUM
>100	>R20	<50 m	HIGH

Table 11: Hazard Classification

Please note the workers on the ash disposal facility are to be excluded from the total number of workers in the table above. The property includes only third party property and Eskom property should therefore not be included in the final analysis. The zone of influence, in the event of a failure, is to the north west of the site due to the topography of the site. There are between 1 and 10 residents in the zone of influence. There are less than 10 workers in the zone of influence. There is no underground mine established below the ash disposal facility. Based on this, the preferred ash disposal site at Camden, Site 1, will be classified as a **low hazard** facility.

Site 3B is considered **high risk** as it is located in close proximity and upslope of a major railway line. In the event that a facility located in this site fails, the result will be damages in excess of R20 million.

Site 3A is considered **medium risk** as it is located in close proximity and upslope of an arterial road. In the event that a facility located in this site fails, the result will be damages will be in between R2 million and R20 million.

7.2.5 Operating manual

Refer to Clause 10.4.5 of the code.

The operating manual is to be produced by a professional engineer for medium and high hazard residue deposits. The manual should address the following areas:

- Process circuit
- Water management plan
- Method of operation
- Environmental monitoring and auditing

- Safety surveillance
- Emergency response
- Decommissioning phase
- 7.3 Operation of the ash dam

7.3.1 Commencement of operations

The main objectives during the initial disposal of ash shall be:

- To cover all of the main and ancillary filter drains with a layer of coarse ash without washing away the top layer of the filter drains.
- To raise the day wall as quickly as possible.
- To train the operations staff to build the ash disposal facility in a controlled and safe manner.

7.3.1.1 Starter walls

To enable ash to be placed and contained within the required boundaries of the day wall, starter walls must be built. These are made by taking earth from the surrounding area and forming an earth wall against which ash can be placed. Refer to Figure 7-1and Figure 7-2.

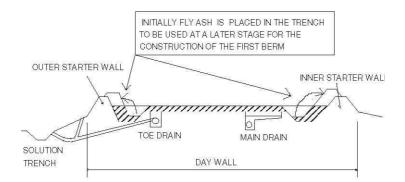


Figure 7-1: Construction of first ash berms

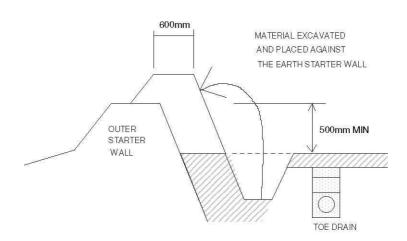


Figure 7-2: Construction of first berm and step

7.3.1.2 The initial covering of the main filter drain:

The initial method of covering the main and toe drains with ash is very important. The prime objective in covering these filter drains is to ensure they are covered with coarse ash to prevent the top layer of the filter drain from being eroded by the initial slurry flow.

7.3.1.3 Initial deposition of fly ash on the daywall

The prime objective in the initial deposition of fly ash on the day wall is to ensure that the day wall rises rapidly in the early stages so that a freeboard of at least 1 m above the night paddock is achieved and maintained. The freeboard must also not be less than 500mm above the 1:50 yr. maximum flood level (See Figure 7-3). The 1:50 yr. maximum flood level will be between 0.85 m and 1.75 m above the pool level. The actual rise in pool level is a function of the pool area. The Contractor may assume that the pool will rise by one metre under current conditions. The pool level must therefore be maintained at a level, which is at least 1.5 m below the lowest point plus the shape and slope of the area which surrounds the pool (See inside the day wall).

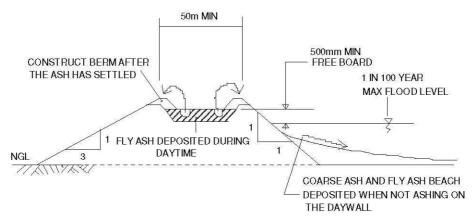


Figure 7-3: Wall building method

The day wall must be built using fly ash only. The small berms that have to be built to provide capacity for the next deposition of slurry shall be built with ash that is just dry enough to work with. This criterion will ensure that the pozzolanic action (cementing action) available in the fly ash takes place, thus reducing the future erodability of the side slope of the facility by both wind and water. If the ash is too dry, the chemical bonding will not take place and the wall will be much weaker and more permeable. Sludge from the power station may not be mixed with fly ash that is intended for use in day wall construction.

A competent backactor machine operator will be able to build 250 m of these berms in 8 hours. Compaction with a small vibratory roller will improve the pozzolanic bonding and reduce the permeability of the sides of the ash disposal facility thereby reducing its erodability. The crest width of the small berms shall not be more than 600 mm, as wider steps are unnecessary and increase the cost of running the backactor per tonne of ash deposited considerably. Wider steps require more labour and also result in greater wear on the vibratory roller. The optimum height of the step is a function of the size of the vibratory roller and the type of ash, and has to be determined on site. The berm must however be at least 500mm above the final level of the placed ash to allow for sufficient freeboard during high intensity storm conditions

7.3.1.4 Initial wall building

The prime objective of the initial wall building is to create sufficient freeboard and to build the walls in the correct place and in the correct way. Freeboard is the term used to describe the height difference between the maximum operating level of fluid in a structure and the overtopping level for that structure. Freeboard on an ash disposal facility is defined as the difference in level between the night paddock and the day wall. The minimum freeboard required by law on slime dams is 0,5m above the high water level of the dam after a 1:50 year 24hr storm. However, there are potential benefits if the freeboard is more than 0.5 m, since far more storage will be available in the case of a labour strike, machinery breakdowns or a major storm. The actual rise in the water level during a major storm depends on a number of factors such as the run-off coefficient of the top surface and the ratio of the catchment area to that of the pool area. The water level can rise between 850mm and 1750mm depending on the circumstances mentioned above. See Figure 7-3 and the more detailed explanation in the previous section. It is essential that the wall building grow above the main starter wall quickly to create this required freeboard.

- 1. BUILD DAYWALL UNTIL MIN WIDTH OF 50m IS REACHED
- 2. ON INSIDE FACE STEP IN 36m AND BUILD STEP TO RETAIN ASH
- 3. FILL WITH FLY ASH TO MAINTAIN FREEBOARD

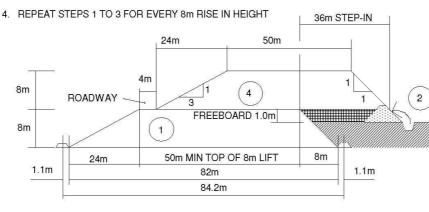


Figure 7-4: Daywall step-in process

The toe of the day wall must always tie in with the starter wall to ensure that the ash covers the toe drain and that the capacity of the ash disposal facility is maximized. Thus the steps of the ash disposal facility will not necessarily be constructed parallel to the starter wall but will bend outwards to meet the outer starter wall at the same elevation. The day wall berms or steps shall be constructed with ash that is just workable (not so wet that it cannot be worked with and not so dry that the bonded/hardened ash has to be broken) to ensure that pozzolanic and chemical bonding takes place. If the ash used for berm construction is too dry or has to be broken, the berms or steps will be susceptible to erosion and piping. The compaction of the steps with a vibratory roller will increase the density of the ash and enhance the resistance to erosion and piping.

Generally the steps should be constructed in such a way that the side of the ash disposal facility has a slope of 1 in 3 (1 metre rise for 3 metre step in), but with additional provision for access roads. The minimum width of the day wall is 50m and it must be stepped in when the minimum width has been reached.

Cross sections of the proposed facility are shown on the conceptual engineering drawings attached to the appendices.

7.3.2 Normal operation of the ash disposal facility

In any wall building operation it is essential to ensure that:

- The correct wall building procedures are being followed
- Adequate access for operation and rehabilitation is provided
- Planning and preparation for the step-in's are carried out timeously

• The total amount of wall building is optimized

7.3.2.1 Wall building

The correct wall building procedures as mentioned above should be used. As the ash disposal facility grows the day wall width will reduce to the point where there will be too much slurry to handle on the day wall. At this point it will then be necessary to step in the day wall. Typical sections showing how the step-ins will occur are shown on the conceptual engineering drawings attached to Appendix C.

Initially the day wall is 82 m wide. Generally the day wall step-in occurs where the day wall width has reduced to 50 m. The step in creates a new width of 87 m, including an allowance for a 5 m wide road.

The procedure for forming the step-ins is as follows:

- 1. On the inside face of the day wall step-in 36m and build up berm to a level at least 0.5m above the level of the day wall.
- 2. On outside face of the day wall step-in 4m for road access.
- 3. Fill with fly ash in separate lifts and maintain freeboard until width of day wall has reduced to 50m once again.
- 4. Repeat steps 1, 2, and 3 for each 8m rise in height.

This procedure will ensure that there is always sufficient capacity for daytime slurry operations and allow adequate access onto the facility.

The number of walls built to control and guide ash flow shall be kept to a minimum as the cost of operating the facility is almost directly proportional to the cost of wall building.

The 5m roadways as described above shall be covered with ferricrete gravel to reduce dust blow-off. They shall also be sloped inwards (towards the facility) with a drainage channel or take down chute leading the water down to the next roadway as shown in Figure 7-5: Roadway detail. This will reduce the amount of water running down the slopes and thereby minimize soil erosion.

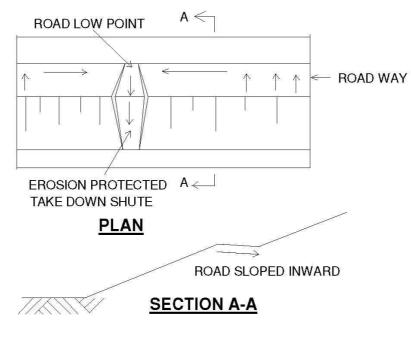


Figure 7-5: Roadway detail

7.3.2.2 Construction specification for the daywall, night-wall and innerwall sections

- 1. The station has four ash delivery cycles. Fine ash is transported daily at 7 AM and 7 PM and coarse ash at 3 AM and 3 PM. Camden's ash consists of 80% fine and 20% coarse ash.
- 2. The perimeter wall of the ash disposal facility is divided into two sections. The first section is called the day wall and runs along the outer perimeter of the facility. The day wall has a minimum width of 50 m and is used for transporting only fine ash slurry and only during daylight hours. Only fine ash from the 7 AM ashing cycle is therefore transported along the day wall. The second section is called the night wall and runs between the day wall and the inside of the facility. The night wall channels all the ash from both coarse ash cycles and the 7 PM fine ash cycle. The day wall therefore transports 40% and the night wall 60% of the station's total ash production. The rate of rise will be the same for both walls provided that the night wall has a width equal to 1.5 times that of the day wall. The daywall should always be 250 mm above the nightwall to further reduce the risk of an ash spillage during night hours. See Figure 7-6 below:

33

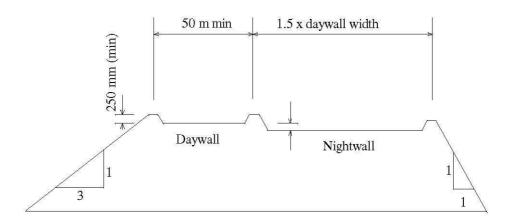


Figure 7-6: Daywall and nightwall construction

- 3. The floors of both the daywall and the nightwall are constructed to slope towards the inside of the facility. This will force the rainwater to drain along the inner berm thus avoiding any risk of erosion of the outer berm during a major storm.
- 4. All berms are constructed from relatively fresh ash that has been deposited a maximum of fourteen days prior to their utilisation. Ash at an age of more than fourteen days is too dry and must first be wetted up through at least two ashing cycles before being used in constructing the new berm.
- 5. Material for all berms is excavated at least one metre inward from the toe of the new berm.
- 6. Berms are compacted with the excavator bucket in layers not exceeding 200 mm. The Project Manager may specify a different compaction specification in areas where the standard method of compaction fails to achieve the required results.
- 7. The side slope for all berms will be at least 1:1 except for the outside slope of the outer daywall berm which will be at least 1:3.
- 8. The crest width of every berm will be at least 1 m for all the straight sections of the daywall.
- 9. The crest width will be increased to 2 m where the berm changes direction by more than 10 degrees. The transition distance from a 1 m crest width to a 2 m width will be at least 15m. The crest width will remain at 2 m for at least 10 m before being reduced back to 1 m over another transition distance of at least 15 m.
- 10. Any erosion of the berms will be repaired as soon as possible and no ash will be transported along a channel where the crest width of any of its berms has been eroded by more than 30% of the original width.

34

- 11. The freeboard of the berms shall be at least 250 mm above the ash level in the channel at all times.
- 12. An innerwall acts as a division wall between different pool areas inside the facility. The innerwall has a minimum width of 30 m and is used for transporting both coarse and fine ash slurry to various positions on the facility.
- 13. Berms for the innerwall have the same dimensions as the berms for the nightwall.
- 14. The ash slurry gravitates from a high point (distribution point) on the south side of the ash disposal facility along various distribution channels towards starting points on the daywall, the nightwall or the innerwall.
- 15. The ash slurry further gravitates along the day/night or innerwall sections to a deposition point from where the ash is allowed to flow into the facility and to beach towards the penstock intake structure.
- 16. A beach slope of approximately 1:500 along the centre lines of the day/night and innerwalls will ensure a continuous capability to gravitate ash along these routes.
- 17. Ash slurry will be channelled in such a way that the extreme fine portion of the fine ash be deposited away from the highest section of the facility. The low point in the channel should therefore never coincide with the high point on the ash disposal facility.
- 18. The rate of rise for the day/night and innerwalls shall not exceed 6 m per annum. (The maximum permissible rate of rise for the dam as a whole is 4 m per annum)
- 19. The level difference between adjacent ash transport channels may vary between a minimum of 250 mm and a maximum of 1000 mm. The level difference at the transition between the nightwall and the inside of the dam shall not exceed 3.5 m.
- 20. The Contractor may on occasion want to reduce the growth rate on the daywall section and can achieve this by channelling all the ash along the adjacent channel(s) for short periods of time.

7.3.2.3 Control of the pool on top of the ash disposal facility

The prime objective in the control of the pool on top of the ash disposal facility is to ensure that the pool is kept local to the decant tower inlet, and to ensure that the minimum freeboard of the maximum level of the water after a 1:50 year 24hr storm plus at least 0,5 m is maintained at all times. During severe rainfall periods the size of the pool could increase considerably but should be reduced as quickly as the penstocks and return water dams will allow. The excess stormwater must however be managed in such a way as to maximize the

evaporation from the ash disposal facility and to reduce the amount of surplus water in the AWR dam.

Legislation (The Water Act -Act 54 of 1956 and Regulation R287 / 4989 / 20.2.1976) requires the minimum storage capacity of the system to be based on the normal operating water plus the average monthly rainfall less the gross mean monthly evaporation plus 1:50 year 24hr storm capacity plus 0,5 meter dry freeboard. Daywalls shall be constructed in such a way that the ash disposal facility will always have sufficient capacity for normal ash disposal operations plus the average monthly rainfall less the gross mean monthly evaporation plus a 1:50 year 24hr storm plus at least 0.5m of dry freeboard at the lowest point on the daywall.

7.3.2.4 Penstocks

Penstock rings are placed one on top of each other to form the decant tower as the level of the ash rises. They are also used to control the amount of water being drawn off the facility. Before the end of each day additional penstock rings must be placed on the decant tower to prevent water and ash being drawn into the decant tower during the night. In the morning the rings must be removed in order to enable water to be drawn off the facility. It must be borne in mind that, unless unavoidable; no water should be drawn off the pool while slurry is being run into the night paddock.

After severe storms it might be necessary to draw water off the facility while slurrying into the inner paddock but this occurrence should be the exception rather than the rule. The water level over the penstock ring should never be more than 160 mm as this will cause pressure surges in the pipe which could dislodge the penstock rings. Excess storm water must be decanted from the ash disposal facility within 4 to 5 days.

The pool level may rise between 450mm and 750mm during a 1:50 year storm event. The true value depends on the pool area and the beaching slope close to the penstock. The Contractor must keep enough penstock rings in stock to cater for at least 1500mm rise in the pool level

The outside of the decant tower is to be double wrapped using a geotextile to prevent piping of the fine ash particles through the joints between successive rings. Failure to do this can cause cavity formation which could lead to a penstock failure.

Decommissioning of the penstock must be carried out once it is no longer needed. This involves grouting up the decant tower by lowering a plug down to the bottom of the tower and then pouring a sand cement grout down to fill the tower.

It is extremely dangerous to place or remove penstock rings without a safety belt. A number of fatalities have occurred specifically in the area of the decant tower at various disposal facilities. The safety harness shall be attached to the catwalk column or balustrade, and shall always be worn when working in the vicinity of the penstock inlets.

7.3.2.5 Stormwater management

Management of stormwater on the ash disposal facilities is a critical part of the operation of the facility. Poor management of water on the facility could result in the failure of the impoundment. The volume of stormwater retained on the ash disposal facility must be kept to a minimum at all times. Excess stormwater must be drained from the facility within 2 to 3 days.

7.3.2.6 Solution trench

A regular monthly inspection of the solution trench shall be carried out to determine whether the trench has become choked by sediment or vegetation, or has been seriously eroded. Any damage shall be repaired as soon as possible. Grass and weeds growing through the concrete joints of the concrete lining shall be removed as soon as possible. Any trench crossings shall not encroach into the trench where the flow can be obstructed. Any seepage of water through the soil into the trench shall be noted, recording both the approximate flow rate and the location. The Project Manager must be notified of any such events. Any increase in the wetted area and/or flow from the toe of the ash facility is to be treated as an early indication that the filter drains are malfunctioning.

7.3.2.7 Stormwater diversion canal

The storm water diversion canal shall be checked fortnightly during the rainy season and also after severe storms. Erosion damage shall be repaired as soon as possible and logs, reeds and other large obstacles shall be removed. Grass and weeds growing through the concrete joints of the concrete lining shall be removed as soon as possible. Any canal crossings shall not encroach into the canal where the flow can be obstructed

7.3.2.8 Grass and reed cutting

The Contractor shall cut all grass vegetation once a year at the end of the growing season. Grass vegetation on the entire ash disposal area, enclosed by the storm water diversion canal on the south and the perimeter road elsewhere, shall be cut at this frequency. Reeds at the silt traps and AWR dam are to be cut at the same frequency.

7.3.2.9 Roads

Roads must be maintained according to the original design and construction specification. This includes cross slopes, road bed and wearing surface material, layer thickness and compaction of the layers. The roads must be kept in a condition acceptable to the Project Manager at all times. Ponding of water on the road surface after a rainstorm shall not be permitted.

7.3.2.10 Walkway to penstock

Figure 7-7 below shows the recommended walkway construction for access to the penstock decant tower. The structure must be able to carry the load from several people carrying penstock rings. It must also be able to support the horizontal forces on handrails for balustrades as set out in the SABS 0160 loading code. This will ensure adequate support for the safety harnesses worn by personnel when adding or removing penstock rings.

The walkway platform will have to be raised regularly to ensure that the platform is never less than 0,5 m above the pool. In addition, the minimum height above the pool shall be such that adequate access will remain possible after a major rainstorm.

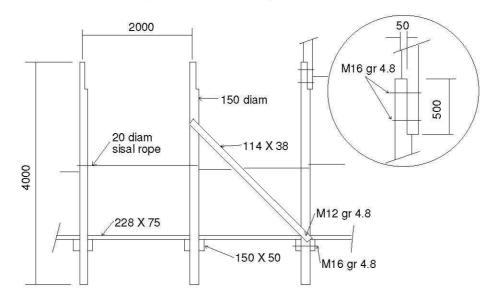


Figure 7-7: Typical walkway elevation

Timber used for the walkway is to be kept in good repair at all times. A walkway constructed from structural steel may also be used, but a timer structure is usually easier to raise and is therefore preferred.

7.3.2.11 Piezometers

Piezometers are necessary on an ash disposal facility in order to monitor the position of the water table within the wall of the facility. It is perhaps more economical to install the piezometers during the early stages of the facility and to extend them as the facility rises, rather than to drill holes and install them at a later stage. The piezometers will also tend to be far more reliable if installed in the early stages of the facility. Piezometers shall be read on a monthly basis.

The Contractor shall determine a safe phreatic surface and compare the readings against this. The Project Manager is to be provided with a set of all piezometer readings. Any increased risk due to a rising phreatic surface, shall be communicated immediately to the Project Manager and the professional engineer responsible for the facility.

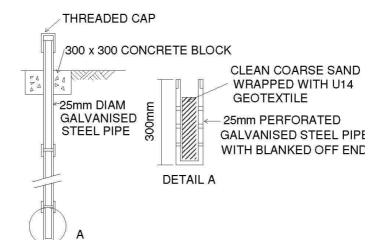


Figure 7-8: Typical piezometer detail

Figure 7-8 shows some typical details for the installation of a piezometer. The 300mm square by 300mm deep concrete block is only to be installed after the wall has reached the final level at this specific position. Galvanized steel pipe sections are also only required for the top 3 metres of the piezometer, the remaining sections may consist of PVC piping provided that suitable couplings between the two types of material are available. This is to reduce the risk of damaging the piezometer during the normal operation of the facility. Special caution shall also be exercised when top soil for rehabilitation is placed in the vicinity of a piezometer. The augured hole for the piezometer is to be thoroughly washed with water until the water flowing from the hole is clear prior to installing the piezometer. The following installation procedure is recommended:

- Lower the porous tip into position, about 200mm from the bottom of the hole.
- Pour a sand mixture down the hole until the tip is covered to a depth of 300mm. The sand shall have a D10 of between 0.1mm and 0.7mm.
- Seal off the sand layer using bentonite balls using a ring punner.
- Seal the remainder of the hole by pouring course ash grout down the hole.

7.3.2.12 Rainfall

Measurement of rainfall at the ash disposal facility is essential as there often appears to be local differences in rainfall between the power station terrace and area of the ash disposal facility. The Contractor shall record all the rain falling on this area. The Project Manager must agree to the position(s) for the rain gauges. Rainfall figures will help in the correlation of the changes in level of the water table in the area of the ash disposal facility and in the rise in the pool level. This will assist in confirming the run-off factor of 0.8 currently being used for the facility.

7.3.2.13 Ash disposal facility office

The Contractor shall maintain the facility to the satisfaction of the Project Manager.

7.3.3 Water management

Camden is actively trying to reduce the water consumption on the power station. Ashing operations have a significant impact on water consumption. Various actions to reduce water consumption have been identified and will be implemented as soon as possible. The Contractor is responsible to operate the ash disposal facility in such a manner that will minimize the water consumption by the ashing operations. The Contractor shall focus on the following areas of operation in order to reduce water usage on the facility:

7.3.3.1 Flushing of ash delivery lines.

The main objective is to reduce water usage per ashing cycle. Flushing shall only continue until the lines are cleared from ash. The Contractor telephonically notifies the relevant person in the station as soon as all ash has been cleared from the ash delivery lines and only clear water is being pumped into the distribution box on the ash disposal facility. This message is to be communicated after every ash deposition cycle. The Contractor notifies the Project Manager in the event that water continues to be pumped to the distribution point after the station has been notified that the lines are clear.

7.3.3.2 Drainage channels.

The Contractor must ensure that all drainage channels are kept clean from dirt, plant growth and any other items that can obstruct the free flow of water in these channels

7.3.4 Emergency procedure

The following situations are to be treated as emergency situations and the Contractor must deal with these in accordance with the relevant sections of the O&M Manual.

7.3.4.1 Inadequate freeboard

The Contractor immediately informs the Project Manager and the Responsible Professional Engineer when the level difference between the lowest point on the daywall and the decant pool level is less than 1.5 m.

7.3.4.2 Inadequate distance between the edge of the pool and the facility wall.

The Contractor immediately informs the Project Manager and the Responsible Professional Engineer when the pool moves closer than 200 m from the edge of the facility crest.

7.3.4.3 Inadequate storage capacity in the AWR-dam

The Contractor immediately informs the Project Manager and the Responsible Professional Engineer when the water level in the ash water return dam exceeds the design top water level before freeboard.

7.3.4.4 Polluted water spillage

The Contractor immediately informs the Project Manager and the Environmentalist on the station of any incident where polluted water from the ashing facility is spilled into the environment.

7.3.4.5 Penstock failure

The Contractor immediately informs the Project Manager when a penstock fails.

7.3.4.6 Slope failure

The Contractor immediately informs the Project Manager and the Responsible Professional Engineer when a slope failure occurs on the facility.

7.4 Operation of silt traps and ash water return dam

7.4.1 Ash water return dam

The prime objectives of the operation of the ash water return dam is:

- To prevent spillage of polluted water into the natural environment, by containing water from the ash disposal facility.
- To have sufficient storage capacity for stormwater runoff, generated from the impacted areas, from large storms.

• To minimize the need for make-up water for ashing at the station by having sufficient water in the ash water return dam

The storage capacity of the ash water return dam is discussed in the Conceptual Design of the facility, Section 6 of this report. The dam level is controlled by pumping ash water back to the high level ash water return dams. The Contractor shall at all times liaise closely with the operating staff from Camden power station to ensure that the water balance in the station, the stability requirements of the ash disposal facility and Eskom's zero effluent discharge philosophy are all adhered to. The Contractor should assist as far as possible with the level control of the ash water return dam by letting more water off the ash disposal facility when the level in the AWR dam drops below 500mm or by retaining more water on the facility when the level exceeds the design top water level before freeboard. The safety and the stability of the ash disposal facility will always take preference to any level control issues.

7.5 Monitoring and maintenance requirements

7.5.1 Ash disposal facility monitoring

The Contractor checks and presents in a format that is acceptable to the Project Manager the status of the following items on a monthly basis:

Pool

- Closest position of the pool to the daywall.
- The area of the pool.

Penstocks

- Verticality of the rings forming the decant tower.
- Presence of the geofabric wrapping around the decant towers.
- Flow depth at the crest of the decant tower.

Catwalk

- Availability and use of safety harness.
- Minimum height of the platform above the pool level.
- Structural integrity of the platform and handrails.

Daywall

- Age of the ash that is being used in daywall construction.
- Days of daywall ashing currently available.
- Total freeboard between daywall and the pool level.
- External and internal slope.
- Presence of any wet spots on the outer slope.
- Slope alignment maintained?

Road at step-ins.

- Is the road sloping inward?
- Is adequate drainage provided on the side slopes?

Ash facility perimeter access road.

- Properly graded to the required cross fall gradient?
- All water drained off the road surface after a rain storm?
- Road surface wearing course still intact?
- Structural layers still intact

Filter drain outlets

- Are the drains still functioning?
- Is the water from the drains clear or is ash silt present?
- Is chemical scaling occurring at the outlets?
- Is there any damage to the pipe or drainage system?

Solution trench

- Is the trench clear of any obstacles?
- Are the trench bottom and sides well maintained?

• Is all growth between expansion joints removed?

Stormwater diversion canals

- Is the canal clear of any obstacles?
- Are all growth between expansion joints removed? PIEZOMETERS
- Have they been installed in the areas required?
- Are those already installed, in good working order?
- Have the water table levels been recorded?
- Is the current phreatic surface within acceptable safety limits?

Barrier fence

- Is the fence still intact?
- Is unauthorized entrance prevented?

7.5.2 Piezometers

Readings are to be taken at monthly intervals. Weekly readings are to be taken when the phreatic surface has risen to a level that represents a high risk situation. A pool less than 200 metres from the outer crest of the daywall, is to be considered as a high risk situation and weekly readings will also be applicable in this instance.

7.5.3 Ash water return dam monitoring

The Contractor checks and presents in a format that is acceptable to the Project Manager the status of the following items on a monthly basis:

Water storage capacity

- The current water level.
- Check with Camden personnel that all the pumps are operational.
- Silt levels in the dam (annually).
- Is adequate storage capacity available for the maximum anticipated rainfall?

Ash Water Return Dam wall

- Any wet spots on the downstream slope?
- Any sign of erosion on the internal or external slopes?
- Any cracks along the crest?
- Any signs of settlement or movement.
- Are any shrubs or trees growing on the wall?

Downstream pollution

- Has any polluted water spilled into the environment?
- If so, was the Project Manager notified immediately thereafter of the volume and the reason for the spill?

7.5.4 Silt trap monitoring

The Contractor checks and presents in a format that is acceptable to the Project Manager the status of the following items on a monthly basis:

Retention storage capacity

- Water depth at the decant tower
- Silt levels in the dam.
- Is adequate retention storage capacity available to satisfy the de-silting requirements?

Dam wall

- Any wet spots on the downstream slope?
- Are both spillways in a good and functional condition?
- Any signs of piping between the horizontal penstock section and the dam wall?
- Any sign of erosion on the internal or external slopes?
- Any cracks along the crest?

ZITHOLELE CONSULTING

- Any signs of settlement or movement?
- Are any shrubs or trees growing on the wall?

7.5.5 Groundwater monitoring

A system of groundwater monitoring points is proposed to be installed. The responsibility for the monitoring of the water quality will remain with the environmental section of the power station. The monitoring frequency is currently three monthly on the existing facility, but will be increased when a deterioration in the pollution levels is being detected. The changes in the monitoring programme will also be informed by the station's Water Use Licence requirements.

7.5.6 Ash disposal facility contour survey

An aerial survey of the ash disposal facility area shall be carried out every two years. A contour plan with contours at 2m intervals and a digital file with the X, Y and Z coordinates of every survey point are to be produced after every aerial survey. In addition to the aerial survey, a representative number of spot levels are to be taken every six months to assess the rate of rise of the various wall areas. A number of survey beacons are to be constructed at strategic positions to serve as benchmark levels from where the relevant dam wall levels can be surveyed. An accuracy of approximately 200mm will be quite adequate for the six monthly surveys.

7.5.7 Coordination meetings

Coordination meetings are to be held at monthly intervals between the Project Manager and the Contractor. It is advisable to conduct a site inspection prior to each meeting. The Contractor provides the Project Manager and the responsible professional engineer with a copy of the results from the various monitoring activities at least one week before the next monthly coordination meeting.

7.5.8 Maintenance

Regular maintenance must be carried out throughout the life of the ash disposal facility in order to provide full and cost effective use of the facility. All maintenance actions that are identified at the coordination meetings shall be implemented before the next coordination meeting, unless otherwise agreed with the Project Manager. All maintenance work is to be done to a standard acceptable to the Project Manager.

7.5.9 Legal and safety requirements

Ash disposal facilities are hazardous areas, in terms of safety and the classification of the material, and unauthorized people shall not be allowed on to them for the following reasons:

- 1. The area around the pool of the ash facility is expected to behave like quicksand under certain conditions. "Sinkholes" may also occur in older facilities.
- 2. The ash will cause blistering of the skin after prolonged contact.
- 3. Ash water is poisonous. It is therefore essential to erect clearly visible warning signs and to keep the gates to the ash facility locked when there are no authorised ash disposal facility personnel on site.

Preventing public access to the facility is the legal responsibility of the Asset Owner. The minimum standards to which an ash facility is to be fenced in is set out in Regulation 26 of the Water Act (Act 54 of 1956) Section 26. The Contractor is responsible in terms of the ash facility construction and maintenance contract to prevent unauthorized access to the site. Safety on the facility shall be constantly reviewed and upgraded where necessary. Where work is being carried out on the surface of the facility, or off the beaten track, personnel shall work in pairs. Established routes across the ash paddocks shall be used wherever possible, even if this means having to walk further. Personnel shall be informed of the dangers of working on an ash disposal facility. If the above measures are adhered to a good safety record at the ash disposal site should be maintained.

The Occupational Health and Safety (OHS) Act must also be adhered to.

Stipulations and regulations of the Construction Regulations will be implemented as required.

7.5.10 Monitoring requirements during high rainfall periods

The Contractor increases the monitoring frequency for the piezometers, the filter drain outlets and the freeboard on the ash disposal facility to a weekly interval whenever the rainfall exceeds 100 mm per week. The Project Manager and the responsible professional engineer are to be notified immediately of every high rainfall incident.

The responsible professional engineer will visit the facility within three days from the date of notification and will advise the Project Manager of any additional actions that may be required.

7.6 Rehabilitation and environmental considerations

7.6.1 Environmental responsibilities

7.6.1.1 General

The Contractor shall be required to adhere to any applicable South African Environmental legislation during the construction, operation and management of the ash disposal

facility/ies. The responsibility shall remain with the Contractor to keep up to date with any applicable revisions or new environmental legislation that come into effect during the contract period. In addition the Contractor shall also comply with Eskom specific Policies, Procedures and Guidelines. Copies of the relevant Eskom documents can be obtained from the Project Manager.

The following is a list of some of the relevant legislation and other environmental documents at the time of the compilation of this document:

South African Acts:

- The Environment Conservation Act (Act 73 of 1989)
- The Water Act (Act 54 of 1956)
- The Minerals Act (Act 50 of 1991)
- The Atmospheric Pollution Prevention Act (Act 45 of 1965)
- The Occupational Health and Safety Act (Act 85 of 1993)
- The Health Act (Act 63 of 1977)
- The Road Traffic Act (Act 29 of 1989)
- The Hazardous Substances Act (Act 15 of 1973)
- The new Construction Act
- The National Environmental Management Act, Act 107 of 1998
- The National Environmental Management Waste Act, Act 59 of 2008.

Subsequent amendments to any of the above Acts are also implied.

Eskom Policies and procedures

- ESKPBAAD6 Environmental Management Policy
- ESKPBAAA9 Environmental Impact Assessment
- ESKPVAAL7 Environmental Impact Assessment
- ESKPBAAA3 Air Quality Management Policy

ZITHOLELE CONSULTING

- ESKPBAAD4 Herbicide Management
- ESKASAAL0 The Safe Use of Pesticides and Herbicides
- ESKPBAAA8 Energy and Environmental Policy and Strategy
- ESKPBAAAC4 Waste Management Policy and Strategy
- ESKPBAAA6 Coal Utilization
- GEM6 An Eskom Purchasing Policy for Buying Environmentally Friendly Products
- ESKADAAJ4 Water Management Policy
- ESKADAAJ5 Waste Management Policy
- ESKADAAP7 Investigation of Major Incidents
- GGS0350 Generation Fire Risk Management
- GEM BULLETIN 5 Problem Plant Species on Generation Sites

7.6.1.2 Water quality

Eskom will monitor water quality of surrounding streams and groundwater.

The Contractor shall be responsible for upkeep of solution trenches, stormwater channels, AWR dams and other such structures to ensure that they remain effective in maintaining a zero effluent discharge system.

The Contractor shall keep in mind that the ash system forms a part of the entire Power Station water balance. All failures on the ash disposal facility with regard to dams, drains etc. must be reported to the Project Manager and the Camden environmental department. An assessment of the effect of the failure in terms of water quality and water balance must be determined between the Project Manager and the Contractor.

7.6.1.3 Air quality

Wind pollution (due to ash blow off)

During the building of the ash facility the Contractor is to ensure that ash dust pollution is kept to a standard which is in accordance with the current South African legislation, as well as any Eskom policies that may be applicable. In general, windblown-dust shall be continuously controlled by the Contractor by regular moisture conditioning of the ash or by rehabilitating the exposed ash surfaces. The exposed section of the side slope of the ash disposal facility is normally only rehabilitated after the next step-in and vehicle access above the slope has been constructed. This delay in rehabilitation will result in an exposed slope of up to 25m wide along the perimeter of the facility. The Contractor is also responsible for dust control on this surface and may use any effective method, which is acceptable to the Project Manager, to control dust blow-off from this area. Acceptable methods are surface wetting, chemical stabilization or protection with shade cloth.

Wind pollution (construction works)

The construction plant access routes, haul, roads etc. are to be watered sufficiently to prevent any dust blow off during the entire contract period. Other dust suppression methods, deemed adequate, may also be used.

Should there be a suspicion that the air quality is in excess of the standard, then the Project Manager may arrange for the installation of dust monitors to verify the situation.

7.6.1.4 Waste management

No building rubble or other scrap is to be dumped on the ash disposal facility. Office waste shall be removed from site. The Contractor may contract with the current waste disposal contractor for Camden power station for a similar service. Cut vegetation may be used as compost for rehabilitation of the side slopes. The ash disposal facility shall at all times be completely fenced off and have the appropriate warning signs displayed. The Contractor shall be responsible for the maintenance of the fence.

Discard coal disposal

Small quantities of discard coal, not exceeding a total of 64 tons per month, can be dumped inside the ash dam. Coal transported by truck, is to be dumped at least 400m inside the crest perimeter of the ash disposal facility. The date and weight of every disposal event are to be recorded. Dumping should preferably occur in one location and should only change when access to an area becomes difficult. The trucking of discard coal will result in a well-controlled dumping operation. Limited quantities of coal discards, not exceeding 20 tons per month, may also be pumped together with the coarse ash to the ash facility. Coal has no cohesion and will reduce the strength of the outer wall of the dam if mixed with the fine ash from the precipitator fields. Mixing of coal discards with fine ash is therefore not permitted.

7.6.1.5 Land management

Veld fires

Any veld fires during the first two growing seasons after rehabilitation can be disastrous. The Contractor shall take all the steps necessary to control fires and a veld fire management plan shall be submitted timeously to the Project Manager for approval. The existing fire breaks are to be maintained to prevent any spread of veld fires from the ash disposal facility area.

Erosion control

The Contractor shall be responsible for the protection of all areas subject to erosion by providing any necessary drainage works, temporary or permanent and by taking all other reasonable precautions as may be necessary to prevent scouring of banks, ash slopes and other areas.

Any erosion damage occurring during the operation of the facility shall be thoroughly repaired and the areas restored to their original condition. Such repair work shall be carried out as soon as possible after damage was caused with all eroded topsoil reclaimed from drains and other areas where possible.

7.6.2 Rehabilitation requirements

7.6.2.1 General

This section comprises the proposed landscaping and re-vegetation procedures for the ash disposal facility. The Contractor shall, in accordance with the requirements of this document, be responsible for the:

- gradual stripping and stockpiling of topsoil
- gradual shaping of side slopes and top of the facility
- gradual spreading of topsoil to cover shaped the facility side slopes and top surface
- planting of grass for erosion control on prepared slopes
- establishment of veld grass on the prepared areas
- establishment of indigenous trees and shrubs
- aftercare of rehabilitated areas to ensure continued stability and eventual selfsustainability

• the upkeep of a complete rehabilitation progress manual

Pollution control

The Contractor shall take all reasonable measures to minimize dust, mud on nearby roads and walkways and inconvenience to the public or others because of the construction of the works.

Progress manual

The Contractor shall start and keep progress manuals fully documenting the progress made and significant factors influencing the rehabilitation process. The manual must be made available upon the Project Manager's request.

7.6.2.2 Materials

Whether the quality of material is specified or not, the Contractor shall at all times use material of the best possible quality and shall price his tender accordingly.

Plants

Plants shall be true to name, healthy and well rooted. Plants shall have a good form typical of their type unless specifically specified otherwise. Containerized plants shall not be root bound. Plants shall grow well and be free from scars or damage, insect pests, diseases or parasites.

Each plant shall be handled, packed and transported in the accepted industry manner for that species or variety and all the necessary precautions shall be taken to ensure that the plants will arrive at the site in a condition for successful growth.

During delivery to the site, plants shall be adequately protected from damage by sun, wind or other causes.

Containers shall be in good condition and the soil shall be free from weeds.

Containerized plants not planted out immediately shall be stored and maintained in nursery like conditions i.e. including storage under shade cloth, well watered and inspected for routine maintenance until they are planted out.

The Contractor shall be prepared to find plants anywhere in the country. Only if the Project Manager is convinced beyond doubt that the plants specified cannot be obtained, will substitutes be considered. Substitutes will be decided on by the Project Manager. The Contractor will be informed in writing.

The Contractor shall assure himself of the availability of specified plants before tendering.

53

Tree stakes

Tree stakes shall, unless otherwise specified, be treated poles (round droppers) complying with SABS 457, 35 mm minimum diameter and 2 400 mm long. These shall be used of both single and multiple staking. Creosoted timber will not be accepted.

Tree ties

Tree ties for fixing trees to stakes shall be of plastic, rubber or other similar material which supports the tree in a substantial manner, and shall be approved by the Project Manager. Ties shall be such to minimize abrasion and to allow for sufficient space around the tree trunk to permit growth.

7.6.2.3 Equipment

The Contractor shall provide sufficient plant and equipment of adequate capacity, suitable for the work and site conditions, to fulfil his obligations in terms of the Contract. In all cases the most suitable equipment for the particular application shall be used in the interests of time saving and efficiency. In each case the Project Manager shall be approached to authorize the proposed equipment.

7.6.2.4 Preliminary works

The rehabilitation of the ash disposal facility and other ashed areas to be rehabilitated shall take place in phases. Work shall commence as soon as an area becomes available for rehabilitation. The Contractor is to programme accordingly.

Stripping of topsoil

Topsoil shall be stripped and stockpiled for future use from those areas to be ashed on. The process shall be gradual and in accordance with the ashing programme.

The depth of stripping is to vary according to the soil formation. The Contractor shall in general strip soils down to the hydromorphic horizon. Soil from the hydromorphic horizons (such as soil with a high clay percentage and/or wet soils) shall not be acceptable for use as topsoil. Only topsoil with up to, but not exceeding, 30% of coarse particles and stone shall be acceptable. The stone or coarse particles shall also not exceed 250 mm in diameter. Where stripping takes place from areas which will not be ashed upon in the future the areas shall be contoured after stripping as to blend in smoothly with the existing levels. The areas shall be left without any slacks or hollows where water and contours can accumulate. Unless it is used immediately, the topsoil shall be stored in positions as indicated or approved by the Project Manager, in the following manner:

- establish veld grass, or other vegetation as instructed, on heaps to be left for periods in excess of three months
- take any further preventative steps necessary to protect the heaps from erosion.

The Contractor shall manage his rehabilitation programme in such a manner that stripped topsoil is re-used as soon as possible for rehabilitation purposes.

Preparation for planting

1) Slopes not exceeding 1:10

This includes the top of the ash disposal facility.

- a) Topsoil Spreading.
 - i) Spread topsoil evenly to a minimum thickness of 200 mm over the total graded area.
- b) Shaping
 - i) Work the topsoil in to a minimum depth of 200 mm ensuring a smooth final surface without any slacks and hollows where ponding can take place.
- c) Fertilizers
 - i) Apply fertilizers evenly at the following rates:
 - (1) 250 kg/ha 4:3:4 (30) + Zn
 - (2) 300 kg/ha Superphosphate (10,5% P)
 - ii) Application shall be carried out not more than 1 week prior to planting. The mixing of inorganic fertilizers and seed shall not be acceptable.
- 2) Slopes in excess of 1:10 (10 %)
 - a) Grading of Side Wall Steps
 - i) Edge of side slope steps to be graded to create an even slope with a rough surface. Ash clods shall not exceed 350 mm in diameter.
 - b) Sodding

- For erosion control purposes slopes exceeding 5 metres in length shall be stabilized by planting 450 mm wide sod strips. The strips shall be spaced 5 m apart measuring from the toe of the slope in each case. Sods shall be secured in place using pegs or any other approved method.
- c) Topsoil Spreading
 - i) Topsoil shall be spread evenly to a minimum thickness of 300 mm over the total graded area.
- d) Veld grass
 - i) Rough veld grass stalks shall be spread over topsoil to a depth of 40-60 mm.
- e) Shaping
 - i) The slope shall be evenly smoothed ensuring that all signs of terracing are removed and that the ash, topsoil and veld grass are thoroughly mixed. Ash clods exceeding 100 mm in diameter may protrude through the topsoil layer.
- f) Fertilizers
 - i) Apply fertilizers evenly at the following rates:
 - (1) 250 kg/ha 4:3:4 (30) + Zn
 - (2) 300 kg/ha Superphosphate (10,5% P)
 - ii) Application shall be carried out not more than 1 week prior to planting. The mixing of inorganic fertilizers and seed shall not be acceptable.

7.6.2.5 Planting procedure

Tree planting

To avoid erosion problems, trees shall not be planted on slopes in excess of 1:3. The trees shall be planted in groups of 3-5 plants ensuring a minimum coverage 50 plants/ha. Certain trees are sensitive to the direction of a slope and the planting plan shall take this into account.

The following plant species may be used:

• Acacia karroo (Sweet Thorn) – Plant on east and west slopes

- Diospyros (Blue Bush) Plant on north lycoides slope
- Rhus pyroides (Common Wild Currant) Plant on any slope
- Ziziphus (Buffalo Thorn) Plant on north mucronata slope
- Rhus lancea (Karree) Plant on east and west slopes

Scarifying

The total area to be seeded or planted shall be scarified to a minimum depth of 20 mm. Scarification shall be done horizontally across slopes. Seeding shall take place directly following scarifying. In the event of the scarified surface becoming smooth again before seeding, the Contractor shall re-scarify to ensure a suitable seed bed.

Seeding

Seeding shall take place as early as possible during the growing season. The Contractor is expected to programme accordingly. The seed mixture to be used shall be made up as follows unless agreed differently with the Project Manager:

Grass species	Kg/ha
Chloris gayana	2
Eragrostis tef	3
Eragrostis curvula	3
Aragrostis chloromelas	1
Aragrostis lehmanniana	1
Enneapogon cenchroides	2
Aragrostis echonochloidea	1
Themeda triandra	1
Digitaria eriantha	2
Cynodon dactylon	2
Hypperrhenia hirta	1
Panicum maximum	1

Where specific grass seed cannot be obtained by the Contractor, he may replace it with another species in consultation and agreement with the Project Manager. The change will be of the same monetary value.

ZITHOLELE CONSULTING

No seeded sections shall be taken over prior to a successful germination rate of at least 70% (measured as 70% of the total area and/or 70% of any particular seeded area of at least 2 500m²) can be proven by the Contractor. In addition, there shall be no bare patches in excess of 500 mm in diameter or half a meter squared in area. Germination shall be regarded as successful when the grass sward is 5 mm above ground level and identifiable as of the types sown.

7.6.2.6 Care after planting

The Contractor shall protect newly seeded/planted areas against undue traffic and/or other disturbances throughout the contract and maintenance periods.

7.6.2.7 Maintenance

The Contractor shall adequately maintain construction areas for a period of 6 months. Maintenance shall include:

- Continuous repair of damage caused by erosion or any other cause. Erosion gullies exceeding 100 mm in width may be repaired by placing Cynodon spp sods or clumps in the gullies that have begun to form so as to effectively stop them from developing.
- Maintenance of acceptable grass cover with reseeding/sodding as necessary.

The Contractor shall be required to apply a top dressing of 150 kg/ha ammonium sulphate to seeded areas 4 to 6 weeks after germination under favourable growing conditions. (If in doubt the Contractor should discuss this aspect with the Project Manager).

8 COST ESTIMATE / TRADE OFF STUDY

A cost estimate was undertaken for the capital works based on the conceptual design. The detailed breakdown of the costs is given in the appendices and the summary of cost estimate for Site 1 is presented in the table below.

Item	Description	Amount (Rand)
1.1	Site Clearance	8,545,625.00
1.2	Earthworks	198,791,756.25
1.3	Liner	763,746,500.00
1.4	Structural Concrete	9,970,516.86
1.5	Penstocks and Outlet Pipe	4,762,500.00
1.6	Pipelines, Pump Station and Pumps	15,660,000.00
1.7	Access Roads	5,486,250.00
	Sub-total 1	1,006,963,148.11
1.8	Allow for Preliminary and General Items for the	251,740,787.03
	Contractor at 25 percent of Sub-total 1	
	Sub-total 2	1,258,703,935.14
1.9	Allow for 10 percent of Sub-total 2 for Contingencies	125,870,393.51
	TOTAL CAPITAL COST ESTIMATE	1,384,574,328.65

Table 12: Capital Cost Estimate for Site 1

Costing of the construction includes the major costs of site clearance, surface preparation, bulk earthworks and the lining system. Current estimates of South African rates, based on Zitholele's experience on other projects are used for the costing. Preliminary and general costs of 25% and contingencies of 10% were being applied for the capital requirement. The following is excluded from the cost estimate:

- Design fees
- Specialist study fees
- Escalation

The major cost is the lining system as it is design in accordance with the Department of Water Affairs Minimum requirements. In order to create flexibility in terms of capital

expenditure the installation the liner has been phased as described in the previous sections. This includes staging the site clearance and surface preparation for those areas.

As indicated previously in the report, there is inadequate natural clay available at the proposed sites for the liner. This was derived during the geotechnical investigations of the sites. Alternatives to in-situ clay liner were given in the relevant section of this report. However, these were not considered in the cost estimate and could be followed up at preliminary design stage. The rate for clay used in the liner assumes that the clay is imported from one commercial source located in close proximity to the site. Geosynthetic Clay Liner (GCL) as an alternate option was priced and is marginally lower. By using the GCL, the risk of non-availability of clay may be mitigated. However, leachate tests will have to done on the GCL at preliminary design stage if this is opted for.

The operating cost for a wet ash system is substantial. The cost per tonne of ash deposited was obtained from records (2008) of Matla and Kriel and applied to the production at Camden. Operating costs for the existing ash dam located at Camden was not available. Matla currently has a contract with the operator for R111 million for 5 years and Kriel has a contract for R42 million for 3 years. If the average production per year (3.5 million tonne for Matla and 2.4 million tonne for Kriel) is related to the cost then the cost per tonne equates to R6.34 for Matla and R5.83 for Kriel. The average of these two values is R6.0 /tonne – this rate was escalated by 7% per year over the last 4 years (R8.80 /tonne) and used to estimate the future operating cost of the Camden ash disposal facility This rate includes all operating costs, from mixing and pumping the slurry to placement, RWD management and pumping, spares for the pumping stations as well as on-going rehabilitation. An operating cost of R13 600 000 per year will be required for the life of the facility.

9 **RECOMMENDATION**

Site 1 is the only site that can accommodate the ash within a single footprint and achieve the total production over the design period. The rate of rise is within the allowable maximum per year whereas Sites 3A and 3B exceed this due to their smaller footprints.

Sites 3A and B do not individually accommodate the ash production over the 19 years operation period and therefore cannot be compared directly to the cost of Site 1. However Sites 3A (R909,813,868) and 3B (R766,474,632) combined (R1,676,288,500) can be compared directly with Site 1 (R1,384,574,329) with regards to capital cost. However, this will entail operating one site first and on rehabilitation of the first site, commission the second site. This is not deemed practical in terms of operational requirements.

Site 1 is both technically and economically feasible over the other two sites and should be taken into the next phase, detail design. Site 1 is the preferred site as it can accommodate the full ash production for the 19 years ash production keeping within the 40 metres allowable height. The shape of the ash dam will also facilitate the ease of operations. The combination of Sites 3A and 3B may be looked at only as a back-up to Site 1.

ZITHOLELE CONSULTING

The liner system (as per DWA Minimum Requirements) comes at a high cost and should be interrogated in order to motivate for a relaxation. The design should be within an Acceptable Risk Level (ARL) and this should be taken into account when the liner system is revisited. It is recommended that the Source Path Receptor (SPR) approach be adopted as a tool in the next phase to motivate for the relaxation of the liner requirements.

The use of GCL in the liner system is recommended subject to detailed testing providing its acceptability. There exists a high probability of adequate quantities of natural clay not being available in close proximity to the site. Rates for the importation of clay from further away sources may increase the costs of the liner significantly. Other alternatives to the in-situ clay are HDPE and bauxite.

10 CONCLUDING REMARKS

Conceptual Engineering design was undertaken for the three sites considered at this stage of the project. The technologies did not differ for any of the sites. Only Site 1 alone accommodates all the ash generated over the 19 years remaining life of the power station. It also poses a lesser hazard in the event of failure than the other two sites.

Site 1 is the preferred site and should be taken to the next phase.

ZITHOLELE CONSULTING (PTY) LTD

N Rajasakran

S Pillay

Z:\PROJECTS\12670 - EIA FOR ASH DISPOSAL FACILITIES AT CAMDEN POWER STATION\REPORTS\ENGINEERING REPORTS\CONCEPTUAL DESIGN REPORT REV1.DOC

APPENDIX A

WASTE CLASSIFICATION REPORT

ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH FROM THE CAMDEN POWER STATION

Report No.: JW164/11/D116 - REV 3

September 2012

Executive Summary

Zitholele Consulting (Pty) Ltd is in the process of conducting and Environmental Impact Assessment (EIA) and Waste Management Licence Application for a new ash disposal facility at the Camden Power Station. The new ash disposal site will be approximately 100 hectares in size with a further 25 hectares for set aside for associated infrastructure.

Classification of the ash from the wet-ash deposition process at Camden Power Station is required for input into both the EIA and Waste Management Licence Application Report. In addition, the ash classification is required to determine its environmental risk profile and also determines the barrier or liner design criteria applicable to the new ash disposal facility.

The objective was to classify the ash, ash seepage water and reverse osmosis brine in terms of the Department of Water Affairs and Forestry's (the DWAF's) "Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste", Second Edition (DWAF, 1998). Cognisance has also be taken of the Department of Environmental Affairs (the DEA's) letters pertaining to waste classification dated April 2008 and June 2009 respectively.

In addition to the above, the ash has also been classified based on the draft waste regulations currently being developed by the DEA. This is required as the ash disposal facility may only be constructed by the time that the new regulations have been promulgated (expected late 2012/early 2013). For this classification the draft regulations promulgated in July 2011 for public comment were used. The reason for this inclusion is because Mr K. Legge of the Department of Water Affairs indicated that, where a new waste disposal facility is constructed after the date of promulgation of the regulations, the barrier (liner) system will have to comply with the new barrier system regulations (K. Legge, 2011). The new waste classification system dictates which barrier system will be required for the new waste disposal facility.

Based on the DWAF's Minimum Requirements waste classification methodology and, when subjected to an Acid Rain Leach Procedure, the Camden Ash is classified as a Hazard Group 1 waste, requiring disposal on a H:H waste disposal facility. This was caused by the concentration of leachable chrome VI (Hazard Group 1 waste) being higher than its Acceptable Risk Level (ARL) in the leach solution. Hazard Group 1 wastes need to be disposed of on H:H waste disposal facilities. However, when considering the quality of the ash seepage water from the current disposal facility, not one of the elements of concern was detected at a concentration higher than its respective ARL value. Therefore the ash and ash carrier water can be delisted to a general waste as per the Minimum Requirements for disposal purposes. Although delisted liquid waste should be disposed of on a G:L:B⁺ waste disposal facility, provided the seepage water (leachate) head can be maintained at equal or less than 300mm on top of the barrier layer and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system for the service life of the landfill.

The Reverse Osmosis brine was classified as a Hazard Group 2 waste or High Hazard Waste due to the lead concentration in the brine being greater than its ARL value. Lead is a Hazard Group 2 substance. The brine has to be disposed of on a hazardous lagoon (H:H lagoon).

Should consideration be given to the co-disposal of the ash and brine on a single facility, disposal should be acceptable on a H:H waste disposal facility with a H:H barrier system. This barrier system is required as the brine was classified as a Hazard Group 2 waste, which requires disposal on a H:H waste disposal facility.

The landfill classes for disposal of the wastes based on the Minimum Requirements classification methodology are summarised in **Table 1** below. A recommended barrier system is also given.

Waste	Type of Waste		Disposal Scenario	Class of Landfill	Recommended Barrier System
Ash + Ash Carrier Water	Delisted		Mono-disposal	G:L:B+	Class C*
Brine from Water Treatment Plant	Hazard Group 2 Waste	2	Mono-disposal	H:H Lagoon	H:H Lagoon
Ash + Ash Carrier Water + Reverse Osmosis Brine	Hazard Group 2 Waste	2	Co-disposal	H:H	H:H
* Provided there is no significant water head (>300mm) on the barrier system and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system for the service life of the landfill					

Table 1:Waste Type and Class of Landfill Required based on Minimum
Requirements

In terms of the DEA's draft waste regulations for disposal, the Camden Ash was subjected to a Total Concentration (TC) extract and a distilled water (DI) leach. Two samples were used in the assessment, namely dusting ash (fine ash) and ashing ash (course) ash. In addition, the seepage water leaching from the current ash disposal facility was also analysed and compared to the respective leach concentration threshold values as prescribed in the draft regulations.

Based on the DI water leach results, both the dusting and ashing ash samples are classified as Type 3 wastes requiring disposal on a Class C landfill. This is because the TC concentrations of arsenic, barium, copper, lead and zinc where higher than the TCTi values. In addition, the leach concentrations (LC) of barium, chromium, hexavalent chromium and molybdenum were also higher than their respective LCTi values for the dusting ash. The ashing ash sample was also classified as a Type 3 waste because of the boron, mercury, molybdenum, TDS and sulphate LC values being higher than their respective LCTi values. In addition, the total dissolved salts (TDS) concentration of the DI water leach solutions were in both cases greater than the LCTi value of 250mg/ ℓ . The leachate from the existing site also classifies as a Type 3 waste because of the barium, sulphate, chloride and TDS concentrations being higher than their respective LCTi values.

The Camden Power Station ash should therefore be disposed of on a facility that has been designed and constructed as a Class C landfill (DEA, 2011b). Class C landfills are very similar in design to the current G:L:B⁺ landfills, with the major difference being the HDPE layer added to the barrier system, which replaces 2 x 150mm clay layers. This barrier system is considered appropriate for the wet ash disposal facility provided the seepage water (leachate) head can be maintained at equal or less than 300mm on top of the HDPE barrier layer and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system for the service life of the landfill.

As the water treatment plant was not operational on the day that the samples were collected, the classification was undertaken on a modelled value provided by Eskom. When using the DEA draft regulations of July 2011, the brine classifies as a Type 3 waste due to the boron, mercury, chloride, TDS and sulfate concentrations of the modelled brine solution being greater than their respective LCTi values. Type 3 wastes should be disposed of on Class C landfills, but in the case of the brine, which is a liquid, the brine will have to be disposed of in a hazardous waste (H:H) lagoon disposal facility complying with the design requirements as given in the Minimum Requirements of 1998.

In the case that the brine is co-disposed with the ash on the new ash disposal facility, a Class C landfill barrier is considered appropriate for the ash disposal facility. It is a requirement that liquid waste should be disposed of in hazardous lagoon facilities, but provided the seepage water (leachate) head can be maintained at equal or less than 300mm on top of the primary HDPE barrier layer and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system, a Class C barrier system is considered suitable for the co-disposal of the ash and brine.

Table 2 below summarises the classification of the ash and brine water based and also indicates the barrier systems required for the various disposal scenarios based on the draft waste classification regulations of July 2011.

Table 2:Waste Type and Class of Landfill Required based on draft Waste
Regulations of July 2011

Waste	Type of Waste	Disposal Scenario	Class of Landfill	Recommende d Barrier System
Ash + Ash Carrier Water	Type 3: Low Risk Waste	Mono-disposal	Class C	Class C*
Brine from Water Treatment Plant	Type 3: Low Risk Waste	Mono-disposal	H:H Lagoon	H:H Lagoon
Ash + Ash Carrier Water + Reverse Osmosis Brine	Type 3: Low Risk Waste	Co-disposal	Class C	Class C*
* Provided there is no significant water head (>300mm) on the barrier system and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system for the service life of the landfill				

Manp

M van Zyl

ARL	Acceptable Risk Level. (ARL = $0.1 \times LC_{50}$)
ARLP	South African Acid Rain Leach Procedure
DEA	Department of Environmental Affairs
DWA	Department of Water Affairs
DWAF	Department of Water Affairs and Forestry
FAD5	Fine Ash Dam 5
G:L:B⁺	General waste landfill receiving more than 500 tonnes of waste per day with a barrier system containing a leachate detection and collection layer
H:H	Hazardous waste disposal facility suitable for the disposal of all Hazard Group 1, 2, 3, 4 and general wastes. Comply with the most conservative design as indicated in the DWAF's Minimum Requirements
H:h	Hazardous waste disposal facility suitable for the disposal of all Hazard Group 3 and 4 wastes, and general wastes. Comply with the second most conservative design as indicated in the DWAF's Minimum Requirements
LC	Leach concentration in mg/ł
LC ₅₀	The concentration at which 50% of test organisms will die after a certain exposure time
mg/kg	Milligram per kilogram
mg/ℓ	Milligram per litre
тс	Total concentration in mg/kg
TCLP	Toxic characteristic leach procedure
TDS	Total dissolved salts

Acronyms and abbreviations used in this document:

DOCUMENT APPROVAL RECORD

Report No.: JW164/11/D116 - REV 3

ACTION	FUNCTION	NAME	DATE	SIGNATURE
Prepared	Project Manager	M van Zyl	10 Nov 2011	Manff
Prepared	Environmental Scientist	M. van Zyl	28 Sept 2012	Manff
Reviewed	Technical Director	J Glendinning	28 Sept 2012	John

RECORD OF REVISIONS AND ISSUES REGISTER

Date	Revision	Description	Issued to	Issue Format	No. Copies
21/10/2011	А	Draft for internal review	J Glendinning	Electronic	1
25/10/2011	00	Draft for Client Review	K Kruger	Electronic	1
07/11/2011	01	Draft for Client Review	K Kruger	Electronic	1
10/11/2011	02	Draft for Client Review	K Kruger	Electronic Hard copies	1 2
28/09/2011	03	Final	Willem Howell	Electronic	1

ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH FROM THE CAMDEN POWER STATION

REPORT NO: JW164/11/D116 - REV 3

CONT	ENTS PAGE
1.	INTRODUCTION1
1.1	Background1
1.2	Objectives1
2.	METHODOLOGY2
2.1	Tests Conducted2
3.	MINIMUM REQUIREMENTS (DWAF, 1998) WASTE CLASSIFICATION4
3.1	Minimum Requirements Methodology4
3.2	Primary Hazard Rating of the Camden Power Station Dry Ash
3.3	Secondary Hazard Rating of the Camden Power Station Dry Ash5
3.4	Hazard Rating of Ash Seepage Water7
3.5	Hazard Rating for the Camden Power Station Brine8
4.	DEA WASTE CLASSIFICATION10
4.1	Waste Classification of Ash for Disposal Purposes10
4.2	Waste Classification of Brine for Disposal Purposes16
5.	CARCINOGENIC AND MUTAGENIC CHARACTERISTICS OF THE CAMDEN POWER STATION ASH19
6.	DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS19
6.1	Minimum Requirements Classification19
6.2	Department of Environmental Affairs Draft Waste Classification Regulations – July 2011 Classification
7.	REFERENCES

List of Tables

Table 3.3(a):	Leach concentration of inorganic elements in the dry ash sample compared to their respective ARLs
Table 3.3(b):	Monthly loading rate based on Chrome VI leach concentration
Table 3.4:	Concentrations of inorganic elements in the ash seepage water compared to their ARLs
Table 3.5:	Concentrations of inorganic elements in the brine sample compared to their ARLs
Table 4.1(a):	Corrected concentrations for dusting ash sample based on % contribution of ash carrier water and ash content
Table 4.1(b):	De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Dusting sample)
Table 4.1(c):	Corrected concentrations for ashing sample based on % contribution of ash carrier water and ash content
Table 4.1(d):	De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Ashing sample)
Table 4.2(a):	Test results of Camden Power Station Ash Disposal Facility Leachate (seepage water) and theoretical results for Brine
Table 6.1:	Waste Type and Class of Landfill Required based on Minimum Requirements 20
Table 6.2	Waste Type and Class of Landfill Required based on draft Waste Regulations of July 2011

List of Photo's & Figures

Photo 1:	Four samples used in the classification of the Camden Power Station Ash
	Ash Carrier Water and Ash Disposal Facility Seepage Water (Leachate) 3
Figure 4.2(a):	Proposed Class C landfill barrier system (DEA, 2011)
Figure 4.2(b):	H:H Lagoon barrier system (DWAF, 1998b)17

APPENDICES

Appendix A SGS South Africa: Laboratory Certificates

iii

ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH FROM THE CAMDEN POWER STATION

REPORT NO: JW164/11/D116 - REV 3

1. INTRODUCTION

1.1 Background

Zitholele Consulting (Pty) Ltd is currently in the process of conducting and Environmental Impact Assessment (EIA) and Waste Licence Application for a new ash disposal facility at the Camden Power Station. The new ash disposal site will be approximately 100 hectares in size with a further 25 hectares for associated infrastructure.

The classification of the ash from the wet-ash deposition process at Camden Power Station is required for input into both the EIA and Waste Licence Application Report. In addition, the ash classification is required to determine its environmental risk profile and also determines the barrier design criteria applicable to the new ash disposal facility.

1.2 **Objectives**

The objective was to classify the ash in terms of the Department of Water Affairs and Forestry's (the DWAF's) "Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste", Second Edition (DWAF, 1998). Cognisance was also taken of the Department of Environmental Affairs (the DEA's) letters pertaining to waste classification dated April 2008 and June 2009 respectively.

In addition to the above, the ash has also been classified based on the draft waste regulations currently being developed by the DEA. This is required as the ash disposal facility will only be constructed by the time that the new regulations have been promulgated (expected late 2012/early 2013). For this classification the draft regulations promulgated in July 2011 for public comment were used. The reason for this inclusion is because Mr K. Legge of the Department of Water Affairs indicated that where a new waste disposal facility is constructed after the date of promulgation of the regulations, the barrier (liner) system will have to comply with the new barrier system regulations (K. Legge, 2011). The new waste classification system dictates which barrier system will be required for the new waste disposal facility.

JONES & WAGENER (PTY) LTD REG NO. 1993/02655/07 VAT No. 4410136685

DIRECTORS: PW Day (Chairman) PrEng MSc(Eng) FSAICE D Brink (CEO) PrEng BEng(Hons) FSAICE PG Gage PrEng CEng BSc(Eng) GDE MSAICE AIStructE JP van der Berg PrEng PhD MEng MSAICE TT Goba PrEng MEng FSAICE GR Wardle (Alternate) PrEng MSc(Eng) FSAICE TECHNICAL DIRECTORS: JA Kempe PrEng BSc(Eng) GDE MSAICE AIStructE JR Shannock PrEng MSc(Eng) MSAICE MIWM JE Glendinning PSdNat MSc(Env Geochem) NJ Vermeulen PrEng PhD MEng MSAICE DC Rove PrEng BSc(Eng) MSAICE A Osothuizen PrEng BEng(Hons) MSAICE ASSOCIATES: BR Antrobus PrSciNat BSc(Hons) MSAIEG MW Palmer MSc(Eng) AMSAICE AJ Bain BEng AMSAICE HR Aschenborn PrEng BEng(Hons) MSAICE PJJ Smit BEng(Hons) AMSAICE R Puchner PrSciNat MSc(Geol) MSAIEG TG IE ROUX PrEng MSAICE M van Zyl PrSciNat BSc(Hons) MIWM CONSULTATS: WE BENG(Hons) MSAIEG MAEG TG IE ROUX PrEng MSAICE M Van Zyl PrSciNat BSc(Hons) MIWM

CONSULTANTS: W Ellis PrEng CEng MIStructE FINANCIAL MANAGER: HC Neveling BCom MBL

2. <u>METHODOLOGY</u>

2.1 Tests Conducted

Camden Power Station supplied representative samples of dry ash, wet ash (2 samples) and ash disposal site leachate (seepage water) – see **Photo 1**. These samples were then sent to the SGS Laboratory in Randburg for various leach analyses, total concentration (TC) determination and quantitative x-ray diffraction (XRD) analysis to determine the mineralogy.

2

The SGS laboratory subjected the dry ash to a Minimum Requirements' Acid Rain Leach Procedure (ARLP). The ARLP leach procedure is used in the current Minimum Requirements waste classification system where a waste is mono-disposed or stored or where it is co-disposed with other inorganic waste types not containing any decomposable compounds.

The dry ash sample was also subjected to a total extraction procedure in order to determine the TCs of the various elements.

In addition, the dry ash sample was subjected to a XRD analysis to determine the mineralogy.

Following the new DEA classification system for the mono storage and disposal of a waste, solids were firstly separated from the liquid fraction and the percentage solids determined. The solids fractions were then subjected to a deionised (DI) water leach test, where after the leach solution was analysed for various metals and other inorganic constituents. The water fractions of the two wet ash samples were also analysed for the various metals and inorganic constituents.

The two wet ash samples provided were termed dusting ash, that is the fine ash-water mixture used to develop the outer walls of the current ash disposal facility and ashing ash, the coarse ash-water mixture. The coarse ash is deposited in the middle of the ash disposal facility.

A sample of leachate (seepage water) was also analysed for various inorganic constituents.

The certificates of the results of the various tests conducted on the ash and leachate are included in **Appendix A**.

Although a sample of brine from the water treatment plant was requested for analyses, the plant was not operative on the day that the samples were collected. Theoretical values for the various constituents of concern were provided by Eskom Camden and these values were used in the classification.

Photo 1: Four samples used in the classification of the Camden Power Station Ash, Ash Carrier Water and Ash Disposal Facility Seepage Water (Leachate)

3. MINIMUM REQUIREMENTS (DWAF, 1998) WASTE CLASSIFICATION

3.1 Minimum Requirements Methodology

The Camden Ash was classified in terms of the Minimum Requirements (DWAF, 1998a) and the letters from the Department of Environment and Tourism (DEAT), titled "Waste Delisting Procedure", signed by their Director General, dated April 2008 and June 2009 respectively (DEAT, 2009). The hazard rating in this report is therefore in compliance with the Minimum Requirements as amended by the DEAT. The ash was hazard rated based on the leach results of the South African ARLP only.

The ARLP is used in cases where non-organic waste is mono-disposed or disposed with other waste not containing bio-degradable organic waste or in cases where a waste is to be used in an application where the chances of organic acid generation are minimal, such as road building and brick making.

The concentrations of the hazardous substances in the leach solutions were compared to the Acceptable Risk Levels (ARLs) for the aquatic environment as listed in the Minimum Requirements or as identified by J&W. The ARL, expressed in parts per million (ppm) or $mg/\ell = 0.1 \times LC_{50} (mg/\ell)^1$. Where the concentration in the leach solution is > than the ARL, the waste is classified as hazardous for that particular substance. The most hazardous substance dictates the Hazard Rating of the waste. Four Hazard Rating classes are specified in the Minimum Requirements ranging from Hazard Group 1 (Extreme Hazard) to Hazard Group 4 (Low Hazard).

The waste has been classified and hazard rated based on the most hazardous constituent of concern in the ash. Furthermore, the monthly loading rate, i.e., the amount of waste that can be disposed of in tons/hectare/month, has also been calculated, namely:

Monthly loading rate = Allowable dose per month (g/ha/month)/Concentration in leach solution, where allowable dose per month = $ARL/0.66^{2}$

The allowable maximum load per hectare for lined waste disposal facilities is again calculated from the dose as:

Total load (ton/hectare) = 100 x dose (g/ha/month)/mg of most hazardous substance per kilogram of waste

or, for unlined waste disposal facilities as:

Total load (ton/hectare) = 10 x dose (g/ha/month)/mg of most hazardous substance per kilogram of waste

A waste can be delisted to general waste in cases where the:

- Concentration in the leach solution < ARL for Hazard Group 2, 3 or 4 substances, or
- Concentration in the leach solution < 0.1 x Hazard Group 1, or
- An allowable load of [(ARL/0.66) / (Measured concentration)] is not exceeded.

Waste Classification Report

¹ The factor of 0.1 is calculated from a cross section of typical dose response data, with a typical slope of dose response curves. From an exposure 10 times lower than the LC50, approximately 0,00034% or one in 300 000 of a population exposed to the contaminant, is likely to die (DWAF, 1998a).

 $^{^2}$ The factor 0.66 is derived from the ratio of the substance in a weight of underground body of water (DWAF, 1998). A correction factor of a 1000 was applied by the DWAF to obtain g/ha/month instead of mg/ha/month – this was never fully explained in the Minimum Requirements.

3.2 Primary Hazard Rating of the Camden Power Station Dry Ash

Based on the Minimum Requirements approach a waste is first categorised based on the industry type. In this case the waste is ash originating from the wet-ash process at the Camden Power Station for the generation of electricity. The ash is therefore classified as potentially hazardous, as the Energy Industry was identified in the Minimum Requirements as an industry generating potentially hazardous waste (DWAF, 1998a).

The next step in the primary hazard rating involves a TC analysis to determine the chemicals of concern. The TC analysis indicates that the dry ash contains between 6.86 and 7.03 % iron and between 488 and 508 mg/kg manganese, which, in terms of the Minimum Requirements, results in the ash being classified as potentially hazardous. Both iron and manganese are listed as potentially hazadous wastes in terms of the Minimum Requirements, as they have the potential to leach out of the ash it may therefore cause negative impacts in the environment.

3.3 Secondary Hazard Rating of the Camden Power Station Dry Ash

Based on the above Minimum Requirements approach, the dry ash was classified as a Hazard Group 1 or extreme hazardous waste due to the hexavalent chromium concentration (Cr VI) in the ARLP leach solution being greater than its ARL value – see **Table 3.3(a)** below.

The results indicate that disposal of the ash should be onto a facility that complies with the barrier (liner) performance requirements of a H:H waste disposal facility. An H:H waste disposal facility complies with the most stringent design requirements as per the Minimum Requirements.

The monthly loading rate for the ash, based on the ARLP results, is presented in **Table 3.3(b).** Based on the concentration of hexavalent chromium present in the ash – only 75 tons per hectare per month can be disposed of. The size of the ash disposal facility will determine the total amount of ash that can be disposed of per month.

Ms I. Hodgskin of the power station reported that 1.6 million tons of dry ash is deposited per annum. The monthly disposal rate will therefore be 133 333 tonnes, which requires a disposal site of 1 778 hectares in size. Clearly this is not achievable as the anticipated ash disposal facility size is only 100 hectares. This demonstrates that the loading rate principle of the Minimum Requirements is not practical. However, the actual leachate (seepage water) from the existing ash disposal facility was also analysed, and as the seepage water represents the actual impact on the environment, the seepage water was used as the basis for the classification – **see Section 3.4** below.

5

Chemical Substance	ARLP (mg/ℓ)	ARL (ppm)	Hazard Group
Aluminium (AI)	0.069	10	4
Antimony (Sb)	0.013	0.070	3
Arsenic (As)	0.080	0.43	2
Barium (Ba)	0.21	7.8	3
Beryllium (Be)	<0.00010	7.8	3
Boron (B)	2.3	7.8	3
Bismuth (Bi)	<0.0010	_	_
Calcium (Ca)	200	_	
Cadmium (Cd)	<0.0020	0.031	1
Chloride (C)I	2.5	_	_
Chromium (Cr) (total)	0.40	4.7	3
Chromium VI (Cr VI)	0.40	0.02	1
Cobalt (Co)	<0.0020	6.9	3
Copper (Cu)	<0.0040	0.10	2
Fluoride as F	<0.050	_	_
Iron (Fe)	<0.050	9.0	3
Lead (Pb)	<0.0040	0.10	2
Lithium (Li)	0.073	15.8*	4
Magnesium (Mg)	45	_	_
Manganese (Mn)	0.049	0.30	2
Mercury (Hg)	0.0020	0.022	1
Molybdenum (Mo)	0.14	55	4
Nitrate as N	15	_	_
Nickel (Ni)	0.014	0.62	2
Potassium (K)	1.4	_	_
Selenium (Se)	0.026	0.26	2
Silicon (Si)	11	1000	4
Silver (Ag)	<0.0020	2.0	3
Sodium (Na)	5.4	_	_
Sulfate as SO ₄	180	_	_
Tin (Sn)	<0.0070	2.99	3
Titanium (Ti)	0.023	0.73	2
Vanadium (V)	0.38	1.3	3
Zinc (Zn)	<0.010	0.7	2
	ARLP > ARL		

Table 3.3(a): Leach concentration of inorganic elements in the dry ash sample compared to their respective ARLs

*Note: Although the DEA letter of 21 April 2008, list lithium as a hazardous substance with a LC50 of 1.4 mg/ℓ, there is no substantial evidence that lithium is highly eco-toxic. We have managed to obtain a quoted 96-hour LC50 value of 158mg/l (rainbow trout) for lithium chloride, therefore an ARL of 15.8mg/l. (FMC Corporation, 2006)

Table 3.3(b):

b): Monthly loading rate based on Chrome VI leach concentration

DRY ASH				
MONTHLY LOADING RATE: ARLP				
	Chromium VI			
Concentration of element (ppm) in leach solution	0.4			
Load for element in g/ha/month from Min Req.	30			
Load in kg/ha/month	75000			
Load in tons/ha/month	75			

The monthly disposal rate is calculated by dividing the ARL by 0.66, which gives the load for the element in g/ha/month. The monthly load of the waste is then calculated by dividing the load (in g/ha/month) with the concentration of the component in the leach solution (ppb).

3.4 Hazard Rating of Ash Seepage Water

Based on the actual seepage water (leachate) quality values, none of the elements analysed for exceeded their ARL values. Based on the Minimum Requirements methodology, the ash can be delisted to a general waste. Where a hazardous waste has been delisted, the waste must still be disposed of on a landfill site complying with the barrier system of a G:L:B⁺ waste disposal facility.

Table 3.4: Concentrations of inorganic elements in the ash seepage water compared to their ARLs

Chemical Substance	Seepage Water (mg/ℓ)	ARL (ppm)	Hazard Group
Aluminium (Al)	<0.020	10	4
Arsenic (As)	0.0049	0.43	2
Antimony (Sb)	0.05*	0.07	3
Barium (Ba)	0.063	7.8	3
Beryllium (Be)	0.305	7.8	3
Boron (B)	2.5	7.8	3
Bismuth (Bi)	<0.0010	_	_
Calcium (Ca)	110	_	
Cadmium (Cd)	<0.0020	0.031	1
Chloride (C)l	160	_	_
Chromium (Cr) (total)	0.0051	4.7	3
Chromium VI (Cr VI)	<0.010	0.020	1
Cobalt (Co)	<0.0020	6.9	3
Copper (Cu)	<0.0040	0.10	2
Fluoride as F	<0.050	_	_
Iron (Fe)	<0.050	9.0	3
Lead (Pb)	<0.0040	0.14	2
Lithium (Li)	0.61	0.14	1

Chemical Substance	Seepage Water (mg/ℓ)	ARL (ppm)	Hazard Group
Magnesium (Mg)	8.7	_	_
Manganese (Mn)	<0.0030	0.30	2
Mercury (Hg)	0.00042	0.02	1
Molybdenum (Mo)	0.19	55	4
Nitrate as N	<0.10	_	_
Nickel (Ni)	<0.0070	0.62	2
Potassium (K)	39	_	_
Selenium (Se)	0.0047	0.26	2
Silicon (Si)	1.7	1000	4
Silver (Ag)	0.0037	2.0	3
Sodium (Na)	240	_	_
Sulphate as SO ₄	450	_	_
Tin (Sn)	<0.0070	2.99	3
Titanium (Ti)	<0.0050	0.73	2
Vanadium (V)	<0.0010	1.3	3
Zinc (Zn)	<0.010	0.7	2
	ARLP > ARL		-
NA	Not analysed		prophysical of 0.89 malks

* Based on the results of the XRD analysis, which indicated a total concentrating of 0.89 mg/kg, which, if all the antimony leaches out of the ash, will result in a value of 0.05 mg/ ℓ at a dilution factor of twenty

3.5 Hazard Rating for the Camden Power Station Brine

Theoretical values for the reverse osmosis plant brine currently being generated at the Camden Power Station were supplied to J&W. Again, the primary hazard rating would indicate that the waste is potentially hazardous based on the industry type generating the waste i.e. the generation of electricity.

Based on the Minimum Requirements methodology, the brine is classified as a Hazard Group 2 or high hazard waste due to the lead concentration in the brine being greater than its ARL value – see **Table 3.5.** Lead is a Hazard Group 2 substance in terms of the Minimum Requirements.

The results indicate that disposal of the brine should be in a facility that complies with the barrier (liner) performance requirements of a H:H lagoon as given in the Minimum Requirements of 1998 (DWAF, 1998b).

Concentrations of inorganic elements in the brine sample compared to their ARLs Table 3.5:

Chemical Substance	Modelled values for Brine (mg/୧)	ARL (ppm)	Hazard Group
Aluminium (Al)	0.10	10	4
Arsenic (As)	NP	0.43	2
Antimony (Sb)	NP	0.070	3
Barium (Ba)	0.99	7.8	3
Beryllium (Be)	<0.0050	7.8	3
Boron (B)	1.4	7.8	3
Bismuth (Bi)	NP	_	_
Calcium (Ca)	877	_	
Cadmium (Cd)	<0.0050	0.031	1
Chloride (C)I	786	-	_
Chromium (Cr) (total)	0.10	4.7	3
Chromium VI (Cr VI)	NP	0.020	1
Cobalt (Co)	<0.0050	6.9	3
Copper (Cu)	<0.0050	0.10	2
Fluoride as F	0	_	_
Iron (Fe)	0.30	9.0	3
Lead (Pb)	0.27	0.10	2
Lithium (Li)	NP	0.14	1
Magnesium (Mg)	1.3	_	_
Manganese (Mn)	0.050	0.30	2
Mercury (Hg)	0.0040	0.022	1
Molybdenum (Mo)	0.10	55	4
Nitrate as N	<0.020	_	_
Nickel (Ni)	<0.0050	0.62	2
Potassium (K)	167	-	_
Selenium (Se)	NP	0.26	2
Silicon (Si)	NP	1000	4
Silver (Ag)	NP	2.0	3
Sodium (Na)	1 385	_	_
Sulphate as SO ₄	4 009	_	_
Tin (Sn)	NP	2.99	3
Titanium (Ti)	NP	0.73	2
Vanadium (V)	0.10	1.3	3
Zinc (Zn)	<0.0050	0.7	2
	ARLP > ARL		· · ·
NP	Not provided		

4. DEA WASTE CLASSIFICATION

Although the Minimum Requirements waste classification system is currently still the official waste classification system, the ash was also classified in terms of the draft DEA waste classification system for disposal purposes (DEA, 2011a). The reason for this being that by the time that the new ash disposal facility is to be constructed, the new waste classification regulations will in all likelihood be applicable.

4.1 Waste Classification of Ash for Disposal Purposes

The draft classification system focuses on the long term disposal of waste (longer than 90 days) on land or waste disposal facilities. The system is based on the Australian State of Victoria's waste classification system for disposal, which uses the Australian Standard Leaching Procedure (ASLP) to determine the leachable concentrations (LCs) of pollutants (DEA, 2011a).

For the ASLP a number of leach solutions can be used. For waste to be disposed of with organic matter, an acetic acid leach solution is used. This leach solution is very similar to the currently used USEPA TCLP leach solution, except that the pH is 5.0, instead of pH 4.93. In cases where a waste has a high pH, and following an acid neutralisation capacity test, a pH 2.9 leach solution must be used.

In cases where non-organic waste is to be co-disposed with other non-organic waste, a basic 0.10M sodium tetraborate decahydrate solution of pH 9.2 \pm 0.10 should be used in addition to the TCLP (DEA, 2011a). The objective of the sodium tetraborate test is to identify contaminants that are leached above the various leachable concentration thresholds (LCTs) trigger values at a high pH.

For waste that is to be left undisturbed on-site, or to be dispersed over land without confinement, or non-putrescible material, e.g. a mono-disposal scenario, reagent water (deionised water) (DI) must be used as a leach agent.

In addition to the above, and as a first step, the TC of the constituents of concern must also be determined and compared to specified total concentration threshold (TCT) values.

The inorganic constituents of concern are listed in Table 4.1(a). The number of potentially hazardous substances in the new classification system has been significantly reduced from that listed in the Minimum Requirements of 1998 and brought in line with the potentially hazardous substances being used in other parts of the world to classify waste for disposal purposes. However, if a generator is aware of a hazardous substance other than those listed by the DEA, they are obliged to indicate this.

Once the analytical results are known, the waste is classified in line with the approach listed below:

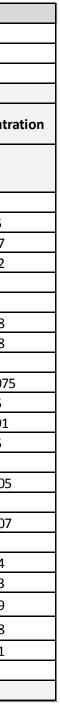
- Wastes with any contaminant level above the leachable concentration threshold 2 (LCT2) or total concentration threshold 2 (TCT2) values, i.e., LC > LCT2 or TC > TCT2, are Type 0: Very High Risk Wastes. These wastes may not be disposed of on any landfill without prior treatment;
- Wastes with any contaminant level above the LCT1 but below LCT2 values (LCT1 < LC \leq LCT2), or above the TCT1 but below TCT2 values (TCT1 < TC \leq TCT2), are Type 1: High Risk Wastes. These wastes may only be disposed of on landfills with the most conservative barrier systems, improved from a typical H:H/H:h landfill liner system, and now termed a Class A landfill barrier system;

- Wastes with any contaminant level above the LCT0 but below the LCT1 and TCT1 values (LCT0 < LC ≤ LCT1 and TC ≤ TCT1) are Type 2: Moderate Risk Wastes. These wastes may only be disposed of on landfills with a double barrier system, improved from a typical G:L:B⁺ system, and now termed a Class B landfill barrier system. These waste can also be disposed of on a Class A landfill;
- Wastes with all TC values less than twenty (20) times the LCT0 value (TC < 20 x LCT0), <u>or</u> wastes with all contaminant levels below both the LCT0 <u>and</u> TCT0 values (LC ≤ LCT0 <u>and</u> TC ≤ TCT0), are Type 3: Low Risk Wastes. These wastes may only be disposed of on a landfill with an improved G:L:B+ barrier system. The improved barrier system is now termed a Class C landfill barrier. These wastes can also be disposed of on Class A and Class B landfills;
- Wastes with TC values less than twenty (20) times the TCTi value (TC < 20 x TCTi) or wastes with all contaminant levels below the LCTi or TCTi values (LC ≤ LCTi or TC ≤ TCTi) are Inert Wastes or Type 4 wastes. These wastes may be disposed of on a landfill with G:S:B⁻ base preparation system in compliance with the current Minimum Requirements. They may also be disposed of on landfills with a more conservative barrier system design.

For the Camden Power Station two ash samples were collected from the ash delivery lines. The first sample is a dusting ash, which comprised 48.3 % solids (fine ash) and 51.7% ash carrier water. The second sample, termed ashing ash, contained 6.37% solids (coarse ash) and 93.63% ash carrier water. The dusting ash is used to develop the perimeter walls of the ash disposal facility and the coarse ash is deposited within the perimeter walls. Both ashes are deposited hydraulically and the ash carrier water is returned to the power station to collect more ash. Fine ash is deposited mostly during day time and the coarse ash during night time operations. Ms I. Hodgskin of the power station reported that 1.6million tons of ash is deposited per annum (Hodgskin, 2011).

For both samples the ash carrier water was analysed for the various constituents. Both ash samples were subjected to a deionised water leach. In line with the Australian leach procedure, the percentage contribution of the various constituents of the water and solids were then calculated for each sample based on the percentage solids. The combined leach concentrations for each ash sample are presented in Tables 4.1a and 4.1c respectively. These results were then compared to the various leach concentration threshold (LCT) values and the total concentration threshold (TCT) values in order to classify the ash for disposal purposes. For the TC values, the dry ash sample aqua regia results were used.

Based on the DI water leach results, the dusting ash classifies as a Type 3 waste – see **Table 4.1(b).** This is because the LC values for barium, chrome, chrome VI, molybdenum and TDS were higher than the respective LCTi values for a Type 4 waste (inert waste). The TC values of arsenic, barium, copper, lead and zinc were also higher than the TCTi values. The ashing ash sample is also classified as a Type 3 waste because of the boron, mercury, molybdenum, TDS and sulphate LC values being higher than their respective LCTi values – see **Table 4.1(c)**. A Type 3 waste requires disposal on a waste management facility with a Class C barrier system, typical of the current G:L:B⁺/G:M:B⁺ liner system (DEA, 2011b).


The actual seepage water from the Camden ash disposal facility was also classified using the draft waste regulations. This water is classified as a Type 3 waste, which therefore confirms the classification of the ash as a Type 3 waste.

			DUSTING S	AMPLE		I	
Percentage solids	48.30%						
Percentage solius	40.30%						
I			WATER LEACH: DU	STING SAMPLE			
		Solid Phase			Water Phase		Leach Concentra
Element/Compound	mg/ℓ	Contribution Factor	Corrected concentration in mg/&	mg/ℓ	Contribution Factor	Corrected concentration in mg/१	mg/ℓ
As, Arsenic	0.0015	0.483	0.0007245	0.0015	0.517	0.0007755	0.0015
B, Boron	0.2	0.483	0.0966	0.11	0.517	0.05687	0.15347
Ba, Barium	0.84	0.483	0.40572	1.3	0.517	0.6721	1.07782
Cd, Cadmium	0.001	0.483	0.000483	0.001	0.517	0.000517	0.001
Co, Cobalt	0.001	0.483	0.000483	0.001	0.517	0.000517	0.001
Cr, Chromium - total	0.11	0.483	0.05313	0.15	0.517	0.07755	0.13068
Cr VI, Chromium VI	0.11	0.483	0.05313	0.15	0.517	0.07755	0.13068
Cu, Copper	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
Hg, Mercury	0.0003	0.483	0.0001449	0.00005	0.517	0.00002585	0.00017075
Mn, Manganese	0.0015	0.483	0.0007245	0.0015	0.517	0.0007755	0.0015
Mo, Molydenum	0.067	0.483	0.032361	0.19	0.517	0.09823	0.130591
Ni, Nickel	0.0035	0.483	0.0016905	0.0035	0.517	0.0018095	0.0035
Pb, Lead	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
Sb, Antimony	0.0035	0.483	0.0016905		0.517	0	0.0016905
Se, Selenium	0.002	0.483	0.000966	0.002	0.517	0.001034	0.002
V, Vanadium	0.045	0.483	0.021735	0.0021	0.517	0.0010857	0.0228207
Zn, Zinc	0.005	0.483	0.002415	0.005	0.517	0.002585	0.005
TDS, Total dissolved salts	272	0.483	131.376	1992	0.517	1029.864	1161.24
Cl, Chloride	2.1	0.483	1.0143	120	0.517	62.04	63.0543
SO ₄ , Sulphate	13	0.483	6.279	210	0.517	108.57	114.849
NO ₃ , Nitrate	1.5	0.483	0.7245	0.64	0.517	0.33088	1.05538
F, Fluoride	0.3	0.483	0.1449	0.73	0.517	0.37741	0.52231
Note: In order to calcuate t	the % contibution	of each phase, values les	 ss than (<) the limit of rep	oort (LOR) were di	vided by 2		

 Table 4.1(a):
 Corrected concentrations for dusting ash sample based on % contribution of ash carrier water and ash content

	Camden Por	wer Station Ash: D	usting Ash													
Chemical Species	Deionised Water Leach (LC)	Total Concentration (TC)	Limit of Report for LC		LCTi	тсті		LCT0	тсто		LCT1	TCT1		LCT2	TCT2	
	mg/ £	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	0.0015	13	0.0030		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	0.15	NA	0.220		0.50	150		25	15 000		50	15 000		200	60 000	
Ва	1.1	716	0.030		0.70	62.5		35	6 250		70	6 250		280	25 000	_
Cd	0.0010	<0.020	0.0020		0.0050	7.5		0.25	260		0.50	260		2.0	1 040	
Co	0.0010	16	0.0020	т Г	0.50	50		25	5 000		50	5 000		200	20 000	
Cr	0.13	113	0.040	Y	0.10	46000	Y	5.0	800 000	Ϋ́	10	800 000	Y	40	N/A	Y
Cr(VI)	0.13	NA	0.010		0.050	6.5	Р	2.5	500	Р	5.0	500	Р	20	2 000	Р
Cu	0.0020	59	0.0040	E	1.0	16	E	50	19 500	E	100	19 500	E	400	78 000	E
Hg	0.00017	<3.0	0.00010	4	0.0010	0.93	3	0.050	160	2	0.10	160	1	0.40	640	0
Mn	0.0015	488	0.060		0.40	1 000	- 3	20	25 000	2	40	25 000		160	100 000	
Мо	0.13	5.2	0.020	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	W
Ni	0.0035	51	0.0070	A	0.070	91	A	3.5	10 600	A	7.0	10 600	A	28	42 400	A
Pb	0.0020	41	0.0040	S T	0.010	20	S	0.50	1 900	S T	1.0	1 900	S T	4.0	7 600	S T
Sb	0.0017	0.89	0.0070	E	0.010	10	E	0.50	75	Ē	1.0	75	Ē	4.0	300	E
Se	0.0020	<2.0	0.0040		0.010	10		0.50	50		1.0	50		4.0	200	
V	0.023	68	0.0030		0.10	150		5.0	2 680		10	2 680		40	10 720	
Zn	0.0050	314	0.080		3.0	240		160	160 000		320	160 000		1280	640 000	
TDS	1 161	NA	21		250	N/A		12 500	N/A		12 500	N/A		100 000	N/A	
Chloride	63	NA	0.50		100	N/A		5 000	N/A		10 000	N/A		50 000	N/A	
Sulphate as SO4	115	NA	0.40		200	N/A		10 000	N/A		20 000	N/A		80 000	N/A	
NO₃ as N	1.1	NA	0.40		6.0	N/A		300	N/A		600	N/A		2 400	N/A	
Fluoride	0.52	NA	0.30	_	1.0	100		50	10 000		100	10 000		400	40 000	
NA	Not analysed															
N/A	Not available															
	TC > TCi or LC > LC															
	TCi < TC < TCT0/ LCT0.	TCT1 or LCTi <lc <<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lc>														
	LCT0 < LC < LCT1															
	TCT0/TCT1 < TC < 1															
	TC > TCT2 or LC > L	.CT2														

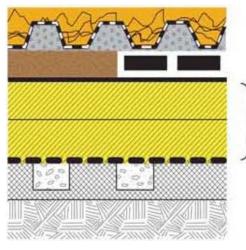
 Table 4.1(b):
 De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Dusting sample)

			ASHING SAMP	LE (Wet)			
	/						
Percentage solids	6.37%						
			WATER LEACH: ASI				
		Solid Phase			Water Phase		Leach Concentration
		Jona mase					
Element/Compound	mg/e	Contribution Factor	Corrected concentration in mg/ℓ	mg/e	Contribution Factor	Corrected concentration in mg/୧	mg/ℓ
As, Arsenic	0.012	0.064	0.00076	0.0015	0.9363	0.0014	0.0022
B, Boron	0.39	0.064	0.025	1.1	0.9363	1.03	1.1
Ba, Barium	0.059	0.064	0.0038	0.34	0.9363	0.32	0.32
Cd, Cadmium	0.0024	0.064	0.00015	0.0010	0.9363	0.00094	0.0011
Co, Cobalt	0.0027	0.064	0.00017	0.0010	0.9363	0.00094	0.0011
Cr, Chromium - total	0.0075	0.064	0.00048	0.029	0.9363	0.027	0.028
Cr VI, Chromium VI	0.0050	0.064	0.00032	0.030	0.9363	0.028	0.028
Cu, Copper	0.0020	0.064	0.00013	0.0020	0.9363	0.0019	0.0020
Hg, Mercury	0.00015	0.064	0.000096	0.0012	0.9363	0.0011	0.0011
Mn, Manganese	0.0097	0.064	0.00062	0.0015	0.9363	0.0014	0.0020
Mo, Molydenum	0.012	0.064	0.00076	0.18	0.9363	0.17	0.17
Ni, Nickel	0.0035	0.064	0.00022	0.0035	0.9363	0.0033	0.0035
Pb, Lead	0.0020	0.064	0.00013	0.0020	0.9363	0.0019	0.0020
Sb, Antimony	0.0035	0.064	0.00022		0.9363	0	0.00022
Se, Selenium	0.0020	0.064	0.00013	0.0094	0.9363	0.0088	0.0089
V, Vanadium	0.022	0.064	0.0014	0.020	0.9363	0.019	0.020
Zn, Zinc	0.0050	0.064	0.00032	0.0050	0.9363	0.0047	0.0050
TDS, Total dissolved solids	64	0.064	4.1	856	0.9363	801	806
Cl, Chloride	1.7	0.064	0.11	97	0.9363	91	91
SO ₄ , Sulphate	19	0.064	1.2	380	0.9363	356	357
NO ₃ , Nitrate	0.28	0.064	0.018	3.2	0.9363	3.0	3.0
F, Fluoride	0.025	0.064	0.0016	0.74	0.9363	0.69	0.69
Note: In order to calcuate th	ne % contibution c	 of each phase, values les	 ss than (<) the limit of report	(LOR) were divid	ed by 2		

Table 4.1(c): Corrected concentrations for ashing sample based on % contribution of ash carrier water and ash content

	Camden Pow	ver Station Ash: A	Ashing Sample													
Chemical Species	Deionised Water Leach (LC)	Total Concentration (TC)	Limit of Report for LC		LCTi	тсті		LCT0	тсто		LCT1	TCT1		LCT2	TCT2	
	mg/ℓ	mg/kg	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ ℓ	mg/kg	
As	0.0022	13	0.0030		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	1.1	NA	0.220		0.50	150		25	15 000		50	15 000		200	60 000	-
Ва	0.32	716	0.030		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	0.0011	<0.020	0.0020		0.0050	7.5		0.25	260		0.50	260		2.0	1 040	-
Со	0.0011	16	0.0020	т	0.50	50	Т	25	5 000	Τ	50	5 000		200	20 000	
Cr	0.028	113	0.040	Ŷ	0.10	46 000	Ý	5.0	800 000	Ý	10	800 000	Y	40	N/A	Y
Cr(VI)	0.028	NA	0.010	Р	0.050	6.5	Р	2.5	500	Р	5.0	500	Р	20	2 000	Р
Cu	0.0020	59	0.0040	E	1.0	16	E	50	19 500	E	100	19 500	E	400	78 000	E
Hg	0.0011	<3.0	0.00010	4	0.0010	0.93	3	0.050	160	2	0.10	160	1	0.40	640	0
Mn	0.0020	488	0.060		0.40	1 000	Ū	20	25 000	2	40	25 000		160	100 000	- 0
Мо	0.17	5.2	0.020	W	0.070	40	W	3.5	1000	W	7.0	1000	W	28	4 000	W
Ni	0.0035	51	0.0070	A S	0.070	91	A S	3.5	10 600	A S	7.0	10 600	A	28	42 400	A
Pb	0.0020	41	0.0040	S T	0.010	20	з Т	0.50	1 900	T T	1.0	1 900	S T	4.0	7 600	S T
Sb	0.00022	0.89	0.0070	E	0.010	10	E	0.50	75	Ē	1.0	75	Ē	4.0	300	E
Se	0.0089	<2.0	0.0040		0.010	10		0.50	50		1.0	50		4.0	200	
V	0.020	68	0.0030		0.10	150		5.0	2 680		10	2 680		40	10 720	
Zn	0.0050	314	0.080		3.0	240		150	160 000		300	160 000		1 200	640 000	
TDS	806	NA	21		250	N/A		12 500	N/A		25 000	N/A		100 000	N/A	
Chloride	91	NA	0.50		100	N/A		5 000	N/A		10 000	N/A		50 000	N/A	
Sulphate as SO ₄	357	NA	0.40		200	N/A		10 000	N/A		20 000	N/A		80 000	N/A	
NO₃ as N	3.0	NA	0.40		6.0	N/A		300	N/A		600	N/A		2 400	N/A	
Fluoride	0.69	NA	0.30		1.0	100		50	10 000		100	10 000		400	40 000	
NA	Not analysed	•													•	
N/A	Not available															
	TC > TCi or LC > LC	CTI														
	TCi < TC < TCT0/T LCT0.	CT1 or LCTi <lc <<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lc>														
	LCT0 < LC < LCT1															
	TCT0/TCT1 < TC <															
	TC > TCT2 or LC >	LCT2														

 Table 4.1(d):
 De-ionised Water Leach Test Results of Camden Power Station Ash (TC Dry Ash, LC Ashing sample)


4.2 Waste Classification of Brine for Disposal Purposes

The inorganic constituents of concern for the modelled brine are listed in **Table 4.2(a)**. Based on these the brine is classified as a Type 3 waste.

A Type 3 waste (the reverse of omosis brine) may be disposed of on a Class C waste disposal facility provided the leachate head on the liner system can be managed and maintained equal or less than 300 mm. The design of Class C barrier systems is very similar to the current G:L:B⁺ design - see **Figure 4.2(a)**. The most prominent design change is the replacement of 2 x 150mm clay layers with a 1.5mm thick high density polyethylene (HDPE) layer.

The brine is classified as a Type 3 waste due to the TDS and sulphate concentrations being greater than the leach concentration threshold levels for a Type 4 waste (LCTi), but below that of Type 2 - see **Table 4.2(a)**. In addition, boron, mercury and chloride were also found to be above their respective LCTi value – see **Table 4.2(a)**. The values for the brine are modelled values and it is recommended that once a sample can be generated, a representative sample of the brine should be analysed to confirm the modelled results. As this waste is a liquid, it will have to be mono-disposed in hazardous waste lagoon facility in line with the design requirements for hazardous waste lagoons as per the Minimum Requirements (DWAF, 1998b). The design requirements for a H:H hazardous waste lagoon is given in **Figure 4.2(b)**.

In the case that the brine is co-disposed with the ash on the new waste disposal facility a Class C landfill barrier will be required for the ash disposal facility – see Figure 4, provided the leachate head on the liner system can be managed and maintained equal or less than 300 mm. The barrier design requirement for a Class C disposal facility is presented in **Figure 4.2(a)**.

Waste body 300 mm thick finger drain of geotextile covered aggregate 100 mm Protection layer of silty sand or a geotextile of equivalent performance 1,5 mm thick HDPE geomembrane

300 mm clay liner (of 2 X 150 mm thick layers)

Under drainage and monitoring system in base preparation layer

In situ soil

Figure 4.2(a): Proposed Class C landfill barrier system (DEA, 2011)

Hazardous Waste Lagoons

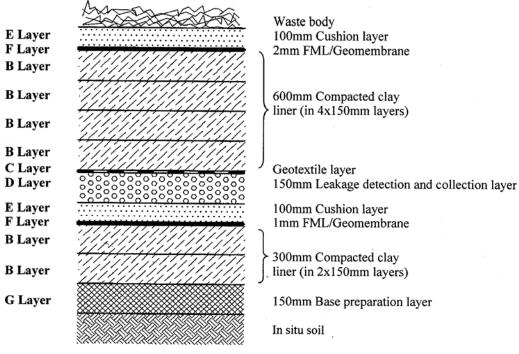


Figure 4.2(b): H:H Lagoon barrier system (DWAF, 1998b)

18

	Camden Pow	ver Station Leach	ate and Brine													
Chemical Species	Leachate (LC)	Brine (results supplied) (LC)	Detection limit for LC		LCTi	тсті		LCT0	ТСТО		LCT1	TCT1		LCT2	TCT2	
	mg/ℓ	mg/ℓ	mg/ℓ		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg		mg/ℓ	mg/kg	
As	0.0049	NP	0.0030		0.010	5.8		0.50	500		1.0	500		4.0	2 000	
В	2.5	1.4	0.220		0.50	150		25	15 000		50	15 000		200	60 000	
Ва	0.063	0.99	0.030		0.70	62.5		35	6 250		70	6 250		280	25 000	
Cd	0.0010	<0.0050	0.0020		0.0050	7.5		0.25	260		0.50	260		2.0	1040	
Со	0.0010	<0.0050	0.0020	т	0.50	50	Т т	25	5 000		50	5 000	Т	200	20 000	
Cr	0.0051	0.10	0.040	Y	0.10	46 000	Y	5.0	800 000	Ý	10	800 000	Ý	40	N/A	Y
Cr(VI)	0.0050	NA	0.010	Р	0.050	6.5	Р	2.5	500	Р	5.0	500	Р	20	2 000	Р
Cu	0.0020	<0.0050	0.0040	E	1.0	16	E	50	19 500	E	100	19 500	E	400	78 000	E
Hg	0.00042	0.0040	0.00010	1	0.0010	0.93	3	0.050	160	2	0.10	160	1	0.40	640	0
Mn	0.0015	0.0050	0.060	т	0.40	1 000		20	25 000	2	40	25 000		160	100 000	
Мо	0.19	0.10	0.020	W	0.070	40	W	3.5	1 000	W	7.0	1 000	W	28	4 000	W
Ni	0.0035	<0.0050	0.0070	A	0.070	91	A	3.5	10 600	A	7.0	10 600	A	28	42 400	A
Pb	0.0020	0.27	0.0040	S T	0.010	20	S T	0.50	1 900	- S T	1.0	1 900	S T	4.0	7 600	S T
Sb	0	NP	0.0070	Ē	0.010	10	Ē	0.50	75	Ē	1.0	75	Ē	4.0	300	Ē
Se	0.0047	NP	0.0040		0.010	10		0.50	50		1.0	50		4.0	200	
V	0.00050	0.10	0.0030		0.10	150		5.0	2 680		10	2 680		40	10 720	
Zn	0.0050	<0.0050	0.080		3.0	240		160	160 000		320	160 000		640 000	640 000	
TDS	764	7 477	21		250	N/A		12 500	N/A		25 000	N/A		100 000	N/A	
Chloride	160	786	0.50		100	N/A		5 000	N/A		10 000	N/A		50 000	N/A	
Sulphate as SO ₄	450	4 009	0.40		200	N/A		10 000	N/A		20 000	N/A		80 000	N/A	
NO ₃ as N	0.050	<0.020	0.40		6.0	N/A		300	N/A		600	N/A		2 400	N/A	
Fluoride	0.025	0	0.30		1.0	100		50	10 000		100	10 000		400	40 000	_
NP	Not provided															
N/A	Not available															
	TC > TCi or LC > LC	Ti														
	TCi < TC < TCT0/T LCT0.	CT1 or LCTi <lc <<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lc>														
	LCT0 < LC < LCT1															
	TCT0/TCT1 < TC < T	CT2														
	TC > TCT2 or LC > L	CT2														

 Table 4.2(a):
 Test results of Camden Power Station Ash Disposal Facility Leachate (seepage water) and theoretical results for Brine

5. <u>CARCINOGENIC AND MUTAGENIC CHARACTERISTICS OF THE CAMDEN</u> <u>POWER STATION ASH</u>

Based on the results obtained from the deionised leach solutions, the ash contains no inorganic carcinogens, mutagens or teratogens. However, the ARLP solution contained 15mg/*l* nitrate. Nitrate has been identified as a Group 2A carcinogen (probably carcinogenic to humans) by the International Association for Research on Cancer (IARC) in 2010 (IARC, 2011). Nitrate may cause cancer when ingested under conditions that result in endogenous nitrosation. As it is unlikely that a person will ingest ash or ash carrier water and therefore the chances of cancer development is insignificant with regard to nitrate.

From the XRD analysis it is observed that the ash contains 45.2% silica dioxide. Silica dioxide has been classified as a Group 1 carcinogen by the IARC (IARC, 2011). This category is used when there is sufficient evidence of carcinogenicity in humans. It would appear that the respirable fractions of the silica are coated with amorphous aluminosilicate and thus renders the silica significantly less hazardous (Y. Nathan et al, 2009). Therefore coal ash, including bottom and fly-ash, is currently classified as a non-hazardous waste in the European Union, State of Maryland and Ireland, USA (EU, 2000 and Maryland Dept. of Health, 2007).

6. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

6.1 Minimum Requirements Classification

Based on the DWAF's Minimum Requirements waste classification methodology and when subjected to an Acid Rain Leach Procedure, the Camden Ash is classified as a Hazard Group 1 waste, requiring disposal on a H:H waste disposal facility. This is caused by the concentration of leachable chrome VI (Hazard Group 1) being higher than its ARL, which means that the waste cannot be delisted to a general waste. Hazard Group 1 wastes need to be disposed of on H:H waste disposal facilities. However, when considering the guality of the ash seepage water not one of the elements of concern was detected at a concentration higher than its respective ARL value. Therefore the ash and ash carrier water can be delisted to a general waste as per the Minimum Requirements for disposal purposes. Although delisted liquid waste should be disposed of on landfills with H:H Lagoon barrier systems, the ash and ash carrier can be disposed of on a G:L:B⁺ waste disposal facility, provided the seepage water (leachate) head can be maintained at equal or less than 300mm on top of the barrier layer and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system for the service life of the landfill.

The Reverse Osmosis brine was classified as a Hazard Group 2 waste or High Hazard Waste due to the lead concentration in the brine being greater than its ARL value. The brine has to be disposed of on a hazardous lagoon (H:H lagoon).

Should consideration be given to the co-disposal of the ash and brine on a single facility, disposal should be acceptable on a H:H waste disposal facility with a H:H barrier system. This barrier system is required as the brine was classified as a Hazard Group 2 waste, which requires disposal on a H:H waste disposal facility.

The landfill class for disposal of the wastes based on the Minimum Requirements are summarised in Table 6.1 below. A recommended barrier system is also given.

Waste	Type of	Waste		Disposal Scenario	Class of Landfill	Recommended Barrier System
Ash + Ash Carrier Water	Delisted			Mono-disposal	G:L:B+	Class C*
Brine from Water Treatment Plant	Hazard Waste	Group	2	Mono-disposal	H:H Lagoon	H:H Lagoon
Ash + Ash Carrier Water + Reverse Osmosis Brine	Hazard Waste	Group	2	Co-disposal	H:H	H:H
	er is of ade	equate s	ize,	spacing and strength		d the drainage piping ric pressure within the

Table 6.1:Waste Type and Class of Landfill Required based on Minimum
Requirements

6.2 Department of Environmental Affairs Draft Waste Classification Regulations – July 2011 Classification

In terms of the DEA's draft waste regulations for disposal, the Camden Ash was subjected to a TC extract and a DI water leach. Two samples were used in the assessment, namely dusting ash (fine ash) and ashing ash (course) ash. In addition, the water leaching from the current ash disposal facility was also analysed and compared to the respective LCT values.

The DI water leach scenario is applicable in the case that ash is mono-disposed or stored in the environment at a permanent storage facility, i.e., the waste is stored for longer than 90 days. Based on the DI water leach results, both the dusting and ashing ash samples are classified as Type 3 wastes requiring disposal on a Class C landfill. This is because the TC concentrations of arsenic, barium, copper, lead and zinc where higher than the TCTi values. In addition, the leach concentrations (LC) of barium, chromium, hexavalent chromium and molybdenum were also higher than their respective LCTi values for the dusting ash. The ashing ash sample is also classified as a Type 3 waste because of the boron, mercury, molybdenum, TDS and sulphate LC values being higher than their respective LCTi values. In additions were in both cases greater than the LCTi value of 250mg/*l*. The leachate from the existing site also classifies as a Type 3 waste because of the barium, sulphate, chloride and TDS concentrations being higher than their respective LCTi values.

The Camden Power Station ash should therefore be disposed of on a facility that has been designed and constructed as a Class C landfill (DEA, 2011b). Class C landfills are very similar in design to the current G:L:B⁺ landfills, with the major difference being the HDPE layer added to the barrier system replacing 2 x 150mm clay layers. This barrier system is considered appropriate for the wet ash disposal facility provided the seepage water (leachate) head can be maintained at equal or less than 300mm on top of the HDPE barrier layer and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system for the service life of the landfill.

As the water treatment plant was not operational on the day that the samples were collected, the classification was undertaken on a modelled value provided by Eskom. Once the treatment plant is operative, approximately 500m³ of brine will be generated per day. It is envisaged that the water treatment plant will only be operative for three

years (I. Hodgskin, 2011). When using the DEA draft regulations, the brine classifies as a Type 3 waste due to the boron, mercury, chloride, TDS and sulfate concentrations of the modelled brine solution being greater than their respective LCTi values. Type 3 wastes should be disposed of on Class C landfills, but in the case of the brine, which is a liquid, the brine will have to be disposed of in a hazardous waste (H:H) lagoon disposal facility complying with the design requirements as given in the Minimum Requirements of 1998.

In the case that the brine is co-disposed with the ash on the new ash disposal facility, a Class C landfill barrier is considered appropriate for the ash disposal facility. It is a requirement that liquid waste should be disposed of in hazardous lagoon facilities, but provided the seepage water (leachate) head can be maintained at equal or less than 300mm on top of the primary HDPE barrier layer and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system, a Class C barrier system is considered suitable for the codisposal of the ash and brine.

Table 6.2 below summarises the classification of the ash and brine water based and also indicates the barrier systems required for the various disposal scenarios based on the draft waste classification regulations of July 2011.

Waste	Type of Waste	Disposal Scenario	Class of Landfill	Recommend Barrier Syste
Ash + Ash Carrier Water	Type 3: Low Risk Waste	Mono-disposal	Class C	Class C*
Brine from Water Treatment Plant	Type 3: Low Risk Waste	Mono-disposal	H:H Lagoon	H:H Lagoon
Ash + Ash Carrier Water + Reverse Osmosis Brine	Type 3: Low Risk Waste	Co-disposal	Class C	Class C*

Table 6.2 Waste Type and Class of Landfill Required based on draft Waste **Regulations of July 2011**

* Provided there is no significant water head (>300mm) on the barrier system and the drainage piping system on the barrier is of adequate size, spacing and strength to ensure atmospheric pressure within the drainage system for the service life of the landfill

7. REFERENCES

- i. Department of Water Affairs and Forestry, 1998a. Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste, Second Edition. Department of Water Affairs, Pretoria.
- Department of Water Affairs and Forestry, 1998b. Minimum Requirements for ii. Waste Disposal by Landfill, Second Edition. Department of Water Affairs, Pretoria.
- iii. Department of Environmental Affairs and Tourism, 2008. Waste delisting procedure, April 2008. Department of Environmental Affairs and Tourism, Pretoria.

- iv. Department of Environmental Affairs, 2011a. National Environmental Management: Waste Act (Act 59 of 2008). Draft Standard for Assessment of Waste for Landfill Disposal. Notice 433 of 1 July 2011, Government Gazette No. 34415, Government Printer, Pretoria.
- v. Department of Environmental Affairs, 2011b. National Environmental Management: Waste Act (Act 59 of 2008). Draft National Standard for Disposal of Waste to Landfill. Notice 432 of 1 July 2011, Government Gazette No. 34414, Government Printer, Pretoria.
- vi. Legge, K., 2011. Verbal communication. Department of Water Affairs.
- vii. International Agency for Research on Cancer, 2011. Agents Classified by the IARC Monographs, Volumes 1–100. http://monographs.iarc.fr/ENG/Classification/index.php
- viii. Y, Nathan, et al, 2009. Occupational health aspects of quartz in pulverized coal fly ash in Israel. International Workshop on Environmental Aspects of Coal Ash Utilization 15 16 December 2009, Tel Aviv, Israel.
- viii. Hodgskin, I., 2011. Verbal communication. Eskom, Camden Power Station.

Manf

Marius van Zyl Project Manager

John Glendinning Project Director

28 September 2012

Document source: C:\Alljobs\D116 Camden Ash Classification\Report\Final\D116_00_REP_Rev3_LAP_MvZ_JG_CamdenAshClassification_Zitholele_26092012.docx Document template: Report Clean_tem_Rev1_Jan10.dotx

ZITHOLELE CONSULTING (PTY) LTD

WASTE CLASSIFICATION OF POWER STATION ASH FROM THE CAMDEN POWER STATION

Report: JW164/11/D116 - REV 3

Appendix A

SGS SOUTH AFRICA: LABORATORY CERTIFICATES

TEST REPORT SGS South Africa (Pty) Ltd. 58 Melville Street Booysens Johannesburg

Sarah Newton SGS Environmental Services 259 Kent Avenue Randburg

MINERALOGICAL REPORT No: MIN 0911/192

Work Requested By:	Sarah Newton
On Behalf Of:	SGS Environmental
Date issued:	05 October 2011
Investigator:	O.D Mosinyi

Analysis of Sample 1881-001 by XRD

<u>O.D. Mosinyi</u>

Mineralogist

L.L. Coetzee

Manager: Mineralogy

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u> Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and/or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorised alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

1. INTRODUCTION

Sarah Newton, on behalf of SGS Environmental Services, submitted one sample for X-ray diffraction mineralogical examination. The sample was labelled 1881-001, a dry ash sample.

2. METHODOLOGY

The sample was pulverized and analysed by X-ray diffraction utilising a Panalytical X'pert Pro Diffractometer employing Co-K α radiation. Data interpretation was by means of Panalytical Highscore Plus analytical software, in conjunction with the PDF2 database. The XRD analysis was used to identify and quantify the crystalline phases present in the sample.

3. RESULTS

3.1 X-ray Diffraction Analyses

The crystalline phases that were detected by XRD are listed below in Table 1, and the diffractogram for the sample is shown in figure 1. There were four crystalline phases that were detected by XRD. These were mullite which made up 45.2%, of the sample, and quartz which also accounted for 45.2 % of the sample, calcite accounted for 6.5 % of the sample and lastly magnetite accounted for 3.1 % of the sample.

Mineral	Approx. Formula	01881-001 Mass %
Mulite	Al ₆ Sl ₂ O ₁₃	45.2
Quartz	SiO ₂	45.2
Calicite	CaCO ₃	6.5
Magnetite	Fe ₃ O ₄	3.1

Table 1: Crystalline phases as determined by X-ray Diffraction

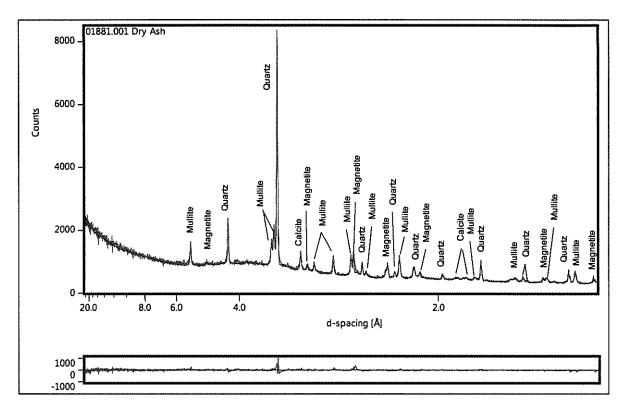


Figure 1: X-ray Diffractogram showing the composition of the sample 1881-001. The diffractogram in red shows the measured pattern, while the blue shows the calculated pattern obtained as part of the Rietveld refinement. The lower red pattern shows the difference between the measured and calculated pattern.

ANALYTICAL REPORT

CLIENT DETAILS	******	LABORATORY DETAILS		****
Contact Client Address	Marius Van Zyl Jones & Wagener (Pty) Ltd P.O. Box 1434	Laboratory Address	SGS South Africa (Pty) Limited 259 Kent Avenue Ferndale, 2194	
	Rivonia 2128	Telephone	+27 (0)11 781 5689	
Telephone Facsimile Email Project Order Number Samples Samole matrix	011 519 0200 011 519 0201 vanzyl@jaws.co.za 11521199 Di66/MVZ/19829 1 SOIL	Laboratory Manager SGS Reference Report Number Date Received Date Reported	Mark Baird (acting) JB11-01871 R0 0000001521 2011/09/12 11:49:42AM 2011/09/30 09:33:06AM	

COMMENTS ----

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

Filter cake samples not dried prior to testing.

Sample(s) leached using ARLP leachate. Results reported on leachate.

SIGNATORIES -

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

259 Kent Avenue, Ferndale Randburg, 2194, South Africa

t +27 (0)11 781 5689 www.za.sgs.com

ANALYTICAL REPORT

Sample Number JB11-01871.001 Sample Name Dusting Ash

JB11-01871 R0

Client reference:

Report number 00000 Client reference: 11521

0000001521 11521199

Acid Rain Leaching Procedure (ARLP) Method: inal pH*	.011 yi 21. 4 yi 0.05 yi 0.05	0 528
conductivity - Water Method: ME-ANA-AN-007 onductivity mS otal Dissolved Solids (TDS) in water Method: ME-ANA-AN- otal Dissolved Solids mg unions by ion Chromatography Method: ME-ANA-AN-AN01/ luoride mg hloride mg itrate mg	-011 yi 21. 4 yi 0.05 yi 0.05	0 120 0 528
conductivity - Water Method: ME-ANA-AN-007 onductivity mS otal Dissolved Solids (TDS) in water Method: ME-ANA-AN- otal Dissolved Solids mg unions by ion Chromatography Method: ME-ANA-AN-AN01/ luoride mg hloride mg itrate mg	-011 yi 21. 4 yi 0.05 yi 0.05	0 120 0 528
onductivity mS otal Dissolved Solids (TDS) in water Method: ME-ANA-AN- otal Dissolved Solids mg Inlons by Ion Chromatography Method: ME-ANA-AN-AN014 luoride mg Noride mg Irrate mg	-011 yi 21. 4 yi 0.05 yi 0.05	0 528
otal Dissolved Solids (TDS) in water Method: ME-ANA-AN- olal Dissolved Solids mg mions by Ion Chromatography Method: ME-ANA-AN-AN914 luoride mg hioride mg itrate mg	-011 yi 21. 4 yi 0.05 yi 0.05	0 528
otal Dissolved Solids mg Inlons by Ion Chromatography Mathod: ME-ANA-AN-AND14 Luoide mg Inloide mg Irrate mg	y/1 21.1 4 y/1 0.05	
nions by Ion Chromatography Method: ME-ANA-AN-AN91/ luoride mg hloride mg lirate mg	4)/1 0.05)/1 0.05	
uoride mg hloride mg Itrate mg)/1 0.05)/1 0.05	i0 <0.050
uoride mg hloride mg Itrate mg)/1 0.05)/1 0.05	i0 <0.050
hloride mg Irrate mg	, рЛ 0.05	50 <0.050
irate mg		
	.# A.4	
ulphate mg	g/i 0.1i	0 15
	y/1 0.05	50 180
exavalent Chromium by UV-VIS Method: ME-ANA-AN-018		
exavalent Chromium* mg	y/I 0.01	10 0.40
mmonia* mg	ı/l 0.05	50 <0.050
CP-OES Metals in Water (Dissolved) Method: ME-ANA-AN-	027	
ilver mg	A 0.00	20 <0.0020
luminium mg		20 0.069
фгол		50 2.3
arium mg	// 0.00	20 0.21
eryllium mg	0.000	010 <0.00010
ałcium mg	JA 0.50	0 200
	vi 0.05	50 <0.050
on mg		0 1.4
- on mg	ı/i 0.2(50 0.073
on mg classium mg)/1 0.20)/1 0.00	
on mg otassium mg thium mg)/1 0.20)/1 0.000)/1 0.01	10 45
on mg otassium mg thium mg agnesium mg)/1 0.20)/1 0.000)/1 0.01)/1 0.50	10 45 0 5.4
on mg otassium mg thium mg agnesium mg odium mg	A 0.2(A 0.009 A 0.01 A 0.5(A 1.0	10 45 0 5.4) 11
on mg otassium mg thium mg lagnesium mg odium mg licon mg	μ/1 0.20 μ/1 0.000 μ/1 0.01 μ/1 0.50 μ/1 0.50 μ/1 0.00	0 45 0 5.4) 11 10 2.6
on ng otassium ng thium ng iagnesium ng odium ng odium ng ticon ng trontium ng	j/i 0.20 j/i 0.008 j/i 0.01 j/i 0.50 j/i 0.50 j/i 0.50 j/i 0.007 j/i 0.008	10 45 0 5.4 0 11 10 2.6 50 0.023

Arsenic	mg/l	0.0030	0.080
Bismuth	mg/l	0.0010	<0.0010
Cadmium	mg/l	0.0020	<0.0020
Cobait	mg/l	0.0020	<0.0020
Chromium	mg/l	0.0030	0.40
Copper	mg/l	0.0040	<0.0040
Mercury	mg/l	0.00010	0.0020
Manganese	mg/l	0.0030	0.049
Molybdenum	mg/l	0.0070	0.14
Nickel	mg/l	0.0070	0.014
Lead	mg/i	0.0040	<0.0040
Antimony	mg/i	0.0070	0.013
Selenium	mg/i	0.0040	0.026
Tin	mg/l	0.0070	<0.0070

METHOD SUMMARY

JB11-01871 R0

Report number 00 Client reference: 11

0000001521 11521199

METHOD ----- METHODOLOGY SUMMARY

FOOTNOTES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
 This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- 1 Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Environmental Services Randburg is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAILS		
Contact	Marius Van Zyl	Laboratory	SGS South Africa (Pty) Limited	
Client	Jones & Wagener (Pty) Ltd	Address	259 Kent Avenue	
Address	P.O. Box 1434		Femdale, 2194	
	Rivonia 2128	Telephone	+27 (0)11 781 5689	
Telephone	011 519 0200			
Facsimile	011 519 0201	Laboratory Manager	Mark Baird (acting)	
Email	vanzyl@jaws.co.za	SGS Reference	JB11-01869 R0	
Project	11521195	Report Number	0000001519	
Order Number	DI66/MVZ/19829	•	2011/09/12 10:00:46AM	
Samples	3	Date Received		
Sample matrix	WATER	Date Reported	2011/09/30 09:26:12AM	

- COMMENTS -----

- SIGNATORIES -

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

Samples filtered prior to analysis.

Gladness Radebe Technical Supervisor/Technical Signatory

Sarah Newton Technical Consultant/Technical Signatory

SGS South Africa (Pty) Limited Environmental Services 259 Kent Avenue, Ferndale Randburg, 2194, South Africa

t +27 (0)11 781 5689 www.za.sgs.com

Member of the SGS Group

ANALYTICAL REPORT

JB11-01869 R0

0000001519 11521195

					Client reference
	S	ample Number Sample Name	JB11-01869.001 Seepage Water	JB11-01869.002 Ashing Water	JB11-01869.003 Dusting Water
aramoter	Units	LOR			
H in water Method: ME-ANA-AN-016			····· · · · · · · · · · · · · · · · ·		
Η	· · · · · · · · · · · · · · · · · · ·	0.10	B.4	11.4	12.2
onductivity - Water Method: ME-ANA-AN-007					
onductivity	mS/m	2.0	160	190	740
······································					
otal Dissolved Solids (TDS) in water Method: ME	E-ANA-AN-01	4			
otal Dissolved Solids	mg/l	21.0	764	856	1992
nions by ion Chromatography Method: ME-ANA	-AN-AN014				
uoride	mg/l	0.050	<0.050	0.74	0.73
hloride Italia	mg/l	0.050	160	97	120
trate Iphate	mg/l	0,10	<0.10	3.2	0.64
ng/nence	mg/l	0.050	450	380	210
mmonla as N by UV Method: APHA4500_NH3					
nmonla*	mg/l	0.050	<0.050	<0.050	0.066
P-OES Metals in Water (Dissolved) Method: ME	-ANA-AN-02	7			
			0.0037	0.0041	0.026
ver	-ANA-AN-02 mg/ mg/l	7 0.0020 0.020	0.0037 <0.020	0.0041	0.026
vər uminium)	mg/l	0.0020			
ver uminium ron Irium	mg/l mg/l	0.0020 0.020	<0.020	1.2	0.19
ver uminium ron rium ryllium	mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.0020 0.00010	<0.020 2.5 0.063 -1.30551E-	1.2 1.1 0.34 -2.85557E-	0.19 0.11 1.3 -6.56818E-
ver uminium ron rium ryllium icium	mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.0020 0.00010 0.50	<0.020 2.5 0.063 -1.30551E- 110	1.2 1.1 0.34 -2.85557E- 190	0.19 0.11 1.3 -6.56818E- 760
ver uminium ron rium ryllium icium n	mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.0020 0.00010 0.50 0.050	<0.020 2.5 0.063 -1.30551E- 110 <0.050	1.2 1.1 0.34 -2.85557E- 190 <0.050	0.19 0.11 1.3 -6.56818E- 760 <0.050
ver uminium ron rium nyllium icium n n tassium	mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.0020 0.00010 0.50 0.050 0.20	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39	1.2 1.1 0.34 -2.85557E- 190 <0.050 27	0.19 0.11 1.3 -6.56818E- 760 <0.050 68
ver uminium ron rium urjilium icium n tassium hium	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.50 0.20 0.20	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8
ver uminium ron rium ryllium Icium n tassium hium ignesium	mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.0020 0.00010 0.50 0.050 0.20	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39	1.2 1.1 0.34 -2.85557E- 190 <0.050 27	0.19 0.11 1.3 -6.56818E- 760 <0.050 68
ver uminium ron rium urum urum icium n tassium hium agnesium dium	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.50 0.20 0.20 0.0059 0.010	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010
ver uminium iron irium irium idum n tassium hium ignesium idum	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.20 0.20 0.20 0.0050 0.20 0.010 0.50	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210
ver uminium iron iron irylium iclum n tasslum hlum gneslum dlum icon	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.20 0.20 0.0050 0.20 0.0050 0.20 0.010 0.50 1.0	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0
ver iminium ron rium ryllium icium n tasslum hium gneslum dium Icon ontium	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.20 0.20 0.20 0.0050 0.20 0.0050 0.50 1.0 6.0010	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39
ver iminium ron rium ryllium icium n tasslum hium gnesium dium Icon ontium anium nadium	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.20 0.0050 0.010 0.50 1.0 0.0010 0.0010 0.0050	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098
ver iminitum ron rium ryllium icitum n tassium hlum gaesium dium toon ontum e	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.050 0.050 0.010 0.50 1.0 0.0010 0.0010 0.0050 0.010	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0050 <0.0010	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098 0.0021
ver uminium ron rium ryllium licium n tassium hium sgnesium dium licon onitium anium nadium re P-MS Metals (Dissolved) Method: ME-ANA-AN-I	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.050 0.050 0.010 0.50 1.0 0.0010 0.0010 0.0050 0.010	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0050 <0.0010	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098 0.0021
ver uminium iron irium irylium idum n tasslum hium sgneslum dium loon ontium anium nadium nadium cc P-MS Metals (Dissolved) Method: ME-ANA-AN-i senic	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.050 0.050 0.010 0.50 1.0 0.0010 0.0010 0.0010 0.0010 0.0010	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0010 <0.010	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.010	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.010
ver uminium pron trium nyilium staum n tassium hium agnesium adurn icon rontium anium anium nadiurn nc P-MS Metels (Dissolved) Method: ME-ANA-AN-I senic smuth idmium	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.20 0.0050 0.010 0.50 1.0 0.0050 1.0 0.0010 0.0050 0.0010 0.0010 0.0030 0.0010 0.0030	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0010 <0.0010 0.0049 <0.0010 <0.0010	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.010 <0.0030 <0.0030 <0.0020	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.010 <0.0030
ver uminium pron strom strum nyillum stasslum hium agnesium dum loon rontium anium anium nadium nc P-MS Metals (Dissolved) Method: ME-ANA-AN-I senic senic smuth idmum	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.20 0.055 0.20 0.0050 0.010 0.50 1.0 0.0050 0.0010 0.0050 0.0010 0.0010 0.0030 0.0010 0.0020 0.0020	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0050 <0.0010 <0.0049 <0.0049 <0.0049 <0.0049 <0.0020 <0.0020	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.010 <0.0030 <0.0030 <0.0020 <0.0020 <0.0020	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.010 <0.0030 <0.0030 <0.0010
Iver uminium pron strum strum syllum solum tassium hium agnesium bium agnesium bium licon rontium anadium nadium na P-MS Metals (Dissolved) Method: ME-ANA-AN-I senic senic smuth admum batt romium	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.050 0.050 0.050 0.010 0.50 1.0 0.0050 0.010 0.0050 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0010 <0.0010 <0.0049 <0.0049 <0.0010 <0.0020 <0.0020 0.0051	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.0050 0.020 <0.010 <0.0030 <0.0030 <0.0020 <0.0020 <0.0020 0.029	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.0008 <0.0021 <0.010 <0.0030 <0.0010 <0.0020 <0.0020 0.15
Iver uminium pron pron strium syllum solum stassium blum stassium blum sequent icon rontium sandium ne P-MS Metals (Dissolved) Method: ME-ANA-AN-I senic smuth senic smuth senic smuth senic smuth senic	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.050 0.050 0.050 0.010 0.50 1.0 0.0010 0.0010 0.0010 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0030 0.0040	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0010 <0.0049 <0.0010 <0.0049 <0.0010 <0.0020 <0.0020 0.0051 <0.0040	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.010 <0.0030 <0.0010 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.00	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.010 <0.0020 <0.0010 <0.0020 <0.0020 0.15 <0.0040
ver uminium pron strom strum invitium atassium hium agnesium dum dum loon rontium anium anium anium nadium to P-MS Motals (Dissolved) Method: ME-ANA-AN-I senic senic smuth idmium toat romium pper	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.50 0.050 0.050 0.050 0.050 0.010 0.50 1.0 0.0010 0.0010 0.0010 0.010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0040 0.0040	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0010 <0.0049 <0.0010 <0.0049 <0.0010 <0.0020 <0.0020 0.0051 <0.0040 0.00042	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.010 <0.0030 <0.0010 <0.0020 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 <0.0020 0.022 0.022 0.020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0012 0	0.19 0.11 1.3 -6.56818E- 760 <0.050 88 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.0098 0.0021 <0.010 <0.0030 <0.0010 <0.0020 0.15 <0.0040 <0.00010
ver uminium pron nium nyllum stassium hium assium hium agnesium dium loon rontium anium nadium no P-MS Metais (Dissolved) Method: ME-ANA-AN-I senic smuth dmium bait romium pper prouvy anganese	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.500 0.050 0.20 0.0050 0.010 0.50 1.0 0.0050 0.010 0.0050 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020 0.0030	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0010 <0.0010 <0.0049 <0.0010 <0.0020 <0.0020 0.0051 <0.0040 0.00042 <0.00042 <0.0030	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.010 <0.0010 <0.0020 <0.0010 <0.0020 0.029 <0.0040 0.0012 <0.0030	0.19 0.11 1.3 -6.56818E- 760 <0.050 88 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.0098 0.0021 <0.010 <0.0030 <0.0010 <0.0020 0.15 <0.0040 <0.0030
ver uminium iron irum irum irum irum irum irum itassium hium sgnesium dium icon ontium enum nadium ne P-MS Metais (Dissolved) Method: ME-ANA-AN-I senic smuth dimium bait romium per rrury inganese itybdenum	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.0000 0.0000 0.050 0.20 0.0050 0.20 0.0050 0.010 0.50 1.0 0.0050 0.010 0.0050 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0010 <0.0049 <0.0010 <0.0020 <0.0020 0.0051 <0.0040 0.0042 <0.0030 0.19	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.010 <0.0030 <0.0010 <0.0020 <0.0020 0.029 <0.0040 0.0012 <0.0030 0.18	0.19 0.11 1.3 -6.56818E- 760 <0.050 88 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.0098 0.0021 <0.010 <0.0030 <0.0010 <0.0020 0.15 <0.0040 <0.0030 0.19
Iver uminium pron arium aryflium acium stassium blum Bagnesium blum Icon rontium tanium anadium no	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.0020 0.020 0.0050 0.00010 0.500 0.050 0.20 0.0050 0.010 0.50 1.0 0.0050 0.010 0.0050 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020 0.0030	<0.020 2.5 0.063 -1.30551E- 110 <0.050 39 0.61 8.7 240 1.7 3.9 <0.0050 <0.0010 <0.0010 <0.0049 <0.0010 <0.0020 <0.0020 0.0051 <0.0040 0.00042 <0.00042 <0.0030	1.2 1.1 0.34 -2.85557E- 190 <0.050 27 0.85 0.072 160 7.6 3.6 <0.0050 0.020 <0.010 <0.0010 <0.0020 <0.0010 <0.0020 0.029 <0.0040 0.0012 <0.0030	0.19 0.11 1.3 -6.56818E- 760 <0.050 68 3.8 <0.010 210 <1.0 39 0.0098 0.0021 <0.0030 <0.0010 <0.0020 <0.0020 0.15 <0.0040 <0.0030

0.0040

0.0070

mg/i

mg/l

0.0047

<0.0070

0.0094

<0.0070

<0.0040

<0.0070

Selenium

Tin

METHOD -

METHOD SUMMARY

JB11-01869 R0

Report number Client reference:

0000001519 **1152119**5

METHODOLOGY SUMMARY

FOOTNOTES IS Insufficient sample for analysis. QFH QC result is above the upper tolerance LNR Sample listed, but not received. QC result is below the lower tolerance QFL This analysis is not covered by the scope of The sample was not analysed for this analyte accreditation. ٨ Performed by outside laboratory. LOR Limit of Reporting Raised or Lowered Limit of Reporting 11 Samples analysed as received. Unless otherwise indicated, samples were received in Solid samples expressed on a dry weight basis. containers fit for purpose. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. SGS Environmental Services Randburg is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za. anas T0107

SGS

Sarah Newton

SGS Environmental Services SA P.O. Box 82582 Southdale 2135

TEST REPORT

Lab Ref	LA117646
Client Ref	JB11 - 01881
Project	DEFAULT
Product Code	SOLIDS
Status	Final
Received	14/09/11
Reported	10/10/11
	2
Samples	2
First Sample	1881 - 001
Last Sample	WASTE ROCK
Pages	10

Notes	
Technical Signatory Name:	Signature:
Technical Signatory Name:	Signature:
Technical Signatory Name:	Signature:
On behalf of: SGS South Africa	

The results in the following analytical report pertain to this laboratory for preparation and/or analysis as requested by SGS Environmental Services SA.

The analytical results reported herein refer to the samples as received and are based on a dry basis where applicable.

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 www.sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 2 of 10

TEST REPORT

	WtRec	Al	Ba	Ca	Cr	Cu
Scheme	WGH79	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	g	%	ppm	%	ppm	ррш
Detection Limit	0.01	0.01	5	0.01	1	0.5
1881 - 001	34.50	10.5	716	3.50	113	59.4
WASTE ROCK	•	0.28	94	0.03	22	14.6
GEOSTATS		4.34	36	1.13	1750	3880
LKSD-3SA		5.67	638	1.49	•	•
OREAS 100A		5.58	417	1.05	39	183
OREAS 101A		5,78	180	1.23	39	-
BLANK		<0.01	<5	<0.01	<1	<0.5
1881 - 001		10.8	777	3.63	119	62.4

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<hr/>

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 WWW.sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 3 of 10

TEST REPORT

	Fc	K	Li	Mg	Mn	Na
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	%	%	ppm	%	ppm	%
Detection Limit	0.01	0.01	1	0.01	5	0.01
1881 - 001	6.86	0.50	181	0.82	488	0.12
WASTE ROCK	0.72	0.08	<1	<0.01	128	0.02
GEOSTATS	4.75	3.41	9	0.52	5230	1.60
LKSD-3SA	4.01	2.02	27	1.14	1410	1.97
OREAS 100A	4.21	3.79	20	0.85	579	0.14
OREAS 101A	10.4	2.26	44	1.24	1020	0.08
BLANK	<0.01	<0.01	<1	<0.01	<5	<0.01
1881 - 001	7.03	0.52	188	0.86	508	0.12

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<http://www.sgs.com/terms_and_conditions.htm>.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein."Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 WWW.Sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 4 of 10

TEST REPORT

	Р	S	Sr	Ti	v	Zn
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	ppm	%	ppm	%	ррш	ррт
Detection Limit	50	0.01	0.5	0.01	1	1
1881 - 001	1130	0.20	1010	0.71	68	314
WASTE ROCK	210	0.04	<0.5	0.01	3	39
GEOSTATS	460	0.96	43.7	0.21	45	5230
LKSD-3SA	1110	-	237	-	•	
OREAS 100A	510	0.06	22.5	-	-	41
OREAS 101A	-	0.13	10.0	-	•	101
BLANK	<50	<0.01	<0.5	<0.01	<1	5
1881 - 001	1190	0.22	1050	0.74	77	336

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<u>Chtp://www.sqs.com/terms_and_conditions.htm></u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein."Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."</u>

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 WWW.595.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 5 of 10

TEST REPORT

	Zr	Ag	As	Be	Bi	Cd
Scheme	ICM40B	ICM40B	1CM40B	ICM40B	ICM40B	ICM40B
Units	ppm	ppm	ppm	ppm	ррт	ppm
Detection Limit	0.5	0.02	1	0.1	0.04	0.02
1881 - 001	254	<0.02	13	5.6	1.24	<0.02
WASTE ROCK	54.2	<0.02	2	0.1	0.31	<0.02
GEOSTATS	68.2	48.0	13	•	-	
LKSD-3SA	-	2.87	27	1.8	-	
OREAS 100A	121	•	-	-	-	-
OREAS 101A	91.0	•	-	•	-	-
BLANK	<0.5	<0.02	<1	<0.1	<0.04	<0.02
1881 - 001	275					
1881 - 001		<0.02	13	5.8	1.25	<0.02

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<hr/>

 SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone:
 +27 (11) 6803466

 Fax:
 +27 (11) 4333654

 Email:
 South.Africa@sgs.com

 Internet:
 WWW.Sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 6 of 10

TEST REPORT

	Co	Мо	Ni	Pb	Sb	Se
Scheme	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Units	ppm	ppm	ppm	ррт	ppm	ppm
Detection Limit	0.1	0.05	0.5	0.5	0.05	2
1881 - 001	16.4	5.18	51.3	41.4	0.89	<2
WASTE ROCK	1.6	3.71	5.3	7.6	0.17	<2
GEOSTATS	2070	-	4030	1.21%	11.3	•
LKSD-3SA	29.0	•	46.7	29.3	1.36	-
OREAS 100A	16.4	20.7	-	13.4	•	-
OREAS 101A	47.0	20.5	-	21.3	•	-
BLANK	<0.1	<0.05	<0.5	<0.5	0.09	<2
1881 - 001	16,6	5.22	52.0	41.7	0.90	<2

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

*This document is issued by the Company under its General Conditions of Service accessible at

<u>chttp://www.sqs.com/terms_and_conditions.htm></u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein."Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."

SGS South Africa (Pty) Ltd

 Reg No 1949/032643/07

 58 Melville Street

 Booysens 2091

 Phone: +27 (11) 6803466

 Fax: +27 (11) 4333654

 Email: South.Africa@sgs.com

 Internet: www.sgs.com

Lab RefLA117646Client RefJB11 - 01881ProjectDEFAULTReported10/10/11StatusFinalPagePage 7 of 10

TEST REPORT

	Sn	Hg	Si	
Scheme	ICM40B	IMS12B	ICP90A	
Units	ppm	ppm	%	
Detection Limit	0.3	3	0.1	
1881 - 001	4.4	<3	19.2	
WASTE ROCK	0.5	<3	20.8	
GEOSTATS	•			
LKSD-3SA	•			
OREAS 100A	•			
OREAS 101A	•			
BLANK	<0.3			
BLANK		<3		
SARM5			-	
BLANK			<0.1	
1881 - 001			19.9	
BCS176/2			1.27	
1881 - 001		<3		
CCU-1C		30		
GXR-1		4		
1881 - 001	4.4			

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<hr/>

SGS South Africa (Pty) Ltd Reg No 1949/032643/07 58 Melville Street Booysens 2091 Phone: +27 (11) 6803466 +27 (11) 4333654 Fax: Email: South.Africa@sgs.com Internet: www.sgs.com

Lab Ref LA117646 Client Ref JB11 - 01881 Project DEFAULT Reported 10/10/11 Status Final Page Page 8 of 10

APPENDIX A - METHODS

METHOD NUMBER	METHOD DESCRIPTION	SCHEME CODE
ME-ZA-[MINANA]-[BYZ(FAS)]AN-001	Au by Lead Fusion followed by Atomic Absorption analysis or Gravimetric analysis	FAALA01, FAALA01D, FAGLA01, FAGLA02, FAGLA03, FAGLA04, FAGLA05
ME-ZA-[MINANA]-[BYZ(FAS)]AN-002	Au, Pt, Pd by Lead Fusion followed by	FAI313
ME-ZA-[MINANA]-[BYZ(FAS)]AN-003	Pt, Pd, Rh, Ru, Ir by Nickel Sulphide, ICP-OES finish	FAI363
ME-ZA-[MINANA]-[BYZ(XRF)]AN-001	Major Element Oxides by Borate fusion XRF	XRF79V, XRF79C
ME-ZA-[MINANA]-[BYZ(XRF)]AN-002	Base Metals by Potassium Pyrosulphate Fusion XRF	XRF77R
ME-ZA-[MINANA]-[BYZ(AAS)]AN-001	Acid Soluble Cu and Ni by Acid digestion and analysis by AAS	AAS13C
ME-ZA-[MINANA]-[BYZ(LEC)]AN-001	Total Sulphur and Carbon by Leco Combustion Infrared Detection	CSALA01, CSALA06
ME-ZA-[MINANA]-[BYZ(ICM)]AN-001	Total & Dissolved metals by ICP-OES & ICP-MS	ICP84T & IMS84T
ME-ZA-[MINANA]-[BYZ(XRF)]AN-003	Uranium Oxide, pressed powder analysis using XRF spectrometer	XRF75G
ME-ZA-[MINANA]-[BYZ(FAS)]AN-005	Rh by Pd fusion by ICP-OES finish	FA1353
ME-ZA-[MINANA]-[BYZ(WET)]AN-001	Chloride by Potentiometric titration	CLA27V

TEST REPORT

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at <htp://www.sos.com/terms_and_conditions.htm>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein." Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."

SGS South Africa (Pty) Ltd

Reg No 1949/032643/07 58 Melville Street Booysens 2091 Phone: +27 (11) 6803466 Fax: +27 (11) 4333654 Email: South.Africa@sgs.com Internet: www.sgs.com

SCHEME CODE

LA117646 Lab Ref JB11 - 01881 Client Ref DEFAULT Project 10/10/11 Reported Final Status Page 9 of 10 Page

TEST REPORT

METHOD DESCRIPTION

Silver (Ag) by Fire Assay, gravimetric finish	FAGLA02
Trace elements by pressed pellet, XRF	XRF75G
Sulphide Sulphur (S2-) by Leco	CSA08V
Elemental sulphur (S°) by gravimetric finish	CSA12V
Aqueous sulphate (SO4) by Dionex	CLA31V
Sulphate (SO4) on solids by Dionex	CSA11V
Carbonate (CO3) by LECO	CSA02V
Graphite carbon by LECO	CSA10V
Organic carbon by LECO	CSA03V
pH determination	ISE06T
Conductivity (EC) determination	ISE09V
Total Hardness as CaCO3 (calc from ICP Ca, Mg analyses)	ICP84B
Anions by IC (F, Cl, NO2, NO3, SO4)	CLA31V
Ammonia (NH3) by spectroquant	CLA23V
Phosphate (PO4) by colourmetric analysis	CLA22V
Chemical Oxygen Demand (COD) by spectroquant	CLA24V
Suspended solids (TSS)	PHY18V
Total dissolved solids (TDS), gravimetric finish (180 °C)/Electrometric, conductivity meter	ISE10V
Alkalinity by titration	CLA28V
Chloride (CI) by titration (solutions)	CLA27V
Chloride (CI) by titration (solids)	CLA04E
Fluoride (F) by ISE (solutions)	ISE07W
Fluoride (F) by ISE (solids)	ISELA01
Acid Base Accounting (ABA)	CLA41V
Net acid generation (NAG) test (incl. S species)	CLA43V
Short term leach testing (ARLP, TCLP, SPLP, etc)	CLA40V
Deionised water (DI) leach (2 hours, L:S=10)	Leach
Cyanide (CN) species - Free, WAD & Total	CLA25V
Thiocyanate (SCN) by IC	CLA31V
Metals by AAS (solutions)	AAS84T
Gold (Au) in CN solutions by AAS	SOL81T
Silver (Ag) by acid digestion, AAS	AAS14E
Arsenic (As) by Aqua Regia digestion, AAS	AAS11C
Multi Acid digestion, AAS finish	AAS40D
Acid soluble Cu, Co by Sulphuric Acid leach, AAS	AAS72C
Aqua Regia digestion, ICP-OES finish	ICP13E
Multi Acid digestion, ICP-OES finish	ICP40D
Sodium Peroxide fusion, ICP-OES finish	ICP91B

- not analysed | -- element not determined | I.S. Insufficient sample | L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at

<htp://www.sqs.com/terms_and_conditions.htm>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law, ."

SGS South Africa (Pty) Ltd Reg No 1949/032643/07 58 Melville Street Booysens 2091 Phone: +27 (11) 6803466 +27 (11) 4333654 Fax: Email: South.Africa@sgs.com Internet: www.sgs.com

LA117646 Lab Ref JB11 - 01881 Client Ref Project DEFAULT Reported 10/10/11 Status Final Page Page 10 of 10

TEST REPORT

METHOD DESCRIPTION	SCHEME CODE
Semi quantative ICP-OES +ICP-MS scan, Aqua Regia digestion	ICM12B
As, Hg, Se, Te by Aqua Regia digestion, ICP-MS finish	IMS12Q
Multi Acid digestion, semi quantative scan, ICP-OES + ICP-MS	ICM40B
Multi acid digestion, ICP-MS	IMS40B
Rare Earth Elements (REE) by Na2O2 fusion, ICP-MS	IMS90A
Free acid titration	CLA15F
Chloride (CI) by manual titration (Metallurgical)	CLA26V
As 3+ by titration	CLA32V
As 5+ by calculation	CLA32V
Lime (CaO) by titration	CLA07C
Lime (CaO), calculation after AAS analysis	CLA07C
Ferrous (Fe2+) iron by titration (solids)	CLA34V
Ferrous (Fe2+) iron by titration (solutions)	CLA34V
Ferric (Fe3+) iron by diff (incl. Fe total, Fe2+) - solids	CLA34V
Ferric (Fe3+) iron by diff (incl. Fe total, Fe2+) - solutions	CLA35V
Iron (Fe) by titration (solids)	CLA35V
Tin (Sn) by titration (solids)	CON14V
Zinc (Zn) by EDTA titration (solids)	CON12V
Hexavalent chromium (Cr6+) in solutions	CLA21V
Manganese (Mn) by back titration	CON15V
Vanadium (V) by titration	CON16V
Chrome (Cr) by back titration	CON10B
Relative Density/Specific Gravity (by Le Chatelier flask)	PHY04V
Bulk density	PHY21V
Relative Density/Specific Gravity (by Helium pyncometer)	PHY03V
Grain density	PHY20V
Moisture (105 °C)	PHY08D
Ash/LOI (1050 °C)	PHY01K

- not analysed / -- element not determined / I.S. insufficient sample / L.N.R. listed not received / U.T.D. Unable To Determine

"This document is issued by the Company under its General Conditions of Service accessible at <u><htp://www.sqs.com/terms_and_conditions.htm></u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein."Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its

intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. ."

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAILS	
Contact	Marius Van Zyl	Laboratory	SGS South Africa (Pty) Limited
lient	Jones & Wagener (Pty) Ltd	Address	259 Kent Avenue
ddress	P.O. Box 1434		Ferndale, 2194
	Rivonia 2128	Telephone	+27 (0)11 781 5689
elephone	011 519 0200		
acsimile	011 519 0201	Laboratory Manager	Mark Baird (acting)
nail	vanzyl@jaws.co.za	SGS Reference	JB11-01881 R0
roject	(Not specified)	Report Number	0000001593
rder Number	DI66/MVZ/19829	I.	
amples	1	Date Received	2011/09/13 12:15:20PM
ample matrix	SOIL	Date Reported	2011/10/10 11:32:03AM

COMMENTS ----

Whilst SGS laboratories conform to ISO/IEC 17025 standards, results of analysis in this report fall outside of the current scope of accreditation.

Testing subcontracted to SGS Booysens.

Mineralogy results contained in their report, MIN 0911/192, appended.

SIGNATORIES .

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

ANALYTICAL REPORT

JB11-01881 R0

Report number Client reference:

0000001593 DI66/MVZ/19829

			ampie Number Sampie Name Sampie Matrix	JB11-01881.001 Dry Ash Soll
Parameter		Units	LOR	
SUB_Mineralogy	Method: SUB			
XRD scan		No unit	-	MIN 0911/192

SUB_SGS Booysens Method: SUB_BOOY

Silver	ppm	0.020	<0.020
Aluminium	%	0.010	11
Arsenic	ppm	1.0	13
Barium	ppm	5.0	720
Beryllium	ppm	0.10	5.6
Bismuth	ppm	0.040	1.2
Calcium	%	0.010	3.5
Cadmium	ppm	0.020	<0.020
Chromium	ppm	1.0	110
Cobalt	ppm	0,10	16
Copper	ppm	0.50	59
ron	%	0.010	6.9
Мегсигу	ppm	3.0	<3.0
otassium	%	0.010	0.50
ithium	ppm	1,0	180
Magnesium	%	0.010	0.82
Manganese	ppm	5.0	490
Molybdenum	ppm	0.050	5.2
Sodium	%	0.010	0.12
lickel	¢pm	0.50	51
hosphorus	ppm	50	1100
ead	ppm	0.50	41
Sulphur	%	0.010	0.20
Antimony	ppm	0.050	0.89
Selenium	ppm	2.0	<2.0
Silicon	%	0.10	19
În	ppm	0.30	4.4
Brontium	ppm	0.50	1000
ไสกโนก	%	0.010	0.71
anadium		1.0	68
linc	ppm	1.0	310
Zirconium	ppm	0.50	250

METHOD SUMMARY

JB11-01881 R0

Report number Client reference:

0000001593 DI66/MVZ/19829

METHOD _____ METHODOLOGY SUMMARY

FOOTNOTES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
 This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- 11 Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm.

*

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the

sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

ANALYTICAL REPORT (Amended)

CLIENT DETAILS		LABORATORY DETAILS	
Contact Client Address	Marius Van Zyl Jones & Wagener (Pty) Ltd P.O. Box 1434 Rivonia	Laboratory Address	SGS South Africa (Pty) Limited 259 Kent Avenue Ferndale, 2194
Telephone	011 519 0200	Telephone	+27 (0)11 781 5689
Facsimile Email Project	011 519 0201 vanzyl@jaws.co.za 11521198	Laboratory Manager SGS Reference Report Number	Mark Baird (acting) JB11-01870 R0 0000001540
Order Number Samples Sample matrix	D166/MVZ/19829 2 SOIL	Date Received Date Reported	2011/09/12 11:20:06AM 2011/10/03 11:26:35AM

COMMENTS ----

The document is issued in accordance with SANAS's accreditation requirements. Accredited for compliance with ISO/IEC 17025. SANAS accredited laboratory T0107.

This report/certificate is a re-issued copy and replaces the originally issued document dated 2011-09-30. The reason for re-issue is that percent solids results were omitted from the original report.

Filter cake samples not dried prior to testing.

Sample(s) leached using deionised water. Results reported on leachate.

SIGNATORIES

Gladness Radebe Technical Supervisor/Technical Signatory Sarah Newton Technical Consultant/Technical Signatory

ANALYTICAL REPORT

JB11-01870 R0

Report number Client reference:

0000001540 11521198

		Sample Number Sample Name Sample Matrix	JB11-01870.001 Ashing Ash Ash sample	JB11-01870.002 Dusting Ash Ash sample
Parameter	Units	LOR		
Moisture Method:				
Solids content*	%	0.050	6.37	48.3
South African Standard Leach Procedure Method: AS	4439.3			
		••••		
Final pH	•••••	•	10.9	11.8
Conductivity - Water Method: ME-ANA-AN-007				
Conductivity	mS/m	a 2.0	24	160
Total Dissolved Solids (TDS) in water Method: ME-AN	8-AN-0	11		
Total Dissolved Solids	mg/i	21.0	64	272
Anions by Ion Chromatography Method: ME-ANA-AN-				
Fluoride	mg/i	0.050	<0.050	0.30
Chloride	mg/i	0.050	1.7	2.1
Vitrate	mg/i	0.10	0.28	1.5
Sulphate	mg/l	0.050	19	13
Hexavalent Chromium by UV-VIS Method: ME-ANA-AN	1-018			
Hexavalent Chromium*	mg/l	0.010	<0.010	0.11
CP-OES Metals in Water (Dissolved) Method: ME-AN/	4-AN-0	27		
Silver	mg/l	0.0020	<0.0020	<0.0020
Aluminium	mg/l	0.020	1.6	4.4
Boron Barium	mg/l	0.0050	0.39	0.20
Servilium	mg/l	0.0020	0.059 <0.00010	0.84
Calcium	mg/l	0.00010	28	130
	mg/l	0.050		
Potassium	mg/l	0.20	<0.050	<0.050
lihium	mg/l	0.0050	0.011	0.068
Vagnesium	mg/l	0.010	0.46	0.018
Sođum	mg/l	0.50	3.5	5.0
Silicon	mg/i	1.0	7.1	4.3
Strontium	mg/l	0.0010	0.41	2.1
itanium	mg/l	0.0050	<0.0050	<0.0050
Vanadium	mg/i	0.0010	0.022	0.045
Zinc	mg/i	0.010	<0.010	<0.010
CP-MS Metals (Dissolved) Method: ME-ANA-AN-026				
Arsenic	mg/l	0.0030	0.012	<0.0030
Bismuth	mg/l	0.0010	0.0020	<0.0010
Cadmium	mg/l	0.0020	0.0024	<0.0020
Cobalt	mg/l	0.0020	0.0027	<0.0020
Chromium	mg/l	0.0030	0.0075	0.11
Copper	mg/l	0.0040	<0.0040	<0.0040
Mercury	mg/l	0.00010	0.00015	0.00030
Manganese	mg/l	0.0030	0.0097	<0.0030
Aclybdenum	mg/l	0.0070	0.012	0.067
				0.007

0.0070

mg/l

<0.0070

<0.0070

Nickel

ANALYTICAL REPORT

JB11-01870 R0

Report number Client reference:

0000001540 11521198

Sample Number	JB11-01670.001	JB11-01870.002
Sample Name	Ashing Ash	Dusting Ash
Sample Matrix	Ash sample	Ash sample

Parameter	Units	LOR		
ICP-MS Metals (Dissolved)	Method: ME-ANA-AN-026 (continued)			
Lead	mg/l	0.0040	<0.0040	<0.0040
Antimony	mg/l	0.0070	<0.0070	<0.0070
Selenium	mg/l	0.0040	<0.0040	<0.0040
Tin	mg/l	0.0070	<0.0070	<0.0070

METHOD SUMMARY

JB11-01870 R0

Report number 0 Client reference: 1

0000001540 11521198

METHOD ----- METHODOLOGY SUMMARY

FOOTNOTES ...

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
 This analysis is not covered by the scope of accreditation.
- Performed by outside laboratory.
- LOR Limit of Reporting
- 11 Raised or Lowered Limit of Reporting

Samples analysed as received. Solid samples expressed on a dry weight basis.

- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte

Unless otherwise indicated, samples were received in containers fit for purpose.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) draw and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of all goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Environmental Services Randburg is accredited by SANAS and conforms to the requirements of ISO/IEC 17025 for specific test or calibrations as indicated on the scope of accreditation to be found at http://sanas.co.za.

APPENDIX B

GEOTECHNICAL INVESTIGATION REPORT

Erf 117 Letamo Estate Kromdraai Road Mogale City P.O.Box 68 Honeydew 2040 Fax: (086) 633-7332 Cell: (083) 656-0900 Email: jan@africaexposed.co.za

ENGINEERING GEOLOGICAL EVALUATION REPORT FOR THE PROPOSED ASH DISPOSAL FACILITY, CAMDEN POWER STATION MPUMALANGA

1. INTRODUCTION

1.1. <u>Preamble</u>

During March 2011, Mr, K. Kruger from Zitholele Consulting invited Africa Exposed Consulting Engineering Geologists to submit a proposal to carry out a geotechnical evaluation of three alternative sites for the development of a proposed ash disposal facility at the Camden Power Station, Ermelo, Mpumalanga.

Subsequently on 14th June 2011 a letter of appointment was received from Zitholele Consulting, instructing Africa Exposed tp proceed with the geotechnical evaluation.

1.2. Objectives

The objectives of the evaluation is to determine the geotechnical and geological conditions that prevail beneath each of the three identified candidate sites and to provide an assessment of:-

the soil conditions at surface the nature and extent of near surface and outcropping strata. existence of potential "fatal flaws" comment on any geotechnical problems that may impact upon the site selection. recommendations of mitigation.

1.3. Scope of Work

The following scope of work was completed on each candidate site:

Desktop study of each of the three candidate sites, including aerial photo interpretation. Site visit to each location with a brief walk over survey.

Excavation of test pits at randomly selected positions and soil sampling.

Prepare a report, addressing the objectives presented above.

Rank each site in order of preference based on geotechnical considerations.

1

2. FACTUAL REPORT

2.1 Programme of Work

2.1.1 *Literary Review*

This geological evaluation of the sites was initially confined to a literature search and a brief site visit. Appropriate information was obtained from the following sources:-

- i. The 1: 250 000 geological maps, No 2628 East Rand and No. 2630 Mbabane.
- ii. The 1 : 50 000 topo-cadastral map 2630 CA Camden, published by The Department of Survey and Mapping, Mowbray 1985.
- iii. Google Earth satellite imagery, obtainable from http/.earth.google.com.
- iv. "The geology of South Africa." edited by Johnson, M.R., Anhaeusser, C.R., and Thomas, R.J. published by the Council for Geoscience and the Geological Society of South Africa. 2006.
- v. "Engineering Geology of Southern Africa" volume 3, by A.B.A. Brink (1979), published by Building Publications.
- vi. "Minimum requirements for waste disposal by landfill." Third edition, published by the Department of Water Affairs and Forestry. 2005.
- vii. "The Natural Road Construction Materials of Southern Africa" by H.H. Weinert (1980) published by Council for Scientific and Industrial Research, Pretoria.

2.1.2 Field Work

Initially a site visit was conducted on 16th May 201, where a number of potential sites were visited. Following the brief site visit three potential candidate sites were identified.

On 23rd June 2011, four test pits were augered on each site and a Dynamic Cone Probe (DCP) was advanced adjacent to each test pit in order to determine the soil consistency The layout of the test pits are shown on the Site Plan in Appendix 1 and each hole was profiled by an engineering geologist according to the Jennings, Brink and Williams system, sampled as necessary and backfilled. The detailed profile logs are shown in Appendix 2.

2.1.3 Office and Laboratory Work

From the soil samples recovered, six were selected for Foundation Indicator Tests and all the individual test results are included in Appendix 3 of this report.

2.2. <u>Potential Candidate Sites</u>

The current ash disposal facility at the Camden Power station is rapidly reaching the limit of its capacity. It is therefore required that an appropriately selected alternative site is located within reasonable proximity to the power station. The ash is transported via pipelines from the power station in the form of a slurry and the site selected for the disposal facility will be developed to comply with the Minimum Requirements for Waste Disposal by Landfill, third edition of 2005 as published by Department of Water Affairs and Forestry.

This proposed project is locate three potential candidate sites and to determine the geotechnical and geological suitability of each site. (see figure 1).

2

2.2.1. Site 1

Site 1 is located immediately north of the existing ash disposal facility and the area identified for development covers a surface area of approximately 176ha. The area is largely flat with a gentle gradient of approximately 1% down towards the west.

2.2.2. Site 2

The second site is located south of the Dejagers Pan and the main railway servitude. The site consists of three adjacent portions of ground, which combined make up a surface area of approximately 221ha.

2.2.3. Site 3

The third alternative site is located immediately south of the power station and north of the main railway servitude. This site is approximately 142ha in extent.

2.3 <u>Site Geology</u>

From the available literature as well as the observations during the site investigation, it is apparent that all three sites are underlain by siltstone, mudstone and sandstone that belong to the Vryheid Formation of the Ecca Group, Karoo Supergroup.

The presence of intruded dykes and sills in the Karoo sediments is well known and simple perusal of a 1: 250 000 scale geological maps of the area will confirm this. These features may vary in size from centimetres to tens of metres in width. Dykes and sills originate from deep seated magma chambers which force molten rock into cracks, and fissures as well as along bedding planes in the host formation. During the intrusion under the influence of extremely high pressure the host rock is further fractured in a process not to dissimilar to the proposed hydraulic fracturing. These are the reasons why water preferentially accumulates adjacent to the dykes and may provide hydraulic continuity with deeper aquifers.

The geological lithologies identified on the site belong to the following stratigraphic unit:

Lithology	Formation	Unit
Diabase intrusions		Post Transvaal age
Siltstone mudstone sandstone	Vryheid formation	Karoo Sequence

2.3.1. Vryheid formation

The Vryheid formation consists of coal seams, grit, sandstone, arkose and mudstone, all deposited under shallow sea conditions. A particularly significant feature of the formation is the close intercalation of the different rock types within it. It is not unusual for a lenticular body of coarse sandstone to occur within a predominantly argillaceous horizon, while a weak lens of mudstone occurring within a competent layer of sandstone is equally common. Similarly bands of rock may be laterally discontinuous and may suddenly pinch out and may reappear some distance away.

Generally these rocks will decompose in-situ, forming residual soils that may be silty and clayey, with the possibility of expansive soil being present. These soils are often blanketed by a considerable thickness of transported soils of colluvial origin that consist of silty and clayey fine sands.

2.3.2. Diabase Sills and Dykes

The eastern portion of Area 3 is underlain by a dolerite sill and the contact between the intruded igneous rock and the host sedimentary formations is orientated approximately southwest to northeast through the center of the site. Due to the emplacement of the igneous material the contact zone is typically fractured and differential weathering of the rock may result in deep residual soils occurring along the boundary.

Limited surface exposures of dolerite are usually noted and the presence of the intrusive features are alluded to by the accumulation of well rounded igneous boulders at ground surface.

2.4 <u>Hydrology</u>

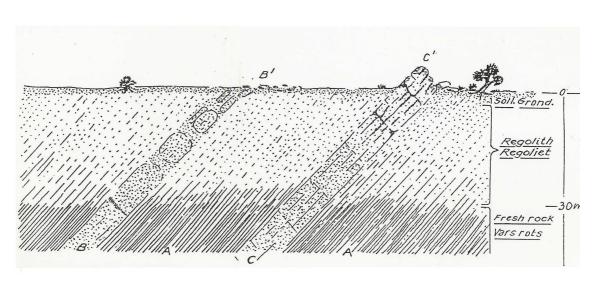
2.4.1 Surface Drainage

The average annual rainfall in this area is approximately 750mm, most of which occurs as heavy, isolated thunder showers between October and March. Storm water runoff is generally in the form of sheetwash, which flows towards the nearest local drainage course and the adjacent Vaal river.

2.4.2 **Perched Ground Water**

No groundwater seepage was encountered in the test pits and therefore the depth of the perched water table could not be determined. It was immediately evident from the aerial photographs and the site visit that localised areas particularly in the vicinity of standing surface water are subject to seasonal seepage.

The shallow perched water levels which often give rise to seepages on surface are usually in response to intense rainfall events, and this is not a sustainable source of ground water and is very dependant on rainfall.


Further evidence of the presence of a seasonal perched water table is the almost ubiquitous horizon of ferruginised soil, consisting of ferricrete nodules in a matrix of clayey and silty sand that is indicative of pedogenisis. Ferricrete forms by the relative accumulation of sesquioxides (Fe_2O_3) by the removal of the more soluble constituents of the soil, which occurs under conditions of seasonal saturation. The iron is mobilised under reducing conditions in the wet season and precipitated under oxidising conditions experienced in the dry season, thereby giving rise to the ferruginised soil horizons that generally occur within 1.0 to 2.0m of the surface.

2.4.3. Permanent Ground Water

The potentially deeply weathered sandstone and siltstone in the area will decompose to form residual soils with a clay-silt and sand texture and may extend to depths of up to 20m. As alluded to in 2.3.1 above the sedimentary rocks of the Vryheid formation are highly variable both horizontally and vertically. The sandstone which occur in the area are generally coarsely bedded and fractured and are also closely jointed, and it is within the structural fabric of the rock that a secondary aquifer of limited extent will be developed. These aquifers are usually restricted by the depth of weathering, the presence of aquatards, such as intruded dykes and the thickness of the geological formation. (see figure 2 below).

It is anticipated the phreatic surface will be encountered at a depth of approximately 20 to 30m (see figure 3 below).

Figure 3. Different modes of weathering exhibited by different types of rock. Siltstone (A) weathers easily with a gradual transition to regolith, and is generally not exposed at surface. Sandstone (B and C) is more resistant, but joint weathering has broken the formation into residual blocks. The formation is likely to outcrop at surface or immediately beneath a thin mantle of transported soils. The secondary aquifer will be confined within the fractured and jointed rock usually within 30m of the surface . (taken from "Introduction to Groundwater" GSSA, Ground Water Division 1992)

Due to the low permeability of the soils as well as the high degree of variability in the weathering of the sandstone and siltstone formations, particularly in the vicinity of Camden Power Station, groundwater yields will vary from borehole to borehole over even short distance and yields are typically poor (0.5-2.0l/s).

2.5 Observations

Twelve test pits were excavated to an average depth of 1.4m and medium hard excavation conditions were experienced in each hole. A summary of the prevailing soils is presented below, while the detailed soil profiles are included in Appendix 2.

2.5.1. *Transported Materials*

The entire area is covered by transported soil which may vary in thickness from a few centimetres up to several metres. Due to the transported origin of the soils the geotechnical characteristics are typically highly variable and difficult to predict.

The transported soils that occur on the lower slopes of the undulating topography are described as silty sand and gravels, of colluvial (hillwash) origin.

The soils are generally of loose to medium dense consistency, and is rich in organic matter.

The base of the transported soils is defined by the pebble marker which consists of a thin horizon (usually 20 to 40cm thick) that contains sub-rounded and angular quartz gravels, in a matrix of greyish brown silty sand.

2.5.2 Alluvium

Within the low lying portions along the western side of Area 2 and the eastern side of Area 1 that are occupied small non-perennial streams that flow towards the northeast, areas of recently deposited alluvial sediments occur. These soils are derived from the proximal rocks that occur in the area and the soil texture and mechanical properties are characterised by the lithologies from which they are derived. Typically the soils will be characterised by unconsolidated sediments that consist of sandy silt and clay with a high organic content. The thickness of these soils will vary considerably, and it must be anticipated that the soils may be potentially expansive as well as highly compressible.

2.5.3. *Pedogenic Soils*

The base of the transported soils is usually defined by the pebble marker that has been subjected to pedogenesis in places. The degree of cementation of the pedogenic material varies from scattered ferricrete nodules, honeycomb ferricrete to hardpan ferricrete. The consistency of the horizon is dependent on the degree pedogenisis, varying from dense to very soft rock consistency and is approximately from 0.3 to 0.5m thick.

2.5.4. *Residual soils*

A brief description of the residual soils derived from each of the geological formations is also presented.

2.5.4.1 Diabase Intrusions.

The post Transvaal age dolerite intrusions that occur in the area generally consists of completely weathered, coarse grained, closely jointed, medium hard rock, diabase. In the sub humid and humid warm climatic regions of the country, falling within the Wienert's climatic N value of less than 5 (Ermelo has a value of 1.8) such as the area investigated, the dolerite undergoes chemical decomposition, which produces residual soils which are commonly expansive. A particularly interesting feature about the dolerite sills in the eastern parts of South Africa is the extreme variability in the depth and degree of decomposition over a relatively short distance. Within a few meters of an outcrop of solid rock a test pit may disclose a substantial depth of decomposition.

2.5.4.2 <u>Vryheid formation</u>

The residual soils derived from the Vryheid formation weather to form stiff, fine grained sandy silt and clayey silt that may be weathered to depths of up to 20m. Typically the residual soils are 2 to 4m in thickness, grading into very soft rock siltstone or sandstone.

It is common that the residual siltstone and mudstone contain a high proportion of montmorillonite clays and lesser amounts of kaolinite, mica and quartz, which imply that these soils may be highly expansive.

2.6 Laboratory and Field Test Results

For more accurate identification and classification purposes, Particle Size Distribution and Atterberg Limits Tests were carried out on representative samples of the various soil horizons present within the site. The results are shown in Appendix 3 of this report and are summarised in Table 1 below.

	TABLE 1. Summary of Indicator test results								
TP No.	Depth (m)	Material	PI	PI (ws)	LS (%)	Activity			
1	1.0-1.1	Silty sand and ferricrete. Ferruginised hillwash.	24	20	12	med			
2	1.4-1.5	Silty clayey sand and ferricrete. Rew. Res. Siltstone	18	16	8	med			
5	1.4-1.5	Silty sandy clay and gravel. Rew. Res. Siltstone	23	19	10	med			
7	1.3-1.4	Silty clayey sand. Hillwash	15	10	7	low/med			
9	1.1-1.2	Gravel and ferricrete with silty sand. Ferruginised Res. Siltstone	16	12	7	med			
11	1.1-1.3	Silty clayey sand. Hillwash	16	8	7	low			

3. INTERPRETIVE REPORT

3.1. Impact Assessment

The methodology employed to determine the environmental impact of the geotechnical aspects of the proposed project, were included in the Zitholele Consulting letter of appointment, dated 14 June 2011. In summary the method makes provision for the assessment of the impacts against the following criteria:

significance spatial scale temporal scale degree of certainty

These impacts are assessed in both a qualitative and quantitative method.

Each candidate site was evaluated in terms of the recommendations of *Section 4, Site Selection* of the Minimum Requirements for Waste Disposal by Landfill (2005) document, and from a geotechnical and geohydrological perspective the following situations are considered to constitute a fatal flaw.

Area below the 1 in 100 year flood line.
Area in close proximity to significant water bodies.
Unstable areas.
Areas characterised by flat gradients, shallow or emergent ground water.
Area characterised by steep gradients where stability of slopes could be problematic.
Areas of ground water recharge on account of topography and or highly permeable soils.
Areas characterised by shallow bedrock with little soil cover.

Utilising the evaluation criteria listed above the impact of the proposed land use was determined.

3.1.1 Site 1

- i. This site is located immediately north of the existing ash disposal facility, and approximately 2.8km northwest of the Camden power station.
- ii. The size of the area is approximately 176ha.
- iii. The area is situated on a relatively flat portion of ground that has a gentle gradient down towards the west at 1 to 2%. The site is currently un used for any other activities and the vegetation consists of typical Highveld grasslands.
- iv. The entire site appears to be underlain by inter bedded sandstone and siltstone of the Vryheid formation. No evidence of the presence of intruded sills or dykes were identified.
- v. The Camden village is located approximately 300m to the east of the site.
- vi. No ground water seepage was observed on the site and no seepage was recorded in the test pits.
- vii. A drainage course that directs runoff from the existing ash disposal facility is located on the eastern side of the site, while the Dejagers pan is located within 500m to the south of the site.
- viii. The underlying soils on the site consist of a shallow horizon of transported soils to an approximate depth of 500mm, which overly ferruginised, jointed reworked residual siltstone. The depth of weathering is anticipated to extend to a depth of approximately 3 to 5m.

TABLE 2. Impact assessment of Site 1							
Criteria	Significance	Spacial Scale	Temporal Scale	Probability	Rating		
Within 1 in 100	NO IMPACT	Proposed site	Incidental	<u>Unlikely</u>			
year flood line	0	1	1	2	0.3		
Proximity to	LOW	Study Area	Long term	<u>Could happen</u>			
significant water body	2	2	4	3	1.6		
Unstable area	VERY LOW	Proposed site	Incidental	<u>Practically</u> Impossible	0.2		
	1	1	1	1			
Flat gradient and	LOW	Study Area	Incidental	<u>Could happen</u>			
emergent ground water	2	2	1	3	1		
Steep gradient and slope	NO IMPACT	Proposed site	Incidental	<u>Practically</u> Impossible			
stability problems	0	1	1	1	0.3		
Area of	LOW	Local	Long term	Unlikely			
groundwater recharge	2	3	4	2	1.2		
Shallow bedrock	LOW	Study Area	Permanent	<u>Very likely</u>			
and poor soil cover	2	2	5	4	2.4		

The determined impact assessment is shown in table 2 below.

3.1.2 Site 2

- i. This site is located immediately south of Dejagers Pan and the railway servitude, approximately 3.0km southwest of the Camden power station.
- ii. The total area potentially available for development is approximately 221ha, of which it is considered that the eastern portion covering a surface area of some 98ha is the most suitable area.
- iii. The area is situated on a shallow sloping site with a gradient down towards the north of 3 to 4% and the site is currently used for agricultural activity.
- iv. The entire site appears to be underlain by inter bedded sandstone and siltstone of the Vryheid formation. No evidence of the presence of intruded sills or dykes were identified.
- v. An electrified dual railway line is located immediately north of the proposed site and a powerline servitude is located along the eastern side.
- vi. No ground water seepage was observed on the site and no seepage was recorded in the test pits, however it is likely that the area may be subjected to seasonal seepage.
- vii. The eastern side of the site partially encroaches into drainage course of a small northeasterly flowing non-perennial stream. The Dejagers pan is located within 1.2km to the northwest of the site.
- viii. The underlying soils on the site consist of a shallow horizon of transported soils to an approximate depth of 500 to 10000mm, which overly ferruginised, jointed reworked residual siltstone. The depth of weathering is anticipated to extend to a depth of approximately 3 to 5m.

TABLE 3. Impact assessment Site 2							
Criteria	Significance	Spacial Scale	Temporal Scale	Probability	Rating		
Within 1 in 100	LOW	Local	Incidental	<u>Unlikely</u>			
year flood line	2	3	1	2	0.8		
Proximity to	LOW	Study Area	Long term	<u>Could happen</u>			
significant water body	2	2	4	3	1.6		
Unstable area	VERY LOW	Proposed site	Incidental	Practically Impossible	0.2		
	1	1	1	1			
Flat gradient and	VERY LOW	Study Area	Incidental	<u>Could happen</u>			
emergent ground water	1	2	1	3	0.8		
Steep gradient and slope	NO IMPACT	Proposed site	Incidental	Practically Impossible	0.1		
stability problems	0	1	1	1			
Area of	MODERATE	Local	Long term	<u>Could happen</u>			
groundwater recharge	3	3	4	3	2		
Shallow bedrock	LOW	Study Area	Permanent	<u>Very likely</u>	2.4		
and poor soil cover	2	2	5	4			

The determined impact assessment is shown in table 3 below.

3.1.3 Site 3

- i. This site is located approximately 1.2km directly south of the Camden Power Station and immediately north of the SAR railway servitude.
- ii. The total area potentially available for development is approximately 142ha.
- iii. The area is situated within the headwaters of a non-perennial north flowing stream that flows into the Witpuntspruit some 3km to the northeast. The general slope of the site is approximately 1% down towards the northeast and the site is currently undeveloped.
- iv. On the basis of the geological information available it is apparent that the site straddles the contact between the host sedimentary formations on the western side and an intruded dolerite sill to the east. The contact between the two geological lithologies is approximately along the non perennial stream mentioned in paragraph iii above. Due to the emplacement of the igneous material the contact zone is typically fractured and differential weathering of the rock may result in deep residual soils occurring along the boundary.
- v. An electrified dual railway line is located immediately south of the proposed site and the coal stockpile and water storage facilities are located to the north and northwest of the area.
- vi. Shallow ground water seepage was observed on the northern portion of the site and due to the topographic setting it must be anticipated that significant seepage and surface runoff will be encountered during periods of high rainfall.

vii. The underlying soils on the site consist of a shallow horizon of transported silty and clayey soils to an approximate depth of 500 to 10000mm, which overly ferruginised, jointed reworked residual siltstone. The depth of weathering is anticipated to extend to a depth of approximately 3 to 5m.

TABLE 4. Impact assessment Site 3							
Criteria	Significance	Spacial Scale	Temporal Scale	Probability	Rating		
Within 1 in 100	HIGH	Regional	long term	<u>Very likely</u>			
year flood line	4	4	4	4	4.8		
Proximity to	LOW	Study Area	Long term	<u>Could happen</u>			
significant water body	2	2	4	3	1.6		
Unstable area	VERY LOW	Proposed site	Incidental	<u>Practically</u> Impossible	0.2		
	1	1	1	1			
Flat gradient and	VERY LOW	Local	Long term	<u>Could happen</u>			
emergent ground water	4	3	4	3	4.6		
Steep gradient and slope	NO IMPACT	Proposed site	Incidental	<u>Practically</u> Impossible	0.1		
stability problems	0	1	1	1			
Area of	MODERATE	Local	Long term	<u>Could happen</u>			
groundwater recharge	3	3	4	3	2		
Shallow bedrock	LOW	Study Area	Permanent	<u>Very likely</u>	2.4		
and poor soil cover	2	2	5	4			

3.2. Recommendations

On the basis of this evaluation it is apparent that site 3 is not suitable for the intended development, and should not be considered for further investigation. The remaining two target sites, namely Site 1 and Site 2 are both considered to be suitable for further consideration.

From a geological and geotechnical perspective it is considered that site 1 is the preferred option, however more detailed geotechnical and hydrogeological investigations will be required on both sites

AFRICA EXPOSED CONSULTING ENGINEERING GEOLOGISTS

J.K.A. ARKERT Pr.Sci.Nat.

REFERENCES

- 1. Brink A.B.A *"Engineering Geology of Southern Africa"* volume 1 and 3, published by Building Publications. 1979.
- 2. Fernandez L.M. and Guzman J.A. *"Earthquake hazard in southern Africa."* Seismological Series 10. Geological Survey, 1979.
- 3. Geological Survey of RSA, "Seismic Hazard Maps For Southern Africa" Pretoria, 1992.
- 4. Jennings J.E. and Knight K. "A guide to construction on or with materials exhibiting additional settlement due to collapse of grain structure." Proceedings of the 6th Regional Conference for Africa on Soil Mechanics and Foundation Engineering. Durban. 1975.
- 5. Jennings JE et al . "Revised Guide to Soil profiling for Civil Engineering Purposes in Southern Africa" - Civil Engineer in South Africa , January 1973
- 6. Johnson, M.R, Anhauesser, C.R. and Thomas, R.T, "The geology of South Africa" by published by Geological Society of South Africa in 2006.
- 7. Van der Merwe DH . "The prediction of heave from the Plasticity Index and percentage clay fraction of soils" Civil Engineer in South Africa Vol 6, 1964.
- 8. Wilson,M.G.C and Anhaeusser, C.R. "*The Mineral Resources of South Africa.*" Handbook 16, Sixth Edition. Council For Geoscience 1998.
- 9. Weinert H.H. *"The Natural road construction materials of South Africa."* Academica (Cape Town), 1980.

APPENDIX C

CONCEPTUAL ENGINEERING DRAWINGS

APPENDIX D

DESIGN CALCULATIONS FOR STORMWATER MANAGEMENT

APPENDIX D

.

2

!

×.

DESIGN CALCULATIONS FOR STORMWATER MANAGEMENT

Rainfall Type: Triangular		r			Areal Reduction: Unspecif					Mean Annual Percipitation:		
I.D.F Type	: HRU/78			Time To Peak: 0.30					Rainfall Region:			Inland
					Total Are	a(ha):	0.000	D				
Project I	No/Name:	12670	ļ	Ash Dar	n for Camde	en						
KAT0001	RES0001	198.000	0.0260	1	1,100.00	45	5	0.200	0.022	3.0	1.0	i.
KAT0002	RES0002	162.300	0.0400	1	1,000.00	45	5	0.200	0.022	3.0	1.0	
KAT0003	RES0003	214.540	0.0400	1	1,000.00	45	5	0.200	0.022	3.0	1.0	
KAT0004	0001	30.100	0.0260	2	150.00	45	5	0.200	0.022	3.0	1.0	
KAT0005	0002	32.200	0.0400	2	250.00	45	. 5	0.200	0.022	3.0	1.0	
KAT0006	0003	28.200	0.0400	2	150.00	45	5	0.200	0.022	3.0	1.0	
KAT0007	0004	27.500	0.0400	2	175.00	45	5	0.200	0.022	3.0	1.0	
KAT0008	<end></end>	5.220	0.3330	2	50.00	25	5	0.200	0.022	2.0	0.5	
KAT0009	<end></end>	11.810	0.3330	2	50.00	25	5	0.200	0.022	2.0	0.5	
KAT0010	<end></end>	9.990	0.3330	2	75.00	25	5	0.200	0.022	2.0	0.5	
KAT0011	<end></end>	18.890	0.3330	2	100.00	25	5	0.200	0.022	2.0	0.5	
KAT0012	<end></end>	10.300	0.3330	2	75.00	25	5	0.200	0.022	2.0	0.5	
KAT0013	<end></end>	10.600	0.3330	2	80.00	25	5	0.200	0.022	2.0	0.5	
KAT0014	<end></end>	8.100	0.3330	2	100.00	25	5	0.200	0.022	2.0	0.5	
KAT0015	<end></end>	4.900	0.3330	2	80.00	25	5	0.200	0.022	2.0	0.5	
KAT0016	<end></end>	13.400	0.3300	2	100.00	25	5	0.200	0.022	2.0	0.5	
KAT0017	<end></end>	4.700	0.3300	2	100.00	25	5	0.200	0.022	2.0	0.5	
KAT0018	<end></end>	7.600	0.3300	2	120.00	25	5	0.200	0.022	2.0	0.5	
KAT0019	<end></end>	18.900	0.3300	2	180.00	25	5	0.200	0.022	2.0	0.5	
KAT0020	<end></end>	11.300	0.3300	2	180.00	25	5	0.200	0.022	2.0	0.5	
KAT0021	<end></end>	5.700	0.3300	2	180.00	25	5	0.200	0.022	2.0	0.5	

Model:Profe	Model:Professional V5.2.74			Project Data Echo Report				Report Date: 24/04/2012			
Rainfall Typ	pe: Triangular			Are	eal Reduction:	None		Mean Annual	Precipitation	n: 723	(mm)
I.D.F Type:	I.D.F Type: HRU/78				Time To Peak: 0.30			Rainfall Region: Inland			
				Т	otal Area(ha):	834.2	.250		Distances a		
0001	<end></end>	<none></none>	1.00	1.5000	1.5000	0.10	0.012	###.##	0.02600	100	0.298
0002	<end></end>	<none></none>	1.00	1.5000	1.5000	0.10	0.012	###.##	0.04000	100	0.369
0003	<end></end>	<none></none>	1.00	1.5000	1.5000	0.10	0.012	###.##	0.04000	100	0.369
0004	<end></end>	<none></none>	1.00	1.5000	1.5000	0.10	0.012	###.##	0.04000	100	0.369

. .

~

Rainfall Type:	Triangular	Areal Red:	Unsp	ecif M.A	A.F 723 (r	nm)	I.D.F T	ype: HRU/	78 Tin	ne To	Peak: 0	0.30	÷.,
roject No/Nam otal Area(ha):	e: 12670 834.250			Ash	Dam for C	amde	n			F	Reservoir Reservoir	Attenuation Lag Time:	n: 0.000
			C	Dutlet Works	(Pipes)		Outlet W	Vorks (Culv	verts)		Outlet W	orks (Spilly	vays)
Node ID	Drain To	Elev Points	No	Diameter	Invert Lev	No	Width	Height	Invert Lev	No	Coef	Width	Invert Lev
RES0001	<none></none>	0	0	0.000	0.00	0	0.000	0.00	0.00	1	1.800	20.00	1659.00
					Re	servo	ir Storage	Contour:	No	E	Elevation	Storage V	olume (m3
									1	16	50.0000		0.000
					Charles .		N		2	16	51.0000	20,00	0.000
									3	16	52.0000	40,00	0.000
<u> </u>							ol and		4	16	53.0000	60,00	0.000
									5	16	54.0000	80,00	0.000
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									6	16	55.0000	100,00	0.000
									7		56.0000	120,00	
									8		57.0000	140,00	
	7								9		58.0000	160,00	
210 PM			-				- 01		10		59.0000	180,00	
				-					11		60.0000	200,00	
RES0002	<none></none>	0	0	0.000	0.00	0	0.000	0.00	0.00	1	1.800	20.00	1659.00
TLEGGGD2	SHORE	Ū		0.000			ir Storage		No		levation		olume (m3
					Re:	servo	Storage	Contour.	1		50.0000		0.000
	1								2		51.0000	20,000	
	North Contract								3		52.0000	40,000	
-							1.44 E. M.F		4		53.0000	60,000	
									5		54.0000	80,000	
	1000000								6		55.0000	100,000	
-									7		56.0000	120,000	0.000
									8	16	57.0000	140,000	0.000
									9	16	58.0000	160,000	0.000
									10	16	59.0000	180,000	0.000
									11	166	50.0000	200,000	0.000
RES0003	<none></none>	0	0	0.000	0.00	0	0.000	0.00	0.00	1	1.800	20.00	1659.00
					Res	ervoi	r Storage (Contour:	No	E	levation	Storage Ve	olume (m3)
									1	165	50.0000	C	0.000
									2	168	51.0000	20,000	0.000
									3	165	52.0000	40,000	0.000
	Constant of Consta	8-3-9-10 - 10-98-10-	-		11				4	165	53.0000	60,000	0.000
									5	165	54.0000	80,000	0.000
	a da se de se de se de se de se								6	165	55.0000	100,000	0.000
									7	165	6.0000	120,000	0.000
									8		57.0000	140,000	
a se aderárea				1474 X					9		58.0000	160,000	
	9			14					10		59.0000	180,000	

1.

Model:Professional		V5.2.74	S	imulation I	Report Date: 24/04/2012			
Rainfall Type	: Triangular	Areal Red:	Not Spec	M.A.P: 723	(mm) Project No/Na	ime: 12670		
I.D.F Type:	HRU/78 Multipl	Time To Peak e RI used for A			4.250 Ash Dam for (a can ONLY be used		roblem Are	as
Node ID	Inlet Peak(m3)	Storage(m3)	Velocity (m/s)	Hazard Rating I	actor MaxDepth(m)	Ex Q(m/s)	Resize	Storm Duration
Output St	immary for ye	ar recurrence	e Interval 1:	50				
Element	t Type: Catch	nments						
KAT0001	17.314	13		N//	A 0.0350			81
KAT0002	17.333	13		N//	A 0.0305			81
KAT0003	22.912	13		N//	0.0305			81
KAT0004	8.273	7		N//	0.0163			41
KAT0005	7.697	7		N//	0.0190			41
KAT0006	8.502	7		N//	0.0146			41
KAT0007	7.769	7		N//	0.0158			41
KAT0008	3.506	3		N//	0.0054			21
KAT0009	7.932	3		N//	0.0054			21
KAT0010	6.068	3		N//	0.0069			21
KAT0011	10.524	3		N/A	0.0081			21
KAT0012	6.256	3		N/A	0.0069			21
KAT0013	6.328	3		N/A	0.0071			21
KAT0014	4.513	3		N/A	0.0081			21
KAT0015 ,	2.925	3		N/A	0.0071			21
KAT0016	7.456	3		N/A	0.0081			21
KAT0017	2.615	3		N/A	0.0081			21
KAT0018	3.993	3		N/A	0.0089			21
KAT0019	8.528	3		N/A	0.0111			21
KAT0020	5.099	3	-	N/A	0.0111			21
KAT0021	2.572	3		N/A	0.0111			21
Element	Type: Chanr	nels						
0001	8.273		4.72	374 Hig	h 0.6193		0.700	41
0002	7.697		5.55	316 Hig	h 0.5361		0.600	41
0003	8.502		5.63	361 Hig	n 0.5637		0.600	41
0004	7.769		5.52	320 Hig	n 0.5385		0.600	41
Element	Type: Reser	voirs					l_	
RES0001	17.314	183079		N/A	###.####			81
RES0002	17.333	181140		N/A	++++++.++++++++			81
RES0003	22.912	184824		N/A				81

Deiefell Tures	Trianada	Annul Dauk	Not Coop	MAD. 702 ()		10070	10000000	
Rainfall Type:		Areal Red:		M.A.P: 723 (mm)				
I.D.F Type:	HRU/78 Multiple	Time To Peak e RI used for A		Area(ha): 834.250 mulation Maxima can	Ash Dam for C ONLY be used t		roblem Are	as
Node ID	Inlet Peak(m3)	Storage(m3)	Velocity (m/s)	Hazard Rating Factor	MaxDepth(m)	Ex Q(m/s)	Resize	Storm Duration
Output Su	immary for ye	ar recurrence	e Interval 1:	50				
Element	Type: Catch	iments						
KAT0001	13.495	5		N/A	0.0401			30
KAT0002	14.303	5		N/A	0.0362			30
KAT0003	18.907	5		N/A	0.0362			30
KAT0004	8.314	5		N/A	0.0178			30
KAT0005	7.567	5		N/A	0.0205			30
KAT0006	8.679	5		N/A	0.0159			30
KAT0007	7.840	5		N/A	0.0172			30
KAT0008	3.666	2		N/A	0.0063			11
KAT0009	8.294	2		N/A	0.0063			11
KAT0010	6.114	3		N/A	0.0071			19
KAT0011	10.594	3		N/A	0.0082			20
KAT0012	6.304	3		N/A	0.0071			19
KAT0013	6.358	3		N/A	0.0073			19
KAT0014	4.542	3		N/A	0.0082			20
KAT0015	2.939	3		N/A	0.0073			19
KAT0016	7.503	3		N/A	0.0082			20
KAT0017	2.632	3		N/A	0.0082			20
KAT0018	3.996	3	-	N/A	0.0091			20
KAT0019	8.588	3		N/A	0.0108			23
KAT0020	5.135	3		N/A	0.0108			23
KAT0021	2.590	3		N/A	0.0108			23
Element	Type: Chann	nels						
0001	8.314		4.87	378 High	0.6214		0.700	30
0002	· 7.567		5.51	309 High	0.5314		0.600	30
0003	8.679		5.74	371 High	0.5695		0.600	30
0004	7.840		5.52	324 High	0.5414		0.600	30
Element	Type: Reserv	voirs						
RES0001	13.495	108786		N/A	###.####			30
RES0002	14.303	107163		N/A	####.######			30
RES0003	18.907	125563		N/A	###.#####			30

APPENDIX E

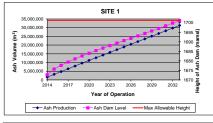
STAGE CURVES FOR ASH DAM OPTIONS

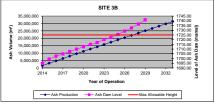
PHASING IN OF LINER INSTALLATION

Site 1						
Min Height	=	1661.3				
Step No	Elevation		Acc. Foot	Volume	Ye	ear
	mamsl	m²	m²	m ³	From	То
						2014
1	1669.3	241,835	241,835	468,742	2014	2014
2	1677.3	675,362	917,197	4,425,160	2014	2015
3	1685.3	438,262	1,355,459	12,570,485	2015	2020
4	1693.3	181,209		22,192,142	2020	2027
5	1701.3	6,857	1,543,525	31,134,583	2027	2032
Site 3A Min Height	=	1665.5				
Step No	Elevation		Acc. Foot	Volume	Ye	ear
	mamsl	m²	m²	m³	From	То
						2014
1	1673.5	36,840	36,840	98,292	2014	2014
2	1681.5	579,830	616,670	906,215	2014	2014
3	1689.5	406,408	1,023,078	3,161,205	2014	2014
4	1697.5	239,347	1,262,425	6,876,435	2014	2017
5	1705.5	231,275	1,493,700	12,080,773	2017	2020
6	1713.5	68,722	1,562,422	17,379,228	2020	2023
Site 3B Min Height	=	1685				
Step No	Elevation		Acc. Foot	Volume	Ye	ear
	mamsl	m²	m²	m ³	From	То
						2014
1	1693	58,233	58,233	934,204	2014	2014
2	1701	258,371	316,604	3,950,256	2014	2015
3	1709	301,265	617,869	8,731,753	2015	2018
4	1717	303,477	921,346	13,995,091	2018	2021

Ash Pro	duction
0	2014
1,596,480	2014
3,258,880	2015
4,805,120	2016
6,392,320	2017
7,991,360	2018
9,653,440	2019
11,198,720	2020
12,744,000	2021
14,289,280	2022
15,834,560	2023
17,379,840	2024
18,925,120	2025
20,470,400	2026
22,015,680	2027
23,560,960	2028
25,106,240	2029
26,651,520	2030
28,196,800	2031
29,742,080	2032
31,287,360	2033

YEAR	COAL	ASH	ASH	ASH	ACCUMULA		
	BURN	PERCENT	PRODUC			HE	EIGHT (M
		AGE	TION	TION	PRODUCTI		
	(TON)		(TON)	(M ³)	ON (M ³)	OPTION 1	OPTION
2014	4,989,000	32	1,596,480	1,596,480		1672.70	1684
2015	5,195,000	32	1,662,400		3,258,880	1675.70	1689
2016	4,832,000	32	1,546,240	1,546,240	4,805,120	1677.70	1693
2017	4,960,000	32	1,587,200	1,587,200	6,392,320	1679.40	1696
2018	4,997,000	32	1,599,040	1,599,040	7,991,360	1681.10	1699
2019	5,194,000	32	1,662,080	1,662,080	9,653,440	1682.60	1702
2020	4,829,000	32	1,545,280	1,545,280	11,198,720	1684.00	1704
2021	4,829,000	32	1,545,280	1,545,280	12,744,000	1685.40	1706
2022	4,829,000	32	1,545,280	1,545,280	14,289,280	1686.70	1708
2023	4,829,000	32	1,545,280	1,545,280	15,834,560	1688.00	1710
2024	4,829,000	32	1,545,280	1,545,280	17,379,840	1689.30	1713
2025	4,829,000	32	1,545,280	1,545,280	18,925,120	1690.60	
2026	4,829,000	32	1,545,280	1,545,280	20,470,400	1691.80	
2027	4,829,000	32	1,545,280	1,545,280	22,015,680	1693.10	
2028	4.829.000	32	1,545,280	1,545,280	23,560,960	1694.40	
2029	4.829.000	32	1,545,280	1,545,280	25,106,240	1695.70	
2030	4,829,000	32	1,545,280	1,545,280	26,651,520	1697.00	
2031	4,829,000	32	1,545,280	1,545,280	28,196,800	1698.40	
2032	4,829,000	32	1,545,280	1,545,280	29,742,080	1699.80	
2033	4.829.000	32	1,545,280	1,545,280	31,287,360	1701.10	


			R 8.80	per tonne
-18	EIGHT (MAMS	ŝL)	Operating Costs (Rands)	
	OPTION 3A	OPTION 3B		
0	1684.50	1695.00	14,049,024	
0	1689.50	1699.50	14,629,120	
0	1693.00	1702.50	13,606,912	
0	1696.50	1705.00	13,967,360	
0	1699.00	1707.50	14,071,552	
0	1702.00	1710.00	14,626,304	
0	1704.00	1712.50	13,598,464	
0	1706.00	1715.00	13,598,464	
0	1708.50	1717.00	13,598,464	
0	1710.50	1720.00	13,598,464	
0	1713.00	1722.50	13,598,464	
0		1725.50	13,598,464	
0		1729.00	13,598,464	
0		1732.50	13,598,464	
0		1736.50	13,598,464	
0		1741.00	13,598,464	
0			13,598,464	
0			13,598,464	
0			13,598,464	
0			13,598,464	


Г

MAXIMU	JM HEIGHTS	(MAMSL)
	OPTION 3A	
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000
1701.300	1705.500	1725.000

R	ATE OF RISE (m/ye	ar)
OPTION 1	OPTION 3A	OPTION 3B
0	0	0
3.00	5.00	4.50
2.00	3.50	3.00
1.70	3.50	2.50
1.70	2.50	2.50
1.50	3.00	2.50
1.40	2.00	2.50
1.40	2.00	2.50
1.30	2.50	2.00
1.30	2.00	3.00
1.30	2.50	2.50
1.30		3.00
1.20		3.50
1.30		3.50
1.30		4.00
1.30		4.50
1.30		
1.40		
1.40		
1.30		

275,328,768

	SITE 3A										
	35,000,000	I 1715.00									
6	30,000,000	1710.00									
(m ³)	25,000,000	1705.00 🕱									
Ê	20,000,000	1700.00 E									
등	15,000,000	1695.00 5									
Ash Volume	10,000,000	1690.00 8									
As	5,000,000	1685.00									
	· · · · · · · · · · · · · · · · · · ·	¥ 1680.00									
	2014 2017 2020 2023 2026 2029 2032										
	Year of Operation										
	Ash Production Ash Dam Level Max Allowable H	leight									

	SITE 1			SITE 3A			SITE 3B	
VOL	ELEV	VOL	VOL	ELEV	VOL	VOL	ELEV	VOL
0	1661.300	0	0	1665.500	0	0	1685.000	0
1	1661.400	1	236	1666.000	236	654	1685.500	654
6	1661.500	6	876	1666.500	876	3408	1686.000	3408
16 32	1661.600	16 32	2127 4075	1667.000 1667.500	2127 4075	10206 23084	1686.500	10206 23084
32	1661.700 1661.800	32 56	4075	1668.000	4075	23084 44217	1687.000 1687.500	23084 44217
95	1661.900	95	10149	1668.500	10149	74825	1688.000	74825
151	1662.000	151	14415	1669.000	14415	115764	1688.500	115764
226	1662,100	226	19596	1669,500	19596	167830	1689.000	167830
321	1662.200	321	25655	1670.000	25655	230707	1689.500	230707
435	1662.300	435	32552	1670.500	32552	303631	1690.000	303631
571	1662.400	571	40314	1671.000	40314	385932	1690.500	385932
731	1662.500	731	48992	1671.500	48992	477593	1691.000	477593
928	1662.600	928	58653	1672.000	58653	578578	1691.500	578578
1163	1662.700	1163	69832	1672.500	69832	688537	1692.000	688537
1425 1718	1662.800 1662.900	1425 1718	83285 98292	1673.000 1673.500	83285 98292	807171 934204	1692.500 1693.000	807171 934204
2044	1663.000	2044	115100	1674.000	115100	1066641	1693.500	106664
2401	1663.100	2401	135195	1674.500	135195	1204492	1694.000	120449
2786	1663.200	2786	159045	1675.000	159045	1350658	1694.500	135065
3196	1663.300	3196	186793	1675.500	186793	1504760	1695.000	1504760
3629	1663.400	3629	218591	1676.000	218591	1666410	1695.500	1666410
4079	1663.500	4079	255038	1676.500	255038	1835638	1696.000	183563
4549	1663.600	4549	296281	1677.000	296281	2012709	1696.500	201270
5047	1663.700	5047	341957	1677.500	341957	2197664	1697.000	219766
5584	1663.800	5584	392596	1678.000	392596	2390234	1697.500	2390234
6160 6764	1663.900 1664.000	6160 6764	448688 510199	1678.500 1679.000	448688 510199	2590420 2798577	1698.000 1698.500	259042
7393	1664.100	7393	577497	1679.500	577497	3014437	1699.000	301443
8045	1664.200	8045	650597	1680.000	650597	3237582	1699.500	323758
8719	1664.300	8719	729750	1680,500	729750	3468021	1700.000	346802
9414	1664.400	9414	815824	1681.000	815824	3705543	1700.500	3705543
10137	1664.500	10137	906215	1681.500	906215	3950256	1701.000	3950256
10894	1664.600	10894	1000623	1682.000	1000623	4199382	1701.500	4199382
11697	1664.700	11697	1101536	1682.500	1101536	4452603	1702.000	4452603
12577	1664.800	12577	1208825	1683.000	1208825	4712809	1702.500	471280
13552	1664.900	13552	1322574	1683.500	1322574	4980675	1703.000	498067
14637 15867	1665.000	14637 15867	1442261 1567929	1684.000 1684.500	1442261 1567929	5256808 5542035	1703.500	525680 554203
17276	1665.200	15867	1699610	1685.000	1699610	5836702	1704.000	583670
18887	1665.300	18887	1837321	1685.500	1837321	6139512	1705.000	613951
20718	1665.400	20718	1981514	1686.000	1981514	6448883	1705.500	644888
22790	1665.500	22790	2132084	1686.500	2132084	6763630	1706.000	676363
25135	1665.600	25135	2288667	1687.000	2288667	7082914	1706.500	708291
27800	1665.700	27800	2451030	1687.500	2451030	7406200	1707.000	740620
30849	1665.800	30849	2619406	1688.000	2619406	7733168	1707.500	773316
34312	1665.900	34312	2794224	1688.500	2794224	8063416	1708.000	806341
38178	1666.000	38178 42478	2975814	1689.000	2975814	8396351 8731753	1708.500	839635 873175
42478 47215	1666.100	42478	3161205 3350319	1689.500 1690.000	3161205 3350319	8731753 9064987	1709.000	906498
52384	1666.300	52384	3545589	1690.000	3545589	9064987 9395602	1710.000	939560
58023	1666.400	58023	3746738	1691.000	3746738	9727865	1710.500	972786
64162	1666.500	64162	3953862	1691.500	3953862	10061428	1711.000	1006142
70842	1666.600	70842	4166759	1692.000	4166759	10395737	1711.500	1039573
78061	1666.700	78061	4385095	1692.500	4385095	10730447	1712.000	1073044
85806	1666.800	85806	4608777	1693.000	4608777	11065140	1712.500	1106514
94096	1666.900	94096	4837949	1693.500	4837949	11399412	1713.000	1139941
102940	1667.000	102940	5072530	1694.000	5072530	11732699	1713.500	1173269
112374	1667.100	112374	5312621	1694.500	5312621	12064291	1714.000	1206429
122405	1667.200	122405	5558194	1695.000	5558194	12393460	1714.500	1239346
133023 144237	1667.300 1667.400	133023 144237	5809643 6067475	1695.500 1696.000	5809643 6067475	12719721 13043008	1715.000 1715.500	1271972
156040	1667.500	156040	6331582	1696.000	6331582	13043008	1715.500	

168421 1667.600 181373 1667.700						
	168421 181373	6602092 <u>1697.000</u> 6876435 1697.500		13680686 13995091	1716.500 1717.000	136806 139950
194905 1667.800	194905	7154554 1698.000	7154554	14301561	1717.500	143015
209034 1667.900 223785 1668.000	209034 223785	7439342 1698.500 7731030 1699.000	7439342 7731030	14600135 14895841	1718.000 1718.500	146001 148958
239158 1668.100 255124 1668.200	239158 255124	8029846 1699.500 8336497 1700.000		15188688 15478681	1719.000 1719.500	151886 154786
271691 1668.300	271691	8651139 1700.500	8651139	15765828	1720.000	157658
288860 1668.400 306624 1668.500	288860 306624	8972978 1701.000 9301110 1701.500		16050136 16331611	1720.500	160501 163316
324988 1668.600 343950 1668.700	324988 343950	9634770 <u>1702.000</u> 9973583 <u>1702.500</u>	9634770 9973583	16610262 16886095	1721.500	166102 168860
363506 1668.800	363506	10317387 1703.000	10317387	17159117	1722.500	171591
383663 1668.900 404432 1669.000	383663 404432	10665674 1703.500 11017586 1704.000	10665674 11017586	17429335 17696756	1723.000 1723.500	174293
425826 1669.100 447264 1669.200	425826 447264	11371820 1704.500 11727430 1705.000		17961388 18223236	1724.000 1724.500	179613 182232
468742 1669.300	468742	12080773 1705.500	12080773	18482309	1725.000	184823
490834 1669.400 513544 1669.500	490834 513544	12431770 1706.000 12783818 1706.500	12431770 12783818	18733920 18978109	1725.500 1726.000	187339 189781
536881 1669.600 560851 1669.700	536881 560851	13136882 1707.000 13490845 1707.500		19219608 19458424	1726.500 1727.000	192196 194584
585453 1669.800	585453	13845575 1708.000	13845575	19694564	1727.500	196945
610680 1669.900 636535 1670.000	610680 636535	14200738 1708.500 14555947 1709.000	14200738 14555947	19928035 20158845	1728.000 1728.500	199280 201588
663012 1670.100 690126 1670.200	663012 690126	14910933 1709.500 15265523 1710.000		20387001 20612509	1729.000 1729.500	203870 206125
717885 1670.300	717885	15619757 1710.500	15619757	20835376	1730.000	208353
746273 1670.400 775291 1670.500	746273 775291	15973552 1711.000 16326616 1711.500	15973552 16326616	21055610 21273217	1730.500 1731.000	210556 212732
804965 1670.600 835304 1670.700	804965 835304	16678685 1712.000 17029601 1712.500	16678685 17029601	21488206 21700581	1731.500	214882 217005
866296 1670.800	866296	17379228 1713.000	17379228	21910352	1732.500	219103
897935 1670.900 930204 1671.000	897935 930204	47.500		22117524 22317535	1733.000 1733.500	221175 223175
963081 1671.100 996568 1671.200	963081 996568			22510447 22700893	1734.000 1734.500	225104 227008
1030670 1671.300	1030670			22888880	1735.000	228888
1065387 1671.400 1100720 1671.500	1065387 1100720			23074414 23257504	1735.500 1736.000	230744 232575
1136670 1671.600 1173239 1671.700	1136670 1173239			23438156 23616377	1736.500 1737.000	234381 236163
1210436 1671.800	1210436			23792174	1737.500	237921
1248274 1671.900 1286750 1672.000	1248274 1286750			23965555 24136525	1738.000 1738.500	239655 241365
1325849 1672.100 1365568 1672.200	1325849 1365568			24305093 24471266	1739.000 1739.500	243050 244712
1405910 1672.300	1405910 1446883			24635050 24796452	1740.000	246350
1446883 1672.400 1488479 1672.500	1488479			24796452 24955479	1740.500 1741.000	247964 249554
1530684 1672.600 1573507 1672.700	1530684 1573507				56.000	
1616954 1672.800 1661032 1672.900	1616954					
1705751 1673.000	1661032 1705751					
1751116 1673.100 1797135 1673.200	1751116 1797135					
1843810 1673.300 1891137 1673.400	1843810 1891137					
1939112 1673.500	1939112					
1987758 1673.600 2037084 1673.700	1987758 2037084					
2087092 1673.800 2137806 1673.900	2087092 2137806					
2189226 1674.000	2189226					
2241351 1674.100 2294190 1674.200	2241351 2294190					
2347753 1674.300 2402040 1674.400	2347753 2402040					
2457045 1674.500	2457045 2512793					
2512793 1674.600 2569303 1674.700	2569303					
2569303 1674.700 2626601 1674.800 2684823 1674.900 2744171 1675.000	2569303 2626601 2684823 2744171					
2569303 1674.700 2626601 1674.800 2684823 1674.900 2744171 1675.000 2804874 1675.100 2866991 1675.200	2569303 2626601 2684823 2744171 2804874 2866991					
2569303 1674.700 2626601 1674.800 2684823 1674.900 2744171 1675.000 2804874 1675.100 2866991 1675.200 2930596 1675.300 2995768 1675.400	2569303 2626601 2684823 2744171 2804874 2866991 2930596 2995768					
2569303 1674.700 2626601 1674.800 2684823 1674.900 2744171 1675.000 2804874 1675.100 2806891 1675.200 2930596 1675.300 2993768 1675.400 3062383 1675.500	2569303 2626601 2684823 2744171 2804874 2866991 2930596 2995768 3062383					
2569303 1674,700 2626601 1674,800 2684823 1674,900 2744171 1675,000 2804874 1675,100 2806991 1675,200 2905768 1675,400 3062383 1675,500 3103015 1675,600 3199434 1675,700	2569303 2626601 2684823 2744171 2804874 2866991 2930596 2995768 3062383 3130315 3199434					
2569303, 1674.700 26268601 1674.800 26248621 1674.900 2744171 1675.000 2804872 1675.100 28068991 1675.200 2930596 1675.300 2930596 1675.400 3062383 1675.500 3199434 1675.600 3199434 1675.600 31969615 1675.600	2569303 2626601 2684823 2744171 2804874 2866991 2930596 2995768 3062383 3130315 3199434 3269615 3340768					
2569303 1674,700 2626601 1674,800 2684823 1674,900 2744171 1675,000 2804874 1675,100 2806891 1675,200 2995768 1675,300 2995768 1675,400 3062383 1675,600 3199434 1675,700 3269615 1675,800	2569303 2626601 2684823 2744171 2804874 2866991 2930596 2995768 3062383 3130315 3199434 3269615 3340768 3412843					
2599303 1674.700 2626901 1674.800 2626901 1674.800 2744171 1675.000 2804874 1675.100 2805991 1675.200 2930596 1675.300 2930596 1675.300 3130315 1675.800 31304315 1675.800 3340768 1675.900 3340768 1675.900 3412843 1676.000 3412843 1676.000	2569303 2626601 2684823 2744171 2804874 2866991 2930596 2995768 3062383 3130315 3199434 3269615 3340768					
2569303 1674.700 2626801 1674.800 2626801 1674.800 2744171 1675.000 2804823 1675.000 2806991 1675.200 2806991 1675.200 2930596 1675.200 2930596 1675.200 2930596 1675.200 3103151 1675.800 3103164 1675.800 3140768 1675.800 31412843 1675.800 31417843 1675.800 31417845 1675.800 3141784	2569303 2626601 2684823 2744171 2804874 2866991 2930596 2995768 3062383 3130315 3139434 3269615 3340768 3442843 3442843 3442843 3442843 3559720 3634452					
2569303 1674.700 2626601 1674.800 2626601 1675.200 2804874 1675.200 2804874 1675.200 2806991 1675.200 28059761 1675.200 28059761 1675.200 3062283 1675.500 3199424 1675.200 3199424 1675.200 3194244 1675.200 3194244 1675.200 3194244 1675.200 3539720 1676.200 3634452 1676.200 3634452 1676.200 3710025 1676.200 3704259 1676.200	2569303 2626601 2684823 2744171 2804874 2866991 2930596 2935768 3062383 3130315 3199434 3269615 3340768 3412843 34559720 36559720 36559720 36559720 3654452 3716039					
2569303 1674.700 2626801 1674.800 2626801 1674.800 28248423 1674.800 2804824 1675.000 2804874 1675.000 2804874 1675.000 2804976 1675.200 2804976 1675.200 3002881 1675.400 3002881 1675.400 3002881 1675.800 3209615 1675.800 3240786 1675.900 3412843 1676.900 3459291 1676.300 3559720 1676.300 3710025 1676.300 3710025 1676.500	2569303 26266401 2684823 2744171 2804874 2866991 2930596 2995768 3062383 3130315 3199434 3269615 3199434 3269615 3190434 3425840 3340768 3412843 344524 374025 3754329 3634452 37763399 3863604 3941671					
2569303 1674.700 2626901 1674.800 2824823 1674.900 2804823 1674.900 2804874 1675.200 2804874 1675.200 280506 1675.300 280506 1675.300 280506 1675.300 306286 1675.300 306286 1675.300 306286 1675.300 306286 1675.300 306286 1675.300 306286 1675.300 306286 1675.300 3078639 1676.300 3078639 1676.300 3078639 1676.500 3884864 1676.500 3984864 1676.500	2569303 2626601 2684823 2744171 2806991 2930596 2995768 3062383 3130315 3199434 3269615 3340768 3412843 3445840 3559720 3634452 3710025 3786399 3863604 3941671					
2569303 1674-700 26694303 1674-800 2864823 1674-800 2804823 1674-800 2804874 1675-500 2804874 1675-500 28059768 1675-500 28059768 1675-500 3062288 1675-500 3198434 1675-500 3198434 1675-500 3198434 1675-500 3198434 1675-500 3198434 1675-500 3198434 1675-500 3198439 1675-500 3198439 1675-500 3198439 1675-500 3198439 1675-500 3198439 1675-500 3198439 1675-500 3198439 1675-500 3198439 1675-500 31984467 1675-500 31984467 1675-500 31984467 1675-500 31984467 1675-500 31984467 1675-500 31984467 1675-500 31984467 1675-500 31984467 1675-500 4100288 1675-500 4100288 1675-500	2569303 2626601 2684823 2744171 28068991 2930596 3995768 3062383 3130315 3139434 3289615 3340768 3412843 348840 3559720 3634452 3710025 37786399 3863604 3941671 4020598 4100358 4120924 4262303					
2689303 1674.700 2684933 1674.800 2684823 1674.800 2894823 1674.800 2804824 1675.200 2804874 1675.200 2804864 1675.200 2830566 1675.300 283056 1675.300 3062383 1675.500 3194344 1675.200 2826815 1675.800 3194344 1675.200 2826815 1675.800 340764 1675.200 2826815 1675.200 2826815 1675.200 2826815 1675.200 2826815 1675.200 2826814	2569303 2626601 2684823 2744171 2864874 2866991 2930596 2995768 3062383 3130315 3139434 3269615 3340768 3412843 345840 3559720 3634452 3710025 3786399 3863462 3786399 3863464 4020598 4100358 4100358 4148924 4262303 4343718					
2569303 1674.700 2626801 1674.800 2884623 1674.800 2894624 1675.200 2894524 1675.200 2894524 1675.200 2894526 1675.200 2896526 1675.200 2896526 1675.200 2896526 1675.200 2896526 1675.200 2896526 1675.200 2894524 1675.700 2896526 1675.200 2894524 1675.700 2894524 1675.700 2894524 1675.200 2894524 1675.200 2894523 1677.000 2892533 1677.100 2492533 1677.000 2492533 1677.000 2492533 1677.000 2492533 1677.000 2492530 1677.200 2492540 1677.200 249257	2569303 2626601 26264612 2744171 2804874 2866991 2930596 3062383 3130315 3199434 3269615 3199434 3269615 3340768 3412843 3445840 3559720 3634452 3786399 3485840 3559720 3634452 3786399 3863604 3941671 400358 4180924 4262303 4343718 4425160					
2569303 1674.700 262601 1674.800 2884623 1674.900 2894624 1675.200 2894624 1675.200 2894624 1675.200 2804624 1675.200 2804626 1675.200 2804627 1675.200 2804626 1675.200 2804627 1675.200 2804626 1675.200 2804626 1675.200 2804626 1675.200 2804626 1675.200 2804626 1675.200 2804626 1675.200 2804627	2569303 2626601 2644823 2744171 2804874 2806891 29930596 2995768 3062383 3130315 3199434 3199434 3199434 3199434 3412843 34128453414545 3412845 3412845345555555555555555555555555555555555					
2569303 1674.700 2626901 1674.800 2826801 1674.800 2804823 1674.900 2804874 1675.200 2804874 1675.200 2804874 1675.200 2805768 1675.200 2805768 1675.200 2805768 1675.200 2805768 1675.200 2805768 1675.200 2805768 1675.200 2805761 1675.200 2805761 1675.200 2805761 1675.200 2805761 1675.200 2805761 1675.200 2805872 1675.200 2805972 1675.200 2805972 1675.200 2805972 1675.200 2805972 1675.200 2805972 1675.200 2805972 1675.200 2805972 1677.200 2805972 1677.200 280597	2569303 2626601 2684823 2744171 2804874 2806891 29930596 29930596 29930596 29930596 29930596 299305768 304028 3199434 3199434 3269615 3340768 3412843 3412845445454 341284545454545454545454545455455655655655655					
2689303 1674.700 2684933 1674.800 268463 1674.800 289463 1675.200 2804674 1675.200 2804674 1675.200 2805691 1675.200 2805691 1675.200 2805615 1675.20055 1675.20055 2805605 1675.20055 1675.20055 2805605 1675.20055 1675.	2569303 2626601 2684823 2744171 2806891 2930596 2995768 2995768 2995768 3130315 3130315 3139443 3289615 3340768 3412843 3445840 3559720 3634452 3710025 3786399 38634652 3710025 3786399 38634652 3710025 3786399 38634652 3710025 3786399 38634652 3710025 3786399 38634652 3710025 3786399 38634652 3710025 3786399 38634652 3786399 38634652 3786399 38634652 3786399 38634652 3786399 38634652 3786399 38634652 3786399 38634652 3786399 38634652 3786399 38634652 3786399 3863455 3786399 38634652 3786399 3863455 3875455 387555 3875555 3875555555555555555555					
2689303 1674.700 2684303 1674.800 2684623 1674.800 2894623 1675.200 2804674 1675.200 2804674 1675.200 2805669 1675.300 2805669 1675.300 2805616 1675.300 2805616 1675.300 2805615 1675.300 2805615 1675.300 2805615 1675.300 2805615 1675.300 2805615 1675.300 2805615 1675.300 2805615 1675.300 280562 1677.300 280562 1677.500 280562 1677.5	2569303 2626601 2684823 2744171 2806991 2930596 3062383 3130315 3199434 3268615 3140245 3340768 3412843 3485840 3559720 3559720 3559720 3559720 3710025 3710025 3941671 4020598 4180924 4262303 4343718 4425140 4507399 4674279 4758898 4844269 4930366 5017155 5104617					
2569303, 1674.700 2684303, 1674.800 268463, 1674.800 2694624, 1675.000 2694674, 1675.000 2694674, 1675.000 2696764, 1675.200 2696764, 1677.200 2696764, 1677.200 2696764, 1677.200 2697676, 1677.200 2697676, 1677.200 2697676, 1677.200 269778,	2669303 2626901 2884823 2806951 2806951 2806951 2806951 2805956 3905283 39130315 319345 31935					
2569303, 1674.700 2669303, 1674.800 268462, 1674.800 2894524, 1675.500 2894524, 1675.500 2894524, 1675.200 2895764, 1675.200 2895764, 1675.200 2895764, 1675.200 2895764, 1675.200 2896764, 1677.200 4425100, 1677.200 4425100, 1677.200 4425100, 1677.200 4425100, 1677.200 4425100, 1677.200 4425100, 1677.200 4425100, 1677.200 4425210, 1677	2669303 2269303 2864823 286482 2930568 3950558 3950558 39505555555555555555555555555555555555					
2689303 1674.700 2689433 1674.800 2884823 1674.800 2804823 1675.200 2804874 1675.200 2804874 1675.200 2804874 1675.200 280586 1675.300 280586 1675.300 398586 1675.300 3982864 1675.200 3982864 1675.200 3982864 1675.200 3982864 1675.200 3982864 1675.200 3982864 1675.200 3982864 1675.200 3982864 1675.200 39728639 1676.200 39748284 1675.200 39748284 1677.200 490598 1675.200 490598 1677.200 490598 1677.200 490598 1677.200 490598 1677.200 490598 1677.200 490598 1677.200 490592 1677.200 490	2669303. 2826801. 2826801. 2804823. 2806991. 2830582. 2806995. 2830582. 280695. 28065. 28065. 28065. 28065. 28065. 28065. 28065. 28065. 28065. 28065. 28065. 28065. 28065. 28065. 2806					
2669303 1674.700 2669430 1677.800 2804823 1674.800 2804823 1674.900 2804824 1675.200 2804874 1675.200 2804874 1675.200 280586 1675.300 280586 1677.300 280586 1677.300 2805873 1677.300 2805975 1678.300 2805975 1678.400 2805975 1678.400 280	2669303 2269303 2864823 2864823 2804824 283456 2834578					
2689303 1674.700 2689430 1674.800 2884823 1674.900 2804824 1675.200 2804874 1675.200 2804874 1675.200 2804874 1675.200 2805874 1677.200 2805874 1677.200 2805874 1677.200 2805874 1677.200 2805874 1677.200 2805874 1677.200 2805874 1677.200 2805874 1677.200 2805874 1677.200 28058775 1677.200 28058775 1677.200 2805775 1677.200 2805775 1677.200 2805775 1677.200 2805775 1677.200 28059775 1677700 28059775 1677700 28059775 1677700 280597	2669303 2269303 2864823 2864823 2804824 280484 2804824					
2569303, 1674.700 2669303, 1674.800 2884623, 1674.800 2804624, 1675.200 2804624, 1677.200 2804524, 1675.200 2804524, 167	2669303 2269303 2864823 286482 280482 280482 280482 310305 31005 310305 31005005 31005005 3					
2569303, 1674.700 2669303, 1674.800 288462, 1674.800 280462, 1675.200 2804674, 1675.200 2804674, 1675.200 2804674, 1675.200 2804674, 1675.200 2804764, 1675.200 2804564, 1677.200 2804564, 1677.	2669303 2269303 2864823 2864821 2804824 2804824 2830582 313035 31305 31005 31005 31005 31005 31005 3100505 3100505 3100505 3100505 3					
2569303 1674.700 2569303 1674.800 288462 1674.800 280462 1675.200 2804674 1675.200 280476 1675.200 280476 1675.200 2804776 1675.200 2804776 1675.200 2804776 1675.200 2804777 1677.200 2804777 1677.200 280477 1677.200 2	2669303 2269303 2864823 2864823 2804824 2804824 2834566 303303 303303 303303 303303 303303 303303					
2569303, 1674.200 2569303, 1674.800 2824821, 1674.800 2804824, 1675.000 2804824, 1675.000 2804824, 1675.000 2804824, 1675.200 2804824, 1675.200 280482, 1675.200 28049, 1675.200	2669303 2269303 2864823 280482 280480 280482 280480 280480 280480 280480 280480 280480 280480					
256930.3 1674.700 256930.1 1674.800 282680.1 1674.800 280482.1 1674.900 280482.4 1675.200 280482.4 1675.200 280482.4 1675.200 280482.4 1675.200 280482.4 1675.200 280482.4 1675.200 280482.4 1675.200 280482.4 1675.200 280482.4 1675.200 280482.4 1675.200 280476.8 1675.200 280482.4 1675.200 280482.4 1675.200 280482.4 1676.200 380482.4 1676.200 380482.4 1676.200 380482.4 1676.200 380482.4 1677.200 4425160.1 1677.300 4425160.1 1677.300 4425161.4 1677.200 4425161.4 1677.200 442524.4 1677.200 5192.4/4.4 1678.200 5192.4/4.4 1	22663033 22663034 2864823 280482 200482 200480 2004800 2004800 200480000000000					
2569303 1674.700 2569301 1674.800 2826801 1674.800 2804821 1675.300 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1675.200 2804824 1676.200 2804824 1676.200 2804824 1676.200 2804824 1677.200 2804824 1677.200 2804824 1677.200 2804924 1677.200 2804924 1677.200 2804924 1677.200 2804924 1677.200 2804924 1677.200	2669303 2269303 2864823 286482 286482 286482 286482 283452 28352 283452					
2569303, 1674.700 2569303, 1674.800 288462, 1674.800 2894624, 1675.000 2894524, 1675.200 2894524, 1675.200 28945244, 1675.200 2894524, 1695.200 2994524, 1695.200 2994524, 1695.200 2004524, 169	2266303 2266303 2264613 2264421 2204427 2204427 2204427 220457 220457 220457 220457 230527 230527 2405					
2689303 1674.700 2869631 1674.800 2864623 1674.800 2804623 1675.200 2804674 1675.200 2804674 1675.200 2804574 1677.200 2804574 1677.200 2804572 1675.200 2804572 1675.200 280477 1677.100 2804572 1675.200 2804572 1675.200 2804574	2669303 2269303 2864823 2864823 280482 28048					
2689303 1674.700 2689303 1674.800 2884823 1674.900 2804874 1675.500 2804874 1675.200 2804874 1675.200 2804974 1675.200 28049744 1675.200 28049744 1675.200 28049744 1675.200 28049744 1675.200 28049744 1675.200 28049744 1675.200 28049744 1675.200 28049744 1675.200 28049744449894 28049744449894 28049744449894 28049744449894 280497444499494 280497444499494 280497444499494 280497444499494 280497444499494 280497444499494 280497444499494 280497444499494 280497444499494 280497444499494 28049744449949494 280497444499494949494949494949494949494949	2669303 2269303 2864823 280482 280480482 280480047 280482 28048000 28048000000000000000000					
2569303, 1674.700 2569303, 1674.800 2884623, 1674.800 2894624, 1675.200 2894524, 1675.200 2894524, 1675.200 2894524, 1675.200 2895524, 1675.200 2895524, 1675.200 2895524, 1675.200 2895524, 1675.200 2895524, 1675.200 2894524, 1677.200 24957243, 1677.200 2495724, 1677.200 2495724, 1677.200 2495724, 1677.200 2495724, 1677.200 2495724, 1677.200 2495724, 1677.200 2495724, 1677.200 2495724, 1677.200 2573463, 1678.200 2573463, 1678.200 257454, 1678.200 257454, 1689.200 277755, 1689.200 277755, 1689.200 277755, 1680.200 277755, 1680.200 277755, 1680.200 277554, 1680.200 2	2669303 2269303 2864823 280482 280482 280482 280482 313035 313035 313035 313035 31304788 31304788 31304788 31304788 31304788 31304788 31304788 31304788 31304788 31304788 31458400 31458400 31458400 31458400 31458400 31458400 31458400 31458400 31458400 31458400000000000000000000000000000000000					

197491 168.1.00 7974891 2077160 161.00 2974891 2077161 161.200 179738 2027081 168.1.200 179738 2027081 168.1.200 179738 2027081 168.1.200 179738 2027081 168.1.200 179738 2027081 168.1.200 8486491 2028081 168.1.200 8486491 2028081 168.1.200 8486491 2028091 168.2.200 944707 202001 168.2.200 9476200 202001 168.2.200 9476200 202001 168.2.200 9476200 2020021 168.2.001 9744200 2020021 168.2.001 9744200 2020021 168.3.001 104.3.001 2020021 168.3.001 1075233 103.0022 168.3.001 1075233 103.0022 168.3.001 1075233 103.0021 110.0024 113.3.001 104.2.026	7873202	1681.000	7873202
2222098 1881.400 2222098 2326049 1881.400 222089 2326049 1881.400 222089 2326049 1881.600 4869811 5839371 188.600 8969513 5893973 188.200 9904733 9904733 182.200 914440 9120503 188.200 904733 9120503 188.200 944701 944470 1882.200 9456020 9444721 1882.200 9466020 9446720 1882.200 9466020 945620 946733 956042 974420 1882.200 9466020 987294 1882.000 900706 10002070 1883.100 10003705 100220721 1883.000 10043705 10752738 183.200 1075273 10752737 183.200 1075273 1133165 184.200 11407735 11426276 184.400 1153988 1153988 1684.400 <td< td=""><td></td><td>1681.200</td><td>7974991 8077169</td></td<>		1681.200	7974991 8077169
9448811 166.16.00 9448811 953397 168.100 960515 953397 168.200 960515 953397 168.200 960515 953397 168.200 904733 9120303 112000 9124403 9120303 112000 9124440 9120403 112000 9124440 9120414 1120200 9124440 9120420 1120200 9124240 9121224 103000706 10301002 9911224 103000706 1031002 10200212 168.3000 10001706 102020212 168.3000 10001706 102020212 168.3000 10097127 102020212 168.3000 1009727 102020212 168.3000 1009727 11313165 164.4001 11200381 11313165 164.4001 11303165 114202781 168.5001 1211000 114202781 168.5001 12110107 114202781	8282698	1681.400	8282698
9896515 1681.800 890513 9803438 1681.800 890513 9803438 1681.000 890733 9803438 1682.000 990733 9904203 1682.200 9120503 9120503 1682.200 9120503 9226910 1682.200 9120503 9226910 1682.200 9464070 9440770 1682.200 946200 945204 1682.200 947200 945204 1682.200 947200 945204 1682.200 947200 945202 1683.000 9915202 10020706 1683.300 1000272 102020212 1683.000 1007523 10202222 1684.000 11077223 11200381 1684.000 11077223 11200381 1684.000 1107723 11200381 1684.000 11077253 11303165 1684.000 11777555 114026727 1684.000 11787565 11402678 <td< td=""><td></td><td>1681.600</td><td>8489811</td></td<>		1681.600	8489811
3806753 1682.000 9004733 9014440 1682.000 9104603 9120003 1682.200 9120503 9226810 1682.000 914490 9120003 1682.200 9120503 9226810 1682.000 944500 9120503 1682.200 946502 9140201 1682.200 946502 9142020 1682.000 9461200 9142021 1683.000 9915226 10002005 1683.300 1000205 100202021 1683.300 1000226 1012020212 1683.300 1007228 101202021 1683.300 1007228 10020202 1683.300 1007228 10020202 1683.300 1007228 10022021 1683.000 1007529 1007222 1683.000 1007529 11200281 1683.001 1077256 11200281 1684.001 1120308 11420276 1684.001 1120766 1142027		1681.800	8698515
2226010 1682.300 2226010 3333665 1682.400 333665 9442770 1682.400 9346821 9548230 1682.400 9346821 9548230 1682.400 9346821 9744200 1682.400 9440707 9548231 1682.400 954620 9744200 1682.400 9764200 9744200 1682.400 10020212 10000212 1683.200 10020212 10100221 1683.200 10020212 1020122 1683.200 100641412 1075238 1683.300 10673070 1075238 1683.300 10673070 1075237 1684.400 1133307 11332086 1684.400 1133308 1133237 1684.400 1163307 1132327 1684.400 1163307 1132337 1684.400 1163308 11323271 1684.400 1171767 12220200 1685.001 12246400 1537660		1682.000 1682.100	9014449
9440770 168.2500 9440770 5548230 682.600 9542020 5548230 682.600 9542020 9784200 1682.700 9866042 9784200 1682.600 977200 19872644 1682.400 9772400 1987264 1682.400 9772400 1987264 1682.400 9772400 19972640 1683.400 1004076 10042712 1683.400 1040158 10053015 1683.400 1040158 10752328 1683.400 10169727 11072227 1684.000 11079727 11200381 1684.200 11313165 11432027 1684.000 11459568 11539688 1684.000 11459568 11539488 1684.000 11595686 11539488 1684.000 11459568 11595616 1684.000 11459676 115956216 1684.000 11459676 115956216 1684.000 11459677 11595	000000	1682.300	9226910
9656042 668.200 976200 9774200 668.200 977204 9774200 668.200 977204 9781252 653.00 9915264 9781252 653.00 9915264 9781252 653.00 9915264 9781252 653.00 9915264 9781252 653.00 9915264 978294 982.300 1030025 978294 982.300 1075797 977597 983.000 1095797 1087227 11202381 884.000 1109727 11202381 884.000 1109727 11426277 1684.000 11331365 11426278 1684.000 11331365 11426278 1684.000 11394631 11653271 1684.000 11596868 11707265 11450760 1244.001 117177 1685.000 1224.000 117177 1685.000 1224.000 117177 1685.000 1224.000 117177	9440770	1682.500	9440770
987264 1682.200 897264 9981526 1653.00 9981526 10000706 1683.100 10000706 10202012 1683.200 10000706 10202012 1683.200 10000706 10202012 1683.200 10000706 10202012 1683.200 10000706 10202012 1683.200 10000706 10202012 1683.200 10000706 10202012 1683.200 10097071 10272797 1683.200 10097071 11202081 1684.200 11313165 11313165 1684.200 11313165 11539688 664.400 11996276 11620276 1684.600 11767365 11767365 1684.600 11767365 1181644 1685.001 124121 11826421 1685.001 124121 1211076 685.001 124121 1211076 685.001 124121 1211076 685.001 124121 122456401 </td <td>9656042</td> <td>1682.700</td> <td>9656042</td>	9656042	1682.700	9656042
1000706 1683.100 1000706 1000706 1683.100 1000706 10200212 1683.200 1020212 10200212 1683.200 1020212 10200212 1683.200 1020212 10200212 1683.200 1020212 10200212 1683.200 1055.001 1027597 1693.200 1097597 11272222 1684.000 11097627 11202081 1684.200 11313165 11313165 1684.200 1133165 11539688 1684.400 11539688 11653275 1684.600 11767365 11767365 1684.600 11767365 1181644 1685.001 124121 12244520 1685.001 124121 12244521 1685.001 124121 12244521 1685.001 124121 1245421 1685.001 1242421 1245421 1686.001 134758 1245421 1685.001 13424251 1344851			9872694
10420158 1683.400 10420158 10530011 683.400 10420158 10530011 683.400 10420158 10530011 683.600 10641412 1075233 683.600 1064308 1075233 683.600 1067307 10172233 1683.600 1067307 1013122 684.400 1103807 1131322 684.400 11428277 1132322 1684.300 1142877 11323237 188.400 1163372 11767325 1684.500 11767355 1181644 1684.700 11881644 1199627 168.400 1211076 12246040 1685.000 1224650 1324121 1685.000 12341631 1324631 1685.000 12341631 13246421 1685.000 12344631 1324072 1685.000 12344631 1324631 1685.000 1344531 13246421 1685.000 13444531 1344531	10200212	1683.200	10200212
10641412 168.3 600 10641412 1075233 168.3 600 1068398 1075233 168.3 600 1068398 1075233 168.3 600 1068398 1075737 168.3 600 1068398 1075737 168.3 600 1067627 11313165 164.4 00 1133165 11426273 164.4 00 1133365 115290381 168.4 00 1153569 115290481 164.4 00 1173556 1181644 164.7 00 11881644 119805216 168.4 00 11747255 119805216 168.5 000 1224.000 12242600 168.5 000 1224.002 12341631 168.5 000 1234.002 12246400 168.5 000 1234.002 1246420 168.5 000 1234.002 1246420 168.5 000 1234.002 1246420 168.5 000 1234.002 1245426 168.6 00 1335.9 65 1245426 168.5 000 124.002	10420158	1683.400	10420158
1083308 1683300 10967397 1683300 1097597 10977397 1683400 1097597 1087277 112020381 1684400 1120381 1133165 1684200 1133165 11426275 1684300 11453586 1153988 1684400 1153988 11539737 1685372 1684400 1153988 1153978 1684400 11981644 1684400 11981614 1684400 11981644 1598050 12211076 1684300 12211076 12341631 12211076 1684300 12341631 1685100 12341631 12344531 1685100 12341631 1685100 12341631 12345431 1685100 12341631 1685100 12341631 1345431 1685100 12341631 1685100 12341631 1345431 1685100 13416301 1341630 134451 13345451 1686400 1344513 134451 113343445 1344451 1344451	10641412	1683.600	10641412
11200381 1684.100 11200381 1133165 684.200 133165 1133165 684.200 134165 1133165 684.200 11426278 11539685 684.200 11436278 11539685 684.200 11481644 1153965 684.200 11881644 1198216 6163079 11881644 1198220 6165.000 12222000 12222000 6165.000 12224503 122451631 655.200 12744640 122441631 655.200 1274420 12324007 6165.200 1244500 123242413 655.000 1344503 1334566 666.001 337566 1344531 665.600 1344503 13451827 666.600 337566 13451827 666.600 337566 13451827 666.600 337566 13451827 666.600 337566 13451827 666.600 337566 1345451 166	10863998	1683.800	10863998
11426278 168.3.00 11426278 168.3.00 11539888 168.3.00 11539888 168.3.00 11539888 168.3.00 11787365 168.00 11818444 168.4.00 11982621 168.3.00 119826216 168.00 12241031 168.5.00 12241031 168.5.00 12242600 168.5.00 12242601 168.5.00 12242602 168.5.00 1224422 168.5.00 1224422 168.5.00 1234722 168.5.00 1234721 168.5.00 1343731 168.5.00 13240072 168.5.00 13375868 168.5.00 13441607 168.6.00 1384441 168.6.00 1384451 168.6.00 1384451 168.6.00 1384451 168.6.00 1384451 168.6.00 1384451 168.6.00 1384451 168.6.00	11087927 11200381	1684.100	11200381
1163.372 108.4500 11673.351 11767.355 108.4500 11767.355 11767.355 108.4500 11767.355 1188.104 108.4700 1188.1044 1199.251 108.4500 11767.355 1198.104 108.4700 1188.1044 1199.251 108.460 1197.055 1234.1531 108.5100 1224.0500 1224.260.06 108.5000 1224.0500 1224.421 108.5000 1234.051 1234.121 108.5000 1234.050 1324.021 108.5000 134.4531 13320072 108.5000 1337.5668 134.121 108.5000 134.4531 13320072 108.5000 1337.5668 134.120 108.5000 134.4531 13320072 108.5000 1337.5668 134.121 108.5000 134.4531 1330.4777 168.5000 1337.5668 134.121 108.5000 143.0341 1335.661 108.5000 143.0347		1684.300	11426278
1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 119962 16 100 1188 1196 110	11653379	1684.500	11653379
1211076 1684.900 1211076 12228026 1684.900 1223600 1224026 1685.100 1224604 12341631 1685.100 1224026 1245400 1685.200 12570485 1245400 1685.200 12570485 124542 1685.200 12570485 124542 1685.200 124712 124542 1685.200 124712 124542 1685.200 124721 1235072 1685.200 1237566 13375668 1686.000 1337566 1349102 1686.200 1337566 13374732 1686.200 1349102 1335451 1685.000 13410303 1335451 1685.000 14310343 14193043 1686.700 14813043 14193043 1686.700 14813043 14193043 1686.700 14813043 14193044 1687.700 157771 1459.701 1447474 147574 1459.702	11881644	1684.700	11881644
12456400 1685.200 1246400 12570485 1685.200 1264480 12570485 1685.400 1264422 12784404 1685.400 1264221 12784404 1685.600 1294421 1284212 1685.600 1294421 1284212 1685.600 1294421 1284212 1685.600 1294421 1284212 1685.600 1294421 1284212 1685.600 1294421 12841431 1685.600 13944481 1294214 1685.600 13944481 1294214 1685.600 13944481 12945145 1686.500 13944481 12945261 1686.500 13944451 1294527 1685.600 1475.001 1294527 1687.700 1444251 1294527 1687.700 1484721 1473.015 1697.700 1597.770 1294721 1697.700 1597.771 1294721 1697.700 1597.771 1297.777 </td <td>12111076 12226206</td> <td>1685.000</td> <td>12111076 12226206</td>	12111076 12226206	1685.000	12111076 12226206
1284422 195.400 1294421 1279404 195.401 194422 1279404 195.500 1279404 1279404 195.500 1294421 1304231 165.500 1294421 1304231 165.500 1294421 1304231 165.500 1294421 1304231 165.500 1294421 13375686 166.000 1337588 1341007 166.001 13419107 1349107 166.200 1337588 13914143 166.001 13419107 149107 166.001 13419107 149107 166.001 1341451 149107 167.001 1446421 147.701 167.700 154.6021 14901669 167.700 154.6021 14901669 167.700 153.9322 1597771 167.700 153.9324 1597771 167.700 153.9324 1597777 167.700 153.9324 1597777 167.700	12456400	1685.200	12456400
1294421 1685.600 1294221 1294212 1685.600 1294221 13022426 1655.700 13022424 1314531 1685.600 1344531 1326072 1685.600 1344531 1326072 1685.600 1344531 1326072 1686.200 1337566 139314180 1686.200 1337566 13941481 1686.200 1337566 13941481 1686.200 13944581 139541481 1686.200 1493043 14133043 1686.700 1493043 14310077 1686.200 1473050 14428131 1686.500 14428513 14456224 1687.700 16464721 1473105 1677.700 16314342 1597265 1682.700 17378610 1597265 1682.700 17378610 1597265 1682.200 17678610 1597275 1683.000 17678410 1597275 1683.000 17670774 1597277		1685.400	12684826
1314/531 1685.800 134/4531 1326072 1685.800 1320072 1337686 1686.000 1337686 1337686 1686.000 1337686 1349107 1686.200 1337686 1349107 1686.200 1337686 1374732 1686.200 1337686 1384145 1686.400 1334465 13954451 1686.00 1394445 14910571 1686.200 1394445 14910567 1686.00 1494457 14910567 1686.00 1494457 14910567 1687.200 14901669 14921057 1686.00 14901669 15139342 1687.500 15337771 14973105 1697.700 1534526 15377771 1687.700 1534526 15377771 1687.700 1537777 15670027 1698.400 1737077 157027 1688.400 1730707 157727 1687.00 1647774 157727		1685.600	12914212
1337688 168.0.00 1337688 1337688 168.0.00 1349107 1349107 168.2.00 1306197 13814185 168.4.00 1341405 1374732 168.4.00 1341405 13844465 168.4.00 1344485 13954451 168.6.00 1491405 14130451 168.6.00 1491405 14130451 168.6.00 1491405 14130451 168.6.00 1491405 14421621 169.7.00 1464624 14773105 169.7.00 14564524 14973105 169.7.00 153.9342 15020416 166.7.00 125.9.466 15139342 168.7.00 153.7777 156.7.00 153.7777 168.7.00 153.7777 156.7.00 156.9.00 169.9.00 169.9.00 165.7777 168.7.00 157.7771 168.7.00 157.7771 156.7772 168.4.00 17.7771 168.7.00 157.7771 157.7771 168.7.00	13144531	1685.800	13144531
13724732 1686.300 13724732 13841485 666.300 1372484 13841485 666.300 1375484 13954185 666.300 1375687 1475565 666.300 1475684 1475565 666.300 1473684 14130343 1686.700 1434684 14130431 1686.700 1442851 14426524 667.700 14442851 14426524 667.700 14442851 14605124 667.700 14442851 14907166 667.700 14442851 1532424 667.700 15374771 1532424 667.700 15374771 1556601 668.200 1576861 1577771 668.200 1576861 1576561 668.200 1577681 1577771 668.200 15776861 15738411 668.200 15776861 15738410 168.600 15772471 15838413 668.200 15776861 1597656 <	13375868 13491907	1686.000	13375868 13491907
1395461 1665.500 1395461 1407563 1665.500 1395461 1407563 1665.001 1475303 1413043 1665.700 14364524 1413043 1665.700 1456524 1413043 1665.700 1456524 1426521 1675.700 1464624 1475105 677.700 1464624 1475105 677.700 1464624 1475105 677.700 1464724 1475105 677.700 1557.7771 1557.7771 1687.700 157.7770 1556.600 1687.700 157.7770 1556.600 1687.700 157.7771 1556.600 1683.200 157.7761 157.7771 1683.000 157.7761 157.7771 1683.000 162.7767 1556.600 1684.200 157.7761 1567.772 1685.600 164421760 157.777 1689.200 177.076443 177.85581 1685.700 179.7074418 17	13724732	1686.300	13724732
1413043 1862.700 1413043 1413047 1862.700 1430453 143067 1865.900 1430677 14428513 1665.900 14408513 1456624 1657.700 14664721 1473105 1677.000 1456624 1473105 1677.000 1456624 1473105 1677.000 1536542 14201660 1687.300 14001660 1535242 1687.700 1534764 1537771 1687.700 1534764 1537771 1687.700 1524661 1537777 1687.700 1524661 1537777 1687.700 1524661 1537777 1687.700 153776310 1597252 1683.000 1627.707 1597252 1683.000 1706473 1597252 1683.000 1706474 1597252 1683.000 1706474 1597252 1689.000 1706474 1597252 1689.000 1706474 150027 <	13958451	1686.500	13958451
1442813 1665.900 1442813 1442813 1666.900 1442813 1456624 1657.000 14666421 1473105 1677.000 1466624 1473105 1677.000 14606421 1473105 1677.000 150604 14801666 1687.300 14001669 1513942 1677.600 1523465 1525456 1677.000 1524166 1515942 1687.700 1531452 1577810 1687.000 152465 1578810 1688.000 15778810 1578680 1682.200 1976686 1597258 1683.000 157767 1585480 1683.000 157767 1585480 1683.000 1706473 1597252 1683.000 1706474 1597252 1683.000 1706474 1597252 1683.000 1706474 1597252 1683.000 1706474 1597252 1683.000 1706474 1597252 16	14193043	1686.700	14193043
14664721 1667.100 1664721 1473105 667.200 1473105 1473105 677.200 1473105 1473105 677.200 1473105 15020416 677.400 1502445 15153642 1677.600 153476 15153642 1677.600 1534764 15153642 1677.600 1534764 1577171 1687.700 1534764 15778810 1688.000 15778810 15976265 1683.200 1976868 15977258 1683.200 19776861 15977258 1683.200 1976868 16974261 1683.000 1677767 1670747 1688.400 16770674 1670747 1688.400 1706473 1670747 1688.400 1706474 1670747 1688.400 1706474 16706474 1688.400 1706474 16706474 1688.400 1706474 1670747 1689.400 17064474 17165433	14428513 14546524	1686.900	14428513
15020416 1667.400 16020416 1513842 1677.400 1533942 1677.400 1533942 1677.400 1533942 1677.400 1537.477 1687.7770 1537.7771 1687.7770 1537.7771 1687.7770 1537.7771 1657.7700 1537.7771 1657.7700 1537.7771 1657.7700 1537.7771 1657.7700 1537.7771 1657.7700 1537.7771 1657.7700 1537.7771 1657.7800 164.660 1657.6661 1652.600 1667.6661 1652.600 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 1667.6661 167.672.677 1658.6700 177.667.6661 167.672.677 167.6661 167.672.677 167.6661.676.672 177.1658.6800 167.672.677 167.6661.676.672 177.167.686.000 167.676.676.676.677 177.177.177.177.167.890.001 177.6655.6800 177.177.177.167.890.001 181.60022 180.637.677 177.83666 177.177.167.890.001 181.60022	14783105	1687.200	14664721 14783105
1252468 1667.000 1523468 1527777 1687.7700 15377771 1547727 1687.7000 15377771 1547727 1687.7000 15377771 1547627 1687.7000 15377761 15516661 1687.7000 15377761 15565601 1688.000 15776861 15565601 1688.000 15776861 15677241 1688.000 15776861 1567771 1688.000 15776861 15672451 1688.000 15776861 156727247 1688.000 15767686 156727247 1689.000 16824270 156727247 1689.000 16824274 156727247 1689.000 15972052 15777775 1589.300 1707074 17785338 1689.500 17550358 177915341 1689.000 16924274 17785338 1689.500 17550358 17955341 1689.000 16924274 17955341 1689.000 16934274 <		1687.400	15020416
15467274 4687.800 16497274 15516861 687.800 16497274 15516861 688.000 15736810 1556680 688.000 15736810 1556680 688.200 15776851 1556680 688.200 15776851 1556680 688.200 15776851 15672451 688.200 15776851 15672451 688.200 15776851 15672451 688.200 15776851 15672451 688.200 15624271 1568200 16824201 1689.200 15692201 1689.200 1562520 171755331 1589.200 1706533 17262532 1589.200 1707075 17752327 1589.200 1707075 17752327 1589.000 1570707 17752327 1589.000 1570717 17753368 1589.500 17570386 1777177 1589.300 1570707 177935861 1590600 1587144 1580520 </td <td></td> <td>1687.600</td> <td>15258458</td>		1687.600	15258458
15736810 1683.000 15736810 1556600 1685.000 1576600 1556600 1685.000 1576600 1556600 1685.000 15767605 1556700 1688.400 1527767 1567720 1688.400 1527767 1567800 1586760 1582771 1563801 16827747 1688.400 1527777 1577225 1683.000 15977257 1683.000 15977775 1577125 1683.000 179764133 179764133 179764133 1797647 17755538 1689.200 17955538 1689.200 17955538 1689.200 17955538 1689.200 17973686 17572127 1689.200 17973686 17572127 1689.200 17973686 1797377 17973866 1797377 1689.200 1807377 1828.2237 1810.002 1600.00 1810.002 1600.00 1810.002 1600.00 1810.002 1600.00 1810.002 1822.237 1822.237 1822.237 1822.237 1822.237 1822.237	15497274	1687.800	15497274
16072-49 (683.30) 10072-49 16277670 (683.30) 10072-49 16278707 (684.500) 1627807 16278707 (686.500) 16338213 1645689 (686.00) 1645889 16770725 (686.700) 16579725 16770724 (686.00) 1694.207 16824774 (686.200) 1694.207 16824774 (686.200) 1694.207 16824774 (686.200) 1704.207 177155558 (689.200) 17457377 177270757 1689.200 1745733 17727271 1689.400 17442871 17753568 689.200 1757217 17753568 689.200 1795391 17772386 689.200 1795391 17773386 689.200 1935941 1802022 1690.001 1824284 18923401 1690.200 1844944 18923402 1690.001 1824284 1914144 1690.200 1844944	15856809	1688.000 1688.100	15736810 15856809
16338213 1685.500 16338213 16456986 1685.500 16338213 16456986 1685.700 1657.9725 16456986 1685.000 16338213 16770257 1685.700 1657.9725 17715633 1689.200 1774.071 17715633 1689.200 1745.071 17720707 1689.400 1744.807 17720707 1689.400 1744.807 177520358 1689.200 1736.707 17720707 1689.400 1744.2867.1 177520358 1689.400 1742.807.1 177520358 1689.400 1747.287 177520358 1689.400 1747.287 17738366 1689.400 179.15641 1803747 1689.400 179.15641 180522 1680.000 1814.0002 18771454 1690.200 184.000 1938124 1600.000 193.8100 19138126 1600.000 193.8100 19138126 1600.000 193.8100 <td>16097249</td> <td>1688.300</td> <td>16097249</td>	16097249	1688.300	16097249
1557722 168.700 16579725 15700767 168.800 1700647 15700767 168.800 170647 168.21734 168.800 1706471 168.21734 168.800 1706471 1564.207 168.8100 17064133 17105533 168.300 17642533 17105535 168.900 17550368 17761247 168.900 17550368 177713566 168.900 17550368 1777135636 168.900 17550368 17711773366 17573050 17753056 17712427 168.900 17550358 177135634 168.900 1753036 17715541 168.900 180.77167 168.200 184.900 184.901 177154541 169.000 182.902 178.411 169.000 182.900 177154541 169.000 182.900 1771645 169.000 182.900 1771645 169.000 182.900 177164581<	16338213	1688.500	16338213
1694-2007 1689.0001 1694-2007 1764-133 1684.000 1694-2007 1776-133 1689.000 1694-2007 1776-133 1689.000 1785633 17307075 1689.400 1742/8671 1742/8671 1689.400 1742/8671 17702086 1689.700 17703066 17703086 1689.700 17703066 17703086 1689.700 17703066 18160022 1690.000 18100022 18160022 1690.000 1810002 18160022 1690.000 1800.000 18160022 1690.000 1800.000 18262227 1690.100 1682.200 18262287 1690.100 1680.000 187.164 187.1645 1690.500 187.164 1690.500 1987.100 1868.300 183.810 1690.100 1890.600 1996.138 1690.000 181.8810 180.163.20 199.163.20 1997.134 199.100 199.600.00 181.8810 199.163.2	16579725	1688.700	16579725 16700674
17165833 1682.200 17165833 17165833 1682.200 17165833 17307075 1689.400 17428671 17428671 1689.400 17428671 1750355 1689.400 17428671 17550356 1695.500 1750.305 177315861 1689.600 1771.564 177315861 1689.600 1771.574 177315861 1689.600 1771.574 16822227 1690.600 1803.774 16822227 1690.000 1824.774 16822227 1690.000 1824.784 16822227 1690.000 1824.784 16822287 1690.000 1824.784 1787.1545 1680.500 187.7145 1787.1545 1680.500 187.7145 1787.1545 1680.500 182.810 179.1546 1690.500 182.126 199.3574 161.00 183.874 199.3574 161.00 183.874 199.3565 1611.00 183.872.16	16942907	1689.000	16942907
1742.8671 1688.400 1742.8671 1756.035 1689.400 1742.8671 1756.035 1689.500 1756.035 1756.035 1689.500 1767.212 1758.035 1689.500 1767.212 1793.566 1689.500 1791.564 1793.566 1689.500 197.564 1803.747 1689.500 197.564 1803.747 1689.500 197.564 1803.747 1689.500 180.374 181.0022 1680.000 184.944 1952.644 190.300 156.264 1893.340 1609.500 187.7145 1893.340 1600.000 193.810.00 191.3810.1 1600.000 193.810.00 191.382.10 1600.000 193.810.00 191.382.10 1600.000 193.810.00 191.382.10 1600.000 193.810.00 191.382.10 1600.000 193.810.00 191.382.10 1600.000 193.810.00 192.840.16 1600.00 193.810.	17185583	1689.200	17185583
17672127 1685.000 1672127 1773366 1683.000 17731564 1773367 1683.000 1793564 1793366 1683.000 1973564 1803777 1680.000 180302 1803777 16100022 1680.000 1822287 1600.000 1822084 1824244 1600.200 1844454 18262645 1600.000 1822084 18803440 1600.600 1823128 1816362 1660.001 1823287 1913861 1660.600 1823128 1913861 1660.600 1823128 1913861 1660.600 1823128 1913861 1660.600 1823128 191387 1610.001 1833374 19138810 10383374 1913811 1610.001 1838374 1913812 1610.001 1838374 1913813 191.001 1998458 191582 1600.01 182022 191582 1610.001 182		1689.400	17428671
180.37777 168.9.9001 180.37777 181.0002 160.000 181.0002 160.000 181.0002 181.0002 160.000 181.0002 160.000 181.0002 181.0002 160.000 181.0002 160.000 182.022.877 182.022.877 160.01.00 182.022.877 160.01 182.022.877 182.024.64 160.02.00 182.656.64 160.02.00 182.656.64 182.034.01 160.00 182.871.64 160.00 182.871.66 182.01.01 160.00 182.871.60 180.00 182.871.66 192.02.01.02 160.00 182.871.60 180.00 182.871.60 192.02.01.02 160.00 182.871.60 190.00 182.871.60 190.00 182.871.60 190.00 182.873.60 190.01 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00	17793986	1689.600 1689.700	17672127 17793986
18282287 1600.100 1822287 18204254 1600.200 18404544 18204254 1600.200 18404544 18204254 1600.200 18405444 18204254 1600.200 18405444 1827164 1600.200 1840544 18271645 1600.200 1840544 18283040 1660.200 1843540 18283140 1660.200 1843540 1938310 1660.200 1843540 1938310 1660.200 18438140 1938310 1660.200 18438140 1938310 1660.200 18438140 1938310 1660.200 18438140 1938310 1660.200 1938310 1938310 1660.200 1160.202 1938310 1860.200 1180.202 2041058 1610.200 2035486 2041058 1600.201 2035486 2041058 1600.201 2035486 2041058 1600.200 2035486 204505866<	17915941 18037977	1689.900	18037977
1852:8845 1680.300 1852:8845 1859:176 1600.300 1862:8845 1877:1645 1600.300 1877:1645 1883:3840 1600.300 1877:1645 1883:3840 1600.300 1873:1640 1901:582:168 1600.300 1813:8810 1913:8810 1600.300 1813:8810 1913:8810 1600.300 1813:8810 1913:8810 1600.300 1813:8810 1913:8810 1600.300 1813:8810 1913:8810 1600.300 1821:826 1912:8810 1601.200 1802:823 1912:8810 1601.200 1807:866 1996:139 1601.200 287:366 2024:1058 1601.200 287:366 2024:1058 1601.200 287:366 2024:1058 1601.200 287:366 2024:1058 1601.200 287:366 2024:1058 1601.200 287:366 2024:1058 1602.200 287:460 2024:1058:00 1602:400 284	18282287	1690.100	18282287
18771464 1600.500 18771645 1883340 1600.500 1883340 1891346 1600.700 1891346 1891346 1600.200 1891346 1891346 1600.200 1813480 180154 1600.200 1813480 180154 1600.200 1813480 1802126 1600.200 1812480 1902136 1600.200 1821269 19022083 191.200 19622683 19021300 197114 190300 2011602 1601.500 19962733 20211058 161.200 2035488 20241058 1610.00 2035488 20241058 1610.00 2035488 20241058 1610.00 2035488 20241058 1610.00 2035488 20241058 1610.00 2035488 20241058 1610.00 2035488 20241058 1610.00 2035488 20241058 1620.00 20467484 121121020	18526845	1690.200	18526845
19138810 1600.000 19138810 19261268 1600.000 19261268 19383734 1601.000 19338734 19506205 1601.000 19338734 19506205 1601.000 19338734 19506205 1601.000 19338734 19506205 1601.000 19362186 19506205 1601.000 19362186 19871674 1601.000 19873866 19996138 1601.000 19873866 19996138 1601.000 19873866 19996138 1601.000 20414088 20414584 1601.000 20441588 204158586 1601.000 20441588 204058586 1601.000 20441588 20708079 1982.200 20975198 2018207 1202.200 2082822 20173198 1692.200 20745080 2121620 1692.500 2149620 21314777 1693.000 2149820 2149743 1693.000 2149820	18771545 18893940	1690.500 1690.600	18771545 18893940
1933734 1601.000 1333734 19506205 1601.000 1333734 19506205 1601.200 1602683 19506205 1601.200 1602683 19506205 1601.200 1602683 19751174 1601.200 1602683 20118062 1601.400 1897.366 20118062 1601.600 2033488 20138063 1601.200 2033488 20148062 2002.000 20032848 20148062 2002.000 20032848 20148062 2002.000 20032849 20148062 2002.000 20032849 20148062 2002.000 20032849 20158078 1602.200 2073050 2016822 2002.000 20042842 2017819 1602.200 2073050 2018731 1603.000 21219620 21219202 1602.500 21219620 21314771 1603.000 21219620 2149263 1602.200 2149626 21	19138810	1690.800	19138810
1962;2983 19672;200 197571174 1962;3983 197571174 1962;3983 197751174 1962;3983 197571174 1977366 1967130 197571174 1977366 1967130 197571174 1977366 1967130 197571174 1977366 197700 20241058 1997700 20241058 197700 20241058 202	19383734	1691.000	19383734
19873066 1601.400 16973666 1996133 1615.00 1996133 19366133 1615.00 1986133 2011602 1601.600 2011802 20241055 1607.00 20241055 1936133 1615.00 2034105 1945586 1619.00 2035488 2063260 1652.00 2037405 20730505 1652.00 2073405 20730505 1652.00 2073405 20075260 1652.00 2073405 20075260 1652.00 2073405 20075260 1652.00 2075405 20075260 1632.00 2097516 20075260 1534771 1926.200 2141920 2134777 1926.200 2141920 2149820 2134777 1926.300 2149820 2141920 2145805 1692.000 2149820 2141920 21545963 1633.000 2148986 1927002 21545963 1633.000 2149820 21419820	19628683	1691.200	19628683
20241068 1691.700 20241068 20363488 1691.700 20241068 20363488 1691.800 20468686 20453688 1691.800 20468686 20453688 1691.800 20468686 20508260 1692.200 2057222 20575198 1692.200 2057222 2017313 1692.200 2057222 2017313 1692.200 2057222 21216202 1692.200 2057219 21216202 1692.200 2149202 2131771 1693.000 21459866 2170595 1692.200 2149202 21516206 1692.400 21459461 21216207 1692.400 21459461 21216201 1692.200 2141010 21216201 1693.200 21459461 21216202 1693.400 22450472 21216204 1693.400 22450472 22450471 1693.600 22450472 22597709 1693.600 22787370 <t< td=""><td>19873666 19996139</td><td>1691.400 1691.500</td><td>19873666 19996139</td></t<>	19873666 19996139	1691.400 1691.500	19873666 19996139
20465368 1601.2002 20465368 20006260 1692.2000 20605200 20720009 1692.1002 20730609 20852622 1692.2000 20503220 20975198 1692.2000 2057326 21097331 1692.2000 2057318 21219620 1692.2000 219312 21219620 1692.2000 219312 21219620 1692.2000 219312 21219620 1692.2000 219312 21219520 1692.2000 219312 21219520 1692.2000 219312 21555665 1692.2000 21859560 21551677 1695.000 21859560 21551677 1695.000 21859560 21551677 1695.000 21859560 21551677 1695.000 21859560 21551677 1695.000 21859560 2255027 1693.000 2295767 2255273 1693.000 2295767 2255273 1693.000 22978776 22527873 1693.000 22978776 22527873 1693.000 22978776 231455665 1694.000 230026787	20241058	1691.700	20241058
20720009 1692.100 2073000 2085222 1692.200 265222 20975198 20975198 1692.300 2697222 20975198 2121620 1692.400 21097431 1692.400 21097431 2121620 1692.500 21219620 21219620 21219620 21556661 1692.400 2169741 1692.400 2169741 21556661 1692.400 21691471 1453.000 21459606 12614074 21556661 1692.400 21691471 2153.000 21459167 2161.000 2161246 21622061 1693.000 2161246 1263.000 2161246 2154.000 2161246 21622061 1693.000 2161246 1693.000 2245.002 2245.002 22161204 1693.000 2245.002 2245.002 2245.002 2245.002 22161204 1693.000 2245.002 2245.002 2245.002 2245.002 2245.0027 1693.600 2278.002 2285.002 2285.002 2285.002	20485886	1691.900	20485886
20075198 1682.300 20075198 2007431 1682.400 2007431 21219620 1682.500 21219620 21219620 1682.500 21219620 2131771 1682.600 21341771 21458656 1682.700 2146385 21556563 1692.600 21541771 121629686 1682.400 21545635 21202602 1683.400 2189484 21216214 1683.400 22341613 21216214 1683.400 22341623 22216214 1683.400 22341623 22260274 1693.400 22341623 22869571 1693.600 22849627 22767291 1693.600 22849627 22877879 1693.600 22849627 22977879 1693.600 22787739 230456787 1894.600 23046787 23145668 1694.100 23456681	20730609	1692.100	20730609
21219620 1602.500 21219620 2131771 1692.600 2134771 1452.600 2134771 1452.600 2134771 145365 1602.700 2146385 1502.700 21453856 1502.700 21453856 1502.700 21453856 1502.700 21555663 1502.600 21555663 1502.600 21555663 1502.600 21555663 1502.600 21555663 1502.700 2155566 1502.20121124 1502.20121124 1502.2010 2155566 1502.20121124 1502.20121124 1502.2010 22315567 1502.20121124 1502.2012124 1502.20121124 1502.20121124 150	21097431	1692.300 1692.400	20975198
21556963 1662.000 21656963 21707995 1652.000 21707965 21707995 1629.000 21707965 21820666 1653.000 21682966 21821426 1693.000 2169.100 21821426 1693.000 22078202 22182142 1693.000 22161421 22431009 1693.000 22161421 22431009 1693.000 22164247 22560657 1693.000 22650371 22676009 1693.000 22767873 22076076 1693.000 22076797 23045677 1694.000 23066777 23145666 1694.100 23145666	21219620 21341771	1692.500 1692.600	21219620 21341771
21829968 1693.000 21829968 21951877 1693.00 21851877 22072602 1693.200 22072602 22192142 1693.300 22072602 22192142 1693.300 22192142 22311613 1693.300 22192142 22431009 1693.500 22431009 22550327 1693.500 2250327 22669571 1693.300 22506571 22788736 1693.300 2250875 2207809 1693.300 2207879 230267877 1694.000 23026787 23145666 1694.100 23145666	21585963	1692.800	21585963
22072602 1693.200 2072602 22192142 1693.300 22192142 22311613 1693.400 22311613 22431009 1693.500 22431009 22550327 1693.600 22550327 22669571 1693.700 22669571 22280780 1693.800 22788736 23026787 1694.000 23026787 23145666 1694.100 23145666	21829968	1693.000	21829968
22311613 1693.400 22311613 22431009 1693.500 22431009 22550327 1693.600 22550327 22669571 1693.700 22669571 22768736 1693.800 22788736 22907809 1693.900 22907809 23026787 1694.000 23026787 33145666 1694.100 23145666	22072602 22192142	1693.200 1693.300	22072602
22669571 1693.700 22669571 22788736 1693.800 22788736 22907809 1693.900 22907809 23026787 1694.000 23026787 23145666 1694.100 23145666	22311613 22431009	1693.400 1693.500	22311613 22431009
22907809 1693.900 22907809 23026787 1694.000 23026787 23145666 1694.100 23145666	22669571	1693.700	22669571
23145666 1694,100 23145666	22907809	1693.900	22907809
23383123 1694.300 23383123	23145666 23264447	1694,100	23145666
		1694.300	23383123

00504005	4004 400	00504005
23501685	1694.400	23501685
23620131	1694.500	23620131
23738460	1694.600	23738460
23856665	1694.700	23856665
23974736	1694.800	23974736
24092671	1694.900	24092671
24210470	1695.000	24210470
24328131	1695.100	24328131
24445653	1695.200	24445653
24563036	1695.300	24563036
24680279	1695.400	24680279
24797383	1695.500	24797383
24914348	1695.600	24914348
25031173	1695.700	25031173
25147859	1695.800	25147859
25264406	1695.900	25264406
25380814	1696.000	25380814
25497083	1696.100	25497083
25613213	1696.200	25613213
25729204	1696.300	25729204
25845056	1696.400	25845056
25960770	1696.500	25960770
26076345	1696.600	26076345
26191781	1696.700	26191781
26307079	1696.800	26307079
26422238	1696.900	26422238
26537259	1697.000	26537259
26652141	1697.100	26652141
26766885	1697.200	26766885
26881491	1697.300	26881491
26995958	1697.400	26995958
27110287	1697.500	27110287
27224478	1697.600	27224478
27338531	1697.700	27338531
27452446	1697.800	27452446
27566223	1697.900	27566223
27679862	1698.000	27679862
27793363	1698.000	27793363
27906726	1698.200	27906726
28019952		
28133040	1698.300	28019952 28133040
28133040	1698.400	28133040 28245990
28358803	1698.500	28358803
28358803		
	1698.700	28471478
28584016	1698.800	28584016
28696417	1698.900	28696417
28808680	1699.000	28808680
28920806	1699.100	28920806
29032795	1699.200	29032795
29144647	1699.300	29144647
29256361	1699.400	29256361
29367938	1699.500	29367938
29479378	1699.600	29479378
29590681	1699.700	29590681
29701848	1699.800	29701848
29812878	1699.900	29812878
29923771	1700.000	29923771
30034527	1700.100	30034527
30145147	1700.200	30145147
30255630	1700.300	30255630
30365976	1700.400	30365976
30476186	1700.500	30476186
30586260	1700.600	30586260
30696197	1700.700	30696197
30805998	1700.800	30805998
30915663	1700.900	30915663
	1701.000	31025191
31025191		

APPENDIX F

CAPITAL COST ESTIMATE BREAKDOWN

SITE 3B

CLEAN WATER DIVERSION TRENCHES

Site No.	Channel Base Width (m)	Channel Height (m)	Channel Width (m)	Channel Length (m)	Channel Excavate Vol (m)	Concrete Liner (m)	Volume Concrete Liner (m ³)	Mesh Ref 500 (m ²)
3B	1	0.7	3.1	3000	4,305	4.12	1,237	12,372
Totals					4,305		1,237	12,372

SOLUTION (DIRTY WATER) TRENCHES

Site No.	Channel Base Width (m)	Channel Height (m)	Channel Top Width (m)	Channel Length (m)	Channel Excavate Vol (m)	Concrete Liner (m)	Volume Concrete Liner (m ³)	Mesh Ref 500 (m ²)
А	1	0.6	2.8	1,300	1,482	3.76	489	4,892
В	1	0.4	2.2	400	256	3.04	122	1,217
С	1	0.6	2.8	700	798	3.76	263	2,634
D	1	0.9	3.7	1,150	2,432	4.84	557	5,572
E	1	1.0	4.0	570	1,425	5.21	297	2,967
F	1	0.7	3.1	350	502	4.12	144	1,443
Totals					6,896		1,873	18,726

SITE CLEARANCE

5,404,125.00

		RATE	AMOUNT
	Area		
	m ²		
Ash Dam Footprint	921,300	5.00	4,606,500.0
Clean Water Channels	9,300	5.00	46,500.0
irty Water Channels	14,100	5.00	70,500.0
Return Water Dam	110,000	5.00	550,000.0
Roads	26,125	5.00	130,625.0
T - (-1-	4 000 005		
Totals	1,080,825		

EARTHWORKS

114,556,182.50

	Area	Depth/	Volume
	m ²	Length (m)	m ³
Excavation for Ash Dam Liner	921,300	1.4	1,289,820
Construction of Ash Dam starter wall	232	2,740	635,680
Excavation for RWD Liner	110,000	1.4	154,000
Construction of RWD wall	105	1,050	110,250
Clean water channels (from above)			0
Dirty water channels (from above)			6,896
Excavation for penstock outlet pipe	1.8	1,050	1,848
Box-cut for roads	26,125	0.6	15,675
Totals			2,214,169

45.00 58,041,900.00 65.00 41,319,200.00 45.00 6,930,000.00 7,166,250.00 65.00 45.00 0.00 310,297.50 45.00 83,160.00 45.00 45.00 705,375.00

LINER SYSTEM

477,373,300.00

	Area	Volume	Length	Totals
	m²	m ³	m	
HDPE for Ash Dam	921,300		2	1,842,600
HDPE for RWD	110,000		2	220,000
Clay for Ash Dam	921,300	829,170		829,170
Clay for RWD	110,000	99,000		99,000
River Sand for Ash Dam	921,300	184,260		184,260
River Sand for RWD	110,000	22,000		22,000
Bidim for Ash Dam	1,842,600			1,842,600
Bidim for RWD	220,000			220,000
Geopipes for Leachate (AD)			16,200	16,200
Leak detection stone 19mm (AD)	921,300	138,195		138,195
Leak detection stone 19mm (RWD)	110,000	16,500		16,500

STRUCTURAL CONCRETE 6,560,788.64

	Area m ²	Volume t <u>or</u> m ³	Length m	Totals
RWD Silt Trap Concrete		300		300
RWD Silt Trap Rebar		45		45
Clean Water Channels Concrete		0		0
Clean Water Channels Mesh	0			0
Dirty Water Channels Concrete		1,873		1,873
Dirty Water Channels Mesh	18,726			18,726
Penstock Outlet Encasing Concrete	1.01	1,064		1,064
Penstock Outlet Encasing Rebar		160		160

60.00	110,556,000.00
60.00	13,200,000.00
200.00	165,834,000.00
200.00	19,800,000.00
130.00	23,953,800.00
130.00	2,860,000.00
45.00	82,917,000.00
45.00	9,900,000.00
120.00	1,944,000.00
300.00	41,458,500.00
300.00	4,950,000.00

462.88

Liner rate R/m²

PENSTOCKS AN	ID PIPES	3,637,500.00							
			Area m ²	Volume t <u>or</u> m ³	Length m	No			
				(<u>or</u> m					
	st concrete pens pipe 450 mm dia	tock rings 750mm dia ameter			1,050	4050		250.00 2,500.00	1,012,500. 2,625,000
PUMP STATION									
(same for all three	-	n 1,500,000.00	Area m ²	-					
Return	n Water Pump Si	tation	100					10,000.00	1,000,000
Pumps	s and associated	l pipework	Allow for p	rovisional su	m			500,000.00	500,000
ROADS		1,627,500.00							
			Area m ²	Depth/ Length (m)	Volume m ³	Totals			
	nd recompact in-s	situ	9,300			9,300		10.00	93,000
	ver sub-grade		9,300		1395	1395		200.00	279,000
	per sub-grade b-base		9,300 9,300		1395 1395	1395 1395		250.00 300.00	348,750 418,500
G2 ba			9,300		1395	1395		350.00	488,250
							TOTAL		610,659,396
							TOTAL 425,025,396.14 (using GCL)	56,721,500.00	481,746,896
PIPELINES		11,630,000.00							
Slurry pipelines (3	350 steel)			2500				3,500.00	8,750,000
Return water (400) HDPE)			2400				1,200.00	2,880,000

SUMMARY

1.1	SITE CLEARANCE	5,404,125.00
1.2	EARTHWORKS	114,556,182.50
1.3	LINER SYSTEM	412,520,000.00

		100,414,032.13
	TOTAL CAPITAL COST	766.474.632.19
1.9	ALLOW FOR 10% CONTINGENCIES	69,679,512.02
	SUB-TOTAL	696,795,120.17
1.8	ALLOW FOR PRELIMINARY AND GENERAL ITEMS AT 25%	139,359,024.03
	SUB-TOTAL	557,436,096.14
1.6 1.7	PUMP STATION AND PIPEWORK ROADS	13,130,000.00 1,627,500.00
1.4 1.5	STRUCTURAL CONCRETE PENSTOCKS AND PIPES	6,560,788.64 3,637,500.00

SITE 3A

CLEAN WATER DIVERSION TRENCHES

Site No.	Channel Base Width (m)	Channel Height (m)	Channel Top Width (m)	Channel Length (m)	Channel Excavate Vol (m)	Concrete Liner (m)	Volume Concrete Liner (m ³)	
ЗA	1	0.7	3.1	1700	2,440	4.12	701	7,011
Totals					2,440		701	7,011

SOLUTION (DIRTY WATER) TRENCHES

Site No.	Channel Base Width (m)	Channel Height (m)	Channel Top Width (m)	Channel Length (m)	Channel Excavate Vol (m)	Concrete Liner (m)	Volume Concrete Liner (m ³)	Mesh Ref 500 (m ²)
A	1	0.5	2.5	1,700	1,488	3.40	578	5,785
В	1	0.8	3.4	800	1,408	4.48	359	3,588
С	1	0.5	2.5	580	508	3.40	197	1,974
D	1	0.5	2.5	730	639	3.40	248	2,484
Totals					4,042		1,383	13,830

SITE CLEARANCE

5,642,925.00

	Area m ²
Ash Dam Footprint	1,010,000
Clean Water Channels	5,270
Dirty Water Channels	10,245
Return Water Dam	82,500
Roads	20,570
Totals	1,128,585

EARTHWORKS 118,231,276.25

Area	Depth/	Volume	
m ²	Length (m)	m ³	

5.00	5,050,000.00
5.00	26,350.00
5.00	51,225.00
5.00	412,500.00
5.00	102,850.00

AMOUNT

RATE

Excavation for Ash Dam Liner	1,010,000	1.4	1,414,000	45.00	63,630,000.00
Construction of Ash Dam starter wall	232	2,740	635,680	65.00	41,319,200.00
Excavation for RWD Liner	82,500	1.4	115,500	45.00	5,197,500.00
Construction of RWD wall	105	1,050	110,250	65.00	7,166,250.00
Clean water channels (from above)			2,440	45.00	109,777.50
Dirty water channels (from above)			4,042	45.00	181,878.75
Excavation for penstock outlet pipe	1.8	900	1,584	45.00	71,280.00
Box-cut for roads	20,570	0.6	12,342	45.00	555,390.00
Totals			2,295,837		

LINER SYSTEM

505,586,500.00

	Area	Volume	Length	Totals
	m²	m³	m	
HDPE for Ash Dam	1,010,000		2	2,020,000
HDPE for RWD	82,500		2	165,000
Clay for Ash Dam	1,010,000	909,000		909,000
Clay for RWD	82,500	74,250		74,250
River Sand for Ash Dam	1,010,000	202,000		202,000
River Sand for RWD	82,500	16,500		16,500
Bidim for Ash Dam	2,020,000			2,020,000
Bidim for RWD	165,000			165,000
Geopipes for Leachate (AD)			16,200	16,200
Leak detection stone 19mm (AD)	1,010,000	151,500		151,500
Leak detection stone 19mm (RWD)	82,500	12,375		12,375

STRUCTURAL CONCRETE 6,459,861.91

	0	/olume t <u>or</u> m ³	Length m	Totals
RWD Silt Trap Concrete		300		300
RWD Silt Trap Rebar		45		45
Clean Water Channels Concrete		701		701
Clean Water Channels Mesh	7,011			7,011
Dirty Water Channels Concrete		1,383		1,383
Dirty Water Channels Mesh	13,830			13,830
Penstock Outlet Encasing Concrete	1.01	912		912
Penstock Outlet Encasing Rebar		137		137

PENSTOCKS AND PIPES

3,262,500.00

Area Volume Length No

181,800,000.00 200.00 14,850,000.00 200.00 26,260,000.00 130.00 130.00 2,145,000.00 45.00 90,900,000.00 7,425,000.00 45.00 1,944,000.00 120.00 300.00 45,450,000.00 300.00 3,712,500.00

121,200,000.00

9,900,000.00

60.00

60.00

Liner rate R/m² 462.78

		m²	t <u>or</u> m ³	m				
Precast concrete pensto Outlet pipe 450 mm dia				900	4050		250.00 2,500.00	1,012,500.00 2,250,000.00
PUMP STATION AND PIPEWORK (same for all three options)	,500,000.00	Area m ²						
Return Water Pump Sta	ation	100					10,000.00	1,000,000.00
Pumps and associated	pipework	Allow for p	rovisional su	m			500,000.00	500,000.00
ROADS	3,599,750.00	Area m ²	Depth/ Length (m)	Volume m ³	Totals			
Rip and recompact in-si G9 lower sub-grade G7 upper sub-grade C4 sub-base G2 base	itu	20,570 20,570 20,570 20,570 20,570	0.15 0.15 0.15 0.15	3085.5 3085.5 3085.5 3085.5	20,570 3085.5 3085.5 3085.5 3085.5		10.00 200.00 250.00 300.00 350.00	205,700.00 617,100.00 771,375.00 925,650.00 1,079,925.00
						TOTAL		644,282,813.16
PIPELINES	17,400,000.00					TOTAL (using GCL)	147,632,813.16 60,087,500.00	507,720,313.16
Slurry pipelines (350 steel)			3600				3,500.00	12,600,000.00
Return water (400 HDPE)			4000				1,200.00	4,800,000.00
SUMMARY								
1.1SITE CLEARANCE1.2EARTHWORKS1.3LINER SYSTEM1.4STRUCTURAL CONCR1.5PENSTOCKS AND PIP1.6PUMP STATION AND F1.7ROADSSUB-TOTAL	ES 3,262,500.0	25 00 01 00 00 00						

	TOTAL CAPITAL COST	909,813,868.10
1.9	ALLOW FOR 10% CONTINGENCIES	82,710,351.65
	SUB-TOTAL	827,103,516.45
1.8	ALLOW FOR PRELIMINARY AND GENERAL ITEMS AT 25%	165,420,703.29

SITE 2

LEAN WATER DIV	ERSION TR	ENCHES								
Site No.	Channel Base Width (m)	Channel Height (m)	Channel Top Width (m)	Channel Length (m)	Channel Excavate Vol (m)	Concrete Liner (m)	Volume Concrete Liner (m ³)	Mesh Ref 500 (m ²)		
1	1	0.8	3.4	2100	3,696	4.48	942	9,417		
Totals	I	0.8	3.4	2100	3,696	4.40	942	9,417		
TION (DIRTY)	WATER) TR	ENCHES			-,			-,		
	Channel			Channel	Channel		Volume			
Channel No.	Base Width (m)	Channel Height (m)	Channel Top Width (m)	Length (m)	Excavate Vol (m)	Concrete Liner (m)	Concrete Liner (m ³)	Mesh Ref 500 (m ²)		
•	1	0.5	25	050	744	3.40	200	2 002		
A B C	1	0.5 0.7 0.9	2.5 3.2 3.7	850 1,900 900	2,793 1,904	4.12 4.84	289 784 436	2,892 7,835 4,360		
D	1	1.0	4.0	1,650	4,125	5.21	859	8,589		
Totals					9,565		2,368	23,677		
CLEARANCE		8,545,625.00								RATE
			Area m ²							KAIL
Ash Dam	Footprint		1,540,000							5.00
Dirty Wate	ater Channels ter Channels	3	7,140 18,135							5.00 5.00
Return W Roads	/ater Dam		112,500 31,350							5.00 5.00
Totals			1,709,125							
THWORKS		198,791,756.25								
				Area m ²	Depth/ Length (m)	Volume m ³	_			
	on for Ash Da			1,540,000		2,156,000				45.00
Excavatio	tion of ASN D on for RWD L tion of RWD			232 112,500 105	5,700 1.4 1,050	1,322,400 157,500 110,250				65.00 45.00 65.00
Clean wa		(from above)		100	1,000	3,696 9,565				45.00 45.00
	on for pensto	ck outlet pipe		1.8 31,350	1,500 0.6	2,640 18,810				45.00 45.00
Totals						3,780,861	-			
R SYSTEM		763,746,500.00								
		703,740,300.00	Area m ²	Volume m ³	Length m	Totals	_			
	r Ash Dam		1,540,000		2	3,080,000				60.00
HDPE for Clay for A	Ash Dam			1,386,000		225,000 1,386,000)			60.00 200.00
	nd for Ash Da	am	112,500 1,540,000	101,250 308,000		101,250 308,000				200.00 130.00
	nd for RWD Ash Dam		112,500 3,080,000	22,500		22,500 3,080,000				130.00 45.00
Bidim for		(40)	225,000		40.000	225,000)			45.00
	ection stone	19mm (AD)	1,540,000 112,500	231,000 16,875		16,200 231,000 16,875)			120.00 300.00 300.00
		(((())))	112,000	10,010		10,010			Liner rate R/m ²	462.18
Leak dete Leak dete		9,970,516.86						_		
Leak dete Leak dete	ICRETE	3,370,310.00		Aron	\/oluma	Locath				
Leak dete Leak dete	ICRETE	3,370,310.00		Area m ²	Volume t <u>or</u> m ³	Length m	Totals	-		
Leak dete Leak dete TRUCTURAL CON RWD Silt	Trap Concre				t <u>or</u> m ³ 300		300			1,100.00 11,000.00
Leak dete Leak dete RUCTURAL CON RWD Silt RWD Silt Clean Wa		ete s Concrete			t <u>or</u> m ³					1,100.00 11,000.00 1,100.00 40.00

Penstock Outlet Enca Penstock Outlet Enca		1.01	1,520 228		1,520 228			1,100.00 11,000.00	1,672,523.26 2,508,784.89
PENSTOCKS AND PIPES	4,762,500.00	Area m ²	Volume t <u>or</u> m ³	Length m	No				
Precast concrete per Outlet pipe 450 mm c	nstock rings 750mm dia diameter			1,500	4050			250.00 2,500.00	1,012,500.00 3,750,000.00
PUMP STATION AND PIPEWO (same for all three options)	RK 1,500,000.00	Area m ²							
Return Water Pump	Station	100						10,000.00	1,000,000.00
Pumps and associate	ed pipework	Allow for pr	ovisional sur	n				500,000.00	500,000.00
ROADS	5,486,250.00	Area m ²	Depth/ Length (m)	Volume m ³	Totals				
ROADS Rip and recompact in G9 lower sub-grade G7 upper sub-grade C4 sub-base G2 base					Totals 31,350 4702.5 4702.5 4702.5 4702.5 4702.5			10.00 200.00 250.00 300.00 350.00	313,500.00 940,500.00 1,175,625.00 1,410,750.00 1,645,875.00
Rip and recompact in G9 lower sub-grade G7 upper sub-grade C4 sub-base		m ² 31,350 31,350 31,350 31,350	Length (m) 0.15 0.15 0.15	m ³ 4702.5 4702.5 4702.5	31,350 4702.5 4702.5 4702.5	TOTAL		200.00 250.00 300.00	940,500.00 1,175,625.00 1,410,750.00
Rip and recompact in G9 lower sub-grade G7 upper sub-grade C4 sub-base		m ² 31,350 31,350 31,350 31,350	Length (m) 0.15 0.15 0.15	m ³ 4702.5 4702.5 4702.5	31,350 4702.5 4702.5 4702.5	TOTAL TOTAL (using GCL)	695,353,148.11	200.00 250.00 300.00 350.00	940,500.00 1,175,625.00 1,410,750.00 1,645,875.00
Rip and recompact in G9 lower sub-grade G7 upper sub-grade C4 sub-base G2 base	-situ	m ² 31,350 31,350 31,350 31,350	Length (m) 0.15 0.15 0.15	m ³ 4702.5 4702.5 4702.5	31,350 4702.5 4702.5 4702.5	TOTAL	695,353,148.11	200.00 250.00 300.00 350.00	940,500.00 1,175,625.00 1,410,750.00 1,645,875.00 992,803,148.11

SUMMARY

	TOTAL CAPITAL COST	1,384,574,328.65
1.9	ALLOW FOR 10% CONTINGENCIES	125,870,393.51
	SUB-TOTAL	1,258,703,935.14
	AND GENERAL ITEMS AT 25%	251,740,787.03
1.8	ALLOW FOR PRELIMINARY	
	SUB-TOTAL	1,006,963,148.11
1.7	ROADS	5,486,250.00
1.6	PUMP STATION AND PIPEWORK	15,660,000.00
1.5	PENSTOCKS AND PIPES	4,762,500.00
1.4	STRUCTURAL CONCRETE	9,970,516.86
1.3	LINER SYSTEM	763,746,500.00
1.2	EARTHWORKS	198,791,756.25
1.1	SITE CLEARANCE	8,545,625.00